WO2017037782A1 - Scanning-type observation device - Google Patents

Scanning-type observation device Download PDF

Info

Publication number
WO2017037782A1
WO2017037782A1 PCT/JP2015/074432 JP2015074432W WO2017037782A1 WO 2017037782 A1 WO2017037782 A1 WO 2017037782A1 JP 2015074432 W JP2015074432 W JP 2015074432W WO 2017037782 A1 WO2017037782 A1 WO 2017037782A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
scanning
rotation angle
subject
Prior art date
Application number
PCT/JP2015/074432
Other languages
French (fr)
Japanese (ja)
Inventor
西村 淳一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/074432 priority Critical patent/WO2017037782A1/en
Priority to JP2017537052A priority patent/JPWO2017037782A1/en
Publication of WO2017037782A1 publication Critical patent/WO2017037782A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a scanning observation apparatus.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a scanning observation apparatus capable of executing image rotation processing at high speed by simple calculation.
  • the present invention provides the following means.
  • the present invention includes a scanning unit that rotates and scans a beam for irradiating a subject at a constant angular velocity, a detection unit that detects a signal wave generated in the subject by irradiation of the beam, and the detection unit that detects the detection unit
  • An image generation unit that generates an image of the subject based on a signal wave; and a rotation angle setting unit that sets a rotation angle of the image of the subject in the image generated by the image generation unit.
  • a beam calculating unit that calculates a shift time based on the rotation angle set by the rotation angle setting unit and the angular velocity of the beam, and the beam at a time when the signal wave is shifted from the detection time by the detection unit by the shift time.
  • a scanning observation apparatus that generates the image by associating with an irradiation position on the scanning trajectory.
  • the beam is scanned on the subject by the scanning unit, and the signal wave from the subject is detected by the detection unit.
  • the image generation unit generates an image of the subject by associating the detected signal wave with a beam irradiation position on the subject.
  • the signal wave is associated with a position shifted in the scanning direction from the actual beam irradiation position by an angle corresponding to the rotation angle set by the rotation angle setting unit. Since the beam is rotationally scanned at a constant angular velocity, the signal wave detected by the detection unit is shifted by a shift time equal to the ratio of the rotation angle received from the rotation angle setting unit and the angular velocity of the beam received from the detection unit. By doing so, the image of the subject can be uniformly rotated by the rotation angle. In this way, image rotation processing can be executed at high speed by a simple calculation in which the signal wave to be associated and the irradiation position are shifted by an equal shift time in the time direction.
  • the image generation unit further includes a rotation adjustment unit, and based on the value of the rotation angle ⁇ received from the rotation angle setting unit and the value of the angular velocity ⁇ of the laser beam received from the detection unit,
  • the shift time may be changeable in units of one frame of image so that the image generator generates each image with a different shift time.
  • the rotation angle of the subject image in the image can be changed in units of one frame, and the rotation angle of the subject image in the image displayed as a live image on the display unit can be changed in substantially real time.
  • the scanning unit may rotationally scan the beam along a spiral or concentric scanning locus.
  • FIG. 1 is an overall configuration diagram of a scanning observation apparatus according to an embodiment of the present invention. It is a block diagram which shows the detailed structure of the scanning observation apparatus of FIG. It is a figure which shows the structure of the scanner in the scanning observation apparatus of FIG.
  • FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A. It is a figure which shows an example of the brightness
  • DELTA coordinate by shift time
  • scanning type observation device 1 concerning one embodiment of the present invention is explained with reference to drawings.
  • the scanning observation apparatus 1 emits a laser beam (beam) L irradiated to the subject A from the distal end of the insertion portion 21 of the endoscope 2 in a spiral scanning locus B.
  • the scanning observation apparatus 1 includes a light source unit 3, an optical scanning unit (scanning unit) 4 that scans the laser light L output from the light source unit 3 and irradiates the subject A, and a subject.
  • a detection unit (detection unit) 5 that detects the reflected light (signal wave) L ′ of the laser light L from A, and an image that generates an image of the subject A based on the reflected light L ′ detected by the detection unit 5
  • a generation unit (image generation unit) 6 a control unit 7 that controls the optical scanning unit 4, the detection unit 5, and the image generation unit 6, and a rotation angle setting unit 8 that sets the rotation angle ⁇ of the image of the subject A in the image.
  • a display unit 9. A part of the optical scanning unit 4 and the detection unit 5, the image generation unit 6, and the control unit 7 are accommodated in a housing 10 connected to the endoscope 2.
  • the light source unit 3 includes three laser light sources (not shown) that respectively emit red (R), green (G), and blue (B) continuous wave laser beams.
  • the light source unit 3 combines the R, G, and B laser beams to generate white laser beam L, and emits the white laser beam L.
  • a semiconductor solid-state laser light source or a laser diode is used as the laser light source.
  • a white light image of the subject A is acquired
  • other types of images may be acquired.
  • an image of fluorescence excited by laser light may be acquired, or an infrared image or NBI (narrow band imaging) image may be acquired using laser light of a specific color.
  • NBI narrow band imaging
  • the optical scanning unit 4 includes a waveform generator 41 that generates a digital waveform based on a control signal from the controller 7, a D / A converter 42 that D / A converts the digital waveform to generate an alternating voltage, a light source And a scanner 43 that irradiates the subject A while scanning the laser beam L from the unit 3.
  • the waveform generation unit 41 generates a digital waveform having a frequency and amplitude specified by the control signal received from the control unit 7.
  • the D / A converter 42 generates an alternating voltage by converting the digital waveform generated by the waveform generator 41 into a voltage waveform.
  • the generated alternating voltage is supplied to the scanner 43 via the electric cables 13A and 13B.
  • the scanner 43 is disposed inside the distal end portion 21 a of the insertion portion 21.
  • the scanner 43 includes an illumination optical fiber 44 disposed in the insertion portion 21 along the longitudinal direction, an actuator 45 that vibrates the illumination optical fiber 44, and the illumination optical fiber 44 and the actuator 45 of the insertion portion 21. And a fixing portion 46 that is fixed to the outer cylinder.
  • Reference numerals 11 and 12 denote condensing lenses that focus the laser light L emitted from the tip of the illumination optical fiber 44 onto the subject A.
  • the proximal end of the illumination optical fiber 44 is connected to the light source unit 3.
  • the laser light L incident on the proximal end surface of the illumination optical fiber 44 from the light source unit 3 is guided from the proximal end to the distal end of the illumination optical fiber 44, and from the distal end surface of the illumination optical fiber 44 to the insertion portion 21. It is injected toward the front of the tip.
  • the actuator 45 includes a rectangular cylindrical elastic portion 47 and four piezoelectric elements 48A and 48B fixed to the outer peripheral surface of the elastic portion 47.
  • the illumination optical fiber 44 passes through the elastic portion 47, and the elastic portion 47 is formed on the outer peripheral surface of the illumination optical fiber 44 at a position spaced from the distal end of the illumination optical fiber 44 to the proximal end side. It is fixed.
  • a portion of the elastic portion 47 closer to the base end side than the piezoelectric elements 48 ⁇ / b> A and 48 ⁇ / b> B is fixed to the outer cylinder of the insertion portion 21 via the fixing portion 46.
  • the elastic portion 47 and the distal end portion of the illumination optical fiber 44 are supported in a cantilever shape and can swing.
  • the piezoelectric elements 48A and 48B are plate-like and polarized in the thickness direction.
  • an arrow P indicates the polarization direction of the piezoelectric elements 48A and 48B.
  • the piezoelectric elements 48A and 48B have four elastic portions 47 so that the polarization directions of the two piezoelectric elements 48A or 48B facing the radial direction of the illumination optical fiber 44 are the same.
  • One sheet is fixed to each of the two outer surfaces.
  • An A-phase electrical cable 13A is connected to the two X scanning piezoelectric elements 48A facing in the X direction
  • a B phase electrical cable is connected to the two Y scanning piezoelectric elements 48B facing in the Y direction.
  • the cable 13B is connected.
  • the X direction and the Y direction are radial directions of the illumination optical fiber 44 and are directions orthogonal to each other.
  • the waveform generator 41 generates two digital waveforms of A phase and B phase.
  • the D / A converter 42 is provided for the A phase and the B phase, respectively.
  • the B-phase D / A converter 42 D / A converts the B-phase digital waveform, and the generated B-phase alternating voltage is supplied to two Y-scanning piezoelectric elements 48B via the electric cable 13B. To be supplied.
  • the piezoelectric element 48A for X scanning expands and contracts in the longitudinal direction (Z direction) of the illumination optical fiber 44 by application of an A-phase alternating voltage.
  • the elastic portion 47 is excited to bend in the X direction with the position of the fixed portion 46 as a node. Is done.
  • the bending vibration of the elastic portion 47 is transmitted to the illumination optical fiber 44.
  • the tip of the illumination optical fiber 44 bends and vibrates in the X direction
  • the tip of the optical fiber 11 vibrates in the X direction
  • the laser light L emitted from the tip is scanned in the X direction.
  • the Y-scanning piezoelectric element 48B expands and contracts in the longitudinal direction (Z direction) of the illumination optical fiber 44 when a B-phase alternating voltage is applied. At this time, one of the two piezoelectric elements 48B contracts in the Z direction and the other expands in the Z direction, so that the elastic portion 47 is excited by bending vibration in the Y direction with the position of the fixed portion 46 as a node. Is done. The bending vibration of the elastic portion 47 is transmitted to the illumination optical fiber 44.
  • the distal end portion of the illumination optical fiber 44 bends and vibrates in the Y direction, the distal end of the illumination optical fiber 44 vibrates in the Y direction, and the laser light L emitted from the distal end is scanned in the Y direction.
  • the detection unit 5 includes a light receiving unit 51 that receives the reflected light L ′ of the laser light L reflected from the subject A, and a photodetector 52 that detects the reflected light L ′ received by the light receiving unit 51.
  • the light receiving unit 51 is a light receiving optical fiber (hereinafter also referred to as “light receiving optical fiber 51”) arranged in parallel with the illumination optical fiber 44 and inside the insertion unit 21.
  • a plurality of light receiving optical fibers 51 are provided so as to surround the illumination optical fiber 44 in the circumferential direction.
  • a light receiving lens (not shown) is disposed on the front end side of each light receiving optical fiber 51, and the reflected light L ′ from the subject A enters the front end surface of the light receiving optical fiber 51 through the light receiving lens.
  • the base end of the light receiving optical fiber 51 is connected to the photodetector 52.
  • the reflected light L ′ incident on the front end surface of the light receiving optical fiber 51 is guided from the front end to the base end of the light receiving optical fiber 51 and enters the photodetector 52.
  • the photodetector 52 detects the reflected light L ′ at regular time intervals, and outputs an electrical signal corresponding to the detected intensity of the reflected light L ′ to the A / D converter 61 in the image generation unit 6.
  • the photodetector 52 is, for example, a color separation element (not shown) that separates the white reflected light L ′ from the light receiving optical fiber 51 into three colors of R, G, and B, and color separation by the color separation element. And three photodiodes (not shown) that photoelectrically convert each reflected light L ′ of R, G, and B. With this configuration, the photodetector 52 detects the reflected light L ′ of R, G, and B separately and simultaneously, and outputs three electrical signals to the A / D converter 61.
  • the image generation unit 6 includes an A / D converter 61 that performs A / D conversion on the electrical signal output from the photodetector 52, a rotation adjustment unit 62 that adjusts the rotation angle of the image of the subject A in the image, and an image. And an image forming unit 63 for forming the image.
  • the A / D converter 61 obtains a digital value indicating the intensity of the reflected light L ′ by digitally converting each of the three electrical signals from the photodetector 52.
  • the obtained digital values are the R, G, and B luminance values of each pixel of the image formed by the image forming unit 63.
  • the R, G, and B luminance values detected at the time ti by the photodetector 52 are referred to as luminance values S (ti).
  • the A / D converter 61 transmits the obtained luminance value S (ti) to the rotation adjustment unit 62.
  • the detection time ti is acquired from the control unit 7, for example.
  • the rotation adjustment unit 62 receives from the control unit 7 a coordinate data set D2 (detailed later) in which the coordinates P (ti) of each pixel for one frame of the image are associated with the detection time ti.
  • the rotation adjustment unit 62 performs the following rotation processing based on the rotation angle ⁇ set by the rotation angle setting unit 8 to generate a coordinate data set D2 ′.
  • the rotation adjusting unit 62 is based on the following equation from the value of the rotation angle ⁇ received from the rotation angle setting unit 8 and the value of the angular velocity ⁇ (described later) of the laser light L received from the control unit 7.
  • the rotation adjustment unit 62 relatively shifts the coordinates P (ti) and the detection time ti in the time direction by the calculated shift time ⁇ t in the coordinate data set D2.
  • the correspondence between the coordinates P (ti) and the detection time ti is uniformly changed, and each coordinate P (ti) is shifted by the shift time ⁇ t before the actual detection time ti. Or later time ti + ⁇ t.
  • the image of the subject A in the image formed by the image forming unit 63 is rotated by the rotation angle ⁇ as described later.
  • the rotation angle ⁇ is 0 °
  • the shift time ⁇ t is zero
  • the coordinate data set D2 ' is the same as the coordinate data set D2.
  • the rotation adjustment unit 62 associates the brightness value S (ti) and the coordinate P (ti + ⁇ t) associated with the same detection time ti in the brightness value data set D1 and the coordinate data set D2 ′, thereby generating an image. Generate a data set.
  • the rotation adjusting unit 62 transmits the generated image data set to the image forming unit 63.
  • the rotation adjusting unit 62 sets the shift time ⁇ t based on the rotation angle ⁇ for each frame of the image so as to generate images at different shift times. Accordingly, the shift time ⁇ t can be changed in units of one image frame, and the rotation angle ⁇ of the image of the subject A can be changed in units of one image frame.
  • the image forming unit 63 forms an image by assigning each pixel a luminance value S (ti) corresponding to the pixel coordinate P (ti + ⁇ ) based on the image data set.
  • the image forming unit 63 transmits the formed image to the display unit 9 and causes the display unit 9 to display the image.
  • the control unit 7 controls the photodetector 52 so that the photodetector 52 detects the reflected light L ′ at regular time intervals.
  • the control unit 7 sets the frequency and amplitude of the alternating voltage, generates a control signal for generating a digital waveform having the set frequency and amplitude, and transmits the control signal to the waveform generation unit 41.
  • control unit 7 generates two control signals that cause the waveform generation unit 41 to generate A-phase and B-phase digital waveforms whose amplitude changes in a sine wave shape and whose phases are shifted from each other by ⁇ / 2.
  • the A / B converter 42 generates alternating voltages of the A phase and the B phase, the amplitude of which gradually changes in a sine wave shape and whose phases are shifted from each other by ⁇ / 2.
  • the tip of the illumination optical fiber 44 spirally vibrates, and the laser light L is scanned along the spiral scanning locus B on the subject A. It is like that.
  • control unit 7 generates the control signal so that the waveform generation unit 41 generates a digital waveform having a constant frequency.
  • the laser beam L is scanned along the scanning locus B at a constant angular velocity ⁇ .
  • the control unit 7 calculates the angular velocity ⁇ of the laser light L from the frequency of the digital waveform, and transmits the calculated value of the angular velocity ⁇ to the rotation adjustment unit 62.
  • the control unit 7 calculates the irradiation position on the scanning locus B of the laser beam L at the detection time ti of the reflected light L ′ by the photodetector 52 based on the control signals for the A phase and the B phase.
  • the control unit 7 sets the irradiation position at each detection time ti as the coordinate P (ti) of each pixel in the image, and associates the coordinate P (ti) of each pixel with the detection time ti as shown in FIG. 4A.
  • the coordinate data set D2 is generated, and the generated coordinate data set D2 is transmitted to the image forming unit 63.
  • the waveform generating unit 41, the rotation adjusting unit 62, the image forming unit 63, and the control unit 7 described above are realized by a computer.
  • the computer includes a middle processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device.
  • the auxiliary storage device is a computer-readable non-transitory storage medium such as a hard disk or various memories, and a control program for controlling the optical scanning unit 4 and the detection unit 5 and an image for forming an image.
  • each part 41, 62, 63, 7 may be comprised from dedicated hardware like ASIC (application specific integrated circuit).
  • ASIC application specific integrated circuit
  • the rotation angle setting unit 8 includes a GUI (graphical user interface) provided in the display unit 9 and displays a graphic for allowing the user to set the rotation angle ⁇ on the screen of the display unit 9.
  • the graphic includes a scale bar 81 from ⁇ 180 ° to + 180 ° and a slider 82 movable within the scale bar 81.
  • the user can set the rotation angle ⁇ within a range from ⁇ 180 ° to + 180 ° by moving the slider 82 within the scale bar 81 using an input device such as a mouse connected to the display unit 9. It can be done.
  • the rotation angle ⁇ is initially set to 0 °.
  • the rotation angle setting unit 8 transmits the set value of the rotation angle ⁇ to the rotation adjustment unit 62.
  • the waveform generator 41 starts generating a digital waveform in response to a control signal from the controller 7, an alternating voltage is applied to the piezoelectric elements 48A and 48B of the scanner 43, so that the tip of the illumination optical fiber 44 spirally vibrates. To do.
  • the white laser light L is scanned along the spiral scanning locus B on the surface of the subject A facing the distal end surface of the insertion portion 21.
  • the reflected light L ′ of the laser light L reflected from the surface of the subject A is received by the light receiving optical fiber 51, detected by the photodetector 52, and an electrical signal of the reflected light L ′ is transmitted into the image generation unit 6. Is done.
  • the electric signal is digitally converted by the A / D converter 61, whereby the luminance value S (ti) of each pixel of the image is obtained.
  • the rotation adjustment unit 62 a luminance value data set D1 that is time-series data of the luminance value S (ti) at each detection time ti is generated.
  • a coordinate data set D2 which is time series data of the coordinates P (ti) at each detection time ti is generated.
  • the set D2 is transmitted to the rotation adjustment unit 62.
  • the rotation adjusting unit 62 generates a coordinate data set D2 ′ from the coordinate data set D2, and adds the brightness value S () at the same time ti in the brightness value data set D1 to each coordinate P (ti + ⁇ t) in the coordinate data set D2 ′.
  • By associating ti) an image data set for one image frame is generated.
  • each luminance value S (ti) is associated with the coordinate P (ti) at the actual detection time ti as indicated by a white circle in FIG.
  • the orientation of the image of the subject A in the image is the same as the actual orientation of the subject A with respect to the distal end surface of the insertion unit 21.
  • the rotation angle setting unit 8 sets the rotation angle ⁇ to a desired angle other than 0 °.
  • the rotation adjustment unit 62 causes the coordinates P (ti) and the detection time ti in the coordinate data set D2 to be in the time direction by the shift time ⁇ t based on the rotation angle ⁇ . Shift to.
  • each luminance value S (ti) is associated with the coordinate P (ti + ⁇ t) rotated by the rotation angle ⁇ from the actual coordinate P (ti) as shown by a black circle in FIG. .
  • an image in which the subject A is rotated by the rotation angle ⁇ is formed.
  • the detection time ti associated with each coordinate P (ti) is obtained from the rotational angle setting unit 8.
  • the coordinate P (ti) in the coordinate data set D2 and the detection time ti are shifted in the time direction.
  • the luminance value S in the luminance value data set D1 is used.
  • (Ti) and detection time ti may be shifted in the time direction. Even if it does in this way, the same effect can be acquired.
  • the optical scanning unit 4 scans the laser light L along the spiral scanning locus B.
  • the optical scanning unit 4 may scan along the concentric scanning locus.
  • the configuration of the scanner 43 can be appropriately changed according to the shape of the scanning locus.
  • an optical scanner using a photonic crystal may be used instead of the scanner 43 using the piezoelectric actuator 45.
  • the rotation angle setting unit 8 detects the direction of the subject A in the image and sets the detected direction to a predetermined value. It may be configured to automatically set the rotation angle ⁇ so as to match the direction of.
  • the scanning unit including the optical scanning unit 4 that scans the laser light L to acquire an optical image is provided.
  • the ultrasonic beam is scanned on the subject A.
  • a scanning unit including an ultrasonic scanning unit that acquires an ultrasonic image by detecting an echo (signal wave) from the subject A may be provided.
  • the endoscope apparatus has been described.
  • the image rotation processing described above is an arbitrary observation in which an image of the subject A is acquired by rotating and scanning a light or ultrasonic beam on the subject A. It can be applied to the device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

This scanning-type observation device (1) is provided with: a scanning unit (4) that rotationally scans, at a constant angular velocity, a beam (L) for irradiating a subject (A); a detection unit (5) that detects a signal wave (L') from the subject (A); an image generation unit (6) that generates an image of the subject (A) on the basis of the signal wave (L'); and a rotation angle setting unit (8) that sets a rotation angle for the image of the subject (A) within the image. The image generation unit (6) calculates a shift time on the basis of the set rotation angle and the angular velocity of the beam (L) and generates an image by associating the signal wave (L') with the irradiation position of the beam (L) at a time shifted by the shift time from the time of detection by the detection unit (5).

Description

走査型観察装置Scanning observation device
 本発明は、走査型観察装置に関するものである。 The present invention relates to a scanning observation apparatus.
 従来、光や超音波のビームを被写体上でスパイラル走査して被写体の画像を取得する走査型内視鏡が知られている(例えば、特許文献1参照。)。特許文献1の内視鏡は、内視鏡の先端面の上下方向に対して画像内の像の上下方向が一致するように、画像を回転させている。
 体内においては内視鏡のねじれ等によって被写体に対して内視鏡の先端面が回転することにより、画像内の被写体の像が回転する。このような場合にも、画像内の被写体の像の向きを調整するために画像を回転させる処理が行われる。
2. Description of the Related Art Conventionally, there is known a scanning endoscope that acquires an image of a subject by spiral scanning with a light or ultrasonic beam on the subject (see, for example, Patent Document 1). In the endoscope of Patent Document 1, the image is rotated so that the vertical direction of the image in the image matches the vertical direction of the distal end surface of the endoscope.
In the body, the distal end surface of the endoscope rotates with respect to the subject due to torsion of the endoscope or the like, so that the image of the subject in the image rotates. Even in such a case, processing for rotating the image is performed to adjust the orientation of the image of the subject in the image.
国際公開第2010/029906号International Publication No. 2010/029096
 画像の回転処理においては、一般に、各画素の元の位置から三角関数を用いて各画素の回転後の位置を算出する演算処理が行われる。ライブ映像として表示される高フレームレートの内視鏡画像に対してこのような計算処理を実行するためには、高速の演算が可能な高性能のプロセッサまたは専用ハードウェアが必要となり、コストがかかるという問題がある。 In the image rotation process, generally, an arithmetic process for calculating the position after rotation of each pixel using a trigonometric function from the original position of each pixel is performed. In order to perform such a calculation process on a high-frame-rate endoscopic image displayed as a live video, a high-performance processor or dedicated hardware capable of high-speed computation is required, which is expensive. There is a problem.
 本発明は、上述した事情に鑑みてなされたものであって、簡単な計算によって高速で画像の回転処理を実行することができる走査型観察装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a scanning observation apparatus capable of executing image rotation processing at high speed by simple calculation.
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明は、被写体に照射するためのビームを一定の角速度で回転走査する走査部と、前記ビームの照射によって前記被写体において発生する信号波を検出する検出部と、該検出部によって検出された前記信号波に基づいて前記被写体の画像を生成する画像生成部と、該画像生成部によって生成される前記画像内の前記被写体の像の回転角度を設定する回転角度設定部とを備え、前記画像生成部が、前記回転角度設定部によって設定された前記回転角度および前記ビームの角速度に基づいてシフト時間を算出し、前記信号波を前記検出部による検出時刻から前記シフト時間だけシフトした時刻における前記ビームの走査軌跡上における照射位置と対応付けることによって前記画像を生成する走査型観察装置を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention includes a scanning unit that rotates and scans a beam for irradiating a subject at a constant angular velocity, a detection unit that detects a signal wave generated in the subject by irradiation of the beam, and the detection unit that detects the detection unit An image generation unit that generates an image of the subject based on a signal wave; and a rotation angle setting unit that sets a rotation angle of the image of the subject in the image generated by the image generation unit. A beam calculating unit that calculates a shift time based on the rotation angle set by the rotation angle setting unit and the angular velocity of the beam, and the beam at a time when the signal wave is shifted from the detection time by the detection unit by the shift time. There is provided a scanning observation apparatus that generates the image by associating with an irradiation position on the scanning trajectory.
 本発明によれば、走査部によってビームが被写体上で走査され、被写体からの信号波が検出部によって検出される。画像生成部は、検出された信号波を被写体上におけるビームの照射位置と対応付けることによって、被写体の画像を生成する。 According to the present invention, the beam is scanned on the subject by the scanning unit, and the signal wave from the subject is detected by the detection unit. The image generation unit generates an image of the subject by associating the detected signal wave with a beam irradiation position on the subject.
 この場合に、信号波は、実際のビームの照射位置から、回転角度設定部によって設定された回転角度に対応する角度だけ走査方向にシフトした位置と対応付けられる。ビームは一定の角速度で回転走査されているので、検出部によって検出された信号波を、回転角度設定部から受信した回転角度と検出部から受信したビームの角速度との割合に等しいシフト時間だけシフトさせることによって、被写体の像を一律に回転角度だけ回転させることができる。このように、対応付ける信号波と照射位置とを時間方向に等しいシフト時間だけシフトさせるだけの簡単な計算によって、高速で画像の回転処理を実行することができる。 In this case, the signal wave is associated with a position shifted in the scanning direction from the actual beam irradiation position by an angle corresponding to the rotation angle set by the rotation angle setting unit. Since the beam is rotationally scanned at a constant angular velocity, the signal wave detected by the detection unit is shifted by a shift time equal to the ratio of the rotation angle received from the rotation angle setting unit and the angular velocity of the beam received from the detection unit. By doing so, the image of the subject can be uniformly rotated by the rotation angle. In this way, image rotation processing can be executed at high speed by a simple calculation in which the signal wave to be associated and the irradiation position are shifted by an equal shift time in the time direction.
 上記発明においては、前記画像生成部が、回転調整部をさらに備え、前記回転角度設定部から受信した回転角度θの値と、前記検出部から受信したレーザ光の角速度ωの値とから、下式に基づいて前記シフト時間Δtを算出してもよい。
 Δt=θ/ω
 このようにすることで、回転調整部によって算出されたシフト時間により一律に画像の回転処理を行うことができる。
In the above invention, the image generation unit further includes a rotation adjustment unit, and based on the value of the rotation angle θ received from the rotation angle setting unit and the value of the angular velocity ω of the laser beam received from the detection unit, The shift time Δt may be calculated based on an equation.
Δt = θ / ω
In this way, it is possible to uniformly perform image rotation processing based on the shift time calculated by the rotation adjustment unit.
 上記発明においては、前記画像生成部が、異なる前記シフト時間で各画像を生成するように、画像1フレーム単位で前記シフト時間を変更可能であってもよい。
 このようにすることで、画像内の被写体の像の回転角度を1フレーム単位で変更することができ、表示部にライブ映像として表示されている画像内の被写体の像の回転角度を略リアルタイムで変更することができる。
 上記発明においては、前記走査部が、スパイラル状または同心円状の走査軌跡に沿って前記ビームを回転走査してもよい。
In the above invention, the shift time may be changeable in units of one frame of image so that the image generator generates each image with a different shift time.
In this way, the rotation angle of the subject image in the image can be changed in units of one frame, and the rotation angle of the subject image in the image displayed as a live image on the display unit can be changed in substantially real time. Can be changed.
In the above invention, the scanning unit may rotationally scan the beam along a spiral or concentric scanning locus.
 本発明によれば、簡単な計算によって高速で画像の回転処理を実行することができるという効果を奏する。 According to the present invention, it is possible to execute an image rotation process at a high speed by a simple calculation.
本発明の一実施形態に係る走査型観察装置の全体構成図である。1 is an overall configuration diagram of a scanning observation apparatus according to an embodiment of the present invention. 図1の走査型観察装置の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the scanning observation apparatus of FIG. 図1の走査型観察装置におけるスキャナの構成を示す図である。It is a figure which shows the structure of the scanner in the scanning observation apparatus of FIG. 図3AのIII-III線における断面図である。FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A. 回転調整部によって生成される輝度値データセットおよび制御部によって生成される座標データセットの一例を示す図である。It is a figure which shows an example of the brightness | luminance value data set produced | generated by the rotation adjustment part, and the coordinate data set produced | generated by the control part. 輝度値データセットおよび検出時刻と座標とをシフト時間Δtだけシフトした座標データセットの一例を示す図である。It is a figure which shows an example of the coordinate data set which shifted luminance value data set and detection time, and the coordinate by shift time (DELTA) t. D/A変換器から図3Aのスキャナに印加される交番電圧を示す図である。It is a figure which shows the alternating voltage applied to the scanner of FIG. 3A from a D / A converter. 回転角度設定部による回転角度を設定するためのグラフィックの一例を示す図である。It is a figure which shows an example of the graphic for setting the rotation angle by a rotation angle setting part. 画像の回転処理を説明する図である。It is a figure explaining the rotation process of an image.
 以下に、本発明の一実施形態に係る走査型観察装置1について図面を参照して説明する。
 本実施形態に係る走査型観察装置1は、図1に示されるように、内視鏡2の挿入部21の先端から被写体Aに照射されるレーザ光(ビーム)Lをスパイラル状の走査軌跡Bに沿って走査し、被写体Aの画像を取得する光走査型内視鏡装置である。
Below, scanning type observation device 1 concerning one embodiment of the present invention is explained with reference to drawings.
As shown in FIG. 1, the scanning observation apparatus 1 according to the present embodiment emits a laser beam (beam) L irradiated to the subject A from the distal end of the insertion portion 21 of the endoscope 2 in a spiral scanning locus B. Is an optical scanning endoscope apparatus that acquires an image of the subject A.
 走査型観察装置1は、図2に示されるように、光源部3と、光源部3から出力されたレーザ光Lを走査して被写体Aに照射する光走査ユニット(走査部)4と、被写体Aからのレーザ光Lの反射光(信号波)L’を検出する検出ユニット(検出部)5と、該検出ユニット5によって検出された反射光L’に基づいて被写体Aの画像を生成する画像生成ユニット(画像生成部)6と、光走査ユニット4、検出ユニット5および画像生成ユニット6を制御する制御部7と、画像内の被写体Aの像の回転角度θを設定する回転角度設定部8と、表示部9とを備えている。
 光走査ユニット4および検出ユニット5の一部、画像生成ユニット6、ならびに、制御部7は、内視鏡2に接続された筺体10内に収容されている。
As shown in FIG. 2, the scanning observation apparatus 1 includes a light source unit 3, an optical scanning unit (scanning unit) 4 that scans the laser light L output from the light source unit 3 and irradiates the subject A, and a subject. A detection unit (detection unit) 5 that detects the reflected light (signal wave) L ′ of the laser light L from A, and an image that generates an image of the subject A based on the reflected light L ′ detected by the detection unit 5 A generation unit (image generation unit) 6, a control unit 7 that controls the optical scanning unit 4, the detection unit 5, and the image generation unit 6, and a rotation angle setting unit 8 that sets the rotation angle θ of the image of the subject A in the image. And a display unit 9.
A part of the optical scanning unit 4 and the detection unit 5, the image generation unit 6, and the control unit 7 are accommodated in a housing 10 connected to the endoscope 2.
 光源部3は、赤(R)、緑(G)、青(B)の連続波レーザ光をそれぞれ射出する3個のレーザ光源(図示略)を備える。光源部3は、R、G、Bのレーザ光を合波して白色のレーザ光Lを生成し、該白色のレーザ光Lを射出する。レーザ光源としては、例えば、半導体固体レーザ光源またはレーザダイオードが用いられる。 The light source unit 3 includes three laser light sources (not shown) that respectively emit red (R), green (G), and blue (B) continuous wave laser beams. The light source unit 3 combines the R, G, and B laser beams to generate white laser beam L, and emits the white laser beam L. For example, a semiconductor solid-state laser light source or a laser diode is used as the laser light source.
 なお、本実施形態においては、被写体Aの白色光画像を取得する場合について説明するが、他の種類の画像を取得してもよい。例えば、レーザ光によって励起される蛍光の画像を取得してもよく、特定の色のレーザ光を用いて赤外画像やNBI(narrow band imaging)画像を取得してもよい。 In the present embodiment, a case where a white light image of the subject A is acquired will be described, but other types of images may be acquired. For example, an image of fluorescence excited by laser light may be acquired, or an infrared image or NBI (narrow band imaging) image may be acquired using laser light of a specific color.
 光走査ユニット4は、制御部7からの制御信号に基づいてデジタル波形を発生する波形発生部41と、デジタル波形をD/A変換して交番電圧を生成するD/A変換器42と、光源部3からのレーザ光Lを走査しながら被写体Aに照射するスキャナ43とを備えている。 The optical scanning unit 4 includes a waveform generator 41 that generates a digital waveform based on a control signal from the controller 7, a D / A converter 42 that D / A converts the digital waveform to generate an alternating voltage, a light source And a scanner 43 that irradiates the subject A while scanning the laser beam L from the unit 3.
 波形発生部41は、制御部7から受信した制御信号が指定する周波数および振幅を有するデジタル波形を発生する。
 D/A変換器42は、波形発生部41によって発生されたデジタル波形を電圧波形に変換することによって交番電圧を生成する。生成された交番電圧は、電気ケーブル13A,13Bを介してスキャナ43に供給される。
The waveform generation unit 41 generates a digital waveform having a frequency and amplitude specified by the control signal received from the control unit 7.
The D / A converter 42 generates an alternating voltage by converting the digital waveform generated by the waveform generator 41 into a voltage waveform. The generated alternating voltage is supplied to the scanner 43 via the electric cables 13A and 13B.
 スキャナ43は、図3Aおよび図3Bに示されるように、挿入部21の先端部21aの内部に配置されている。スキャナ43は、挿入部21内に長手方向に沿って配置された照明用光ファイバ44と、該照明用光ファイバ44を振動させるアクチュエータ45と、照明用光ファイバ44およびアクチュエータ45を挿入部21の外筒に対して固定する固定部46とを備えている。
 符号11,12は、照明用光ファイバ44の先端から射出されたレーザ光Lを被写体A上に集束させる集光レンズである。
As shown in FIGS. 3A and 3B, the scanner 43 is disposed inside the distal end portion 21 a of the insertion portion 21. The scanner 43 includes an illumination optical fiber 44 disposed in the insertion portion 21 along the longitudinal direction, an actuator 45 that vibrates the illumination optical fiber 44, and the illumination optical fiber 44 and the actuator 45 of the insertion portion 21. And a fixing portion 46 that is fixed to the outer cylinder.
Reference numerals 11 and 12 denote condensing lenses that focus the laser light L emitted from the tip of the illumination optical fiber 44 onto the subject A.
 照明用光ファイバ44の基端は、光源部3に接続されている。光源部3から照明用光ファイバ44の基端面に入射したレーザ光Lは、照明用光ファイバ44の内部を基端から先端まで導光し、照明用光ファイバ44の先端面から挿入部21の先端前方へ向かって射出されるようになっている。 The proximal end of the illumination optical fiber 44 is connected to the light source unit 3. The laser light L incident on the proximal end surface of the illumination optical fiber 44 from the light source unit 3 is guided from the proximal end to the distal end of the illumination optical fiber 44, and from the distal end surface of the illumination optical fiber 44 to the insertion portion 21. It is injected toward the front of the tip.
 アクチュエータ45は、四角筒状の弾性部47と、該弾性部47の外周面に固定された4枚の圧電素子48A,48Bとを備えている。
 弾性部47内には照明用光ファイバ44が貫通しており、弾性部47は、照明用光ファイバ44の先端から基端側に間隔をあけた位置において、照明用光ファイバ44の外周面に固定されている。弾性部47の、圧電素子48A,48Bよりも基端側の部分は、固定部46を介して挿入部21の外筒に固定されている。これにより、弾性部47および照明用光ファイバ44の先端部分は片持ち梁状に支持され、揺動可能となっている。
The actuator 45 includes a rectangular cylindrical elastic portion 47 and four piezoelectric elements 48A and 48B fixed to the outer peripheral surface of the elastic portion 47.
The illumination optical fiber 44 passes through the elastic portion 47, and the elastic portion 47 is formed on the outer peripheral surface of the illumination optical fiber 44 at a position spaced from the distal end of the illumination optical fiber 44 to the proximal end side. It is fixed. A portion of the elastic portion 47 closer to the base end side than the piezoelectric elements 48 </ b> A and 48 </ b> B is fixed to the outer cylinder of the insertion portion 21 via the fixing portion 46. As a result, the elastic portion 47 and the distal end portion of the illumination optical fiber 44 are supported in a cantilever shape and can swing.
 圧電素子48A,48Bは板状であり、厚さ方向に分極している。図3Bにおいて、矢印Pは圧電素子48A,48Bの分極方向を示している。圧電素子48A,48Bは、図3Bに示されるように、照明用光ファイバ44の半径方向に対向する2枚の圧電素子48Aまたは48Bの分極方向が同一方向となるように、弾性部47の4つの外側面の各々に1枚ずつ固定されている。X方向に対向する2枚のX走査用の圧電素子48AにはA相用の電気ケーブル13Aが接続され、Y方向に対向する2枚のY走査用の圧電素子48BにはB相用の電気ケーブル13Bが接続されている。X方向およびY方向は、照明用光ファイバ44の半径方向であり、互いに直交する方向である。 The piezoelectric elements 48A and 48B are plate-like and polarized in the thickness direction. In FIG. 3B, an arrow P indicates the polarization direction of the piezoelectric elements 48A and 48B. As shown in FIG. 3B, the piezoelectric elements 48A and 48B have four elastic portions 47 so that the polarization directions of the two piezoelectric elements 48A or 48B facing the radial direction of the illumination optical fiber 44 are the same. One sheet is fixed to each of the two outer surfaces. An A-phase electrical cable 13A is connected to the two X scanning piezoelectric elements 48A facing in the X direction, and a B phase electrical cable is connected to the two Y scanning piezoelectric elements 48B facing in the Y direction. The cable 13B is connected. The X direction and the Y direction are radial directions of the illumination optical fiber 44 and are directions orthogonal to each other.
 ここで、波形発生部41は、A相およびB相の2つのデジタル波形を発生する。D/A変換器42は、A相用およびB相用にそれぞれ設けられている。A相用のD/A変換器42は、A相のデジタル波形をD/A変換し、生成されたA相の交番電圧は、電気ケーブル13Aを介して2枚のX走査用の圧電素子48Aに供給される。B相用のD/A変換器42は、B相のデジタル波形をD/A変換し、生成されたB相の交番電圧は、電気ケーブル13Bを介して2枚のY走査用の圧電素子48Bに供給される。 Here, the waveform generator 41 generates two digital waveforms of A phase and B phase. The D / A converter 42 is provided for the A phase and the B phase, respectively. The A-phase D / A converter 42 D / A-converts the A-phase digital waveform, and the generated A-phase alternating voltage is supplied to two X-scanning piezoelectric elements 48A via the electric cable 13A. To be supplied. The B-phase D / A converter 42 D / A converts the B-phase digital waveform, and the generated B-phase alternating voltage is supplied to two Y-scanning piezoelectric elements 48B via the electric cable 13B. To be supplied.
 X走査用の圧電素子48Aは、A相の交番電圧の印加によって照明用光ファイバ44の長手方向(Z方向)に伸縮振動する。このときに、2枚の圧電素子48Aのうち、一方がZ方向に縮み、他方がZ方向に伸びることによって、弾性部47には固定部46の位置を節とするX方向の屈曲振動が励起される。弾性部47の屈曲振動は、照明用光ファイバ44に伝達される。これにより、照明用光ファイバ44の先端部がX方向に屈曲振動して光ファイバ11の先端がX方向に振動し、該先端から射出されるレーザ光LがX方向に走査される。 The piezoelectric element 48A for X scanning expands and contracts in the longitudinal direction (Z direction) of the illumination optical fiber 44 by application of an A-phase alternating voltage. At this time, when one of the two piezoelectric elements 48A contracts in the Z direction and the other extends in the Z direction, the elastic portion 47 is excited to bend in the X direction with the position of the fixed portion 46 as a node. Is done. The bending vibration of the elastic portion 47 is transmitted to the illumination optical fiber 44. As a result, the tip of the illumination optical fiber 44 bends and vibrates in the X direction, the tip of the optical fiber 11 vibrates in the X direction, and the laser light L emitted from the tip is scanned in the X direction.
 Y走査用の圧電素子48Bは、B相の交番電圧の印加によって照明用光ファイバ44の長手方向(Z方向)に伸縮振動する。このときに、2枚の圧電素子48Bのうち、一方がZ方向に縮み、他方がZ方向に伸びることによって、弾性部47には固定部46の位置を節とするY方向の屈曲振動が励起される。弾性部47の屈曲振動は、照明用光ファイバ44に伝達される。これにより、照明用光ファイバ44の先端部がY方向に屈曲振動して照明用光ファイバ44の先端がY方向に振動し、該先端から射出されるレーザ光LがY方向に走査される。 The Y-scanning piezoelectric element 48B expands and contracts in the longitudinal direction (Z direction) of the illumination optical fiber 44 when a B-phase alternating voltage is applied. At this time, one of the two piezoelectric elements 48B contracts in the Z direction and the other expands in the Z direction, so that the elastic portion 47 is excited by bending vibration in the Y direction with the position of the fixed portion 46 as a node. Is done. The bending vibration of the elastic portion 47 is transmitted to the illumination optical fiber 44. As a result, the distal end portion of the illumination optical fiber 44 bends and vibrates in the Y direction, the distal end of the illumination optical fiber 44 vibrates in the Y direction, and the laser light L emitted from the distal end is scanned in the Y direction.
 検出ユニット5は、被写体Aにおいて反射されたレーザ光Lの反射光L’を受光する受光部51と、該受光部51によって受光された反射光L’を検出する光検出器52とを備えている。
 受光部51は、照明用光ファイバ44と並列して挿入部21の内部に配置された受光用光ファイバ(以下、「受光用光ファイバ51」ともいう。)である。受光用光ファイバ51は、照明用光ファイバ44を周方向に囲むように複数本設けられてる。各受光用光ファイバ51の先端側には受光レンズ(図示略)が配置され、被写体Aからの反射光L’は受光レンズを介して受光用光ファイバ51の先端面に入射するようになっている。受光用光ファイバ51の基端は光検出器52に接続されている。受光用光ファイバ51の先端面に入射した反射光L’は、該受光用光ファイバ51の内部を先端から基端まで導光し、光検出器52に入射する。
The detection unit 5 includes a light receiving unit 51 that receives the reflected light L ′ of the laser light L reflected from the subject A, and a photodetector 52 that detects the reflected light L ′ received by the light receiving unit 51. Yes.
The light receiving unit 51 is a light receiving optical fiber (hereinafter also referred to as “light receiving optical fiber 51”) arranged in parallel with the illumination optical fiber 44 and inside the insertion unit 21. A plurality of light receiving optical fibers 51 are provided so as to surround the illumination optical fiber 44 in the circumferential direction. A light receiving lens (not shown) is disposed on the front end side of each light receiving optical fiber 51, and the reflected light L ′ from the subject A enters the front end surface of the light receiving optical fiber 51 through the light receiving lens. Yes. The base end of the light receiving optical fiber 51 is connected to the photodetector 52. The reflected light L ′ incident on the front end surface of the light receiving optical fiber 51 is guided from the front end to the base end of the light receiving optical fiber 51 and enters the photodetector 52.
 光検出器52は、反射光L’を一定の時間間隔で検出し、検出された反射光L’の強度に応じた電気信号を画像生成ユニット6内のA/D変換器61に出力する。光検出器52は、例えば、受光用光ファイバ51からの白色の反射光L’をR、G、Bの3色に分解する色分解素子(図示略)と、該色分解素子によって色分解されたR、G、Bの各反射光L’を光電変換する3個のフォトダイオード(図示略)とから構成される。このような構成により、光検出器52は、R、GおよびBの反射光L’を別々にかつ同時に検出し、3つの電気信号をA/D変換器61に出力するようになっている。 The photodetector 52 detects the reflected light L ′ at regular time intervals, and outputs an electrical signal corresponding to the detected intensity of the reflected light L ′ to the A / D converter 61 in the image generation unit 6. The photodetector 52 is, for example, a color separation element (not shown) that separates the white reflected light L ′ from the light receiving optical fiber 51 into three colors of R, G, and B, and color separation by the color separation element. And three photodiodes (not shown) that photoelectrically convert each reflected light L ′ of R, G, and B. With this configuration, the photodetector 52 detects the reflected light L ′ of R, G, and B separately and simultaneously, and outputs three electrical signals to the A / D converter 61.
 画像生成ユニット6は、光検出器52から出力された電気信号をA/D変換するA/D変換器61と、画像内の被写体Aの像の回転角度を調整する回転調整部62と、画像を形成する画像形成部63とを備えている。 The image generation unit 6 includes an A / D converter 61 that performs A / D conversion on the electrical signal output from the photodetector 52, a rotation adjustment unit 62 that adjusts the rotation angle of the image of the subject A in the image, and an image. And an image forming unit 63 for forming the image.
 A/D変換器61は、光検出器52からの3つの電気信号をそれぞれデジタル変換することによって、反射光L’の強度を示すデジタル値を得る。得られたデジタル値は、画像形成部63によって形成される画像の各画素のR、G、Bの輝度値である。以下、光検出器52によって時刻tiに検出されたR、G、Bの輝度値を、輝度値S(ti)と記す。A/D変換器61は、得られた輝度値S(ti)を回転調整部62に送信する。 The A / D converter 61 obtains a digital value indicating the intensity of the reflected light L ′ by digitally converting each of the three electrical signals from the photodetector 52. The obtained digital values are the R, G, and B luminance values of each pixel of the image formed by the image forming unit 63. Hereinafter, the R, G, and B luminance values detected at the time ti by the photodetector 52 are referred to as luminance values S (ti). The A / D converter 61 transmits the obtained luminance value S (ti) to the rotation adjustment unit 62.
 回転調整部62は、図4Aに示されるように、A/D変換器61から受信した輝度値S(ti)(i=1,2,3,…)と、該輝度値S(ti)が光検出器52によって検出された検出時刻ti(i=1,2,3,…)とを対応付けた輝度値データセットD1を生成する。検出時刻tiは、例えば、制御部7から取得される。 As shown in FIG. 4A, the rotation adjusting unit 62 determines that the luminance value S (ti) (i = 1, 2, 3,...) Received from the A / D converter 61 and the luminance value S (ti) are A luminance value data set D1 in which the detection times ti (i = 1, 2, 3,...) Detected by the photodetector 52 are associated with each other is generated. The detection time ti is acquired from the control unit 7, for example.
 また、回転調整部62は、画像1フレーム分の各画素の座標P(ti)と検出時刻tiとを対応付けた座標データセットD2(後で詳述)を制御部7から受信する。回転調整部62は、回転角度設定部8によって設定されている回転角度θに基づいて以下の回転処理を実行して座標データセットD2’を生成する。 Also, the rotation adjustment unit 62 receives from the control unit 7 a coordinate data set D2 (detailed later) in which the coordinates P (ti) of each pixel for one frame of the image are associated with the detection time ti. The rotation adjustment unit 62 performs the following rotation processing based on the rotation angle θ set by the rotation angle setting unit 8 to generate a coordinate data set D2 ′.
 回転処理において、回転調整部62は、回転角度設定部8から受信した回転角度θの値と、制御部7から受信したレーザ光Lの角速度ω(後述)の値とから、下式に基づいてシフト時間Δtを算出する。
 Δt=θ/ω
In the rotation process, the rotation adjusting unit 62 is based on the following equation from the value of the rotation angle θ received from the rotation angle setting unit 8 and the value of the angular velocity ω (described later) of the laser light L received from the control unit 7. A shift time Δt is calculated.
Δt = θ / ω
 次に、回転調整部62は、座標データセットD2において、算出されたシフト時間Δtだけ、座標P(ti)および検出時刻tiを時間方向に相対的にシフトさせる。これにより、図4Bに示されるように、座標P(ti)と検出時刻tiとの対応関係が一律に変更され、各座標P(ti)は、実際の検出時刻tiよりもシフト時間Δtだけ前のまたは後の時刻ti+Δtと対応付けらる。このように、座標P(ti)を時刻ti+Δtと対応付けることによって、後述するように、画像形成部63によって形成される画像内の被写体Aの像が回転角度θだけ回転する。回転角度θが0°のときには、シフト時間Δtはゼロとなり、座標データセットD2’は座標データセットD2と同一となる。 Next, the rotation adjustment unit 62 relatively shifts the coordinates P (ti) and the detection time ti in the time direction by the calculated shift time Δt in the coordinate data set D2. As a result, as shown in FIG. 4B, the correspondence between the coordinates P (ti) and the detection time ti is uniformly changed, and each coordinate P (ti) is shifted by the shift time Δt before the actual detection time ti. Or later time ti + Δt. As described above, by associating the coordinate P (ti) with the time ti + Δt, the image of the subject A in the image formed by the image forming unit 63 is rotated by the rotation angle θ as described later. When the rotation angle θ is 0 °, the shift time Δt is zero, and the coordinate data set D2 'is the same as the coordinate data set D2.
 次に、回転調整部62は、輝度値データセットD1および座標データセットD2’において同一の検出時刻tiと対応付けられている輝度値S(ti)と座標P(ti+Δt)とを対応付けることによって画像データセットを生成する。回転調整部62は、生成された画像データセットを画像形成部63に送信する。 Next, the rotation adjustment unit 62 associates the brightness value S (ti) and the coordinate P (ti + Δt) associated with the same detection time ti in the brightness value data set D1 and the coordinate data set D2 ′, thereby generating an image. Generate a data set. The rotation adjusting unit 62 transmits the generated image data set to the image forming unit 63.
 ここで、回転調整部62は、異なるシフト時間でそれぞれ画像を生成するように、画像1フレーム単位で回転角度θに基づいてシフト時間Δtを設定する。これにより、画像1フレーム単位でシフト時間Δtが変更可能であり、被写体Aの像の回転角度θが画像1フレーム単位で変更可能となっている。 Here, the rotation adjusting unit 62 sets the shift time Δt based on the rotation angle θ for each frame of the image so as to generate images at different shift times. Accordingly, the shift time Δt can be changed in units of one image frame, and the rotation angle θ of the image of the subject A can be changed in units of one image frame.
 画像形成部63は、画像データセットに基づき、各画素にその画素の座標P(ti+Δ)と対応する輝度値S(ti)を割り当てることによって、画像を形成する。画像形成部63は、形成した画像を表示部9に送信し、該表示部9に表示させる。 The image forming unit 63 forms an image by assigning each pixel a luminance value S (ti) corresponding to the pixel coordinate P (ti + Δ) based on the image data set. The image forming unit 63 transmits the formed image to the display unit 9 and causes the display unit 9 to display the image.
 制御部7は、光検出器52が一定の時間間隔で反射光L’を検出するように、光検出器52を制御する。
 また、制御部7は、交番電圧の周波数および振幅を設定し、設定された周波数および振幅を有するデジタル波形を発生させるための制御信号を生成し、該制御信号を波形発生部41に送信する。
The control unit 7 controls the photodetector 52 so that the photodetector 52 detects the reflected light L ′ at regular time intervals.
In addition, the control unit 7 sets the frequency and amplitude of the alternating voltage, generates a control signal for generating a digital waveform having the set frequency and amplitude, and transmits the control signal to the waveform generation unit 41.
 ここで、制御部7は、振幅が正弦波状に時間変化し、かつ、位相が互いにπ/2だけずれたA相およびB相のデジタル波形を波形発生部41に生成させる2つの制御信号を生成する。これにより、図5に示されるように、振幅が正弦波状に漸次変化し、かつ、位相が互いにπ/2だけずれたA相およびB相の交番電圧がD/A変換器42によって生成される。このような交番電圧が圧電素子48A,48Bに印加されることによって、照明用光ファイバ44の先端がスパイラル振動し、レーザ光Lが被写体A上においてスパイラル状の走査軌跡Bに沿って走査されるようになっている。 Here, the control unit 7 generates two control signals that cause the waveform generation unit 41 to generate A-phase and B-phase digital waveforms whose amplitude changes in a sine wave shape and whose phases are shifted from each other by π / 2. To do. As a result, as shown in FIG. 5, the A / B converter 42 generates alternating voltages of the A phase and the B phase, the amplitude of which gradually changes in a sine wave shape and whose phases are shifted from each other by π / 2. . When such an alternating voltage is applied to the piezoelectric elements 48A and 48B, the tip of the illumination optical fiber 44 spirally vibrates, and the laser light L is scanned along the spiral scanning locus B on the subject A. It is like that.
 さらに、制御部7は、一定の周波数を有するデジタル波形を波形発生部41に生成させるように、前記制御信号を生成する。これにより、レーザ光Lは、走査軌跡Bに沿って一定の角速度ωで走査される。制御部7は、デジタル波形の周波数からレーザ光Lの角速度ωを算出し、算出された角速度ωの値を回転調整部62に送信する。 Further, the control unit 7 generates the control signal so that the waveform generation unit 41 generates a digital waveform having a constant frequency. Thereby, the laser beam L is scanned along the scanning locus B at a constant angular velocity ω. The control unit 7 calculates the angular velocity ω of the laser light L from the frequency of the digital waveform, and transmits the calculated value of the angular velocity ω to the rotation adjustment unit 62.
 制御部7は、光検出器52による反射光L’の検出時刻tiにおけるレーザ光Lの走査軌跡B上における照射位置をA相用およびB相用の制御信号に基づいて演算する。制御部7は、各検出時刻tiにおける照射位置を画像内の各画素の座標P(ti)とし、図4Aに示されるように、各画素の座標P(ti)と検出時刻tiとを対応付けた座標データセットD2を生成し、生成された座標データセットD2を画像形成部63に送信する。 The control unit 7 calculates the irradiation position on the scanning locus B of the laser beam L at the detection time ti of the reflected light L ′ by the photodetector 52 based on the control signals for the A phase and the B phase. The control unit 7 sets the irradiation position at each detection time ti as the coordinate P (ti) of each pixel in the image, and associates the coordinate P (ti) of each pixel with the detection time ti as shown in FIG. 4A. The coordinate data set D2 is generated, and the generated coordinate data set D2 is transmitted to the image forming unit 63.
 上述した波形発生部41、回転調整部62、画像形成部63および制御部7は、コンピュータによって実現される。具体的には、コンピュータは、中演算処理装置(CPU)と、RAMのような主記憶装置と、補助記憶装置とを備えている。補助記憶装置は、ハードディスクや各種のメモリのような、コンピュータ読み取り可能な非一時的な記憶媒体であり、光走査ユニット4および検出ユニット5を制御するための制御プログラムおよび画像を形成するための画像処理プログラムを格納している。これらプログラムが補助記憶装置から主記憶装置へロードされて起動されることによって、CPUがプログラムに従って各部41,62,63,7の上述した処理を実行するようになっている。あるいは、各部41,62,63,7は、ASIC(特定用途向け集積回路)のような専用ハードウェアから構成されていてもよい。 The waveform generating unit 41, the rotation adjusting unit 62, the image forming unit 63, and the control unit 7 described above are realized by a computer. Specifically, the computer includes a middle processing unit (CPU), a main storage device such as a RAM, and an auxiliary storage device. The auxiliary storage device is a computer-readable non-transitory storage medium such as a hard disk or various memories, and a control program for controlling the optical scanning unit 4 and the detection unit 5 and an image for forming an image. Stores processing programs. When these programs are loaded from the auxiliary storage device to the main storage device and activated, the CPU executes the above-described processing of each of the units 41, 62, 63, and 7 according to the program. Or each part 41, 62, 63, 7 may be comprised from dedicated hardware like ASIC (application specific integrated circuit).
 回転角度設定部8は、表示部9に設けられたGUI(グラフィカル・ユーザ・インタフェース)を備え、回転角度θをユーザに設定させるためのグラフィックを表示部9の画面に表示させる。グラフィックは、例えば、図6に示されるように、-180°から+180°までのスケールバー81と、該スケールバー81内で移動可能なスライダ82とを含んでいる。ユーザは、表示部9に接続されたマウス等の入力デバイスを用いてスライダ82をスケールバー81内で移動させることによって、回転角度θを-180°から+180°までの範囲内で設定することができるようになっている。回転角度θは、0°に初期設定されている。回転角度設定部8は、設定されている回転角度θの値を回転調整部62に送信する。 The rotation angle setting unit 8 includes a GUI (graphical user interface) provided in the display unit 9 and displays a graphic for allowing the user to set the rotation angle θ on the screen of the display unit 9. For example, as shown in FIG. 6, the graphic includes a scale bar 81 from −180 ° to + 180 ° and a slider 82 movable within the scale bar 81. The user can set the rotation angle θ within a range from −180 ° to + 180 ° by moving the slider 82 within the scale bar 81 using an input device such as a mouse connected to the display unit 9. It can be done. The rotation angle θ is initially set to 0 °. The rotation angle setting unit 8 transmits the set value of the rotation angle θ to the rotation adjustment unit 62.
 次に、このように構成された走査型観察装置1の作用について説明する。
 制御部7からの制御信号を受けて波形発生部41がデジタル波形の発生を開始すると、交番電圧がスキャナ43の圧電素子48A,48Bに印加されることによって照明用光ファイバ44の先端がスパイラル振動する。これにより、挿入部21の先端面に対向する被写体Aの表面において、スパイラル状の走査軌跡Bに沿って白色のレーザ光Lが走査される。被写体Aの表面において反射されたレーザ光Lの反射光L’は、受光用光ファイバ51によって受光され、光検出器52によって検出され、反射光L’の電気信号が画像生成ユニット6内に送信される。
Next, the operation of the scanning observation apparatus 1 configured as described above will be described.
When the waveform generator 41 starts generating a digital waveform in response to a control signal from the controller 7, an alternating voltage is applied to the piezoelectric elements 48A and 48B of the scanner 43, so that the tip of the illumination optical fiber 44 spirally vibrates. To do. As a result, the white laser light L is scanned along the spiral scanning locus B on the surface of the subject A facing the distal end surface of the insertion portion 21. The reflected light L ′ of the laser light L reflected from the surface of the subject A is received by the light receiving optical fiber 51, detected by the photodetector 52, and an electrical signal of the reflected light L ′ is transmitted into the image generation unit 6. Is done.
 画像生成ユニット6内においては、電気信号がA/D変換器61によってデジタル変換されることによって、画像の各画素の輝度値S(ti)が得られる。回転調整部62においては、各検出時刻tiにおける輝度値S(ti)の時系列データである輝度値データセットD1が生成される。 In the image generation unit 6, the electric signal is digitally converted by the A / D converter 61, whereby the luminance value S (ti) of each pixel of the image is obtained. In the rotation adjustment unit 62, a luminance value data set D1 that is time-series data of the luminance value S (ti) at each detection time ti is generated.
 一方、制御部7において、画像1フレーム分のレーザ光Lの走査が完了する毎に、各検出時刻tiにおける座標P(ti)の時系列データである座標データセットD2が生成され、該座標データセットD2が回転調整部62に送信される。
 回転調整部62は、座標データセットD2から座標データセットD2’を生成し、座標データセットD2’内の各座標P(ti+Δt)に、輝度値データセットD1内の同一時刻tiの輝度値S(ti)を対応付けることによって、画像1フレーム分の画像データセットを生成する。
On the other hand, every time scanning of the laser beam L for one frame of the image is completed in the control unit 7, a coordinate data set D2 which is time series data of the coordinates P (ti) at each detection time ti is generated. The set D2 is transmitted to the rotation adjustment unit 62.
The rotation adjusting unit 62 generates a coordinate data set D2 ′ from the coordinate data set D2, and adds the brightness value S () at the same time ti in the brightness value data set D1 to each coordinate P (ti + Δt) in the coordinate data set D2 ′. By associating ti), an image data set for one image frame is generated.
 次に、画像形成部63において、画像データセットに基づいて画像が形成され、形成された画像が表示部9に表示される。初期状態においては、Δt=0であるので、各輝度値S(ti)は、図7において白丸で示されるように実際の検出時刻tiにおける座標P(ti)と対応付けられる。この場合、画像内の被写体Aの像の向きは、挿入部21の先端面に対する実際の被写体Aの向きと同一となる。 Next, the image forming unit 63 forms an image based on the image data set, and the formed image is displayed on the display unit 9. Since Δt = 0 in the initial state, each luminance value S (ti) is associated with the coordinate P (ti) at the actual detection time ti as indicated by a white circle in FIG. In this case, the orientation of the image of the subject A in the image is the same as the actual orientation of the subject A with respect to the distal end surface of the insertion unit 21.
 ここで、ユーザは、表示部9に表示されている画像内の被写体Aの像を回転させたい場合に、回転角度設定部8によって回転角度θを0°以外の所望の角度に設定する。
 回転角度θが0°以外の角度に設定されると、回転調整部62において、回転角度θに基づくシフト時間Δtだけ、座標データセットD2内の座標P(ti)と検出時刻tiとが時間方向にシフトする。これにより、画像の形成において、各輝度値S(ti)は、図7において黒丸で示されるように、実際の座標P(ti)から回転角度θだけ回転した座標P(ti+Δt)と対応付けられる。これにより、被写体Aが回転角度θだけ回転した画像が形成される。
Here, when the user wants to rotate the image of the subject A in the image displayed on the display unit 9, the rotation angle setting unit 8 sets the rotation angle θ to a desired angle other than 0 °.
When the rotation angle θ is set to an angle other than 0 °, the rotation adjustment unit 62 causes the coordinates P (ti) and the detection time ti in the coordinate data set D2 to be in the time direction by the shift time Δt based on the rotation angle θ. Shift to. Thereby, in the image formation, each luminance value S (ti) is associated with the coordinate P (ti + Δt) rotated by the rotation angle θ from the actual coordinate P (ti) as shown by a black circle in FIG. . Thereby, an image in which the subject A is rotated by the rotation angle θ is formed.
 このように、本実施形態によれば、レーザ光Lが一定の角速度ωで回転走査されているので、各座標P(ti)と対応付けられている検出時刻tiを、回転角度設定部8から受信した回転角度θの値と検出部5から受信したレーザ光Lの角速度ωの値との比に等しいシフト時間Δtだけ一律に変更するだけ(すなわち、加算の計算のみ)の簡単な演算処理によって、被写体Aの像の全体を一様に回転させた画像を形成することができる。したがって、高性能なCPUや専用ハードウェアを使用せずに、安価なハードウェア構成であっても、ライブ映像に必要な高速のフレームレートで上記の回転処理を施した画像を形成することができるという利点がある。 Thus, according to the present embodiment, since the laser beam L is rotationally scanned at a constant angular velocity ω, the detection time ti associated with each coordinate P (ti) is obtained from the rotational angle setting unit 8. By a simple calculation process that is uniformly changed only by the shift time Δt equal to the ratio between the value of the received rotation angle θ and the value of the angular velocity ω of the laser light L received from the detection unit 5 (that is, only the addition calculation). An image obtained by uniformly rotating the entire image of the subject A can be formed. Therefore, it is possible to form an image that has been subjected to the above rotation processing at a high-speed frame rate necessary for live video, without using a high-performance CPU or dedicated hardware, even with an inexpensive hardware configuration. There is an advantage.
 なお、本実施形態においては、座標データセットD2内の座標P(ti)と検出時刻tiとを時間方向にシフトさせることとしたが、これに代えて、輝度値データセットD1内の輝度値S(ti)と検出時刻tiとを時間方向にシフトさせてもよい。
 このようにしても、同様の効果を得ることができる。
In the present embodiment, the coordinate P (ti) in the coordinate data set D2 and the detection time ti are shifted in the time direction. Instead, the luminance value S in the luminance value data set D1 is used. (Ti) and detection time ti may be shifted in the time direction.
Even if it does in this way, the same effect can be acquired.
 また、本実施形態においては、光走査ユニット4がレーザ光Lをスパイラル状の走査軌跡Bに沿って走査することとしたが、これに代えて、同心円状の走査軌跡に沿って走査してもよい。走査軌跡の形状に応じてスキャナ43の構成も適宜変更することができる。例えば、圧電式のアクチュエータ45を用いたスキャナ43に代えて、フォトニック結晶を用いた光学式のスキャナを用いてもよい。 In this embodiment, the optical scanning unit 4 scans the laser light L along the spiral scanning locus B. Alternatively, the optical scanning unit 4 may scan along the concentric scanning locus. Good. The configuration of the scanner 43 can be appropriately changed according to the shape of the scanning locus. For example, instead of the scanner 43 using the piezoelectric actuator 45, an optical scanner using a photonic crystal may be used.
 また、本実施形態においては、回転角度θをユーザが設定することとしたが、これに代えて、回転角度設定部8が、画像内の被写体Aの向きを検出し、検出された向きを所定の向きに一致させるような回転角度θを自動で設定するように構成されていてもよい。 In the present embodiment, the user sets the rotation angle θ, but instead, the rotation angle setting unit 8 detects the direction of the subject A in the image and sets the detected direction to a predetermined value. It may be configured to automatically set the rotation angle θ so as to match the direction of.
 また、本実施形態においては、レーザ光Lを走査して光学画像を取得する光走査ユニット4からなる走査部を備えることとしたが、これに代えて、超音波のビームを被写体A上で走査し、被写体Aからのエコー(信号波)を検出することによって超音波画像を取得する超音波走査ユニットからなる走査部を備えることとしてもよい。
 また、本実施形態においては、内視鏡装置について説明したが、上述した画像の回転処理は、光または超音波のビームを被写体A上で回転走査して被写体Aの画像を取得する任意の観察装置に適用することができる。
 また、本実施形態においては、ユーザが手動で行う操作の少なくとも一部を制御部7によって自動で行うように構成されていてもよい。
Further, in the present embodiment, the scanning unit including the optical scanning unit 4 that scans the laser light L to acquire an optical image is provided. Instead, the ultrasonic beam is scanned on the subject A. In addition, a scanning unit including an ultrasonic scanning unit that acquires an ultrasonic image by detecting an echo (signal wave) from the subject A may be provided.
In the present embodiment, the endoscope apparatus has been described. However, the image rotation processing described above is an arbitrary observation in which an image of the subject A is acquired by rotating and scanning a light or ultrasonic beam on the subject A. It can be applied to the device.
Moreover, in this embodiment, you may be comprised so that at least one part of operation which a user performs manually may be automatically performed by the control part 7. FIG.
1 走査型観察装置
2 内視鏡
3 光源部
4 光走査ユニット(走査部)
41 波形発生部
42 D/A変換器
43 スキャナ
44 照明用光ファイバ
45 アクチュエータ
46 固定部
47 弾性部
48A,48B 圧電素子
5 検出ユニット(検出部)
51 受光部、受光用光ファイバ
52 光検出器
6 画像生成ユニット(画像生成部)
61 A/D変換器
62 回転調整部
63 画像形成部
7 制御部
8 回転角度設定部
9 表示部
10 筐体
11,12 集光レンズ
13A,13B 電気ケーブル
L レーザ光(ビーム)
L’ 反射光(信号波)
DESCRIPTION OF SYMBOLS 1 Scanning observation apparatus 2 Endoscope 3 Light source part 4 Optical scanning unit (scanning part)
41 Waveform generator 42 D / A converter 43 Scanner 44 Illumination optical fiber 45 Actuator 46 Fixing part 47 Elastic part 48A, 48B Piezoelectric element 5 Detection unit (detection part)
51 light receiving unit, light receiving optical fiber 52 photodetector 6 image generation unit (image generation unit)
61 A / D converter 62 Rotation adjustment unit 63 Image forming unit 7 Control unit 8 Rotation angle setting unit 9 Display unit 10 Housing 11 and 12 Condensing lenses 13A and 13B Electric cable L Laser light (beam)
L 'Reflected light (signal wave)

Claims (4)

  1.  被写体に照射するためのビームを一定の角速度で回転走査する走査部と、
     前記ビームの照射によって前記被写体において発生する信号波を検出する検出部と、
     該検出部によって検出された前記信号波に基づいて前記被写体の画像を生成する画像生成部と、
     該画像生成部によって生成される前記画像内の前記被写体の像の回転角度を設定する回転角度設定部とを備え、
     前記画像生成部が、前記回転角度設定部によって設定された前記回転角度および前記ビームの角速度に基づいてシフト時間を算出し、前記信号波を前記検出部による検出時刻から前記シフト時間だけシフトした時刻における前記ビームの走査軌跡上における照射位置と対応付けることによって前記画像を生成する走査型観察装置。
    A scanning unit that rotationally scans a beam for irradiating a subject at a constant angular velocity;
    A detection unit for detecting a signal wave generated in the subject by irradiation of the beam;
    An image generation unit that generates an image of the subject based on the signal wave detected by the detection unit;
    A rotation angle setting unit that sets a rotation angle of the image of the subject in the image generated by the image generation unit;
    Time when the image generation unit calculates a shift time based on the rotation angle and the angular velocity of the beam set by the rotation angle setting unit, and shifts the signal wave by the shift time from the detection time by the detection unit A scanning observation apparatus that generates the image by associating with an irradiation position on a scanning trajectory of the beam.
  2.  前記画像生成部が、回転調整部をさらに備え、前記回転角度設定部から受信した回転角度θの値と、前記検出部から受信したレーザ光の角速度ωの値とから、下式に基づいて前記シフト時間Δtを算出する請求項1に記載の走査型観察装置。
     Δt=θ/ω
    The image generation unit further includes a rotation adjustment unit, and based on the value of the rotation angle θ received from the rotation angle setting unit and the value of the angular velocity ω of the laser beam received from the detection unit, based on the following formula: The scanning observation apparatus according to claim 1, wherein the shift time Δt is calculated.
    Δt = θ / ω
  3.  前記画像生成部が、1フレーム単位で異なる前記シフト時間で画像を生成する請求項1または請求項2に記載の観察装置。 The observation apparatus according to claim 1 or 2, wherein the image generation unit generates an image at the shift time that is different for each frame.
  4.  前記走査部が、スパイラル状の走査軌跡に沿って前記ビームを回転走査する請求項1から請求項3のいずれかに記載の走査型観察装置。 4. The scanning observation apparatus according to claim 1, wherein the scanning unit rotationally scans the beam along a spiral scanning locus.
PCT/JP2015/074432 2015-08-28 2015-08-28 Scanning-type observation device WO2017037782A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/074432 WO2017037782A1 (en) 2015-08-28 2015-08-28 Scanning-type observation device
JP2017537052A JPWO2017037782A1 (en) 2015-08-28 2015-08-28 Scanning observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074432 WO2017037782A1 (en) 2015-08-28 2015-08-28 Scanning-type observation device

Publications (1)

Publication Number Publication Date
WO2017037782A1 true WO2017037782A1 (en) 2017-03-09

Family

ID=58187242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074432 WO2017037782A1 (en) 2015-08-28 2015-08-28 Scanning-type observation device

Country Status (2)

Country Link
JP (1) JPWO2017037782A1 (en)
WO (1) WO2017037782A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262921A (en) * 1997-03-24 1998-10-06 Olympus Optical Co Ltd Electronic endoscope equipment
JP2010142482A (en) * 2008-12-19 2010-07-01 Hoya Corp Optical scanning endoscope processor and optical scanning endoscope apparatus
WO2015004960A1 (en) * 2013-07-12 2015-01-15 オリンパスメディカルシステムズ株式会社 Endoscope system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757812B2 (en) * 2008-05-19 2014-06-24 University of Washington UW TechTransfer—Invention Licensing Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber
US9364167B2 (en) * 2013-03-15 2016-06-14 Lx Medical Corporation Tissue imaging and image guidance in luminal anatomic structures and body cavities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262921A (en) * 1997-03-24 1998-10-06 Olympus Optical Co Ltd Electronic endoscope equipment
JP2010142482A (en) * 2008-12-19 2010-07-01 Hoya Corp Optical scanning endoscope processor and optical scanning endoscope apparatus
WO2015004960A1 (en) * 2013-07-12 2015-01-15 オリンパスメディカルシステムズ株式会社 Endoscope system

Also Published As

Publication number Publication date
JPWO2017037782A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US9993139B2 (en) Optical scanning observation apparatus and optical scanning observation method
US9832435B2 (en) Optical scanning image forming apparatus and optical scanning image forming method
JP6086741B2 (en) Scanning observation apparatus and operation method thereof
JP2010113312A (en) Endoscope apparatus and endoscope processor
US20180064323A1 (en) Scanning endoscope and method for controlling the same
US10108002B2 (en) Optical scanning image forming apparatus and optical scanning image forming method
WO2017037781A1 (en) Scanning-type observation device
JP5865562B1 (en) Image processing apparatus for scanning endoscope
WO2017037782A1 (en) Scanning-type observation device
WO2016116963A1 (en) Optical scanning method and optical scanning device
WO2016116968A1 (en) Optical scanning device
CN107427182B (en) Scanning type observation device and image display method for scanning type observation device
WO2017163361A1 (en) Optical scanning device and scanning type endoscope
JP7333744B2 (en) Height measuring method and height measuring device
JP2012147831A (en) Scanning position correction device
WO2016116962A1 (en) Optical scanning method and optical scanning device
JP2005241321A (en) Laser scanning device, laser scanning microscope and scanning program
JP2016017990A (en) Scanning type microscope device
KR102346342B1 (en) MEMS mirror control apparatus and method for optical coherence tomography system
WO2017109814A1 (en) Light scanning observation device
WO2018127958A1 (en) Optical-scanning-type image-forming device and optical-scanning-type endoscope system
JP2011024624A (en) Image processing system for optical scanning endoscope, optical scanning endoscope processor, and optical scanning endoscope unit
JP2013048819A (en) Observation apparatus, image processing method and program
JP2016019656A (en) Optical scanning observation device
JPWO2016181452A1 (en) Endoscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902908

Country of ref document: EP

Kind code of ref document: A1