WO2017034228A1 - Quantum-dot surface-processing method for imparting chemical resistance, and quantum dots produced thereby - Google Patents

Quantum-dot surface-processing method for imparting chemical resistance, and quantum dots produced thereby Download PDF

Info

Publication number
WO2017034228A1
WO2017034228A1 PCT/KR2016/009160 KR2016009160W WO2017034228A1 WO 2017034228 A1 WO2017034228 A1 WO 2017034228A1 KR 2016009160 W KR2016009160 W KR 2016009160W WO 2017034228 A1 WO2017034228 A1 WO 2017034228A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
quantum
quantum dot
chemical resistance
metal ions
Prior art date
Application number
PCT/KR2016/009160
Other languages
French (fr)
Korean (ko)
Inventor
김재일
임태윤
Original Assignee
주식회사 두하누리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두하누리 filed Critical 주식회사 두하누리
Publication of WO2017034228A1 publication Critical patent/WO2017034228A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • the present invention relates to a method for imparting chemical resistance to quantum dots and a quantum dot manufactured by the method, and more particularly, to impart chemical resistance to quantum dots so as not to be affected by the external environment, thereby having excellent chemical resistance and heat resistance. A surface treatment method and a quantum dot produced thereby.
  • quantum dot which is a semiconductor material corresponding to a nano size of about 2 to 10 nm in diameter, and when it is smaller than a certain size, electron motion characteristics in the bulk semiconductor material are further restricted. It is a material that gives a quantum confinement effect that the emission wavelength is different from the bulk state.
  • the quantum dot receives light from an excitation source and reaches an energy excited state, the quantum dot emits energy according to a corresponding energy band gap. Therefore, by adjusting the size of the quantum dot it is possible to adjust the band gap, the energy of various wavelength bands can be obtained, thereby showing optical, electrical and magnetic properties that are completely different from the original physical properties.
  • quantum dots have recently been studied for use in various fields, including a wide range of applications, such as displays, solar energy conversion, molecular and cellular imaging, and the like.
  • quantum dot-matrix thin film of Korea Patent Publication No. 10-2013-0067137, which includes a plurality of quantum dots; An inorganic matrix embedded with a plurality of said quantum dots; And an interface layer positioned between the quantum dots and the inorganic matrix and surrounding the surface of the quantum dots.
  • the quantum dot is sensitive to the external chemical environment due to the nano-sized small particles and metal ions, together with the above-described characteristics, thereby causing a sudden change in luminescence and poor chemical resistance, and reaction with oxygen in the atmosphere at a high temperature of 100 ° C. or higher.
  • the surface was damaged, resulting in a problem of poor heat resistance in which the luminescence dropped sharply.
  • Poor chemical resistance of quantum dots is evidence that the luminescence deteriorates during the quantum dot surface ligand substitution experiment, and the quantum dots are not completely protected from the external environment except for a very thick CdS shell, and an inorganic shell coating The coating is not complete and the external environment is affected. Therefore, there was a need to improve these disadvantages.
  • the present invention allows the inorganic shell coating to be simply and stably formed on the surface of the quantum dots so as not to be influenced by the external environment, thereby providing excellent resistance to It is intended to have chemical and heat resistance, and to have a thickness that does not affect the luminescence of the buffer-type inorganic layer formed on the outermost quantum dots.
  • the metal ions present on the surface of the quantum dots by a cation exchange reaction (cation exchange reaction)
  • the heterogeneous metal ions existing outside the quantum dots Provided is a method for treating a chemically imparted surface of a quantum dot to allow for site exchange.
  • the material exchanged with the heterogeneous metal ions has a larger atom or ion than the metal ions on the surface of the quantum dot, and thus has a lower band gap when the metal ions on the surface of the quantum dot are replaced. It may be a forming material.
  • the material exchanged with the heterogeneous metal ions may include some of Cd, Al, Ga (Gallium), and In (Indium) when the outermost metal atom of the quantum dot is Zn.
  • CdO, ligand, and 1-octadecene are added to the container, and based on 10 mmol of the CdO, the ligand is 5-100 mmol, and the 1-octadecene (ODE) is 10 Bringing to 2000 mL; Dissolving the CdO by bringing the vessel to a temperature of 100 to 300 ° C. in a vacuum state; Adding a quantum dot to the solution in which the CdO is dissolved so that the metal ion of the surface of the quantum dot is exchanged at a temperature of 100 to 300 ° C .; And cooling the solution to purify the quantum dots with an organic solvent.
  • ODE 1-octadecene
  • the ligand may be an alkyl acid, an alkyl phosphonic acid, an alkyl phosphinic acid, an aryl acid, or an aryl phosph that may react with a metal to form a metal salt. It may include any one of arylphosphonic acid and aryl phosphinic acid.
  • a quantum dot produced by the method for imparting chemical resistance of the quantum dot according to one aspect of the present invention.
  • an inorganic shell coating is simply and stably performed on the surface of the quantum dots, thereby preventing them from being affected by the external environment. Therefore, it is possible to have excellent chemical resistance and heat resistance, and to have a thickness that does not affect the luminescence of a buffer-type inorganic layer formed on the outermost quantum dots.
  • FIG. 3 is a flowchart illustrating a chemical treatment-resistant surface treatment method of a quantum dot according to an embodiment of the present invention.
  • FIG. 4 is a view comparing before and after chemical resistance imparting surface treatment according to the present invention.
  • FIG. 1 is a view for explaining a chemical treatment-resistant surface treatment method of a quantum dot according to the present invention, which shows that the CdSe / ZnS quantum dots are surface-treated with Cd ions.
  • metal ions existing on the surface of the quantum dot are present outside the quantum dot by a cation exchange reaction.
  • the temperature for causing the metal ions present on the surface of the quantum dot to be exchanged with the different metal ions is less than the temperature at which the core and the shell of the quantum dot form an alloy, and the metal ions of the surface and the hetero ions are cations as described above. It may be a temperature range to allow a cation exchange reaction.
  • Substances exchanged with heterogeneous metal ions have a larger atom or ion than metal ions on the surface of the quantum dots, thereby forming a layer having a lower band gap when the metal ions on the surface of the quantum dots are replaced.
  • the outermost metal atom of the quantum dot when the outermost metal atom of the quantum dot is Zn, it may include some of Cd, Al, Ga (Gallium) and In (Indium), for example, the outermost portion of the quantum dot.
  • the material that is exchanged with heterogeneous metal ions may be, for example, CdS, in addition to ZnSe.
  • the quantum dots may be selected from any one of Si-based nanocrystals, II-VI compound semiconductor nanocrystals, III-V compound semiconductors, and IV-VI compound semiconductor nanocrystals and compounds thereof. Nanocrystals.
  • group II-VI compound semiconductor nanocrystals are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, PbSe, PbS, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeS, HgSeS, HgSeS Among CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgZTSe, HdHgZTT, In addition, group III-V compound semiconductor nanocrystals are GaN, GaP,
  • the quantum dot may be a Cd compound such as CdS, CdSe, CdTe, CdTe, or the like, or an In compound such as InP, InN, InAs, etc.
  • the shell surrounding the core may be a Zn compound such as a quantum dot core and a lattice parameter. May be similar ZnS or ZnSe, and thus may include nanocrystals made of CdSe / ZnS as shown in FIG. 1 or nanocrystals made of InP / ZnS as another example.
  • an inorganic shell coating simply and reliably and not to affect the internal size of the particles, It has a buffer characteristic at the outermost part of the quantum dot but does not affect the luminescence by forming a very thin inorganic film due to the thickness of less than 1 monolayer.
  • the change in the luminescence when the quantum dot is CdSe / ZnS as shown in Fig. 2 (a), the ZnS crystal lattice grows on the CdSe crystal lattice, at a predetermined thickness, for example 1.7 mL or more Crack is generated, as shown in (b) of FIG. 2, in the case of the quantum dot manufactured by the chemical resistance surface treatment method of the quantum dot according to the present invention, for example, CdSe / ZnS / CdS is formed on the CdSe crystal lattice. As the ZnS crystal lattice grows and Cd larger than Zn enters the outermost quantum dot, cracks caused by the increase in ZnS thickness are prevented.
  • Cd enters the position where the crack occurs, and as a result, the crack disappears on the crystal lattice, thereby suppressing lattice mismatch, minimizing energy loss and improving luminescence.
  • the phenomenon that chemicals penetrate into the space formed when the crack is generated to reduce the luminescence is prevented by suppressing the occurrence of the crack as described above. This also improves the high temperature heat resistance in the presence of oxygen and reduces the likelihood of attacking foreign chemicals due to high density ligand binding. Since CdS is not a shell of sufficient thickness, it does not affect the quantum dot emission wavelength.
  • the quantum dots are mixed with a solution containing heterogeneous metal ions, and the quantum dots are mixed at a temperature of 100 to 300 ° C.
  • a method for treating chemical resistance of a quantum dot is prepared by adding CdO, a ligand, and 1-octadecene (ODE) to a container, based on 10 mmol of CdO, wherein the ligand is 5 to 100 to 1 mmol of octadecene (ODE) to 10 to 2000 mL, to dissolve the CdO by bringing the vessel to a temperature of 100 to 300 ° C.
  • the ligand is an alkyl acid, alkyl phosphonic acid, alkyl phosphinic acid, aryl which can react with metals such as Cd, Al, Ga, In and the like to form metal salts
  • Acid (aryl acid), aryl phosphonic acid (aryl phosphonic acid) and aryl phosphinic acid (aryl phosphinic acid) may include any one, and the structure and molecular weight of the material is not limited.
  • the quantum dot according to an embodiment of the present invention is a quantum dot manufactured by the chemical resistance imparting surface treatment method of the quantum dots according to the embodiments of the present invention as described above, the chemical resistance imparting surface treatment method of the quantum dots has already been described in detail. Since the description thereof will be omitted, more specific embodiments will be described below.
  • TOP-Se 1M selenium solution
  • TOP-S 1M sulfur
  • Se and S were dissolved in tri-n-octylphosphine, respectively, to prepare a 1M selenium solution (TOPSe) and 1M sulfur (TOPS) solution, which is a chalcogenide standard solution for red quantum dot synthesis.
  • TOPSe 1M selenium solution
  • TOPS 1M sulfur
  • a 100 mL two neck round bottom flask 0.128 g (1.0 mmol) of cadmium oxide, 0.634 mL (2.0 mmol) of oleic acid, and 10 mL of octadecine were added until the solution became clear. It heated to C, and obtained the cadmium oleate metal precursor. The resulting water was then removed by heating in vacuo to 150 ° C. and degassing for 20 minutes.
  • the temperature of the mixed solution was raised to 300 ° C. and 2 mL of 1 M selenium solution (TOPSe) was injected. After the growth step to adjust the temperature to 280 °C and proceeded for 12 minutes to obtain a CdSe core quantum dot.
  • TOPSe 1 M selenium solution
  • 0.1 g of the CdSe Core QD obtained above is dissolved in 10 mL of ODE. After raising the temperature of the reaction vessel to 200 ° C. under vacuum, the temperature is increased to 280 ° C. after N2 purging. Mix 1 mmol of zinc stearate with 1 mL of the prepared TOP-S and dilute by adding 5 mL of TOP (referred to as Zn-S precursor solution). The Zn-S precursor solution is slowly dropped into the CdSe core QD / ODE solution using a syringe pump. After the reaction for 3 hours to lower the temperature of the reaction vessel to room temperature, EtOH is added to the container in excess, the quantum dots are precipitated, and the particles are recovered at 15,000rpm using a centrifuge.
  • Se and S were dissolved in tri-n-octylphosphine, respectively, to prepare a 1M selenium solution (TOP-Se) and 1M sulfur (TOP-S) solution, which is a chalcogenide standard solution for red quantum dot synthesis.
  • TOP-Se 1M selenium solution
  • TOP-S 1M sulfur
  • 0.128 g (1.0 mmol) of cadmium oxide, 0.878 g (4.0 mmol) of zinc acetate, 5.7 g (20.0 mmol) of stearic acid, 10 ml of 2.7 g (10 mmol) oleylamine octadecine was added and heated to 180 ° C.
  • the surface-treated quantum dots show low luminescence, but as shown in (b) it can be observed that the surface-treated quantum dots maintained a high luminescence properties.
  • surface treatment refers to a quantum dot stock solution obtained by synthesis
  • after surface treatment refers to a case of quantum dots substituted with surface metal by Cd obtained through Cd-alkyl acid.
  • the luminescence is increased by more than 10% after the surface treatment, while under room light means that the camera was photographed under a fluorescent lamp.
  • the inorganic shell coating (simple and stable) to the surface of the quantum dot is made to be affected by the external environment Therefore, it is possible to have excellent chemical resistance and heat resistance, and to have a thickness that does not affect the luminescence of a buffer-type inorganic layer formed on the outermost of the quantum dots.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to: a quantum-dot surface-processing method for imparting chemical resistance by subjecting metal ions present on the surface of quantum dots to a cation exchange reaction and thereby subjecting same to place exchange with metal ions of another type which were previously present on the outside of the quantum dots; and quantum dots produced by means of the method. The present invention is devised in such a way that an inorganic shell coating is constituted on the quantum dot surface in straightforward yet also stable fashion, and in such a way that external environmental effects are not experienced, and, as a result, in such a way that the invention has outstanding chemical resistance and heat resistance, and in such a way that an inorganic layer, that has the nature of a buffer formed on the outermost shell of the quantum dot, can have a thickness that does not affect the light-emitting properties.

Description

양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점Chemical resistance surface treatment method of quantum dots and quantum dots produced by
본 발명은 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점에 관한 것으로서, 보다 상세하게는 외부 환경의 영향을 받지 않도록 하고, 이로 인해 뛰어난 내화학성 및 내열성을 가지도록 하는 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점에 관한 것이다.The present invention relates to a method for imparting chemical resistance to quantum dots and a quantum dot manufactured by the method, and more particularly, to impart chemical resistance to quantum dots so as not to be affected by the external environment, thereby having excellent chemical resistance and heat resistance. A surface treatment method and a quantum dot produced thereby.
일반적으로, 물질은 그 크기가 나노미터로 작아지면 벌크상태에서 볼 수 없었던 새로운 물리적 특성을 가지게 되는데, 이는 물질들이 나노크기와 모양이 변화하면 그 특성 역시 변화하기 때문이다.In general, when a material is reduced to nanometers in size, it has new physical properties that were not seen in bulk because the material changes as its size and shape change.
이와 같은 나노 물질 중에는 약 2~10 nm 직경의 나노크기에 해당하는 반도체 물질인 양자점(quantum dot; QD)이 있는데, 이는 일정한 크기 이하로 작아지면, 벌크상태의 반도체 물질 내의 전자운동 특성이 더욱 제약을 받게 되어, 벌크상태와는 발광 파장이 달라지는 양자제한(quantum confinement) 효과를 내는 물질이다. 이러한 양자점은 여기원(excitation source)으로부터 빛을 받아 에너지 여기 상태에 이르면, 자체적으로 해당하는 에너지 밴드 갭(band gap)에 따른 에너지를 방출하게 된다. 따라서, 양자점의 크기를 조절하면 해당 밴드 갭을 조절할 수 있게 되어, 다양한 파장대의 에너지를 얻을 수 있고, 이로 인해 원래의 물성과는 전혀 다른 광학적, 전기적 및 자기적 특성을 보이게 된다.Among such nanomaterials, there is a quantum dot (QD), which is a semiconductor material corresponding to a nano size of about 2 to 10 nm in diameter, and when it is smaller than a certain size, electron motion characteristics in the bulk semiconductor material are further restricted. It is a material that gives a quantum confinement effect that the emission wavelength is different from the bulk state. When the quantum dot receives light from an excitation source and reaches an energy excited state, the quantum dot emits energy according to a corresponding energy band gap. Therefore, by adjusting the size of the quantum dot it is possible to adjust the band gap, the energy of various wavelength bands can be obtained, thereby showing optical, electrical and magnetic properties that are completely different from the original physical properties.
이러한 양자점은 최근에는 광범위한 범위의 용도, 예컨대 디스플레이, 태양 에너지 변환, 분자 및 세포 이미징 등을 비롯하여 다양한 분야에 사용되기 위한 연구가 진행되고 있다.These quantum dots have recently been studied for use in various fields, including a wide range of applications, such as displays, solar energy conversion, molecular and cellular imaging, and the like.
종래의 양자점과 관련된 기술로는, 한국공개특허 제10-2013-0067137호의 "양자점-매트릭스 박막"이 있는데, 이는 복수의 양자점; 복수의 상기 양자점이 임베드된 무기 매트릭스; 및 상기 양자점과 상기 무기 매트릭스 사이에 위치하여 상기 양자점의 표면을 둘러싸고 있는 계면층;을 포함한다.As a technique related to the conventional quantum dots, there is a "quantum dot-matrix thin film" of Korea Patent Publication No. 10-2013-0067137, which includes a plurality of quantum dots; An inorganic matrix embedded with a plurality of said quantum dots; And an interface layer positioned between the quantum dots and the inorganic matrix and surrounding the surface of the quantum dots.
이와 같은 종래 기술의 양자점 뿐만 아니라 기존의 양자점은, 대개 고온열분해법을 이용하여 고온에서 합성되고, 결정성이 우수할수록 고발광성을 가지는데, 고온열분해법으로 제조시. 입자표면에 알킬 체인(alkyl chain)이 존재함으로써 소수성(hydrophobic)을 가지며, 이로 인해 비극성 용매(non-polar organic solvent)에만 용해되는 특성을 가진다.Conventional quantum dots as well as such conventional quantum dots are usually synthesized at a high temperature using a high temperature pyrolysis method, and the higher the crystallinity, the higher the luminescence property. The presence of an alkyl chain on the surface of the particle makes it hydrophobic, thereby dissolving only in non-polar organic solvents.
그러므로, 양자점은 상기한 바와 같은 특성과 함께 나노크기의 작은 입자와 금속 이온으로 인해 외부 화학환경에 민감하게 반응함으로써, 발광성이 급변하여 내화학성이 불량하며, 100℃ 이상의 고온에서 대기 중의 산소와 반응하여 표면이 손상되어 발광성이 급감하는 내열성 불량을 야기하는 문제점을 가지고 있었다. 양자점의 내화학성이 취약함은 양자점 표면 리간드 치환실험시, 발광성이 저하되는 것이 그 증거이며, 양자점은 아주 두꺼운 CdS 쉘(shell) 이외에는 완전히 외부 환경으로부터 입자를 보호받지 못하고, 무기 쉘 코팅(inorganic shell coating)이 완전하지 못해서 외부 환경에 영향을 받게 된다. 따라서 이러한 단점들을 개선할 필요가 있었다.Therefore, the quantum dot is sensitive to the external chemical environment due to the nano-sized small particles and metal ions, together with the above-described characteristics, thereby causing a sudden change in luminescence and poor chemical resistance, and reaction with oxygen in the atmosphere at a high temperature of 100 ° C. or higher. As a result, the surface was damaged, resulting in a problem of poor heat resistance in which the luminescence dropped sharply. Poor chemical resistance of quantum dots is evidence that the luminescence deteriorates during the quantum dot surface ligand substitution experiment, and the quantum dots are not completely protected from the external environment except for a very thick CdS shell, and an inorganic shell coating The coating is not complete and the external environment is affected. Therefore, there was a need to improve these disadvantages.
상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은 양자점 표면에 대해서 간단하면서도 안정적으로 무기 쉘 코팅(inorganic shell coating)이 이루어지도록 하여, 외부 환경의 영향을 받지 않도록 하고, 이로 인해 뛰어난 내화학성 및 내열성을 가지도록 하며, 양자점 최외각에 형성되는 버퍼 성격의 무기막(inorganic layer)이 발광성에 영향을 미치지 않는 두께를 가지도록 하는데 목적이 있다.In order to solve the problems of the prior art as described above, the present invention allows the inorganic shell coating to be simply and stably formed on the surface of the quantum dots so as not to be influenced by the external environment, thereby providing excellent resistance to It is intended to have chemical and heat resistance, and to have a thickness that does not affect the luminescence of the buffer-type inorganic layer formed on the outermost quantum dots.
본 발명의 다른 목적들은 이하의 실시례에 대한 설명을 통해 쉽게 이해될 수 있을 것이다.Other objects of the present invention will be readily understood through the following description of the embodiments.
상기한 바와 같은 목적을 달성하기 위해, 본 발명의 일측면에 따르면, 양자점의 표면에 존재하는 금속이온을 양이온 교환 반응(cation exchange reaction)에 의해, 상기 양자점의 외부에 존재하던 이종의 금속이온으로 자리 교환되도록 하는, 양자점의 내화학성 부여 표면처리 방법이 제공된다.In order to achieve the above object, according to one aspect of the invention, the metal ions present on the surface of the quantum dots by a cation exchange reaction (cation exchange reaction), the heterogeneous metal ions existing outside the quantum dots Provided is a method for treating a chemically imparted surface of a quantum dot to allow for site exchange.
상기 이종의 금속이온으로 교환되어 이루어지는 물질은, 양자점 표면의 금속이온보다 원자 또는 이온의 크기가 크고, 상기 양자점 표면의 금속이온을 대체하는 경우 그로 인해서 보다 낮은 밴드 갭(band gap)을 가지는 층을 형성하는 물질일 수 있다.The material exchanged with the heterogeneous metal ions has a larger atom or ion than the metal ions on the surface of the quantum dot, and thus has a lower band gap when the metal ions on the surface of the quantum dot are replaced. It may be a forming material.
상기 이종의 금속이온으로 교환되어 이루어지는 물질은, 상기 양자점 최외곽 금속원자가 Zn인 경우, Cd, Al, Ga(Gallium) 및 In(Indium) 중에서 일부를 포함할 수 있다.The material exchanged with the heterogeneous metal ions may include some of Cd, Al, Ga (Gallium), and In (Indium) when the outermost metal atom of the quantum dot is Zn.
상기 이종의 금속이온이 포함되는 용액에 상기 양자점을 혼합하고, 100~300℃의 온도에서 상기 양자점의 표면에서 금속이온이 교환되도록 하는 단계; 및 상기 금속이온의 교환을 마친 양자점 혼합 용액을 냉각시킨 다음, 유기용매로 상기 양자점을 정제하는 단계;를 포함할 수 있다.Mixing the quantum dots with a solution containing the heterogeneous metal ions and exchanging metal ions on the surface of the quantum dots at a temperature of 100 to 300 ° C .; And cooling the quantum dot mixed solution after the exchange of the metal ions, and then purifying the quantum dots with an organic solvent.
용기에 CdO, 리간드 및 1-옥타데신(octadecene; ODE)을 투입하되, 상기 CdO 10 mmol을 기준으로, 상기 리간드는 5~100 mmol이 되도록 하고, 상기 1-옥타데신(octadecene; ODE)은 10~2000 mL가 되도록 하는 단계; 상기 용기를 진공상태에서 100~300℃ 온도가 되도록 하여 상기 CdO를 용해시키는 단계; 상기 CdO가 용해된 용액에 양자점을 투입하여 상기 용액이 100~300℃의 온도에서 상기 양자점 표면의 금속이온이 교환되도록 하는 단계; 및 상기 용액을 냉각시켜서 유기용매로 상기 양자점을 정제하는 단계:를 포함할 수 있다.CdO, ligand, and 1-octadecene (ODE) are added to the container, and based on 10 mmol of the CdO, the ligand is 5-100 mmol, and the 1-octadecene (ODE) is 10 Bringing to 2000 mL; Dissolving the CdO by bringing the vessel to a temperature of 100 to 300 ° C. in a vacuum state; Adding a quantum dot to the solution in which the CdO is dissolved so that the metal ion of the surface of the quantum dot is exchanged at a temperature of 100 to 300 ° C .; And cooling the solution to purify the quantum dots with an organic solvent.
상기 리간드는, 금속과 반응하여 금속염을 형성할 수 있는 알킬 애시드(alkyl acid), 알킬 포스포닉애시드(alkyl phosphonic acid), 알킬 포스피닉애시드(alkyl phosphinic acid), 아릴 애시드(aryl acid), 아릴 포스포닉애시드(arylphosphonic acid) 및 아릴 포스피닉애시드(aryl phosphinic acid) 중 어느 하나를 포함할 수 있다.The ligand may be an alkyl acid, an alkyl phosphonic acid, an alkyl phosphinic acid, an aryl acid, or an aryl phosph that may react with a metal to form a metal salt. It may include any one of arylphosphonic acid and aryl phosphinic acid.
본 발명의 다른 측면에 따르면, 본 발명의 일측면에 따른 양자점의 내화학성 부여 표면처리 방법에 의해 제조되는 양자점이 제공된다.According to another aspect of the present invention, there is provided a quantum dot produced by the method for imparting chemical resistance of the quantum dot according to one aspect of the present invention.
본 발명에 따른 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점에 의하면, 양자점 표면에 대해서 간단하면서도 안정적으로 무기 쉘 코팅(inorganic shell coating)이 이루어지도록 하여, 외부 환경의 영향을 받지 않도록 하고, 이로 인해 뛰어난 내화학성 및 내열성을 가지도록 하며, 양자점 최외각에 형성되는 버퍼(buffer) 성격의 무기막(inorganic layer)이 발광성에 영향을 미치지 않는 두께를 가지도록 할 수 있다.According to the method for treating the chemical resistance of the quantum dots according to the present invention and the quantum dots manufactured thereby, an inorganic shell coating is simply and stably performed on the surface of the quantum dots, thereby preventing them from being affected by the external environment. Therefore, it is possible to have excellent chemical resistance and heat resistance, and to have a thickness that does not affect the luminescence of a buffer-type inorganic layer formed on the outermost quantum dots.
도 1은 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법을 설명하기 위한 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the chemical resistance provision surface treatment method of the quantum dot which concerns on this invention.
도 2는 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법에 의해 발광성 변화가 적은 이유를 설명하기 위한 도면이다.2 is a view for explaining the reason that the change in the luminescence is small by the chemical resistance imparting surface treatment method of the quantum dots according to the present invention.
도 3은 본 발명의 일 실시례에 따른 양자점의 내화학성 부여 표면처리 방법을 도시한 흐름도이다.3 is a flowchart illustrating a chemical treatment-resistant surface treatment method of a quantum dot according to an embodiment of the present invention.
도 4는 본 발명에 따른 내화학성 부여 표면처리 전후를 비교한 도면이다.4 is a view comparing before and after chemical resistance imparting surface treatment according to the present invention.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시례를 가질 수 있는 바, 특정 실시례들을 도면에 예시하고, 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니고, 본 발명의 기술 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 식으로 이해되어야 하고, 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시례에 한정되는 것은 아니다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to the specific embodiments, but should be understood in a way that includes all changes, equivalents, and substitutes included in the spirit and scope of the present invention, and may be modified in various other forms. It is to be understood that the scope of the present invention is not limited to the following examples.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시례를 상세히 설명하며, 도면 부호에 관계없이 동일하거나 대응하는 구성요소에 대해서는 동일한 참조 번호를 부여하고, 이에 대해 중복되는 설명을 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and like reference numerals denote the same or corresponding elements regardless of reference numerals, and redundant description thereof will be omitted.
도 1은 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법을 설명하기 위한 도면으로서, 일례로 CdSe/ZnS 양자점에 Cd 이온으로 표면처리되는 것을 나타낸다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining a chemical treatment-resistant surface treatment method of a quantum dot according to the present invention, which shows that the CdSe / ZnS quantum dots are surface-treated with Cd ions.
도 1의 (a)에 도시된 바와 같이, 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법은 양자점의 표면에 존재하는 금속이온이 양이온 교환 반응(cation exchange reaction)에 의해, 양자점의 외부에 존재하던 이종의 금속이온으로 자리 교환되도록 한다. 여기서 양자점의 표면에 존재하는 금속이온이 이종의 금속이온으로 자리 교환되도록 하기 위한 온도는 양자점의 코어와 쉘이 합금을 형성하는 온도 미만에서 상기한 바와 같은 표면의 금속이온과 이종의 금속이온이 양이온 교환 반응(cation exchange reaction)을 하도록 하는 온도 범위일 수 있다.As shown in (a) of FIG. 1, in the method for treating chemical resistance of a quantum dot according to the present invention, metal ions existing on the surface of the quantum dot are present outside the quantum dot by a cation exchange reaction. Replace with other metal ions. Here, the temperature for causing the metal ions present on the surface of the quantum dot to be exchanged with the different metal ions is less than the temperature at which the core and the shell of the quantum dot form an alloy, and the metal ions of the surface and the hetero ions are cations as described above. It may be a temperature range to allow a cation exchange reaction.
이종의 금속이온으로 교환되어 이루어지는 물질은 양자점 표면의 금속이온보다 원자 또는 이온의 크기가 크고, 양자점 표면의 금속이온을 대체하는 경우 그로 인해서 보다 낮은 밴드 갭(band gap)을 가지는 층을 형성하는 물질일 수 있는데, 도 1의 (b)에서와 같이, 양자점 최외곽 금속원자가 Zn인 경우, Cd, Al,Ga(Gallium) 및 In(Indium) 중 일부를 포함할 수 있고, 예컨대 양자점의 최외각의 물질이 ZnS인 경우, 이종의 금속이온으로 교환되어 이루어지는 물질은 예컨대 CdS일 수 있으며, 이 밖에도 ZnSe일 수 있다. 또한 이러한 조건을 만족하는 범위 내에서 양자점은 Si계 나노결정, II-VI족계 화합물 반도체 나노결정, III-V족계 화합물 반도체 나노결정, IV-VI족계 화합물 반도체 나노결정 및 이들의 화합물 중 어느 하나의 나노결정을 포함할 수 있다. 여기서, II-VI족계 화합물 반도체 나노결정은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, PbSe, PbS, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe 및 HgZnSTe 중에서 선택되는 어느 하나일 수 있다. 또한 III-V족계 화합물 반도체 나노결정은 GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs, 및 InAlPAs 중에서 선택되는 어느 하나일 수 있다. 또한 양자점은 코어가 Cd 화합물, 예컨대 CdS, CdSe, CdTe, CdTe 등이거나, In 화합물, 예컨대 InP, InN, InAs 등일 수 있고, 코어를 감싸는 쉘이 Zn 화합물, 예컨대 양자점 코어와 격자계수(lattice parameter)가 유사한 ZnS 또는 ZnSe일 수 있는데, 이에 따라 일례로 도1에서와 같이 CdSe/ZnS로 이루어진 나노결정을 포함하거나, 다른 예로서 InP/ZnS로 이루어진 나노결정을 포함할 수 있다.Substances exchanged with heterogeneous metal ions have a larger atom or ion than metal ions on the surface of the quantum dots, thereby forming a layer having a lower band gap when the metal ions on the surface of the quantum dots are replaced. As shown in (b) of FIG. 1, when the outermost metal atom of the quantum dot is Zn, it may include some of Cd, Al, Ga (Gallium) and In (Indium), for example, the outermost portion of the quantum dot. When the material is ZnS, the material that is exchanged with heterogeneous metal ions may be, for example, CdS, in addition to ZnSe. In addition, within the range that satisfies these conditions, the quantum dots may be selected from any one of Si-based nanocrystals, II-VI compound semiconductor nanocrystals, III-V compound semiconductors, and IV-VI compound semiconductor nanocrystals and compounds thereof. Nanocrystals. Here, the group II-VI compound semiconductor nanocrystals are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, PbSe, PbS, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeS, HgSeS, HgSeS Among CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HggZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgZTSe, HdHgZTT, In addition, group III-V compound semiconductor nanocrystals are GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNPs, GaInNAs, GaInPAs, InAlNPs, InAlNAs, and InAlPAs may be any one selected from. In addition, the quantum dot may be a Cd compound such as CdS, CdSe, CdTe, CdTe, or the like, or an In compound such as InP, InN, InAs, etc., and the shell surrounding the core may be a Zn compound such as a quantum dot core and a lattice parameter. May be similar ZnS or ZnSe, and thus may include nanocrystals made of CdSe / ZnS as shown in FIG. 1 or nanocrystals made of InP / ZnS as another example.
상기한 바와 같은 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법에 의하면, 간단하면서도 확실하게 무기쉘 코팅(inorganic shell coating)을 형성할 수 있고, 입자의 내부 크기에 영향을 주지 않도록 할 수 있으며, 양자점 최외각에 버퍼(buffer) 성격을 가지면서도 1 모노레이어(monolayer) 이하의 두께로 인해 아주 얇은 무기막의 형성에 의해 발광성에 영향을 주지 않도록 한다.According to the method for imparting chemical resistance of the quantum dots according to the present invention as described above, it is possible to form an inorganic shell coating simply and reliably and not to affect the internal size of the particles, It has a buffer characteristic at the outermost part of the quantum dot but does not affect the luminescence by forming a very thin inorganic film due to the thickness of less than 1 monolayer.
본 발명에서 발광성 변화에 대해서 예를 들어 설명하면, 도 2의 (a)에서와 같이 양자점이 CdSe/ZnS인 경우, CdSe 결정격자 위에 ZnS 결정격자가 성장하게 되고, 일정 두께, 예컨대 1.7 mL 이상에서는 크랙(Crack)이 발생하게 되는데, 도 2의 (b)에서와 같이, 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법에 의해 제조된 양자점인 경우, 예컨대 CdSe/ZnS/CdS는 CdSe 결정격자 위에 ZnS 결정격자가 성장하고, 양자점 최외각에 Zn보다 큰 Cd가 들어가게 되면서 ZnS 두께 증가로 인해서 발생할 크랙을 미연에 방지하게 된다. 이는 크랙이 발생할 위치에 Cd가 들어간다고 볼 수 있고, 결과적으로 크리스탈 격자 상에서 크랙이 사라지게 됨으로써 격자 미스매치(lattice mismatch)를 억제하게 되어, 에너지 손실을 극소화하고, 발광성을 향상시키게 된다. 또한 크랙 발생시 형성되는 공간으로 화학물질이 침투하여 발광성을 감소시키게 되는 현상을 상기한 바와 같이 크랙의 발생을 억제하게 됨으로써 방지하도록 한다. 또한 이러한 이유로 인해 산소 존재시 고온내열성을 향상시키고, 고밀도 리간드 결합으로 인해서 외부 화학물질 공격 확률을 감소시키게 된다. 여기서 CdS는 충분한 두께의 쉘이 아니기에 양자점 발광파장에는 영향을 주지 못한다.In the present invention, for example, the change in the luminescence, when the quantum dot is CdSe / ZnS as shown in Fig. 2 (a), the ZnS crystal lattice grows on the CdSe crystal lattice, at a predetermined thickness, for example 1.7 mL or more Crack is generated, as shown in (b) of FIG. 2, in the case of the quantum dot manufactured by the chemical resistance surface treatment method of the quantum dot according to the present invention, for example, CdSe / ZnS / CdS is formed on the CdSe crystal lattice. As the ZnS crystal lattice grows and Cd larger than Zn enters the outermost quantum dot, cracks caused by the increase in ZnS thickness are prevented. It can be seen that Cd enters the position where the crack occurs, and as a result, the crack disappears on the crystal lattice, thereby suppressing lattice mismatch, minimizing energy loss and improving luminescence. In addition, the phenomenon that chemicals penetrate into the space formed when the crack is generated to reduce the luminescence is prevented by suppressing the occurrence of the crack as described above. This also improves the high temperature heat resistance in the presence of oxygen and reduces the likelihood of attacking foreign chemicals due to high density ligand binding. Since CdS is not a shell of sufficient thickness, it does not affect the quantum dot emission wavelength.
도 3에 도시된 바와 같이, 본 발명의 일 실시례에 따른 양자점의 내 화학성 부여 표면처리 방법은, 예컨대 이종의 금속이온이 포함되는 용액에 양자점을 혼합하고, 100~300℃의 온도에서 양자점의 표면에서 금속이온이 교환되도록 하는 단계(S11)와, 금속이온의 교환을 마친 양자점 혼합 용액을 냉각시킨 다음, 유기용매로 양자점을 정제하는 단계(S12)를 포함할 수 있다.As shown in FIG. 3, in the method for treating chemical resistance of quantum dots according to an embodiment of the present invention, for example, the quantum dots are mixed with a solution containing heterogeneous metal ions, and the quantum dots are mixed at a temperature of 100 to 300 ° C. Comprising a step (S11) to exchange the metal ions on the surface, and cooling the quantum dot mixed solution after the exchange of the metal ions, and may comprise the step of purifying the quantum dots with an organic solvent (S12).
본 발명의 다른 실시례에 따른 양자점의 내화학성 부여 표면처리 방법은 용기에 CdO, 리간드 및 1-옥타데신(octadecene; ODE)을 투입하되, 상기 CdO 10 mmol을 기준으로, 상기 리간드는 5~100 mmol이 되도록 하고, 상기 1-옥타데신(octadecene; ODE)은 10~2000 mL가 되도록 하는 단계와, 상기 용기를 진공상태에서 100~300℃ 온도가 되도록 하여 상기 CdO를 용해시키는 단계와, 상기 CdO가 용해된 용액에 양자점을 투입하여 상기 용액이 100~300℃의 온도에서 상기 양자점 표면의 금속이온이 교환되도록 하는 단계와, 상기 용액을 냉각시켜서 유기용매로 상기 양자점을 정제하는 단계를 포함할 수 있다. 여기서 리간드는 금속, 예컨대 Cd, Al, Ga, In 등과 반응하여 금속염을 형성할 수 있는 알킬 애시드(alkyl acid), 알킬 포스포닉애시드(alkyl phosphonic acid), 알킬 포스피닉애시드(alkyl phosphinic acid), 아릴 애시드(aryl acid), 아릴 포스포닉애시드(aryl phosphonic acid) 및 아릴 포스피닉애시드(aryl phosphinic acid) 중 어느 하나를 포함할 수 있으며, 물질의 구조와 분자량에는 제한을 두지 않는다.According to another embodiment of the present invention, a method for treating chemical resistance of a quantum dot is prepared by adding CdO, a ligand, and 1-octadecene (ODE) to a container, based on 10 mmol of CdO, wherein the ligand is 5 to 100 to 1 mmol of octadecene (ODE) to 10 to 2000 mL, to dissolve the CdO by bringing the vessel to a temperature of 100 to 300 ° C. in a vacuum state, and the CdO Adding a quantum dot to the dissolved solution to allow the solution to exchange metal ions on the surface of the quantum dot at a temperature of 100 to 300 ° C., and cooling the solution to purify the quantum dot with an organic solvent. have. Wherein the ligand is an alkyl acid, alkyl phosphonic acid, alkyl phosphinic acid, aryl which can react with metals such as Cd, Al, Ga, In and the like to form metal salts Acid (aryl acid), aryl phosphonic acid (aryl phosphonic acid) and aryl phosphinic acid (aryl phosphinic acid) may include any one, and the structure and molecular weight of the material is not limited.
본 발명의 일 실시례에 따른 양자점은 상기한 바와 같은 본 발명의 실시례들에 따른 양자점의 내화학성 부여 표면처리 방법에 의해 제조되는 양자점으로서, 양자점의 내화학성 부여 표면처리 방법에 대해서는 이미 상세히 설명하였으므로 그 설명을 생략하기로 하며, 이하에서 보다 구체적인 실시례들에 대해서 설명하기로 한다.The quantum dot according to an embodiment of the present invention is a quantum dot manufactured by the chemical resistance imparting surface treatment method of the quantum dots according to the embodiments of the present invention as described above, the chemical resistance imparting surface treatment method of the quantum dots has already been described in detail. Since the description thereof will be omitted, more specific embodiments will be described below.
[실시례 1] Green 양자점(QD) 합성Example 1 Green QD Synthesis
셀레늄 및 황을 각각 트리-n-옥틸포스핀에 녹여 붉은색 양자점 합성용 칼코게나이드 표준 용액인 1M의 셀레늄 용액(TOP-Se)과, 1M의 황(TOP-S)용액을 제조하였다. 그리고, 100 mL 투 넥 라운드 바텀 플라스트(two neck round bottom flask)에 산화카드뮴 0.128 g(1.0 mmol)과 아연아세테이트 0.878 g(4.0 mmol), 6.34 mL(20.0 mmol)의 올레산, 2.7 g(10 mmol)의 올레일아민, 10 mL의 옥타데신을 넣고 용액이 투명해질 때까지 180℃로 가열하여, 카드뮴 올레이트와 아연 올레이트의 금속 전구체를 얻었다. 이어서 150℃로 가열하여 생성된 물을 제거하고, 20분 동안 가스를 제거하였다. 혼합 용액의 온도를 300℃로 올리고, 1 M의 셀레늄 용액(TOP-Se) 0.4 mL와 1 M의 황 용액(TOP-S) 3 mL를 상온에서 혼합 후 주입하였다. 이후 성장 단계에서는 온도를 280℃로 맞추고 10분 동안 반응을 진행하여 양자점을 수득하였다.Selenium and sulfur were dissolved in tri-n-octylphosphine, respectively, to prepare a 1M selenium solution (TOP-Se) and 1M sulfur (TOP-S) solution, which is a chalcogenide standard solution for red quantum dot synthesis. In a 100 mL two neck round bottom flask, 0.128 g (1.0 mmol) of cadmium oxide and 0.878 g (4.0 mmol) of zinc acetate, 6.34 mL (20.0 mmol) of oleic acid, 2.7 g (10 mmol) Oleylamine) and 10 mL of octadecine were added and heated to 180 ° C. until the solution became clear to obtain metal precursors of cadmium oleate and zinc oleate. The resulting water was then removed by heating to 150 ° C. and degassing for 20 minutes. The temperature of the mixed solution was raised to 300 ° C, 0.4 mL of 1 M selenium solution (TOP-Se) and 3 mL of 1 M sulfur solution (TOP-S) were mixed at room temperature, and then injected. After the growth step to adjust the temperature to 280 ℃ 10 minutes to proceed with a reaction to obtain a quantum dot.
[실시례 2] Yellow 양자점(QD) 합성Example 2 Yellow QD Synthesis
Se 및 S을 각각 트리-n-옥틸포스핀에 녹여 붉은색 양자점 합성용 칼코게나이드 표준 용액인 1M의 셀레늄 용액(TOPSe)과 1M의 황(TOPS)용액을 제조하였다. 그리고, 100 mL 투 넥 라운드 바텀 플라스트(two neck round bottom flask)에 산화카드뮴 0.128 g(1.0 mmol), 0.634 mL(2.0 mmol)의 올레산, 10 mL의 옥타데신을 넣고 용액이 투명해질 때까지 180℃로 가열하여, 카드뮴 올레이트 금속 전구체를 얻었다. 이어서 진공에서 150℃로 가열하여 생성된 물을 제거하고, 20분 동안 가스를 제거하였다. 혼합 용액의 온도를 300℃로 올리고 1 M의 셀레늄 용액(TOPSe) 2mL를 주입하였다. 이 후 성장 단계에서는 온도를 280℃로 맞추고 12분 동안 반응을 진행하여 CdSe core 양자점을 수득하였다.Se and S were dissolved in tri-n-octylphosphine, respectively, to prepare a 1M selenium solution (TOPSe) and 1M sulfur (TOPS) solution, which is a chalcogenide standard solution for red quantum dot synthesis. In a 100 mL two neck round bottom flask, 0.128 g (1.0 mmol) of cadmium oxide, 0.634 mL (2.0 mmol) of oleic acid, and 10 mL of octadecine were added until the solution became clear. It heated to C, and obtained the cadmium oleate metal precursor. The resulting water was then removed by heating in vacuo to 150 ° C. and degassing for 20 minutes. The temperature of the mixed solution was raised to 300 ° C. and 2 mL of 1 M selenium solution (TOPSe) was injected. After the growth step to adjust the temperature to 280 ℃ and proceeded for 12 minutes to obtain a CdSe core quantum dot.
앞에서 수득한 CdSe Core QD 0.1g 을 ODE 10 mL에 녹인다. 진공 하에서 반응 용기의 온도를 200℃ 까지 올려 준 후 다시 N2 purging 후에 온도를 280℃ 까지 올린다. Zinc stearate 1 mmol과 앞에서 준비한 TOP-S 1 mL를 섞은 후 TOP 5 mL를 추가하여 희석한다(Zn-S 전구체 용액이라고 하자). Zn-S 전구체 용액을 CdSe core QD/ODE 용액에 주사기 펌프(syringe pump)를 이용하여 천천히 떨어뜨린다. 3시간 반응 후에 반응용기의 온도를 상온으로 낮춘 후에 용기에 EtOH을 과량으로 넣고, 양자점을 침전시킨 다음, 원심분리기를 이용하여 15,000rpm 에서 입자를 회수한다.0.1 g of the CdSe Core QD obtained above is dissolved in 10 mL of ODE. After raising the temperature of the reaction vessel to 200 ° C. under vacuum, the temperature is increased to 280 ° C. after N2 purging. Mix 1 mmol of zinc stearate with 1 mL of the prepared TOP-S and dilute by adding 5 mL of TOP (referred to as Zn-S precursor solution). The Zn-S precursor solution is slowly dropped into the CdSe core QD / ODE solution using a syringe pump. After the reaction for 3 hours to lower the temperature of the reaction vessel to room temperature, EtOH is added to the container in excess, the quantum dots are precipitated, and the particles are recovered at 15,000rpm using a centrifuge.
[실시례 3] Red 양자점(QD) 합성Example 3 Red QD Synthesis
Se 및 S을 각각 트리-n-옥틸포스핀에 녹여 붉은색 양자점 합성용 칼코게나이드 표준 용액인 1M의 셀레늄 용액(TOP-Se)과, 1M의 황(TOP-S)용액을 제조하였다. 그리고, 100 mL 투 넥 라운드 바텀 플라스트(two neck round bottom flask)에 산화카드뮴 0.128 g(1.0 mmol)과 아연아세테이트 0.878 g(4.0 mmol), 5.7g(20.0 mmol)의 스테아릭산 (Stearic acid), 2.7g(10 mmol)의 올레일아민 10 mL의 옥타데신을 넣고 용액이 투명해질 때까지 180℃로 가열하여, 카드뮴 올레이트와 아연 올레이트의 금속 전구체를 얻었다. 이어서 150℃로 가열하여 생성된 물을 제거하고, 20분 동안 가스를 제거하였다. 혼합 용액의 온도를 300℃로 올리고 1 M의 셀레늄 용액(TOP-Se) 0.4 mL을 주입하고, 30초 후 1 M의 황 용액(TOP-S)를 주입하였다. 이후 성장 단계에서는 온도를 280℃로 맞추고, 10분 동안 반응을 진행하여 양자점을 수득하였다.Se and S were dissolved in tri-n-octylphosphine, respectively, to prepare a 1M selenium solution (TOP-Se) and 1M sulfur (TOP-S) solution, which is a chalcogenide standard solution for red quantum dot synthesis. In a 100 mL two neck round bottom flask, 0.128 g (1.0 mmol) of cadmium oxide, 0.878 g (4.0 mmol) of zinc acetate, 5.7 g (20.0 mmol) of stearic acid, 10 ml of 2.7 g (10 mmol) oleylamine octadecine was added and heated to 180 ° C. until the solution became clear, thereby obtaining metal precursors of cadmium oleate and zinc oleate. The resulting water was then removed by heating to 150 ° C. and degassing for 20 minutes. The temperature of the mixed solution was raised to 300 ° C. and 0.4 mL of 1 M selenium solution (TOP-Se) was injected, and after 30 seconds, 1 M sulfur solution (TOP-S) was injected. In the growth stage, the temperature was adjusted to 280 ° C., and the reaction was performed for 10 minutes to obtain a quantum dot.
[실시례 4] InP-ZnS 합성Example 4 InP-ZnS Synthesis
0.2g InCl3과 0.12g anhydrous ZnCl2를 Oleyamine(OLA)에 녹이고, 100 mL 1-neck RBF에 넣고 220℃까지 온도를 올린다. 그리고 중간 중간 진공을 걸어서 용액 안에 있는 휘발성 재료를 제거하고, 질소로 용기를 채운다. 그런 다음 Tris(dimethylamino)phosphine(P(DA)3)0.25 mL를 1-octadecene 1 mL에 녹인다. 220℃에서 P(DA)3/ODE 용액을 In-Zn-OLA 용액에 주입하고, 용기의 온도를 220℃로 3분간 유지한다. 3분 후 heating mantle에서 용기를 분리하고 용액의 온도가 100℃ 이하가 되면, EtOH를 부어 InP-ZnS 양자점을 회수한다. 회수한 양자점은 녹색 발광을 한다.Dissolve 0.2g InCl3 and 0.12g anhydrous ZnCl2 in Oleyamine (OLA), add 100 mL 1-neck RBF and raise the temperature to 220 ℃. An intermediate medium vacuum is applied to remove the volatiles in the solution and the container is filled with nitrogen. Then dissolve 0.25 mL of Tris (dimethylamino) phosphine (P (DA) 3) in 1 mL of 1-octadecene. P (DA) 3 / ODE solution is injected into the In-Zn-OLA solution at 220 ° C. and the temperature of the vessel is maintained at 220 ° C. for 3 minutes. After 3 minutes, the vessel was removed from the heating mantle, and when the temperature of the solution reached 100 ° C. or lower, EtOH was poured to recover InP-ZnS quantum dots. The collected quantum dots emit green light.
[실시례 5] 고속 양이온 교환 반응Example 5 Fast Cation Exchange Reaction
100 mL 2-neck RBF를 준비하고, 그 안에서 CdO 10 mmol 와 올레산(Oleic acid; OA) 22 mmol을 넣은 후에 1-octadecene(ODE)를 50 mL 채운다. 그런 다음, 진공을 건 상태에서 용액의 온도를 200℃까지 올리고 그 상태로 12시간을 유지하여 CdO를 완전하게 녹인다. 앞에서 준비한 양자점 1batch(정제한 양자점)를 채우고 용액 전체의 온도를 220℃까지 올리고, 그 온도에서 2시간 동안 표면에 존재하는 금속이온 교환을 시도한다. 그런 다음, 용액의 온도가 상온으로 낮아지면, 과량의 EtOH를 이용하여 양자점을 정제한다.Prepare 100 mL 2-neck RBF, add 10 mmol of CdO and 22 mmol of oleic acid (OA), and fill with 50 mL of 1-octadecene (ODE). Then, the temperature of the solution is raised to 200 ° C. under vacuum and maintained for 12 hours in that state to completely dissolve the CdO. Fill a batch of quantum dots (purified quantum dots) prepared above, raise the temperature of the entire solution to 220 ° C, and attempt to exchange metal ions on the surface for 2 hours at that temperature. Then, when the temperature of the solution is lowered to room temperature, the quantum dots are purified using excess EtOH.
[실시례 6] 저속 양이온 교환 반응Example 6 Slow Cation Exchange Reaction
100 mL 2-neck RBF를 준비하고, 그 안에서 CdO 10 mmol과 스테아릭산(Stearic acid; SA) 21 mmol을 넣은 후에 1-octadecene(ODE)를 50 mL 채운다. 그런 다음, 진공을 건 상태에서 용액의 온도를 200℃까지 올리고 그 상태로 12시간을 유지하여 CdO를 완전하게 녹인다. 앞에서 준비한 양자점 1batch(정제한 그린 양자점 또는 InP-ZnS)를 채우고 용액 전체의 온도를 220℃까지 올리고, 그 온도에서 24시간 동안 표면에 존재하는 금속이온 교환을 시도한다. 그런 다음, 용액의 온도가 상온으로 낮아지면, 과량의 EtOH를 이용하여 양자점을 정제한다.Prepare 100 mL 2-neck RBF, add 10 mmol of CdO and 21 mmol of stearic acid (SA), and fill with 50 mL of 1-octadecene (ODE). Then, the temperature of the solution is raised to 200 ° C. under vacuum and maintained for 12 hours in that state to completely dissolve the CdO. Fill a batch of quantum dots (purified green quantum dots or InP-ZnS) prepared above, raise the temperature of the entire solution to 220 ° C, and attempt to exchange metal ions present on the surface for 24 hours at that temperature. Then, when the temperature of the solution is lowered to room temperature, the quantum dots are purified using excess EtOH.
상기한 바와 같은 실시례 3에 의해 표면처리된 양자점과 표면처리하지 않은 양자점에 대해서 발광성 및 내화학성을 실험하였다.The luminescence and chemical resistance of quantum dots surface-treated and quantum dots not treated by Example 3 as described above were tested.
먼저, 본 발명에 따라 표면처리된 양자점과 표면처리하지 않은 양자점이 녹아있는 CHCl3 용액에 mercaptoproponic acid를 떨어뜨려 본다. 그 결과, 표면처리하지 않은 양자점은 발광성이 급속하게 감소하는 반면, 본 발명에 따라 표면처리된 양자점은 발광성이 크게 변화하지 않았다.First, mercaptoproponic acid is dropped into the CHCl3 solution in which the surface-treated quantum dots and the surface-treated quantum dots are dissolved according to the present invention. As a result, the quantum dots that were not surface treated rapidly decreased the luminescence, whereas the quantum dots that were surface treated according to the present invention did not change greatly.
또한 도 4에서, (a)에서와 같이, 표면처리 하지 않은 양자점은 낮은 발광성을 보이나, (b)에서와 같이 본 발명에 따라 표면처리된 양자점은 높은 발광성이 유지되는 특성을 관찰할 수 있었다. 여기서 표면처리 전(Before)은 합성하여 얻은 양자점 원액을 의미하고, 표면처리 후(After)는 Cd-alkyl acid를 통해서 얻은, Cd로 표면금속이 치환된 양자점의 경우를 의미한다. 이와 같이 표면처리 후 발광성이 10% 이상 증가함을 알 수 있으며, 한편 Under room light는 형광등 아래에서 카메라로 촬영한 것을 의미한다.In addition, in Figure 4, as shown in (a), the surface-treated quantum dots show low luminescence, but as shown in (b) it can be observed that the surface-treated quantum dots maintained a high luminescence properties. Here, before surface treatment refers to a quantum dot stock solution obtained by synthesis, and after surface treatment refers to a case of quantum dots substituted with surface metal by Cd obtained through Cd-alkyl acid. As such, it can be seen that the luminescence is increased by more than 10% after the surface treatment, while under room light means that the camera was photographed under a fluorescent lamp.
이와 같은 본 발명에 따른 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점에 따르면, 양자점 표면에 대해서 간단하면서도 안정적으로 무기 쉘 코팅(inorganic shell coating)이 이루어지도록 하여, 외부 환경의 영향을 받지 않도록 하고, 이로 인해 뛰어난 내화학성 및 내열성을 가지도록 하며, 양자점 최외각에 형성되는 버퍼(buffer) 성격의 무기막(inorganic layer)이 발광성에 영향을 미치지 않는 두께를 가지도록 할 수 있다.According to the chemical resistance surface treatment method of the quantum dot according to the present invention and the quantum dot manufactured thereby, the inorganic shell coating (simple and stable) to the surface of the quantum dot is made to be affected by the external environment Therefore, it is possible to have excellent chemical resistance and heat resistance, and to have a thickness that does not affect the luminescence of a buffer-type inorganic layer formed on the outermost of the quantum dots.
이와 같이 본 발명에 대해서 첨부된 도면을 참조하여 설명하였으나, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시례에 한정되어서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이러한 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above with reference to the accompanying drawings, the present invention, of course, various modifications and variations can be made within the scope without departing from the spirit of the invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (7)

  1. 양자점의 표면에 존재하는 금속이온을 양이온 교환 반응(cation exchange reaction)에 의해, 상기 양자점의 외부에 존재하던 이종의 금속이온으로 자리 교환되도록 하는, 양자점의 내화학성 부여 표면처리 방법.A method for providing chemical resistance to a quantum dot, wherein the metal ion present on the surface of the quantum dot is exchanged with a heterogeneous metal ion existing outside the quantum dot by a cation exchange reaction.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 이종의 금속이온으로 교환되어 이루어지는 물질은,The material which is exchanged with the heterogeneous metal ions,
    양자점 표면의 금속이온보다 원자 또는 이온의 크기가 크고, 상기 양자점 표면의 금속이온을 대체하는 경우 그로 인해서 보다 낮은 밴드 갭(band gap)을 가지는 층을 형성하는 물질인, 양자점의 내화학성 부여 표면처리 방법.Chemical resistance surface treatment of quantum dots, which is larger in size of atoms or ions than metal ions on the surface of the quantum dots, thereby forming a layer having a lower band gap when the metal ions on the surface of the quantum dots are replaced. Way.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 이종의 금속이온으로 교환되어 이루어지는 물질은,The material which is exchanged with the heterogeneous metal ions,
    상기 양자점 최외곽 금속원자가 Zn인 경우, Cd, Al, Ga(Gallium) 및 In(indium) 중에서 일부를 포함하는, 양자점의 내화학성 부여 표면처리 방법.When the outermost metal atom of the quantum dot is Zn, Cd, Al, Ga (Gallium) and In (indium) containing a part of, the chemical resistance of the quantum dot surface treatment method.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 이종의 금속이온이 포함되는 용액에 상기 양자점을 혼합하고, 100~300℃의 온도에서 상기 양자점의 표면에서 금속이온이 교환되도록 하는 단계; 및Mixing the quantum dots with a solution containing the heterogeneous metal ions and exchanging metal ions on the surface of the quantum dots at a temperature of 100 to 300 ° C .; And
    상기 금속이온의 교환을 마친 양자점 혼합 용액을 냉각시킨 다음, 유기용매로 상기 양자점을 정제하는 단계;Cooling the quantum dot mixed solution after the exchange of the metal ions, and then purifying the quantum dots with an organic solvent;
    를 포함하는, 양자점의 내화학성 부여 표면처리 방법.A surface treatment method for imparting chemical resistance of the quantum dots, including.
  5. 청구항 1에 있어서,The method according to claim 1,
    용기에 CdO, 리간드 및 1-옥타데신(octadecene; ODE)을 투입하되, 상기 CdO 10 mmol을 기준으로, 상기 리간드는 5~100 mmol이 되도록 하고, 상기 1-옥타데신(octadecene; ODE)은 10~2000 mL가 되도록 하는 단계;CdO, ligand, and 1-octadecene (ODE) are added to the container, and based on 10 mmol of the CdO, the ligand is 5-100 mmol, and the 1-octadecene (ODE) is 10 Bringing to 2000 mL;
    상기 용기를 진공상태에서 100~300℃ 온도가 되도록 하여 상기 CdO를 용해시키는 단계;Dissolving the CdO by bringing the vessel to a temperature of 100 to 300 ° C. in a vacuum state;
    상기 CdO가 용해된 용액에 양자점을 투입하여 상기 용액이 100~300℃의 온도에서 상기 양자점 표면의 금속이온이 교환되도록 하는 단계; 및Adding a quantum dot to the solution in which the CdO is dissolved so that the metal ion of the surface of the quantum dot is exchanged at a temperature of 100 to 300 ° C .; And
    상기 용액을 냉각시켜서 유기용매로 상기 양자점을 정제하는 단계:Cooling the solution to purify the quantum dots with an organic solvent:
    를 포함하는, 양자점의 내화학성 부여 표면처리 방법.A surface treatment method for imparting chemical resistance of the quantum dots, including.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 리간드는,The ligand is,
    금속과 반응하여 금속염을 형성할 수 있는 알킬 애시드(alkyl acid), 알킬포스포닉애시드(alkyl phosphonic acid), 알킬 포스피닉애시드(alkyl phosphinic acid), 아릴 애시드(aryl acid), 아릴 포스포닉애시드(aryl phosphonic acid) 및 아릴 포스피닉애시드(aryl phosphinic acid) 중 어느 하나를 포함하는, 양자점의 내화학성 부여 표면처리 방법.Alkyl acid, alkyl phosphonic acid, alkyl phosphinic acid, aryl acid, aryl phosphonic acid which can react with metal to form metal salt phosphonic acid) and aryl phosphinic acid (aryl phosphinic acid), comprising a method for treating chemical resistance of the quantum dots.
  7. 청구항 1에 있어서,The method according to claim 1,
    양자점의 내화학성 부여 표면처리 방법에 의해 제조되는 양자점.Chemistry dot produced by chemical resistance imparting surface treatment method.
PCT/KR2016/009160 2015-08-21 2016-08-19 Quantum-dot surface-processing method for imparting chemical resistance, and quantum dots produced thereby WO2017034228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0117615 2015-08-21
KR1020150117615A KR101668480B1 (en) 2015-08-21 2015-08-21 Surface treatment method for giving chemical resistance to quantum dot and quantum dot manufactured by the same

Publications (1)

Publication Number Publication Date
WO2017034228A1 true WO2017034228A1 (en) 2017-03-02

Family

ID=57256768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009160 WO2017034228A1 (en) 2015-08-21 2016-08-19 Quantum-dot surface-processing method for imparting chemical resistance, and quantum dots produced thereby

Country Status (2)

Country Link
KR (1) KR101668480B1 (en)
WO (1) WO2017034228A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190157517A1 (en) * 2017-11-20 2019-05-23 eLux Inc. METHOD FOR FABRICATING QUANTUM DOT LIGHT EMITTING DIODES (LEDs) WITH SUPPRESSED PHOTOBRIGHTING
WO2022206873A1 (en) * 2021-04-02 2022-10-06 纳晶科技股份有限公司 Nanocrystalline composition, preparation method therefor and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680211A (en) 2019-10-17 2021-04-20 三星电子株式会社 Core-shell quantum dot, method for producing same, quantum dot group, quantum dot composite, quantum dot composition, and display device
EP3809480A1 (en) 2019-10-17 2021-04-21 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same
US11732186B2 (en) 2020-04-24 2023-08-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Core/shell nanocrystals with copper sulfide cores and lead sulfide shells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130004739A (en) * 2011-07-04 2013-01-14 홍익대학교 산학협력단 Method of forming cis/zns core/shell quantum dots by solvothermal method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130004739A (en) * 2011-07-04 2013-01-14 홍익대학교 산학협력단 Method of forming cis/zns core/shell quantum dots by solvothermal method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADEL, P. ET AL.: "Segmented CdSe@CdS/ZnS Nanorods Synthesized via a Partial Ion Exchange Sequence", CHEMISTRY OF MATERIALS, vol. 26, no. 10, 2014, pages 3121 - 3127, XP055373553 *
JIANG, J. ET AL.: "Synthesis of Uniform ZnO/ZnS/CdS Nanorod Films with Ion-exchange Approach and Photoelectrochemical Performances", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 38, no. 29, 2013, pages 13077 - 13083, XP028712803 *
PARK, J. ET AL.: "CuInS2/ZnS Core/shell Quantum Dots by Cation Exchange and their Blue-shifted Photoluminescence", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 11, 2011, pages 3745 - 3750, XP055040670 *
YU , Y. -X. ET AL.: "Construction of ZnO/ZnS/CdS/CuInS2 Core-shell Nanowire Arrays via Ion Exchange: p-n Junction Photoanode with Enhanced Photoelectrochemical Activity unde Visible Light", ACS APPLIED MATERIALS & INTERFACES, vol. 6, no. 11, 2014, pages 8467 - 8474, XP055373544 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190157517A1 (en) * 2017-11-20 2019-05-23 eLux Inc. METHOD FOR FABRICATING QUANTUM DOT LIGHT EMITTING DIODES (LEDs) WITH SUPPRESSED PHOTOBRIGHTING
US10403798B2 (en) * 2017-11-20 2019-09-03 eLux, Inc. Method for fabricating quantum dot light emitting diodes (LEDs) with suppressed photobrighting
WO2022206873A1 (en) * 2021-04-02 2022-10-06 纳晶科技股份有限公司 Nanocrystalline composition, preparation method therefor and application thereof
CN115181561A (en) * 2021-04-02 2022-10-14 纳晶科技股份有限公司 Nanocrystalline composition, preparation method and application thereof

Also Published As

Publication number Publication date
KR101668480B1 (en) 2016-10-24

Similar Documents

Publication Publication Date Title
WO2017034228A1 (en) Quantum-dot surface-processing method for imparting chemical resistance, and quantum dots produced thereby
US10340427B2 (en) Quantum dots with inorganic ligands in an inorganic matrix
EP3102647B1 (en) Oxo- and hydroxo-based composite inorganic ligands for quantum dots
KR102446858B1 (en) Method for manufacturing quantum dots
US10578257B2 (en) Silica coated quantum dots with improved quantum efficiency
TWI615457B (en) Luminescent material and preparing method for luminescent material
KR20190060753A (en) Emissive nanocrystal particle, method of preparing the same and device including emissive nanocrystal particle
CN110964528B (en) Quantum dot and preparation method thereof
CN109468134B (en) Quantum dot, manufacturing method, single photon source and QLED
KR20160130540A (en) Method for manufacturing quantum dot-optically transparent matrix complexes capable of adjusting luminance and quantum dot-polymer composite thereof
KR20190140192A (en) Quantum dot film having porous structure and manufacturing method for the same
CN106590624A (en) Light-emitting nano-particles and preparation method thereof
KR20210036107A (en) Thermally and chemically stable colloidal quantum dot encapsulated by functional polymeric ligands, manufacturing method of the same and thermally stable quantum dot based optical film using the same
WO2020063250A1 (en) Quantum dot and preparation method therefor
KR102324378B1 (en) Semiconductor nanoparticle with hydrophobic side chain ligand-polymer nanocomposite, preparation method thereof and optoelectronic device comprising the same
WO2017034226A1 (en) Composite of quantum dots and polymer, and production method therefor
CN113825822B (en) Quantum dot based on multi-shell structure with luminescent dopant
KR101060231B1 (en) Semiconductor nanocrystal with charge introduced on its surface and optical device comprising the same
KR20210033165A (en) Quantum dot nanoparticle and manufacturing method thereof
US20230193122A1 (en) Method of preparing quantum dot, quantum dot, and electronic apparatus including the quantum dot
CN111647224B (en) Preparation method of quantum dot-polymer composite
KR102563058B1 (en) A quantum dot, a quantum dot light-emitting diode and a quantum dot film and a light converting resin composition comprising the quantum dot, a color filter and a light converting laminated base material manufactured by the composition and a display device comprising the same
KR101151079B1 (en) Method for changing the emission wavelength of multi-layered semiconductor nanocrystals
KR20210089442A (en) Quantum-dot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839517

Country of ref document: EP

Kind code of ref document: A1