WO2017036401A1 - 一种电动工具的控制方法、装置和电动工具 - Google Patents

一种电动工具的控制方法、装置和电动工具 Download PDF

Info

Publication number
WO2017036401A1
WO2017036401A1 PCT/CN2016/097642 CN2016097642W WO2017036401A1 WO 2017036401 A1 WO2017036401 A1 WO 2017036401A1 CN 2016097642 W CN2016097642 W CN 2016097642W WO 2017036401 A1 WO2017036401 A1 WO 2017036401A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
load
speed
curve
parameter
Prior art date
Application number
PCT/CN2016/097642
Other languages
English (en)
French (fr)
Inventor
张传兵
黄文进
顾华
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610736871.9A external-priority patent/CN106487286A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2017036401A1 publication Critical patent/WO2017036401A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply

Definitions

  • the invention relates to the field of power tools, and in particular to a method, a device and a power tool for controlling a power tool.
  • a motor is an electromagnetic device that converts or transmits electrical energy according to the law of electromagnetic induction. Its main function is to generate drive torque as a power source for electric tools, electrical appliances or various machines.
  • the technical problem to be solved by the present invention is that the rotational speed of the motor in the prior art cannot be adjusted according to the change of the load.
  • an aspect of the present invention provides a control method of a power tool including a motor, an output shaft driven by the motor, and a work head driven by the output shaft, the control method including: A force applied to the workpiece by the working head is detected; and when a force applied to the workpiece by the working head is increased, the rotational speed of the motor is controlled to increase.
  • detecting a force applied by the working head on the workpiece includes: detecting a parameter for characterizing a load loaded by the motor, wherein the parameter reflects a magnitude of a load loaded by the motor, wherein As the force exerted by the working head on the workpiece increases, the load applied by the motor increases.
  • the motor includes an idle state and a load state, and when the motor is in a load state and the load loaded by the motor increases, the rotational speed of the motor is controlled to increase.
  • a method of controlling a power tool includes a motor, an output shaft driven by the motor, and a working head driven by the output shaft, the motor including an idle state and a load a state
  • the control method includes: when a motor is in a load state, detecting a parameter for characterizing a load loaded by the motor, the parameter reflecting a magnitude of a load loaded by the motor; When the loaded load increases, the rotational speed of the motor is controlled to increase.
  • One aspect of the present invention provides a control method of a power tool including a motor, an output shaft driven by the motor, and a work head driven by the output shaft, the load loaded by the motor including at least No load, a first load and a second load, the no load being less than the first load, the first load being less than the second load, the control method comprising: detecting for characterizing loading of the motor a parameter of the load, the parameter reflects the magnitude of the load loaded by the motor; and when the load loaded by the motor is switched from the first load to the second load, controlling the rotation speed of the motor to increase Big.
  • the load loaded by the motor is the first load, controlling the motor to be at the first negative Loading speed; when the load loaded by the motor is the second load, controlling the motor to be at a second load speed; the first load speed is lower than the second load speed; when the motor is loaded When the load is switched from the first load to the second load, the rotation speed of the motor is controlled to be switched from the first load rotation speed to the second load rotation speed.
  • the rotation speed of the motor is controlled to decrease; when the motor is switched from the idle state to the load state, the rotation speed of the motor is controlled to increase.
  • the rotational speed of the motor is controlled to decrease or remain unchanged.
  • detecting a parameter for characterizing a load loaded by the motor includes: detecting an operating parameter of the motor; determining a location at which the operating parameter is located a parameter interval, wherein different parameter intervals correspond to different sizes of loads; determining a load size of the motor according to the determined parameter interval.
  • detecting a parameter for characterizing a load loaded by the motor, and reflecting, by the parameter, a magnitude of a load loaded by the motor includes: detecting a first operating parameter and a second operating parameter of the motor, Determining that the first operating parameter and the second operating parameter are different parameters; determining a coordinate position of the coordinate corresponding to the first operating parameter and the second operating parameter in a preset coordinate system, wherein the preset coordinate system is operated in a first manner The parameter and the second operating parameter respectively serve as coordinate axes; determining a magnitude of a load loaded by the motor by a positional relationship between the coordinate position and a load identification curve, the load identification curve being the first reaction on the preset coordinate system A curve of the correspondence between the operating parameters and the second operating parameter and the magnitude of the load loaded by the motor.
  • the load identification curve includes a plurality of gear position curves, and the load magnitude of the motor corresponding to the different gear position curves is different, and the gear position curve is determined according to the first operating parameter and the second operating parameter.
  • the obtained relationship curve is used as the gear position curve, or the obtained relationship curve is corrected to obtain the gear position curve.
  • the step of determining the magnitude of the load loaded by the motor by the positional relationship between the coordinate position and the load identification curve includes: determining a gear position curve closest to the coordinate position; according to the closest gear The correspondence between the bit curve and the load loaded by the motor determines the magnitude of the load loaded by the motor.
  • the step of determining a gear position curve closest to the coordinate position includes: determining a shortest distance between the coordinate position and each of the plurality of gear positions; determining a gear curve having a minimum shortest distance It is the gear curve closest to the coordinate position.
  • the step of determining a gear position curve closest to the coordinate position includes: predetermining a center line between each adjacent two gear position curves of the plurality of gear position curves; determining the coordinate position and a relative position of the center line; if the coordinate position is on a first predetermined side of the center line, determining a gear position curve that is located on a first predetermined side of the center line and closest to the center line a gear curve curve closest to the coordinate position; if the coordinate position is on a second predetermined side of the center line, then a second predetermined side of the center line will be located And the gear curve closest to the center line is determined as the gear curve closest to the coordinate position.
  • the load identification curve is a continuous matching curve, and the load corresponding to the different points on the matching curve is different in load, and the matching curve is based on the first operating parameter and the second operating parameter. Obtaining a relationship between the relationship between the first operating parameter and the second operating parameter, where the third operating parameter takes a different value, the third operating parameter and the Both the first operational parameter and the second operational parameter are different.
  • the step of determining the magnitude of the load loaded by the motor by the positional relationship between the coordinate position and the load identification curve includes: determining an offset direction of the coordinate position with respect to the matching curve; when the coordinate position Determining an increase in load loaded by the motor when the matching curve is biased toward the first predetermined direction; determining a load loaded by the motor when the coordinate position is biased toward the second predetermined direction with respect to the matching curve Reduced.
  • the step of controlling the increase of the rotational speed of the motor includes: adjusting the position when the coordinate position is biased toward the first predetermined direction with respect to the matching curve The first operating parameter or the second operating parameter of the motor is determined until the adjusted first operating parameter and the coordinate position corresponding to the second operating parameter are located on the matching curve.
  • control method further includes the step of: adjusting the first operating parameter or the second operating parameter of the motor when the coordinate position is biased toward the second preset direction relative to the matching curve until after adjustment The coordinate positions corresponding to the first operating parameter and the second operating parameter are located on the matching curve.
  • the first operating parameter is a rotating speed
  • the combination between the second operating parameter and the third operating parameter includes one of: a duty ratio and a current, a conduction angle and a current, a voltage and a current, Power and voltage, torque and duty cycle, torque and dry angle, torque and voltage, duty cycle and power, dry angle and power.
  • a control device for a power tool including a motor, an output shaft driven by the motor, and a working head driven by the output shaft, the control device comprising: a first detection And a unit for detecting a force applied by the working head on the workpiece; and a first control unit configured to control an increase in the rotational speed of the motor when a force applied by the working head to the workpiece increases.
  • a control device for a power tool including a motor, an output shaft driven by the motor, and a working head driven by the output shaft, the motor including an idle state and a load a state
  • the control device includes: a second detecting unit, configured to detect a parameter for characterizing a load loaded by the motor when the motor is in a load state, where the parameter reflects a load loaded by the motor
  • the second control unit is configured to control an increase in the rotational speed of the motor when the load loaded by the motor increases.
  • a control device for a power tool including a motor, an output shaft driven by the motor, and a working head driven by the output shaft, the load loaded by the motor including at least The idling, the first load and the second load, the idling being less than the first load, the first load being less than the second load, the control device comprising: a third detecting unit, configured to detect Determining a parameter of a load loaded by the motor, the parameter reflecting a magnitude of a load loaded by the motor; and a third control unit configured to switch the load loaded by the motor from the first load to At the second load, the rotational speed of the motor is controlled to increase.
  • a power tool comprising: the electric tool comprising a motor, an output shaft driven by the motor, and a working head driven by the output shaft, further comprising the control device for Control The rotational speed of the motor.
  • a gear adjustment knob is further included for selecting an adjustment mode of the motor speed, the adjustment mode including a manual adjustment mode and an automatic adjustment mode.
  • the power tool is provided with N manual gear positions and an automatic adjustment area corresponding to the gear position adjusting button, wherein when the gear position adjusting button is adjusted to the N pieces of manual gear positions, In any manual gear zone, the control device adjusts the rotational speed of the motor to a rotational speed corresponding to the manual gear zone; when the gear adjuster is adjusted to the automatic adjustment zone, the control The apparatus performs the control method described to control the rotational speed of the motor.
  • a method for controlling a speed of a power tool includes: obtaining a current operating parameter of the power tool; determining a target speed of the power tool according to the current working parameter; acquiring a current speed of the power tool; and calculating a target speed and Deviation of the current rotational speed; generating a corresponding control signal according to the deviation, and transmitting the control signal to the motor of the power tool to control the power tool to adjust to the target rotational speed.
  • the current working parameter includes a current working current or a current working voltage.
  • One aspect of the present invention provides a speed controller of a power tool, including: an operating parameter acquisition module for detecting a current operating parameter of the power tool; and a target speed determining module for determining the power tool based on the current operating parameter a target speed; a current speed acquisition module for measuring a current speed of the power tool; a calculation module for calculating a deviation between the target speed and the current speed; and an adjustment module configured to generate a corresponding control signal according to the deviation, and The control signal is sent to the motor of the power tool to control the power tool to adjust to the target speed.
  • the current working parameter includes a current working current or a current working voltage.
  • One aspect of the present invention provides a power tool including a detection circuit, a sensor, a motor, and a speed controller of the power tool, wherein the detection circuit and the sensor respectively control speed control of the power tool Connected to, the speed controller of the power tool is connected to the motor; the detecting circuit detects a current operating parameter of the power tool, and sends the current operating parameter to a speed controller of the power tool; The sensor detects the current rotational speed of the power tool and sends the current rotational speed to the speed controller of the power tool; the motor adjusts the rotational speed to the target rotational speed according to the control signal.
  • the senor is any one of a Hall rotation speed sensor, a capacitance type rotation speed sensor, a variable reluctance type rotation speed sensor, and a photoelectric rotation speed sensor.
  • a motor speed control method for a power tool comprising the steps of: detecting at least two parameters representative of a power tool load of the motor; obtaining a product of the at least two parameters; A control signal is generated to vary the rotational speed of the motor.
  • the parameter is one of a voltage rms value, a current RMS value, a voltage peak value, a current peak value, a rotation speed, and a thyristor conduction angle of the motor.
  • control signal is generated instantaneously or delayed for a predetermined time.
  • control signal is used to increase or decrease the rotational speed of the motor.
  • step of generating a control signal according to the product to change a rotation speed of the motor further comprising: determining whether the product is located in a preset range; and the product is located in the preset range, The speed of the motor is adjusted to the corresponding preset standard value.
  • the step of generating a control signal according to the product to change a rotation speed of the motor further comprising: acquiring an average value of the product in a unit time; determining whether the average value is in a preset range; The average value is located in the preset range, and the rotation speed of the motor is adjusted to a corresponding preset standard value.
  • the step of generating a control signal according to the product to change the rotational speed of the motor further comprises: obtaining a sum of average values of the products of the multi-segment unit time and re-averaging; determining the re-requested Whether the average value is in a preset range; and the average value of the re-evaluation is located in the preset range, the rotation speed of the motor is adjusted to a corresponding preset standard value.
  • the preset range includes a first, a second, and a third preset range, where the first preset range corresponds to an idle speed, and the second preset range corresponds to a level I load speed, where the The three preset ranges correspond to the class II loading speed, and the class II loading speed is greater than the class I loading speed.
  • the step of generating a control signal according to the product to change a rotational speed of the motor further comprises: multiplying the product, the product of the product in an average value per unit time or a multi-segment unit time Comparing the average value and the re-evaluated average value with a preset value, the preset value includes first, second, and third preset values, wherein the product, the average value of the product, or the multi-segment unit time
  • the rotation speed is adjusted to the first rotation speed
  • the second preset value is greater than or equal to the second preset speed
  • the second rotation speed is adjusted to be the second rotation speed
  • the second rotation speed is greater than the first rotation speed.
  • the rotational speed is adjusted to a third rotational speed
  • the third rotational speed is between the first and second rotational speeds.
  • a power tool includes: a motor for outputting a rotational motion to drive a working head; a detecting module for detecting a parameter indicating a load when the motor operates; and a control module for Taking: obtaining a product of the at least two parameters, and generating a control signal according to the product to change the rotational speed of the motor.
  • control module is configured to: determine whether the product is located in a preset range; if the product is in the preset range, adjust a rotation speed of the motor to a corresponding preset value; or Obtaining an average value of the product in a unit time; determining whether the average value is in a preset range; and if the average value is in the preset range, adjusting a rotation speed of the motor to a corresponding preset value; or Obtaining a sum of average values of the products of the multi-segment unit time, and re-averaging; determining whether the average value of the re-request is located in a preset range; and the average value of the re-evaluation is located in the preset range, The speed of the motor is adjusted to the corresponding preset value.
  • the change of the rotational speed of the motor is controlled by detecting the change of the force exerted on the workpiece by the working head, wherein when the detected force is increased, the rotational speed of the control motor is increased, thereby achieving the requirement according to the user.
  • the purpose of load changes to adjust the motor speed.
  • FIG. 1 is a flow chart showing a specific example of a method of controlling a power tool in an embodiment of the present invention
  • FIG. 2 is a flow chart showing a specific example of a control method of another electric power tool according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a specific example of a method for controlling another power tool according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a load identification curve according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another load identification curve according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a specific example of a control device for a power tool according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a specific example of a control device of another electric power tool according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a specific example of a control device for still another power tool according to an embodiment of the present invention.
  • Figure 9 is a side elevational view of the power tool of one embodiment
  • Figure 10 is a plan view of the power tool shown in Figure 9;
  • Figure 11 is a schematic view of the gear position adjustment button of the power tool shown in Figure 9;
  • FIG. 12 is a flow chart of a speed control method of a power tool according to an embodiment
  • FIG. 13 is a flow chart of a speed control method of a power tool according to another embodiment
  • FIG. 14 is a schematic diagram of functional modules of a speed controller of a power tool according to an embodiment
  • 15 is a schematic diagram of functional modules of a speed controller of a power tool according to another embodiment
  • Figure 16 is a schematic view showing the structure of a power tool of an embodiment.
  • 17 is a flow chart of a method for controlling a motor speed of a power tool
  • Figure 18 is a block diagram of a power tool of an embodiment in a manual mode
  • Figure 19 is a block diagram of the power tool of an embodiment in an automatic mode
  • Figure 20 is a flow chart showing a method of controlling the motor speed of the power tool of an application case.
  • the present embodiment provides a control method of a power tool, wherein the power tool includes a motor, an output shaft driven by the motor, and a work head driven by the output shaft.
  • the electric tool according to the embodiment of the invention may be an electric tool such as an electric drill, a screwdriver, an oscillating machine, an angle grinder, a grass cutter, a brush cutter, etc., the motor drives the output shaft to rotate while the output shaft drives the working head to work.
  • control method includes:
  • Step S101 detecting a force applied by the working head on the workpiece.
  • step S102 when the force applied to the workpiece by the working head is increased, the rotation speed of the control motor is increased.
  • a workpiece is an object to be processed, which may be a natural object or a non-natural object. Natural objects such as grass, branches, etc.; non-natural objects such as wood boards, iron plates, etc.
  • the force exerted by the working head on the workpiece may be the pressure of the working head to the workpiece, for example, the pressure of the electric drill on the object to be drilled, the pressure of the screwdriver to the screw, etc.; the force may also be other forces. Specifically, the force can be applied by the power tool operator. For example, when the user uses the screwdriver, the force exerted on the workpiece by the working head can be changed by pressing or lifting.
  • the force exerted by the working head on the workpiece may be the reaction force of the pressure on the swing arm or the pendulum of the oscillating machine; if the power tool is an angle grinder, the working head is applied to the workpiece The force may be the reaction force of the workpiece against the pressure of the runner; if the power tool is a grass cutter or a brush cutter, the force exerted by the working head on the workpiece may be a reaction force of vegetation such as grass on the resistance of the cutter head.
  • the rotational speed of the control motor is increased.
  • the force exerted by the working head on the workpiece is equal to the force exerted by the workpiece on the working head, and when the force exerted on the workpiece by the working head is increased, the force exerted on the working head by the workpiece is correspondingly increased.
  • the load applied to the working head is increased, and in the case of a large load, the use of the large rotating speed can improve the working efficiency of the power tool.
  • the load increase can be an increase from no load to load, or an increase from small load to large load. It should be noted here that the no-load can be a state in which the power tool is not loaded, or a state in which the power tool is added with a very small load.
  • the change of the rotational speed of the motor is controlled by detecting the change of the force exerted on the workpiece by the working head, wherein when the detected force is increased, the rotational speed of the control motor is increased, thereby achieving the requirement according to the user. And / or load changes to adjust the motor speed. Specifically, when the force applied by the user to the workpiece through the working head is constant, and the working condition of the working head is changed such that the load is increased, the reaction force of the workpiece received by the working head is increased, and accordingly, the power tool is detected. The force applied to the workpiece by the working head increases, and at this time, increasing the rotational speed of the motor means adjusting the motor speed according to the load change.
  • the power tool detects that the force exerted by the working head on the workpiece increases, and at this time, the rotation speed of the motor is adjusted according to the user's demand. Motor speed. Further, when the force applied by the user's working head to the workpiece increases and the working condition of the working head changes so that the load increases, the power tool also detects an increase in the force exerted by the working head on the workpiece, and increases at this time.
  • the motor speed is the motor speed based on user demand and load changes.
  • the force applied to the workpiece by the working head can be measured in various ways, for example, by directly detecting the reaction force of the force by a sensor disposed on the working head, or at the tail of the working head.
  • the sensor detects the force transmitted from the working head, or is disposed on the power tool for the operator to hold, and detects the pressure of the operator's hand in the same direction of the force.
  • detecting a force applied by the working head on the workpiece includes: detecting a parameter for characterizing a load loaded by the motor, and reflecting a magnitude of a load loaded by the motor by the parameter, wherein when the working head applies As the force on the workpiece increases, the load applied by the motor increases.
  • the motor speed is adjusted according to the user demand and/or the load change, and the essence thereof is The motor speed is adjusted according to the load change.
  • the force applied to the workpiece is larger, indicating that the load applied by the motor is larger, in this embodiment, the force applied to the workpiece is detected by detecting a parameter for the load loaded by the motor, thereby controlling the rotational speed of the motor, thereby Match the load of the motor to its speed.
  • the above parameters can be the operating parameters of the motor, according to which the size of the load can be reflected.
  • the motor includes an idle state and a load state, and when the motor is in a load state and the load loaded by the motor increases, the rotational speed of the control motor increases.
  • the load state of the motor can include multiple levels of load, that is, the load loaded by the motor is divided, divided into multiple levels according to the load size, and the speed of the motor is controlled in a stepwise or stepless manner, and the control strategy is satisfied.
  • the load increases, the motor speed increases.
  • An embodiment of the present invention further provides a control method of a power tool, wherein the power tool includes a motor, an output shaft driven by the motor, and a working head driven by the output shaft, and the power tool is controlled by the power tool of the above embodiment.
  • the power tools in the method may be the same or different.
  • the motor includes a no-load state and a load state, as shown in FIG. 2, the control method includes:
  • step S201 when the motor is in the load state, the parameter for characterizing the load loaded by the motor is detected, and the parameter reflects the magnitude of the load loaded by the motor.
  • step S202 when the load loaded by the motor increases, the rotation speed of the control motor increases.
  • the load state of the motor may include a multi-level load divided according to the load size, and the load of each level corresponds to a certain range or a certain value of a parameter for characterizing the load loaded by the motor.
  • the parameter for characterizing the load loaded by the motor is detected in real time. If the detected parameter reflects the increase of the load loaded by the motor, the rotational speed of the control motor is increased, and the specific control mode may be stepped or stepless.
  • the embodiment is not unduly limited.
  • the speed adjustment of the motor under the load state is realized by detecting the parameter for characterizing the load loaded by the motor, so that the speed of the motor increases with the increase of the load loaded by the motor under the load state. Large, rather than maintaining the same speed, makes the power tool work more efficiently and more in line with the operator's work needs.
  • An embodiment of the present invention further provides a control method of a power tool, wherein the power tool includes a motor, an output shaft driven by the motor, and a working head driven by the output shaft, and the power tool is controlled by the power tool of the above embodiment.
  • the power tools in the method may be the same or different.
  • the load loaded by the motor includes at least a no load, a first load, and a second load, the no load is less than the first load, and the first load is less than the second load.
  • the control method includes:
  • Step S301 detecting parameters for characterizing the load loaded by the motor, and reflecting the magnitude of the load loaded by the motor by the parameter V
  • Step S302 when the load loaded by the motor is switched from the first load to the second load, the rotation speed of the control motor is increased.
  • the load state of the motor may include a multi-level load (such as a first load and a second load), and each level of load corresponds to a certain range or a certain value of a parameter for characterizing the load loaded by the motor.
  • the parameter for characterizing the load loaded by the motor is detected in real time. If the detected parameter reflects that the motor is switched from the first load to the second load (that is, the load is increased), the rotational speed of the control motor is increased, and the specific The control mode may be hierarchical or stepless, and the embodiment is not unduly limited.
  • the speed adjustment of the motor in the load state is achieved by detecting parameters for characterizing the load loaded by the motor.
  • the control motor when the load loaded by the motor is the first load, the control motor is at the first load speed; when the load loaded by the motor is the second load , the control motor is at the second load speed.
  • first load herein may refer to a specific load size, or may refer to a range of loads, and the second load is similar, and will not be described again.
  • the corresponding speeds of the motors are different, wherein the first load speed is lower than the second load speed, that is, multiple gear positions are set to control the motor under different load conditions. Speed.
  • the rotation speed of the control motor is switched from the first load speed to the second load speed. That is, when the load changes (increases), the rotation speed of the control motor changes accordingly (increases).
  • the rotational speed of the motor when the detected force is reduced, that is, when the load is reduced, the rotational speed of the motor can be controlled to decrease or remain unchanged.
  • an alternative embodiment of the embodiment is that when the motor is switched from the load state to the no-load state, the rotational speed of the control motor is reduced.
  • the energy saving effect is achieved by reducing the rotational speed of the motor.
  • the rotational speed of the control motor is increased.
  • the rotational speed of the control motor is increased. Therefore, in the no-load state, the rotational speed of the motor enters a low speed to achieve energy saving.
  • the motor speed is increased correspondingly, instead of being maintained at the same speed, making the power tool work more efficiently and more in line with the operator's work requirements.
  • the parameter for characterizing the load loaded by the motor is detected, and the step of reflecting the magnitude of the load loaded by the motor by the parameter includes: detecting the operation of the motor Parameter; determining a parameter interval in which the operating parameter is located, wherein different parameter intervals correspond to different sizes of loads; determining a load size of the motor according to the determined parameter interval.
  • the operating parameter in this embodiment may refer to an operating parameter that reflects the magnitude of the load of the motor during operation of the motor, such as a single parameter such as current, torque, etc., and may also reflect, for example, the speed and duty cycle, the speed and voltage, etc.
  • the combination of parameters can be measured experimentally, and the electricity is detected. After the operating parameters of the machine, determine the parameter interval in which the parameter is located, and the load size corresponding to the parameter interval is taken as the load size loaded by the current motor.
  • the present embodiment utilizes the characteristics of the current variation of the motor, and sets different current intervals to determine the magnitude of the current, thereby achieving the purpose of determining the magnitude of the load.
  • the first interval, the second interval, and the third interval sequentially represent current ranges corresponding to large loads, small loads, and no-load.
  • the load of the motor is The large load adjusts the speed of the motor to the speed corresponding to the first load gear; if the current is detected in the second interval, it indicates that the load of the motor is a small load, and the speed of the motor is adjusted to the speed corresponding to the second load gear; If the detected current is in the third interval, it means that the motor is in no-load, and the speed of the motor is adjusted to the corresponding speed of the third load position.
  • the rotational speed of the motor is adjusted to the rotational speed corresponding to the interval after the change based on the rotational speed before the change. For example, if it is detected that the current changes from the second interval to the first interval, it indicates that the motor is switched from a small load to a large load, and at this time, the rotational speed of the motor is adjusted from the rotational speed corresponding to the second load gear to the first load gear.
  • the rotational speed that is, the increase of the rotational speed; if the detected current changes from the first interval to the second interval, it means that the motor is switched from a large load to a small load, and at this time, the rotational speed of the motor is adjusted from the rotational speed corresponding to the first load to The rotation speed corresponding to the second load is also the speed reduction; the other adjustment methods are the same, and will not be described again.
  • the current interval of the embodiment can also be divided into more, so that multiple different levels of speed adjustment can be performed for different sizes of loads.
  • detecting a parameter for characterizing a load loaded by the motor, and the step of reflecting the magnitude of the load loaded by the motor by the parameter includes: detecting the motor An operation parameter and a second operation parameter, the first operation parameter and the second operation parameter are different parameters; determining a coordinate position of the coordinate corresponding to the first operation parameter and the second operation parameter in a preset coordinate system, and a preset coordinate system
  • the first running parameter and the second running parameter are respectively used as the coordinate axes; the position of the load is determined by the positional relationship between the coordinate position and the load identification curve, and the load identification curve is the first operating parameter in the preset coordinate system.
  • a curve of the correspondence between the second operating parameter and the magnitude of the load loaded by the motor includes: detecting the motor An operation parameter and a second operation parameter, the first operation parameter and the second operation parameter are different parameters; determining a coordinate position of the coordinate corresponding to the first operation parameter and the second operation parameter in a preset coordinate system, and a preset coordinate system
  • the combination of the first operating parameter and the second operating parameter is used to determine the size of the load.
  • the first running parameter and the second operating parameter are respectively used as the load identification curve on the preset coordinate system of the coordinate axis.
  • the reference is used to determine the load size by the positional relationship between the coordinate position of the first detected operating parameter and the second running parameter in the preset coordinate system and the load identification curve, wherein the load identification curve may be pre-tested The curve of the data calibration.
  • the load identification curve includes a plurality of gear position curves, and the load magnitude of the motor corresponding to the different gear position curves is different.
  • the multiple gear curves include 2, 3, or more than 3 gear profiles.
  • Each gear curve is obtained according to a relationship curve between the first operating parameter and the second operating parameter, and the relationship curve is a relationship between the first operating parameter and the second operating parameter when the third operating parameter takes a specific value.
  • the third operating parameter is different from the first operating parameter and the second operating parameter, and multiple relationship curves are obtained when the third operating parameter takes different values.
  • the plurality of gear curves are a plurality of curves obtained by a relationship curve between the first operating parameter and the second operating parameter in a case where the third operating parameter takes different values, and for each relationship curve, the third operating parameter corresponds to one Specific value. That is, in this embodiment, the stepwise variable speed of the motor can be realized by a plurality of curves drawn in advance, wherein each curve can correspond to one gear position.
  • the second operating parameter may be the horizontal axis
  • the first operating parameter is the vertical axis to draw the curve on the two-dimensional coordinate system
  • the load of the motor and the second operating parameter are changed, the working characteristics and parameters of the motor are tested, and the points are drawn point by point.
  • the third running parameter is the first preset value
  • the coordinates of the first running parameter and the second running parameter are connected into a curve.
  • the same method draws a curve in which the third operating parameter is the second preset value, the third preset value, and so on.
  • the drawn curve can be directly used as the gear position curve, or the obtained relationship curve can be corrected to obtain the gear position curve, for example, the above-mentioned drawn curve is offset to reduce the mutual interference between the parameters. The impact of this improves the accuracy of load identification.
  • the first operating parameter is the rotational speed
  • the second operational parameter is the duty cycle or the dry angle
  • the third operating parameter is The current is taken as an example.
  • the currents of 1A, 2A and 3A are taken as an example.
  • the specific process is as follows:
  • the two-dimensional coordinate system is drawn with the duty ratio or the dry angle as the horizontal axis and the rotational speed as the vertical axis.
  • a current value A of 10000 rpm, a current value B of 14000 rpm, a current value C of 18500 rpm, and a current value D at the N rotation speed are recorded.
  • the difference between the current value B and the current value A is compared as the offset to the 1A curve at 14000 rpm.
  • the difference between the current value C and the current value A is compared as the offset to the 1A curve at 18500 rpm.
  • the difference between the current value D and the current value A is compared as the offset to the 1A curve at the N speed.
  • the 1A curve is shifted according to the offset at the above different rotational speeds to obtain a 1A+ curve.
  • the 2A and 3A curves are respectively shifted to obtain 2A+ and 3A+ curves.
  • the 1A+ curve corresponds to the low speed gear
  • the 2A+ curve corresponds to the medium speed gear
  • the 3A+ curve serves as the high speed gear.
  • the 1A curve can be directly corresponding to the low speed gear position
  • the 2A curve corresponds to the medium speed gear position
  • the 3A curve is used as the high speed gear position.
  • the motor detects the duty cycle/dry angle and the speed in real time, and judges which coordinate and which curve is the closest, so as the current working gear position, and stabilizes to the corresponding speed.
  • Determining the size of the load includes: determining a gear position curve closest to the coordinate position; according to the closest gear curve and The correspondence of the loads loaded by the motor determines the magnitude of the load loaded by the motor.
  • the step of determining a gear position curve closest to the coordinate position comprises: determining a shortest distance between the coordinate position and each gear curve in the plurality of gear positions; determining that the shortest distance minimum gear curve is closest to the coordinate position Gear curve.
  • each of the plurality of gear position curves corresponds to one motor gear position, that is, corresponds to one motor speed (or the speed range), and the first operating parameter and the second operating parameter are detected during the working of the motor.
  • Determine The corresponding coordinate position determines the shortest distance between the coordinate position and the plurality of gear positions, and the gear corresponding to the curve with the shortest distance is the current gear position of the motor, that is, the curve of the distance coordinate position is taken as The current gear position of the motor, then adjust the motor to the speed corresponding to the gear curve.
  • each gear position can correspond to a fixed rotation speed, that is, if the current gear position is determined, the rotation speed of the motor is adjusted to a fixed rotation speed corresponding to the gear position.
  • each gear can also correspond to a speed range, and the speed can be adjusted by adjusting parameters such as duty ratio, dry angle, current, etc. to a set value.
  • the step of determining a gear position curve closest to the coordinate position comprises: predetermining a center line between each adjacent two gear position curves of the plurality of gear position curves; determining a relative position of the coordinate position and the center line If the coordinate position is on the first preset side of the center line, the gear position curve closest to the center line on the first predetermined side of the center line is determined as the gear curve closest to the coordinate position; if the coordinate position is The second predetermined side of the center line determines the gear curve curve located closest to the center line on the second predetermined side of the center line as the closest gear position to the coordinate position. That is, between each adjacent two gear position curves, a reference line (ie, a center line) for judging the coordinate position is drawn, and the center line is used to determine the gear position curve closest to the coordinate position.
  • a reference line ie, a center line
  • the coordinate position determined according to the first operating parameter and the second operating parameter may also occur as the working condition and/or the force applied by the operator to the workpiece through the working head changes. Variety.
  • the change of the coordinate position causes the closest gear curve to change, it indicates that the load loaded by the motor has changed.
  • the speed of the motor is adjusted from the speed corresponding to the gear curve before the change to the changed speed.
  • the speed corresponding to the gear curve is used to adjust the speed of the motor under load. For example, if it is detected that the gear position closest to the coordinate position changes from 2A+ curve to 3A+ curve, it means that the motor is changed from small load to large load.
  • the motor speed is adjusted from the medium speed corresponding to the 2A+ curve to the 3A+ curve.
  • the high speed that is, the increase of the speed; if it is detected that the gear position closest to the coordinate position changes from 3A+ curve to 2A+ curve, it means that the motor is changed from a large load to a small load, and the motor speed is corresponding to the 3A+ curve.
  • the high speed is adjusted to the medium speed corresponding to the 2A+ curve, that is, the speed is reduced; the other adjustment methods are the same, and will not be described again.
  • the load identification curve is a continuous matching curve, and the load corresponding to the different points on the matching curve is different, and the matching curve is according to the Obtaining a relationship curve between an operating parameter and a second operating parameter, wherein the relationship curve is a relationship between the first operating parameter and the second operating parameter when the third operating parameter takes different values, and the third operating parameter and the third Both an operating parameter and a second operating parameter are different. That is to say, the motor speed control is realized by a matching curve, thereby realizing the stepless variable speed of the motor.
  • the matching curve obtained by the relationship between the rotational speed of the motor and the duty ratio under a plurality of different torques is used as the rotational speed adjustment curve. Specifically, multiple differences are first drawn. The relationship between the speed of the motor and the duty cycle under the torque, and then the maximum torque required for the motor is matched with the maximum speed, and the minimum torque is matched with the minimum speed to be connected to the matching curve. It should be noted that the maximum torque, minimum torque, and maximum speed and minimum speed described herein refer to the boundary point between the required speed and torque when applying the motor to the power tool, rather than the speed of the motor itself. The boundary point with the torsion.
  • the maximum speed required to add the motor is 18500 rpm, and the minimum speed is 1000 rpm. Then the highest point of the final matching curve is 0.15 Nm.
  • the motor speed and duty cycle/dry angle are under the torque.
  • the corresponding curve is at the point where the rotational speed is 18500 rpm, and the lowest point is 0.05 Nm.
  • the torque corresponding to the motor speed and the duty ratio/conduction angle is at the point of the rotational speed of 1000 rpm.
  • the step of determining the magnitude of the load loaded by the motor by the positional relationship between the coordinate position and the load identification curve includes: determining an offset direction of the coordinate position relative to the matching curve; and when the coordinate position relative matching curve is biased toward the first preset direction It is determined that the load loaded by the motor increases; when the coordinate position relative matching curve is biased to the second preset direction, it is determined that the load loaded by the motor is reduced.
  • the first preset direction and the second preset direction may respectively refer to below or above the curve, as shown in FIG. 5, when the coordinates are above the curve, the load is decreased; otherwise, the load is increased.
  • the speed control when the coordinate position relative to the matching curve is biased toward the first preset direction, the first operating parameter or the second operating parameter of the motor is adjusted until the adjusted first operating parameter and the second operating parameter correspond to The coordinate position is located on the matching curve; when the coordinate position relative to the matching curve is biased to the second preset direction, the first operating parameter or the second operating parameter of the motor is adjusted until the adjusted first operating parameter and the second operating parameter correspond to The coordinate position is on the matching curve. That is, by adjusting the first operating parameter or the second operating parameter, the coordinate position is located on the matching curve.
  • the first operating parameter is a rotating speed
  • the combination between the second operating parameter and the third operating parameter includes one of the following: a duty ratio and a current, Dry angle and current, voltage and current, power and voltage, torque and duty cycle, torque and conduction angle, torque and voltage, duty cycle and power, dry angle and power.
  • the power of this embodiment may be the input power of the motor or the output power.
  • An embodiment of the present invention further provides a control device for a power tool, wherein the power tool includes a motor, an output shaft driven by the motor, and a working head driven by the output shaft, and the control device can be used to perform the above-mentioned FIG.
  • the control method is used to control the speed of the motor of the power tool.
  • the electric tool may be an electric tool such as an electric drill, a screwdriver, an oscillating machine, an angle grinder, a grass cutter, a brush cutter, etc., the motor drives the output shaft to rotate while the output shaft drives the working head to work.
  • the control device includes a first detecting unit 601 and a first control unit 602.
  • the first detecting unit 601 is for detecting a force applied by the working head on the workpiece.
  • the first control unit 602 is configured to control the increase in the rotational speed of the motor when the force exerted by the working head on the workpiece increases.
  • a workpiece is an object to be processed, which may be a natural object or a non-natural object. Natural objects such as grass, branches, etc.; non-natural objects such as wood boards, iron plates, etc.
  • the force exerted by the working head on the workpiece may be the pressure of the working head to the workpiece, for example, the pressure of the electric drill on the object to be drilled, the pressure of the screwdriver to the screw, etc.; the force may also be other forces. Specifically, the force can be applied by the power tool operator. For example, when the user uses the screwdriver, the force exerted on the workpiece by the working head can be changed by pressing or lifting.
  • the force exerted by the working head on the workpiece may be the reaction force of the pressure on the swing arm or the pendulum of the oscillating machine; if the power tool is an angle grinder, the working head is applied to the workpiece The force may be the reaction force of the workpiece against the pressure of the runner; if the power tool is a grass cutter or a brush cutter, the force exerted by the working head on the workpiece may be a reaction force of vegetation such as grass on the resistance of the cutter head.
  • the rotational speed of the control motor when it is detected that the force applied to the workpiece by the working head is increased, the rotational speed of the control motor is increased.
  • the force exerted by the working head on the workpiece is equal to the force exerted by the workpiece on the working head, and when the force exerted on the workpiece by the working head is increased, the force exerted on the working head by the workpiece is correspondingly increased.
  • the loaded load is increased, and in the case of a large load, the use of a large rotational speed can improve the working efficiency of the power tool.
  • the load increase can be an increase from no load to load, or an increase from small load to large load. It should be noted here that the no-load can be a state in which the power tool is not loaded, or a state in which the power tool is added with a very small load.
  • the change of the rotational speed of the motor is controlled by detecting the change of the force exerted on the workpiece by the working head, wherein when the detected force is increased, the rotational speed of the control motor is increased, thereby achieving the requirement according to the user. And / or load changes to adjust the motor speed. Specifically, when the force applied by the user to the workpiece through the working head is constant, and the working condition of the working head is changed such that the load is increased, the reaction force of the workpiece received by the working head is increased, and accordingly, the power tool is detected. The force applied to the workpiece by the working head increases, and at this time, increasing the rotational speed of the motor means adjusting the motor speed according to the load change.
  • the power tool detects that the force exerted by the working head on the workpiece increases, and at this time, the rotation speed of the motor is adjusted according to the user's demand. Motor speed. Further, when the force applied by the user's working head to the workpiece increases and the working condition of the working head changes so that the load increases, the power tool also detects an increase in the force exerted by the working head on the workpiece, and increases at this time.
  • the motor speed is the motor speed based on user demand and load changes.
  • the present invention also provides a control device for a power tool, wherein the power tool includes a motor, an output shaft driven by the motor, and a working head driven by the output shaft, and the control device can be used to perform the control shown in FIG. 2 above.
  • the method is to control the rotational speed of the motor of the electric tool, and the motor includes an idle state and a load state.
  • the control device includes:
  • the second detecting unit 701 is configured to detect a parameter for characterizing a load loaded by the motor when the motor is in a load state, and reflect a magnitude of a load loaded by the motor by the parameter;
  • the second control unit 702 is configured to increase the rotational speed of the motor when the load loaded by the motor increases.
  • the load state of the motor may include a multi-level load divided according to the load size, and the load of each level corresponds to a certain range or a certain value of a parameter for characterizing the load loaded by the motor.
  • the parameter for characterizing the load loaded by the motor is detected in real time. If the detected parameter reflects the increase of the load loaded by the motor, the rotational speed of the control motor is increased, and the specific control mode may be stepped or stepless.
  • the embodiment is not unduly limited.
  • the speed adjustment of the motor under the load state is realized by detecting the parameter for characterizing the load loaded by the motor, so that the speed of the motor increases with the increase of the load loaded by the motor under the load state. Large, rather than maintaining the same speed, makes the power tool work more efficiently and more in line with the operator's work needs.
  • the present invention also provides a control device for a power tool, wherein the power tool includes a motor, an output shaft driven by the motor, and a working head driven by the output shaft, and the control device can be used to perform the control shown in FIG. 3 above.
  • the method is to control the rotation speed of the motor of the electric tool, and the load loaded by the motor includes at least the no-load, the first load and the second load, the no-load is less than the first load, and the first load is smaller than the second load, as shown in FIG.
  • the control device comprises:
  • the third detecting unit 801 is configured to detect a parameter for characterizing a load loaded by the motor, and the parameter reflects a size of a load loaded by the motor;
  • the third control unit 802 is configured to control the rotation speed of the motor to increase when the load loaded by the motor is switched from the first load to the second load.
  • the load state of the motor may include multiple levels of load (such as the first load and the second load), each The level of load corresponds to a range or a certain number of parameters used to characterize the load loaded by the motor.
  • the parameter for characterizing the load loaded by the motor is detected in real time. If the detected parameter reflects that the motor is switched from the first load to the second load (that is, the load is increased), the rotational speed of the control motor is increased, and the specific The control mode may be hierarchical or stepless, and the embodiment is not unduly limited.
  • the speed adjustment of the motor in the load state is achieved by detecting parameters for characterizing the load loaded by the motor.
  • the embodiment of the present invention further provides a power tool, comprising: a power tool including a motor, an output shaft driven by the motor, and a working head driven by the output shaft, the power tool further comprising any one of the embodiments provided by the embodiments of the present invention.
  • Control device for controlling the speed of the motor may be a power tool such as an electric drill, a screwdriver, or an angle grinder, which is not limited herein.
  • the power tool of the embodiment further includes a gear position adjustment knob for selecting an adjustment mode of the motor speed
  • the adjustment mode includes a manual adjustment mode and an automatic adjustment mode, that is, the electric device according to the embodiment of the present invention.
  • the speed of the motor of the tool can be adjusted manually or automatically.
  • the adjustment mode of the motor speed of the power tool can be selected according to requirements, wherein the manual adjustment mode includes a plurality of manual gear positions, and different manual gear positions can be selected by adjusting the above-mentioned gear position adjustment buttons, each The gear position corresponds to a fixed value or a range of motor speeds; the automatic adjustment mode can automatically adjust the speed of the motor according to the control method of the above embodiment of the present invention.
  • the manual adjustment mode includes a plurality of manual gear positions, and different manual gear positions can be selected by adjusting the above-mentioned gear position adjustment buttons, each The gear position corresponds to a fixed value or a range of motor speeds
  • the automatic adjustment mode can automatically adjust the speed of the motor according to the control method of the
  • the gear position adjustment button may be a rotary adjustment button, or may be a sliding type, a toggle type, or the like, and the adjustment manner thereof is not limited.
  • the power tool is also provided with N manual gear position zones and an automatic adjustment zone.
  • the gear position adjustment knob is adjusted to the corresponding manual gear position zone or the automatic adjustment zone to adjust the corresponding mode according to each zone.
  • Perform motor speed adjustment Specifically, when the gear position adjustment button is adjusted to any one of the N manual position ranges, the control device adjusts the rotation speed of the motor to the corresponding rotation speed of the manual gear position; when the gear position adjustment knob is adjusted to When the zone is automatically adjusted, the control device executes the control method of the above embodiment of the present invention to control the rotation speed of the motor.
  • the control method of the above embodiment of the present invention to control the rotation speed of the motor.
  • a gear position adjustment knob B is provided on the power tool, and an enlarged schematic view thereof is shown in FIG.
  • the gear position adjustment knob B is a rotary adjustment knob, and when the gear position adjustment knob B is rotated, the outer edge thereof rotates around the central axis.
  • the gear position adjustment button B is divided into a plurality of sector zones, the numbers 1 to 5 indicate the manual gear position area, A represents the automatic adjustment zone, and G is the fixed position indicator.
  • the control device performs motor rotation speed control according to the adjustment mode corresponding to the area.
  • the manual gear position adjustment can be realized by rotating the gear position adjustment knob B.
  • the gear position adjustment knob B When the user rotates the gear position adjustment knob B to the first gear (ie, the region corresponding to "1" is rotated to the position indicated by the marker G), a corresponding control command is generated, and the control device receives the adjusted control command and based on the control
  • the command control motor speed becomes the corresponding speed of the first gear; when the first gear is adjusted to the second gear (that is, the area corresponding to the position indicated by the mark G is rotated from "1" to "2"), the corresponding control command is generated again.
  • the control device executes the control command to change the rotational speed of the motor from the rotational speed corresponding to the first gear to the rotational speed corresponding to the second gear, and the other manual gear positions are sequentially analogized.
  • the command control device controls the rotation speed of the motor by means of automatic speed adjustment.
  • the control device performs the control method of the power tool of the above embodiment to automatically adjust the rotational speed of the motor, which may be a stepwise speed adjustment or a stepless speed adjustment.
  • a speed control method for a power tool is provided, particularly adapted to the speed control of a brushless power tool, such as a lawnmower, a lawn mower, and an electric drill.
  • a brushless power tool such as a lawnmower, a lawn mower, and an electric drill.
  • the rotational speed of the electric tool actually refers to the rotational speed of the motor, and the speed control method may be an optional embodiment of the control method of the electric tool in the above embodiment.
  • the method includes the following steps:
  • the current working parameters refer to the operating parameters of the power tool under the current working state, especially the operating parameters that change with the load change of the power tool, for example, the current working current and the current working voltage.
  • the electric tool decreases as the load increases, and the voltage decreases.
  • the working parameters described in this embodiment and the parameters for characterizing the load applied by the motor in the above embodiments may refer to the same parameters, and the working parameters described later are similar, and will not be described again.
  • S122 Determine a target speed of the power tool according to the current working parameter.
  • the correspondence between different current operating parameters and the target rotational speed is preset.
  • the corresponding relationship between the current working parameter and the target rotational speed of an embodiment is a current working parameter and a target rotational speed curve, and the target rotational speed corresponding to the current working parameter is determined according to the current working parameter and the target rotational speed curve.
  • different threshold values are set in advance, and a target rotational speed corresponding to the set interval divided according to the threshold value. By comparing the current working parameter with the threshold value, the associated setting area is determined, thereby obtaining the corresponding target rotational speed.
  • the current speed of the power tool is the current speed of the motor.
  • the speed of the motor of the lawnmower is 3000 rpm, that is, the cutting speed of the lawnmower is 3000 rpm.
  • the current speed of the motor can be measured using a speed sensor.
  • a speed sensor for example, a Hall speed sensor, a capacitive speed sensor, a variable reluctance speed sensor, or a photoelectric speed sensor.
  • S125 Generate a corresponding control signal according to the deviation, and send the control signal to the motor of the power tool to control the power tool to adjust to the target speed.
  • a control signal corresponding to the control quantity and the control quantity is obtained according to the deviation between the target rotation speed and the current rotation speed to control the power tool to adjust to the target rotation speed.
  • the PI controller or the PID controller may be used to form the control amount by linearly combining the deviation ratio and the integral according to the deviation between the target rotational speed and the current rotational speed.
  • the working parameter of the embodiment takes the current as an example.
  • the corresponding target speed is determined according to the current current, according to the target speed and Current turn
  • the speed deviation controls the power tool to adjust to a larger target speed, so that the lawn mower can be adjusted to the speed corresponding to the grass condition, adapt to the grass condition with a large load, and improve the cutting efficiency of the grass cutter.
  • the speed control method of the power tool of the embodiment determines the target speed of the power tool according to the current working parameter, and generates a corresponding control signal according to the deviation between the target speed and the current speed to control the power tool to adjust to the target speed. Since the current working parameter corresponds to the target rotational speed of the power tool, when the current working parameter changes, the target rotational speed can be determined according to the changed current working parameter, thereby avoiding the slow rotation speed of the power tool when the load becomes high, so that the working efficiency is lowered. It is also possible to prevent the power tool from maintaining a relatively fast speed when the load is low, resulting in waste of resources. Therefore, the speed control method of the power tool can effectively improve work efficiency and save resources.
  • step S122 includes:
  • S1222 Determine whether the current working parameter is greater than or equal to the Nth threshold and less than the N+1th threshold.
  • step S1223 is performed: determining that the Nth rotation speed is the target rotation speed.
  • N threshold values are set in advance for the operating parameters, and the N threshold values correspond to N-1 adjustment regions, and each of the adjustment regions corresponds to a different target rotational speed.
  • a table of adjustment regions and target rotational speeds of an embodiment is shown in Table 1.
  • the threshold values are set in advance to obtain different setting regions, and the target rotation speed is set for each of the setting regions.
  • the current operating parameter is sequentially compared with the threshold to determine the setting area to which the current working parameter belongs, and the corresponding target rotational speed is obtained.
  • the speed control method of the power tool of the embodiment is especially adapted to the speed regulation of the weeding equipment, and the weeding equipment includes a lawn mower and a lawn mower.
  • the weeding device has a correspondingly large load when the grass density becomes large and the humidity becomes large. As the load increases, the current and voltage decrease accordingly. Therefore, the current operating parameters in this embodiment are current or voltage.
  • the target speed is determined according to the current or voltage to control the power tool to adjust to the target speed, and the adjusted speed adapts to the current grass condition, thereby avoiding the motor of the weeding device when the load becomes high.
  • the slow rotation speed reduces the working efficiency of the power tool, and also prevents the power tool from maintaining a relatively fast rotation speed when the load becomes low, resulting in waste of resources.
  • a speed controller of a power tool is provided, and the speed controller of the power tool may be a preferred embodiment of the power tool control device in the above embodiment, as shown in FIG.
  • the speed controller of the power tool includes:
  • the working parameter obtaining module 302 is configured to detect a current working parameter of the power tool.
  • the current working parameters refer to the operating parameters of the power tool under the current working state, especially the operating parameters that change with the load change of the power tool, for example, the current working current and the current working voltage.
  • the electric tool decreases as the load increases, and the voltage decreases.
  • the target speed determining module 304 is configured to determine a target speed of the power tool according to the current working parameter.
  • the correspondence between different current operating parameters and the target rotational speed is preset.
  • the corresponding relationship between the current working parameter and the target rotational speed of an embodiment is a current working parameter and a target rotational speed curve, and the target rotational speed corresponding to the current working parameter is determined according to the current working parameter and the target rotational speed curve.
  • different threshold values are set in advance, and a target rotational speed corresponding to the set interval divided according to the threshold value. By comparing the current working parameter with the threshold value, the associated setting area is determined, thereby obtaining the corresponding target rotational speed.
  • the current speed acquisition module 306 is configured to measure the current speed of the power tool.
  • the current speed of the power tool is the current speed of the motor.
  • the speed of the motor of the lawnmower is 3000 rpm, that is, the cutting speed of the lawnmower is 3000 rpm.
  • the current speed of the motor can be measured with a speed sensor.
  • a speed sensor for example, a Hall speed sensor, a capacitive speed sensor, a variable reluctance speed sensor, or a photoelectric speed sensor.
  • the calculation module 308 is configured to calculate a deviation between the target rotational speed and the current rotational speed.
  • the adjustment module 310 is configured to generate a corresponding control signal according to the deviation, and send the control signal to the motor of the power tool to control the power tool to adjust to the target rotation speed.
  • a control signal corresponding to the control quantity and the control quantity is obtained according to the deviation between the target rotation speed and the current rotation speed to control the power tool to adjust to the target rotation speed.
  • the PI controller or the PID controller may be used to obtain the control amount by linearly combining the ratio and the integral of the deviation according to the deviation between the target rotational speed and the current rotational speed.
  • the working parameter of the embodiment takes the current as an example.
  • the corresponding target speed is determined according to the current current, according to the target speed and The deviation of the current speed, control the power tool to adjust to a larger target speed, so that the grass machine is adjusted to the speed corresponding to the grass condition, adapt to the grass condition with increased load, and improve the cutting efficiency of the grass cutter.
  • the speed controller of the power tool of the embodiment determines the target speed of the power tool according to the current operating parameter, and generates a corresponding control signal according to the deviation between the target speed and the current speed to control the power tool to adjust to the target speed. Since the current working parameter corresponds to the target rotational speed of the power tool, when the current working parameter changes, the target rotational speed can be determined according to the changed current working parameter, thereby avoiding the slow rotation speed of the power tool when the load becomes high, so that the working efficiency is lowered. It is also possible to prevent the power tool from maintaining a relatively fast speed when the load is low, resulting in waste of resources. Therefore, the speed controller of the power tool can effectively improve work efficiency and save resources.
  • the target rotational speed determining module 304 includes: an initializing module 3041, a determining module 3042, an assigning module 3043, and a processing module 3044;
  • the determining module 3042 is configured to determine whether the current working parameter is greater than or equal to the Nth threshold and less than the N+1th threshold;
  • the processing module 3044 is configured to determine that the Nth rotation speed is the target rotation speed when the determination result of the determination module is YES.
  • N threshold values are set in advance for the operating parameters, and the N threshold values correspond to N-1 adjustment regions, and each of the adjustment regions corresponds to a different target rotational speed.
  • a table of adjustment regions and target rotational speeds of an embodiment is shown in Table 1.
  • the threshold values are set in advance to obtain different setting regions, and the target rotation speed is set for each of the setting regions.
  • the current operating parameter is sequentially compared with the threshold to determine the setting area to which the current working parameter belongs, and the corresponding target rotational speed is obtained.
  • the speed controller of the power tool of the embodiment is especially adapted to the speed regulation of the weeding equipment, and the weeding equipment includes a lawn mower and a lawn mower.
  • the weeding device has a correspondingly large load when the grass density becomes large and the humidity becomes large. As the load increases, the current and voltage decrease accordingly. Therefore, the current operating parameters in this embodiment are current or voltage.
  • the target speed is determined according to the current or voltage to control the power tool to adjust to the target speed, and the adjusted speed adapts to the current grass condition, thereby avoiding the motor of the weeding device when the load becomes high.
  • the slow rotation speed reduces the working efficiency of the power tool, and also prevents the power tool from maintaining a relatively fast rotation speed when the load becomes low, resulting in waste of resources.
  • a power tool including a detection circuit 502, a sensor 504, a motor 506, and a speed controller of the above-described power tool, and the detection circuit 502 and the sensor 504 are respectively connected to the power tool.
  • the speed controller 508 is connected, and the speed controller 508 of the power tool is coupled to the motor 506.
  • the power tool can be a preferred embodiment of the power tool provided by the above embodiments.
  • the detection circuit 502 detects the current operating parameters of the power tool and sends the current operating parameters to the speed controller 508 of the power tool.
  • the sensor 504 detects the current speed of the power tool and sends the current speed to the speed controller 508 of the power tool. .
  • the motor 506 adjusts the rotational speed to the target rotational speed based on the control signal.
  • the target rotational speed of the electric tool is determined by the current operating parameter detected by the detecting circuit, and the current rotational speed of the electric tool is detected by the sensor, and the speed controller generates a corresponding control signal according to the deviation between the target rotational speed and the current rotational speed to control
  • the motor is adjusted to the target speed. Since the current working parameter corresponds to the target speed of the power tool, when the current working parameter changes, the target speed can be determined according to the changed current working parameter, thereby avoiding the motor speed of the power tool being slow when the load becomes high, so that the working efficiency is Lowering also avoids a faster rotation when the load becomes lower, resulting in wasted resources. Therefore, the power tool can effectively improve work efficiency and save resources.
  • the senor is any one of a Hall speed sensor, a capacitive speed sensor, a variable reluctance speed sensor, and a photoelectric speed sensor.
  • the speed of the motor is detected by using a sensor.
  • the detection circuit is a current detection circuit or a voltage detection circuit.
  • the current detecting circuit detects the current operating current of the power tool, and the voltage detecting circuit detects the current working voltage of the power tool.
  • the speed controller of the power tool is a PI controller.
  • the PI controller can be used to obtain the control amount by linearly combining the proportional and the integral of the deviation according to the deviation between the target rotational speed and the current rotational speed, thereby achieving precise adjustment of the rotational speed.
  • the power tool is a weeding device, in particular a lawn mower or a lawn mower.
  • the present invention also provides a motor speed control method for a power tool, which can be used in various power tools that use a motor to drive a work head, such as a multifunction machine.
  • the control method is used to timely change the rotational speed of the motor according to the load condition of the electric tool, so that the motor can have different rotational speeds under the conditions of no-load and different levels of load, thereby improving the user experience, saving power, and improving the reliability of the operation.
  • the motor speed control method may be in the above embodiment An alternative embodiment of a method of controlling a power tool.
  • the motor speed control method of the power tool of the present invention comprises the following steps:
  • the parameters are one of the motor's voltage rms value, current rms value, voltage peak value, current peak value, speed, and thyristor drought angle. It is possible to detect two such parameters at the same time, or to detect more than two at the same time, such as three, four, and the like.
  • the parameters indicating the power tool load in the embodiment and the parameters for characterizing the load applied by the motor and the operating parameters described in the above embodiments may refer to the same parameters, which are all capable of reflecting the loading of the motor.
  • the parameters of the load size are the same as those of the power tool load described later, and will not be described again.
  • control signals Generate a control signal according to the product to change the rotational speed of the motor.
  • the control signal is used to increase or decrease the speed of the motor.
  • Control signals can be generated on-the-fly or delayed for a predetermined time. The predetermined time during which the control signal is delayed can be set by the operator himself.
  • Solution 1 obtaining an average value of the product in a unit time; determining whether the average value is in a preset range; and if the average value is in the preset range, adjusting a rotation speed of the motor to a corresponding preset The standard value. As described above, it is possible to simultaneously detect two or more of the relevant parameters and obtain their product. Table 2 shows the relationship between some parameters and load level judgment.
  • the no-load scenario described herein has the same meaning as that of the no-load state described in the foregoing embodiment, and the loading scenario has the same meaning as that of the load state in the above embodiment, and will not be described again in the following.
  • the product of the voltage effective value of the motor and the current effective value is Y
  • the unit time is set to 20 ms
  • 10 such products Y1, Y2, ..., Y10 can be obtained, and then the calculation can be performed.
  • the Y average is compared with the first, second, and third preset ranges 0 to A, A to B, and B to C.
  • the range is preset or user-defined, corresponding to different load conditions, and corresponding to different standard speeds.
  • the first preset range 0 to A is set to represent that the power tool is unloaded, and the corresponding preset idle speed is set;
  • the second preset range A to B is level I loading, correspondingly having a level I loading speed;
  • the preset range B to C is a level II loading, and correspondingly has a level II loading speed.
  • the speed of class II loading is greater than the speed of class I loading.
  • 0 ⁇ Y average ⁇ A that is, Y average is in the range of 0 to A
  • a control signal is generated to change the rotation speed of the motor, and the rotation speed of the motor is adjusted to the idling speed.
  • a ⁇ Y average ⁇ B that is, Y average is in the range of A to B
  • the control signal is generated to change the rotation speed of the motor, and the rotation speed of the motor is adjusted to the level I loading speed.
  • B ⁇ Y average ⁇ C that is, Y average is in the range of B to C, it is judged to be in the level II loading scenario. At this time, a control signal is generated to change the rotation speed of the motor, and the rotation speed of the motor is adjusted to the class II loading speed.
  • the above control method can be used to make the motor speed run at a preset idle speed when the power tool is turned on.
  • the motor When the motor is idling, the motor can run at a lower speed. Therefore, the above control method can achieve the purpose of starting low speed, and the holding feeling at the time of starting is better due to the low speed of the power on.
  • the speed In the loading scenario, the speed can be adjusted according to the load level, which is suitable for different levels of consumers, such as juniors and enthusiasts.
  • a plurality of parameters are simultaneously detected and a product of at least two parameters is obtained, and then a control signal for controlling the rotational speed of the motor is generated based on the product.
  • the motor speed can be quickly controlled according to different loads; on the other hand, multiple parameters can be detected at the same time, which can suppress the changes caused by grid fluctuations and noise interference, thereby reliably controlling the motor speed.
  • the power tool By detecting the rms value of the motor voltage and the average value of the current peak in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, according to different The product value is automatically set at different speeds.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the product of the voltage rms and the speed of the motor in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, according to Different product values are automatically set at different speeds.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the product of the voltage rms value of the motor and the thyristor drought angle in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scenario, the power tool automatically runs at a low speed, if In the loading scene, the different speeds are automatically set according to different product values.
  • the specific implementation is the same as the method 1 and will not be described again.
  • Judging electric power by detecting the average value of the product of the voltage peak of the motor and the effective value of the current in unit time Whether the tool is in no-load or loading scenes, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, it is automatically set at different speeds according to different product values.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the product of the voltage peak and the current peak of the motor in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, according to Different product values are automatically set at different speeds.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the voltage peak and the speed of the motor in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, according to different The product value is automatically set at different speeds.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the product of the voltage peak of the motor and the thyristor drought angle in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scenario, the power tool automatically runs at a low speed, if The scene is loaded and automatically set at different speeds according to different product values.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the current value of the motor and the speed of the product in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, according to Different product values are automatically set at different speeds.
  • the specific implementation is the same as the method 1 and will not be described again.
  • Method 10 Determine whether the power tool is in no-load or loading scene by detecting the average value of the current rms value of the motor and the thyristor dry-through angle in the unit time. If the power tool is in an empty scene, the power tool automatically stops at a low speed. Run, if the scene is loaded, automatically set at different speeds according to different product values.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the product of the motor current peak and the thyristor drought angle in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scenario, the power tool automatically runs at a low speed, if The scene is loaded and automatically set at different speeds according to different product values.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the power tool By detecting the average value of the product's current peak and the speed of the motor in the unit time to determine whether the power tool is in the no-load or loading scene, if in the no-load scene, the power tool automatically runs at a low speed, if the scene is loaded, according to different The product value is automatically set at different speeds.
  • the specific implementation is the same as the method 1 and will not be described again.
  • the method of the second scheme is the same as the principle of the first scheme. The difference is that in the second scheme, the product of the two or more parameters is directly compared with the preset range, and then the loading scenario of the power tool is determined, and then the control is generated.
  • the signal adjusts the speed of the motor to a preset standard value that matches the loading level.
  • the preset range in Option 2 is different from the preset range in Option 1.
  • the third method is to obtain a sum of average values of the products of the multi-segment unit time and re-average; determine whether the average value of the re-evaluation is in a preset range; and the average value of the re-request is in the preset range, The rotational speed of the motor is adjusted to a corresponding preset standard value.
  • the principle of the third scheme is the same as the principle of the first scheme. The difference is that in the third scheme, the average value of the sum of the average values of the plurality of products is utilized.
  • the product of the voltage rms value of the motor and the current rms value is Y
  • the unit time is set to 20 ms.
  • 10 such products Y1, Y2, ..., Y10 can be obtained, and then it can be calculated within 20 ms.
  • a plurality of the aforementioned product average values Y average are acquired, for example, five such average values within 100 ms are acquired, and then an average value of the five average values is obtained. If the average value obtained again is within the preset range, the motor speed is adjusted to the corresponding preset standard value.
  • the fourth step is to compare the sum of the product and the product in the unit time or the sum of the average values of the products in the unit time and the preset value, and the preset value includes the first and second a third preset value, wherein the sum of the product, the average of the products, or the sum of the average values of the products in the multi-segment unit time is less than or equal to the first preset value, and the rotation speed is adjusted to the first rotation speed; When the second preset value is greater than or equal to the second preset speed, the second speed is greater than the first speed; when the product is between the first and second preset values, the speed is adjusted to the third speed, The three rotational speeds are between the first and second rotational speeds.
  • the product of directly using a plurality of parameters is taken as an example for description.
  • the first, second, and third preset values are preset, wherein the first preset value is set to a critical value of the no-load state, and the second preset value is a threshold value of the II-level loading.
  • the rotation speed is adjusted to a smaller first rotation speed; when greater than or equal to the second preset value, the rotation speed is adjusted to be greater than the second rotation speed of the first rotation speed to cope with an increase in load;
  • the load is greater than the no-load state, but less than the load of the II-level load.
  • the load is level I, and the speed is adjusted to the third speed.
  • the third speed is between Between the first and second speeds.
  • the present invention also provides a power tool that can perform the above control method.
  • the power tool can be a preferred embodiment of the power tool provided by the above embodiments.
  • 18 and 19 are block diagrams of such a power tool.
  • the power tool includes a power module 110, a gear setting module 120, a control module 130, an output module 140, a first detecting module 150, a second detecting module 160, and a signal amplifying module 170.
  • the power module 110 is configured to provide an operating voltage to the gear setting module 120, the control module 130, the output module 140, the first detecting module 150, the second detecting module 160, and the signal method module 170.
  • the power module 110 can be a DC power module or an AC high voltage power module including a step-down component.
  • the AC high-voltage power supply module can provide a 5V working power supply by step-down voltage reduction, transformer step-down, resistor buck, and other similar buck methods.
  • the gear setting module 120 is configured to output different voltage, current or power values to the control module 130, and the control module 130 processes and outputs different speed control signals.
  • the manual resistance or the automatic gear can be determined by different resistance values, capacitance values, and the like, thereby outputting signals of different strengths to the control module 130.
  • Gear setting mode here Block 120 may refer to the gear position adjustment knob B described in FIGS. 9 through 11, which may be a specific embodiment of the gear position setting module 120.
  • the control module 130 determines, by using the signal processing of the gear setting module 120, a function of manually adjusting the speed or automatically changing the speed; determining, by the second detecting module 160, whether to realize the low speed or the automatic speed and the speed to adapt to different working scene functions. .
  • the control module 130 controls the output of different rotational speeds; in the automatic shifting, the control module 130 controls the automatically changing rotational speed.
  • the control module 130 uses the product of the parameters of the at least two output modules 140 detected by the second detecting module 160, and generates a control signal according to the product to change the rotational speed of the output module 140.
  • the control module 130 is configured to control the rotational speed of the output module 140 using any of the three aforementioned schemes.
  • the control module 130 may be a preferred embodiment of the control device of the power tool or the speed controller of the power tool described in the above embodiments.
  • the output module 140 is a motor for outputting a rotational motion to directly or indirectly drive the working of the working head.
  • the first detecting module 150 is configured to monitor the rotational speed of the output module 140 in real time and transmit the signal to the control module 130.
  • the second detecting module 160 is configured to detect parameters such as the rotational speed, voltage, current, and silicon dry angle of the output module 140, and transmit the parameters to the control module 130 for signal processing.
  • the signal amplifying module 170 is configured to perform amplification processing on the signal of the second detecting module 160 in the automatic gear mode, so as to facilitate the accurate and effective processing of the control module 130, thereby generating a control signal.
  • the control module 130 determines whether it is in the automatic file (auto file). If it is not in the automatic gear and in the manual gear position, the motor is controlled to output the corresponding speed according to the preset speed of the different gear positions.
  • different speeds can be set in advance by adjusting the thyristor drought angle.
  • the normal 1st gear corresponds to a rotational speed of 9500r/min, and the upper and lower deviations are 10%. The other gear speed settings are similar and will not be repeated.
  • the above-mentioned electric tool can realize the change of the motor rotation speed according to the change of the load level. Simultaneous detection of multiple parameters plays a very good role in preventing changes caused by grid fluctuations and noise disturbances, thereby reliably controlling the motor speed.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can operate in a particular manner by a computer or other programmable data processing device, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种电动工具的控制方法、装置和电动工具。电动工具的控制方法包括:检测工作头施加在工件上的力(S101);当所述工作头施加在工件上的力增大时,控制电机(506)的转速增大(S102)。通过检测工作头施加在工件上的力的变化,来控制电机(506)的转速的变化,从而达到依据用户需求以及负载变化来调节电机(506)转速的目的。

Description

一种电动工具的控制方法、装置和电动工具 技术领域
本发明涉及电动工具领域,具体涉及一种电动工具的控制方法、装置和电动工具。
背景技术
电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为电动工具、用电器或各种机械的动力源。
对于电动工具而言,根据负载大小对电机进行有效地控制能够大大提高工作效率。目前,电动工具在使用过程中,通常是空载一档速度,负载一档速度,负载速度大于空载速度。该速度调节方案使得在负载状态下,电机始终保持某一负载转速不变,当负载增大时,并不会相应地增大电机的转速。这种调节方式无法根据负载的变化进行调节,导致其使用效果和用户体验较差。
发明内容
因此,本发明要解决的技术问题在于现有技术中电机的转速无法根据负载的变化进行调节。
为此,本发明的一个方面,提供了一种电动工具的控制方法,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述控制方法包括:检测所述工作头施加在工件上的力;当所述工作头施加在工件上的力增大时,控制所述电机的转速增大。
进一步地,检测所述工作头施加在工件上的力包括:检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小,其中,当所述工作头施加在工件上的力增大时,所述电机所加载的负载增大。
进一步地,所述电机包括空载状态和负载状态,当所述电机处于负载状态且所述电机所加载的负载增大时,控制所述电机的转速增大。
本发明的一个方面,提供了一种电动工具的控制方法,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机包括空载状态和负载状态,所述控制方法包括:当电机处于负载状态时,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;当所述电机所加载的负载增大时,控制所述电机的转速增大。
本发明的一个方面,提供了一种电动工具的控制方法,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机所加载的负载至少包括空载、第一负载和第二负载,所述空载小于所述第一负载,所述第一负载小于所述第二负载,所述控制方法包括:检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;当所述电机所加载的负载由所述第一负载切换为所述第二负载时,控制所述电机的转速增大。
进一步地,当所述电机所加载的负载为所述第一负载时,控制所述电机处于第一负 载转速;当所述电机所加载的负载为所述第二负载时,控制所述电机处于第二负载转速;所述第一负载转速低于所述第二负载转速;当所述电机所加载的负载由所述第一负载切换为所述第二负载时,控制所述电机的转速由所述第一负载转速切换为所述第二负载转速。
进一步地,当所述电机由负载状态切换为空载状态时,控制所述电机的转速减小;当所述电机由空载状态切换为负载状态时,控制所述电机的转速增大。
进一步地,当所述工作头施加在工件上的力减小时,控制所述电机的转速减小或者保持不变。
进一步地,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小的步骤包括:检测电机的运行参数;确定所述运行参数所处的参数区间,其中,不同的参数区间对应不同大小的负载;根据确定出的参数区间确定所述电机所加载的负载大小。
进一步地,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小的步骤包括:检测电机的第一运行参数和第二运行参数,所述第一运行参数和第二运行参数为不同的参数;确定所述第一运行参数和第二运行参数对应的坐标在预设坐标系中的坐标位置,所述预设坐标系以第一运行参数和第二运行参数分别作为坐标轴;通过所述坐标位置与负载标识曲线的位置关系来确定所述电机所加载的负载的大小,所述负载标识曲线为在预设坐标系上反应第一运行参数和第二运行参数与所述电机所加载的负载的大小的对应关系的曲线。
进一步地,所述负载标识曲线包括多条档位曲线,不同的档位曲线对应的所述电机所加载的负载大小不同,所述档位曲线根据第一运行参数与第二运行参数之间的关系曲线获得,所述关系曲线为在第三运行参数取特定值的情况下所述第一运行参数与所述第二运行参数之间的关系曲线,所述第三运行参数与所述第一运行参数和所述第二运行参数均不同,在所述第三运行参数取不同值的情况下获得多条关系曲线。
进一步地,将获得的所述关系曲线作为所述档位曲线,或者,将获得的所述关系曲线进行修正后得到所述档位曲线。
进一步地,通过所述坐标位置与负载标识曲线的位置关系来确定所述电机所加载的负载的大小的步骤包括:确定与所述坐标位置最靠近的档位曲线;根据所述最靠近的档位曲线与所述电机所加载的负载的对应关系确定所述电机所加载的负载的大小。
进一步地,确定与所述坐标位置最靠近的档位曲线的步骤包括:确定所述坐标位置与所述多条档位曲线中每条档位曲线的最短距离;确定最短距离最小的档位曲线为与所述坐标位置最靠近的档位曲线。
进一步地,确定与所述坐标位置最靠近的档位曲线的步骤包括:预先确定出所述多条档位曲线中每相邻两条档位曲线之间的中心线;确定所述坐标位置与所述中心线的相对位置;如果所述坐标位置在所述中心线的第一预设侧面,则将位于所述中心线的第一预设侧面且距离所述中心线最近的档位曲线确定为与所述坐标位置最靠近的档位曲线;如果所述坐标位置在所述中心线的第二预设侧面,则将位于所述中心线的第二预设侧面 且距离所述中心线最近的档位曲线确定为与所述坐标位置最靠近的档位曲线。
进一步地,所述负载标识曲线为一条连续的匹配曲线,所述匹配曲线上的不同的点对应的所述电机所加载的负载大小不同,所述匹配曲线根据第一运行参数与第二运行参数之间的关系曲线获得,所述关系曲线为在第三运行参数取不同值的情况下所述第一运行参数与所述第二运行参数之间的关系曲线,所述第三运行参数与所述第一运行参数和所述第二运行参数均不同。
进一步地,通过所述坐标位置与负载标识曲线的位置关系来确定所述电机所加载的负载的大小的步骤包括:确定所述坐标位置相对所述匹配曲线的偏移方向;当所述坐标位置相对所述匹配曲线偏向第一预设方向时,确定所述电机所加载的负载增大;当所述坐标位置相对所述匹配曲线偏向第二预设方向时,确定所述电机所加载的负载减小。
进一步地,当所述工作头施加在工件上的力增大时,控制电机的转速增大的步骤包括:当所述坐标位置相对所述匹配曲线偏向所述第一预设方向时,调节所述电机的第一运行参数或者第二运行参数,直到调节后的所述第一运行参数和所述第二运行参数对应的坐标位置位于所述匹配曲线上。
进一步地,所述控制方法还包括以下步骤:当所述坐标位置相对所述匹配曲线偏向所述第二预设方向时,调节所述电机的第一运行参数或者第二运行参数,直到调节后的所述第一运行参数和所述第二运行参数对应的坐标位置位于所述匹配曲线上。
进一步地,所述第一运行参数为转速,所述第二运行参数与所述第三运行参数之间的组合包括以下之一:占空比与电流、导通角与电流、电压与电流、功率与电压、扭矩与占空比、扭矩与旱通角、扭矩与电压、占空比与功率、旱通角与功率。
本发明的一个方面,提供了一种电动工具的控制装置,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述控制装置包括:第一检测单元,用于检测所述工作头施加在工件上的力;第一控制单元,用于当所述工作头施加在工件上的力增大时,控制所述电机的转速增大。
本发明的一个方面,提供了一种电动工具的控制装置,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机包括空载状态和负载状态,所述控制装置包括:第二检测单元,用于当电机处于负载状态时,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;第二控制单元,用于当所述电机所加载的负载增大时,控制所述电机的转速增大。
本发明的一个方面,提供了一种电动工具的控制装置,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机所加载的负载至少包括空载、第一负载和第二负载,所述空载小于所述第一负载,所述第一负载小于所述第二负载,所述控制装置包括:第三检测单元,用于检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;第三控制单元,用于当所述电机所加载的负载由所述第一负载切换为所述第二负载时,控制所述电机的转速增大。
本发明的一个方面,提供了一种电动工具,包括:所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,还包括所述的控制装置,用于控制 所述电机的转速。
进一步地,还包括档位调节钮,用于选择所述电机转速的调节模式,所述调节模式包括手动调节模式和自动调节模式。
进一步地,在所述电动工具上与所述档位调节钮对应设置有N块手动档位区和自动调节区,其中,当所述档位调节钮调节到所述N块手动档位区中任一手动档位区时,则所述控制装置将所述电机的转速调节到该手动档位区对应的转速;当所述档位调节钮调节到所述自动调节区时,则所述控制装置执行所述的控制方法以控制所述电机的转速。
本发明的一个方面,提供了一种电动工具的调速控制方法,包括:获取电动工具的当前工作参数;根据当前工作参数确定电动工具的目标转速;获取电动工具的当前转速;计算目标转速与当前转速的偏差;根据所述偏差生成对应的控制信号,并将所述控制信号发送给电动工具的电机以控制电动工具调整至目标转速。
进一步地,所述根据当前工作参数确定电动工具的目标转速的步骤包括:初始化N=1;判断当前工作参数是否大于等于第N阈值且小于第N+1阈值;若是,则确定第N转速为目标转速。
进一步地,若当前工作参数大于第N+1阈值,令N=N+1,并返回所述判断当前工作参数是否大于等于第N阈值且小于第N+1阈值的步骤。
进一步地,所述当前工作参数包括当前工作电流或当前工作电压。
本发明的一个方面,提供了一种电动工具的调速控制器,包括:工作参数获取模块,用于检测电动工具的当前工作参数;目标转速确定模块,用于根据当前工作参数确定电动工具的目标转速;当前转速获取模块,用于测量电动工具的当前转速;计算模块,用于计算目标转速与当前转速的偏差;调整模块,用于根据所述偏差生成对应的控制信号,并将所述控制信号发送给电动工具的电机以控制电动工具调整至目标转速。
进一步地,所述目标转速确定模块包括:初始化模块、判断模块和处理模块;所述初始化模块,用于初始化N=1;所述判断模块,用于判断当前工作参数是否大于等于第N阈值且小于第N+1阈值;所述处理模块,用于在所述判断模块的判断结果为是时,确定第N转速为目标转速。
进一步地,所述目标转速确定模块还包括:赋值模块,用于在所述判断模块的判断结果为否时,令N=N+1。
进一步地,所述当前工作参数包括当前工作电流或当前工作电压。
本发明的一个方面,提供了一种电动工具,包括检测电路、传感器、电机和所述的电动工具的调速控制器,所述检测电路与所述传感器分别与所述电动工具的调速控制器连接,所述电动工具的调速控制器与所述电机连接;所述检测电路检测电动工具的当前工作参数,并将所述当前工作参数发送至所述电动工具的调速控制器;所述传感器检测电动工具的当前转速,并将当前转速发送至所述电动工具的调速控制器;所述电机根据所述控制信号调整转速至目标转速。
进一步地,所述传感器为霍尔转速传感器、电容式转速传感器、变磁阻式转速传感器和光电转速传感器中的任意一种。
本发明的一个方面,提供了一种电动工具的电机转速控制方法,包括以下步骤:检测电机的至少两个可表示电动工具负载的参数;获得所述至少两个参数的乘积;根据所述乘积生成控制信号以改变所述电机的转速。
进一步地,所述参数为电机的电压有效值、电流有效值、电压峰值、电流峰值、转速及可控硅导通角中的一个。
进一步地,所述控制信号即时或延迟预定的时间生成。
进一步地,所述控制信号被用于使所述电机的转速增大或减小。
进一步地,其中所述根据所述乘积生成控制信号以改变所述电机的转速的步骤,进一步包括:判断所述乘积是否位于预设范围;所述乘积位于所述预设范围,则将所述电机的转速调整为相对应的预设的标准值。
进一步地,其中所述根据所述乘积生成控制信号以改变所述电机的转速的步骤,进一步包括:获取单位时间内所述乘积的平均值;判断所述平均值是否位于预设范围;所述平均值位于所述预设范围,则将所述电机的转速调整为相对应的预设的标准值。
进一步地,其中所述根据所述乘积生成控制信号以改变所述电机的转速的步骤,进一步包括:获取多段单位时间内所述乘积的平均值的和再求平均值;判断所述再求的平均值是否位于预设范围;所述再求的平均值位于所述预设范围,则将所述电机的转速调整为相对应的预设的标准值。
进一步地,所述预设范围包括第一、第二、第三预设范围,所述第一预设范围对应为空载转速,所述第二预设范围对应I级加载转速,所述第三预设范围对应II级加载转速,II级加载的转速大于I级加载的转速。
进一步地,其中所述根据所述乘积生成控制信号以改变所述电机的转速的步骤,进一步包括:将所述乘积、所述乘积在单位时间内的平均值或多段单位时间内所述乘积的平均值的和再求的平均值与预设值比较,所述预设值包括第一、第二、第三预设值,其中,所述乘积、乘积的平均值或多段单位时间内所述乘积的平均值的和再求的平均值小于等于第一预设值时,转速调整为第一转速;大于等于第二预设值时,转速调整为第二转速,第二转速大于第一转速;当所述乘积介于第一、第二预设值之间时,转速调整为第三转速,第三转速介于第一、第二转速之间。
本发明的一个方面,提供了一种电动工具,包括:电机,用以输出旋转运动以驱动工作头工作;检测模块,用以检测所述电机工作时可以表示负载的参数;以及控制模块,用以:获得所述至少两个参数的乘积,及根据所述乘积生成控制信号以改变所述电机的转速。
进一步地,所述控制模块被设置为用以:判断所述乘积是否位于预设范围;所述乘积位于所述预设范围,则将所述电机的转速调整为相对应的预设值;或获取单位时间内所述乘积的平均值;判断所述平均值是否位于预设范围;所述平均值位于所述预设范围,则将所述电机的转速调整为相对应的预设值;或获取多段单位时间内所述乘积的平均值的和再求平均值;判断所述再求的平均值是否位于预设范围;所述再求的平均值位于所述预设范围,则将所述电机的转速调整为相对应的预设值。
根据本发明实施例,通过检测工作头施加在工件上的力的变化,来控制电机的转速的变化,其中,当检测到的力增大时,控制电机的转速增大,从而达到依据用户需求以及负载变化来调节电机转速的目的。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中的电动工具的控制方法的一个具体示例的流程图;
图2为本发明实施例中的另一个电动工具的控制方法的一个具体示例的流程图;
图3为本发明实施例中的又一个电动工具的控制方法的一个具体示例的流程图;
图4为本发明实施例中一种负载标识曲线的示意图;
图5为本发明实施例中另一种负载标识曲线的示意图;
图6为本发明实施例中的电动工具的控制装置的一个具体示例的示意图;
图7为本发明实施例中的另一个电动工具的控制装置的一个具体示例的示意图;
图8为本发明实施例中的又一个电动工具的控制装置的一个具体示例的示意图;
图9为一个实施例的电动工具的侧视图;
图10为图9所示的电动工具的俯视图;
图11为图9所示的电动工具的档位调节按钮的示意图;
图12为一个实施例的电动工具的调速控制方法的流程图;
图13为另一个实施例的电动工具的调速控制方法的流程图;
图14为一个实施例的电动工具的调速控制器的功能模块示意图;
图15为另一个实施例的电动工具的调速控制器的功能模块示意图;
图16为一个实施例的电动工具的结构示意图。
图17为电动工具的电机转速控制方法的流程图;
图18为一个实施例的电动工具在手动模式下的模块图;
图19为一个实施例的电动工具在自动模式下的模块图;
图20为一个应用案例的电动工具的电机转速控制方法的流程图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特 定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本施例提供一种电动工具的控制方法,其中,电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头。本发明实施例所述的电动工具可以是指电钻、螺丝批、摆动机、角磨、打草机、割灌机等电动工具,工作时电机带动输出轴转动,输出轴则驱动工作头工作。
如图1所示,该控制方法包括:
步骤S101,检测工作头施加在工件上的力。
步骤S102,当工作头施加在工件上的力增大时,控制电机的转速增大。
工件是指待加工的物体,可以是自然物,也可以是非自然物。自然物如草、树枝等;非自然物如木板、铁板等。工作头施加在工件上的力可以是工作头对工件的压力,例如,电钻顶在待钻物上的压力,螺丝批对螺丝的压力等;该力也可以是其他的力。具体地,该力可以由电动工具操作者来施加,例如,当用户使用螺丝批时,可以通过下压或者上提等方式来改变工作头施加在工件上的力。如果电动工具为摆动机,则其工作头施加在工件上的力可以是摆动机的摆臂或摆盆上承受的压力的反作用力;如果电动工具为角磨机,则工作头施加在工件上的力可以是工件对转轮的压力的反作用力;如果电动工具为打草机或者割灌机,则工作头施加在工件上的力可以是草等植被对刀头的阻力的反作用力。
本实施例中,当检测到工作头施加在工件上的力增大时,控制电机的转速增大。根据力的相互作用原理,工作头施加在工件上的力与工件施加在工作头上的力相等,当工作头施加在工件上的力增大,工件施加在工作头上的力也相应增大,此时工作头上所加载的负载增大,在大负载的情况下,使用大转速能够提高电动工具的工作效率。其中,负载增大可以是空载到负载的增大,也可以是小负载到大负载的增大。在此需要说明的是,空载可以是电动工具未加载的状态,也可以是电动工具加了一个非常小的负载的状态。
根据本发明实施例,通过检测工作头施加在工件上的力的变化,来控制电机的转速的变化,其中,当检测到的力增大时,控制电机的转速增大,从而达到依据用户需求和/或负载变化来调节电机转速的目的。具体的,当用户通过工作头施加在工件上的力不变,而工作头的工况发生改变使得负载增大时,工作头受到的工件对其的反作用力增大,相应地,电动工具检测到工作头施加在工件上的力增大,此时增大电机的转速即为根据负载变化来调节电机转速。当工况没有发生改变,但用户工作头施加在工件上的力增大时,电动工具检测到工作头施加在工件上的力增大,此时增大电机的转速即为根据用户需求来调节电机转速。再有,当用户工作头施加在工件上的力增大且工作头的工况发生改变使得负载增大时,电动工具同样会检测到工作头施加在工件上的力增大,此时增大电机的转速即为根据用户需求和负载变化来调节电机转速。
本发明实施例中,对于工作头施加在工件上的力,可以通过多种方式测的,例如,通过设置在工作头上的传感器,直接检测该力的反作用力,或者,设置在工作头尾部的传感器,以检测经工作头传旱过来的作用力,也可以是设置在电动工具上用于供操作者握持的位置,检测操作者的手对电动工具在上述力相同方向的压力。
作为一种可选的实施方式,检测工作头施加在工件上的力包括:检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小,其中,当工作头施加在工件上的力增大时,电机所加载的负载增大。本实施方式中,由于通过检测用于表征电机所加载的负载的参数来间接反应工作头施加在工件上的力,因此,无论是依据用户需求和/或负载变化来调节电机转速,其实质均是依据负载变化来调节电机转速。
由于施加在工件上的力越大,表示电机所加载的负载越大,本实施例中通过检测用于电机所加载的负载的参数来检测施加在工件上的力,进而控制电机的转速,从而将电机的负载与其转速对应起来。上述参数可以是电机的运行参数,依据这些参数可以反映负载的大小。
进一步地,电机包括空载状态和负载状态,当电机处于负载状态且电机所加载的负载增大时,控制电机的转速增大。
电机的负载状态可以包含多等级负载,也即是对电机所加载的负载进行划分,按照负载大小分成多个等级,并采用有级或者无级的方式对电机的转速进行控制,其控制策略满足负载增大时,电机的转速增大。
本发明实施例还提供了一种电动工具的控制方法,其中,电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头,该电动工具与上述实施例的电动工具的控制方法中的电动工具可以相同,也可以不相同。其中,电机包括空载状态和负载状态,如图2所示,该控制方法包括:
步骤S201,当电机处于负载状态时,检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小。
步骤S202,当电机所加载的负载增大时,控制电机的转速增大。
本实施例中,电机的负载状态可以包含按照负载大小划分的多等级负载,每个等级的负载对应一定范围或者一定数值的用于表征电机所加载的负载的参数。实时检测用于表征电机所加载的负载的参数,如果检测到的参数反映出电机所加载的负载增大时,则控制电机的转速增大,其具体控制方式可以是有级或者无级,本实施例并没有不当限定。
根据本发明实施例,通过检测用于表征电机所加载的负载的参数,实现电机在负载状态下的转速调节,实现在负载状态下,电机的转速随着电机所加载的负载的增大而增大,而非维持在同一个转速下,使得电动工具的工作更高效,更符合操作者的工作需求。
本发明实施例还提供了一种电动工具的控制方法,其中,电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头,该电动工具与上述实施例的电动工具的控制方法中的电动工具可以相同,也可以不相同。其中,电机所加载的负载至少包括空载、第一负载和第二负载,空载小于第一负载,第一负载小于第二负载,如图3所示,该控制方法包括:
步骤S301,检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小V
步骤S302,当电机所加载的负载由第一负载切换为第二负载时,控制电机的转速增大。
本实施例中,电机的负载状态可以包含多等级负载(如第一负载和第二负载),每个等级的负载对应一定范围或者一定数值的用于表征电机所加载的负载的参数。实时检测用于表征电机所加载的负载的参数,如果检测到的参数反映出电机由第一负载切换为第二负载时(也即是负载增大),则控制电机的转速增大,其具体控制方式可以是有级或者无级,本实施例并没有不当限定。
根据本发明实施例,通过检测用于表征电机所加载的负载的参数,实现电机在负载状态下的转速调节。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,当电机所加载的负载为第一负载时,控制电机处于第一负载转速;当电机所加载的负载为第二负载时,控制电机处于第二负载转速。需要说明的是,这里的第一负载可以是指一个具体的负载大小,也可以是指一个负载的范围,第二负载同理,不再赘述。对于不同负载(范围),电机的对应的转速不同,其中,第一负载转速低于第二负载转速,也即是,设置多个档位,用以在不同的负载情况下,控制电机处于相应的转速。优选地,当电机所加载的负载由第一负载切换为第二负载时,控制电机的转速由第一负载转速切换为第二负载转速。也即是当负载发生变化(增大)时,控制电机的转速发生相应的变化(增大)。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,当工作头施加在工件上的力减小时,控制电机的转速减小或者保持不变。
上述实施例中,在检测到的力减小时,也即是负载减小时,可以控制电机的转速减小或者保持不变。
由于电机的转速越大,能耗越高,为了实现节能的效果,本实施例的一种可选实施方式为,当电机由负载状态切换为空载状态时,控制电机的转速减小。当电机所加载的负载为空载时,通过降低电机的转速来实现节能的效果。另一方面,当电机由空载状态切换为负载状态时,控制电机的转速增大。当电机所加载的负载由空载状态切换为负载状态时,再控制电机的转速增大。由此实现,在空载状态下,电机的转速进入低速,实现节能。而在负载状态下,随着负载的增大,相应增大电机的转速,而非维持在同一个转速下,使得电动工具的工作更高效,更符合操作者的工作需求。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小的步骤包括:检测电机的运行参数;确定运行参数所处的参数区间,其中,不同的参数区间对应不同大小的负载;根据确定出的参数区间确定电机所加载的负载大小。
本实施例中的运行参数可以是指电机运行过程中能够反映电机的负载大小的运行参数,例如电流、扭矩等单个参数,也可以是例如转速与占空比、转速与电压等能够反映负载大小的参数组合。负载大小与参数区间的对应关系可以由实验测得,在检测到电 机的运行参数之后,确定其所处的参数区间,将该参数区间对应的负载大小作为当前电机所加载的负载大小。
以电流参数为例,本实施例利用电机的电流变化的特点,设置不同电流区间来判断电流的大小,从而达到确定负载大小的目的。例如,第一区间、第二区间和第三区间依次代表大负载、小负载和空载对应的电流区间,在电机工作的过程中,如果检测到电流处于第一区间,则表示电机的负载为大负载,调节电机的转速到第一负载档位对应的转速;如果检测到电流处于第二区间,则表示电机的负载为小负载,调节电机的转速到第二负载档位对应的转速;如果检测到电流处于第三区间,则表示电机处于空载,调节电机的转速到第三负载档位对应的转速。
进一步地,如果检测到电流在第一区间、第二区间以及第三区间之间变化时,表示电机的负载也在发生变化(包括由大负载变为小负载,小负载变为大负载,负载变为空载,空载变为负载等),则电机的转速在变化前的转速的基础上调节为变化之后的区间对应的转速。例如,如果检测到电流从第二区间变到第一区间,则表示电机由小负载转为大负载,此时将电机的转速从第二负载档位对应的转速调节至第一负载档位对应的转速,也即是增大转速;如果检测到电流从第一区间变到第二区间,则表示电机由大负载转为小负载,此时将电机的转速从第一负载对应的转速调节至第二负载对应的转速,也即是降低转速;其它调节方式同理,不再赘述。
需要说明的是,本实施例的电流区间还可以划分出更多,从而实现对不同大小的负载进行多个不同层级的转速调节。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小的步骤包括:检测电机的第一运行参数和第二运行参数,第一运行参数和第二运行参数为不同的参数;确定第一运行参数和第二运行参数对应的坐标在预设坐标系中的坐标位置,预设坐标系以第一运行参数和第二运行参数分别作为坐标轴;通过坐标位置与负载标识曲线的位置关系来确定电机所加载的负载的大小,负载标识曲线为在预设坐标系上反应第一运行参数和第二运行参数与电机所加载的负载的大小的对应关系的曲线。
本实施例采用第一运行参数和第二运行参数的组合来确定负载的大小,具体地,以第一运行参数和第二运行参数分别作为坐标轴的预设坐标系上的负载标识曲线作为判断基准,通过当前检测的第一运行参数和第二运行参数对应的坐标在预设坐标系中的坐标位置与该负载标识曲线的位置关系来判断负载大小,其中,负载标识曲线可以是预先通过实验数据标定的曲线。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,负载标识曲线包括多条档位曲线,不同的档位曲线对应的电机所加载的负载大小不同。多条档位曲线包括2条、3条、或3条以上档位曲线。每条档位曲线根据第一运行参数与第二运行参数之间的关系曲线获得,关系曲线为在第三运行参数取特定值的情况下第一运行参数与第二运行参数之间的关系曲线,第三运行参数与第一运行参数和第二运行参数均不同,在第三运行参数取不同值的情况下获得多条关系曲线。
多条档位曲线是由在第三运行参数取不同值的情况下第一运行参数与第二运行参数之间的关系曲线得到的多条曲线,对于每一条关系曲线,第三运行参数对应一个特定值。也即是本实施例可以通过预先绘制的多条曲线来实现电机的有级变转速,其中,每条曲线可以对应一个档位。
具体地,可先以第二运行参数为横轴,第一运行参数为纵轴绘制二维坐标系上的曲线;改变电机的负载和第二运行参数,测试电机工作特性和参数,逐点绘制第三运行参数为第一预设值时第一运行参数与第二运行参数的坐标,连成曲线。同样的方法绘制第三运行参数为第二预设值、第三预设值……的曲线。可以将绘制好的曲线直接作为档位曲线,也可以将获得的关系曲线进行修正后得到档位曲线,例如对上述绘制好的曲线进行偏移,以减小参数之间的相互干扰所带来的影响,从而提高负载识别的准确性。
下面以一个具体示例来描述本实施例的负载标识曲线的一种可选实施方式,其中,以第一运行参数是转速,第二运行参数是占空比或者旱通角,第三运行参数是电流为例,具体以1A、2A和3A的电流为例,具体过程如下:
1、以占空比或者旱通角为横轴,转速为纵轴绘制二维坐标系。
2、改变电机的负载和占空比,测试电机工作特性和参数,逐点绘制1A电流时的占空比或者旱通角与转速的坐标,连成曲线。同样的方法绘制2A和3A曲线,如图4所示。
3、在空载条件下,记录10000rpm的电流值A、14000rpm的电流值B、18500rpm的电流值C、以及N转速下的电流值D。比较电流值B与电流值A的差值,该差值作为14000rpm时对1A曲线的偏移量。比较电流值C与电流值A的差值,该差值作为18500rpm时对1A曲线的偏移量。比较电流值D与电流值A的差值,该差值作为N转速时对1A曲线的偏移量。根据上述不同转速下的偏移量,对1A曲线进行偏移,从而得到1A+曲线。根据上述不同转速下的偏移量,分别对2A、3A曲线进行偏移,从而得到2A+、3A+曲线。
4、将这三条曲线作为转速档位判断依据,例如,1A+曲线对应低速档位,2A+曲线对应中速档位,3A+曲线作为高速档位。本领域技术人员可以理解的是,也可以直接将1A曲线对应低速档位,2A曲线对应中速档位,3A曲线作为高速档位。
5、电机在工作过程中,实时检测占空比/旱通角和转速,判断对应的坐标和哪条曲线距离最近,由此作为当前所处的工作档位,并稳速到对应转速。
本实施例中,每条档位曲线与电机所加载的负载之间存在对应关系,因此,可以根据检测到的第一运行参数与第二运行参数对应的坐标位置与档位曲线的位置关系来判断负载的大小,具体地,通过坐标位置与负载标识曲线的位置关系来确定电机所加载的负载的大小的步骤包括:确定与坐标位置最靠近的档位曲线;根据最靠近的档位曲线与电机所加载的负载的对应关系确定电机所加载的负载的大小。
进一步地,确定与坐标位置最靠近的档位曲线的步骤包括:确定坐标位置与多条档位曲线中每条档位曲线的最短距离;确定最短距离最小的档位曲线为与坐标位置最靠近的档位曲线。
本实施例中多条档位曲线每一条对应一个电机档位,也即是对应一个电机转速(或者转速范围),在电机工作的过程中,通过检测到第一运行参数和第二运行参数,确定 其对应的坐标位置,确定出该坐标位置与上述多条档位曲线的最短距离,并将最短距离最小的曲线对应的档位作为电机的当前档位,也即是将距离坐标位置的曲线作为电机的当前档位,然后调节电机到在该档位曲线对应的转速。其中,每个档位可以对应一个固定转速,即,如果确定出当前档位之后,则将电机的转速调节到该档位对应的固定转速。当然每个档位还可以对应一个转速区间,通过调节例如占空比、旱通角、电流等参数到一个设定值来调节转速。
可选地,确定与坐标位置最靠近的档位曲线的步骤包括:预先确定出多条档位曲线中每相邻两条档位曲线之间的中心线;确定坐标位置与中心线的相对位置;如果坐标位置在中心线的第一预设侧面,则将位于中心线的第一预设侧面且距离中心线最近的档位曲线确定为与坐标位置最靠近的档位曲线;如果坐标位置在中心线的第二预设侧面,则将位于中心线的第二预设侧面且距离中心线最近的档位曲线确定为与坐标位置最靠近的档位曲线。也即是在每相邻两条档位曲线之间,画出一条用于判断坐标位置的基准线(即中心线),以该中心线来判断坐标位置最靠近的档位曲线。
在电动工具通过工作头加工工件的过程中,随着工况和/或操作者通过工作头施加在工件上的力的变化,根据第一运行参数和第二运行参数确定的坐标位置也会发生变化。当坐标位置的变化旱致其最靠近的档位曲线发生变化时,表示电机所加载的负载发生了变化,对应的,将电机的转速由变化前的档位曲线对应的转速调节至变化后的档位曲线对应的转速,从而实现电机在带负载的情况下的转速调节。例如,如果检测到坐标位置最靠近的档位曲线从2A+曲线变到3A+曲线,则表示电机由小负载转为大负载,此时将电机的转速从2A+曲线对应的中速调节至3A+曲线对应的高速,也即是增大转速;如果检测到坐标位置最靠近的档位曲线从3A+曲线变到2A+曲线,则表示电机由大负载转为小负载,此时将电机的转速从3A+曲线对应的高速调节至2A+曲线对应的中速,也即是降低转速;其它调节方式同理,不再赘述。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,负载标识曲线为一条连续的匹配曲线,匹配曲线上的不同的点对应的电机所加载的负载大小不同,匹配曲线根据第一运行参数与第二运行参数之间的关系曲线获得,关系曲线为在第三运行参数取不同值的情况下第一运行参数与第二运行参数之间的关系曲线,第三运行参数与第一运行参数和第二运行参数均不同。也即是,通过一条匹配曲线来实现电机转速控制,从而实现电机的无级变转速。
可选地,如果以扭矩为第三运行参数,由在多个不同的扭力下电机的转速与占空比之间的关系曲线得到的匹配曲线作为转速调节曲线,具体地,先绘制多个不同的扭力下电机的转速与占空比之间的关系曲线,然后将电机使用中所需的最大扭力与最高转速匹配,最小扭力与最低转速匹配,连接成匹配曲线。需要说明的是,这里所述的最大扭力、最小扭力,以及最高转速和最低转速是指将电机应用到电动工具时,所需要的转速和扭力的边界点,而非电机本身的所具有的转速与扭力的边界点。
以图5所示的曲线为例,加入电机所需的最高转速为18500rpm,最低转速为1000rpm,那么最终的匹配曲线的最高点为0.15Nm的扭力下电机转速与占空比/旱通角 对应的曲线在转速为18500rpm时的点,最低点为0.05Nm的扭力下电机转速与占空比/导通角对应的曲线在转速为1000rpm时的点。
进一步地,通过坐标位置与负载标识曲线的位置关系来确定电机所加载的负载的大小的步骤包括:确定坐标位置相对匹配曲线的偏移方向;当坐标位置相对匹配曲线偏向第一预设方向时,确定电机所加载的负载增大;当坐标位置相对匹配曲线偏向第二预设方向时,确定电机所加载的负载减小。
第一预设方向和第二预设方向可以分别指曲线的下方或者上方,如图5所示,当坐标位于曲线上方时,表示其负载减小;反之则负载增大。具体地,在进行转速控制时,当坐标位置相对匹配曲线偏向第一预设方向时,调节电机的第一运行参数或者第二运行参数,直到调节后的第一运行参数和第二运行参数对应的坐标位置位于匹配曲线上;当坐标位置相对匹配曲线偏向第二预设方向时,调节电机的第一运行参数或者第二运行参数,直到调节后的第一运行参数和第二运行参数对应的坐标位置位于匹配曲线上。也即是,通过调节第一运行参数或者第二运行参数,使得坐标位置位于匹配曲线上。
作为对上述实施例的电动工具的控制方法的一种可选实施方式,第一运行参数为转速,第二运行参数与第三运行参数之间的组合包括以下之一:占空比与电流、旱通角与电流、电压与电流、功率与电压、扭矩与占空比、扭矩与导通角、扭矩与电压、占空比与功率、旱通角与功率。本实施例的功率可以是电机的输入功率,也可以是输出功率。
本发明实施例还提供了一种电动工具的控制装置,其中,电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头,该控制装置可以用于执行上述图1所示的控制方法,以控制电动工具的电机的转速。本发明实施例所述的电动工具可以是指电钻、螺丝批、摆动机、角磨、打草机、割灌机等电动工具,工作时电机带动输出轴转动,输出轴则驱动工作头工作。如图6所示,该控制装置包括:第一检测单元601和第一控制单元602。
第一检测单元601用于检测工作头施加在工件上的力。
第一控制单元602用于当工作头施加在工件上的力增大时,控制电机的转速增大。
工件是指待加工的物体,可以是自然物,也可以是非自然物。自然物如草、树枝等;非自然物如木板、铁板等。工作头施加在工件上的力可以是工作头对工件的压力,例如,电钻顶在待钻物上的压力,螺丝批对螺丝的压力等;该力也可以是其他的力。具体地,该力可以由电动工具操作者来施加,例如,当用户使用螺丝批时,可以通过下压或者上提等方式来改变工作头施加在工件上的力。如果电动工具为摆动机,则其工作头施加在工件上的力可以是摆动机的摆臂或摆盆上承受的压力的反作用力;如果电动工具为角磨机,则工作头施加在工件上的力可以是工件对转轮的压力的反作用力;如果电动工具为打草机或者割灌机,则工作头施加在工件上的力可以是草等植被对刀头的阻力的反作用力。
本实施例中,当检测到工作头施加在工件上的力增大时,控制电机的转速增大。根据力的相互作用原理,工作头施加在工件上的力与工件施加在工作头上的力相等,当工作头施加在工件上的力增大,工件施加在工作头上的力也相应增大,此时工作头上所 加载的负载增大,在大负载的情况下,使用大转速能够提高电动工具的工作效率。其中,负载增大可以是空载到负载的增大,也可以是小负载到大负载的增大。在此需要说明的是,空载可以是电动工具未加载的状态,也可以是电动工具加了一个非常小的负载的状态。
根据本发明实施例,通过检测工作头施加在工件上的力的变化,来控制电机的转速的变化,其中,当检测到的力增大时,控制电机的转速增大,从而达到依据用户需求和/或负载变化来调节电机转速的目的。具体的,当用户通过工作头施加在工件上的力不变,而工作头的工况发生改变使得负载增大时,工作头受到的工件对其的反作用力增大,相应地,电动工具检测到工作头施加在工件上的力增大,此时增大电机的转速即为根据负载变化来调节电机转速。当工况没有发生改变,但用户工作头施加在工件上的力增大时,电动工具检测到工作头施加在工件上的力增大,此时增大电机的转速即为根据用户需求来调节电机转速。再有,当用户工作头施加在工件上的力增大且工作头的工况发生改变使得负载增大时,电动工具同样会检测到工作头施加在工件上的力增大,此时增大电机的转速即为根据用户需求和负载变化来调节电机转速。
本发明还提供了一种电动工具的控制装置,其中,电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头,该控制装置可以用于执行上述图2所示的控制方法,以控制电动工具的电机的转速,电机包括空载状态和负载状态,如图7所示,该控制装置包括:
第二检测单元701用于当电机处于负载状态时,检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小;
第二控制单元702用于当电机所加载的负载增大时,控制电机的转速增大。
本实施例中,电机的负载状态可以包含按照负载大小划分的多等级负载,每个等级的负载对应一定范围或者一定数值的用于表征电机所加载的负载的参数。实时检测用于表征电机所加载的负载的参数,如果检测到的参数反映出电机所加载的负载增大时,则控制电机的转速增大,其具体控制方式可以是有级或者无级,本实施例并没有不当限定。
根据本发明实施例,通过检测用于表征电机所加载的负载的参数,实现电机在负载状态下的转速调节,实现在负载状态下,电机的转速随着电机所加载的负载的增大而增大,而非维持在同一个转速下,使得电动工具的工作更高效,更符合操作者的工作需求。
本发明还提供了一种电动工具的控制装置,其中,电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头,该控制装置可以用于执行上述图3所示的控制方法,以控制电动工具的电机的转速,电机所加载的负载至少包括空载、第一负载和第二负载,空载小于第一负载,第一负载小于第二负载,如图8所示,该控制装置包括:
第三检测单元801用于检测用于表征电机所加载的负载的参数,由参数来反映电机所加载的负载的大小;
第三控制单元802用于当电机所加载的负载由第一负载切换为第二负载时,控制电机的转速增大。
本实施例中,电机的负载状态可以包含多等级负载(如第一负载和第二负载),每 个等级的负载对应一定范围或者一定数值的用于表征电机所加载的负载的参数。实时检测用于表征电机所加载的负载的参数,如果检测到的参数反映出电机由第一负载切换为第二负载时(也即是负载增大),则控制电机的转速增大,其具体控制方式可以是有级或者无级,本实施例并没有不当限定。
根据本发明实施例,通过检测用于表征电机所加载的负载的参数,实现电机在负载状态下的转速调节。
本发明实施例还提供了一种电动工具,包括:电动工具包括电机、由电机驱动的输出轴、以及由输出轴驱动的工作头,该电动工具还包括本发明实施例提供的任一种的控制装置,用于控制电机的转速。该电动工具可以是电钻、螺丝批、角磨等电动工具,这里不做限定。
作为一种优选的实施方式,本实施例的电动工具还包括档位调节钮,用于选择电机转速的调节模式,调节模式包括手动调节模式和自动调节模式,也即是本发明实施例的电动工具的电机的转速调节,可以采用手动调节,也可以采用自动调节。该实施例中,该电动工具的电机转速的调节模式可以根据需要进行选择,其中,手动调节模式包括多个手动档位,可以通过调节上述档位调节钮来选择不同的手动档位,每个档位对应一个固定值或者范围的电机转速;自动调节模式则可以按照本发明上述实施例的控制方法对电机的转速进行自动调节,具体参见上述控制方法的描述部分,这里不再赘述。
本实施例中,档位调节钮可以是旋转式调节钮,也可以是滑动式、拨动式等方式,其调节方式不限。电动工具上还设置有N块手动档位区和自动调节区,在进行转速调节时,将档位调节钮调节到对应的手动档位区或者自动调节区,以按照每个区域对应的调节方式进行电机的转速调节。具体地,当档位调节钮调节到N块手动档位区中任一手动档位区时,则控制装置将电机的转速调节到该手动档位区对应的转速;当档位调节钮调节到自动调节区时,则控制装置执行本发明上述实施例的控制方法以控制电机的转速,具体参见上述控制方法的描述部分,这里不再赘述。
为了便于描述本发明实施例通过档位调节钮对电机转速调节的过程,下面以图9至11所示的电动工具来进行详细介绍。
如图9和10所示,在该电动工具上设置有档位调节钮B,其放大后的示意图如图11所示。该档位调节钮B为旋转式调节钮,当旋转档位调节钮B时,其外沿绕中心轴旋转。其中,档位调节钮B划分为多个扇形区,数字1至5表示手动档位区,A表示自动调节区,G为固定位置的标识,在进行转速调节时,将需要调节的区域旋转到标识G所指示的位置,则控制装置按照该区域对应的调节模式进行电机转速控制。
例如,用户在使用该电动工具时,可以通过旋转该档位调节钮B实现手动档位调节。当用户将档位调节钮B旋转至1挡时(即将“1”对应的区域旋转到标识G所指示的位置),产生相应的控制命令,控制装置接收该调节的控制命令,并基于该控制命令控制电机的转速变为1挡对应的转速;当由1挡调节到2挡时(即标识G所指示的位置对应的区域由“1”旋转到“2”),再次产生相应的控制命令,由控制装置执行该控制命令以将电机的转速由1挡对应的转速变为2挡对应的转速,其他手动档位调节依次类推。
当用户将按钮转到A位置时(即将“A”对应的区域旋转到标识G所指示的位置),也产生相应的控制命令,命令控制装置采用自动转速调节的方式对电机的转速进行控制。具体地,控制装置执行上述实施例电动工具的控制方法以对电机的转速进行自动调节,可以是有级转速调节,或者是无级转速调节,具体可以参见上述实施例,这里不再赘述。
在一个实施例中,提供一种电动工具的调速控制方法,尤其适应于无刷电动工具的调速,例如,打草机、割草机和电钻等。本实施例中,电动工具的转速实际上主要是指电机的转速,该调速控制方法可以是上述实施例中电动工具的控制方法的一种可选实施方式。
具体的,如图12所示,该方法包括以下步骤:
S121:获取电动工具的当前工作参数。
当前工作参数是指电动工具在当前工作状态下的工作参数,尤其是随着电动工具的负载变化而发生变化的工作参数,例如,当前工作电流和当前工作电压等。在输出功率恒定的情况下,电动工具在负载增大时,电流减小,电压减小。本实施例中所述的工作参数与上述实施例中所述的用于表征电机所加载的负载大小的参数可以是指相同的参数,后面所述的工作参数同理,将不再赘述。
S122:根据当前工作参数确定电动工具的目标转速。
具体的,预先设定不同的当前工作参数与目标转速的对应关系。一种实施方式的当前工作参数与目标转速的对应关系为当前工作参数与目标转速曲线,根据当前工作参数与目标转速曲线确定当前工作参数所对应的目标转速。在另一种实施方式中,预先设定不同的阈值,以及根据阈值划分的设定区间对应的目标转速。通过将当前工作参数与阈值进行比较,确定所属设定区域,从而得到对应的目标转速。
S123:获取电动工具的当前转速。
电动工具的当前转速即电机的当前转速。以打草机为例,打草机的电机的转速为3000转/分钟,即打草机的切割速度为3000转/分钟。电机的当前转速可采用转速传感器进行进行测量。例如,霍尔转速传感器、电容式转速传感器、变磁阻式转速传感器或光电转速传感器。
S124:计算目标转速与当前转速的偏差。
S125:根据偏差生成对应的控制信号,并将控制信号发送给电动工具的电机以控制电动工具调整至目标转速。
具体的,根据目标转速与当前转速的偏差得到控制量及控制量对应的控制信号,以控制电动工具调整至目标转速。本实施例中,可采用PI控制器或PID控制器,根据目标转速与当前转速的偏差将偏差的比例和积分通过线性组合构成控制量。
以打草机为例,当打草机的草况由密度低的草坪切换到密度高的草坪时,负载变大,打草机负载较大时,电流减小,此时,若仍以较原来的切割速度进行切割,切割效率慢。而采用本实施例的电动工具的调速控制方法,本实施例的工作参数以电流为例,当检测到打草机的电流变化时,根据当前的电流确定对应的目标转速,根据目标转速与当前转 速的偏差,控制电动工具调整至更大的目标转速,从而使打草机调整至与草况对应的转速,适应负载变大的草况,提高打草机的切割效率。
本实施例的电动工具的调速控制方法,通过根据当前工作参数确定电动工具的目标转速,根据目标转速与当前转速的偏差生成对应的控制信号以控制电动工具调整至目标转速。由于当前工作参数与电动工具的目标转速对应,当当前工作参数发生变化时,能够根据变化后的当前工作参数确定目标转速,从而避免当负载变高时,电动工具的转速慢,使得工作效率降低,也能够避免负载变低时,电动工具仍保持较快的转速,造成资源浪费。因此,该电动工具的调速控制方法能够有效的提高工作效率,并节省资源。
在另一实施例中,如图13所示,步骤S122包括:
S1221:初始化N=1。
S1222:判断当前工作参数是否大于等于第N阈值且小于第N+1阈值。
若是,则执行步骤S1223:确定第N转速为目标转速。
若否,则执行步骤S1224:令N=N+1,并返回执行步骤S1222。
本实施例中,预先对工作参数设置N个阈值,N个阈值对应构成N-1个调整区域,每个调整区域对应不同的目标转速。一种实施方式的调整区域与目标转速对应表如表1所示。
表1 调整区域与目标转速对应表
调整区域 [L1,L2) [L2,L3) [L3,L4) [L4,L5) [L5,L6) [L6,L7]
目标转速 V1 V2 V3 V4 V5 V6
本实施例中,预先设定阈值得到不同的设定区域,并对每个设定区域设定目标转速。在获取到当前工作参数时,通过将当前工作参数依次与阈值进行比较,从而确定当前工作参数所属的设定区域,得到对应的目标转速。
本实施例的电动工具的调速控制方法,尤其适应于除草设备的调速,除草设备包括割草机和打草机。除草设备在草密度变大和湿度变大情况下,负载相应变大。随着负载的增大,电流和电压相应的减小。因此,本实施例中的当前工作参数为电流或电压。当检测到除草设备的电流或电压变化时,根据电流或电压确定目标转速以控制电动工具调整至目标转速,调整后的转速适应当前的草况,能够避免当负载变高时,除草设备的电机转速慢,使得电动工具的工作效率降低,也能够避免负载变低时,电动工具还保持较快的转速,造成资源浪费。
在一个实施例中,提供一种电动工具的调速控制器,该电动工具的调速控制器可以是上述实施例中电动工具的控制装置的一种优选实施方式,如图14所示,该电动工具的调速控制器包括:
工作参数获取模块302,用于检测电动工具的当前工作参数。
当前工作参数是指电动工具在当前工作状态下的工作参数,尤其是随着电动工具的负载变化而发生变化的工作参数,例如,当前工作电流和当前工作电压等。在输出功率恒定的情况下,电动工具在负载增大时,电流减小,电压减小。
目标转速确定模块304,用于根据当前工作参数确定电动工具的目标转速。
具体的,预先设定不同的当前工作参数与目标转速的对应关系。一种实施方式的当前工作参数与目标转速的对应关系为当前工作参数与目标转速曲线,根据当前工作参数与目标转速曲线确定当前工作参数所对应的目标转速。在另一种实施方式中,预先设定不同的阈值,以及根据阈值划分的设定区间对应的目标转速。通过将当前工作参数与阈值进行比较,确定所属设定区域,从而得到对应的目标转速。
当前转速获取模块306,用于测量电动工具的当前转速。
电动工具的当前转速即电机的当前转速。以打草机为例,打草机的电机的转速为3000转/分钟,即打草机的切割速度为3000转/分钟。电机的当前转速可采用转速传感器进行测量。例如,霍尔转速传感器、电容式转速传感器、变磁阻式转速传感器或光电转速传感器。
计算模块308,用于计算目标转速与当前转速的偏差。
调整模块310,用于根据偏差生成对应的控制信号,并将控制信号发送给电动工具的电机以控制电动工具调整至目标转速。
具体的,根据目标转速与当前转速的偏差得到控制量及控制量对应的控制信号,以控制电动工具调整至目标转速。本实施例中,可采用PI控制器或PID控制器,根据目标转速与当前转速的偏差将偏差的比例和积分通过线性组合得到控制量。
以打草机为例,当打草机的草况由密度低的草坪切换到密度高的草坪时,负载变大,打草机负载较大时,电流减小,此时,若仍以较原来的切割速度进行切割,切割效率慢。而采用本实施例的电动工具的调速控制器,本实施例的工作参数以电流为例,当检测到打草机的电流变化时,根据当前的电流确定对应的目标转速,根据目标转速与当前转速的偏差,控制电动工具调整至更大的目标转速,从而使打草机调整至与草况对应的转速,适应负载变大的草况,提高打草机的切割效率。
本实施例的电动工具的调速控制器,通过根据当前工作参数确定电动工具的目标转速,根据目标转速与当前转速的偏差生成对应的控制信号以控制电动工具调整至目标转速。由于当前工作参数与电动工具的目标转速对应,当当前工作参数发生变化时,能够根据变化后的当前工作参数确定目标转速,从而避免当负载变高时,电动工具的转速慢,使得工作效率降低,也能够避免负载变低时,电动工具仍保持较快的转速,造成资源浪费。因此,该电动工具的调速控制器能够有效的提高工作效率,并节省资源。
在一个实施例中,如图15所示,目标转速确定模块304包括:初始化模块3041、判断模块3042、赋值模块3043和处理模块3044;
初始化模块3041,用于初始化N=1;
判断模块3042,用于判断当前工作参数是否大于等于第N阈值且小于第N+1阈值;
处理模块3044,用于在判断模块的判断结果为是时,确定第N转速为目标转速。
赋值模块3043,用于在判断模块的判断结果为否时,令N=N+1。
本实施例中,预先对工作参数设置N个阈值,N个阈值对应构成N-1个调整区域,每个调整区域对应不同的目标转速。一种实施方式的调整区域与目标转速对应表如表1所示。
本实施例中,预先设定阈值得到不同的设定区域,并对每个设定区域设定目标转速。在获取到当前工作参数时,通过将当前工作参数依次与阈值进行比较,从而确定当前工作参数所属的设定区域,得到对应的目标转速。
本实施例的电动工具的调速控制器,尤其适应于除草设备的调速,除草设备包括割草机和打草机。除草设备在草密度变大和湿度变大情况下,负载相应变大。随着负载的增大,电流和电压相应的减小。因此,本实施例中的当前工作参数为电流或电压。当检测到除草设备的电流或电压变化时,根据电流或电压确定目标转速以控制电动工具调整至目标转速,调整后的转速适应当前的草况,能够避免当负载变高时,除草设备的电机转速慢,使得电动工具的工作效率降低,也能够避免负载变低时,电动工具还保持较快的转速,造成资源浪费。
在一个实施例中,如图16所示,提供一种电动工具,包括检测电路502、传感器504、电机506和上述的电动工具的调速控制器,检测电路502与传感器504分别与电动工具的调速控制器508连接,电动工具的调速控制器508与电机506连接。该电动工具可以是上述实施例提供的电动工具的一种优选实施方式。
检测电路502检测电动工具的当前工作参数,并将当前工作参数发送至电动工具的调速控制器508,传感器504检测电动工具的当前转速,并将当前转速发送至电动工具的调速控制器508。
电机506根据控制信号调整转速至目标转速。
本实施例的电动工具,通过检测电路检测的当前工作参数确定电动工具的目标转速,通过传感器检测电动工具的当前转速,调速控制器根据目标转速与当前转速的偏差生成对应的控制信号以控制电机调整至目标转速。由于当前工作参数与电动工具的目标转速对应,当当前工作参数发生变化时,能够根据变化后的当前工作参数确定目标转速,从而避免当负载变高时,电动工具的电机转速慢,使得工作效率降低,也能够避免负载变低时,还保持较快的转速,造成资源浪费。因此,该电动工具能够有效的提高工作效率,并节省资源。
在一个实施例中,传感器为霍尔转速传感器、电容式转速传感器、变磁阻式转速传感器和光电转速传感器中的任意一种。通过采用传感器检测电机的转速。
在一个实施例中,检测电路为电流检测电路或电压检测电路。电流检测电路检测电动工具的当前工作电流,电压检测电路检测电动工具的当前工作电压。
在另一个实施例中,电动工具的调速控制器为PI控制器。本实施例中,可采用PI控制器,根据目标转速与当前转速的偏差将偏差的比例和积分通过线性组合构成控制量得到控制量,从而实现转速的精确调节。
在另一个实施例中,电动工具为除草设备,具体为割草机或打草机。
本发明还提供一种电动工具的电机转速控制方法,可以用于各种使用电机来驱动工作头的电动工具中,例如多功能机。该控制方法用来根据电动工具的负载情况适时改变电机的转速,使电机能够在空载、不同级别负载的工况下具有不同的转速,达到改善用户体验、节约电力、提高作业可靠性等目的。该电机转速控制方法可以是上述实施例中 电动工具的控制方法的一种可选实施方式。
参图17,本发明的电动工具的电机转速控制方法包括以下步骤:
S171、检测电机的至少两个可表示电动工具负载的参数。参数为电机的电压有效值、电流有效值、电压峰值、电流峰值、转速及可控硅旱通角中的一个。可以同时检测两个这样的参数,也可以同时检测两个以上,如三个、四个等。本实施例中所述的可表示电动工具负载的参数与上述实施例中所述的用于表征电机所加载的负载大小的参数以及工作参数可以是指相同的参数,均为能够反映电机所加载的负载大小的参数,后面所述的可表示电动工具负载的参数同理,将不再赘述。
S172、获得所述至少两个参数的乘积。参数获取后,它们的乘积也随即可以计算得到。自然地,这里的乘积可以是两个或两个以上参数的乘积。
S173、根据所述乘积生成控制信号以改变所述电机的转速。控制信号被用于使电机的转速增大或减小。控制信号可以即时生成或者延迟预定的时间生成。控制信号延迟生成的预定时间可以由操作者自己设定。
根据所述乘积生成控制信号以改变所述电机的转速的步骤,有多种实现的方式。例如:
方案一、获取单位时间内所述乘积的平均值;判断所述平均值是否位于预设范围;所述平均值位于所述预设范围,则将所述电机的转速调整为相对应的预设的标准值。前文已叙,可以同时检测相关参数中的两个以上并获得他们的乘积。而表2则示意出了部分参数与负载级别判断之间的关系。
Figure PCTCN2016097642-appb-000001
Figure PCTCN2016097642-appb-000002
表2
下面结合表2,简要说明如何利用相关参数的乘积来生成控制信号,进而改变电机转速。
方法1:
通过检测电机的电压有效值和电流有效值的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景。如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。这里所述的空载场景与上述实施例中所述的空载状态表示的含义相同,加载场景与上述实施例中的负载状态所表示的含义相同,后面的同理,将不再赘述。
具体地,假设电机的电压有效值和电流有效值的乘积为Y,单位时间设定为20ms,每隔2ms检测一次,则可以获得10个这样的乘积Y1、Y2、……Y10,进而可以计算得到20ms内的乘积平均值,公式为Y平均=(Y1+……Y10)/20。
然后将Y平均与第一、第二、第三预设范围0~A、A~B、B~C进行对比。上述三个范 围为预设的或者用户自定义的范围,对应不同的负载情况,且对应预设有不同的标准转速。此处,设定第一预设范围0~A代表电动工具空载,对应预设有空载转速;第二预设范围A~B为I级加载,对应地有I级加载转速;第三预设范围B~C为II级加载,对应地有II级加载转速。II级加载的转速大于I级加载的转速。
如果0≤Y平均≤A,即Y平均在0~A范围内,则判断电动工具处于空载场景,此时生成控制信号改变电机的转速,将电机的转速调整为空载转速。如果A<Y平均≤B,即Y平均在A~B范围内,则判断电动工具处于I级加载场景,此时生成控制信号改变电机的转速,将电机的转速调整为I级加载转速。如果B<Y平均≤C,即Y平均在B~C范围内,则判断处于II级加载场景,此时生成控制信号改变电机的转速,将电机的转速调整为II级加载转速。
电动工具开机启动时,通常是先处于空载场景,因此利用上述控制方法可以使电动工具在开机时,电机的转速能以预设的空载转速运转。而空载时电机以较低的转速运转即可。因此,利用上述控制方法可以实现开机低速的目的,而由于开机低速也使得开机时的握持感较好。而在加载场景,又可以根据负载级别来适时调整转速,适合不同初级、发烧友等不同层次消费者的需求。
上面的描述中,以预设三个比较范围和三个对应的预设标准转速为例说明如何控制电机转速改变。当然,并不以三个比较范围为限制。即设置的范围可以少于或多于0~A,A~B,B~C三个范围。
上述方法中,同时检测多个参数并计算获得至少两个参数的乘积,然后根据乘积生成控制电机转速的控制信号。这样,一方面能根据负载不同,快速地对电机转速进行控制;另一方面同时检测多个参数,在防止电网波动、噪声干扰引起的变化方面起到很好抑制作用,从而可靠地对电机转速进行控制。
方法2:
通过检测电机的电压有效值和电流峰值在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法3:
通过检测电机的电压有效值和转速的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法4:
通过检测电机的电压有效值和可控硅旱通角的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法5:
通过检测电机的电压峰值和电流有效值的乘积在单位时间内的平均值来判断电动 工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法6:
通过检测电机的电压峰值和电流峰值的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法7:
通过检测电机的电压峰值和转速乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法8:
通过检测电机的电压峰值和可控硅旱通角的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法9:
通过检测电机的电流有效值和转速的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法10:通过检测电机的电流有效值和可控硅旱通角的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法11:
通过检测电机的电流峰值和可控硅旱通角的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方法12:
通过检测电机的电流峰值和转速的乘积在单位时间内的平均值来判断电动工具是否在空载或加载场景,如果在空载场景,电动工具自动档低转速运行,如果在加载场景,根据不同的乘积值自动设置在不同转速。具体实施方式与方法1相同,不再赘述。
方案二、判断所述乘积是否位于预设范围;所述乘积位于所述预设范围,则将所述电机的转速调整为相对应的预设的标准值。
方案二的方法与方案一的原理相同,区别在于,方案二中,直接利用两个及以上参数的乘积与预设范围对比,然后判断电动工具处于哪一个级别的加载场景,进而生成控 制信号将电机的转速调整为与加载级别相匹配的预设标准值。当然,方案二中的预设范围与方案一中的预设范围是不同的。
方案三、获取多段单位时间内所述乘积的平均值的和再求平均值;判断所述再求的平均值是否位于预设范围;所述再求的平均值位于所述预设范围,则将所述电机的转速调整为相对应的预设的标准值。
方案三的原理与方案一的原理亦相同,区别在于,方案三中,利用的是多个乘积的平均值的和的平均值。
假设电机的电压有效值和电流有效值的乘积为Y,单位时间设定为20ms,每隔2ms检测一次,则可以获得10个这样的乘积Y1、Y2、……Y10,进而可以计算得到20ms内的乘积平均值,公式为Y平均=(Y1+……Y10)/20。
进一步地,获取多个前述乘积平均值Y平均,例如,获取100ms内的5个这样的平均值,然后再求得这5个平均值和的平均值。如果再次求得的平均值位于预设范围,则将电机的转速调整为相对应的预设的标准值。
方案四、将乘积、乘积在单位时间内的平均值或多段单位时间内所述乘积的平均值的和再求的平均值与预设值比较,所述预设值包括第一、第二、第三预设值,其中,所述乘积、乘积的平均值或多段单位时间内所述乘积的平均值的和再求的平均值小于等于第一预设值时,转速调整为第一转速;大于等于第二预设值时,转速调整为第二转速,第二转速大于第一转速;当所述乘积介于第一、第二预设值之间时,转速调整为第三转速,第三转速介于第一、第二转速之间。
以直接利用多个参数的乘积为例进行说明。预先设定第一、第二、第三预设值,其中第一预设值设定为空载状态的临界值,第二预设值为II级加载的临界值。当乘积小于等于第一预设值,转速调整为较小的第一转速;当大于等于第二预设值时,转速调整为大于第一转速的第二转速,以应对负载的增加;当乘积介于第一、第二预设值之间时,说明负载大于空载状态,但又小于II级加载的负载,此时为I级加载,将转速调整为第三转速,第三转速介于第一、第二转速之间。
本发明还提供了一种可执行上述控制方法的电动工具。该电动工具可以是上述实施例的提供的电动工具的一种优选实施方式。图18和图19为这种电动工具的原理框图。
电动工具包括电源模块110、档位设置模块120、控制模块130、输出模块140、第一检测模块150、第二检测模块160及信号放大模块170。
电源模块110,用以给档位设置模块120、控制模块130、输出模块140、第一检测模块150、第二检测模块160及信号方法模块170提供工作电压。电源模块110可以是直流电源模块,也可以是包含降压零部件的交流高电压电源模块。例如,可以是交流高电压电源模块通过阻容降压、变压器降压、电阻降压及其他类似降压方法降压提供5V的工作电源。
档位设置模块120,用以向控制模块130输出不同的电压、电流或功率值,由控制模块130处理后输出不同的转速控制信号。例如,可通过不同电阻阻值、电容值等判定工作在手动档或自动挡,从而输出不同强度的信号给控制模块130。这里的档位设置模 块120可以是指图9至11所述的档位调节钮B,档位调节钮B可以是该档位设置模块120的一种具体实施方式。
控制模块130,通过对档位设置模块120的信号处理,确定实现手动调节转速或自动变转速功能;通过第二检测模块160确定实现开机低速或者自动变转速且变到多少转速适应不同工作场景功能。在手动档开机时,控制模块130控制输出不同的转速;在自动档时,控制模块130控制自动变化转速。具体地,控制模块130用以获得第二检测模块160检测到的至少两个输出模块140的参数的乘积,及根据所述乘积生成控制信号以改变输出模块140的转速。进一步地,控制模块130被设置成可以利用前述三种方案中的任一种来控制输出模块140的转速。控制模块130可以是上述实施例中所述的电动工具的控制装置或者电动工具的调速控制器的一种优选实施方式。
输出模块140为电机,其用于输出旋转运动,以直接或间接地驱动工作头工作。
参图18,手动档模式下,第一检测模块150,用于实时监测输出模块140的转速并将信号传送给控制模块130。
参图19,自动档模式下,第二检测模块160,用于检测输出模块140的转速、电压、电流、硅旱通角等能代表负载情况的参数并传输给控制模块130进行信号处理。
信号放大模块170,用于在自动档模式下将第二检测模块160的信号进行放大处理,便于控制模块130准确且有效的处理,进而生成控制信号。
下面结合图20,简要描述如何利用上述电动工具执行上述控制方法。
参图20,执行流程大致如下:
(1)开机后,控制模块130判断是否在自动档(auto档)。如果不在自动档而在手动档位,则根据不同档位预先设置的转速,控制电机输出相应的转速。以5档手挡+自动档为例(如图9至11所示的电动工具),可通过调节可控硅旱通角,预先设置不同的转速。如,一般1档对应转速为9500r/min,上下偏差10%亦可。其他档位转速设置类似,不再一一赘述。
(2)若判断为自动档,则检测电机的电压有效值和电流有效值。
(3)判断电机电压电流有效值乘积某段时间内平均值是否在0~A范围内,是,则判定为空载场景,通过调节可控硅旱通角,将电机的转速调整为10000r/min,上下偏差10%亦可。否,则继续判断是否落入其他范围。
(4)判断电机电压电流有效值乘积某段时间内平均值是否在A~B范围内,是,则判定为I级加载场景,通过调节可控硅旱通角,将电机的转速调整为13500r/min,上下偏差10%亦可。否,则继续判断是否落入其他范围。
(5)判断电机电压电流有效值乘积某段时间内平均值是否在B~C范围内,是,则判定为II级加载场景,通过调节可控硅旱通角,将电机的转速调整为18500r/min,下偏差10%亦可。
由此可见,利用前述的控制方法,上述电动工具可实现根据负载级别的变化,适时改变电机转速。同时检测多个参数,在防止电网波动、噪声干扰引起的变化方面起到很好抑制作用,从而可靠地对电机转速进行控制。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引旱计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (26)

  1. 一种电动工具的控制方法,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,其特征在于,所述控制方法包括:
    检测所述工作头施加在工件上的力;
    当所述工作头施加在工件上的力增大时,控制所述电机的转速增大。
  2. 根据权利要求1所述的控制方法,其特征在于,检测所述工作头施加在工件上的力包括:检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小,其中,当所述工作头施加在工件上的力增大时,所述电机所加载的负载增大。
  3. 根据权利要求2所述的控制方法,其特征在于,所述电机包括空载状态和负载状态,当所述电机处于负载状态且所述电机所加载的负载增大时,控制所述电机的转速增大。
  4. 一种电动工具的控制方法,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机包括空载状态和负载状态,其特征在于,所述控制方法包括:
    当电机处于负载状态时,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;
    当所述电机所加载的负载增大时,控制所述电机的转速增大。
  5. 一种电动工具的控制方法,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机所加载的负载至少包括空载、第一负载和第二负载,所述空载小于所述第一负载,所述第一负载小于所述第二负载,其特征在于,所述控制方法包括:
    检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;
    当所述电机所加载的负载由所述第一负载切换为所述第二负载时,控制所述电机的转速增大。
  6. 根据权利要求4-5任意一项所述的控制方法,其特征在于,当所述电机所加载的负载为所述第一负载时,控制所述电机处于第一负载转速;当所述电机所加载的负载为所述第二负载时,控制所述电机处于第二负载转速;所述第一负载转速低于所述第二负载转速;当所述电机所加载的负载由所述第一负载切换为所述第二负载时,控制所述电机的转速由所述第一负载转速切换为所述第二负载转速。
  7. 根据权利要求3-5任意一项所述的控制方法,其特征在于,当所述电机由负载状态切换为空载状态时,控制所述电机的转速减小;当所述电机由空载状态切换为负载状态时,控制所述电机的转速增大。
  8. 根据权利要求1-3任意一项所述的控制方法,其特征在于,
    当所述工作头施加在工件上的力减小时,控制所述电机的转速减小或者保持不变。
  9. 根据权利要求2-5任意一项所述的控制方法,其特征在于,检测用于表征所述 电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小的步骤包括:
    检测电机的运行参数;
    确定所述运行参数所处的参数区间,其中,不同的参数区间对应不同大小的负载;
    根据确定出的参数区间确定所述电机所加载的负载大小。
  10. 根据权利要求2-5任意一项所述的控制方法,其特征在于,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小的步骤包括:
    检测电机的第一运行参数和第二运行参数,所述第一运行参数和第二运行参数为不同的参数;
    确定所述第一运行参数和第二运行参数对应的坐标在预设坐标系中的坐标位置,所述预设坐标系以第一运行参数和第二运行参数分别作为坐标轴;
    通过所述坐标位置与负载标识曲线的位置关系来确定所述电机所加载的负载的大小,所述负载标识曲线为在预设坐标系上反应第一运行参数和第二运行参数与所述电机所加载的负载的大小的对应关系的曲线。
  11. 根据权利要求10所述的控制方法,其特征在于,所述负载标识曲线包括多条档位曲线,不同的档位曲线对应的所述电机所加载的负载大小不同,所述档位曲线根据第一运行参数与第二运行参数之间的关系曲线获得,所述关系曲线为在第三运行参数取特定值的情况下所述第一运行参数与所述第二运行参数之间的关系曲线,所述第三运行参数与所述第一运行参数和所述第二运行参数均不同,在所述第三运行参数取不同值的情况下获得多条关系曲线。
  12. 根据权利要求11所述的方法,其特征在于,将获得的所述关系曲线作为所述档位曲线,或者,将获得的所述关系曲线进行修正后得到所述档位曲线。
  13. 根据权利要求11所述的方法,其特征在于,通过所述坐标位置与负载标识曲线的位置关系来确定所述电机所加载的负载的大小的步骤包括:
    确定与所述坐标位置最靠近的档位曲线;
    根据所述最靠近的档位曲线与所述电机所加载的负载的对应关系确定所述电机所加载的负载的大小。
  14. 根据权利要求13所述的方法,其特征在于,确定与所述坐标位置最靠近的档位曲线的步骤包括:
    确定所述坐标位置与所述多条档位曲线中每条档位曲线的最短距离;
    确定最短距离最小的档位曲线为与所述坐标位置最靠近的档位曲线。
  15. 根据权利要求13所述的方法,其特征在于,确定与所述坐标位置最靠近的档位曲线的步骤包括:
    预先确定出所述多条档位曲线中每相邻两条档位曲线之间的中心线;
    确定所述坐标位置与所述中心线的相对位置;
    如果所述坐标位置在所述中心线的第一预设侧面,则将位于所述中心线的第一预设 侧面且距离所述中心线最近的档位曲线确定为与所述坐标位置最靠近的档位曲线;
    如果所述坐标位置在所述中心线的第二预设侧面,则将位于所述中心线的第二预设侧面且距离所述中心线最近的档位曲线确定为与所述坐标位置最靠近的档位曲线。
  16. 根据权利要求10所述的控制方法,其特征在于,所述负载标识曲线为一条连续的匹配曲线,所述匹配曲线上的不同的点对应的所述电机所加载的负载大小不同,所述匹配曲线根据第一运行参数与第二运行参数之间的关系曲线获得,所述关系曲线为在第三运行参数取不同值的情况下所述第一运行参数与所述第二运行参数之间的关系曲线,所述第三运行参数与所述第一运行参数和所述第二运行参数均不同。
  17. 根据权利要求16所述的控制方法,其特征在于,通过所述坐标位置与负载标识曲线的位置关系来确定所述电机所加载的负载的大小的步骤包括:
    确定所述坐标位置相对所述匹配曲线的偏移方向;
    当所述坐标位置相对所述匹配曲线偏向第一预设方向时,确定所述电机所加载的负载增大;
    当所述坐标位置相对所述匹配曲线偏向第二预设方向时,确定所述电机所加载的负载减小。
  18. 根据权利要求17所述的控制方法,其特征在于,当所述工作头施加在工件上的力增大时,控制电机的转速增大的步骤包括:当所述坐标位置相对所述匹配曲线偏向所述第一预设方向时,调节所述电机的第一运行参数或者第二运行参数,直到调节后的所述第一运行参数和所述第二运行参数对应的坐标位置位于所述匹配曲线上。
  19. 根据权利要求17所述的控制方法,其特征在于,所述控制方法还包括以下步骤:当所述坐标位置相对所述匹配曲线偏向所述第二预设方向时,调节所述电机的第一运行参数或者第二运行参数,直到调节后的所述第一运行参数和所述第二运行参数对应的坐标位置位于所述匹配曲线上。
  20. 根据权利要求16所述的控制方法,其特征在于,所述第一运行参数为转速,所述第二运行参数与所述第三运行参数之间的组合包括以下之一:占空比与电流、导通角与电流、电压与电流、功率与电压、扭矩与占空比、扭矩与导通角、扭矩与电压、占空比与功率、导通角与功率。
  21. 一种电动工具的控制装置,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,其特征在于,所述控制装置包括:
    第一检测单元,用于检测所述工作头施加在工件上的力;
    第一控制单元,用于当所述工作头施加在工件上的力增大时,控制所述电机的转速增大。
  22. 一种电动工具的控制装置,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机包括空载状态和负载状态,其特征在于,所述控制装置包括:
    第二检测单元,用于当电机处于负载状态时,检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;
    第二控制单元,用于当所述电机所加载的负载增大时,控制所述电机的转速增大。
  23. 一种电动工具的控制装置,所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,所述电机所加载的负载至少包括空载、第一负载和第二负载,所述空载小于所述第一负载,所述第一负载小于所述第二负载,其特征在于,所述控制装置包括:
    第三检测单元,用于检测用于表征所述电机所加载的负载的参数,由所述参数来反映所述电机所加载的负载的大小;
    第三控制单元,用于当所述电机所加载的负载由所述第一负载切换为所述第二负载时,控制所述电机的转速增大。
  24. 一种电动工具,包括:所述电动工具包括电机、由电机驱动的输出轴、以及由所述输出轴驱动的工作头,其特征在于,还包括权利要求21至23任一项所述的控制装置,用于控制所述电机的转速。
  25. 根据权利要求24所述的电动工具,其特征在于,还包括档位调节钮,用于选择所述电机转速的调节模式,所述调节模式包括手动调节模式和自动调节模式。
  26. 根据权利要求25所述的电动工具,其特征在于,在所述电动工具上与所述档位调节钮对应设置有多块手动档位区和自动调节区,其中,
    当所述档位调节钮调节到所述多块手动档位区中任一手动档位区时,则所述控制装置将所述电机的转速调节到该手动档位区对应的转速;
    当所述档位调节钮调节到所述自动调节区时,则所述控制装置执行权利要求1至5任一项所述的控制方法以控制所述电机的转速。
PCT/CN2016/097642 2015-09-02 2016-08-31 一种电动工具的控制方法、装置和电动工具 WO2017036401A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510556249 2015-09-02
CN201510556249.5 2015-09-02
CN201610599258.7 2016-07-27
CN201610599258 2016-07-27
CN201610736871.9 2016-08-26
CN201610736871.9A CN106487286A (zh) 2015-09-02 2016-08-26 一种电动工具的控制方法、装置和电动工具

Publications (1)

Publication Number Publication Date
WO2017036401A1 true WO2017036401A1 (zh) 2017-03-09

Family

ID=58186733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097642 WO2017036401A1 (zh) 2015-09-02 2016-08-31 一种电动工具的控制方法、装置和电动工具

Country Status (1)

Country Link
WO (1) WO2017036401A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343494A (zh) * 2017-06-19 2017-11-14 中国烟草总公司广东省公司 农用智能除草系统及除草方法
US11878403B2 (en) 2018-12-20 2024-01-23 Makita Corporation Rotary tool
WO2024046498A1 (zh) * 2022-08-30 2024-03-07 江苏东成工具科技有限公司 一种电动工具及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154242A (en) * 1990-08-28 1992-10-13 Matsushita Electric Works, Ltd. Power tools with multi-stage tightening torque control
US5637968A (en) * 1993-10-25 1997-06-10 The Stanley Works Power tool with automatic downshift feature
CN101358456A (zh) * 2008-08-29 2009-02-04 三一重工股份有限公司 一种平地机控制方法、系统及平地机
CN201222872Y (zh) * 2008-07-23 2009-04-22 上海沃施园艺用品制造有限公司 变频电动草坪机
CN102300677A (zh) * 2009-02-02 2011-12-28 日立工机株式会社 电动钻孔工具
CN104218868A (zh) * 2013-05-30 2014-12-17 南京德朔实业有限公司 冲击类紧固工具转速控制方法
CN204235514U (zh) * 2013-05-31 2015-04-01 日立工机株式会社 电动工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154242A (en) * 1990-08-28 1992-10-13 Matsushita Electric Works, Ltd. Power tools with multi-stage tightening torque control
US5637968A (en) * 1993-10-25 1997-06-10 The Stanley Works Power tool with automatic downshift feature
CN201222872Y (zh) * 2008-07-23 2009-04-22 上海沃施园艺用品制造有限公司 变频电动草坪机
CN101358456A (zh) * 2008-08-29 2009-02-04 三一重工股份有限公司 一种平地机控制方法、系统及平地机
CN102300677A (zh) * 2009-02-02 2011-12-28 日立工机株式会社 电动钻孔工具
CN104218868A (zh) * 2013-05-30 2014-12-17 南京德朔实业有限公司 冲击类紧固工具转速控制方法
CN204235514U (zh) * 2013-05-31 2015-04-01 日立工机株式会社 电动工具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343494A (zh) * 2017-06-19 2017-11-14 中国烟草总公司广东省公司 农用智能除草系统及除草方法
US11878403B2 (en) 2018-12-20 2024-01-23 Makita Corporation Rotary tool
WO2024046498A1 (zh) * 2022-08-30 2024-03-07 江苏东成工具科技有限公司 一种电动工具及控制方法

Similar Documents

Publication Publication Date Title
CN106487286A (zh) 一种电动工具的控制方法、装置和电动工具
WO2017036401A1 (zh) 一种电动工具的控制方法、装置和电动工具
JP6846929B2 (ja) 負荷応答電動ツール
CN105473287B (zh) 电动工具
EP2760124B1 (en) Power tool having a brushless motor and a control unit for controlling the brushless motor
US20060038530A1 (en) System and method for optimizing motor performance by varying flux
WO2019007037A1 (zh) 移动机器人、工作表面识别方法及控制方法
JP2004521211A5 (zh)
CN106232906A (zh) 用于控制工程机械的发动机和液压泵的装置及其控制方法
CN111356357B (zh) 作业机
KR20160114083A (ko) 엔진 및 펌프 제어 장치와 작업 기계
CN108451443A (zh) 一种吸尘器堵孔的检测方法、装置及吸尘器
US10413974B2 (en) Intuitive, adaptive drilling function
CN106604802A (zh) 终点检测方法、研磨装置及研磨方法
US20200412286A1 (en) Power tool and control method thereof
US11557991B2 (en) Control method of impact power tool
US11959679B2 (en) Drive circuit for a variable speed fan motor
CN106500244B (zh) 空调电加热控制方法及控制装置
CA2564228A1 (en) Method of controlling the speed of an electric motor
CN103541159B (zh) 一种新型节能工业缝纫机
CN104539213B (zh) 电机转速调节方法、电机转速调节系统和空调器
CN102638218B (zh) 根据电源特性限制电动机的输出的电动机驱动控制装置
CN107294460B (zh) 一种电动自行车控制器软硬启动调整的控制方法
CN105650019A (zh) 风扇的控制方法、装置和风扇
CN107881881B (zh) 冷再生机铣削转子电液控制方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840830

Country of ref document: EP

Kind code of ref document: A1