WO2017037940A1 - 可変速電動機システムの制御方法及び可変速電動機システムの制御装置 - Google Patents

可変速電動機システムの制御方法及び可変速電動機システムの制御装置 Download PDF

Info

Publication number
WO2017037940A1
WO2017037940A1 PCT/JP2015/075183 JP2015075183W WO2017037940A1 WO 2017037940 A1 WO2017037940 A1 WO 2017037940A1 JP 2015075183 W JP2015075183 W JP 2015075183W WO 2017037940 A1 WO2017037940 A1 WO 2017037940A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
variable speed
shaft
axis
variable
Prior art date
Application number
PCT/JP2015/075183
Other languages
English (en)
French (fr)
Inventor
義行 岡本
毛利 靖
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to PCT/JP2015/075183 priority Critical patent/WO2017037940A1/ja
Priority to EP15903059.2A priority patent/EP3330569B1/en
Priority to JP2017537175A priority patent/JP6489628B2/ja
Priority to US15/756,945 priority patent/US10473193B2/en
Publication of WO2017037940A1 publication Critical patent/WO2017037940A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0246Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by initiating reverse gearshift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a variable speed motor system control method and a variable speed motor system control apparatus.
  • an apparatus for driving a rotary machine such as a compressor
  • an apparatus including an electric device that generates a rotational driving force and a transmission that shifts the rotational driving force generated by the electric device and transmits the rotational driving force to the rotating machine is provided.
  • Japanese Patent Application Laid-Open No. H10-228561 describes a device using a constant speed motor and a variable speed motor for shifting as an electric device and using a planetary gear transmission as a transmission device in order to accurately control the gear ratio.
  • the rotation speed of the output shaft of the transmission connected to the rotating machine can be changed by changing the rotation speed (rotation speed) of the variable speed electric motor.
  • variable speed motor when a three-phase induction motor is used as the variable speed motor, the variable speed motor can be rotated forward and backward by using, for example, a circuit that replaces connected power lines. That is, by changing the rotation speed of the variable speed motor and changing the rotation direction, the rotation speed of the variable speed motor can be changed from the maximum rotation speed in the forward direction to the maximum rotation speed in the reverse direction. Thereby, the variable speed range of the variable speed motor system having the variable speed motor can be increased.
  • the rotational speed of the variable speed motor needs to be close to 0 rpm depending on the indicated rotational speed of the output shaft.
  • the rotational speed may be kept near 0 rpm. Can not. Therefore, there are cases where the instructed rotation speed of the output shaft cannot be realized.
  • the present invention relates to a variable speed motor system including an electric device including a constant speed motor and a variable speed motor, and a planetary gear transmission that shifts a rotational driving force generated by the electric device and transmits the rotational driving force to a drive target. It is an object of the present invention to provide a control method for a variable speed electric motor system and a control device for the variable speed electric motor system that can increase the degree of freedom of the rotation speed of the output shaft.
  • a control method for a variable speed electric motor system includes: an electric device that generates a rotational driving force; and a transmission that shifts the rotational driving force generated by the electric device and transmits the rotational driving force to a drive target.
  • the transmission includes a sun gear that rotates about an axis, a sun gear shaft that is fixed to the sun gear and extends in the axial direction about the axis, meshes with the sun gear, and the axis is
  • a planetary gear that revolves around its center and rotates about its own centerline, a plurality of teeth arranged in an annular shape around the axis, and an internal gear meshing with the planetary gear, and a planet extending in the axial direction around the axis
  • a planetary gear carrier having a gear carrier shaft and supporting the planetary gear so that it can revolve around the axis and rotate around the centerline of the planetary gear itself;
  • An internal gear carrier shaft extending in the axial direction about a line, and an internal gear carrier that supports the internal gear so as to rotate about the axis, the sun gear shaft and the planetary gear carrier shaft
  • the internal gear carrier shaft one of the shafts forms an output shaft connected to the object to be driven, the other shaft forms a constant speed input shaft, and the remaining
  • a speed change input shaft is formed, and the electric device is connected to the constant speed motor having a constant speed rotor connected to the constant speed input shaft of the transmission and the variable speed input shaft of the transmission is connected to the positive speed motor.
  • a method for controlling a variable speed electric motor system comprising: A step of receiving an instruction of the rotational speed of the output shaft; a step of calculating the rotational speed of the variable speed motor based on the rotational speed of the output shaft; and the calculated rotational speed of the variable speed motor is in the uncontrollable range.
  • the degree of freedom of the rotational speed can be further increased in controlling the rotational speed of the output shaft of the variable speed electric motor system.
  • the rotational speed of the output shaft is set to the desired rotational speed by rotating the variable speed motor so that the average rotational speed becomes the rotational speed.
  • the rotation speed of the variable speed motor in the uncontrollable range is set by changing a ratio between the length of the forward minimum rotational speed instruction and the reverse minimum rotational speed instruction. You may control.
  • a control device for a variable speed electric motor system includes an electric device that generates a rotational driving force, and a transmission that shifts the rotational driving force generated by the electric device and transmits the rotational driving force to a drive target.
  • the transmission includes a sun gear that rotates about an axis, a sun gear shaft that is fixed to the sun gear and extends in the axial direction about the axis, meshes with the sun gear, and the axis is
  • a planetary gear that revolves around its center and rotates about its own centerline, a plurality of teeth arranged in an annular shape around the axis, and an internal gear meshing with the planetary gear, and a planet extending in the axial direction around the axis
  • a planetary gear carrier having a gear carrier shaft and supporting the planetary gear so that it can revolve around the axis and rotate around the centerline of the planetary gear itself;
  • An internal gear carrier shaft extending in the axial direction about a line, and an internal gear carrier that supports the internal gear so as to rotate about the axis, the sun gear shaft and the planetary gear carrier shaft
  • the internal gear carrier shaft one of the shafts forms an output shaft connected to the object to be driven, the other shaft forms a constant speed input shaft, and the remaining
  • a speed change input shaft is formed, and the electric device is connected to the constant speed motor having a constant speed rotor connected to the constant speed input shaft of the transmission and the variable speed input shaft of the transmission is connected to the positive speed motor.
  • a control device for a variable speed electric motor system comprising: When the rotation speed of the variable speed motor calculated based on the instructed rotation speed of the output shaft is in the uncontrollable range, the variable speed motor is driven at the minimum rotation speed in the positive direction.
  • the minimum rotational speed instruction and the reverse minimum rotational speed instruction for driving the variable speed motor at the reverse minimum rotational speed are repeatedly and alternately executed.
  • the degree of freedom of the rotational speed when controlling the rotational speed of the output shaft of the variable speed electric motor system, the degree of freedom of the rotational speed can be further increased. That is, even when the rotation speed is set in the uncontrollable range of the variable speed motor, the rotation speed of the output shaft is set to the desired rotation speed by rotating the variable speed motor so that the average rotation speed becomes the rotation speed. Can approximate numbers.
  • variable speed motor system according to an embodiment of the present invention will be described in detail with reference to the drawings.
  • the variable speed electric motor system 1 of the present embodiment includes an electric device 50 that generates rotational driving force, and a transmission device 10 that shifts the rotational driving force generated by the electric device 50 and transmits it to a drive target. It is equipped with.
  • the variable speed electric motor system 1 can be applied to a fluid mechanical system such as a compressor system, for example.
  • the electric device 50 has a constant speed motor 51 that rotates and drives an internal gear carrier shaft 37 as a constant speed input shaft Ac at a constant speed, and an input side planetary gear carrier shaft 27i as a variable speed input shaft Av at an arbitrary rotational speed. And a variable speed electric motor 71 to be driven to rotate.
  • the variable speed motor system 1 can change the rotation speed of the output shaft of the transmission 10 connected to the drive target by changing the rotation speed (rotation speed) of the variable speed motor 71.
  • the electric device 50 is supported on the gantry 90 by the electric device support portion 50S.
  • the transmission 10 is supported on the gantry 90 by the transmission support 10S. By these support portions, the electric device 50 and the transmission 10 which are heavy objects can be securely fixed.
  • the transmission 10 is a planetary gear transmission. As shown in FIG. 2, the transmission 10 is in mesh with the sun gear 11 that rotates about an axis Ar that extends in the horizontal direction, the sun gear shaft 12 that is fixed to the sun gear 11, and the sun gear 11. A plurality of planetary gears 15 revolving around the axis Ar and rotating around the centerline Ap, and an internal gear 17 in which a plurality of teeth are arranged annularly around the axis Ar and mesh with the planetary gears 15.
  • the planetary gear carrier 21 that supports a plurality of planetary gears 15 so as to revolve around the axis Ar and to rotate around the centerline Ap of the planetary gear 15 itself, and the internal gear 17 rotate around the axis Ar. It has an internal gear carrier 31 that supports it and a transmission casing 41 that covers them.
  • the direction in which the axis Ar extends is the axial direction
  • one side of the axial direction is the output side
  • the opposite side of the output side is the input side.
  • the radial direction around the axis Ar is simply referred to as the radial direction.
  • the sun gear shaft 12 has a cylindrical shape centered on the axis Ar, and extends from the sun gear 11 to the output side in the axial direction.
  • a flange 13 is formed at the output side end of the sun gear shaft 12.
  • a rotor of a compressor C as a driving target is connected to the flange 13.
  • the sun gear shaft 12 is supported by a sun gear bearing 42 disposed on the output side of the sun gear 11 so as to be rotatable about the axis Ar.
  • the sun gear bearing 42 is attached to the transmission casing 41.
  • the planetary gear carrier 21 includes a planetary gear shaft 22 provided for each of the plurality of planetary gears 15, a carrier body 23 that fixes the positions of the plurality of planetary gear shafts 22, and is fixed to the carrier body 23 and is centered on the axis Ar. And a planetary gear carrier shaft 27 extending in the axial direction.
  • the planetary gear shaft 22 penetrates the center line Ap of the planetary gear 15 in the axial direction, and supports the planetary gear 15 so as to be rotatable about the centerline.
  • the carrier body 23 has an output side arm portion 24 extending radially outward from the plurality of planetary gear shafts 22 and a cylindrical shape centering on the axis Ar and extending from the radially outer end of the output side arm portion 24 to the input side. Part 25 and an input side arm part 26 extending radially inward from the output side end of the cylindrical part 25.
  • the planetary gear carrier shaft 27 has an output side planetary gear carrier shaft 27o extending from the output side arm portion 24 to the output side, and an input side planetary gear carrier shaft 27i extending from the input side arm portion 26 to the input side. Both the output-side planetary gear carrier shaft 27o and the input-side planetary gear carrier shaft 27i have a cylindrical shape with the axis Ar as the center.
  • the output-side planetary gear carrier shaft 27o is supported by a planetary gear carrier bearing 43 disposed on the output side with respect to the output-side arm portion 24 so as to be rotatable about the axis Ar.
  • the planetary gear carrier bearing 43 is attached to the transmission casing 41.
  • the sun gear shaft 12 is inserted into the inner peripheral side of the output side planetary gear carrier shaft 27o.
  • the input-side planetary gear carrier shaft 27i is supported by a planetary gear carrier bearing 44 disposed on the input side with respect to the input-side arm portion 26 so as to be rotatable about the axis Ar.
  • the planetary gear carrier bearing 44 is attached to the transmission casing 41.
  • An annular flange 28 is formed on the input side end of the input side planetary gear carrier shaft 27i so as to expand outward in the radial direction.
  • the internal gear carrier 31 has a carrier main body 33 to which the internal gear 17 is fixed, and an internal gear carrier shaft 37 that is fixed to the carrier main body 33 and extends in the axial direction about the axis Ar.
  • the carrier body 33 has a cylindrical shape centered on the axis Ar, a cylindrical portion 35 in which the internal gear 17 is fixed on the inner peripheral side, and an input side arm portion that extends radially inward from the input side end of the cylindrical portion 35. 36.
  • the internal gear carrier shaft 37 has a cylindrical shape centered on the axis Ar, and is disposed on the input side of the sun gear shaft 12 that also has a cylindrical shape centered on the axis Ar.
  • the input side arm portion 36 of the carrier body 33 is fixed to the internal gear carrier shaft 37.
  • an annular or disk-shaped flange 38 is formed that extends outward in the radial direction.
  • the input side portion of the internal gear carrier shaft 37 is inserted into the inner peripheral side of the cylindrical input side planetary gear carrier shaft 27i.
  • the axial position of the flange 38 of the internal gear carrier shaft 37 and the flange 28 of the input side planetary gear carrier shaft 27i substantially coincide with each other.
  • the constant speed motor 51 rotates the internal gear carrier shaft 37 of the transmission 10 via the constant speed rotor extension shaft 55.
  • the variable speed motor 71 rotates the input planetary gear carrier shaft 27 i of the transmission 10.
  • the electric device 50 includes a cooling fan 91 for cooling the constant speed motor 51 and the variable speed motor 71, and a fan cover 92 that covers the cooling fan 91.
  • the constant speed motor 51 is, for example, a three-phase four-pole induction motor.
  • the variable speed motor 71 is a six-pole induction motor having more poles than the constant-speed motor 51.
  • the specifications of the constant speed motor 51 and the variable speed motor 71 are not limited to this, and the specifications can be changed as appropriate.
  • the constant speed motor 51 rotates around the axis line Ar, and is disposed on the outer peripheral side of the constant speed rotor 52 and the constant speed rotor 52 connected to the internal gear carrier shaft 37 that is the constant speed input shaft Ac of the transmission 10. And a constant speed motor casing 61 in which the constant speed stator 66 is fixed on the inner peripheral side.
  • the constant speed rotor 52 has a constant speed rotor shaft 53 and a conductor 56 fixed to the outer periphery of the constant speed rotor shaft 53.
  • the constant speed rotor shaft 53 has a cylindrical shape with the axis Ar as a center, and a constant speed rotor main body shaft 54 having a conductor 56 fixed to the outer periphery thereof, and has a cylindrical shape with the axis Ar as a center.
  • a constant-speed rotor extension shaft 55 fixed to the output side of the high-speed rotor main body shaft 54. At both ends in the axial direction of the constant speed rotor extension shaft 55, annular or disk-shaped flanges 55i and 55o are formed, respectively, spreading outward in the radial direction.
  • an annular or disk-shaped flange 54o is formed that extends outward in the radial direction.
  • the constant-speed rotor extension shaft 55 and the constant-speed rotor main body shaft 54 are integrated by connecting their flanges 55i, 55o, 54o with bolts or the like.
  • a cooling fan 91 is fixed to the input side end of the constant speed rotor body shaft 54.
  • the constant speed stator 66 is disposed on the radially outer side of the conductor 56 of the constant speed rotor 52.
  • the constant speed stator 66 is formed by a plurality of coils.
  • the constant-speed motor casing 61 has a cylindrical shape centered on the axis Ar, a casing main body 62 in which a constant-speed stator 66 is fixed on the inner peripheral side, and a lid that covers both ends of the cylindrical casing main body 62 in the axial direction. 63i, 63o.
  • Constant-speed rotor bearings 65i and 65o that support the constant-speed rotor main body shaft 54 so as to be rotatable about the axis Ar are attached to the respective lids 63i and 63o.
  • Each of the lids 63i, 63o is formed with a plurality of openings 64 penetrating in the axial direction at positions radially outside the constant speed rotor bearings 65i, 65o.
  • the input side end of the constant speed rotor body shaft 54 protrudes from the input side lid 63 i of the constant speed motor casing 61 to the input side.
  • the cooling fan 91 is fixed to the input side end of the constant speed rotor body shaft 54. For this reason, when the constant speed rotor 52 rotates, the cooling fan 91 also rotates integrally with the constant speed rotor 52.
  • the fan cover 92 includes a cylindrical cover main body 93 disposed on the outer peripheral side of the cooling fan 91, and an air circulation plate 94 attached to an opening on the inlet side of the cover main body 93 and formed with a plurality of air holes. Have.
  • the fan cover 92 is fixed to the input-side lid 63 i of the constant speed motor casing 61.
  • variable speed motor 71 rotates around the axis Ar, and is disposed on the outer peripheral side of the variable speed rotor 72 and the variable speed rotor 72 connected to the input side planetary gear carrier shaft 27i that is the variable speed input shaft Av.
  • a variable speed stator 86 and a variable speed motor casing 81 in which the variable speed stator 86 is fixed on the inner peripheral side are provided.
  • the variable speed rotor 72 has a variable speed rotor shaft 73 and a conductor 76 fixed to the outer periphery of the variable speed rotor shaft 73.
  • the variable speed rotor shaft 73 has a cylindrical shape centered on the axis Ar, and is formed with a shaft insertion hole 74 penetrating in the axial direction.
  • a constant speed rotor extension shaft 55 is inserted into the shaft insertion hole 74 of the variable speed rotor shaft 73.
  • An annular flange 73o is formed at the output side end of the variable speed rotor shaft 73 so as to expand outward in the radial direction.
  • the position of the flange 73o of the variable speed rotor shaft 73 and the flange 55o formed at the output side end of the constant speed rotor extension shaft 55 substantially coincide with each other in the axial direction.
  • variable speed stator 86 is disposed on the radially outer side of the conductors 56 and 76 of the variable speed rotor 72.
  • the variable speed stator 86 is formed of a plurality of coils.
  • the variable speed motor casing 81 has a cylindrical shape centered on the axis Ar, a casing main body 82 in which a variable speed stator 86 is fixed on the inner peripheral side, and an output side that closes an output side end of the cylindrical casing main body 82. It has a lid 83o and an inlet side lid 83i that is arranged on the input side of the variable speed stator 86 and is fixed to the inner peripheral side of the cylindrical casing body 82.
  • Variable speed rotor bearings 85i and 85o for supporting the variable speed rotor shaft 73 so as to be capable of rotating about the axis Ar are attached to the respective lids 83i and 83o.
  • Each of the lids 83i and 83o is formed with a plurality of openings 84 penetrating in the axial direction at positions radially outside the variable speed rotor bearings 85i and 85o.
  • variable speed electric motor system 1 of the present embodiment the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are disposed on the same axis.
  • variable speed electric motor system 1 of the present embodiment is further arranged between the input side planetary gear carrier shaft 27i, which is the variable speed input shaft Av, and the variable speed rotor 72, and a variable speed flexible coupling 95 connecting the two. And a constant speed flexible coupling 97 that is disposed between the internal gear carrier shaft 37 that is the constant speed input shaft Ac and the constant speed rotor 52 and connects the two.
  • the variable speed motor system 1 includes a rotation speed control device 100 that controls the rotation speed of the variable speed motor 71 and a control device 120 that controls the operation of the rotation speed control device 100.
  • the rotation speed control device 100 is electrically connected to the variable speed motor 71.
  • the control device 120 is composed of a computer.
  • the control device 120 receives an instruction from the operator directly or receives an instruction from the host control device, an interface 122 that gives an instruction to the rotation speed control device 100, an instruction received by the reception unit 121, and the like And a calculation unit 123 that creates an instruction for the rotation speed control device 100.
  • the rotation speed control device 100 includes a frequency conversion unit 101 that changes the frequency of power supplied from a power source (not shown), and a rotation direction change unit 102 that changes the rotation direction of the variable speed rotor 72.
  • the frequency conversion unit 101 supplies the variable speed electric motor 71 with electric power having a frequency instructed from the control device 120.
  • the variable speed rotor 72 of the variable speed motor 71 rotates at a rotational speed corresponding to this frequency.
  • the rotation speed of the planetary gear carrier 21 of the transmission 10 connected to the variable speed rotor 72 also changes.
  • the rotational speed of the sun gear shaft 12 that is the output shaft Ao of the transmission 10 also changes.
  • the rotation direction changing unit 102 is a device that changes the rotation direction of the variable speed motor 71 by using a circuit that replaces a plurality of (three in the present embodiment) power lines connected to the variable speed motor 71. . That is, the rotation direction changing unit 102 can rotate the variable speed rotor 72 forward and backward.
  • the rotational speed of the sun gear shaft 12 as the output shaft Ao is ⁇ s
  • the rotational speed of the internal gear carrier shaft 37 as the constant speed input shaft Ac is ⁇ i
  • the number of teeth of the sun gear 11 is Zs
  • the number of teeth of the internal gear 17 is Zi.
  • the rotational speed ⁇ i (rated rotational speed) of the constant speed rotor 52 is 1500 rpm.
  • the maximum speed ⁇ h (rated speed) of the variable speed rotor 72 is 900 rpm. Further, suppose that the number of teeth Zs of the sun gear 11, the number of teeth Zi of the internal gear 17, and the ratio Zi / Zs are four.
  • the output shaft Ao The rotation speed ⁇ s of a certain sun gear shaft 12 is ⁇ 10500 rpm.
  • the rotation speed of the sun gear shaft 12 is -1500 rpm.
  • the rotation speed (rated rotation speed) of the constant speed rotor 52 is +1500 rpm
  • the rotation speed of the variable speed rotor 72 is set to 900 rpm (forward rotation) to ⁇ 900 rpm (reverse rotation) by frequency control by the frequency converter 101.
  • This range is the variable speed range of the sun gear shaft 12, which is the output shaft Ao of the variable speed electric motor system 1, and the variable speed electric motor system 1 usually rotates the output shaft Ao within this variable speed range.
  • the variable speed rotor 72 In order to set the rotation speed of the sun gear shaft 12 as the output shaft Ao to ⁇ 6000 rpm, the variable speed rotor 72 The rotational speed needs to be 0 rpm. In other words, when the variable range of the rotational speed of the variable speed motor 71 constituting the variable speed motor system 1 ranges from a positive rotational speed to a negative rotational speed, it may be possible depending on the instructed rotational speed of the output shaft Ao. The rotational speed of the transmission motor 71 needs to be 0 rpm.
  • variable speed motor 71 of the present embodiment is a six-pole phase induction motor, and the rotation speed cannot be controlled to be close to 0 rpm.
  • a range of ⁇ 90 rpm to 90 rpm that is 10% or less of the rated rotational speed is an uncontrollable range in which the rotational speed is uncontrollable. That is, the minimum rotational speed of the variable speed electric motor 71 of this embodiment is 90 rpm.
  • the electric power supplied to the variable speed electric motor 71 at the minimum rotation speed of 90 rpm is 5 Hz which is 10% of the power supply frequency (50 Hz).
  • variable speed motor 71 After the variable speed motor 71 is started, that is, in a state where the constant speed motor 51 is rotationally driven at a rated rotational speed of 1500 rpm, and the variable speed motor 71 is rotationally driven at a minimum rotational speed of 90 rpm, for example, the control device 120.
  • the receiving unit 121 receives an instruction for the rotational speed of the sun gear shaft 12 that is the output shaft Ao from the outside (S10).
  • the variable speed range of the output shaft Ao is ⁇ 1500 rpm to ⁇ 10500 rpm.
  • the calculation unit 123 performs a calculation to derive the rotation speed of the variable speed electric motor 71 corresponding to the rotation speed of the output shaft Ao (S11). That is, the rotational speed of the variable speed motor 71 for realizing the instructed rotational speed of the output shaft Ao is calculated.
  • the control device 120 determines whether or not the derived rotation speed of the variable speed motor 71 is an uncontrollable rotation speed of the variable speed motor 71 (S12). For example, if the instructed rotation speed of the output shaft Ao is ⁇ 10500 rpm, a calculation result is derived that the rotation speed of the variable speed motor 71 for setting the rotation speed of the output shaft Ao to ⁇ 10500 rpm is ⁇ 900 rpm.
  • the interface 122 instructs the rotational speed control apparatus 100 about the rotational speed of the calculation result (S14).
  • the rotation speed control device 100 sets the frequency of the electric power supplied to the variable speed motor 71 using the frequency conversion unit 101 to 50 Hz corresponding to 900 rpm, and changes the rotation direction of the variable speed motor 71 using the rotation direction changing unit 102. Set in the opposite direction. As a result, the rotational speed of the variable speed electric motor 71 becomes ⁇ 900 rpm, and the rotational speed of the sun gear shaft 12 becomes ⁇ 10500 rpm.
  • the calculation unit 123 performs the calculation and sets the rotation speed of the sun gear shaft 12 to ⁇ 6000 rpm.
  • the calculation result that the rotation speed of the variable speed electric motor 71 is 0 rpm is derived.
  • the non-controllable range speed control includes a forward minimum rotational speed instruction P1 (see FIG. 6) for issuing an instruction to drive the variable speed motor 71 at a minimum forward speed (90 rpm), and a variable speed motor 71 in the reverse minimum.
  • P1 forward minimum rotational speed instruction
  • the reverse minimum rotational speed instruction for issuing an instruction to drive at the rotational speed is repeatedly and alternately executed.
  • FIG. 6 and 7 are graphs in which the horizontal axis represents time, the vertical axis represents the frequency supplied to the variable speed motor 71 (ratio to 50 Hz, indicated by minus in the case of reverse rotation), and the rotation speed of the variable speed motor 71. is there.
  • the interface 122 instructs the rotation speed control device 100 to rotate the variable speed rotor 72 at a frequency of 5 Hz (10% of the power supply frequency) and a frequency of 5 Hz.
  • the command to reversely rotate the variable speed rotor 72 is repeatedly issued alternately.
  • a cycle T composed of the forward minimum rotational speed instruction P1 and the reverse minimum rotational speed instruction P2 continuous thereto is constant.
  • the time (pulse width) of the forward minimum rotational speed instruction P1 and the reverse minimum rotational speed instruction P2 in the period T is equal.
  • the rotation speed of the variable speed electric motor 71 fluctuates in a sine curve shape as shown by a one-dot chain line. That is, forward rotation and reverse rotation are repeated.
  • the average rotational speed can be set to 0 rpm. That is, the rotation speed of 0 rpm can be approximated while rotating the variable speed rotor 72.
  • the control device 120 varies the time of the forward minimum rotational speed instruction P1 and the reverse minimum rotational speed instruction P2 to approximate 60 rpm. Specifically, the time of the forward minimum rotational speed instruction P1 is lengthened and the time of the reverse minimum rotational speed instruction P2 is shortened so that the average value of the rotational speed of the variable speed electric motor 71 is 60 rpm.
  • the electric device 50 including the constant speed motor 51 and the variable speed motor 71, and the planetary gear transmission 10 that shifts the rotational driving force generated by the electric device 50 and transmits it to the drive target may be provided.
  • the degree of freedom of the rotation speed can be further increased. That is, even when the rotational speed is set within the uncontrollable range of the variable speed motor 71, the rotational speed of the output shaft is set to a desired value by rotating the variable speed motor 71 so that the average rotational speed becomes the rotational speed. The number of rotations can be approximated.
  • VVVF control V / F control
  • DTC direct torque control
  • the constant speed rotor 52 of the constant speed motor 51 and the variable speed rotor 72 of the variable speed motor 71 are disposed on the axis Ar of the transmission 10, so that the radial direction from the axis Ar of the transmission 10 Compared with the case where the constant-speed rotor 52 and the variable-speed rotor 72 are arranged at positions apart from each other, the overall size can be reduced. Further, in the present embodiment, it is not necessary to provide a transmission mechanism such as a belt or a pulley as in the case where the constant speed rotor 52 and the variable speed rotor 72 are disposed at a position radially away from the axis Ar of the transmission 10.
  • variable speed motor casing 81 is fixed to the constant speed motor casing 61.
  • variable speed rotor 72 can be accurately positioned (centered) with respect to the constant speed rotor 52 before shipment from the manufacturing factory of the variable motor system. Therefore, in this embodiment, the positioning work of the variable speed rotor 72 with respect to the constant speed rotor 52 can be omitted at the installation site.
  • the cooling fan 91 provided at the end of the constant speed rotor 52 also rotates.
  • the constant speed motor casing 61 communicates with each other.
  • the transmission rotor 72 and the variable speed stator 86 are cooled. Therefore, in this embodiment, the two electric motors can be cooled by the single cooling fan 91. From this viewpoint, the apparatus can be reduced in size and the manufacturing cost can be reduced.
  • the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis, thereby reducing the installation space (installation space) of the variable motor system. be able to.
  • parts (such as bevel gears) for transmitting rotation are not necessary, and the increase in the number of parts can be suppressed and the manufacturing cost can be reduced.
  • a constant speed rotor shaft 53 (constant speed rotor extension shaft 55) that is a rod-shaped shaft is inserted into a variable speed rotor shaft 73 that is a cylindrical shaft in which a shaft insertion hole 74 is formed. .
  • the constant speed rotor shaft 53 of the constant speed motor 51 having a large output is inserted into the variable speed rotor shaft 73 of the variable speed motor 71 having a smaller output than the constant speed motor 51.
  • the thing with a bigger output can be employ
  • the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis, but the present invention is not limited to this.
  • the variable speed electric motor 71 may be arranged such that the axis of the variable speed rotor 72 is parallel to the axis of the constant speed rotor 52 and is at a different position.
  • the drive target is the compressor C, and the compressor C is rotated at a high speed of 7500 rpm or more.
  • the rotational speed of the constant speed motor 51 is increased by the transmission 10 in order to rotate the drive target at a high speed in this way. Therefore, in the transmission 10 of the above embodiment, the sun gear shaft 12 is the output shaft Ao, the internal gear carrier shaft 37 is the constant speed input shaft Ac, and the input planetary gear carrier shaft 27i is the variable speed input shaft Av. .
  • the speed change device in the present invention may be, for example, for decelerating the rotation speed of the constant speed motor 51.
  • the sun gear shaft 12 may be the constant speed input shaft Ac
  • the planetary gear carrier shaft 27 may be the variable speed input shaft Av
  • the internal gear carrier shaft 37 may be the output shaft Ao.
  • the sun gear shaft 12 may be the output shaft Ao as in the above embodiment
  • the internal gear carrier shaft 37 may be the variable speed input shaft Av
  • the planetary gear carrier shaft 27 may be the constant speed input shaft Ac.
  • any one of the sun gear shaft 12, the planetary gear carrier shaft 27, and the internal gear carrier shaft 37 is the output shaft Ao, the other shaft is the constant speed input shaft Ac, and the remaining shafts are
  • the variable speed input shaft Av is set as appropriate depending on whether or not the output is increased with respect to the input, the change range of the output acceleration and deceleration, and the like.
  • a 4 pole induction motor is illustrated as the constant speed motor 51 suitable for rotating the compressor C at high speed.
  • a suitable variable speed motor 71 a 6-pole induction motor is illustrated.
  • other types of electric motors may be used as the constant speed electric motor 51 and the variable speed electric motor 71.
  • the shaft insertion hole 74 is formed in the variable speed rotor 72, and the constant speed rotor 52 is inserted in the shaft insertion hole 74.
  • the shaft insertion hole is formed in the constant speed rotor, and this shaft insertion hole.
  • a variable speed rotor may be inserted.
  • variable speed flexible coupling 95 that connects the variable speed rotor 72 and the variable speed input shaft Av forms the first flexible coupling
  • constant speed rotor 52 and the constant speed input shaft Ac are connected to each other.
  • the constant speed flexible coupling 97 connecting the two forms a second flexible coupling.
  • the constant speed flexible coupling is disposed on the outer peripheral side of the variable speed flexible coupling
  • the constant speed flexible coupling forms the first flexible coupling and the variable speed flexible coupling is the second flexible.
  • a coupling will be made.
  • the degree of freedom of the variable speed range of the variable speed electric motor system can be increased.
  • variable speed motor system 10: transmission (planetary gear transmission), 11: sun gear, 12: sun gear shaft, 15: planetary gear, 17: internal gear, 21: planetary gear carrier, 22: planetary gear shaft , 23: carrier main body, 27: planetary gear carrier shaft, 27i: input side planetary gear carrier shaft, 28: flange, 31: internal gear carrier, 33: carrier main body, 37: internal gear carrier shaft, 38: flange, 41: Transmission casing, 50: Electric device, 51: Constant speed motor, 52: Constant speed rotor, 53: Constant speed rotor shaft, 54: Constant speed rotor body shaft, 55: Constant speed rotor extension shaft, 56: Conductor, 61: Constant Speed motor casing, 62: casing body, 63i, 63o: lid, 64: opening, 66: constant speed stator, 71: variable speed motor, 71S: variable speed motor support, 72: variable speed rotor 73: variable speed rotor shaft, 73o: flange, 74:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本発明は、電動装置(50)と、遊星歯車変速装置(10)とを備え、電動装置(50)は、変速装置の定速入力軸に接続されている定速ロータ(52)を有する定速電動機と、変速装置の可変速入力軸に接続されて正方向及び逆方向の回転数を制御可能な可変速ロータ(72)を有し且つ正方向の最小回転数と逆方向の最小回転数との間の範囲が制御不能な制御不能範囲である可変速電動機とを備え、出力軸の回転数の指示を受け付ける工程と、出力軸の回転数に基づいて可変速電動機が回転数を演算する工程と、該演算結果の回転数が制御不能範囲であるか判定する工程と、前記演算結果の回転数が制御不能範囲であった場合に、可変速電動機を正方向の最小回転数で駆動する正方向最小回転数指示と、可変速電動機を逆方向の最小回転数で駆動する逆方向最小回転数指示とを繰返し交互に実行する工程と、を含む可変速電動機システムの制御方法に関する。

Description

可変速電動機システムの制御方法及び可変速電動機システムの制御装置
 本発明は、可変速電動機システムの制御方法及び可変速電動機システムの制御装置に関する。
 圧縮機等の回転機械を駆動する装置としては、回転駆動力を発生する電動装置と、この電動装置で発生した回転駆動力を変速させて回転機械に伝える変速装置と、を備えているものがある。
 特許文献1には、変速比を正確に制御するために、電動装置として定速電動機と変速用の可変速電動機とを用い、変速装置として遊星歯車変速装置を用いたものが記載されている。この装置では、可変速電動機の回転数(回転速度)を変えることで、回転機械に接続される変速装置の出力軸の回転数を変えることができる。
日本国特許第4472350号公報
 可変速電動機として、例えば、3相誘導電動機を用いた場合は、例えば、接続される電源線を入れ替える回路を用いることによって、可変速電動機を正回転及び逆回転させることが可能である。即ち、可変速電動機の回転数を変えると共に、回転方向を変更することによって、可変速電動機の回転数を正方向の最大回転数から、逆方向の最大回転数まで変化させることができる。これにより、可変速電動機を有する可変速電動機システムの可変速範囲を大きくすることができる。
 ところで、指示される出力軸の回転数によっては可変速電動機の回転数を0rpm近傍にする必要があるが、可変速電動機として誘導電動機を用いた場合は、回転数を0rpm近傍に保持することができない。よって、指示された出力軸の回転数を実現することができない場合がある。
 本発明は、定速電動機と可変速電動機とからなる電動装置と、電動装置で発生した回転駆動力を変速させて駆動対象に伝える遊星歯車変速装置とを備える可変速電動機システムにおいて、変速装置の出力軸の回転数の自由度をより高くすることができる可変速電動機システムの制御方法及び可変速電動機システムの制御装置を提供することを目的とする。
 本発明の第一の態様によれば、可変速電動機システムの制御方法は、回転駆動力を発生する電動装置と、前記電動装置で発生した回転駆動力を変速させて駆動対象に伝える変速装置と、を備え、前記変速装置は、軸線を中心として自転する太陽歯車と、前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、前記太陽歯車と噛み合い、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、前記軸線を中心として環状に複数の歯が並び、前記遊星歯車と噛み合う内歯車と、前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、を有し、前記太陽歯車軸と前記遊星歯車キャリア軸と前記内歯車キャリア軸とのうち、いずれか一つの軸が前記駆動対象に接続される出力軸を成し、他の一つの軸が定速入力軸を成し、残りの一つの軸が可変速入力軸を成し、前記電動装置は、前記変速装置の前記定速入力軸に接続されている定速ロータを有する定速電動機と、前記変速装置の前記可変速入力軸に接続されて正方向及び逆方向の回転数を制御可能な可変速ロータを有し、前記正方向の最小回転数と前記逆方向の最小回転数との間の範囲が制御不能な制御不能範囲である可変速電動機と、を有する可変速電動機システムの制御方法であって、前記出力軸の回転数の指示を受け付ける工程と、前記出力軸の回転数に基づいて前記可変速電動機が回転数を演算する工程と、演算された前記可変速電動機の回転数が前記制御不能範囲であるか判定する工程と、演算された前記可変速電動機の回転数が前記制御不能範囲であった場合に、前記可変速電動機を前記正方向の最小回転数で駆動する正方向最小回転数指示と、前記可変速電動機を前記逆方向の最小回転数で駆動する逆方向最小回転数指示と、を繰返し交互に実行する制御不能範囲速度制御工程と、を含む。
 このような構成によれば、可変速電動機システムの出力軸の回転数を制御するにあたって、より回転数の自由度を高めることができる。即ち、可変速電動機の制御不能範囲に回転数を設定する場合においても、平均回転数がその回転数となるように、可変速電動機を回転駆動させることによって、出力軸の回転数を所望の回転数に近似することができる。
 上記可変速電動機システムの制御方法において、前記正方向最小回転数指示の長さと前記逆方向最小回転数指示との割合を可変とすることによって、前記制御不能範囲における前記可変速電動機の回転数を制御してもよい。
 本発明の第二の態様によれば、可変速電動機システムの制御装置は、回転駆動力を発生する電動装置と、前記電動装置で発生した回転駆動力を変速させて駆動対象に伝える変速装置と、を備え、前記変速装置は、軸線を中心として自転する太陽歯車と、前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、前記太陽歯車と噛み合い、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、前記軸線を中心として環状に複数の歯が並び、前記遊星歯車と噛み合う内歯車と、前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、を有し、前記太陽歯車軸と前記遊星歯車キャリア軸と前記内歯車キャリア軸とのうち、いずれか一つの軸が前記駆動対象に接続される出力軸を成し、他の一つの軸が定速入力軸を成し、残りの一つの軸が可変速入力軸を成し、前記電動装置は、前記変速装置の前記定速入力軸に接続されている定速ロータを有する定速電動機と、前記変速装置の前記可変速入力軸に接続されて正方向及び逆方向の回転数を制御可能な可変速ロータを有し、前記正方向の最小回転数と前記逆方向の最小回転数との間の範囲が制御不能な制御不能範囲である可変速電動機と、を有する可変速電動機システムの制御装置であって、指示された前記出力軸の回転数に基づいて演算された前記可変速電動機の回転数が前記制御不能範囲であった場合に、前記可変速電動機を前記正方向の最小回転数で駆動する正方向最小回転数指示と、前記可変速電動機を前記逆方向の最小回転数で駆動する逆方向最小回転数指示と、を繰返し交互に実行する。
 本発明によれば、可変速電動機システムの出力軸の回転数を制御するにあたって、より回転数の自由度を高めることができる。即ち、可変速電動機の制御不能範囲に回転数を設定する場合においても、平均回転数がその回転数となるように、可変速電動機を回転駆動させることによって、出力軸の回転数を所望の回転数に近似することができる。
本発明に係る実施形態の可変速電動機システムの断面図である。 本発明に係る実施形態の変速装置の断面図である。 本発明に係る実施形態の電動装置の断面図である。 本発明に係る実施形態の変速装置の構成を示す模式図である。 本発明に係る実施形態の制御装置の動作を示すフローチャートである。 本発明に係る実施形態の可変速電動機の制御不能範囲速度制御における回転数指示値を示すグラフである。 本発明に係る実施形態の可変速電動機の制御不能範囲速度制御における回転数指示値を示すグラフである。
 以下、本発明の実施形態の可変速電動機システムについて、図面を参照して詳細に説明する。
 図1に示すように、本実施形態の可変速電動機システム1は、回転駆動力を発生する電動装置50と、電動装置50で発生した回転駆動力を変速させて駆動対象に伝える変速装置10と、を備えている。可変速電動機システム1は、例えば、圧縮機システム等の流体機械システムに適用することができる。
 電動装置50は、定速入力軸Acとしての内歯車キャリア軸37を定速で回転駆動させる定速電動機51と、可変速入力軸Avとしての入力側遊星歯車キャリア軸27iを任意の回転数で回転駆動させる可変速電動機71とを有している。可変速電動機システム1は、可変速電動機71の回転数(回転速度)を変えることによって、駆動対象に接続される変速装置10の出力軸の回転数を変えることができる。
 電動装置50は、電動装置支持部50Sによって架台90に支持されている。変速装置10は、変速装置支持部10Sによって架台90に支持されている。これら支持部により、重量物である電動装置50及び変速装置10の確実な固定が可能となる。
 変速装置10は、遊星歯車変速装置である。この変速装置10は、図2に示すように、水平方向に延在する軸線Arを中心として自転する太陽歯車11と、太陽歯車11に固定されている太陽歯車軸12と、太陽歯車11と噛み合い、軸線Arを中心として公転すると共に自身の中心線Apを中心として自転する複数の遊星歯車15と、軸線Arを中心として環状に複数の歯が並び、複数の遊星歯車15と噛み合う内歯車17と、複数の遊星歯車15を、軸線Arを中心として公転可能に且つ遊星歯車15自身の中心線Apを中心として自転可能に支持する遊星歯車キャリア21と、内歯車17を、軸線Arを中心として自転可能に支持する内歯車キャリア31と、これらを覆う変速ケーシング41と、を有する。
 ここで、軸線Arが延びている方向を軸方向とし、この軸方向の一方側を出力側、この出力側の反対側を入力側とする。また、以下では、この軸線Arを中心とする径方向を単に径方向という。
 太陽歯車軸12は、軸線Arを中心として円柱状を成し、太陽歯車11から軸方向の出力側に延びている。この太陽歯車軸12の出力側端部には、フランジ13が形成されている。このフランジ13には、例えば、駆動対象としての圧縮機Cのロータが接続される。太陽歯車軸12は、太陽歯車11の出力側に配置されている太陽歯車軸受42により、軸線Arを中心として自転可能に支持されている。太陽歯車軸受42は、変速ケーシング41に取り付けられている。
 遊星歯車キャリア21は、複数の遊星歯車15毎に設けられている遊星歯車軸22と、複数の遊星歯車軸22相互の位置を固定するキャリア本体23と、キャリア本体23に固定され軸線Arを中心として軸方向に延びる遊星歯車キャリア軸27と、を有する。
 遊星歯車軸22は、遊星歯車15の中心線Apを軸方向に貫通し、遊星歯車15をその中心線を中心として自転可能に支持する。キャリア本体23は、複数の遊星歯車軸22から径方向外側に延びる出力側アーム部24と、軸線Arを中心として円筒状を成し出力側アーム部24の径方向外側端から入力側に延びる円筒部25と、円筒部25の出力側端から径方向内側に延びる入力側アーム部26と、を有する。
 遊星歯車キャリア軸27は、出力側アーム部24から出力側に延びる出力側遊星歯車キャリア軸27oと、入力側アーム部26から入力側に延びる入力側遊星歯車キャリア軸27iと、を有する。出力側遊星歯車キャリア軸27oと入力側遊星歯車キャリア軸27iとは、いずれも、軸線Arを中心として円筒状を成す。
 出力側遊星歯車キャリア軸27oは、出力側アーム部24よりも出力側に配置されている遊星歯車キャリア軸受43により、軸線Arを中心として自転可能に支持されている。遊星歯車キャリア軸受43は、変速ケーシング41に取り付けられている。出力側遊星歯車キャリア軸27oの内周側には、太陽歯車軸12が挿通されている。
 入力側遊星歯車キャリア軸27iは、入力側アーム部26よりも入力側に配置されている遊星歯車キャリア軸受44により、軸線Arを中心として自転可能に支持されている。この遊星歯車キャリア軸受44は、変速ケーシング41に取り付けられている。入力側遊星歯車キャリア軸27iの入力側端には、径方向外側に向かって広がる環状のフランジ28が形成されている。
 内歯車キャリア31は、内歯車17が固定されているキャリア本体33と、キャリア本体33に固定され軸線Arを中心として軸方向に延びる内歯車キャリア軸37と、を有する。
 キャリア本体33は、軸線Arを中心として円筒状を成し、内周側に内歯車17が固定されている円筒部35と、円筒部35の入力側端から径方向内側に延びる入力側アーム部36と、を有する。
 内歯車キャリア軸37は、軸線Arを中心として円柱状を成し、同じく軸線Arを中心として円柱状を成す太陽歯車軸12の入力側に配置されている。キャリア本体33の入力側アーム部36は、内歯車キャリア軸37に固定されている。内歯車キャリア軸37の入力側端には、径方向外側に向かって広がる環状又は円板状のフランジ38が形成されている。内歯車キャリア軸37の入力側の部分は、円筒状の入力側遊星歯車キャリア軸27iの内周側に挿通されている。内歯車キャリア軸37のフランジ38と、入力側遊星歯車キャリア軸27iのフランジ28とは、軸方向における位置がほぼ一致している。
 図3に示すように、定速電動機51は、定速ロータ延長軸55を介して変速装置10の内歯車キャリア軸37を回転駆動させる。可変速電動機71は、変速装置10の入力側遊星歯車キャリア軸27iを回転駆動させる。電動装置50は、定速電動機51及び可変速電動機71を冷却するための冷却ファン91と、この冷却ファン91を覆うファンカバー92と、を有する。
 本実施形態において、定速電動機51は、例えば、3相4極の誘導電動機である。また、可変速電動機71は、極数が定速電動機51よりも多い6極の誘導電動機である。なお、定速電動機51及び可変速電動機71の仕様はこれに限ることはなく、適宜仕様を変更することができる。
 定速電動機51は、軸線Arを中心として自転し、変速装置10の定速入力軸Acである内歯車キャリア軸37に接続される定速ロータ52と、定速ロータ52の外周側に配置されている定速ステータ66と、定速ステータ66が内周側に固定されている定速電動機ケーシング61と、を有している。
 定速ロータ52は、定速ロータ軸53と、定速ロータ軸53の外周に固定されている導体56と、を有する。また、定速ロータ軸53は、軸線Arを中心として円柱状を成し、その外周に導体56が固定されている定速ロータ本体軸54と、軸線Arを中心として円柱状を成し、定速ロータ本体軸54の出力側に固定されている定速ロータ延長軸55と、を有する。
 定速ロータ延長軸55の軸方向の両端には、それぞれ、径方向外側に向かって広がる環状又は円板状のフランジ55i,55oが形成されている。定速ロータ本体軸54の出力側端には、径方向外側に向かって広がる環状又は円板状のフランジ54oが形成されている。定速ロータ延長軸55と定速ロータ本体軸54とは、それぞれのフランジ55i,55o,54oが互いにボルト等で接続されていることで、一体化している。定速ロータ本体軸54の入力側端には、冷却ファン91が固定されている。
 定速ステータ66は、定速ロータ52の導体56の径方向外側に配置されている。この定速ステータ66は、複数のコイルで形成されている。
 定速電動機ケーシング61は、軸線Arを中心として円筒状を成し、内周側に定速ステータ66が固定されているケーシング本体62と、円筒状のケーシング本体62の軸方向の両端を塞ぐ蓋63i,63oとを有している。各々の蓋63i,63oには、定速ロータ本体軸54を、軸線Arを中心として自転可能に支持する定速ロータ軸受65i,65oが取り付けられている。また、各々の蓋63i,63oには、定速ロータ軸受65i,65oよりも径方向外側の位置で、軸方向に貫通する複数の開口64が形成されている。
 定速ロータ本体軸54の入力側端は、定速電動機ケーシング61の入力側の蓋63iから、入力側に突出している。この定速ロータ本体軸54の入力側端に、前述の冷却ファン91が固定されている。このため、定速ロータ52が回転すると、冷却ファン91も定速ロータ52と一体的に回転する。ファンカバー92は、冷却ファン91の外周側に配置されている円筒状のカバー本体93と、カバー本体93の入口側の開口に取り付けられ、複数の空気孔が形成されている空気流通板94と、を有する。このファンカバー92は、定速電動機ケーシング61の入力側の蓋63iに固定されている。
 可変速電動機71は、軸線Arを中心として自転し、可変速入力軸Avである入力側遊星歯車キャリア軸27iに接続される可変速ロータ72と、可変速ロータ72の外周側に配置されている可変速ステータ86と、可変速ステータ86が内周側に固定されている可変速電動機ケーシング81と、を有している。
 可変速ロータ72は、可変速ロータ軸73と、可変速ロータ軸73の外周に固定されている導体76と、を有する。可変速ロータ軸73は、軸線Arを中心として円筒状を成し、軸方向に貫通した軸挿通孔74が形成されている。可変速ロータ軸73の軸挿通孔74には、定速ロータ延長軸55が挿通されている。可変速ロータ軸73の出力側端には、径方向外側に向かって広がる環状のフランジ73oが形成されている。可変速ロータ軸73のフランジ73oと、定速ロータ延長軸55の出力側端に形成されているフランジ55oとは、軸方向における位置がほぼ一致している。
 可変速ステータ86は、可変速ロータ72の導体56,76の径方向外側に配置されている。この可変速ステータ86は、複数のコイルで形成されている。
 可変速電動機ケーシング81は、軸線Arを中心として円筒状を成し、内周側に可変速ステータ86が固定されているケーシング本体82と、円筒状のケーシング本体82の出力側端を塞ぐ出力側蓋83oと、可変速ステータ86よりも入力側に配置され円筒状のケーシング本体82の内周側に固定されている入口側蓋83iと、を有している。各々の蓋83i,83oには、可変速ロータ軸73を、軸線Arを中心として自転可能に支持する可変速ロータ軸受85i,85oが取り付けられている。また、各々の蓋83i,83oには、可変速ロータ軸受85i,85oよりも径方向外側の位置で、軸方向に貫通する複数の開口84が形成されている。
 以上のように、可変速電動機ケーシング81の各々の蓋83i,83oに形成されている複数の開口84、及び、定速電動機ケーシング61の各蓋63i,63oに形成されている複数の開口64により、可変速電動機ケーシング81内の空間と定速電動機ケーシング61内の空間とが連通している。
 また、本実施形態の可変速電動機システム1において、定速ロータ52と、可変速ロータ72と、太陽歯車軸12とは同一の軸線上に配置されている。
 本実施形態の可変速電動機システム1は、さらに、可変速入力軸Avである入力側遊星歯車キャリア軸27iと可変速ロータ72との間に配置され、両者を接続する可変速用フレキシブルカップリング95と、定速入力軸Acである内歯車キャリア軸37と定速ロータ52との間に配置され、両者を接続する定速用フレキシブルカップリング97と、を備えている。
 可変速電動機システム1は、可変速電動機71の回転数を制御する回転数制御装置100と、回転数制御装置100の動作を制御する制御装置120と、を備えている。回転数制御装置100は、可変速電動機71と電気的に接続されている。
 制御装置120は、コンピュータで構成されている。制御装置120は、オペレータからの指示を直接受け付ける又は上位制御装置からの指示を受け付ける受付部121と、回転数制御装置100に指示を与えるインタフェース122と、受付部121で受け付けた指示等に応じて、回転数制御装置100に対する指示を作成する演算部123と、を有する。
 回転数制御装置100は、図示しない電力原から供給される電力の周波数を変える周波数変換部101と、可変速ロータ72の回転方向を変更する回転方向変更部102と、を備えている。
 周波数変換部101は、制御装置120から指示された周波数の電力を可変速電動機71に供給する。可変速電動機71の可変速ロータ72は、この周波数に応じた回転数で回転する。このように、可変速ロータ72の回転数が変化するため、可変速ロータ72に接続されている変速装置10の遊星歯車キャリア21の回転数も変化する。この結果、変速装置10の出力軸Aoである太陽歯車軸12の回転数も変化する。
 回転方向変更部102は、可変速電動機71に接続されている複数(本実施形態の場合3本)の電源線を入れ替える回路を用いることによって、可変速電動機71の回転方向を変更する装置である。即ち、回転方向変更部102は、可変速ロータ72を正回転、及び逆回転させることができる。
 ここで、変速装置10の各歯車の歯数と、変速装置10の各軸の回転数との関係について、図4を用いて説明する。
 出力軸Aoとしての太陽歯車軸12の回転数をωs、定速入力軸Acとしての内歯車キャリア軸37の回転数をωi、可変速入力軸Avとしての入力側遊星歯車キャリア軸27iの回転数をωhとする。また、太陽歯車11の歯数をZs、内歯車17の歯数をZiとする。
 この場合、各歯車の歯数と、変速装置10の各軸の回転数との関係は、以下の式(1)で表すことができる。
 ωs/ωi=ωh/ωi-(1-ωh/ωi )×Zi/Zs ・・・(1)
 仮に、定速電動機51が4極の誘導電動機で、電源周波数が50Hzの場合、定速ロータ52(定速入力軸Ac)の回転数ωi(定格回転数)は1500rpmとなる。また、可変速電動機71が6極の誘導電動機で、電源周波数が50Hzの場合、可変速ロータ72(可変速入力軸Av)の最高回転数ωh(定格回転数)は900rpmとなる。
 また、仮に、太陽歯車11の歯数Zsと内歯車17の歯数Ziと比Zi/Zsを4とする。
 この場合、定速ロータ52の回転の向きを正回転とし、可変速ロータ72の回転の向きが定速ロータ52の回転と逆向きの最大回転数(-900rpm)であると、出力軸Aoである太陽歯車軸12の回転数ωsは、-10500rpmとなる。
 定速ロータ52の回転の向きを正回転とし、可変速ロータ72の回転の向きが定速ロータ52の回転と同じ向きの最大回転数(900rpm)であると、太陽歯車軸12の回転数は、-1500rpmとなる。
 このため、仮に、定速ロータ52の回転数(定格回転数)が+1500rpmで、周波数変換部101による周波数制御で、可変速ロータ72の回転数を900rpm(正回転)~-900rpm(逆回転)の範囲で制御できる場合、出力軸Aoである太陽歯車軸12の回転数を-1500~-10500rpmの範囲に制御することができる。この範囲は、可変速電動機システム1の出力軸Aoである太陽歯車軸12の可変速範囲であり、可変速電動機システム1は、通常この可変速範囲で出力軸Aoを回転させる。
 電動装置50を構成する定速電動機51及び可変速電動機71が、上述した仕様である場合、出力軸Aoである太陽歯車軸12の回転数を-6000rpmとするためには、可変速ロータ72の回転数を0rpmにする必要がある。換言すれば、可変速電動機システム1を構成する可変速電動機71の回転数の変動範囲が、正の回転数から負の回転数に及ぶ場合、指示される出力軸Aoの回転数によっては、可変速電動機71の回転数を0rpmにする必要が生じる。
 ここで、本実施形態の可変速電動機71は、6極の相誘導電動機であり、回転数を0rpm近傍に制御することはできない。本実施形態の可変速電動機71は、例えば、定格回転数の10%以下である-90rpmから90rpmの範囲が、回転数が制御不能である制御不能範囲である。即ち、本実施形態の可変速電動機71の最小回転数は90rpmである。最小回転数90rpmにおいて可変速電動機71に供給される電力は、電源周波数(50Hz)の10%の5Hzである。
 次に、本実施形態の可変速電動機システム1の制御方法について、図5に示すフローチャート、図6、図7に示すグラフに従って説明する。
 可変速電動機71の始動後、即ち、定速電動機51が定格回転数の1500rpmで回転駆動し、可変速電動機71が、例えば、最小回転数の90rpmで回転駆動している状態で、制御装置120の受付部121は、外部から出力軸Aoである太陽歯車軸12の回転数の指示を受け付ける(S10)。出力軸Aoの可変速範囲は、-1500rpm~-10500rpmである。
 受付部121が出力軸Aoの回転数の指示を受け付けると、演算部123は演算を実施して、出力軸Aoの回転数に対応する可変速電動機71の回転数を導出する(S11)。即ち、指示された出力軸Aoの回転数を実現するための可変速電動機71の回転数を演算する。
 次に、制御装置120は、導出された可変速電動機71の回転数が可変速電動機71の制御不能回転数か否かを判断する(S12)。
 例えば、指示された出力軸Aoの回転数が-10500rpmであるとすると、出力軸Aoの回転数を-10500rpmとするための可変速電動機71の回転数は-900rpmであるという演算結果が導出される。
 -900rpmは、制御不能回転数ではないため、インタフェース122は、演算結果の回転数を回転数制御装置100に指示する(S14)。
 回転数制御装置100は、周波数変換部101を用いて可変速電動機71に供給する電力の周波数を900rpmに対応する50Hzにするとともに、回転方向変更部102を用いて可変速電動機71の回転方向を逆方向に設定する。これにより、可変速電動機71の回転数が-900rpmとなり、太陽歯車軸12の回転数が-10500rpmとなる。
 次に、演算部123により導出された可変速電動機71の回転数が、可変速電動機71の制御不能範囲であった場合の制御方法について説明する。
 例えば、制御装置120の受付部121が、太陽歯車軸12の回転数を-6000rpmとする指示を受け付けると、演算部123は演算を実施し、太陽歯車軸12の回転数を-6000rpmとするための可変速電動機71の回転数が0rpmであるという演算結果を導出する。
 0rpmは可変速電動機71の制御不能範囲である。即ち、可変速電動機71は、可変速ロータ72を0rpmに維持することができない。
 制御装置120は、演算結果が可変速電動機71の制御不能範囲であると判断すると、制御不能範囲速度制御を実施する(S13)。
 制御不能範囲速度制御は、可変速電動機71を正方向の最小回転数(90rpm)で駆動する指示を発する正方向最小回転数指示P1(図6参照)と、可変速電動機71を逆方向の最小回転数で駆動する指示を発する逆方向最小回転数指示と、を繰返し交互に実行する制御である。この制御により、可変速電動機71の回転数が0rpm近傍の速度に近似される。
 図6、図7は、横軸を時間、縦軸を可変速電動機71に供給される周波数(50Hzに対する割合、逆回転の場合マイナスで示す)、及び可変速電動機71の回転数としたグラフである。
 図6に示すように、制御不能範囲速度制御を行うと、インタフェース122は回転数制御装置100に、周波数5Hz(電源周波数の10%)で可変速ロータ72を正回転させる命令と、周波数5Hzで可変速ロータ72を逆回転させる命令と、を繰り返し交互に発する。正方向最小回転数指示P1とこれに連続する逆方向最小回転数指示P2とからなる周期Tは一定である。
 周期Tにおける、正方向最小回転数指示P1と、逆方向最小回転数指示P2の時間(パルス幅)は等しい。これにより、可変速電動機71の回転数は、一点鎖線で示すように、サインカーブ状に変動する。即ち、正回転と逆回転を繰り返す。
 正方向最小回転数指示P1と、逆方向最小回転数指示P2の時間を等しくすることにより、回転数の平均を0rpmとすることができる。即ち、可変速ロータ72を回転させながら、0rpmの回転数を近似することができる。
 次に、可変速電動機71の回転数が制御不能範囲であって、0rpm以外である場合の制御方法について説明する。
 指示される出力軸Aoの回転数が-5700rpmである場合、演算部123によって導出される可変速電動機71の回転数は60rpmである。60rpmは可変速電動機71の制御不能範囲であるため制御装置120は、制御不能範囲速度制御を実施する(S13)。
 図7に示すように、制御装置120は、60rpmを近似するために、正方向最小回転数指示P1と、逆方向最小回転数指示P2の時間を異ならせる。具体的には、可変速電動機71の回転数の平均値が60rpmとなるように、正方向最小回転数指示P1の時間を長くすると共に、逆方向最小回転数指示P2の時間を短くする。
 ここで、例えば、P1:P2=5:5とすれば、回転数0rpmを近似することができ、P1:P2=100とすれば、回転数は90rpmとなる。このように、正方向最小回転数指示P1と逆方向最小回転数指示P2の割合を可変とすることによって、制御不能範囲の回転数を近似することができる。正方向最小回転数指示P1の割合を多くすることによって、近似される可変速電動機71の回転数(可変速電動機71の平均回転数)は、90rpmに近づき、逆方向最小回転数指示P2の割合を多くすることによって、近似される可変速電動機71の回転数は、-90rpmに近づく。
 上記実施形態によれば、定速電動機51と可変速電動機71とからなる電動装置50と、電動装置50で発生した回転駆動力を変速させて駆動対象に伝える遊星歯車変速装置10とを備える可変速電動機システム1の出力軸の回転数を制御するにあたって、より回転数の自由度を高めることができる。
 即ち、可変速電動機71の制御不能範囲に回転数を設定する場合においても、平均回転数がその回転数となるように、可変速電動機71を回転駆動させることによって、出力軸の回転数を所望の回転数に近似することができる。
 この制御不能範囲速度制御は、誘導電動機の可変速制御において、V/F制御(VVVF制御)を行う際により効果的である。V/F制御は、一般的に、ベクトル制御やDTC(ダイレクトトルクコントロール)制御と比較して、トルクリップルが小さいという利点がある反面、電動機の制御不能範囲が大きくなってしまうという欠点がある。本実施形態の制御不能範囲速度制御を用いることによって、V/F制御を実施する場合においても可変速電動機の制御範囲を大きくすることができる。
 また、本実施形態では、変速装置10の軸線Ar上に定速電動機51の定速ロータ52及び可変速電動機71の可変速ロータ72を配置しているので、変速装置10の軸線Arから径方向に離れた位置に定速ロータ52及び可変速ロータ72を配置する場合よりも、全体として小型化を図ることができる。さらに、本実施形態では、変速装置10の軸線Arから径方向に離れた位置に定速ロータ52及び可変速ロータ72を配置する場合のように、ベルトやプーリー等の伝達機構を設ける必要がないため、この観点からの装置の小型化、さらに部品点数の減少による製造コストの低減を図ることができる。また、本実施形態では、変速装置10の軸線Arから径方向に離れた位置に定速ロータ52及び可変速ロータ72を配置する場合のように、ベルトやプーリー等の伝達機構を設ける必要がないため、変速装置10の軸線Ar上に位置する軸に対してベルト等から曲げ荷重がかからず、振動の低減も図ることができる。
 本実施形態では、電動装置50の定速ロータ52と変速装置10の定速入力軸Acとを定速用フレキシブルカップリング97で接続しているので、定速ロータ52と定速入力軸Acとの間の偏芯・偏角・振れを許容することができる。さらに、本実施形態では、電動装置50の可変速ロータ72と変速装置10の可変速入力軸Avとを可変速用フレキシブルカップリング95で接続しているので、可変速ロータ72と可変速入力軸Avとの間の偏芯・偏角・振れを許容することができる。このため、本実施形態では、電動装置50に対する変速装置10の芯出し作業の手間を最小限に抑えることができると共に、電動装置50から変速装置10への軸振れの伝達、変速装置10から電動装置50への軸振れの伝達を抑制することができる。
 本実施形態では、定速電動機ケーシング61に対して可変速電動機ケーシング81が固定されている。このため、本実施形態では、可変電動機システムの製造工場からの出荷前に、定速ロータ52に対して、可変速ロータ72を正確に位置決め(芯出し)を行うことができる。よって、本実施形態では、設置現場において、定速ロータ52に対する可変速ロータ72の位置決め作業を省くことができる。
 本実施形態では、定速ロータ52が回転すると、この定速ロータ52の端に設けられている冷却ファン91も回転する。この冷却ファン91の回転により、外部の空気が定速電動機ケーシング61内に流入して、定速ロータ52や定速ステータ66等を冷却する。さらに、本実施形態では、定速電動機ケーシング61と可変速電動機ケーシング81とが連通しているため、定速電動機ケーシング61内に流入した空気が可変速電動機ケーシング81内にも流入して、可変速ロータ72や可変速ステータ86等を冷却する。よって、本実施形態では、一つの冷却ファン91で、二つの電動機を冷却することができ、この観点から、装置の小型化及び製造コストの低減を図ることができる。
 また、本実施形態では、定速ロータ52と、可変速ロータ72と、太陽歯車軸12とが同一の軸線上に配置されていることによって、可変電動機システムの据え付けスペース(設置空間)を少なくすることができる。また、回転を伝達するための部品(かさ歯車など)が不要となり、部品点数の増加を抑制、製造コストの低減を図ることができる。
 また、本実施形態では、軸挿通孔74が形成された円筒状の軸である可変速ロータ軸73に棒状の軸である定速ロータ軸53(定速ロータ延長軸55)が挿通されている。即ち、出力の大きな定速電動機51の定速ロータ軸53が定速電動機51よりも出力の小さい可変速電動機71の可変速ロータ軸73に挿通されている。これにより、定速電動機51としてより大きな出力(馬力)のあるものを採用することができる。
 また、本実施形態では、定速電動機51、可変速電動機71、変速装置、圧縮機Cの順に直線状に配置していることにより、装置全体をよりコンパクトにすることができる。
 なお、上記実施形態では、定速ロータ52と、可変速ロータ72と、太陽歯車軸12とを同一の軸線上に配置しているがこれに限ることはない。例えば、可変速電動機71を、可変速ロータ72の軸線が定速ロータ52の軸線と平行であって異なる位置となるように配置してもよい。
 また、上記実施形態の可変電動機システムは、いずれも、駆動対象を圧縮機Cとし、この圧縮機Cを7500rpm以上の高速回転させるものである。以上の各実施形態の可変電動機システムは、このように駆動対象を高速回転させるため、変速装置10により、定速電動機51の回転数を増速させている。このため、上記実施形態の変速装置10では、太陽歯車軸12を出力軸Aoとし、内歯車キャリア軸37を定速入力軸Acとし、入力側遊星歯車キャリア軸27iを可変速入力軸Avとしている。
 しかしながら、本発明における変速装置は、例えば、定速電動機51の回転数を減速するためのものであってもよい。この場合、太陽歯車軸12を定速入力軸Acとし、遊星歯車キャリア軸27を可変速入力軸Avとし、内歯車キャリア軸37を出力軸Aoとしてもよい。また、例えば、太陽歯車軸12を以上の実施形態と同様に出力軸Aoとし、内歯車キャリア軸37を可変速入力軸Avとし、遊星歯車キャリア軸27を定速入力軸Acとしてもよい。以上のように、太陽歯車軸12、遊星歯車キャリア軸27、内歯車キャリア軸37のうち、いずれか一の軸を出力軸Aoとし、他の軸を定速入力軸Acとし、残りの軸を可変速入力軸Avとするかは、入力に対して出力を増速させるか否か、出力の増減速の変化範囲等により、適宜設定される。
 また、上記実施形態では、圧縮機Cを高速回転させるために好適な定速電動機51として、4極の誘導電動機を例示し、圧縮機Cの回転数を一定の範囲内で可変速させるために好適な可変速電動機71として、6極の誘導電動機を例示している。しかしながら、駆動対象を高速回転させる必要がない場合には、定速電動機51や可変速電動機71として他のタイプの電動機を用いてもよい。
 また、上記実施形態では、可変速ロータ72に軸挿通孔74が形成され、軸挿通孔74に定速ロータ52が挿通されるが、定速ロータに軸挿通孔が形成され、この軸挿通孔に可変速ロータが挿通される構成としてもよい。
 また、上記各実施形態では、可変速ロータ72と可変速入力軸Avとを接続する可変速用フレキシブルカップリング95が第一フレキシブルカップリングを成し、定速ロータ52と定速入力軸Acとを接続する定速用フレキシブルカップリング97が第二フレキシブルカップリングを成している。しかしながら、定速用フレキシブルカップリングが可変速用フレキシブルカップリングの外周側に配置される場合、定速用フレキシブルカップリングが第一フレキシブルカップリングを成し、可変速用フレキシブルカップリングが第二フレキシブルカップリングを成すことになる。
 本発明の一態様では、可変速電動機システムの可変速範囲の自由度を高めることができる。
 1:可変速電動機システム、10:変速装置(遊星歯車変速装置)、11:太陽歯車、12:太陽歯車軸、15:遊星歯車、17:内歯車、21:遊星歯車キャリア、22:遊星歯車軸、23:キャリア本体、27:遊星歯車キャリア軸、27i:入力側遊星歯車キャリア軸、28:フランジ、31:内歯車キャリア、33:キャリア本体、37:内歯車キャリア軸、38:フランジ、41:変速ケーシング、50:電動装置、51:定速電動機、52:定速ロータ、53:定速ロータ軸、54:定速ロータ本体軸、55:定速ロータ延長軸、56:導体、61:定速電動機ケーシング、62:ケーシング本体、63i,63o:蓋、64:開口、66:定速ステータ、71:可変速電動機、71S:可変速電動機支持部、72:可変速ロータ、73:可変速ロータ軸、73o:フランジ、74:軸挿通孔、76:導体、81:可変速電動機ケーシング、82:ケーシング本体、83i,83o:蓋、84:開口、86:可変速ステータ、91:冷却ファン、100:回転数制御装置、101:周波数変換部、102:回転方向変更部、116:キャリア本体、117:伝達部、118:キャリア軸歯車、119:キャリア本体歯車、120:制御装置、Ap:中心線、Ar:軸線

Claims (3)

  1.  回転駆動力を発生する電動装置と、
     前記電動装置で発生した回転駆動力を変速させて駆動対象に伝える変速装置と、
     を備え、
     前記変速装置は、
     軸線を中心として自転する太陽歯車と、
     前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、
     前記太陽歯車と噛み合い、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、
     前記軸線を中心として環状に複数の歯が並び、前記遊星歯車と噛み合う内歯車と、
     前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、
     前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、
     を有し、
     前記太陽歯車軸と前記遊星歯車キャリア軸と前記内歯車キャリア軸とのうち、いずれか一つの軸が前記駆動対象に接続される出力軸を成し、他の一つの軸が定速入力軸を成し、残りの一つの軸が可変速入力軸を成し、
     前記電動装置は、
     前記変速装置の前記定速入力軸に接続されている定速ロータを有する定速電動機と、
     前記変速装置の前記可変速入力軸に接続されて正方向及び逆方向の回転数を制御可能な可変速ロータを有し、前記正方向の最小回転数と前記逆方向の最小回転数との間の範囲が制御不能な制御不能範囲である可変速電動機と、
     を有する可変速電動機システムの制御方法であって、
     前記出力軸の回転数の指示を受け付ける工程と、
     前記出力軸の回転数に基づいて前記可変速電動機が回転数を演算する工程と、
     演算された前記可変速電動機の回転数が前記制御不能範囲であるか判定する工程と、
     演算された前記可変速電動機の回転数が前記制御不能範囲であった場合に、前記可変速電動機を前記正方向の最小回転数で駆動する正方向最小回転数指示と、前記可変速電動機を前記逆方向の最小回転数で駆動する逆方向最小回転数指示と、を繰返し交互に実行する制御不能範囲速度制御を行う工程と、を含む可変速電動機システムの制御方法。
  2.  前記正方向最小回転数指示の長さと前記逆方向最小回転数指示との割合を可変とすることによって、前記制御不能範囲における前記可変速電動機の回転数を近似する請求項1に記載の可変速電動機システムの制御方法。
  3.  回転駆動力を発生する電動装置と、
     前記電動装置で発生した回転駆動力を変速させて駆動対象に伝える変速装置と、
     を備え、
     前記変速装置は、
     軸線を中心として自転する太陽歯車と、
     前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、
     前記太陽歯車と噛み合い、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、
     前記軸線を中心として環状に複数の歯が並び、前記遊星歯車と噛み合う内歯車と、
     前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、
     前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、
     を有し、
     前記太陽歯車軸と前記遊星歯車キャリア軸と前記内歯車キャリア軸とのうち、いずれか一つの軸が前記駆動対象に接続される出力軸を成し、他の一つの軸が定速入力軸を成し、残りの一つの軸が可変速入力軸を成し、
     前記電動装置は、
     前記変速装置の前記定速入力軸に接続されている定速ロータを有する定速電動機と、
     前記変速装置の前記可変速入力軸に接続されて正方向及び逆方向の回転数を制御可能な可変速ロータを有し、前記正方向の最小回転数と前記逆方向の最小回転数との間の範囲が制御不能な制御不能範囲である可変速電動機と、
     を有する可変速電動機システムの制御装置であって、
     指示された前記出力軸の回転数に基づいて演算された前記可変速電動機の回転数が前記制御不能範囲であった場合に、前記可変速電動機を前記正方向の最小回転数で駆動する正方向最小回転数指示と、前記可変速電動機を前記逆方向の最小回転数で駆動する逆方向最小回転数指示と、を繰返し交互に実行する可変速電動機システムの制御装置。
PCT/JP2015/075183 2015-09-04 2015-09-04 可変速電動機システムの制御方法及び可変速電動機システムの制御装置 WO2017037940A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/075183 WO2017037940A1 (ja) 2015-09-04 2015-09-04 可変速電動機システムの制御方法及び可変速電動機システムの制御装置
EP15903059.2A EP3330569B1 (en) 2015-09-04 2015-09-04 Control method for variable speed electric motor system and control device for variable speed electric motor system
JP2017537175A JP6489628B2 (ja) 2015-09-04 2015-09-04 可変速電動機システムの制御方法及び可変速電動機システムの制御装置
US15/756,945 US10473193B2 (en) 2015-09-04 2015-09-04 Control method for variable speed electric motor system and control device for variable speed electric motor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075183 WO2017037940A1 (ja) 2015-09-04 2015-09-04 可変速電動機システムの制御方法及び可変速電動機システムの制御装置

Publications (1)

Publication Number Publication Date
WO2017037940A1 true WO2017037940A1 (ja) 2017-03-09

Family

ID=58186853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075183 WO2017037940A1 (ja) 2015-09-04 2015-09-04 可変速電動機システムの制御方法及び可変速電動機システムの制御装置

Country Status (4)

Country Link
US (1) US10473193B2 (ja)
EP (1) EP3330569B1 (ja)
JP (1) JP6489628B2 (ja)
WO (1) WO2017037940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7546601B2 (ja) 2019-05-15 2024-09-06 ベーペーヴェー ベルギッシェ アクゼン カーゲー 自動車用の電気駆動装置ユニット

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465774B2 (en) * 2015-09-04 2019-11-05 Mitsubishi Heavy Industries Compressor Corporation Starting method for variable speed accelerator and starting control device for variable speed accelerator
US10605338B2 (en) * 2016-02-26 2020-03-31 Mitsubishi Heavy Industries Compressor Corporation Variable-speed speed increaser
WO2017145367A1 (ja) * 2016-02-26 2017-08-31 三菱重工コンプレッサ株式会社 可変速増速機
US11025180B2 (en) 2016-06-15 2021-06-01 Mitsubishi Heavy Industries Compressor Corporation Variable speed accelerator
WO2017216899A1 (ja) * 2016-06-15 2017-12-21 三菱重工コンプレッサ株式会社 可変速増速機、及び可変速増速機の制御方法
DE112016006959B4 (de) * 2016-07-20 2022-03-31 Mitsubishi Heavy Industries Compressor Corporation Getriebe mit variabler drehzahl
EP4219983A1 (de) * 2016-08-19 2023-08-02 Flender GmbH Planetenträger
JP2022121874A (ja) * 2021-02-09 2022-08-22 三菱重工コンプレッサ株式会社 可変速増速機、及び可変速増速機の始動方法
DE102022003864A1 (de) * 2022-10-19 2024-04-25 Borgwarner Inc. Antriebsstrang für ein Kraftfahrzeug mit einem Planetenradgetriebe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087698A (ja) * 1983-10-17 1985-05-17 キヤリア・コ−ポレイシヨン 蒸気圧縮冷凍システム内の遠心圧縮機に対する可変速度駆動電動機システム
JP4472350B2 (ja) * 2002-02-21 2010-06-02 株式会社荏原製作所 差動遊星歯車装置の始動装置
JP2014217118A (ja) * 2013-04-23 2014-11-17 日立オートモティブシステムズ株式会社 ブラシレスモータの制御装置
JP2015033913A (ja) * 2013-08-09 2015-02-19 いすゞ自動車株式会社 ハイブリッドシステム及びその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970497A (ja) 1982-10-14 1984-04-20 Aida Eng Ltd プレス変速駆動装置
AUPR203500A0 (en) * 2000-12-12 2001-01-11 Aimbridge Pty Ltd Transmission system
JP4868022B2 (ja) * 2009-04-27 2012-02-01 トヨタ自動車株式会社 モータ制御システムの異常判定装置
SE534296C2 (sv) * 2009-11-24 2011-07-05 Bae Systems Haegglunds Ab Elektriskt drivsystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087698A (ja) * 1983-10-17 1985-05-17 キヤリア・コ−ポレイシヨン 蒸気圧縮冷凍システム内の遠心圧縮機に対する可変速度駆動電動機システム
JP4472350B2 (ja) * 2002-02-21 2010-06-02 株式会社荏原製作所 差動遊星歯車装置の始動装置
JP2014217118A (ja) * 2013-04-23 2014-11-17 日立オートモティブシステムズ株式会社 ブラシレスモータの制御装置
JP2015033913A (ja) * 2013-08-09 2015-02-19 いすゞ自動車株式会社 ハイブリッドシステム及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330569A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7546601B2 (ja) 2019-05-15 2024-09-06 ベーペーヴェー ベルギッシェ アクゼン カーゲー 自動車用の電気駆動装置ユニット

Also Published As

Publication number Publication date
JP6489628B2 (ja) 2019-03-27
EP3330569A1 (en) 2018-06-06
EP3330569B1 (en) 2020-11-04
EP3330569A4 (en) 2018-09-05
US20180252300A1 (en) 2018-09-06
JPWO2017037940A1 (ja) 2018-07-26
US10473193B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
JP6489628B2 (ja) 可変速電動機システムの制御方法及び可変速電動機システムの制御装置
JP6384972B2 (ja) 可変電動機システム
JP6582350B2 (ja) 可変速増速機の始動方法及び可変速増速機の始動制御装置
JP6508853B2 (ja) 可変速増速機の始動方法及び可変速増速機の始動制御装置
JP6676164B2 (ja) 可変速増速機及び可変速増速機の始動方法
JP6566285B2 (ja) 可変速増速機、及び可変速増速機の制御方法
JP7014638B2 (ja) 可変速増速機及び可変速増速機の制御方法
JP6548101B2 (ja) 可変速増速機
US10680539B2 (en) Variable-speed speed increaser
WO2017145367A1 (ja) 可変速増速機
JP6590174B2 (ja) 可変速増速機
WO2018042485A1 (ja) 可変速増速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537175

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756945

Country of ref document: US

Ref document number: 2015903059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE