WO2017034324A1 - 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2017034324A1
WO2017034324A1 PCT/KR2016/009398 KR2016009398W WO2017034324A1 WO 2017034324 A1 WO2017034324 A1 WO 2017034324A1 KR 2016009398 W KR2016009398 W KR 2016009398W WO 2017034324 A1 WO2017034324 A1 WO 2017034324A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal
signal
region
cell
Prior art date
Application number
PCT/KR2016/009398
Other languages
English (en)
French (fr)
Inventor
이승민
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2018510381A priority Critical patent/JP6542469B2/ja
Priority to EP16839613.3A priority patent/EP3343995B1/en
Priority to CN201680047691.8A priority patent/CN107926030B/zh
Priority to US15/754,582 priority patent/US10750512B2/en
Publication of WO2017034324A1 publication Critical patent/WO2017034324A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to wireless communication, and more particularly, to a V2X signal transmission and reception method of a terminal in a wireless communication system and a terminal using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
  • Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
  • the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic congested at the base station, and may also serve to extend the coverage of the base station if the D2D terminal serves as a relay.
  • V2X vehicle-to-everything
  • V2X collectively refers to communication technology via the vehicle and all interfaces. Implementations of V2X may vary, for example, from vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-person (V2P), vehicle-to-network (V2N), and the like.
  • Such V2X communication may be performed in a single carrier, but may be performed in a plurality of carriers.
  • a plurality of carriers different from each other in adjacent areas may be configured for V2X communication.
  • the UE performs V2X communication in the first area and enters the second area, since the set carrier is changed, a transmission chain or reception chain of a signal is transmitted to transmit and receive a signal on the corresponding carrier. You may need to switch. Switching the signal transmission / reception chain (or carrier switching) takes a certain amount of time, which can cause problems in the continuity of V2X communications.
  • the technical problem to be solved by the present invention is to provide a method of transmitting and receiving a V2X signal of a terminal in a wireless communication system and a terminal using the method.
  • a method of transmitting and receiving a vehicle-to-everything (V2X) signal of a terminal in a wireless communication system transmits and receives a V2X control signal through a first carrier set in common in a first region and a second region, and transmits V2X data through a second carrier set in the first region or a third carrier set in the second region. Characterized in that the transmission and reception.
  • V2X vehicle-to-everything
  • the first area and the second area may be adjacent to different geographic areas.
  • the first carrier may be a carrier file configured to allow transmission and reception of V2X control signals and transmission and reception of V2X data.
  • Each of the second carrier and the third carrier may be a carrier file configured to allow only transmission and reception of V2X data.
  • the terminal may be a terminal located at a boundary between the first area and the second area.
  • the terminal may be a terminal of limited capability having a smaller number of transmit chains or receive chains than the number of carriers set in the first region and the second region.
  • the V2X signal may be transmitted through the third carrier.
  • the terminal When the terminal receives a message for setting to receive V2X signals simultaneously through the first carrier and the third carrier, after receiving the V2X signal through the first carrier, and changes the reception chain, The V2X signal may be received through the third carrier.
  • the terminal may further receive a message instructing another carrier to perform a V2X signal transmission operation.
  • the terminal Upon receipt of the message, the terminal can perform a V2X signal transmission operation on the other carrier.
  • the carrier may receive the higher priority V2X signal.
  • a terminal for transmitting and receiving a vehicle-to-everything (V2X) signal includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in combination with the RF unit, wherein the processor includes: Transmitting / receiving V2X control signals through a first carrier set in common in a first area and a second area, and transmitting and receiving V2X data through a second carrier set in the first area or a third carrier set in the second area.
  • RF radio frequency
  • V2X communication Since carriers capable of transmitting and receiving V2X control signals in two adjacent areas are shared and carriers capable of transmitting and receiving V2X data are independently set, the continuity of V2X communication may be guaranteed even if the UE moves in the two areas. Can be. In addition, since the carrier of the second region may be used instead of the carrier of the first region where the degree of congestion or collision occurs, the performance of V2X communication may be improved.
  • 1 shows a wireless communication system.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • 5 shows examples of arrangement of terminals and cell coverage that perform a D2D operation.
  • FIG. 7 shows a V2X signal transmission and reception method of a terminal according to an embodiment of the present invention.
  • FIG. 9 shows a V2X signal transmission and reception method of a terminal according to another embodiment of the present invention.
  • FIG. 10 illustrates a method of operation when a V2X entity with limited capability receives a message for setting up to transmit and receive signals simultaneously on different carriers.
  • FIG. 11 is a diagram comparing the operation of a limited capacity V2X entity with the operation of a V2X entity with multi-carrier transmit (/ receive) capability.
  • FIG. 13 illustrates the resources by which the V2X entity of limited capability transmits a signal, according to the method of FIG. 12.
  • FIG. 14 illustrates a method of operation of a V2X entity with limited reception capability.
  • FIG. 15 illustrates a method of operation of a limited reception capability V2X entity when applying the method of FIG. 14.
  • 16 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • 1 shows a wireless communication system.
  • the wireless communication system may be called, for example, an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE) / LTE-A system.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane
  • FIG. 3 is a block diagram showing a radio protocol architecture for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN.
  • RRC_IDLE Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE.
  • the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • ProSe proximity based services
  • ProSe includes ProSe direct communication and ProSe direct discovery.
  • ProSe direct communication refers to communication performed between two or more neighboring terminals.
  • the terminals may perform communication using a user plane protocol.
  • ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe.
  • ProSe capable terminals include both public safety UEs and non-public safety UEs.
  • the public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process.
  • a non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
  • ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals.
  • EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity.
  • ProSe direct communication may be referred to as D2D communication
  • ProSe direct discovery may be referred to as D2D discovery.
  • a reference structure for ProSe includes a plurality of terminals including an E-UTRAN, an EPC, a ProSe application program, a ProSe application server, and a ProSe function.
  • EPC represents the E-UTRAN core network structure.
  • the EPC may include MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like.
  • PCRF policy and charging rules function
  • HSS home subscriber server
  • ProSe application server is a user of ProSe ability to create application functions.
  • the ProSe application server may communicate with an application program in the terminal.
  • An application program in the terminal may use the ProSe capability to create a coagulation function.
  • the ProSe function may include at least one of the following, but is not necessarily limited thereto.
  • PC1 This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
  • PC2 Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
  • PC3 Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function.
  • the setting for ProSe discovery and communication may be an example of the interaction.
  • PC4 Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
  • PC5 Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
  • PC6 Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
  • SGi can be used for application data and application level control information exchange.
  • the D2D operation may be supported in both the case where the UE receives service within the coverage of the network (cell) or the case out of the coverage of the network.
  • 5 shows examples of arrangement of terminals and cell coverage that perform a D2D operation.
  • terminals A and B may be located outside cell coverage.
  • UE A may be located within cell coverage and UE B may be located outside cell coverage.
  • UEs A and B may both be located within a single cell coverage.
  • UE A may be located within the coverage of the first cell and UE B may be located within the coverage of the second cell.
  • the D2D operation may be performed between terminals located at various locations as shown in FIG. 5.
  • Resource allocation for D2D communication may use at least one of the following two modes.
  • Mode 1 is a mode for scheduling resources for ProSe direct communication from a base station.
  • the UE In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state.
  • the terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission.
  • the terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
  • ProSe BSR Buffer Status Report
  • Mode 2 is a mode in which the terminal directly selects a resource.
  • the terminal selects a resource for direct ProSe direct communication from a resource pool.
  • the resource pool may be set or predetermined by the network.
  • the terminal when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station.
  • mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station.
  • the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
  • D2D discovery refers to a procedure used by a ProSe capable terminal to discover other ProSe capable terminals in proximity, and may also be referred to as ProSe direct discovery.
  • Information used for ProSe direct discovery is referred to as discovery information hereinafter.
  • the PC 5 interface can be used for D2D discovery.
  • the PC 5 interface consists of the MAC layer, the PHY layer, and the higher layer, ProSe Protocol layer.
  • the upper layer (ProSe Protocol) deals with the announcement of discovery information and permission for monitoring, and the content of discovery information is transparent to the access stratum (AS). )Do.
  • the ProSe Protocol ensures that only valid discovery information is sent to the AS for the announcement.
  • the MAC layer receives discovery information from a higher layer (ProSe Protocol).
  • the IP layer is not used for sending discovery information.
  • the MAC layer determines the resources used to announce the discovery information received from the upper layer.
  • the MAC layer creates a MAC protocol data unit (PDU) that carries discovery information and sends it to the physical layer. The MAC header is not added.
  • PDU MAC protocol data unit
  • the base station provides the UEs with a resource pool configuration for discovery information announcement.
  • This configuration may be included in a system information block (SIB) and signaled in a broadcast manner.
  • SIB system information block
  • the configuration may be provided included in a terminal specific RRC message.
  • the configuration may be broadcast signaling or terminal specific signaling of another layer besides the RRC message.
  • the terminal selects a resource from the indicated resource pool by itself and announces the discovery information using the selected resource.
  • the terminal may announce the discovery information through a randomly selected resource during each discovery period.
  • the UE in the RRC_CONNECTED state may request a resource for discovery signal announcement from the base station through the RRC signal.
  • the base station may allocate resources for discovery signal announcement with the RRC signal.
  • the UE may be allocated a resource for monitoring the discovery signal within the configured resource pool.
  • the base station 1) may inform the SIB of the type 1 resource pool for discovery signal announcement.
  • ProSe direct UEs are allowed to use the Type 1 resource pool for discovery information announcement in the RRC_IDLE state.
  • the base station may indicate that the base station supports ProSe direct discovery through 2) SIB, but may not provide a resource for discovery information announcement. In this case, the terminal must enter the RRC_CONNECTED state for the discovery information announcement.
  • the base station may set whether the terminal uses a type 1 resource pool or type 2 resource for discovery information announcement through an RRC signal.
  • V2X VEHICLE-TO-EVERYTHIHG
  • the plurality of carriers may be preset or signaled to a terminal.
  • V2X may apply the above-described D2D operation in terms of communication between terminals.
  • V2X may mean a pedestrian.
  • V2X may be expressed as V2P, and may mean communication between a vehicle (or a device installed in the vehicle) and a device possessed by a pedestrian.
  • the pedestrian is not necessarily limited to a person walking on foot, and may include a person riding a bicycle, a driver or a passenger (less than a certain speed) of a vehicle.
  • V2X may be denoted as V2V, and may mean communication between vehicles.
  • 'X' may be infrastructure / network.
  • V2X may be referred to as V2I or V2N and may mean communication between a vehicle and a roadside unit (RSU) or a vehicle and a network.
  • the roadside device may be a traffic related infrastructure, for example, a device for indicating speed.
  • the roadside device may be implemented in a base station or a fixed terminal.
  • a V2P communication related device possessed by a pedestrian (or person) is called a 'P-UE'
  • a V2X communication related device installed in a vehicle is called a 'V-UE'
  • the term 'ENTITY' may be interpreted as at least one of P-UE, V-UE, RSU, network, and infrastructure.
  • 'carrier / cell' may be interpreted as a 'resource pool' which is previously set or signaled for V2X control / data message transmission (TX) and / or reception (RX).
  • V2X control by predefined or signaled 'regions' to mitigate the decrease in reliability associated with V2X control / data message reception / transmission due to V2X control / COLLISION / CONGESTION, etc.
  • Carriers / cells related to data message transmission / reception may be set differently.
  • the term 'area' may be interpreted as at least one of (1) a geographically divided area and (2) an area divided by communication coverage of a V2V entity (for example, a base station (or terminal) type RSU).
  • a V2V entity for example, a base station (or terminal) type RSU.
  • region #A region #A
  • region #B region #A and B are adjacent to each other.
  • the carrier / cell related to V2X control / data message transmission / reception for each region may be set as follows.
  • the carrier / cell related to V2X control / data message transmission / reception is the primary carrier (/ cell) #A (denoted as P-carrier (/ cell) #A), the secondary carrier (/ cell) #B, (S-carrier) Suppose a situation is composed of (/ cell) #B), secondary carrier (/ cell) #C, and secondary carrier (/ cell) #D.
  • P-carrier (/ cell) #A may be commonly set for V2X control / data message transmission / reception in areas #A and areas #B which are adjacent areas.
  • S-carrier (/ cell) #B and S-carrier (/ cell) #C may be independently set for V2X data / control message transmission / reception in areas #A and #B. This may be interpreted as some carriers / cells related to V2X control / data message transmission / reception between different (or adjacent) areas are set independently (or differently).
  • both 'V2X control message transmission / reception' and 'V2X data message transmission / reception' are set to allow, and S-carrier (/ cell) #B and S-carrier (/ On the cell) #C, only 'V2X data message transmission / reception' may be set to be allowed.
  • the V2X control message transmitted or received on the P-carrier (/ cell) may be in the form of informing scheduling information about the V2X data message transmitted / received on the S-carrier (/ cell).
  • P-carrier #A and S-carrier #B may be set in region #A.
  • P-carrier #A and S-carrier #C may be set in the area #B.
  • the transmission and reception of the V2X control signal and the V2X data are allowed through the P-carrier #A, and the transmission and reception of the V2X data is allowed through the S-carrier #B and the S-carrier #C.
  • P-carrier #A, S-carrier #B, S-carrier #C may be carriers of different bands. In FIG. 6, only the carrier is indicated for convenience, but the carrier may also be displayed as a cell.
  • FIG. 7 shows a V2X signal transmission and reception method of a terminal according to an embodiment of the present invention.
  • the terminal transmits and receives a V2X control signal (and / or V2X data) through a first carrier set in common in the first region and the second region (S110).
  • the terminal transmits and receives V2X data through a second carrier set in the first region or a third carrier set in the second region (S120).
  • the terminal transmits and receives a V2X control signal (and / or V2X data) through a carrier set in common to region #A and region #B, that is, P-carrier #A.
  • V2X data can be transmitted and received through the S-carrier #B set in #A or the S-carrier #C set in the area #B.
  • V2X entities such as V-UE, P-UE are 'periodically' or 'preferentially' P-carrier (/ cell) #A 'depending on a predefined or signaled period value'.
  • V2X entities such as V-UE, P-UE are 'periodically' or 'preferentially' P-carrier (/ cell) #A 'depending on a predefined or signaled period value'.
  • P-carrier (/ cell) #A area #A
  • S-carrier (/ cell) #C area #B
  • P-carrier (/ cell) #A area #A
  • S-carrier (/ cell) #C area #B
  • P-carrier #A and S-carrier #B may be set in region #A.
  • S-carrier #C and S-carrier #D may be set in the area #B.
  • the area #A is set to allow both the transmission and reception of the V2X control signal and the V2X data through the P-carrier #A, and the area #B transmits and receives the V2X control signal and the V2X data only through the S-carrier #C. All can be set to allow.
  • the S-carrier #B and the S-carrier #D may be configured to allow only transmission and reception of V2X data.
  • P-carrier #A, S-carrier #B, S-carrier #C, S-carrier #D may be carriers of different bands. In FIG. 8, only the carrier is indicated for convenience, but the carrier may also be displayed as a cell.
  • a V2X entity such as V-UE and P-UE may be a carrier (/ cell) related to V2X control / data message reception / transmission of a region to which it belongs (eg, P-carrier (/ Cell) #A and / or S-carrier (/ cell) #B (area #A), S-carrier (/ cell) #C (and / or S-carrier (/ cell) #D) (area #B) ) Can be monitored 'periodically' or 'priority' according to a predefined or signaled period value P-carrier (/ cell) #A.
  • a carrier (/ cell) #A related to V2X control / data message reception / transmission of a region to which it belongs (eg, P-carrier (/ Cell) #A and / or S-carrier (/ cell) #B (area #A), S-carrier (/ cell) #C (and / or S-carrier (/ cell) #D) (area #B)
  • V2X control / data message transmission / reception carrier When a V2X transmitting entity is at the boundary of a different (or contiguous) region or when crossing a boundary of a different (or contiguous) region related to the (existing) region to which it belongs (V2X control / data message transmission / reception carrier ) May be configured to perform a V2X (control / data) message transmission operation on adjacent (or different) region related (V2X control / data message transmission / reception) carriers (/ cells).
  • a V2X receiving entity may be configured to allow a V2X receiving entity to receive carriers (/ cells) associated with its area (V2X control / data message reception / transmission), as well as adjacent (or different) area-related (V2X control / data message reception /
  • the carrier (/ cell) may also be configured to monitor 'periodically according to a predefined or signaled period value'.
  • FIG. 9 shows a V2X signal transmission and reception method of a terminal according to another embodiment of the present invention.
  • the terminal determines whether it is located at the boundary between the first area and the second area (S210).
  • the terminal transmits and receives a V2X signal using a carrier set in another region other than the region to which the terminal belongs (S220).
  • V2X control / data message transmission / reception related carriers / cells are all set independently (or differently) between different (or adjacent) areas, the V2X communication (s) related to different (or adjacent) areas ) Can be performed continuously or efficiently.
  • a V2X entity e.g., V-UE, P-UE causes a V2X control / data message related to its area.
  • Receive a relatively high-priority V2X control / data message (named 'HP_RXMSG') previously defined or signaled on the receiving carrier (/ cell) (or V2X control / data message transmission carrier associated with its area) If a relatively high priority V2X control / data message (named 'HP_TXMSG') is being sent on the cell), the adjacent (or different) region-related V2X control / data message receiving carrier (/ Receive (or transmit) a relatively low priority V2X control / data message (or a relatively low priority V2X control / data message) on a cell) (rather than HP_RXMSG (or HP_TXMSG)). (Or transmission) may be set not to perform the "receive chain switching (
  • V2X receiving (/ transmitting) entities whose number of carriers / cells configured for V2X control / data message receiving (/ transmitting) is greater than their 'receive chain capability' (or 'transmit chain capability'). It may be set to.
  • such an entity may be referred to as a 'limited capability V2X entity', more specifically, a 'limited reception capability V2X entity' or a 'limited transmission capability V2X entity'.
  • V2X control (/ data) message of priority is being received (or transmitted)
  • Do not perform message reception (or transmission) operation or 'RX chain switching' (or 'TX chain switching') operation to receive (or send) a relatively low priority V2X control (/ data) message). It can also be interpreted as not.
  • V2X control (/ data) message is sent (/ received) related to the area (area #A) to which the 'limited transmit (/ receive) capability V2X entity' belongs.
  • V2X control (/ data) messages (concurrent) not only on carrier (/ cell) but also on adjacent (or different) area (area #B) related V2X control (/ data) messages. If it is necessary to transmit (receive), it may be set to perform in the form of 'TDM' in consideration of the 'transmit (/ receive) chain switching time (or' carrier switching time ').
  • FIG. 10 illustrates a method of operation when a V2X entity with limited capability receives a message for setting up to transmit and receive signals simultaneously on different carriers.
  • a V2X entity having limited capability located in a first area receives a message for setting simultaneous transmission / reception of signals through a first carrier set in a first area and a second carrier set in a second area. It may be (S310).
  • the V2X entity with limited capability performs transmission / reception chain switching after performing transmission / reception of signals on the first carrier set in the first region (S320).
  • the V2X entity with limited capability performs signal transmission / reception on the second carrier set in the second region (S330).
  • the V2X transmitting (/ receiving) entity with 'multi-V2X transmitting (/ receiving) carrier transmitting / receiving capability' belongs to the area (area # A) V2X control (/ data) related V2X control (/ data) messages as well as transmission (/ receive) carrier (/ cell) (named 'ORI_TXCC') as well as adjacent (or different) area (area #B) related V2X control (/ data) messages If a V2X control (/ data) message must be transmitted (/ received) even on a transmit (/ receive) carrier (/ cell) (named 'NEG_TXCC'), simultaneous transmission on ORI_TXCC and NEG_TXCC rather than 'TDM' It can be set to perform (/ receive).
  • FIG. 11 is a diagram comparing the operation of a limited capacity V2X entity with the operation of a V2X entity with multi-carrier transmit (/ receive) capability.
  • P-carrier (/ cell) #A and S-carrier (/ cell) #B related to V2X control (/ data) message transmission (/ reception) are set in area #A, and in area #B.
  • S-carrier (/ cell) #C and S-carrier (/ cell) #D related to V2X control (/ data) message transmission (/ reception) may be set.
  • the V2X entity with limited capability when receiving a message configured to simultaneously transmit V2X signals through a carrier (/ cell) in a region to which it belongs, and a carrier (/ cell) in another region, the V2X entity with limited capability operates in a TDM form.
  • a V2X entity having carrier transmission (/ reception) capability may perform simultaneous transmission. That is, the limited capacity V2X entity transmits a signal in subframe # 2 of P-carrier (/ cell) #A and after carrier switching (assuming 1 ms, may be referred to as transmission chain switching), and then S-carrier (/ cell ) V2X signal is transmitted through subframe # 4 of #C.
  • a V2X entity with multicarrier transmission (/ reception) capability transmits signals in subframe # 9 of P-carrier (/ cell) #A and at the same time subframe # 9 of S-carrier (/ cell) #C
  • the V2X signal can be transmitted simultaneously. This operation is the same in terms of reception.
  • the CONGEST_CC related 'congestion (/ load) level' the predefined (LTE) serving base station (or ITS (Internet Transaction Server) server or V2X function) may only use the V2X data (/ control) message transfer operation (for V2X data (/ control) message transfer). It may be instructed to move (/ switch) to another carrier (/ cell) that is set.
  • LTE Long Term Evolution
  • ITS Internet Transaction Server
  • the carrier (/ cell) movement (/ switching) operation related to the V2X data (/ control) message transmission may be performed in advance after the V2X entity directly grasps the 'congestion (/ load) level' of the corresponding CONGEST_CC through an energy detection operation.
  • a predefined or signaled carrier (/ cell) movement (/ switching) order when the identified 'congestion (/ load) level' is higher than the defined or signaled threshold it may be set to perform.
  • 'V2X data message' transmission When only the operation of 'V2X data message' transmission is moved (/ switched) to another carrier (/ cell) (named 'DATASW_CC'), the control (/ scheduling) information is included in the 'V2X control message' transmitted on CONGEST_CC.
  • a 'carrier (/ cell) indication field' indicating which carrier (/ cell) is associated with transmission of a 'V2X data message' may be included.
  • the size of the 'Resource Allocation Field' of the 'V2X Control Message' transmitted on CONGEST_CC is one of the larger (or smaller) of 'System Bandwidth of CONGEST_CC' (V2X Communication) and 'System Bandwidth of DATASW_CC'. Can be set accordingly.
  • P-UE (S) is a pre-defined indicator from the (LTE) serving base station (or RSU) of the area to which it belongs Receive V2X (control / data) messages related to the area to which they belong only when receiving (named 'NGMONI_INDI') Receive V2X (control / data) messages related to the carrier (/ cell) and / or adjacent (or different) areas Set up to perform V2X (control / data) message monitoring operation on the carrier (/ cell) (or periodically receive V2X (control / data) message related to the area to which it belongs according to a predefined or signaled period value And / or a V2X (data / data) message monitoring operation on an adjacent (or different) region-related V2X (control / data) message receiving carrier (/ cell).
  • the predefined (LTE) serving base station or ITS server or V2X function
  • V2X entity' V2X control / data
  • V2X control / data the 'limited transmission capability V2X entity' (V2X control / data).
  • V2X control / data In order to lower the 'congestion (/ load) level' (named 'HCG_CC') of a particular carrier (/ cell) set for message transmission purposes, only V2X data message transmission operations (in that HCG_CC) Control) may be directed to move (/ switch) to another carrier (/ cell) set for the purpose of message transmission.
  • the carrier (/ cell) movement (/ switching) operation related to V2X data message transmission is a threshold that is previously defined or signaled after the V2X entity directly grasps the 'congestion (/ load) level' of the corresponding HCG_CC through an energy detection operation or the like. According to a predefined or signaled carrier (/ cell) movement (/ switching) order when the known 'congestion (/ load) level' is higher than the value, it may be set to perform.
  • a message instructing to perform a V2X data message transmission operation from a serving base station through a carrier set in a region other than the region where the terminal is located may be received (S410).
  • the terminal may perform transmission chain switching after transmitting the signal on the first carrier set in the first region (S420), and perform signal transmission on the second carrier set in the second region (S430).
  • FIG. 13 illustrates the resources by which the V2X entity of limited capability transmits a signal, according to the method of FIG. 12.
  • a V2X entity with limited transmission capability transmits a V2X signal in subframe # 2 of P-carrier (/ cell) #A, and then congestion / load of P-carrier (/ cell) #A from a serving cell.
  • the S-carrier (/ cell) #B may be instructed to perform a V2X signal transmission operation.
  • the indication may include a field indicating S-carrier (/ cell) #B.
  • the V2X entity may transmit a V2X signal in subframes # 4, 5, and 6 of S-carrier (/ cell) #B after carrier switching (transmission chain switching).
  • a V2X control message is transmitted in subframe # 2 of P-carrier (/ cell) #A
  • the corresponding V2X control message is (A) in subframe # 2 of P-carrier (/ cell) #A ( V2X data message transmitted with V2X control message) and (B) V2X data message transmitted in subframe # 4, subframe # 5 and subframe # 6 of S-carrier (/ cell) #B. It may include scheduling information. It is assumed that the 'transmit / receive chain switching time' (or 'carrier switching time') is '1 ms'.
  • a V2X entity without receiving capability for S-carrier (/ cell) #B indicates 'only V2X control messages and V2X data messages transmitted in subframe # 2 of P-carrier (/ cell) #A'.
  • a V2X entity having a reception capability for S-carrier (/ cell) #B is not only a V2X control message and a V2X data message transmitted in subframe # 2 of P-carrier (/ cell) #A.
  • a 'V2X control message transmitted in subframe # 4, subframe # 5, and subframe # 6 of S-carrier (/ cell) #B' may also be received. That is, V2X message reception performance can be improved compared to a V2X entity having no reception capability for S-carrier (/ cell) #B.
  • a specific carrier e.g. P-carrier
  • V2X entity' for use in receiving V2X control / data messages.
  • another carrier e.g., set to receive V2X control / data messages
  • S-carrier If you notice (/ detect) that another V2X entity (V2X ENTITY # B) of higher priority on (cell) #B) sends a V2X message, then you can perform 'receive chain switching (or' carrier switching ') operation.
  • it may be set to receive a V2X message sent by another V2X entity (V2X ENTITY # B) of relatively high priority.
  • a relatively high priority V2X entity may have a higher priority of a predefined or signaled V2X message (eg, an 'emergency notification message' has a higher priority than a 'location information transmission message'.
  • Periodic event e.g. CAM
  • 'event triggered message e.g. DENM
  • It may be set as a relatively high priority V2X entity (eg, 'RSU' may have a higher priority than 'V-UE').
  • the proposal methods are based on a specific carrier (/ cell) (e.g., configured for V2X control / data message reception purposes) when the proposal rules (e.g. Rule #A, Rule #B) are applied. ) While receiving a specific V2X message on P-carrier (/ cell) #A), another carrier (/ cell) (set for V2X control / data message reception) (example) S-carrier (/ cell) #B If it is detected (/ detected) that another V2X message of relatively high priority is transmitted, then perform a 'receive chain switching (or' carrier switching ') operation and then perform another relatively high priority V2X message. It may be extended to the receiving form.
  • FIG. 14 illustrates a method of operation of a V2X entity with limited reception capability.
  • a V2X entity (terminal) having limited reception capability may receive a V2X message on a first carrier (S510).
  • the V2X entity (terminal) having limited reception capability may detect that another V2X entity transmits a V2X message of higher priority on the second carrier (S520). After the V2X entity switches the reception chain, the V2X entity receives a V2X message transmitted by the other V2X entity on the second carrier (S530).
  • FIG. 15 illustrates a method of operation of a limited reception capability V2X entity when applying the method of FIG. 14.
  • subframe # 2 sub of a specific P-carrier (/ cell) #A (limited for receiving V2X control / data message) is set to 'restricted reception capability V2X entity (let V2X entity #C)'. While receiving 'relatively low priority V2X entity #A related V2X (control / data) message' on frame # 3, another S-carrier (/ cell) # (set for V2X control / data message reception) # P-carrier (/ cell) # indicates that another V2X entity #B of relatively high priority transmits a V2X (control / data) message on subframe # 5, subframe # 6 and subframe # 7 of B.
  • the V2X entity #B transmits a V2X (control (/ data)) message to receive it.
  • V2X entity #C the limited receive capability V2X entity
  • V2X entity #C performs the 'receive chain switching (or' carrier switching ') operation (' transmit (/ receive) chain switching time '(or' carrier switching time ') is' 1ms'.
  • V2X data (control)
  • V2X entity #C the V2X message actually received by the limited reception capability V2X entity (V2X entity #C) is divided into subframe # 2, subframe # 3 and S-carrier (/ cell) #B of P-carrier (/ cell) #A. Subframe # 5, subframe # 6, subframe # 7. In subframe # 4 of P-carrier (/ cell) #A, V2X (control / data) messages related to V2X entity #A are not received due to transmission chain switching.
  • V2X entity #A if a V2X entity of 'limited reception capability' but has a plurality of (e.g. 2) receive chains, in the context of FIG. 15, one (dedicated) receive chain may be used to P-carrier (/ cell).
  • V2X message transmitted by V2X entity #A by assigning to #A (P-carrier (/ cell) #A subframe # 2, subframe # 3, subframe # 4, subframe # 5), V2X entity #B Receives the V2X message (P-carrier (/ cell) #A subframe # 3) (continuously) and sends the other receive chain (via RX chain switching (or carrier switching)) to the S-carrier.
  • V2X message S-carrier (/ cell) #B subframe transmitted by V2X entity #B by assigning to (/ cell) #B (or remaining carrier (/ cell) set for receiving V2X control (/ data) message)) # 5, subframe # 6, subframe # 7) may be received.
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • the above-described proposal schemes may be independently implemented, some proposal schemes may be implemented in combination (or merge).
  • the present invention has been described a proposal method based on the 3GPP LTE / LTE-A system for convenience of description, the scope of the system to which the proposed method is applied can be extended to other systems in addition to the 3GPP LTE system.
  • the proposed schemes of the present invention can be extended and applied for D2D communication.
  • D2D communication means that the terminal communicates directly with another terminal using a wireless channel, where, for example, the terminal means the user's terminal, but network equipment such as a base station is used for communication between the terminals. Therefore, when transmitting / receiving a signal, it can also be regarded as a kind of terminal.
  • 16 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • the terminal 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 implements the proposed functions, processes, and / or methods.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말의 V2X(vehicle-to-everything) 신호의 송수신 방법 및 상기 방법을 이용하는 단말 장치를 제공한다. 상기 방법은 제1 영역 및 제2 영역에 공통적으로 설정된 제1 반송파를 통해 V2X 제어 신호를 송수신하고, 상기 제1 영역에 설정된 제2 반송파 또는 상기 제2 영역에 설정된 제3 반송파를 통해 V2X 데이터를 송수신하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말의 V2X 신호의 송수신 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말의 V2X 신호 송수신 방법 및 상기 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
한편, 최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.
D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다.
한편, D2D 동작은 V2X(vehicle-to-everything)에도 적용될 수 있다. V2X는 차량과 모든 인터페이스를 통한 통신 기술을 통칭한다. V2X의 구현 형태는 예를 들어, V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2P(vehicle-to-person), V2N(vehicle-to-network) 등 다양할 수 있다.
이러한 V2X 통신은 단일 반송파에서 수행될 수도 있지만, 복수의 반송파에서 수행될 수도 있다. 그리고, 인접한 영역들에서 서로 다른 복수의 반송파들이 V2X 통신을 위해 설정될 수 있다. 이 경우, 단말이 제1 영역에서 V2X 통신을 수행하다가 제2 영역으로 들어가는 경우, 설정된 반송파가 달라지므로 해당 반송파에서의 신호 송수신을 위해 신호의 송신 체인(transmission chain) 또는 수신 체인(reception chain)을 스위칭해야 할 수 있다. 신호 송/수신 체인의 스위칭(또는 반송파 스위칭)에는 일정 시간이 걸리므로 V2X 통신의 연속성에 문제가 발생할 수 있다.
또한, 제1 영역과 제2 영역의 경계 근처에 위치한 단말에게 예를 들어, 제1 영역에 위치하고 있다는 이유로 제1 영역에 설정된 반송파만을 이용하여 V2X 통신을 수행하게 하는 것이 비효율적일 수 있다. 예컨대, 제1 영역의 반송파가 극히 혼잡하거나 충돌이 자주 발생하는데도 제1 영역의 반송파만을 사용하게 하는 것은 비효율적일 수 있다.
복수의 반송파 환경에서 V2X 신호를 효율적으로 송수신할 수 있는 방법 및 장치가 필요하다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말의 V2X 신호의 송수신 방법 및 상기 방법을 이용하는 단말을 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말의 V2X(vehicle-to-everything) 신호의 송수신 방법을 제공한다. 상기 방법은 제1 영역 및 제2 영역에 공통적으로 설정된 제1 반송파를 통해 V2X 제어 신호를 송수신하고, 상기 제1 영역에 설정된 제2 반송파 또는 상기 제2 영역에 설정된 제3 반송파를 통해 V2X 데이터를 송수신하는 것을 특징으로 한다.
상기 제1 영역 및 상기 제2 영역은 인접한 서로 다른 지리적 영역일 수 있다.
상기 제1 반송파는 V2X 제어 신호의 송수신 및 V2X 데이터의 송수신이 모두 허용되도록 설정된 반송파일 수 있다.
상기 제2 반송파 및 상기 제 3 반송파 각각은, V2X 데이터의 송수신만 허용되도록 설정된 반송파일 수 있다.
상기 단말은 상기 제1 영역과 상기 제2 영역의 경계에 위치하는 단말일 수 있다.
상기 단말은 상기 제1 영역 및 상기 제2 영역에 설정된 반송파들의 개수보다 더 적은 개수의 송신 체인 또는 수신 체인을 구비한 제한된 능력의 단말일 수 있다.
상기 단말이 상기 제1 반송파 및 상기 제3 반송파를 통해 V2X 신호들을 동시에 전송하도록 설정하는 메시지를 수신한 경우, 상기 제1 반송파를 통해 V2X 신호를 전송한 후, 전송 체인의 변경을 수행하고, 상기 제3 반송파를 통해 V2X 신호를 전송할 수 있다.
상기 단말이 상기 제1 반송파 및 상기 제3 반송파를 통해 V2X 신호들을 동시에 수신하도록 설정하는 메시지를 수신한 경우, 상기 제1 반송파를 통해 V2X 신호를 수신한 후, 수신 체인의 변경을 수행하고, 상기 제3 반송파를 통해 V2X 신호를 수신할 수 있다.
상기 단말이 V2X 신호의 전송 동작을 수행하는 반송파의 혼잡도가 임계값 이상인 경우 다른 반송파에서 V2X 신호의 전송 동작을 수행하도록 지시하는 메시지를 더 수신할 수 있다.
상기 메시지를 수신하면, 상기 단말은 상기 다른 반송파에서 V2X 신호의 전송 동작을 수행할 수 있다.
상기 단말이 특정 반송파에서 V2X 신호를 수신하고 있는 도중에, 다른 반송파에서 상기 특정 반송파의 V2X 신호보다 더 높은 우선 순위를 가지는 V2X 신호를 다른 단말이 전송하고 있음을 검출하면, 수신 체인 스위칭 후, 상기 다른 반송파에서 상기 더 높은 우선 순위를 가지는 V2X 신호를 수신할 수 있다.
다른 측면에서 제공되는 V2X(vehicle-to-everything) 신호를 송수신하는 단말은 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 제1 영역 및 제2 영역에 공통적으로 설정된 제1 반송파를 통해 V2X 제어 신호를 송수신하고, 상기 제1 영역에 설정된 제2 반송파 또는 상기 제2 영역에 설정된 제3 반송파를 통해 V2X 데이터를 송수신하는 것을 특징으로 한다.
인접한 2개의 영역들에서 V2X 제어 신호를 송수신할 수 있는 반송파는 공유하고 V2X 데이터를 송수신할 수 있는 반송파는 독립적으로 설정하므로, 단말이 상기 2개의 영역들에서 이동하여도 V2X 통신의 연속성을 보장할 수 있다. 또한, 혼잡도가 높거나 충돌이 발생하는 제1 영역의 반송파 대신 제2 영역의 반송파를 사용할 수 있으므로 V2X 통신의 성능을 향상시킬 수 있다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 6은 규칙#A에 따른 영역 별 반송파 설정을 예시한다.
도 7은 본 발명의 일 실시예에 따른 단말의 V2X 신호 송수신 방법을 나타낸다.
도 8은 규칙#B에 따른 영역 별 반송파 설정을 예시한다.
도 9는 본 발명의 다른 실시예에 따른 단말의 V2X 신호 송수신 방법을 나타낸다.
도 10은 제한된 능력의 V2X 엔티티가 서로 다른 반송파들에서 동시에 신호를 송수신하도록 설정하는 메시지를 수신하였을 경우의 동작 방법을 예시한다.
도 11은 제한된 능력의 V2X 엔티티의 동작과 다중 반송파 전송(/수신) 능력을 가진 V2X 엔티티의 동작을 비교한 도면이다.
도 12는 V2X 신호 전송의 혼잡도를 낮추는 단말 동작을 예시한다.
도 13은 도 12의 방법에 의할 때, 제한된 능력의 V2X 엔티티가 신호를 전송하는 자원을 예시한다.
도 14는 제한된 수신 능력을 가지는 V2X 엔티티의 동작 방법을 예시한다. 도 15는 도 14의 방법을 적용할 때 제한된 수신 능력 V2X 엔티티의 동작 방법을 예시한다.
도 16은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 무선통신 시스템을 나타낸다.
무선통신 시스템은 예를 들어, E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라 칭할 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(RRC_CONNECTED), 연결되어 있지 않은 경우는 RRC 아이들 상태(RRC_IDLE)라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
이제 D2D 동작에 대해 설명한다. 3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이제, ProSe에 대해 기술한다.
ProSe에는 ProSe 직접 통신(ProSe direct communication)과 ProSe 직접 발견(ProSe direct discovery)이 있다. ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)와 비-공용 안전 단말(non-public safety UE)를 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다.
이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 4를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다.
EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function:PCRF), 가정 가입자 서버(home subscriber server:HSS)등을 포함할 수 있다.
ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응요 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication)
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)
- 보안 관련 기능(Security related functionality)
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))
이하에서는 ProSe를 위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.
D2D 동작은 단말이 네트워크(셀)의 커버리지 내에서 서비스를 받는 경우나 네트워크의 커버리지를 벗어난 경우 모두에서 지원될 수 있다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 5 (a)를 참조하면, 단말 A, B는 모두 셀 커버리지 바깥에 위치할 수 있다. 도 5 (b)를 참조하면, 단말 A는 셀 커버리지 내에 위치하고, 단말 B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (c)를 참조하면, 단말 A, B는 모두 단일 셀 커버리지 내에 위치할 수 있다. 도 5 (d)를 참조하면, 단말 A는 제1 셀의 커버리지 내에 위치하고, 단말 B는 제2 셀의 커버리지 내에 위치할 수 있다.
D2D 동작은 도 5와 같이 다양한 위치에 있는 단말들 간에 수행될 수 있다.
<D2D 통신(ProSe 직접 통신)을 위한 무선 자원 할당>.
D2D 통신을 위한 자원 할당에는 다음 2가지 모드들 중 적어도 하나를 이용할 수 있다.
1. 모드 1
모드 1은 ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다.
2. 모드 2
모드 2는 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다.
단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다.
다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.
<D2D 발견(ProSe 직접 발견: ProSe direct discovery)>
D2D 발견은 ProSe 가능 단말이 근접한 다른 ProSe 가능 단말을 발견하는데 사용되는 절차를 말하며 ProSe 직접 발견이라 칭할 수도 있다. ProSe 직접 발견에 사용되는 정보를 이하 발견 정보(discovery information)라 칭한다.
D2D 발견을 위해서는 PC 5 인터페이스가 사용될 수 있다. PC 5인터페이스는 MAC 계층, PHY 계층과 상위 계층인 ProSe Protocol 계층으로 구성된다. 상위 계층(ProSe Protocol)에서 발견 정보(discovery information)의 알림(announcement: 이하 어나운스먼트) 및 모니터링(monitoring)에 대한 허가를 다루며, 발견 정보의 내용은 AS(access stratum)에 대하여 투명(transparent)하다. ProSe Protocol은 어나운스먼트를 위하여 유효한 발견 정보만 AS에 전달되도록 한다. MAC 계층은 상위 계층(ProSe Protocol)로부터 발견 정보를 수신한다. IP 계층은 발견 정보 전송을 위하여 사용되지 않는다. MAC 계층은 상위 계층으로부터 받은 발견 정보를 어나운스하기 위하여 사용되는 자원을 결정한다. MAC 계층은 발견 정보를 나르는 MAC PDU(protocol data unit)를 만들어 물리 계층으로 보낸다. MAC 헤더는 추가되지 않는다.
발견 정보 어나운스먼트를 위하여 2가지 타입의 자원 할당이 있다.
1. 타입 1
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적이지 않게 할당되는 방법으로, 기지국이 단말들에게 발견 정보 어나운스먼트를 위한 자원 풀 설정을 제공한다. 이 설정은 시스템 정보 블록(system information block: SIB)에 포함되어 브로드캐스트 방식으로 시그널링될 수 있다. 또는 상기 설정은 단말 특정적 RRC 메시지에 포함되어 제공될 수 있다. 또는 상기 설정은 RRC 메시지 외 다른 계층의 브로드캐스트 시그널링 또는 단말 특정정 시그널링이 될 수도 있다.
단말은 지시된 자원 풀로부터 스스로 자원을 선택하고 선택한 자원을 이용하여 발견 정보를 어나운스한다. 단말은 각 발견 주기(discovery period) 동안 임의로 선택한 자원을 통해 발견 정보를 어나운스할 수 있다.
2. 타입 2
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적으로 할당되는 방법이다. RRC_CONNECTED 상태에 있는 단말은 RRC 신호를 통해 기지국에게 발견 신호 어나운스먼트를 위한 자원을 요청할 수 있다. 기지국은 RRC 신호로 발견 신호 어나운스먼트를 위한 자원을 할당할 수 있다. 단말들에게 설정된 자원 풀 내에서 발견 신호 모니터링을 위한 자원이 할당될 수 있다.
RRC_IDLE 상태에 있는 단말에 대하여, 기지국은 1) 발견 신호 어나운스먼트를 위한 타입 1 자원 풀을 SIB로 알려줄 수 있다. ProSe 직접 발견이 허용된 단말들은 RRC_IDLE 상태에서 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 이용한다. 또는 기지국은 2) SIB를 통해 상기 기지국이 ProSe 직접 발견은 지원함을 알리지만 발견 정보 어나운스먼트를 위한 자원은 제공하지 않을 수 있다. 이 경우, 단말은 발견 정보 어나운스먼트를 위해서는 RRC_CONNECTED 상태로 들어가야 한다.
RRC_CONNECTED 상태에 있는 단말에 대하여, 기지국은 RRC 신호를 통해 상기 단말이 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 사용할 것인지 아니면 타입 2 자원을 사용할 것인지를 설정할 수 있다.
이제 본 발명에 대해 설명한다.
이하에서는 복수 개의 반송파들 상에서 V2X(VEHICLE-TO-EVERYTHIHG) 제어/데이터 메시지를 효율적으로 송신/수신하는 방법들을 제안한다. 상기 복수 개의 반송파들은 사전에 설정되거나 단말에게 시그널링될 수 있다. V2X는 단말 대 단말 간의 통신이라는 측면에서, 전술한 D2D 동작을 적용할 수 있다.
먼저, V2X에서 'X' 는 보행자(PEDESTRIAN)를 의미할 수 있다. 이 경우, V2X는 V2P로 표시할 수 있으며, 차량(또는 차량에 설치된 장치)와 보행자가 가지고 있는 장치 간의 통신을 의미할 수 있다. 여기서, 보행자는 반드시 걸어서 이동하는 사람에 국한되는 것이 아니며 자전거를 타고 있는 사람, (일정 속도 이하)차량의 운전자 또는 승객도 포함할 수 있다.
또는 V2X 에서 'X'는 차량(VEHICLE)일 수도 있다. 이 경우, V2X는 V2V라 표시할 수 있으며, 차량들 간의 통신을 의미할 수 있다. 또는 'X'는 인프라 스트럭쳐(Infrastructure)/네트워크(Network)일 수 있다. 이 경우 V2X는 V2I 또는 V2N이라 표시할 수 있으며 차량과 도로변 장치(ROADSIDE UNIT: RSU) 또는 차량과 네트워크와의 통신을 의미할 수 있다. 도로변 장치는 교통 관련 인프라 스트럭쳐 예컨대, 속도를 알려주는 장치일 수 있다. 도로변 장치는 기지국 또는 고정된 단말 등에 구현될 수 있다.
이하에서, 설명의 편의를 위해서, 보행자(혹은 사람)가 소지한 V2P 통신 관련 디바이스를 'P-UE'라 칭하고, 차량에 설치된 V2X 통신 관련 디바이스를 'V-UE'로 명명한다. 본 발명에서 '엔티티(ENTITY)'라는 용어는 P-UE, V-UE, RSU, 네트워크, 인프라 스트럭쳐 중 적어도 하나로 해석될 수 있다.
본 발명에서 '반송파/셀'은 V2X 제어/데이터 메시지 송신(TX) 그리고/혹은 수신 (RX) 용도로 사전에 설정되거나 시그널링된 '자원 풀(RESOURCE POOL)'으로 해석될 수 있다.
V2X 제어/데이터 메시지의 충돌(COLLISION)/혼잡(CONGESTION) 등으로 인한 V2X 제어/데이터 메시지의 수신/송신 관련 신뢰도 감소를 완화하기 위해, 사전에 정의되거나 시그널링된 '영역(region)' 별로 V2X 제어/데이터 메시지 전송/수신 관련한 반송파/셀이 상이하게 설정될 수 있다.
여기서 '영역' 이란, (1) 지리적으로 구분된 영역, (2) V2V 엔티티(예를 들어, 기지국(/단말) 타입의 RSU)의 통신 커버리지에 의해서 구분된 영역 중 적어도 하나로 해석할 수 있다.
이하에서는 설명의 편의를 위해서, 2 개의 영역들을 영역#A(REGION#A), 영역#B(REGION#B)라 칭하며 영역#A, B는 서로 인접해 있는 상황을 가정한다. 이러한 상황 하에서, 영역 별 V2X 제어/데이터 메시지 전송/수신 관련 반송파/셀은 아래와 같이 설정될 수 있다.
V2X 제어/데이터 메시지 전송/수신 관련 반송파/셀은 프라이머리 반송파(/셀)#A(이를 P-반송파(/셀)#A이라 표시), 세컨더리 반송파(/셀)#B, (S-반송파(/셀)#B로 표시), 세컨더리 반송파(/셀)#C, 세컨더리 반송파(/셀)#D로 구성된 상황을 가정한다.
(규칙#A) 인접한 영역들인 영역#A, 영역#B 에서 P-반송파(/셀)#A가 V2X 제어/데이터 메시지 전송/수신 용도로 공통적으로 설정될 수 있다.
반면에 S-반송파(/셀)#B와 S-반송파(/셀)#C는 영역#A, 영역#B에 V2X 데이터/제어 메시지 전송/수신 용도로 각각 독립적으로 설정될 수 있다. 이는 상이한 (혹은 인접한) 영역들 간에 V2X 제어/데이터 메시지 전송/수신 관련 일부 반송파/셀이 독립적으로 (혹은 다르게) 설정된 것으로 해석할 수 있다.
P-반송파(/셀)#A 상에서는 'V2X 제어 메시지 전송/수신'과 'V2X 데이터 메시지 전송/수신)'이 모두 허용되도록 설정되고, S-반송파(/셀)#B와 S-반송파(/셀)#C 상에서는 'V2X 데이터 메시지 전송/수신'만이 허용되도록 설정될 수 있다. 예를 들어, P-반송파(/셀)에서 전송되거나 수신되는 V2X 제어 메시지가 S-반송파(/셀)에서 전송/수신되는 V2X 데이터 메시지에 대한 스케줄링 정보를 알려주는 형태가 될 수 있다.
도 6은 규칙#A에 따른 영역 별 반송파 설정을 예시한다.
도 6을 참조하면, 영역 #A에는 P-반송파#A, S-반송파#B가 설정될 수 있다. 영역 #B에는 P-반송파#A, S-반송파#C가 설정될 수 있다. 전술한 바와 같이 P-반송파#A를 통해서는 V2X 제어 신호 및 V2X 데이터의 송수신이 모두 허용되도록 설정되고, S-반송파#B, S-반송파#C를 통해서는 V2X 데이터의 송수신만이 허용되도록 설정될 수 있다. P-반송파#A, S-반송파#B, S-반송파#C는 서로 다른 대역의 반송파들일 수 있다. 도 6에서는 편의상 반송파라고만 표시하였지만, 반송파는 셀로도 표시될 수 있다.
도 7은 본 발명의 일 실시예에 따른 단말의 V2X 신호 송수신 방법을 나타낸다.
도 7을 참조하면, 단말은 제1 영역 및 제2 영역에 공통적으로 설정된 제1 반송파를 통해 V2X 제어 신호 (그리고/혹은 V2X 데이터)를 송수신한다(S110).
또한, 단말은 상기 제1 영역에 설정된 제2 반송파 또는 상기 제2 영역에 설정된 제3 반송파를 통해 V2X 데이터를 송수신한다(S120).
상기 방법을 도 6의 예시에 적용해 보면, 단말은 영역#A 및 영역#B에 공통적으로 설정된 반송파 즉, P-반송파#A를 통해 V2X 제어 신호 (그리고/혹은 V2X 데이터)를 송수신하고, 영역#A에 설정된 S-반송파#B 또는 영역#B에 설정된 S-반송파#C를 통해 V2X 데이터를 송수신할 수 있다.
이러한 (규칙#A)가 적용될 경우, V2X 엔티티 예컨대, V-UE, P-UE는 '사전에 정의되거나 시그널링된 주기 값에 따라 주기적으로' 혹은 '우선적으로' P-반송파(/셀)#A를 모니터링함으로써, 상이한 (혹은 인접한) 영역 경계에 있을 때 또는 상이한 (혹은 인접한) 영역의 경계를 통과할 때에도, 상이한 (혹은 인접한) 영역 관련 V2X 통신들을 효율적으로 이어나갈 수 있다.
(규칙#B) 영역#A에 P-반송파(/셀)#A와 S-반송파(/셀)#B가 V2X 제어(/데이터) 메시지 전송(/수신) 용도로 설정되고, 영역#B에 S-반송파(/셀)#C와 S-반송파(/셀)#D가 V2X 제어(/데이터) 메시지 전송(/수신) 용도로 설정될 수 있다. 즉, 상이한 (혹은 인접한) 영역 간에 V2X 제어/데이터 메시지 전송/수신 관련 반송파/셀이 모두 독립적으로 (혹은 다르게) 설정된 것으로 해석할 수 있다. 일례로, P-반송파(/셀)#A (영역#A), S-반송파(/셀)#C (영역#B) 상에서는 'V2X 제어 메시지 전송/수신'과 'V2X 데이터 메시지 전송/수신'이 모두 허용되도록 설정되고, S-반송파(/셀)#B (영역#A)와 S-반송파(/셀)#D (영역#B) 상에서는 'V2X 데이터 메시지 전송/수신'만이 허용되도록 설정될 수 있다.
예를 들어, P-반송파(/셀)#A, S-반송파(/셀)#C에서 전송/수신되는 V2X 제어 메시지가 S-반송파(/셀)#B, S-반송파(/셀)#D에서 전송/수신되는 V2X 데이터 메시지에 대한 스케줄링 정보를 각각 알려주는 형태가 될 수 있다.
도 8은 규칙#B에 따른 영역 별 반송파 설정을 예시한다.
도 8을 참조하면, 영역 #A에는 P-반송파#A, S-반송파#B가 설정될 수 있다. 영역 #B에는 S-반송파#C, S-반송파#D가 설정될 수 있다. 이 때, 영역#A에서는 P-반송파#A를 통해서는 V2X 제어 신호 및 V2X 데이터의 송수신이 모두 허용되도록 설정되고, 영역 #B에서는 S-반송파#C를 통해서만 V2X 제어 신호 및 V2X 데이터의 송수신이 모두 허용되도록 설정될 수 있다. S-반송파#B, S-반송파#D를 통해서는 V2X 데이터의 송수신만이 허용되도록 설정될 수 있다. P-반송파#A, S-반송파#B, S-반송파#C, S-반송파#D는 서로 다른 대역의 반송파들일 수 있다. 도 8에서는 편의상 반송파라고만 표시하였지만, 반송파는 셀로도 표시될 수 있다.
일례로, (규칙#B)가 적용될 경우, V2X 엔티티 예컨대 V-UE, P-UE는 자신이 속한 영역의 V2X 제어/데이터 메시지 수신/전송 관련 반송파(/셀) (예: P-반송파(/셀)#A 그리고/혹은 S-반송파(/셀)#B(영역#A), S-반송파(/셀)#C (그리고/혹은 S-반송파(/셀)#D)(영역#B))를 '사전에 정의되거나 시그널링된 주기 값에 따라 주기적으로' 혹은 '우선적으로' P-반송파(/셀)#A를 모니터링할 수 있다.
V2X 전송 엔티티가 상이한(혹은 인접한) 영역의 경계에 있을 때 또는 상이한 (혹은 인접한) 영역의 경계를 통과할 때에 자신이 속해 있던 (기존) 영역 관련 (V2X 제어/데이터 메시지 전송/수신 반송파(/셀) 뿐만 아니라, 인접한 (혹은 상이한) 영역 관련 (V2X 제어/데이터 메시지 전송/수신) 반송파(/셀)에서도 V2X (제어/데이터) 메시지 전송 동작을 수행하도록 설정될 수 있다.
또 다른 일례로, V2X 수신 엔티티로 하여금, 자신이 속해 있는 영역 관련 (V2X 제어/데이터 메시지 수신/전송) 반송파(/셀) 뿐만 아니라, 인접한 (혹은 상이한) 영역 관련 (V2X 제어/데이터 메시지 수신/전송) 반송파(/셀)도 '사전에 정의되거나 시그널링된 주기 값에 따라 주기적으로' 모니터링하도록 설정될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 단말의 V2X 신호 송수신 방법을 나타낸다.
도 9를 참조하면, 단말은 제1 영역과 제2 영역의 경계에 위치하고 있는지 여부를 판단한다(S210).
제1 영역과 제2 영역의 경계에 위치하고 있을 경우, 단말은 자신이 속한 영역이 아닌 다른 영역에 설정된 반송파도 이용하여 V2X 신호를 송수신한다(S220).
상기 방법들이 적용될 경우, 비록 상이한(혹은 인접한) 영역 간에 V2X 제어/데이터 메시지 전송/수신 관련 반송파/셀이 모두 독립적으로(혹은 다르게) 설정된다고 할지라도, 상이한 (혹은 인접한) 영역 관련 V2X 통신(들)이 연속적으로 또는 효율적으로 수행될 수 있다.
상기 설명한 일부 혹은 모든 규칙들(예를 들어, 규칙#A, 규칙#B)이 적용될 경우, V2X 엔티티(예: V-UE, P-UE)로 하여금, 자신이 속한 영역 관련 V2X 제어/데이터 메시지 수신 반송파(/셀) 상에서 사전에 정의되거나 시그널링된 상대적으로 높은 우선 순위의 V2X 제어/데이터 메시지(이를 'HP_RXMSG'로 명명)를 수신(혹은 자신이 속한 영역 관련 V2X 제어/데이터 메시지 전송 반송파(/셀) 상에서 사전에 정의되거나 시그널링된 상대적으로 높은 우선 순위의 V2X 제어/데이터 메시지(이를 'HP_TXMSG'로 명명)를 송신)하고 있었다면, 인접한 (혹은 상이한) 영역 관련 V2X 제어/데이터 메시지 수신 반송파(/셀) 상에서 (HP_RXMSG (혹은 HP_TXMSG) 보다) 상대적으로 낮은 우선 순위의 V2X 제어/데이터 메시지 수신 (혹은 송신) 동작(혹은 상대적으로 낮은 우선 순위의 V2X 제어/데이터 메시지를 수신(혹은 송신)하기 위한 '수신 체인 스위칭' (혹은 '전송 체인 스위칭') 동작)을 수행하지 않도록 설정될 수 있다.
이러한 규칙은 V2X 제어/데이터 메시지 수신(/전송) 용도로 설정된 반송파/셀의 개수가 자신의 '수신 체인 능력' (혹은 '전송 체인 능력')보다 많은 V2X 수신(/전송) 엔티티에게만 한정적으로 적용되도록 설정될 수 있다. 이하에서, 이러한 엔티티를 '제한된 능력 V2X 엔티티', 보다 구체적으로 '제한된 수신 능력 V2X 엔티티' 또는 ' 제한된 전송 능력 V2X 엔티티'로 명명할 수 있다.
상기 규칙의 적용은 특정 V2X 수신(/전송) 엔티티가 (V2X 제어(/데이터) 메시지 수신(/전송) 용도로 설정된) 특정 반송파(/셀) 상에서 사전에 정의된 (혹은 시그널링된) 상대적으로 높은 우선 순위의 V2X 제어(/데이터) 메시지를 수신 (혹은 송신)하고 있었다면, 다른 (V2X 제어(/데이터) 메시지 수신(/전송)) 반송파(/셀) 상에서 상대적으로 낮은 우선 순위의 V2X 제어(/데이터) 메시지 수신 (혹은 송신) 동작 (혹은 상대적으로 낮은 우선 순위의 V2X 제어(/데이터) 메시지를 수신 (혹은 송신)하기 위한 'RX 체인 스위칭' (혹은 'TX 체인 스위칭') 동작)을 수행하지 않는 것으로도 해석될 수 있다.
일례로, 규칙#B 그리고/혹은 규칙#A가 적용될 경우, 만약 '제한된 전송(/수신) 능력 V2X 엔티티'가 자신이 속한 영역(영역#A) 관련 V2X 제어(/데이터) 메시지 전송(/수신) 반송파(/셀) 뿐만 아니라, 인접한 (혹은 상이한) 영역 (영역#B) 관련 V2X 제어(/데이터) 메시지 전송(/수신) 반송파(/셀) 상에서도 V2X 제어(/데이터) 메시지를 (동시에) 송신(/수신)해야 한다면, '전송(/수신) 체인 스위칭 시간' (혹은 '반송파 스위칭 시간')를 고려하여, 'TDM' 형태로 수행하도록 설정될 수 있다.
도 10은 제한된 능력의 V2X 엔티티가 서로 다른 반송파들에서 동시에 신호를 송수신하도록 설정하는 메시지를 수신하였을 경우의 동작 방법을 예시한다.
도 10을 참조하면, 제1 영역에 위치한 '제한된 능력의 V2X 엔티티'가 제1 영역에 설정된 제1 반송파 및 제2 영역에 설정된 제2 반송파를 통해 신호의 동시 송/수신을 설정하는 메시지를 수신할 수 있다(S310).
제한된 능력의 V2X 엔티티는 제1 영역에 설정된 제1 반송파에서 신호의 송/수신 수행 후 송/수신 체인 스위칭을 수행한다(S320).
제한된 능력의 V2X 엔티티는 제2 영역에 설정된 제2 반송파에서 신호의 송/수신 수행한다(S330).
이러한 규칙은 해당 '제한된 전송(/수신) 능력 V2X 엔티티'가 상이한 (혹은 인접한) 영역의 경계에 있을 때 (혹은 상이한 (혹은 인접한) 영역의 경계를 통과할 때)에만 한정적으로 적용하도록 설정될 수 있다.
한편, 규칙#B 그리고/혹은 규칙#A가 적용될 경우, 만약 '다중-V2X 전송(/수신) 반송파 전송(/수신) 능력'을 가진 V2X 전송(/수신) 엔티티가 자신이 속한 영역(영역#A) 관련 V2X 제어(/데이터) 메시지 전송(/수신) 반송파(/셀) (이를 'ORI_TXCC'로 명명)뿐만 아니라, 인접한 (혹은 상이한) 영역 (영역#B) 관련 V2X 제어(/데이터) 메시지 전송(/수신) 반송파(/셀) (이를 'NEG_TXCC'로 명명) 상에서도 V2X 제어(/데이터) 메시지를 (동시에) 송신(/수신)해야 한다면, 'TDM' 형태가 아니라 ORI_TXCC와 NEG_TXCC 상에서 동시 송신(/수신)을 수행하도록 설정될 수 있다.
도 11은 제한된 능력의 V2X 엔티티의 동작과 다중 반송파 전송(/수신) 능력을 가진 V2X 엔티티의 동작을 비교한 도면이다.
도 11을 참조하면, 영역#A에 V2X 제어(/데이터) 메시지 전송(/수신) 관련 P-반송파(/셀)#A와 S-반송파(/셀)#B가 설정되고, 영역#B에 V2X 제어(/데이터) 메시지 전송(/수신) 관련 S-반송파(/셀)#C와 S-반송파(/셀)#D가 설정될 수 있다.
예컨대, 자신이 속한 영역의 반송파(/셀)와 인접한 다른 영역의 반송파(/셀)를 통해 동시에 V2X 신호를 전송하도록 설정된 메시지를 수신한 경우, 제한된 능력의 V2X 엔티티는 TDM 형태로 동작하나, 다중 반송파 전송(/수신) 능력을 가진 V2X 엔티티는 동시 전송을 수행할 수 있다. 즉, 제한된 능력의 V2X 엔티티는 P-반송파(/셀)#A의 서브프레임 #2에서 신호를 전송하고 반송파 스위칭(1ms라 가정, 전송 체인 스위칭이라 칭할 수도 있음)후, S-반송파(/셀)#C의 서브프레임#4를 통해 V2X 신호를 전송하게 된다. 반면, 다중 반송파 전송(/수신) 능력을 가진 V2X 엔티티는 P-반송파(/셀)#A의 서브프레임 #9에서 신호를 전송함과 동시에 S-반송파(/셀)#C의 서브프레임#9를 통해 V2X 신호를 동시 전송할 수 있다. 이러한 동작은 수신 관점에서도 마찬가지이다.
한편, V2X 제어/데이터 메시지 전송 용도로 설정된 특정 반송파(/셀) (이를 'CONGEST_CC'로 명명) 상에서 V2X 제어/데이터 메시지 전송 동작을 수행하는 V2X 엔티티에게, 해당 CONGEST_CC 관련 '혼잡(/부하) 레벨'을 완화시키기 위해서, 사전에 정의된 (LTE) 서빙 기지국 (혹은 ITS(Internet Transaction Server) 서버 혹은 V2X 기능)이 V2X 데이터(/제어) 메시지 전송 동작만을 (V2X 데이터(/제어) 메시지 전송 용도로 설정된) 다른 반송파(/셀)로 이동(/스위칭)하도록 지시할 수 있다.
또는 상기 V2X 데이터(/제어) 메시지 전송 관련 반송파(/셀) 이동(/스위칭) 동작은 V2X 엔티티가 해당 CONGEST_CC의 '혼잡(/부하) 레벨'을 에너지 검출 동작 등으로 직접적으로 파악한 후, 사전에 정의되거나 시그널링된 임계값보다 파악된 '혼잡(/부하) 레벨'이 높을 경우에 사전에 정의되거나 시그널링된 반송파(/셀) 이동(/스위칭) 순서에 따라, 수행하도록 설정될 수 있다.
'V2X 데이터 메시지' 전송 동작만이 다른 반송파(/셀) (이를 'DATASW_CC'로 명명)로 이동(/스위칭)될 경우, CONGEST_CC 상에서 전송되는 'V2X 제어 메시지'에는 해당 제어(/스케줄링) 정보가 어떤 반송파(/셀) 상의 'V2X 데이터 메시지' 전송과 관련된 것인지를 알려주는 '반송파(/셀) 지시 필드'가 포함될 수 있다.
CONGEST_CC 상에서 전송되는 'V2X 제어 메시지'의 '자원 할당 필드'의 크기는 'CONGEST_CC의 (V2X 통신 관련) 시스템 대역폭'과 'DATASW_CC의 (V2X 통신 관련) 시스템 대역폭' 중에 상대적으로 큰 (혹은 작은) 것에 따라 결정되도록 설정될 수 있다.
한편, 상기 제안 규칙들 (예: 규칙#A, 규칙#B)이 적용될 경우, P-UE(S)로 하여금, 자신이 속한 영역의 (LTE) 서빙 기지국 (혹은 RSU)로부터 사전에 정의된 지시자 (이를 'NGMONI_INDI'로 명명)를 수신한 경우에만 자신이 속한 영역 관련 V2X (제어/데이터) 메시지 수신 반송파(/셀) 그리고/혹은) 인접한 (혹은 상이한) 영역 관련 V2X (제어/데이터) 메시지 수신 반송파(/셀) 상에서 V2X (제어/데이터) 메시지 모니터링 동작을 수행하도록 설정(혹은 사전에 정의되거나 시그널링된 주기 값에 따라 주기적으로 자신이 속한 영역 관련 V2X (제어/데이터) 메시지 수신 반송파(/셀) 그리고/혹은 인접한 (혹은 상이한) 영역 관련 V2X (제어/데이터) 메시지 수신 반송파(/셀) 상에서 V2X (데이터/데이터) 메시지 모니터링 동작을 수행하도록 설정)될 수 있다.
상기 제안 규칙들(예: 규칙#A, 규칙#B)이 적용될 경우, 사전에 정의된 (LTE) 서빙 기지국 (혹은 ITS 서버 혹은 V2X 기능)은 '제한된 전송 능력 V2X 엔티티'에게 (V2X 제어/데이터 메시지 전송 용도로 설정된) 특정 반송파(/셀)의 '혼잡(/부하) 레벨' (이를 'HCG_CC'로 명명)를 낮추기 위해서, (해당 HCG_CC에서의) V2X 데이터 메시지 전송 동작만을 (V2X 데이터(/제어) 메시지 전송 용도로 설정된) 다른 반송파(/셀)로 이동(/스위칭)하도록 지시할 수 있다.
상기 V2X 데이터 메시지 전송 관련 반송파(/셀) 이동(/스위칭) 동작은 V2X 엔티티가 해당 HCG_CC의 '혼잡(/부하) 레벨'을 에너지 검출 동작 등으로 직접적으로 파악한 후, 사전에 정의되거나 시그널링된 임계값보다 파악된 '혼잡(/부하) 레벨'이 높을 경우에 사전에 정의되거나 시그널링된 반송파(/셀) 이동(/스위칭) 순서에 따라, 수행하도록 설정될 수 있다.
도 12는 V2X 신호 전송의 혼잡도를 낮추는 단말 동작을 예시한다.
도 12를 참조하면, 서빙 기지국으로부터 V2X 데이터 메시지 전송 동작을 단말이 위치한 영역이 아닌 다른 영역에 설정된 반송파를 통해 수행하라고 지시하는 메시지를 수신할 수 있다(S410).
단말은 제1 영역에 설정된 제1 반송파에서 신호의 전송 후 전송 체인 스위칭을 수행하고(S420), 제2 영역에 설정된 제2 반송파에서 신호의 전송을 수행할 수 있다(S430).
도 13은 도 12의 방법에 의할 때, 제한된 능력의 V2X 엔티티가 신호를 전송하는 자원을 예시한다.
도 13을 참조하면, 제한된 전송 능력의 V2X 엔티티는 P-반송파(/셀)#A의 서브프레임 #2에서 V2X 신호를 전송하다가, 서빙 셀로부터 P-반송파(/셀)#A의 혼잡도/부하 레벨을 낮추기 위해 S-반송파(/셀)#B에서 V2X 신호 전송 동작을 수행하라는 지시를 받을 수 있다. 상기 지시에는 S-반송파(/셀)#B를 지시하는 필드가 포함될 수 있다. 상기 V2X 엔티티는 반송파 스위칭(전송 체인 스위칭) 후, S-반송파(/셀)#B의 서브프레임 #4, 5, 6에서 V2X 신호를 전송할 수 있다.
구체적으로, P-반송파(/셀)#A의 서브프레임#2에서는 V2X 제어 메시지가 송신되며, 해당 V2X 제어 메시지는 (A) 'P-반송파(/셀)#A의 서브프레임#2에서 (V2X 제어 메시지와 함께) 송신되는 V2X 데이터 메시지'와 (B) 'S-반송파(/셀)#B의 서브프레임#4, 서브프레임#5, 서브프레임#6에서 송신되는 V2X 데이터 메시지'에 대한 스케줄링 정보를 포함할 수 있다. '전송(/수신) 체인 스위칭 시간' (혹은 '반송파 스위칭 시간')은 '1ms'로 가정하였다.
도 13에서, S-반송파(/셀)#B에 대한 수신 능력이 없는 V2X 엔티티는 'P-반송파(/셀)#A의 서브프레임#2에서 송신되는 V2X 제어 메시지와 V2X 데이터 메시지 만'을 수신하게 되며, S-반송파(/셀)#B에 대한 수신 능력이 있는 V2X 엔티티는 'P-반송파(/셀)#A의 서브프레임#2에서 송신되는 V2X 제어 메시지와 V2X 데이터 메시지' 뿐만 아니라 'S-반송파(/셀)#B의 서브프레임#4, 서브프레임#5, 서브프레임#6에서 송신되는 V2X 제어 메시지'도 수신할 수 있다. 즉, S-반송파(/셀)#B에 대한 수신 능력이 없는 V2X 엔티티에 비해 V2X 메시지 수신 성능이 향상될 수 있다.
상기 제안 규칙들(예: 규칙#A, 규칙#B)이 적용될 경우, '제한된 수신 능력 V2X 엔티티'가 (V2X 제어/데이터 메시지 수신 용도로 설정된) 특정 반송파(/셀)(예: P-반송파(/셀)#A) 상에서 특정 V2X 엔티티(V2X ENTITY#A) 관련 V2X 메시지를 수신하고 있는 중에, (V2X 제어/데이터 메시지 수신 용도로 설정된) 다른 반송파(/셀)(예: S-반송파(/셀)#B) 상에서 상대적으로 높은 우선 순위의 다른 V2X 엔티티(V2X ENTITY#B)가 V2X 메시지를 송신한다는 것을 파악(/검출)하게 된다면, '수신 체인 스위칭(혹은 '반송파 스위칭') 동작을 수행한 후에, 상대적으로 높은 우선 순위의 다른 V2X 엔티티(V2X ENTITY#B)가 송신하는 V2X 메시지를 수신하도록 설정될 수 있다.
상대적으로 높은 우선 순위의 V2X 엔티티는 사전에 정의되거나 시그널링된 상대적으로 높은 우선 순위의 V2X 메시지(예컨대, '응급 상황 발생 알림 메시지'가 '위치 정보 전송 메시지'에 비해 우선 순위가 높을 수 있다. '주기적 메시지(예: CAM)'보다 '이벤트 트리거링된 메시지(예: DENM)'가 우선 순위가 높을 수 있다)를 송신하는 것으로 설정되거나, 혹은 V2X 메시지 수신의 우선 순위 측면에서 사전에 정의되거나 시그널링된 상대적으로 높은 우선 순위의 V2X 엔티티(예: 'RSU'가 'V-UE'에 비해 우선 순위가 높을 수 있음)로 설정될 수 있다.
상기 제안 방법들은 상기 제안 규칙들(예: 규칙#A, 규칙#B)이 적용될 경우, '제한된 수신 능력 V2X 엔티티'가 (V2X 제어/데이터 메시지 수신 용도로 설정된) 특정 반송파(/셀) (예) P-반송파(/셀)#A) 상에서 특정 V2X 메시지를 수신하고 있는 중에, (V2X 제어/데이터 메시지 수신 용도로 설정된) 다른 반송파(/셀) (예) S-반송파(/셀)#B) 상에서 상대적으로 높은 우선 순위의 다른 V2X 메시지가 송신된다는 것을 파악(/검출)하게 된다면, '수신 체인 스위칭 (혹은 '반송파 스위칭') 동작을 수행한 후에, 상대적으로 높은 우선 순위의 다른 V2X 메시지를 수신하는 형태로 확장될 수 도 있다.
도 14는 제한된 수신 능력을 가지는 V2X 엔티티의 동작 방법을 예시한다.
도 14를 참조하면, 제한된 수신 능력을 가지는 V2X 엔티티(단말)이 제1 반송파에서 V2X 메시지를 수신할 수 있다(S510). 제한된 수신 능력을 가지는 V2X 엔티티(단말)이 제2 반송파에서 다른 V2X 엔티티가 더 높은 우선 순위의 V2X 메시지를 전송함을 검출할 수 있다(S520). 상기 V2X 엔티티는 수신 체인 스위칭 후, 상기 제2 반송파에서 상기 다른 V2X 엔티티가 전송하는 V2X 메시지를 수신한다(S530).
도 15는 도 14의 방법을 적용할 때 제한된 수신 능력 V2X 엔티티의 동작 방법을 예시한다.
도 15를 참조하면, '제한된 수신 능력 V2X 엔티티(V2X 엔티티#C라 하자)'가 (V2X 제어/데이터 메시지 수신 용도로 설정된) 특정 P-반송파(/셀)#A의 서브프레임#2, 서브프레임#3 상에서 '상대적으로 낮은 우선 순위의 V2X 엔티티#A 관련 V2X (제어/데이터) 메시지'를 수신하고 있는 중에, (V2X 제어/데이터 메시지 수신 용도로 설정된) 다른 S-반송파(/셀)#B의 서브프레임#5, 서브프레임#6, 서브프레임#7 상에서 '상대적으로 높은 우선 순위의 다른 V2X 엔티티#B가 V2X (제어/데이터) 메시지'를 송신한다는 것을 P-반송파(/셀)#A의 서브프레임#3에서 V2X 엔티티#B가 송신하는 V2X (제어(/데이터)) 메시지 수신(/검출)을 통해 파악할 수 있다. 그러면, 제한된 수신 능력 V2X 엔티티(V2X 엔티티#C)는 '수신 체인 스위칭 (혹은 '반송파 스위칭') 동작을 수행 ('전송(/수신) 체인 스위칭 시간' (혹은 '반송파 스위칭 시간')은 '1ms'로 가정)한 후에, 상대적으로 높은 우선 순위의 다른 V2X 엔티티#B가 송신하는 V2X (데이터(/제어)) 메시지를 수신하게 된다.
따라서, 제한된 수신 능력 V2X 엔티티(V2X 엔티티#C)가 실제로 수신하는 V2X 메시지는 P-반송파(/셀)#A의 서브프레임#2, 서브프레임#3, S-반송파(/셀)#B의 서브프레임#5, 서브프레임#6, 서브프레임#7이 된다. P-반송파(/셀)#A의 서브프레임#4에서는 전송 체인 스위칭으로 인해 V2X 엔티티#A 관련 V2X (제어/데이터) 메시지를 수신하지 못한다.
또 다른 일례로, '제한된 수신 능력'의 V2X 엔티티이지만 복수 개 (예: 2)의 수신 체인을 가지고 있는 경우라면, 도 15의 상황 하에서, 하나의 (전용) 수신 체인을 P-반송파(/셀)#A에 할당하여 V2X 엔티티#A가 송신하는 V2X 메시지 (P-반송파(/셀)#A 서브프레임#2, 서브프레임#3, 서브프레임#4, 서브프레임#5), V2X 엔티티#B가 송신하는 V2X 메시지 (P-반송파(/셀)#A 서브프레임#3)를 (계속적으로) 수신 하고, 나머지 하나의 수신 체인을 (RX 체인 스위칭(혹은 반송파 스위칭) 동작을 통해) S-반송파(/셀)#B (혹은 V2X 제어(/데이터) 메시지 수신 용도로 설정된 나머지 반송파(/셀))에 할당함으로써 V2X 엔티티#B가 송신하는 V2X 메시지 (S-반송파(/셀)#B 서브프레임#5, 서브프레임#6, 서브프레임#7)를 수신할 수도 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 일례로, 본 발명에서는 설명의 편의를 위해 3GPP LTE/LTE-A 시스템을 기반으로 제안 방식을 설명하였지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다. 일례로, 본 발명의 제안 방식들은 D2D 통신을 위해서도 확장 적용 가능하다. 여기서, 일례로, D2D 통신은 단말이 다른 단말과 직접 무선 채널을 이용하여 통신하는 것을 의미하며, 여기서, 일례로 단말은 사용자의 단말을 의미하지만, 기지국과 같은 네트워크 장비가 단말 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 단말로 간주될 수 있다.
도 16은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 16을 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다. 프로세서(1110)는 제안된 기능, 과정 및/또는 방법을 구현한다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.

Claims (12)

  1. 무선 통신 시스템에서 단말의 V2X(vehicle-to-everything) 신호의 송수신 방법에 있어서,
    제1 영역 및 제2 영역에 공통적으로 설정된 제1 반송파를 통해 V2X 제어 신호를 송수신하고, 및
    상기 제1 영역에 설정된 제2 반송파 또는 상기 제2 영역에 설정된 제3 반송파를 통해 V2X 데이터를 송수신하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 제1 영역 및 상기 제2 영역은 인접한 서로 다른 지리적 영역인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 제1 반송파는 V2X 제어 신호의 송수신 및 V2X 데이터의 송수신이 모두 허용되도록 설정된 반송파인 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서, 상기 제2 반송파 및 상기 제 3 반송파 각각은, V2X 데이터의 송수신만 허용되도록 설정된 반송파인 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 단말은 상기 제1 영역과 상기 제2 영역의 경계에 위치하는 단말인 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 단말은 상기 제1 영역 및 상기 제2 영역에 설정된 반송파들의 개수보다 더 적은 개수의 송신 체인 또는 수신 체인을 구비한 제한된 능력의 단말인 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서, 상기 단말이 상기 제1 반송파 및 상기 제3 반송파를 통해 V2X 신호들을 동시에 전송하도록 설정하는 메시지를 수신한 경우,
    상기 제1 반송파를 통해 V2X 신호를 전송한 후, 전송 체인의 변경을 수행하고,
    상기 제3 반송파를 통해 V2X 신호를 전송하는 것을 특징으로 하는 방법.
  8. 제 6 항에 있어서, 상기 단말이 상기 제1 반송파 및 상기 제3 반송파를 통해 V2X 신호들을 동시에 수신하도록 설정하는 메시지를 수신한 경우,
    상기 제1 반송파를 통해 V2X 신호를 수신한 후, 수신 체인의 변경을 수행하고,
    상기 제3 반송파를 통해 V2X 신호를 수신하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 단말이 V2X 신호의 전송 동작을 수행하는 반송파의 혼잡도가 임계값 이상인 경우 다른 반송파에서 V2X 신호의 전송 동작을 수행하도록 지시하는 메시지를 더 수신하는 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서, 상기 메시지를 수신하면, 상기 단말은 상기 다른 반송파에서 V2X 신호의 전송 동작을 수행하는 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서, 상기 단말이 특정 반송파에서 V2X 신호를 수신하고 있는 도중에, 다른 반송파에서 상기 특정 반송파의 V2X 신호보다 더 높은 우선 순위를 가지는 V2X 신호를 다른 단말이 전송하고 있음을 검출하면,
    수신 체인 스위칭 후, 상기 다른 반송파에서 상기 더 높은 우선 순위를 가지는 V2X 신호를 수신하는 것을 특징으로 하는 방법.
  12. V2X(vehicle-to-everything) 신호를 송수신하는 단말은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    제1 영역 및 제2 영역에 공통적으로 설정된 제1 반송파를 통해 V2X 제어 신호를 송수신하고, 및
    상기 제1 영역에 설정된 제2 반송파 또는 상기 제2 영역에 설정된 제3 반송파를 통해 V2X 데이터를 송수신하는 것을 특징으로 하는 단말.
PCT/KR2016/009398 2015-08-24 2016-08-24 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말 WO2017034324A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018510381A JP6542469B2 (ja) 2015-08-24 2016-08-24 無線通信システムにおける端末のV2X(vehicle−to−everything)信号の送受信方法及び前記方法を利用する端末
EP16839613.3A EP3343995B1 (en) 2015-08-24 2016-08-24 Method for transreceiving v2x signal of terminal in wireless communication system, and terminal using the method
CN201680047691.8A CN107926030B (zh) 2015-08-24 2016-08-24 无线通信系统中终端收发v2x信号的方法以及使用该方法的终端
US15/754,582 US10750512B2 (en) 2015-08-24 2016-08-24 Method for transreceiving V2X signal of terminal in wireless communication system, and terminal using the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562209307P 2015-08-24 2015-08-24
US62/209,307 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017034324A1 true WO2017034324A1 (ko) 2017-03-02

Family

ID=58100488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009398 WO2017034324A1 (ko) 2015-08-24 2016-08-24 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말

Country Status (5)

Country Link
US (1) US10750512B2 (ko)
EP (1) EP3343995B1 (ko)
JP (1) JP6542469B2 (ko)
CN (1) CN107926030B (ko)
WO (1) WO2017034324A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169342A1 (ko) * 2017-03-17 2018-09-20 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치
WO2018174684A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
EP3471477A4 (en) * 2017-05-13 2020-01-22 LG Electronics Inc. -1- V2X SIGNAL TRANSMISSION METHOD BY A TERMINAL WITH A LIMITED TRANSMISSION CAPABILITY IN A MULTI-CARRIER SYSTEM AND TERMINAL USING THE SAME METHOD
EP3595227A4 (en) * 2017-08-10 2020-05-20 Huawei Technologies Co., Ltd. MULTI-CARRIER FREQUENCY TRANSMISSION METHOD, DEVICE AND SYSTEM
US10772075B2 (en) 2017-05-13 2020-09-08 Lg Electronics Inc. Method for transmitting V2X signal of terminal having limited transmission capability and terminal using the method
US11431370B2 (en) * 2017-12-19 2022-08-30 Lg Electronics Inc. Vehicle reception apparatus for receiving broadcast signal and vehicle reception method for receiving broadcast signal
US12089248B2 (en) 2018-08-08 2024-09-10 Sony Corporation Communication device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171529A1 (ko) * 2016-04-01 2017-10-05 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
US10743292B2 (en) * 2016-08-17 2020-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for resource allocation
CN109716845B (zh) * 2016-09-30 2021-12-24 华为技术有限公司 一种v2x通信的方法、设备及系统
CN115885500A (zh) * 2020-08-27 2023-03-31 高通股份有限公司 用于接收机切换的切换时段符号位置
US12063668B2 (en) * 2021-09-21 2024-08-13 Qualcomm Incorporated Techniques for beam refinement in vehicle to everything communications systems
US11818280B2 (en) * 2022-04-12 2023-11-14 Integrity Security Services Llc Systems and methods for centrally managing and routing multiple credentials
WO2023249420A1 (ko) * 2022-06-22 2023-12-28 엘지이노텍 주식회사 V2x 통신모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130159407A1 (en) * 2011-12-20 2013-06-20 Renesas Mobile Corporation Method and apparatus for traffic offloading between devices
US20140247802A1 (en) * 2011-11-10 2014-09-04 Nokia Corporation Methods and apparatuses for facilitating use of carrier aggregation for device-to-device communications
US20140308954A1 (en) * 2011-07-28 2014-10-16 Haifeng Wang Switching between cellular and license-exempt (shared) bands
US20140355557A1 (en) * 2011-11-25 2014-12-04 Tao Peng Ratio Resource Sharing and Contention Scheme for Device-to-Device Communication in White Space Spectrum Bands

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284115A (ja) * 2002-03-27 2003-10-03 Natl Inst For Land & Infrastructure Management Mlit ハンドオーバ方式
JP3635329B2 (ja) * 2002-03-28 2005-04-06 国土交通省国土技術政策総合研究所長 路車間通信システム
JP3976602B2 (ja) * 2002-03-28 2007-09-19 富士通株式会社 光クロスコネクト装置
JP4192514B2 (ja) * 2002-07-15 2008-12-10 日本電気株式会社 セルラシステムの回線制御方法及びセルラシステム並びにそれに用いる移動局
JP2004153759A (ja) * 2002-11-01 2004-05-27 Clarion Co Ltd 無線通信システム及び無線通信機器
US8185120B2 (en) * 2010-03-26 2012-05-22 Microsoft Corporation Cellular service with improved service availability
KR101225183B1 (ko) 2010-11-08 2013-01-22 한국전자통신연구원 Wave 기반의 멀티 채널 운용 방법 및 장치
JP5615767B2 (ja) * 2011-06-28 2014-10-29 三協立山株式会社 照明具
JP6088738B2 (ja) * 2012-02-21 2017-03-01 三菱重工メカトロシステムズ株式会社 無線通信システム及び制御方法、プログラム
WO2013179472A1 (ja) 2012-05-31 2013-12-05 富士通株式会社 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法
US20150043446A1 (en) * 2013-08-12 2015-02-12 Qualcomm Incorporated Method and apparatus for coexistence of device to device and lte wan communication using single communication chain
KR101534969B1 (ko) * 2013-12-18 2015-07-07 현대자동차주식회사 차량간 메시지 전송 충돌을 방지하기 위한 장치 및 그 방법
CN104936260A (zh) 2014-03-20 2015-09-23 中国移动通信集团公司 一种车辆间无线通信的方法、装置及系统
KR102173999B1 (ko) * 2014-07-17 2020-11-04 주식회사 만도 차량 통신 제어장치 및 방법
WO2016013826A1 (ko) * 2014-07-20 2016-01-28 엘지전자(주) 무선 통신 시스템에서 단말 조건 기반 d2d 통신 방법 및 이를 위한 장치
WO2016018069A1 (ko) * 2014-07-29 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서 d2d 통신을 위한 제어 정보 송신 방법 및 이를 위한 장치
KR20160027739A (ko) * 2014-09-02 2016-03-10 현대모비스 주식회사 차량의 위치 추정 장치 및 그 방법
KR20160038091A (ko) * 2014-09-24 2016-04-07 현대자동차주식회사 V2x 통신을 위한 csr 인증서 발급 방법 및 시스템
CN104717718B (zh) 2015-03-31 2019-11-05 杭州祥声通讯股份有限公司 一种高铁列车WiFi热点通信控制方法和系统
US10244482B2 (en) * 2015-08-21 2019-03-26 Lg Electronics Inc. Method for transmitting or receiving V2X signal in wireless communication system and device for performing same
WO2018030788A1 (ko) * 2016-08-09 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 단말의 사이드링크 신호 송수신 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140308954A1 (en) * 2011-07-28 2014-10-16 Haifeng Wang Switching between cellular and license-exempt (shared) bands
US20140247802A1 (en) * 2011-11-10 2014-09-04 Nokia Corporation Methods and apparatuses for facilitating use of carrier aggregation for device-to-device communications
US20140355557A1 (en) * 2011-11-25 2014-12-04 Tao Peng Ratio Resource Sharing and Contention Scheme for Device-to-Device Communication in White Space Spectrum Bands
US20130159407A1 (en) * 2011-12-20 2013-06-20 Renesas Mobile Corporation Method and apparatus for traffic offloading between devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEC: "Deployment Scenarios of LTE-based V2X", R1-154194, 3GPP TSG RAN WG1 MEETING #82, 14 August 2015 (2015-08-14), Beijing, CHINA, XP050992735 *
See also references of EP3343995A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006335B2 (en) 2017-03-17 2021-05-11 Lg Electronics Inc. Method for setting and controlling carrier for direct device-to-device communication in wireless communication system, and device therefor
KR102243665B1 (ko) * 2017-03-17 2021-04-23 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치
KR20190104211A (ko) * 2017-03-17 2019-09-06 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치
CN110419253A (zh) * 2017-03-17 2019-11-05 Lg电子株式会社 无线通信系统中设置和控制用于直接装置到装置通信的载波的方法及其装置
CN110419253B (zh) * 2017-03-17 2023-08-18 Lg电子株式会社 无线通信系统中设置和控制用于直接装置到装置通信的载波的方法及其装置
WO2018169342A1 (ko) * 2017-03-17 2018-09-20 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치
US11265872B2 (en) 2017-03-24 2022-03-01 Lg Electronics Inc. Method and apparatus for transmitting sidelink signal in wireless communication system
WO2018174684A1 (ko) * 2017-03-24 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
JP2020521368A (ja) * 2017-05-13 2020-07-16 エルジー エレクトロニクス インコーポレイティド 多重搬送波システムにおける制限された送信能力を有する端末のv2x信号送信方法及び前記方法を利用する端末
US10772075B2 (en) 2017-05-13 2020-09-08 Lg Electronics Inc. Method for transmitting V2X signal of terminal having limited transmission capability and terminal using the method
US11425689B2 (en) 2017-05-13 2022-08-23 Lg Electronics Inc. Method for transmitting V2X signal of terminal having limited transmission capability and terminal using the method
EP3471477A4 (en) * 2017-05-13 2020-01-22 LG Electronics Inc. -1- V2X SIGNAL TRANSMISSION METHOD BY A TERMINAL WITH A LIMITED TRANSMISSION CAPABILITY IN A MULTI-CARRIER SYSTEM AND TERMINAL USING THE SAME METHOD
EP3595227A4 (en) * 2017-08-10 2020-05-20 Huawei Technologies Co., Ltd. MULTI-CARRIER FREQUENCY TRANSMISSION METHOD, DEVICE AND SYSTEM
US11431370B2 (en) * 2017-12-19 2022-08-30 Lg Electronics Inc. Vehicle reception apparatus for receiving broadcast signal and vehicle reception method for receiving broadcast signal
US12089248B2 (en) 2018-08-08 2024-09-10 Sony Corporation Communication device

Also Published As

Publication number Publication date
US20180242302A1 (en) 2018-08-23
US10750512B2 (en) 2020-08-18
EP3343995A1 (en) 2018-07-04
CN107926030B (zh) 2021-06-04
JP6542469B2 (ja) 2019-07-10
EP3343995A4 (en) 2019-03-27
EP3343995B1 (en) 2020-06-24
JP2018525938A (ja) 2018-09-06
CN107926030A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017034324A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말
WO2017048109A1 (ko) 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2018044079A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2017171529A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2017086720A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 전송 방법 및 상기 방법을 이용하는 단말
WO2018131947A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2017192006A2 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2018174537A1 (ko) 무선 통신 시스템에서 전송 다이버시티 기법에 의하여 전송된 v2x 신호의 디코딩 방법 및 상기 방법을 이용하는 단말
WO2017007280A1 (ko) 무선 통신 시스템에서 단말의 동기화 수행 방법 및 상기 방법을 이용하는 단말
WO2016182293A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하는 단말의 전송 전력 결정 방법 및 상기 방법을 이용하는 단말
WO2015142082A1 (en) Method and apparatus for configuring buffer status report for public safety transmission or vehicle-related transmission in wireless communication system
WO2016108679A1 (ko) 무선 통신 시스템에서 d2d 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2018070845A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 사이드링크 동기화 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2018038565A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2019004688A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 단말의 동작 방법 및 상기 방법을 이용하는 단말
WO2019027205A1 (ko) Cu-du 분할 시나리오에서 rrc 연결을 재개하는 방법 및 장치
WO2019022470A1 (en) METHOD AND APPARATUS FOR REALIZING LATERAL LINK TRANSMISSIONS ON MULTIPLE CARRIERS IN A WIRELESS COMMUNICATION SYSTEM
WO2018088837A1 (ko) 단말이 셀 재선택 절차를 수행하는 방법 및 이를 지원하는 장치
WO2018074874A1 (en) Method for triggering resource reselection for sidelink transmission prioritized over the uplink transmission in wireless communication system and a device therefor
WO2018066905A1 (ko) V2x 통신을 수행하는 방법 및 장치
WO2017150955A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2018194388A1 (ko) 무선 통신 시스템에서 피드백 정보를 송신하는 방법 및 장치
WO2018174688A1 (ko) 복수의 반송파들이 설정된 단말의 전력 할당 방법 및 상기 방법을 이용하는 단말
WO2017126950A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2018131972A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 전송 수행 방법 및 상기 방법을 이용하는 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15754582

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018510381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839613

Country of ref document: EP