WO2017036236A1 - 一种基于tdd的m2m系统的通信方法、装置与系统 - Google Patents

一种基于tdd的m2m系统的通信方法、装置与系统 Download PDF

Info

Publication number
WO2017036236A1
WO2017036236A1 PCT/CN2016/086814 CN2016086814W WO2017036236A1 WO 2017036236 A1 WO2017036236 A1 WO 2017036236A1 CN 2016086814 W CN2016086814 W CN 2016086814W WO 2017036236 A1 WO2017036236 A1 WO 2017036236A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
frame
uplink
time interval
ratio
Prior art date
Application number
PCT/CN2016/086814
Other languages
English (en)
French (fr)
Other versions
WO2017036236A9 (zh
Inventor
杨浔
姜艳平
余西西
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017036236A1 publication Critical patent/WO2017036236A1/zh
Publication of WO2017036236A9 publication Critical patent/WO2017036236A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and more particularly to a TDD-based M2M system communication method, user equipment, base station, and communication system.
  • M2M Machine to Machine
  • the use of cellular networks to provide Machine to Machine (M2M) communication services is currently a hot topic in the field of M2M.
  • M2M network is co-sited with the existing cellular network, and the common frequency band becomes a basic requirement for reducing the operation and maintenance costs of the operator.
  • 3GPP 3rd Generation Partnership Project
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • the protection band implements the Machine to Machine (M2M) system.
  • the M2M system based on Frequency Division Duplex (FDD) is fully developed and utilized, and is based on Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the M2M system has not been fully developed, and how to use these TDD spectrum resources to provide M2M applications is an issue that needs to be considered.
  • the embodiment of the present invention provides a TDD-based M2M system communication method, a user equipment, a base station, and a communication system, which can implement an M2M application by using a TDD spectrum resource, and the user equipment can determine the uplink-downlink subframe ratio of the system in advance, according to The uplink-downlink subframe ratio of the system adopts a corresponding sleep strategy to reduce power consumption.
  • a communication method of a TDD-based M2M system comprising:
  • the user equipment receives the primary synchronization signal PSS, the secondary synchronization signal SSS, and the frame number FID sent by the base station;
  • the user equipment acquires a first time interval and a second time interval, where the first time interval is successful.
  • the user equipment determines an uplink-downlink subframe ratio of the system according to the first time interval and the second time interval.
  • the user equipment determines, according to the first time interval and the second time interval, the uplink-downlink subframe ratio of the system, including:
  • the pre-set uplink-downlink subframe matching relationship includes: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , the D i and the i are positive integers, and A is a specific value of the A i , and the B is a specific value of the B i .
  • the acquiring the duration T FS of the second time interval is a multiple B of the subframe duration T sf includes:
  • the ratio of the T FS to the T sf is determined as the B.
  • the acquiring the duration T FS of the second time interval is a multiple B of the subframe duration T sf includes:
  • the T FS is modulo the length of the superframe to obtain T' FS , and the ratio of the T FS to the T sf is determined as the B .
  • the A i , B i , the uplink-downlink subframe ratio of the corresponding system For C i :D i includes:
  • the communications method further includes:
  • the user equipment After determining the uplink-downlink subframe ratio of the system, the user equipment determines an uplink subframe, and the subframe in which the information is not sent in the uplink subframe sleeps.
  • a communication method for a machine-to-machine M2M system based on time division duplex TDD comprising:
  • the base station determines, according to the frame structure preset by the system, a position of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the transmission subframe of the frame number FID in the frame;
  • the base station sends the PSS, the SSS, and the FID to the user equipment UE at the location of the SSS and the transmit subframe of the FID in the frame, respectively, so that the UE is configured according to the first time interval and the second time.
  • the interval determines an uplink-downlink subframe ratio of the system, where the first time interval is determined by a location of the PSS and a transmit subframe of the SSS in the frame, where the second time interval is sent by the SSS and the FID.
  • the position in the frame is determined.
  • the base station determines, according to a preset frame structure of the system, a position of a primary synchronization signal PSS, a secondary synchronization signal SSS, and an FID transmission subframe in a frame, include:
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 2:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 5 and the 6th in the frame are sent.
  • the frame transmits the SSS, and the FID is transmitted in the 0th subframe of the next frame of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in the subframe 8 of the frame, where the frame includes 10 subframes; or
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 9:1
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in subframe 5 of the frame, where the frame includes 10 subframes.
  • a user equipment including:
  • a receiving module configured to receive a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number FID sent by the base station;
  • An acquiring module configured to acquire a first time interval and a second time interval, where the first time interval is a time interval for the receiving module to successfully receive the PSS to successfully receive the SSS, where the second time interval is that the receiving module successfully receives the The time interval from the SSS to the successful reception of the FID;
  • a determining module configured to determine an uplink-downlink subframe ratio of the system according to the first time interval and the second time interval acquired by the acquiring module.
  • the determining module includes:
  • a first obtaining unit configured to acquire a multiple A of the duration T PS of the first time interval for the subframe duration T sf ;
  • a second acquiring unit configured to acquire a multiple B of the duration T FS of the second time interval for the subframe duration T sf ;
  • a first determining unit configured to substitute the A acquired by the first acquiring unit and the B acquired by the second acquiring unit into a preset uplink-downlink subframe matching relationship, and determine an uplink-downlink subframe ratio of the system
  • the pre-set uplink-downlink subframe matching relationship includes: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , the D i and the i are positive integers, and A is a specific value of the A i , and the B is a specific value of the B i .
  • the second acquiring unit is specifically configured to:
  • the ratio of the T FS to the T sf is determined as the B.
  • the second acquiring unit is further configured to:
  • the T FS is modulo the length of the superframe to obtain T' FS , and the ratio of the T FS to the T sf is determined as the B .
  • the A i , B i , the uplink-downlink subframe ratio of the corresponding system For C i :D i includes:
  • the method further includes:
  • the hibernation module is configured to determine an uplink subframe after the determining module determines the uplink and downlink subframe ratio of the system, so that the user equipment performs dormancy in a subframe in which the information is not sent in the uplink subframe.
  • a base station including:
  • a determining module configured to determine, according to a frame structure preset by the system, a location of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number of the frame number FID in the frame;
  • a sending module configured to send the PSS, the SSS, and the FID to the user equipment UE at the location of the PSS, the SSS, and the sending subframe of the FID in the frame, respectively, so that the UE is according to the first time interval and
  • the second time interval determines an uplink-downlink subframe ratio of the system, where the first time interval is determined by a location of the PSS and a transmit subframe of the SSS in the frame, where the second time interval is determined by the SSS and the FID The position of the transmitted subframe in the frame is determined.
  • the determining module is specifically configured to:
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 2:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 5 and the 6th in the frame are sent.
  • the frame transmits the SSS, and the FID is transmitted in the 0th subframe of the next frame of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in the subframe 8 of the frame, where the frame includes 10 subframes; or
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 9:1
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in subframe 5 of the frame, where the frame includes 10 subframes.
  • a communication system including the above user equipment and a base station.
  • the communication method, the user equipment, the base station, and the communication system of the TDD-based M2M system can implement the M2M application by using the TDD spectrum resource, and the UE can be based on the first time interval and the second time interval.
  • the uplink-downlink subframe ratio of the system is determined in advance, and the uplink-downlink subframe ratio of the system is not determined by the system information block SIB information, and the corresponding sleep strategy can be adopted according to the uplink-downlink subframe ratio of the system. To reduce power consumption.
  • FIG. 1 is a schematic diagram of a frame structure of a TDD-based M2M system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a communication method of a TDD-based M2M system according to an embodiment of the present invention.
  • FIG. 3 is another schematic flowchart of a communication method of a TDD-based M2M system according to an embodiment of the present invention.
  • FIG. 4 is still another schematic flowchart of a communication method of a TDD-based M2M system according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a communication method of a TDD-based M2M system according to another embodiment of the present invention.
  • FIG. 6 is another schematic flowchart of a communication method of a TDD-based M2M system according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a communication method of a TDD-based M2M system according to still another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • Figure 10 is a schematic block diagram of a communication system in accordance with an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • T2/FDD-based M2M system etc.
  • a User Equipment which may also be called a Mobile Terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • a terminal device based on the TDD/FDD LTE-M system, and the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone)
  • a computer having a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE. Or a base station based on a TDD/FDD M2M system, the present invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB or e-NodeB, evolutional Node B evolutional Node B
  • a base station based on a TDD/FDD M2M system the present invention is not limited.
  • the FDD-based M2M system has a resource block (RB) of 180 kHz in the frequency domain, which is divided into 12 physical channels, with a channel spacing of 15 kHz and a signal bandwidth of 12 kHz.
  • the UE needs to perform system synchronization before accessing the network.
  • SIB System Information Block
  • the uplink and downlink data information can be sent and received.
  • PBSCH Physical Broadcast Synchronization Channel
  • FDD frame identification
  • symbol timing synchronization symbol timing synchronization
  • carrier spectrum estimation super intra frame index detection, and transmission.
  • the 80 millisecond (ms) frame length includes a total of 960 symbols.
  • the primary synchronization signal (PSS) having a length of 256 symbols
  • the secondary synchronization signal (SSS) having a length of 257 symbols
  • the super intra frame index indication sequence having a length of 127 symbols.
  • the remaining 320 symbols are used to transmit system information.
  • the broadcast synchronization channel continuously performs the primary and secondary synchronization signals, the frame number and the system information broadcast to help the UE access the network.
  • the TDD-based M2M system in order to fully utilize the limited cellular network spectrum and realize the same frequency and common site address as the TDD system, consider designing the TDD-based M2M system by using the TDD protection band, and considering the use in the frequency domain.
  • the design of the downlink subchannel of the FDD-based M2M system for example, one RB may be 180 kHz, divided into 15 subchannels, and one downlink subchannel may be 12 kHz, and the FDD-based M2M system design is also used in the time domain, for example,
  • the super-frame can be defined as 80 ms, and the super-frame is divided into 8 frames, each frame being 10 ms. Each frame is divided into 10 sub-frames, each of which is 1 ms.
  • the embodiment of the present invention is described by taking only one RB as 180 kHz. However, the present invention is not limited thereto, and one RB may also be 360 kHz, divided into 30 subchannels, and the like. It should be understood that the embodiment of the present invention is described by taking only a superframe of 80 ms as an example, but the present invention is not limited thereto, and the superframe may also be 120 ms, 160 ms, or the like.
  • the TDD-based M2M system ensures that it does not interfere with the existing TDD system.
  • the same uplink-downlink subframe ratio as the TDD system for example, the same uplink-downlink subframe ratio as the LTE TDD system can be used, and the uplink-downlink subframe ratio of the TDD-based M2M system can be as shown in Table 1.
  • D represents a downlink subframe
  • S represents a special subframe
  • U represents an uplink subframe.
  • the synchronization signal and the frame number of the TDD-based M2M system need to be sent out in a shorter time to ensure that the UE can successfully perform synchronization and frame number detection.
  • the above downlink subframe ratio is 5:5 as an example.
  • the subframes that are allowed to transmit downlink data are respectively subframe No. 0, subframe No. 1, subframe No. 5, subframe No. 6 and subframe No. 9, due to the primary and secondary synchronization signals and the frame number. Fragment transmission cannot be performed, so a feasible transmission method is to send a primary synchronization signal in subframes 0 and 1 and a secondary synchronization signal in subframes 5 and 6, and to transmit frames in subframe 9 No.
  • the frame structure of the system can be designed as shown in FIG. 1.
  • X# represents the X subframe
  • 0# to 9# represents the subframe 0 to the subframe 9.
  • Table 1 The uplink-downlink subframe ratio supported by the TDD-based M2M system
  • the downlink control management information of the TDD-based M2M system mainly includes a primary synchronization signal, a secondary synchronization signal, a frame number, a system information block, and the like.
  • PSS, SSS, FID sequence design follows the design of FDD-based M2M system.
  • the first frame is used to transmit the primary and secondary synchronization signals and the frame number, and it is considered to use one or several subchannels to transmit the primary and secondary synchronization signals and the frame number. For example, 15 subchannels may be combined and used to transmit the primary frame.
  • the secondary synchronization signal and the frame number are such that the system's primary and secondary synchronization signals and frame numbers can be transmitted in one or several consecutive downlink subframes, thereby ensuring that the user equipment can perform system synchronization and frame number detection.
  • the TDD-based M2M communication system periodically communicates with the UE through a superframe, and the first frame in the superframe is used to transmit PSS, SSS, and FID, after transmitting the PSS, SSS, and FID.
  • the UE can determine the uplink-downlink subframe ratio of the system according to the SIB information.
  • the UE needs to receive the SIB information after successfully receiving the PSS, SSS, and FID.
  • the minimum time required for completing these operations is one superframe.
  • the TDD-based M2M system communication method can implement the M2M application by using the TDD spectrum resource, and the UE can select the uplink subframe that does not send the uplink information to perform the power consumption.
  • the base station can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink-downlink subframe ratio of the system in advance, and accordingly adopt corresponding sleep according to the uplink-downlink subframe ratio of the system.
  • FIG. 2 shows a schematic flowchart of a communication method 1000 of a TDD-based M2M system according to an embodiment of the present invention.
  • the communication method 1000 can be performed by a user equipment. As shown in FIG. 2, the method 1000 includes:
  • the user equipment receives a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number FID sent by the base station;
  • the user equipment acquires a first time interval, which is a time interval for successfully receiving the PSS to successfully receive the SSS, and the second time interval is to successfully receive the SSS to successfully receive the FID.
  • a first time interval which is a time interval for successfully receiving the PSS to successfully receive the SSS
  • the second time interval is to successfully receive the SSS to successfully receive the FID.
  • the user equipment determines an uplink-downlink subframe ratio of the system according to the first time interval and the second time interval.
  • the UE sequentially receives the primary synchronization signal PSS, the secondary synchronization signal SSS, and the frame number FID sent by the base station, and acquires a first time interval and a second time interval, where the first time interval is to successfully receive the PSS to successfully receive the SSS.
  • the time interval is the time interval for successfully receiving the SSS to successfully receive the FID, and then the UE determines the uplink-downlink subframe ratio of the system according to the first time interval and the second time interval.
  • the UE may acquire the first time interval according to the first time when the PSS is successfully received, and the second time when the SSS is successfully received, according to the second time when the SSS is successfully received, and the third time when the FID is successfully received. Get the second time interval.
  • the UE may determine the uplink-downlink subframe ratio of the system according to the ratio of the first time interval and the second time interval to the pre-configured uplink-downlink subframe ratio.
  • the TDD-based M2M system communication method of the embodiment of the present invention can implement the M2M application by using the TDD spectrum resource, and the UE can determine the uplink and downlink subframe allocation of the system in advance according to the first time interval and the second time interval.
  • the ratio of the uplink and downlink subframes of the system is determined by the SIB information, and the corresponding uplink and downlink subframe ratios of the system may be adopted. Sleep strategy to reduce power consumption.
  • the UE may further determine the uplink and downlink subframe ratio of the system according to the third time interval of successfully receiving the PSS to successfully receive the FID, and the first time interval; or The UE may further determine an uplink-downlink subframe ratio of the system according to the second time interval and the third time interval, in other words, as long as the UE can be based on the first moment, the second moment, and the third moment
  • the relationship can be uniquely determined by the system's uplink and downlink subframe ratio.
  • the UE receives the primary synchronization signal sent by the base station, and if the reception fails, the UE re-receives the primary synchronization signal sent by the base station in the next superframe; similarly, the UE receives the base station.
  • the user equipment determines the uplink-downlink subframe ratio of the system according to the first time interval and the second time interval, including:
  • the time length T FS of the second time interval is obtained as a multiple B of the subframe duration T sf ;
  • the pre-set uplink-downlink subframe matching relationship includes: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , the D i and the i are positive integers, and A is a specific value of the A i , and the B is a specific value of the B i .
  • the UE acquires a multiple A of the duration T PS of the first time interval for the subframe duration T sf , and obtains the second time interval.
  • the duration T FS is a multiple B of the subframe duration T sf , and then the A and the B are substituted into a preset uplink-downlink subframe ratio relationship, thereby determining the uplink-downlink subframe ratio of the system.
  • the preset uplink-downlink subframe matching relationship may include: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , The D i and the i are positive integers, and the A is a specific value of the A i , and the B is a specific value of the B i .
  • the first time interval is not an integer multiple of the duration of the subframe, that is, the M ⁇ T sf ⁇ T PS ⁇ (M+0.5) ⁇ T sf or (M+0.5) ⁇ T sf ⁇ T PS ⁇ (M +1) ⁇ T sf , where M is a positive integer
  • the T PS can be converted to M ⁇ T Sf
  • the first time interval T PS can be converted into (M+1) ⁇ T sf
  • the multiples B of the duration T FS of the second time interval for the subframe duration T sf include:
  • the ratio of the T FS to the T sf is determined as the B.
  • the time length T FS of acquiring the second time interval is a multiple B of the subframe duration T sf . :
  • the T FS is modulo the length of the superframe to obtain T' FS , and the ratio of the T FS to the T sf is determined as the B .
  • the duration of the superframe is 80 ms
  • the duration T sf of the subframe is 1 ms
  • the parameter B is the T FS and
  • the A i , B i , the uplink and downlink subframe ratio of the corresponding system is C i :D i includes:
  • the correspondence between the A i , B i and the uplink-downlink subframe ratio C i :D i of the system is not unique, as long as the corresponding relationship can be determined according to the A i , B i
  • the mapping between the uplink and the downlink sub-frames is sufficient.
  • the embodiment of the present invention is only described by taking the corresponding relationship in Table 2 as an example.
  • the embodiments of the present invention may also have other corresponding relationships.
  • the pre-configured uplink-downlink subframe matching relationship may also be as shown in Table 3.
  • the subframe matching relationship determines the uplink and downlink subframe ratio of the system.
  • FIG. 4 is a schematic flowchart of a communication method 4000 of a TDD-based M2M system according to another embodiment of the present invention.
  • the communication method 4000 of the TDD-based M2M system according to the embodiment of the present invention will be described in detail below by taking the flowchart shown in FIG. 4 as an example.
  • the UE receives the PSS sent by the base station. After the receiving succeeds, the process proceeds to S4200. Otherwise, the receiving fails, and S4100 is re-executed, that is, the UE re-receives the PSS sent by the base station in the first frame of the next superframe.
  • the UE receives the SSS sent by the base station, and the receiving succeeds, and the process proceeds to S4300. Otherwise, the process returns to S4100, and the UE re-receives the PSS sent by the base station in the next superframe.
  • the UE acquires a first time interval T PS , which is a time interval between successful reception of the SSS and successful reception of the SSS.
  • the UE receives the FID sent by the base station, and if the receiving is successful, the process proceeds to S4500. Otherwise, the FID signal sent by the base station is re-received without performing system primary and secondary synchronization, that is, re-executing in the next superframe.
  • the S4400 does not need to perform operations in S4100 to S4300. Therefore, after successfully receiving the SSS, the frame number may be successfully received after the interval is greater than one superframe.
  • the UE acquires a second time interval T FS , which is a time interval between successfully receiving the SSS and successfully receiving the FID.
  • T PS is an integer multiple of the subframe duration
  • A is the ratio of the T PS to the subframe duration T sf ; if the T PS is not an integer multiple of the subframe duration, then the T PS is first converted to an integer multiple.
  • the duration of the subframe, and then the ratio of the subframe duration T sf , the conversion method is the same as described above, and will not be described here.
  • the T FS is not greater than the length of the preset superframe of the system, and it is determined that the B is the ratio of the T FS to the T sf .
  • the T FS Similar to the T PS , if the T FS is not an integer multiple of the subframe duration, the T FS needs to be converted into an integer multiple of the subframe duration.
  • the conversion method is similar to the T PS conversion method, and is not described here.
  • the T FS is greater than the length of the preset superframe of the system, and the T FS is modulo the length of the superframe to obtain T' FS , and the B is determined to be the T' FS and the T sf . ratio.
  • the T FS is modulo 80 ms, that is, the T FS
  • the uplink-downlink subframe ratio of the system is determined according to the matching relationship between the A and B and the pre-configured uplink-downlink subframe.
  • the pre-configured uplink-downlink subframe matching relationship may be as shown in Table 2.
  • the TDD-based M2M system communication method of the embodiment of the present invention can implement the M2M application by using the TDD spectrum resource, and the UE can determine the uplink and downlink subframe allocation of the system in advance according to the first time interval and the second time interval.
  • the ratio of the uplink and downlink subframes of the system is determined by the SIB information, and the corresponding sleep strategy can be adopted according to the uplink and downlink subframe ratio of the system to reduce power consumption.
  • the communication method 1000 further includes:
  • the user equipment After determining the uplink-downlink subframe ratio of the system, the user equipment determines an uplink subframe, and the subframe in which the information is not sent in the uplink subframe sleeps.
  • the UE may determine which subframes are uplink subframes according to the uplink-downlink subframe ratio of the system, so that a corresponding sleep policy may be formulated. For the purpose of reducing the power consumption, the UE may select to select a subframe in the uplink subframe that does not send uplink information to perform dormancy. For example, the UE for remote meter reading obtains the uplink and downlink sub-system of the system. After the frame ratio is 5:5, it is determined that the subframes 2, 3, 4, 7, and 8 are uplink subframes, and the subframes in which the data is not reported in the uplink subframe may be selected to be dormant. Reduce the power consumption.
  • the TDD-based M2M system communication method of the embodiment of the present invention can implement the M2M application by using the TDD spectrum resource, and the UE can determine the uplink and downlink subframe allocation of the system in advance according to the first time interval and the second time interval.
  • the ratio of the uplink and downlink subframes of the system is determined by the SIB information, and the corresponding sleep strategy can be adopted according to the uplink and downlink subframe ratio of the system to reduce power consumption.
  • a communication method of a TDD-based M2M system is described from the perspective of a UE, and in conjunction with FIG. 5 and FIG. 6 , from the perspective of a base station, according to the present invention
  • a communication method of a TDD-based M2M system of an embodiment is described.
  • FIG. 5 shows a schematic flowchart of a communication method 5000 of a TDD-based M2M system according to an embodiment of the present invention.
  • the method 5000 may be performed by a base station, and the communication method 5000 includes:
  • the base station determines, according to a preset frame structure of the system, a location of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number FID of the transmission subframe in the frame;
  • the base station sends the PSS, the SSS, and the FID to the user equipment UE in the PSS, the location of the SSS and the transmit subframe of the FID in the frame, so that the UE is configured according to the first time interval and the first time interval.
  • the second time interval determines the uplink and downlink subframe ratio of the system, where the first time interval is determined by the location of the PSS and the SSS transmission subframe in the frame, and the second time interval is sent by the SSS and the FID. The position of the subframe in the frame is determined.
  • the base station determines, according to a frame structure preset by the system, a location of the primary synchronization signal, the secondary synchronization signal, and the transmission subframe of the frame number in the frame, and then the transmission subframe in the PSS, the SSS, and the FID is in the frame a location in the frame, respectively, sending the PSS, the SSS, and the FID to the UE, so that the UE determines the first time interval according to the location of the PSS and the sending subframe of the SSS in the frame, according to the SSS and the FID
  • the location of the transmitting subframe in the frame determines the second time interval, and then determines the uplink-downlink subframe ratio of the system according to the first time interval and the second time interval.
  • the base station can determine the position of the PSS, the SSS, and the transmit subframe of the FID in the frame, so that the UE determines the uplink-downlink subframe ratio of the system according to the acquired first time interval and the second time interval. .
  • the above downlink subframe ratio 3:2 is taken as an example.
  • the base station may send the PSS in the 0th subframe and the 1st subframe of the first frame of the superframe, in the subframe 4 and the subframe 5 of the frame. Sending the SSS, sending the FID in the subframe 9 of the frame, then the UE successfully receives the PSS in the subframe No. 1, and successfully receives the SSS in the subframe No.
  • the first time interval of the SSS is that the time interval between the subframe 5 and the subframe 1 is 4T sf .
  • the FID is successfully received in the subframe 9
  • the SSS is successfully received to successfully receive the SSS.
  • the second time interval of the FID that is, the time interval of the 9th subframe and the 5th subframe is 4T sf .
  • the base station may use the first time interval and the second time interval with the uplink and downlink of the system. The correspondence between the frame ratios is pre-configured to the UE.
  • the UE may determine that the uplink-downlink subframe ratio of the system is 3:2 according to the pre-configured uplink-downlink subframe ratio relationship when the first time interval is 4T sf and the second time interval is 4T sf .
  • the base station only controls the location of the PSS, the SSS, and the transmit subframe of the FID in the frame, so that the first time interval and the second time interval and the foregoing two values are compared in other uplink and downlink subframe ratios. Not all the same.
  • the communication method of the TDD-based M2M system of the embodiment of the present invention can implement the M2M application by using the TDD spectrum resource, and the base station can control the location of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can advance the UE.
  • the uplink-downlink subframe ratio of the system is determined, and the uplink-downlink subframe ratio of the system is not determined by using the SIB information, and the corresponding sleep strategy can be adopted according to the uplink-downlink subframe ratio of the system to reduce power consumption.
  • the base station determines, according to the uplink and downlink subframe ratio of the system, the sending timings of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the frame number FID, including:
  • the base station may control to transmit the PSS in the 0th subframe and the 1st subframe of the frame, and in the subframe 5 and 6 of the frame.
  • the subframe transmits the SSS, and the FID is sent in the subframe No. 0 of the next frame of the frame, then the UE successfully receives the PSS in the subframe No. 1, and successfully receives the SSS in the subframe No. 6, the first The time interval is the time interval 5T sf of the subframe 6 and the subframe 1 , and the second time interval of successfully receiving the SSS to successfully receive the FID is 4 T sf ;
  • the base station may control to transmit the PSS in the 0th subframe and the 1st subframe of the frame, and send the SSS in the 4th subframe and the 5th subframe of the frame.
  • the FID is sent in the subframe 9 of the frame, and the UE successfully receives the PSS in the subframe 1 and successfully receives the SSS in the subframe 5, and the first time interval is the subframe 5 and 1
  • the time interval of the subframe is 4T sf .
  • the second time interval for successfully receiving the SSS to successfully receive the FID is 4T sf ;
  • the ratio of the uplink and downlink subframes of the frame structure preset by the system is 4:1, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame sends the SSS, and the FID is sent in the subframe No. 8 of the frame.
  • the UE successfully receives the PSS in the subframe No. 1, and successfully receives the SSS in the subframe No. 4, and the first time interval is No. 4
  • the time interval of the subframe and the subframe 1 is 3T sf .
  • the second time interval for successfully receiving the SSS to successfully receive the FID is 4T sf ;
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame sends the SSS, and the FID is sent in the subframe 9 of the frame.
  • the UE successfully receives the PSS in the subframe 1 and successfully receives the SSS in the subframe 6, the first time interval is 6
  • the time interval between the subframe and the subframe 1 is 5T sf .
  • the second time interval for successfully receiving the SSS to successfully receive the FID is 3T sf ;
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 7:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame sends the SSS, and the FID is sent in the subframe 7 of the frame.
  • the UE successfully receives the PSS in the subframe No. 1, and successfully receives the SSS in the subframe No. 6, the first time interval is No. 6
  • the time interval of the subframe and the subframe 1 is 5T sf .
  • the second time interval for successfully receiving the SSS to successfully receive the FID is 1T sf ;
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame sends the SSS, and the FID is sent in the subframe No. 6 of the frame.
  • the UE successfully receives the PSS in the subframe No. 1, and successfully receives the SSS in the subframe No. 5, and the first time interval is No. 5
  • the time interval of the subframe and the subframe 1 is 4T sf .
  • the second time interval for successfully receiving the SSS to successfully receive the FID is 1T sf ;
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 9:1, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame sends the SSS, and the FID is sent in the subframe 5 of the frame.
  • the UE successfully receives the PSS in the subframe 1 and successfully receives the SSS in the subframe 4, and the first time interval is 4
  • the time interval of the subframe and the subframe 1 is 3T sf .
  • the second time interval for successfully receiving the SSS to successfully receive the FID is 1T sf ;
  • the base station determines the position of the transmitting subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink and downlink subframe ratio of the system according to the obtained first time interval and the second time interval.
  • the base station may pre-configure the uplink-downlink subframe ratio relationship of the system to the UE, and the UE may obtain the first time interval and the second time interval according to the first time interval and The second time interval and the pre-configured uplink-downlink subframe ratio relationship determine an uplink-downlink subframe ratio of the system.
  • the base station determines, according to the uplink-downlink subframe ratio of the system, the sending timings of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the frame number FID, and further includes:
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 2:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 5 and the 6th in the frame are sent.
  • the frame transmits the SSS, and the FID is transmitted in the 0th subframe of the next frame of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • Frame sending the SSS, in the The subframe 9 of the frame transmits the FID, where the frame includes 10 subframes; or,
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 9:1
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in subframe 5 of the frame, where the frame includes 10 subframes.
  • the location of the transmit subframe of the PSS, SSS, and FID in the frame is not unique, as long as the UE can acquire the first time interval and the location according to the location of the transmit subframe of the PSS, SSS, and FID in the frame.
  • the uplink and downlink subframe ratio of the system can be uniquely determined according to the first time interval and the second time interval.
  • the communication method of the TDD-based M2M system can implement M2M communication by using TDD spectrum resources, and the base station can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can advance the UE.
  • the uplink-downlink subframe ratio of the system is determined, and the uplink-downlink subframe ratio of the system is not determined by using the SIB information, and the corresponding sleep strategy can be adopted according to the uplink-downlink subframe ratio of the system to reduce power consumption.
  • the communication method of the TDD-based M2M system according to the embodiment of the present invention is introduced in detail from the perspectives of the user equipment and the base station, respectively.
  • the device interaction from the communication system is described in conjunction with FIG. 2 to FIG.
  • An introduction is made to a communication method of a TDD-based M2M system according to an embodiment of the present invention, the communication system including a user equipment and a base station.
  • FIG. 7 shows a schematic flow chart of a communication method of a TDD-based M2M system according to an embodiment of the present invention.
  • the base station determines, according to the frame structure preset by the system, the position of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the transmission subframe of the frame number FID in the frame.
  • the base station determines, according to the frame structure preset by the system, the location of the primary synchronization signal PSS, the secondary synchronization signal SSS, and the frame number of the frame number FID in the frame, including:
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 2:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 5 and the 6th in the frame are sent.
  • Frame sending the SSS, in the The FID of the next frame of the next frame of the frame is transmitted, wherein the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in the subframe 8 of the frame, where the frame includes 10 subframes; or
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 9:1
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in subframe 5 of the frame, where the frame includes 10 subframes.
  • the location of the transmit subframe of the PSS, SSS, and FID in the frame is not unique as long as the base station can successfully receive the UE according to the position of the transmit subframe of the PSS, SSS, and FID in the frame.
  • the first time interval of the PSS to successfully receive the SSS, and the second time interval of successfully receiving the SSS to successfully receive the FID may only determine the uplink-downlink subframe ratio of the system.
  • the base station sends the PSS, the SSS, and the FID to the user equipment UE in the PSS, the location of the SSS and the transmit subframe of the FID in the frame, respectively.
  • the UE receives the PSS, SSS, and FID sent by the base station, and acquires a first time interval and a second time interval, where the first time interval is a time interval for successfully receiving the PSS to successfully receive the SSS, and the second time is The interval is the time interval between successfully receiving the SSS and successfully receiving the FID.
  • the UE determines the upper and lower of the system according to the first time interval and the second time interval. Line sub-frame ratio.
  • the determining, by the UE, the uplink-downlink subframe ratio of the system according to the first time interval and the second time interval including:
  • the pre-set uplink-downlink subframe matching relationship includes: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , the D i and the i are positive integers, and A is a specific value of the A i , and the B is a specific value of the B i .
  • the UE acquires a multiple A of the duration T PS of the first time interval for the subframe duration T sf , and obtains the second time interval.
  • the duration T FS is a multiple B of the subframe duration T sf , and then the A and the B are substituted into a preset uplink-downlink subframe ratio relationship, thereby determining the uplink-downlink subframe ratio of the system.
  • the communication method of the TDD-based M2M system can implement M2M communication by using TDD spectrum resources, and the base station can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can advance the UE.
  • the uplink-downlink subframe ratio of the system is determined, and the uplink-downlink subframe ratio of the system is not determined by using the SIB information, and the corresponding sleep strategy can be adopted according to the uplink-downlink subframe ratio of the system to reduce power consumption.
  • the communication method of the TDD-based M2M system according to the embodiment of the present invention is described in detail above with reference to FIG. 2 to FIG. 7, and the apparatus for the TDD-based M2M system according to the embodiment of the present invention is hereinafter combined with FIG. 8 to FIG. Introduce.
  • FIG. 8 shows a schematic block diagram of a user equipment 500 according to an embodiment of the present invention.
  • the user equipment 500 includes:
  • the receiving module 510 is configured to receive a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number FID sent by the base station;
  • the obtaining module 520 is configured to obtain a first time interval and a second time interval, where the first time interval is a time interval for the receiving module 510 to successfully receive the PSS to successfully receive the SSS, where the The second time interval is a time interval during which the receiving module 510 successfully receives the SSS to successfully receive the FID;
  • the determining module 530 is configured to determine an uplink-downlink subframe ratio of the system according to the first time interval and the second time interval acquired by the acquiring module 520.
  • the receiving module 510 receives the primary synchronization signal PSS, the secondary synchronization signal SSS, and the frame number FID sent by the base station, and the obtaining module 520 acquires the first time interval and the second time interval, where the first time interval is to successfully receive the PSS.
  • the time interval for successfully receiving the SSS, the second time interval is a time interval for successfully receiving the SSS to successfully receive the FID, and then the determining module 530 determines, according to the first time interval acquired by the acquiring module 520 and the second time interval.
  • the uplink and downlink subframe ratio of the system is a time interval for successfully receiving the SSS to successfully receive the FID
  • the obtaining module 520 may acquire the first time interval according to the first time when the PSS is successfully received, and the second time to successfully receive the SSS, according to the second time when the SSS is successfully received, and the first time that the FID is successfully received.
  • the second time interval is obtained at three times.
  • the determining module 530 may determine an uplink-downlink subframe ratio of the system according to a pre-configured uplink-downlink subframe matching relationship between the first time interval and the second time interval.
  • the user equipment of the embodiment of the present invention can determine the uplink-downlink subframe ratio of the system in advance according to the first time interval and the second time interval, without determining the uplink-downlink subframe ratio of the system by using the SIB information.
  • a corresponding sleep strategy is adopted to reduce power consumption.
  • the receiving module 510 receives the primary synchronization signal sent by the base station, and after receiving the failure, re-receives the primary synchronization signal sent by the base station in the next superframe; likewise, the receiving module 510 receives After receiving the failure, the secondary synchronization signal sent by the base station re-receives the primary synchronization signal sent by the base station in the next superframe; when the frame number detection fails, the receiving module 510 does not need to perform the primary and secondary synchronization, only in the next superframe.
  • the frame number sent by the base station is re-received, and the frame number detection may be performed again. Therefore, after successfully receiving the SSS, the frame length may be successfully received after the interval is longer than the superframe.
  • the determining module 530 includes:
  • a first obtaining unit configured to acquire a multiple A of the duration T PS of the first time interval for the subframe duration T sf ;
  • a second acquiring unit configured to acquire a multiple B of the duration T FS of the second time interval for the subframe duration T sf ;
  • a first determining unit configured to acquire the A acquired by the first acquiring unit and the second acquiring unit Substituting B into a preset uplink-downlink subframe matching relationship to determine an uplink-downlink subframe ratio of the system;
  • the pre-set uplink-downlink subframe matching relationship includes: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , the D i and the i are positive integers, and A is a specific value of the A i , and the B is a specific value of the B i .
  • the first acquiring unit acquires a multiple of the duration T PS of the first time interval for the subframe duration T sf , and second.
  • the obtaining unit acquires a multiple B of the duration T FS of the second time interval for the subframe duration T sf , and then the first determining unit substitutes the A and the B into the preset uplink-downlink subframe matching relationship, thereby determining the system.
  • the uplink-downlink subframe ratio may be: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , The B i , the C i , the D i and the i are positive integers, and the A is a specific value of the A i , and the B is a specific value of the B i .
  • the second acquiring unit is specifically configured to:
  • the ratio of the T FS to the T sf is determined as the B.
  • the second acquisition unit is further configured to:
  • the T FS is modulo the length of the superframe to obtain T' FS , and the ratio of the T FS to the T sf is determined as the B .
  • the A i , B i , the uplink and downlink subframe ratio of the corresponding system is C i :D i includes:
  • the user equipment 500 further includes:
  • the dormancy module is configured to determine an uplink subframe after determining the uplink and downlink subframe ratio of the system, so that the user equipment sleeps in a subframe in which the information is not sent in the uplink subframe.
  • the dormant module may determine which subframes are uplink subframes according to the uplink-downlink subframe ratio of the system, so that corresponding The dormancy policy may be used for the purpose of reducing power consumption.
  • the hibernation module may select to perform sleep in a subframe in the uplink subframe that does not send uplink information.
  • the user equipment of the embodiment of the present invention can determine the uplink-downlink subframe ratio of the system in advance according to the first time interval and the second time interval, without determining the uplink-downlink subframe ratio of the system by using the SIB information.
  • a corresponding sleep strategy is adopted to reduce power consumption.
  • the user equipment 500 may correspond to a UE in the communication method 1000 of the TDD-based M2M system according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the user equipment 500 are respectively.
  • the corresponding processes of the foregoing various methods are implemented, and are not described herein for brevity.
  • FIG. 9 shows a schematic block diagram of a base station 600 according to an embodiment of the present invention, the base station 600 comprising:
  • a determining module 610 configured to determine, according to a frame structure preset by the system, a position of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a transmission subframe of a frame number FID in a frame;
  • the sending module 620 is configured to send the PSS, the SSS, and the FID to the user equipment UE at the location of the PSS, the SSS, and the sending subframe of the FID in the frame, respectively, so that the UE is according to the first time interval. Determining, by the second time interval, an uplink-downlink subframe ratio of the system, where the first time interval is determined by a location of the PSS and a transmit subframe of the SSS in the frame, the second time interval by the SSS and the FID The location of the transmitted subframe in the frame is determined.
  • the determining module 610 determines the location of the primary synchronization signal, the secondary synchronization signal, and the transmission subframe of the frame number in the frame according to the frame structure preset by the system, and then sends the module 620 at the PSS, the SSS, and the FID. Transmitting, by the UE, the PSS, the SSS, and the FID to the UE, so that the UE determines the first time interval according to the location of the PSS and the SSS transmission subframe in the frame, according to the The location of the SSS and the transmit subframe of the FID in the frame determines the second time interval, and then determines the uplink-downlink subframe ratio of the system according to the first time interval and the second time interval.
  • the determining module 610 by controlling the location of the PSS, the SSS, and the transmit subframe of the FID in the frame, enables the UE to determine the uplink and downlink subframes of the system according to the acquired first time interval and the second time interval. Matching.
  • the above downlink subframe ratio 3:2 is taken as an example.
  • the determining module 610 may determine that the PSS is sent in the 0th subframe and the 1st subframe of the first frame of the superframe, and the subframe 4 and 5 in the frame are The sub-frame transmits the SSS, and the FID is sent in the subframe 9 of the frame.
  • the UE When the duration of the superframe is 80 ms, then the UE successfully receives the PSS in the subframe 1 and successfully receives the SSS on the 5th. Sub-frame, then the time interval between the successful reception of the PSS by the UE and the successful reception of the SSS, that is, the time interval of the 5th subframe and the 1st subframe is 4T sf . Similarly, the successful reception of the FID is at the 9th.
  • the second time interval of successfully receiving the SSS to successfully receive the FID that is, the time interval of the 9th subframe and the 5th subframe is 4T sf , optionally, the first time interval and the first
  • the correspondence between the two time intervals and the uplink and downlink subframes of the system may be pre-configured to the UE.
  • the UE may determine that the uplink-downlink subframe ratio of the system is 3:2 according to the pre-configured uplink-downlink subframe ratio relationship when the first time interval is 4T sf and the second time interval is 4T sf .
  • the determining module 610 only needs to control the location of the PSS, the SSS, and the transmit subframe of the FID in the frame, so that the other first uplink and downlink subframe ratios, the first time interval and the second time interval, and the foregoing two The values are not all the same.
  • the base station of the embodiment of the present invention can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink-downlink subframe ratio of the system in advance without determining the system by using the SIB information.
  • the ratio of the uplink and downlink subframes can be compared according to the uplink and downlink subframe ratio of the system, and a corresponding sleep strategy is adopted to reduce power consumption.
  • the determining module 610 is specifically configured to:
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 2:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 5 and the 6th in the frame are sent.
  • the frame transmits the SSS, and the FID is transmitted in the 0th subframe of the next frame of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in the subframe 8 of the frame, where the frame includes 10 subframes; or
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 9:1
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in subframe 5 of the frame, where the frame includes 10 subframes.
  • the determining module 610 determines the position of the transmitting subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink-downlink subframe ratio of the system according to the obtained first time interval and the second time interval.
  • the first time interval and the second time interval may be converted into ratios A and B of the subframe duration, where the different uplink and downlink are performed.
  • the base station of the embodiment of the present invention can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink-downlink subframe ratio of the system in advance without determining the system by using the SIB information.
  • the ratio of the uplink and downlink subframes can be compared according to the uplink and downlink subframe ratio of the system, and a corresponding sleep strategy is adopted to reduce power consumption.
  • the base station 600 may correspond to a base station in a communication method 5000 of a TDD-based M2D system according to an embodiment of the present invention, and the above-described respective modules in the base station 600 And other operations and/or functions, respectively, in order to implement the corresponding processes of the foregoing various methods, for brevity, no further details are provided herein.
  • an embodiment of the present invention further provides a communication system 700 including a user equipment 500 according to an embodiment of the present invention and a base station 600 according to an embodiment of the present invention.
  • the user equipment 500 according to an embodiment of the present invention may correspond to the UE in the communication method 1000 of the TDD-based M2M system according to the embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the user equipment 500
  • the base station 600 according to an embodiment of the present invention may correspond to a base station in the communication method 5000 of the TDD-based M2D system according to an embodiment of the present invention, and is not described herein again for the sake of brevity of the respective processes of the foregoing respective methods, and
  • the foregoing and other operations and/or functions of the respective modules in the base station 600 are respectively implemented in order to implement the corresponding processes of the foregoing various methods, and are not described herein again for brevity.
  • an embodiment of the present invention further provides a user equipment 800, which includes a processor 810, a memory 820, a bus system 830, and a transceiver 840.
  • the processor 810, the memory 820 and the transceiver 840 are connected by a bus system 830 for storing instructions for executing instructions stored in the memory 820 to control the transceiver 840 to receive signals or send signals.
  • the transceiver 840 is configured to receive a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number FID sent by the base station.
  • the processor 810 is configured to acquire a first time interval and a second time interval, where the first time interval is successful.
  • the processor 810 is further configured to: according to the first time interval and the second time interval Determine the uplink and downlink subframe ratio of the system.
  • the user equipment of the embodiment of the present invention can determine the uplink-downlink subframe ratio of the system in advance according to the first time interval and the second time interval, without determining the uplink-downlink subframe ratio of the system by using the SIB information.
  • a corresponding sleep strategy is adopted to reduce power consumption.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include a read only memory and a random access memory, and is directed to the processor 810 Provide instructions and data. A portion of the memory 820 may also include a non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 810 is specifically configured to:
  • the pre-set uplink-downlink subframe matching relationship includes: A i , B i , and the uplink-downlink subframe ratio of the corresponding system is C i :D i ; wherein the A i , the B i , the C i , the D i and the i are positive integers, and A is a specific value of the A i , and the B is a specific value of the B i .
  • the processor 810 is further configured to:
  • the ratio of the T FS to the T sf is determined as the B;
  • the T FS is modulo the length of the superframe to obtain T' FS , and the ratio of the T FS to the T sf is determined as the B .
  • the A i , B i , the uplink and downlink subframe ratio of the corresponding system is C i :D i includes:
  • the processor 810 is further configured to:
  • the uplink subframe is determined, so that the user equipment does not play the subframe in which the information is not sent in the uplink subframe.
  • the user equipment of the embodiment of the present invention can determine the uplink-downlink subframe ratio of the system in advance according to the first time interval and the second time interval, without determining the uplink-downlink subframe ratio of the system by using the SIB information.
  • a corresponding sleep strategy is adopted to reduce power consumption.
  • an embodiment of the present invention further provides a base station 900, which includes a processor 910, a memory 920, a bus system 930, and a transceiver 940.
  • the processor 910, the memory 920 and the transceiver 940 are connected by a bus system 930 for storing instructions for executing instructions stored in the memory 920 to control the transceiver 940 to receive signals or send signals. .
  • the processor 910 is configured to determine, according to a preset frame structure of the system, a location of a primary synchronization signal PSS, a secondary synchronization signal SSS, and a frame number of a frame number FID in a frame; the transceiver 940 is configured to be in the PSS Transmitting, by the SSS, the SSS and the transmit subframe of the FID in the frame, the PSS, the SSS, and the FID to the user equipment UE, respectively, so that the UE determines the system according to the first time interval and the second time interval.
  • the uplink and downlink subframe ratio, the first time interval is determined by the location of the PSS and the SSS transmission subframe in the frame, and the second time interval is performed by the SSS and the transmit subframe of the FID in the frame. Location is determined.
  • the base station of the embodiment of the present invention can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink-downlink subframe ratio of the system in advance without determining the system by using the SIB information.
  • the ratio of the uplink and downlink subframes can be compared according to the uplink and downlink subframe ratio of the system, and a corresponding sleep strategy is adopted to reduce power consumption.
  • the processor 910 may be a central processing unit (“CPU"), and the processor 910 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 920 can include read only memory and random access memory and provides instructions and data to the processor 910. A portion of the memory 920 may also include a non-volatile random access memory. For example, the memory 920 can also store information of the device type.
  • the bus system 930 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 930 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 910 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 920, and the processor 910 reads the information in the memory 920 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 910 is specifically configured to:
  • the uplink and downlink subframe ratio of the preset frame structure of the system is 2:3, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 5 and the 6th in the frame are sent.
  • the frame transmits the SSS, and the FID is transmitted in the 0th subframe of the next frame of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the subframe 3 and the 4th in the frame are transmitted.
  • the frame transmits the SSS, and the FID is transmitted in the subframe 8 of the frame, where the frame includes 10 subframes; or
  • the ratio of the uplink and downlink subframes of the preset frame structure of the system is 5:5, it is determined that the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in the subframe 9 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 5th subframe and the 6th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 7 of the frame, where the frame includes 10 subframes; or
  • the PSS is sent in the 0th subframe and the 1st subframe of the frame, and the 4th subframe and the 5th subframe in the frame are sent.
  • the frame transmits the SSS, and the FID is sent in subframe 6 of the frame, where the frame includes 10 subframes; or
  • the number 0 of the frame is determined.
  • the frame and the number 1 subframe transmit the PSS, and the SSS is transmitted in subframes 3 and 4 of the frame, and the FID is transmitted in subframe 5 of the frame, wherein the frame includes 10 subframes.
  • the base station of the embodiment of the present invention can control the position of the transmission subframe of the PSS, the SSS, and the FID in the frame, so that the UE can determine the uplink-downlink subframe ratio of the system in advance without determining the system by using the SIB information.
  • the ratio of the uplink and downlink subframes can be compared according to the uplink and downlink subframe ratio of the system, and a corresponding sleep strategy is adopted to reduce power consumption.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于TDD的M2M系统的通信方法、用户设备、基站和通信系统。该通信方法包括:接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;获取第一时间间隔和第二时间间隔,该第一时间间隔为成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔;根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。本发明实施例的基于TDD的M2M系统的通信方法、用户设备、基站和通信系统,能够通过第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,进而采取相应的休眠策略以降低功耗。

Description

一种基于TDD的M2M系统的通信方法、装置与系统
本申请要求于2015年9月1日提交中国专利局、申请号为201510557512.2、发明名称为“一种基于TDD的M2M系统的通信方法、装置与系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,并且更具体地,涉及一种基于TDD的M2M系统的通信方法、用户设备、基站和通信系统。
背景技术
利用蜂窝网络提供机器对机器(Machine To Machine,M2M)通信服务是目前M2M领域研究的热点。M2M网络与现有蜂窝网络共站址,共频段成为降低运营商运营和维护成本的基本需求。为了充分利用有限的蜂窝网频谱,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)考虑利用全球移动通讯系统(Global System of Mobile communication,GSM)或长期演进(Long Term Evolution,LTE)系统的保护频带实现机器对机器(Machine To Machine,M2M)系统的应用,基于频分双工(Frequency Division Duplex,FDD)的M2M系统的开发利用比较充分,而基于时分双工(Time Division Duplex,TDD)的M2M系统未得到充分开发,如何利用这些TDD频谱资源提供M2M应用是亟需考虑的问题。
发明内容
本发明实施例提供一种基于TDD的M2M系统的通信方法、用户设备、基站和通信系统,能够利用TDD频谱资源实现M2M应用,并且,用户设备能够提前确定系统的上下行子帧配比,根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
第一方面,提供了一种基于TDD的M2M系统的通信方法,该通信方法包括:
用户设备接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;
该用户设备获取第一时间间隔和第二时间间隔,该第一时间间隔为成功 接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔;
该用户设备根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。
结合第一方面,在第一方面的第一种实现方式中,该用户设备根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比,包括:
获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
获取该第二时间间隔的时长TFS对于该子帧时长Tsf的倍数B;
将该A和该B代入预先设置的上下行子帧配比关系中,确定该系统的上下行子帧配比;
该预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,该获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B包括:
若该TFS不大于该系统预设的超帧的时间长度,则将该TFS与该Tsf的比值确定为该B。
结合第一方面的第一种实现方式,在第一方面的第三种实现方式中,该获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B包括:
若该TFS大于该系统预设的超帧的时间长度,则将该TFS对该超帧的时间长度取模得到T’FS,将该T’FS与该Tsf的比值确定为该B。
结合第一方面的第一种至第三种实现方式中的任一种实现方式,在第一方面的第四种实现方式中,该Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,该通信方法还包括:
该用户设备在确定该系统的上下行子帧配比后,确定出上行子帧,在该上行子帧中不发送信息的子帧进行休眠。
第二方面,提供了一种基于时分双工TDD的机器到机器M2M系统的通信方法,该通信方法包括:
基站根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;
该基站在该PSS,该SSS和该FID的发送子帧在该帧中的位置,分别向用户设备UE发送该PSS、该SSS和该FID,以便于该UE根据第一时间间隔和第二时间间隔确定该系统的上下行子帧配比,该第一时间间隔由该PSS和该SSS的发送子帧在该帧中的位置确定,该第二时间间隔由该SSS和该FID的发送子帧在该帧中的位置确定。
结合第二方面,在第二方面的第一种实现方式中,该基站根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和FID的发送子帧在帧中的位置,包括:
若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
第三方面,提供了一种用户设备,包括:
接收模块,用于接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;
获取模块,用于获取第一时间间隔和第二时间间隔,该第一时间间隔为该接收模块成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为该接收模块成功接收该SSS到成功接收该FID的时间间隔;
确定模块,用于根据该获取模块获取的该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。
结合第三方面,在第三方面的第一种实现方式中,该确定模块包括:
第一获取单元,用于获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
第二获取单元,用于获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B;
第一确定单元,用于将该第一获取单元获取的A和该第二获取单元获取的B代入预先设置的上下行子帧配比关系中,确定该系统的上下行子帧配比;
该预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。
结合第三方面的第一种实现方式,在第三方面的第二种实现方式中,该第二获取单元具体用于:
若该TFS不大于该系统预设的超帧的时间长度,则将该TFS与该Tsf的比值确定为该B。
结合第三方面的第一种实现方式,在第三方面的第三种实现方式中,该第二获取单元还用于:
若该TFS大于该系统预设的超帧的时间长度,则将该TFS对该超帧的时间长度取模得到T’FS,将该T’FS与该Tsf的比值确定为该B。
结合第三方面的第一种至第三种实现方式中的任一种实现方式,在第三方面的第四种实现方式中,该Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,还包括:
休眠模块,用于在该确定模块确定该系统的上下行子帧配比后,确定出上行子帧,使得该用户设备在该上行子帧中不发送信息的子帧进行休眠。
第四方面,提供了一种基站,包括:
确定模块,用于根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;
发送模块,用于在该PSS,该SSS和该FID的发送子帧在该帧中的位置,分别向用户设备UE发送该PSS、该SSS和该FID,以便于该UE根据第一时间间隔和第二时间间隔确定该系统的上下行子帧配比,该第一时间间隔由该PSS和该SSS的发送子帧在该帧中的位置确定,该第二时间间隔由该SSS和该FID的发送子帧在该帧中的位置确定。
结合第四方面,在第四方面的第一种实现方式中,该确定模块具体用于:
若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
第五方面,提供了一种通信系统,包括上述用户设备和基站。
基于上述技术方案,本发明实施例的基于TDD的M2M系统的通信方法、用户设备、基站和通信系统,能够利用TDD频谱资源实现M2M应用,并且,UE能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过系统信息块SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的基于TDD的M2M系统的帧结构示意图。
图2是根据本发明实施例的基于TDD的M2M系统的通信方法的示意性流程图。
图3是根据本发明实施例的基于TDD的M2M系统的通信方法的另一示意性流程图。
图4是根据本发明实施例的基于TDD的M2M系统的通信方法的再一示意性流程图。
图5是根据本发明另一实施例的基于TDD的M2M系统的通信方法的示意性流程图。
图6是根据本发明另一实施例的基于TDD的M2M系统的通信方法的另一示意性流程图。
图7是根据本发明再一实施例的基于TDD的M2M系统的通信方法的示意性流程图。
图8是根据本发明实施例的用户设备的示意性框图。
图9是根据本发明实施例的基站的示意性框图。
图10是根据本发明实施例的通信系统的示意性框图。
图11是根据本发明另一实施例的用户设备的示意性框图。
图12是根据本发明另一实施例的基站的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution),基于TDD/FDD的M2M系统等。
用户设备(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,或者是基于TDD/FDD LTE-M系统的终端设备、用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话) 和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),或者是基于TDD/FDD M2M系统的基站,本发明并不限定。
基于FDD的M2M系统,在频域上一个资源块(Resource Block,RB)为180KHz,划分为12个物理信道,信道间隔为15KHz,信号带宽为12KHz,UE接入网络需要先进行系统同步,然后接收系统信息块(System Information Block,SIB)和上下行信道指示后,才能进行上下行数据信息的发送和接收。例如,在该系统中,物理广播同步信道(Physical Broadcast Synchronization Channel,PBSCH)用于UE进行帧号(Frame Identification,FID)检测,符号定时同步,和载波频谱估计、超帧内帧索引检测以及发送系统信息,由于广播同步信道的信号带宽为12KHz,故80毫秒(ms)帧长共包含960个符号。其中,包含长度为256个符号的主同步信号(Primary Synchronization Signal,PSS)、长度为257个符号的辅同步信号(Secondary Synchronization Signal,SSS)以及长度为127个符号的超帧内帧索引指示序列,其余320个符号用于传输系统信息。广播同步信道连续进行主辅同步信号,帧号和系统信息广播以帮助UE接入网络。
在本发明实施例中,为了充分利用有限的蜂窝网频谱,并且实现与TDD系统同频共站址的需要,考虑利用TDD的保护频带实现基于TDD的M2M系统的设计,在频域上考虑沿用基于FDD的M2M系统的下行子信道的设计,例如,一个RB可以为180KHz,划分为15个子信道,一个下行子信道可以为12KHz,在时域上也沿用基于FDD的M2M系统的设计,例如,可以定义超帧(super-frame)为80ms,超帧内划分为8个帧(frame),每个帧为10ms。每个帧内划分为10个子帧(sub-frame),每个子帧为1ms。
应理解,本发明实施例仅以一个RB为180KHz为例进行描述,但本发明并不限于此,一个RB也可以为360KHz,划分为30个子信道等。还应理解,本发明实施例仅以超帧为80ms为例进行描述,但本发明并不限于此,超帧也可以为120ms、160ms等。
另外,基于TDD的M2M系统为了保证与现有的TDD系统互不干扰, 考虑采用和TDD系统相同的上下行子帧配比,例如,可以采用与LTE TDD系统相同的上下行子帧配比,那么基于TDD的M2M系统的上下行子帧配比可以如表1所示,其中D表示下行子帧、S表示特殊子帧、U表示上行子帧。在这种情况下,基于TDD的M2M系统的同步信号和帧号就需要在较短的时间内发完以保证UE能够成功进行同步和帧号检测,以上下行子帧配比5:5为例来说明,在帧内,允许发送下行数据的子帧为分别为0号子帧、1号子帧、5号子帧、6号子帧和9号子帧,由于主辅同步信号和帧号不能进行分片发送,所以一个可行的发送方式是在0号子帧和1号子帧发送主同步信号,在5号子帧和6号子帧发送辅同步信号,在9号子帧发送帧号,这种情况下设计该系统的帧结构可以如图1所示,在图1中,X#代表X号子帧,0#~9#代表0号子帧~9号子帧。
表1基于TDD的M2M系统支持的上下行子帧配比
Figure PCTCN2016086814-appb-000001
基于TDD的M2M系统的下行控制管理信息主要包括主同步信号,辅同步信号,帧号,系统信息块等。其中,PSS,SSS,FID序列设计沿用基于FDD的M2M系统的设计。在超帧中,第一帧用来传主辅同步信号和帧号,考虑使用一个或几个子信道来传输该主辅同步信号和帧号,例如,可以利用15个子信道合并使用来传输该主辅同步信号和帧号,以使得系统的主辅同步信号和帧号能够在一个或者几个连续的下行子帧内完成发送,从而保证用户设备能够进行系统同步和帧号检测。
从上述描述可知,基于TDD的M2M通信系统,基站周期性的通过超帧与UE进行通信,该超帧中的第一帧用于发送PSS、SSS和FID,在发送完该PSS、SSS和FID后,基站继续发送SIB信息,UE可以根据该SIB信息确定该系统的上下行子帧配比,由于发送该SIB信息的时间较长,UE需要在成功接收PSS、SSS和FID后再接收SIB信息才能确定该系统的上下行 子帧配比,而完成这些操作最少需要一个超帧的时间长度,因此,这对于有低功耗需求的用户设备来说非常不利于省电,所以如果UE能够尽早确定该系统的上下行子帧配比,UE可以选择在不发送上行信息的上行子帧进行休眠,以达到省电的目的,本发明实施例提供的基于TDD的M2M系统的通信方法能够利用TDD频谱资源实现M2M应用,并且基站能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,进而根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
图2示出了根据本发明实施例的基于TDD的M2M系统的通信方法1000的示意性流程图,该通信方法1000可以由用户设备执行,如图2所示,该方法1000包括:
S1100,用户设备接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;
S1200,该用户设备获取第一时间间隔和第二时间间隔,该第一时间间隔为成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔;
S1300,该用户设备根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。
具体而言,UE依次接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID,获取第一时间间隔和第二时间间隔,该第一时间间隔为成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔,然后该UE根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。可选地,该UE可以根据成功接收该PSS的第一时刻、成功接收该SSS的第二时刻获取该第一时间间隔,根据成功接收该SSS的第二时刻和成功接收该FID的第三时刻获取该第二时间间隔。可选地,该UE可以根据第一时间间隔和第二时间间隔与预先配置的上下行子帧配比关系,确定该系统的上下行子帧配比。
因此,本发明实施例的基于TDD的M2M系统的通信方法,能够利用TDD频谱资源实现M2M应用,并且,UE能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的 休眠策略以降低功耗。
应理解,在本发明实施例中,该UE还可以根据该成功接收该PSS到成功接收该FID的第三时间间隔,以及该第一时间间隔确定该系统的上下行子帧配比;或者,该UE还可以根据该第二时间间隔和该第三时间间隔确定该系统的上下行子帧配比,换句话说,只要该UE可以根据该第一时刻、该第二时刻和该第三时刻的关系能唯一确定该系统的上下行子帧配比即可。
可选地,在本发明实施例中,该UE接收基站发送的主同步信号,接收失败,那么该UE在下一个超帧内重新接收该基站发送的主同步信号;同样地,该UE接收该基站发送的辅同步信号,接收失败,在下一个超帧内重新接收基站发送的主同步信号,重新获取成功接收PSS和成功接收该SSS的第一时间间隔;在帧号检测失败时,该UE无需再进行重新进行主辅同步,只需在下一个超帧内重新接收基站发送的帧号,再次进行帧号检测即可,因此,在成功接收该SSS后,有可能间隔大于超帧的时间长度才成功接收该帧号。
可选地,在本发明实施例中,如图3所示,该用户设备根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比,包括:
S1310,获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
S1320,获取该第二时间间隔的时长TFS对于该子帧时长Tsf的倍数B;
S1330,将该A和该B代入预先设置的上下行子帧配比关系中,确定该系统的上下行子帧配比;
该预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。
具体而言,在该UE获取该第一时间间隔和该第二时间间隔后,该UE获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A,获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B,然后将该A和该B代入预先设置的上下行子帧配比关系中,从而确定该系统的上下行子帧配比。该预先设置的上下行子帧配比关系可以包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。也就是说,在该UE获取到参数A和B后,对比该预先配置的上下行子帧配比关系中的Ai和Bi,如果存在 一组Ai=A且Bi=B,那么确定该组Ai,Bi对应的Ci:Di为该系统的上下行子帧配比。
如果该第一时间间隔不为整数倍的子帧的时长,也就是该M·Tsf<TPS<(M+0.5)·Tsf或(M+0.5)·Tsf≤TPS<(M+1)·Tsf,其中M为正整数,可选地,在该TPS满足M·Tsf<TPS<(M+0.5)·Tsf时,可以将该TPS转换为M·Tsf,在该TPS满足(M+0.5)·Tsf≤TPS<(M+1)·Tsf时,可以将该第一时间间隔TPS转换为(M+1)·Tsf,然后再用转换后的TPS对子帧时长Tsf求比值来获取A,例如,Tsf=1ms,TPS=4.6ms时,该4.5 Tsf<TPS<5 Tsf,将该TPS转换为5 Tsf,然后对该Tsf求比值,可以确定A=5。同样地,如果该第二时间间隔也不为整数倍的子帧时长,也可以采用类似的处理方法来获取B,这里不再赘述。
在本发明实施例中,该获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B包括:
若该TFS不大于该系统预设的超帧的时间长度,则将该TFS与该Tsf的比值确定为该B。
由于在成功接收该SSS后,有可能间隔大于超帧的时间长度才成功接收该FID,在这种情况下,该获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B包括:
若该TFS大于该系统预设的超帧的时间长度,则将该TFS对该超帧的时间长度取模得到T’FS,将该T’FS与该Tsf的比值确定为该B。
例如,当超帧的时长为80ms时,此时,该子帧的时长Tsf为1ms,若该第二时间间隔TFS=4ms,小于超帧的时长,那么该参数B为该TFS与该Tsf的比值即为4;若该第二时间间隔为84ms,大于超帧的时长,此时,将该TFS对80ms取模,也就是将该TFS除以80ms得到的余数确定为T’FS,即该T’FS=4ms,然后将该T’FS与Tsf的比值确定为B,也就是B等于4。
可选地,该Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
也就是该Ai,Bi和该系统的上下行子帧配比Ci:Di的对应关系可以如表2所示。
表2(Ai、Bi和上下行子帧配比Ci:Di的对应关系)
i Ai Bi Ci:Di
1 5 4 2:3
2 4 4 3:2
3 3 4 4:1
4 5 3 5:5
5 5 1 7:3
6 4 1 8:2
7 3 1 9:1
举例来说,如果该UE在获取该第一时间间隔和第二时间间隔后,根据该第一时间间隔和第二时间间隔,确定出A=5、B=4后,然后将该A和B代入该表2中的对应关系,可以确定A1=5=A,B1=4=B,从而可以确定该系统的上下行子帧配比为C1:D1=2:3;再例如,在该UE根据该第一时间间隔和第二时间间隔,确定A=4、B=1时,代入该表2中的对应关系,可以确定A6=4=A,B6=1=B,从而可以确定该系统的上下行子帧配比为C6:D6=8:2。
应理解,该Ai,Bi和该系统的上下行子帧配比Ci:Di的对应关系不是唯一的,只要在该对应关系中,能根据该Ai,Bi唯一确定系统的上下行子帧配比即可,本发明实施例仅以表2中的对应关系为例进行描述,本发明实施例还可以有其他对应关系。例如,该预先配置的上下行子帧配比关系还可以如表3所示。
表3(Ai、Bi和上下行子帧配比Ci:Di的对应关系)
i Ai Bi Ci:Di
1 5 4 2:3
2 4 1 3:2
3 3 2 4:1
4 5 3 5:5
5 5 1 7:3
6 4 2 8:2
7 3 1 9:1
由于同样的一组Ai,Bi的值可能对应不同的上下行子帧配比Ci:Di,例如,在表2中,该A6=4,B6=1对应的系统的上下行子帧配比C6:D6为8:2,而在表3中,该A2=4,B2=1对应的系统的上下行子帧配比C2:D2为3:2,因 此,这就需要UE提前获取该预先配置的上下行子帧配比关系,以便于在该UE根据该第一时间间隔和第二时间间隔确定A和B后,根据该预先配置的上下行子帧配比关系确定该系统的上下行子帧配比。
图4是根据本发明另一实施例的基于TDD的M2M系统的通信方法4000的示意性流程图。下面将以图4所示的流程图为例,详细说明根据本发明实施例的基于TDD的M2M系统的通信方法4000。
在S4100中,UE接收基站发送的PSS,接收成功后,流程进行到S4200,否则,接收失败,重新执行S4100,也就是该UE在下一个超帧的第一帧重新接收基站发送的PSS。
在S4200中,该UE接收该基站发送的SSS,接收成功,流程进行到S4300,否则流程重新回到S4100,该UE在下一个超帧内重新接收基站发送的PSS。
在S4300中,在该UE获取第一时间间隔TPS,该第一时间间隔为成功接收SSS到成功接收该SSS的时间间隔。
在S4400中,该UE接收该基站发送的FID,接收成功的话,流程进行到S4500,否则,重新接收基站发送的FID信号,而无需进行系统主辅同步,也就是说在下个超帧内重新执行S4400,无需再执行S4100~S4300中的操作,因此,在成功接收该SSS后,可能间隔大于一个超帧的时间长度才成功接收该帧号。
在S4500中,该UE获取第二时间间隔TFS,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔。
在S4600中,获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A。
如果该TPS为整数倍的子帧时长,那么A为TPS与子帧时长Tsf的比值;如果该TPS不为整数倍的子帧时长,那么先将该TPS转换为整数倍的子帧时长,然后再对子帧时长Tsf求比值,转换方法同上面所述,这里不再赘述。
在S4700中,判断该第二时间间隔是否大于该系统预设的超帧的时间长度,如果不大于该系统预设的超帧的时间长度,流程进行到S4800,否则,流程进行到S4900。
在S4800中,该TFS不大于该系统预设的超帧的时间长度,确定该B为该TFS与该Tsf的比值。
与该TPS类似,如果该TFS不为整数倍的子帧时长,也需要先将该TFS 转换为整数倍的子帧时长,转换方法和TPS的转换方法类似,这里不再赘述。
在S4900中,该TFS大于该系统预设的超帧的时间长度,则将该TFS对该超帧的时间长度取模得到T’FS,确定该B为该T’FS与Tsf的比值。
以超帧时长为80ms,子帧时长Tsf为1ms为例,若该第二时间间隔为84ms,大于超帧的时长,此时,将该TFS对80ms取模,也就是将该TFS除以80ms得到的余数确定为T’FS,即该T’FS=4ms,然后将该T’FS与Tsf的比值确定为B,也就是B等于4。
在S5000中,根据该A和B与预先配置的上下行子帧配比关系确定该系统的上下行子帧配比。
具体而言,将该A和B代入预先配置的上下行子帧配比关系中,确定存在一组Ai=A,Bi=B时,那么该组Ai,Bi对应的Ci:Di即为该系统的上下行子帧配比。
例如,该预先配置的上下行子帧配比关系可以为表2所示,在该UE确定该A=5,B=1时,将其代入该表2中预先配置的上下行子帧配比关系中,可以发现A5=5=A和B5=1=B,从而可以确定该系统的上下行子帧配比为C5:D5=7:3。
因此,本发明实施例的基于TDD的M2M系统的通信方法,能够利用TDD频谱资源实现M2M应用,并且,UE能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
可选地,在本发明实施例中,该通信方法1000还包括:
该用户设备在确定该系统的上下行子帧配比后,确定出上行子帧,在该上行子帧中不发送信息的子帧进行休眠。
具体来说,该UE在确定该系统的上下行子帧配比后,可以根据该系统的上下行子帧配比,确定出哪些子帧为上行子帧,从而可以制定相应的休眠策略,以达到降低功耗的目的,可选地,该UE可以选择在该上行子帧中的不发送上行信息的子帧进行休眠,例如,用于远程抄表的UE,在获取该系统的上下行子帧配比为5:5后,确定出2号、3号、4号、7号和8号子帧为上行子帧,可以选择在上述上行子帧中不用上报数据的子帧进行休眠,以达到降低功耗的目的。
因此,本发明实施例的基于TDD的M2M系统的通信方法,能够利用TDD频谱资源实现M2M应用,并且,UE能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
上文结合图2至图4,从UE的角度,对根据本发明实施例的基于TDD的M2M系统的通信方法进行了描述,下面结合图5和图6,从基站的角度,对根据本发明实施例的基于TDD的M2M系统的通信方法进行描述。
图5示出了根据本发明实施例的基于TDD的M2M系统的通信方法5000的示意性流程图,该方法5000可以由基站执行,该通信方法5000包括:
S5100,基站根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;
S5200,该基站在该PSS,该SSS和该FID的发送子帧在该帧中的位置,分别向用户设备UE发送该PSS、该SSS和该FID,以便于该UE根据第一时间间隔和第二时间间隔确定该系统的上下行子帧配比,该第一时间间隔由该PSS和该SSS的发送子帧在该帧中的位置确定,该第二时间间隔由该SSS和该FID的发送子帧在该帧中的位置确定。
具体而言,基站根据系统预设的帧结构,确定主同步信号、辅同步信号和帧号的发送子帧在帧中的位置,然后在该PSS、该SSS和该FID的发送子帧在该帧中的位置,分别向UE发送该PSS、该SSS和该FID,以便于该UE根据该PSS和该SSS的发送子帧在帧中的位置确定该第一时间间隔,根据该SSS和该FID的发送子帧在帧中的位置确定该第二时间间隔,然后根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。也就是该基站通过控制该PSS、该SSS和该FID的发送子帧在帧中的位置,能够使得该UE根据获取的第一时间间隔和第二时间间隔确定该系统的上下行子帧配比。以上下行子帧配比3:2为例,该基站可以在超帧的第一个帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在5号子帧,该UE成功接收该PSS到成功接收该SSS的第一时间间隔也就是5号子帧和1号子帧的时间间隔即为4Tsf,同样地,成功接收该FID是在9号子帧,那么成功接收该该SSS到成功接收该FID的第二 时间间隔也就是9号子帧和5号子帧的时间间隔即为4Tsf,可选地,该基站可以将第一时间间隔和该第二时间间隔与该系统的上下行子帧配比的对应关系预先配置给UE。在该预先配置的上下行子帧配比关系中可以包括在第一时间间隔为4Tsf、第二时间间隔为4Tsf时,对应的系统的上下行子帧配比为3:2,那么该UE可以在获取第一时间间隔为4Tsf、第二时间间隔为4Tsf时,根据该预先配置的上下行子帧配比关系,确定该系统的上下行子帧配比为3:2。该基站只要通过控制该PSS、SSS和该FID的发送子帧在帧中的位置,使得在其他的上下行子帧配比下,该第一时间间隔和该第二时间间隔和上述两个值不全相同即可。
因此,本发明实施例的基于TDD的M2M系统的通信方法,能够利用TDD频谱资源实现M2M应用,并且,基站能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
可选地,在本发明实施例中,如图6所示,该基站根据系统的上下行子帧配比,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送时刻,包括:
S5110,若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
S5120,若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
S5130,若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,其中该帧包括10个子帧;或者,
S5140,若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
S5150,若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS, 在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
S5160,若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
S5170,若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
具体而言,若系统的上下行子帧配比为2:3时,该基站可以控制在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在6号子帧,该第一时间间隔为6号子帧和1号子帧的时间间隔5Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为4 Tsf
若系统的上下行子帧配比为3:2,该基站可以控制在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在5号子帧,该第一时间间隔为5号子帧和1号子帧的时间间隔4Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为4Tsf
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在4号子帧,该第一时间间隔为4号子帧和1号子帧的时间间隔3Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为4Tsf
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在6号子帧,该第一时间间隔为6号子帧和1号子帧的时间间隔5Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为3Tsf
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功 接收该SSS是在6号子帧,该第一时间间隔为6号子帧和1号子帧的时间间隔5Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为1Tsf
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在5号子帧,该第一时间间隔为5号子帧和1号子帧的时间间隔4Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为1Tsf
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在4号子帧,该第一时间间隔为4号子帧和1号子帧的时间间隔3Tsf,同样地,成功接收该SSS到成功接收该FID的第二时间间隔为1Tsf
总的来说,该基站通过控制该PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够根据获取的第一时间间隔、第二时间间隔确定该系统的上下行子帧配比,可选地,该基站可以将该系统的上下行子帧配比关系预先配置给UE,那么该UE就可以在获取该第一时间间隔和第二时间间隔后,根据该第一时间间隔和该第二时间间隔以及该预先配置的上下行子帧配比关系确定该系统的上下行子帧配比。
可选地,在本发明实施例中,该基站根据系统的上下行子帧配比,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送时刻,还包括:
若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该 帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
应理解,该PSS、SSS和FID的发送子帧在帧中的位置不是唯一的,只要该UE能够根据该该PSS、SSS和FID的发送子帧在帧中的位置获取第一时间间隔和第二时间间隔后,能够根据该第一时间隔和该第二时间间隔唯一确定该系统的上下行子帧配比即可。
因此,本发明实施例的基于TDD的M2M系统的通信方法,能够利用TDD频谱资源实现M2M通信,并且,基站能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
上文结合图2至图6,分别从用户设备和基站的角度对根据本发明实施例的基于TDD的M2M系统的通信方法进行了详细的介绍;下文结合图7,从通信系统中设备交互的角度对根据本发明实施例的基于TDD的M2M系统的通信方法进行介绍,该通信系统包括用户设备和基站。
图7示出了根据本发明实施例的基于TDD的M2M系统的通信方法的示意性流程图。
在S210中,基站根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置。
可选地,在本发明实施例中,该基站根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置,包括:
若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该 帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
应理解,该PSS、SSS和FID的发送子帧在帧中的位置不是唯一的,只要该基站通过控制该PSS、SSS和FID的发送子帧在帧中的位置,使得该UE能够根据成功接收该PSS到成功接收该SSS的第一时间间隔,以及成功接收该SSS到成功接收该FID的第二时间间隔唯一确定该系统的上下行子帧配比即可。
在S220中,该该基站在该PSS,该SSS和该FID的发送子帧在该帧中的位置,分别向用户设备UE发送该PSS、该SSS和该FID。
在S230,该UE接收该基站发送的PSS、SSS和FID,获取第一时间间隔和第二时间间隔,该第一时间间隔为成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔。
在S240,该UE根据该第一时间间隔和第二时间间隔确定该系统的上下 行子帧配比。
可选地,该UE根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比,包括:
获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
获取该第二时间间隔的时长TFS对于该子帧时长Tsf的倍数B;
将该A和该B代入预先设置的上下行子帧配比关系中,确定该系统的上下行子帧配比;
该预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。
具体而言,在该UE获取该第一时间间隔和该第二时间间隔后,该UE获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A,获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B,然后将该A和该B代入预先设置的上下行子帧配比关系中,从而确定该系统的上下行子帧配比。换句话说,在该UE获取到参数A和B后,对比该预先配置的上下行子帧配比关系中的Ai和Bi,如果存在一组Ai=A且Bi=B,那么确定该组Ai,Bi对应的Ci:Di为该系统的上下行子帧配比。
因此,本发明实施例的基于TDD的M2M系统的通信方法,能够利用TDD频谱资源实现M2M通信,并且,基站能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
上文结合图2至图7对根据本发明实施例的基于TDD的M2M系统的通信方法进行了详细的介绍,下文结合图8至图12对根据本发明实施例的基于TDD的M2M系统的装置进行介绍。
图8示出了根据本发明实施例的用户设备500的示意性框图,该用户设备500包括:
接收模块510,用于接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;
获取模块520,用于获取第一时间间隔和第二时间间隔,该第一时间间隔为该接收模块510成功接收该PSS到成功接收该SSS的时间间隔,该第 二时间间隔为该接收模块510成功接收该SSS到成功接收该FID的时间间隔;
确定模块530,用于根据该获取模块520获取的该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。
具体而言,接收模块510接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID,获取模块520获取第一时间间隔和第二时间间隔,该第一时间间隔为成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔,然后该确定模块530根据该获取模块520获取的第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。可选地,该获取模块520可以根据成功接收该PSS的第一时刻、成功接收该SSS的第二时刻获取该第一时间间隔,根据成功接收该SSS的第二时刻和成功接收该FID的第三时刻获取该第二时间间隔。可选地,该确定模块530可以根据第一时间间隔和第二时间间隔与预先配置的上下行子帧配比关系,确定该系统的上下行子帧配比。
因此,本发明实施例的用户设备,能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
可选地,在本发明实施例中,该接收模块510接收基站发送的主同步信号,接收失败后,在下一个超帧内重新接收该基站发送的主同步信号;同样地,该接收模块510接收该基站发送的辅同步信号,接收失败后,在下一个超帧内重新接收基站发送的主同步信号;在帧号检测失败时,该接收模块510无需再进行主辅同步,只需在下一个超帧内重新接收基站发送的帧号,再次进行帧号检测即可,因此,在成功接收该SSS后,有可能间隔大于超帧的时间长度才成功接收该帧号。
可选地,在本发明实施例中,该确定模块530包括:
第一获取单元,用于获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
第二获取单元,用于获取该第二时间间隔的时长TFS对于该子帧时长Tsf的倍数B;
第一确定单元,用于将该第一获取单元获取的A和该第二获取单元获取 的B代入预先设置的上下行子帧配比关系中,确定该系统的上下行子帧配比;
该预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。
具体而言,在该获取模块520获取该第一时间间隔和该第二时间间隔后,该第一获取单元获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A,第二获取单元获取该第二时间间隔的时长TFS对于子帧时长Tsf的倍数B,然后第一确定单元将该A和该B代入预先设置的上下行子帧配比关系中,从而确定该系统的上下行子帧配比,该预先设置的上下行子帧配比关系可以包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。也就是说,在获取到参数A和B后,该第一确定单元对比该预先配置的上下行子帧配比关系中的Ai和Bi,如果存在一组Ai=A且Bi=B,那么确定该组Ai,Bi对应的Ci:Di即为该系统的上下行子帧配比。
在本发明实施例中,该第二获取单元具体用于:
若该TFS不大于该系统预设的超帧的时间长度,则将该TFS与该Tsf的比值确定为该B。
由于在成功接收该SSS后,有可能间隔大于超帧的时间长度才成功接收该FID,在这种情况下,该第二获取单元还用于:
若该TFS大于该系统预设的超帧的时间长度,则将该TFS对该超帧的时间长度取模得到T’FS,将该T’FS与该Tsf的比值确定为该B。
可选地,该Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
也就是说,在该第一获取单元和第二获取单元获取到A和B的值后, 该第一确定单元代入上面的上下行子帧配比关系中,如果存在一组Ai=A,Bi=B,那么该第一确定单元确定该组Ai,Bi对应的上下行子帧配比Ci:Di即为该系统的上下行子帧配比。
可选地,在本发明实施例中,该用户设备500还包括:
休眠模块,用于在确定该系统的上下行子帧配比后,确定出上行子帧,使得该用户设备在该上行子帧中不发送信息的子帧进行休眠。
具体来说,在该确定模块530确定该系统的上下行子帧配比后,该休眠模块可以根据该系统的上下行子帧配比,确定出哪些子帧为上行子帧,从而可以制定相应的休眠策略,以达到降低功耗的目的,可选地,该休眠模块可以选择在该上行子帧中的不发送上行信息的子帧进行休眠。
因此,本发明实施例的用户设备,能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
根据本发明实施例的用户设备500可对应于根据本发明实施例的基于TDD的M2M系统的通信方法1000中的UE,并且用户设备500中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
图9示出了根据本发明实施例的基站600的示意性框图,该基站600包括:
确定模块610,用于根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;
发送模块620,用于在该PSS,该SSS和该FID的发送子帧在该帧中的位置,分别向用户设备UE发送该PSS、该SSS和该FID,以便于该UE根据第一时间间隔和第二时间间隔确定该系统的上下行子帧配比,该第一时间间隔由该PSS和该SSS的发送子帧在该帧中的位置确定,该第二时间间隔由该SSS和该FID的发送子帧在该帧中的位置确定。
具体而言,确定模块610根据系统预设的帧结构,确定主同步信号、辅同步信号和帧号的发送子帧在帧中的位置,然后发送模块620在该PSS、该SSS和该FID的发送子帧在该帧中的位置,分别向UE发送该PSS、该SSS和该FID,以便于该UE根据该PSS和该SSS的发送子帧在帧中的位置确定 该第一时间间隔,根据该SSS和该FID的发送子帧在帧中的位置确定该第二时间间隔,然后根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。也就是该确定模块610通过控制该PSS、该SSS和该FID的发送子帧在帧中的位置,能够使得该UE根据获取的第一时间间隔和第二时间间隔确定该系统的上下行子帧配比。以上下行子帧配比3:2为例,该确定模块610可以确定在超帧的第一个帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,当超帧的时长为80ms时,那么该UE成功接收该PSS是在1号子帧,成功接收该SSS是在5号子帧,那么该UE成功接收该PSS到成功接收该SSS的第一时间间隔也就是5号子帧和1号子帧的时间间隔即为4Tsf,同样地,成功接收该FID是在9号子帧,那么成功接收该该SSS到成功接收该FID的第二时间间隔也就是9号子帧和5号子帧的时间间隔即为4Tsf,可选地,该第一时间间隔和该第二时间间隔与该系统的上下行子帧配比的对应关系可以预先配置给UE。在该预先配置的上下行子帧配比关系中可以包括在第一时间间隔为4Tsf、第二时间间隔为4Tsf时,对应的系统的上下行子帧配比为3:2,那么该UE可以在获取第一时间间隔为4Tsf、第二时间间隔为4Tsf时,根据该预先配置的上下行子帧配比关系,确定该系统的上下行子帧配比为3:2。该确定模块610只要通过控制该PSS、SSS和该FID的发送子帧在帧中的位置,使得在其他的上下行子帧配比下,该第一时间间隔和该第二时间间隔和上述两个值不全相同即可。
因此,本发明实施例的基站,能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
可选地,在本发明实施例中,该确定模块610具体用于:
若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
该确定模块610通过控制该PSS、SSS和FID的发送子帧在帧中的位置,使得该UE能够根据获取的该第一时间间隔、第二时间间隔确定该系统的上下行子帧配比,可选地,在该UE获取该第一时间间隔和第二时间间隔后,可以将该第一时间间隔和第二时间间隔转换为对子帧时长的比值A和B,在上述不同的上下行子帧配比下,那么该UE根据获取的第一时间间隔和第二时间间隔确定的A、B和该系统的上下行子帧配比存在表2中的对应关系,举例来说,如果该UE获取的该第一时间间隔为4Tsf、该第二时间间隔为4Tsf,将该第一时间间隔和该第二时间间隔对子帧时长求比值后,得到A=4,B=4,代入表2中的对应关系可以知道A2=4,B2=4,那么该系统的上下行子帧配比即为该组A2,B2对应的C2:D2=3:2。
因此,本发明实施例的基站,能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
根据本发明实施例的基站600可对应于根据本发明实施例的基于TDD的M2D系统的通信方法5000中的基站,并且基站600中的各个模块的上述 和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
另外,如图10所示,本发明实施例还提供了一种通信系统700,该通信系统700包括根据本发明实施例的用户设备500和根据本发明实施例的基站600。其中,根据本发明实施例的用户设备500可对应于根据本发明实施例的基于TDD的M2M系统的通信方法1000中的UE,并且用户设备500中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述;根据本发明实施例的基站600可对应于根据本发明实施例的基于TDD的M2D系统的通信方法5000中的基站,并且基站600中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
如图11所示,本发明实施例还提供了一种用户设备800,该用户设备800包括处理器810、存储器820、总线系统830和收发器840。其中,处理器810、存储器820和收发器840通过总线系统830相连,该存储器820用于存储指令,该处理器810用于执行该存储器820存储的指令,以控制收发器840接收信号或发送信号。其中,该收发器840用于接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;该处理器810用于获取第一时间间隔和第二时间间隔,该第一时间间隔为成功接收该PSS到成功接收该SSS的时间间隔,该第二时间间隔为成功接收该SSS到成功接收该FID的时间间隔;该处理器810还用于根据该第一时间间隔和该第二时间间隔确定该系统的上下行子帧配比。
因此,本发明实施例的用户设备,能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器810 提供指令和数据。存储器820的一部分还可以包括非易失性随机存取存储器。例如,存储器820还可以存储设备类型的信息。
该总线系统830除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统830。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,在本发明实施例中,该处理器810具体用于:
获取该第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
获取该第二时间间隔的时长TFS对于该子帧时长Tsf的倍数B;
将该A和该B代入预先设置的上下行子帧配比关系中,确定该系统的上下行子帧配比;
该预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,该Ai、该Bi、该Ci、该Di以及该i为正整数,该A为该Ai的一个具体值,该B为该Bi的一个具体值。
可选地,在本发明实施例中,该处理器810还用于:
若该TFS不大于该系统预设的超帧的时间长度,则将该TFS与该Tsf的比值确定为该B;
若该TFS大于该系统预设的超帧的时间长度,则将该TFS对该超帧的时间长度取模得到T’FS,将该T’FS与该Tsf的比值确定为该B。
可选地,该Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
可选地,在本发明实施例中,该处理器810还用于:
在确定该系统的上下行子帧配比后,确定出上行子帧,使得该用户设备在该上行子帧中不发送信息的子帧进行休眠。
因此,本发明实施例的用户设备,能够根据第一时间间隔和第二时间间隔,提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
如图12所示,本发明实施例还提供了一种基站900,该基站900包括处理器910、存储器920、总线系统930和收发器940。其中,处理器910、存储器920和收发器940通过总线系统930相连,该存储器920用于存储指令,该处理器910用于执行该存储器920存储的指令,以控制收发器940接收信号或发送信号。其中,该处理器910用于根据该系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;该收发器940用于在该PSS,该SSS和该FID的发送子帧在该帧中的位置,分别向用户设备UE发送该PSS、该SSS和该FID,以便于该UE根据第一时间间隔和第二时间间隔确定该系统的上下行子帧配比,该第一时间间隔由该PSS和该SSS的发送子帧在该帧中的位置确定,该第二时间间隔由该SSS和该FID的发送子帧在该帧中的位置确定。
因此,本发明实施例的基站,能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
应理解,在本发明实施例中,该处理器910可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器910还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器920可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。存储器920的一部分还可以包括非易失性随机存取存储器。 例如,存储器920还可以存储设备类型的信息。
该总线系统930除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统930。
在实现过程中,上述方法的各步骤可以通过处理器910中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器920,处理器910读取存储器920中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,在本发明实施例中,该处理器910具体用于:
若该系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的下一个帧的0号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的8号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的9号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的5号子帧和6号子帧发送该SSS,在该帧的7号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送该PSS,在该帧的4号子帧和5号子帧发送该SSS,在该帧的6号子帧发送该FID,其中该帧包括10个子帧;或者,
若该系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子 帧和1号子帧发送该PSS,在该帧的3号子帧和4号子帧发送该SSS,在该帧的5号子帧发送该FID,其中该帧包括10个子帧。
因此,本发明实施例的基站,能够通过控制PSS、SSS和FID的发送子帧在帧中的位置,使得UE能够提前确定该系统的上下行子帧配比,而无需通过SIB信息确定该系统的上下行子帧配比,进而可以根据该系统的上下行子帧配比,采取相应的休眠策略以降低功耗。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种基于时分双工TDD的机器到机器M2M系统的通信方法,其特征在于,所述通信方法包括:
    用户设备接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;
    所述用户设备获取第一时间间隔和第二时间间隔,所述第一时间间隔为成功接收所述PSS到成功接收所述SSS的时间间隔,所述第二时间间隔为成功接收所述SSS到成功接收所述FID的时间间隔;
    所述用户设备根据所述第一时间间隔和所述第二时间间隔确定所述系统的上下行子帧配比。
  2. 根据权利要求1所述的通信方法,其特征在于,所述用户设备根据所述第一时间间隔和所述第二时间间隔确定所述系统的上下行子帧配比,包括:
    获取所述第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
    获取所述第二时间间隔的时长TFS对于所述子帧时长Tsf的倍数B;
    将所述A和所述B代入预先设置的上下行子帧配比关系中,确定所述系统的上下行子帧配比;
    所述预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行子帧配比为Ci:Di;其中,所述Ai、所述Bi、所述Ci、所述Di以及所述i为正整数,所述A为所述Ai的一个具体值,所述B为所述Bi的一个具体值。
  3. 根据权利要求2所述的通信方法,其特征在于,所述获取所述第二时间间隔的时长TFS对于子帧时长Tsf的倍数B包括:
    若所述TFS不大于所述系统预设的超帧的时间长度,则将所述TFS与所述Tsf的比值确定为所述B。
  4. 根据权利要求2所述的通信方法,其特征在于,所述获取所述第二时间间隔的时长TFS对于子帧时长Tsf的倍数B包括:
    若所述TFS大于所述系统预设的超帧的时间长度,则将所述TFS对所述超帧的时间长度取模得到T’FS,将所述T’FS与所述Tsf的比值确定为所述B。
  5. 根据权利要求2至4中任一项所述的通信方法,所述Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
    A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
    A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
    A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
    A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
    A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
    A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
    A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
  6. 根据权利要求1至5中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述用户设备在确定所述系统的上下行子帧配比后,确定出上行子帧,在所述上行子帧中不发送信息的子帧进行休眠。
  7. 一种基于时分双工TDD的机器到机器M2M系统的通信方法,其特征在于,所述通信方法包括:
    基站根据所述系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;
    所述基站在所述PSS,所述SSS和所述FID的发送子帧在所述帧中的位置,分别向用户设备UE发送所述PSS、所述SSS和所述FID,以便于所述UE根据第一时间间隔和第二时间间隔确定所述系统的上下行子帧配比,所述第一时间间隔由所述PSS和所述SSS的发送子帧在所述帧中的位置确定,所述第二时间间隔由所述SSS和所述FID的发送子帧在所述帧中的位置确定。
  8. 根据权利要求7所述的通信方法,其特征在于,所述基站根据所述系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和FID的发送子帧在帧中的位置,包括:
    若所述系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的5号子帧和6号子帧发送所述SSS,在所述帧的下一个帧的0号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的4号子帧和5号子帧发送所述SSS,在所述帧的9号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的3号子帧和4号子帧发送所述 SSS,在所述帧的8号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的5号子帧和6号子帧发送所述SSS,在所述帧的9号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的5号子帧和6号子帧发送所述SSS,在所述帧的7号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的4号子帧和5号子帧发送所述SSS,在所述帧的6号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的3号子帧和4号子帧发送所述SSS,在所述帧的5号子帧发送所述FID,其中所述帧包括10个子帧。
  9. 一种用户设备,其特征在于,包括:
    接收模块,用于接收基站发送的主同步信号PSS、辅同步信号SSS和帧号FID;
    获取模块,用于获取第一时间间隔和第二时间间隔,所述第一时间间隔为所述接收模块成功接收所述PSS到成功接收所述SSS的时间间隔,所述第二时间间隔为所述接收模块成功接收所述SSS到成功接收所述FID的时间间隔;
    确定模块,用于根据所述获取模块获取的所述第一时间间隔和所述第二时间间隔确定所述系统的上下行子帧配比。
  10. 根据权利要求9所述的用户设备,其特征在于,所述确定模块包括:
    第一获取单元,用于获取所述第一时间间隔的时长TPS对于子帧时长Tsf的倍数A;
    第二获取单元,用于获取所述第二时间间隔的时长TFS对于所述子帧时长Tsf的倍数B;
    第一确定单元,用于将所述第一获取单元获取的A和所述第二获取单元获取的B代入预先设置的上下行子帧配比关系中,确定所述系统的上下行子帧配比;
    所述预先设置的上下行子帧配比关系包括:Ai,Bi,对应系统的上下行 子帧配比为Ci:Di;其中,所述Ai、所述Bi、所述Ci、所述Di以及所述i为正整数,所述A为所述Ai的一个具体值,所述B为所述Bi的一个具体值。
  11. 根据权利要求10所述的用户设备,其特征在于,所述第二获取单元具体用于:
    若所述TFS不大于所述系统预设的超帧的时间长度,则将所述TFS与所述Tsf的比值确定为所述B。
  12. 根据权利要求10所述的用户设备,其特征在于,所述第二获取单元还用于:
    若所述TFS大于所述系统预设的超帧的时间长度,则将所述TFS对所述超帧的时间长度取模得到T’FS,将所述T’FS与所述Tsf的比值确定为所述B。
  13. 根据权利要求10至12中任一项所述的用户设备,所述Ai,Bi,对应系统的上下行子帧配比为Ci:Di包括:
    A1=5,B1=4,对应系统的上下行子帧配比为C1:D1=2:3;
    A2=4,B2=4,对应系统的上下行子帧配比为C2:D2=3:2;
    A3=3,B3=4,对应系统的上下行子帧配比为C3:D3=4:1;
    A4=5,B4=3,对应系统的上下行子帧配比为C4:D4=5:5;
    A5=5,B5=1,对应系统的上下行子帧配比为C5:D5=7:3;
    A6=4,B6=1,对应系统的上下行子帧配比为C6:D6=8:2;
    A7=3,B7=1,对应系统的上下行子帧配比为C7:D7=9:1。
  14. 根据权利要求9至13中任一项所述的用户设备,其特征在于,还包括:
    休眠模块,用于在所述确定模块确定所述系统的上下行子帧配比后,确定出上行子帧,使得所述用户设备在所述上行子帧中不发送信息的子帧进行休眠。
  15. 一种基站,其特征在于,包括:
    确定模块,用于根据所述系统预设的帧结构,确定主同步信号PSS,辅同步信号SSS和帧号FID的发送子帧在帧中的位置;
    发送模块,用于在所述PSS,所述SSS和所述FID的发送子帧在所述帧中的位置,分别向用户设备UE发送所述PSS、所述SSS和所述FID,以便于所述UE根据第一时间间隔和第二时间间隔确定所述系统的上下行子帧配比,所述第一时间间隔由所述PSS和所述SSS的发送子帧在所述帧中的位 置确定,所述第二时间间隔由所述SSS和所述FID的发送子帧在所述帧中的位置确定。
  16. 根据权利要求15所述的基站,其特征在于,所述确定模块具体用于:
    若所述系统预设的帧结构的上下行子帧配比为2:3,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的5号子帧和6号子帧发送所述SSS,在所述帧的下一个帧的0号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为3:2,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的4号子帧和5号子帧发送所述SSS,在所述帧的9号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为4:1,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的3号子帧和4号子帧发送所述SSS,在所述帧的8号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为5:5,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的5号子帧和6号子帧发送所述SSS,在所述帧的9号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为7:3,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的5号子帧和6号子帧发送所述SSS,在所述帧的7号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为8:2,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的4号子帧和5号子帧发送所述SSS,在所述帧的6号子帧发送所述FID,其中所述帧包括10个子帧;或者,
    若所述系统预设的帧结构的上下行子帧配比为9:1,则确定在帧的0号子帧和1号子帧发送所述PSS,在所述帧的3号子帧和4号子帧发送所述SSS,在所述帧的5号子帧发送所述FID,其中所述帧包括10个子帧。
  17. 一种通信系统,其特征在于,包括根据权利要求9至14中任一项所述的用户设备和根据权利要求15或16所述的基站。
PCT/CN2016/086814 2015-09-01 2016-06-23 一种基于tdd的m2m系统的通信方法、装置与系统 WO2017036236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510557512.2 2015-09-01
CN201510557512.2A CN106488540B (zh) 2015-09-01 2015-09-01 一种基于tdd的m2m系统的通信方法、装置与系统

Publications (2)

Publication Number Publication Date
WO2017036236A1 true WO2017036236A1 (zh) 2017-03-09
WO2017036236A9 WO2017036236A9 (zh) 2017-08-17

Family

ID=58186564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086814 WO2017036236A1 (zh) 2015-09-01 2016-06-23 一种基于tdd的m2m系统的通信方法、装置与系统

Country Status (2)

Country Link
CN (1) CN106488540B (zh)
WO (1) WO2017036236A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121179A (zh) * 2018-02-05 2019-08-13 维沃移动通信有限公司 一种小小区发现方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611948B (zh) * 2018-06-14 2021-01-08 维沃移动通信有限公司 同步信号块的传输方法、网络设备及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431362A (zh) * 2007-11-08 2009-05-13 大唐移动通信设备有限公司 时分双工系统的子帧分配方法及装置
CN101615947A (zh) * 2008-06-24 2009-12-30 华为技术有限公司 配置上下行子帧配比方法、及数据传输的方法、装置
CN103427962A (zh) * 2012-05-18 2013-12-04 北京三星通信技术研究有限公司 一种下行数据的harq反馈方法
WO2015066645A1 (en) * 2013-11-01 2015-05-07 Samsung Electronics Co., Ltd. Methods and apparatus for enhanced coverage transmission for lte advanced
CN104619003A (zh) * 2013-11-04 2015-05-13 上海中兴通讯技术有限责任公司 一种tdd-lte同步的方法及处理设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229953A1 (en) * 2011-08-16 2013-09-05 Samsung Electronics Co., Ltd. Apparatus and method for indicating synchronization signals in a wireless network
WO2013081293A1 (en) * 2011-12-02 2013-06-06 Lg Electronics Inc. Method for indicating control channel in wireless access system, and base station and user equipment for the same
CN103379072B (zh) * 2012-04-20 2016-12-14 电信科学技术研究院 一种信号传输方法及装置
CN103391622B (zh) * 2012-05-11 2018-08-28 中兴通讯股份有限公司 同步跟踪参考信号的发送处理方法及装置
EP2901599B1 (en) * 2012-09-26 2022-06-29 Interdigital Patent Holdings, Inc. Methods for dynamic tdd uplink/downlink configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431362A (zh) * 2007-11-08 2009-05-13 大唐移动通信设备有限公司 时分双工系统的子帧分配方法及装置
CN101615947A (zh) * 2008-06-24 2009-12-30 华为技术有限公司 配置上下行子帧配比方法、及数据传输的方法、装置
CN103427962A (zh) * 2012-05-18 2013-12-04 北京三星通信技术研究有限公司 一种下行数据的harq反馈方法
WO2015066645A1 (en) * 2013-11-01 2015-05-07 Samsung Electronics Co., Ltd. Methods and apparatus for enhanced coverage transmission for lte advanced
CN104619003A (zh) * 2013-11-04 2015-05-13 上海中兴通讯技术有限责任公司 一种tdd-lte同步的方法及处理设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC: "Coexistence Evaluation Results Forintra-Band Adjacent LTE TDD Operations Using Different TDD UL/DL Configurations", 3GPP TSG RAN MEETING #68 RP-150950, 18 June 2015 (2015-06-18), XP050984925 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121179A (zh) * 2018-02-05 2019-08-13 维沃移动通信有限公司 一种小小区发现方法和装置

Also Published As

Publication number Publication date
WO2017036236A9 (zh) 2017-08-17
CN106488540B (zh) 2019-11-29
CN106488540A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US11064539B2 (en) Random access mechanisms for link-budget-limited devices
US20190082453A1 (en) Downlink Control Information Transmission Method and Apparatus
US11375531B2 (en) Signal monitoring method and apparatus
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
US10952207B2 (en) Method for transmitting data, terminal device and network device
US11109392B2 (en) Communication method, network device, and relay device
EP3547587A1 (en) Data transmission method, network equipment, and terminal equipment
TW201836410A (zh) 傳輸訊號的方法、終端設備和網路設備
EP3562229A1 (en) Uplink transmission control method and apparatus, and communication system
WO2018126363A1 (zh) 上行传输方法、终端与网络设备
WO2020029258A1 (zh) 信息发送和接收方法以及装置
CN112771922A (zh) 一种bwp的管理方法及装置、终端
US20190200328A1 (en) Method for transmitting data, terminal device and network device
US20220174678A1 (en) Wireless communication method, terminal device, and network device
JP2020519080A (ja) 無線通信方法、端末装置及び送受信ノード
EP3876620A1 (en) Resource indication method and apparatus as well as communication system
WO2017036236A9 (zh) 一种基于tdd的m2m系统的通信方法、装置与系统
US11528685B2 (en) Uplink control information transmission method and related apparatus
RU2761171C1 (ru) Способ переключения состояния вторичной несущей, терминал и сетевое устройство
US20210250966A1 (en) Data transmission method and apparatus
CN111601394B (zh) 用于链路预算受限的设备的随机接入机制
WO2019028904A1 (zh) 无线通信的方法、网络设备和终端设备
CN108271257B (zh) 一种资源配置方法及装置
WO2017092047A1 (zh) 数据传输的方法和设备
WO2018072180A1 (zh) 传输上行数据的方法、网络侧设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840665

Country of ref document: EP

Kind code of ref document: A1