WO2017033792A1 - クロロフィル蛍光測定装置 - Google Patents
クロロフィル蛍光測定装置 Download PDFInfo
- Publication number
- WO2017033792A1 WO2017033792A1 PCT/JP2016/073845 JP2016073845W WO2017033792A1 WO 2017033792 A1 WO2017033792 A1 WO 2017033792A1 JP 2016073845 W JP2016073845 W JP 2016073845W WO 2017033792 A1 WO2017033792 A1 WO 2017033792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- irradiance
- wavelength band
- chlorophyll fluorescence
- wavelength
- plant
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Definitions
- the present invention relates to a chlorophyll fluorescence measuring apparatus.
- Chlorophyll fluorescence contains information on the amount of photosynthesis in plants and is used in a method for estimating the amount of photosynthesis.
- Patent Document 1 describes a method of diagnosing the health state of a plant based on the amount of plant photosynthesis estimated from the intensity of chlorophyll fluorescence.
- the method of estimating the amount of photosynthesis using chlorophyll fluorescence is applied not only to individual leaves and small-scale plant groups, but also to large-scale plant groups at the ecosystem level. For this reason, it is expected that, for example, the amount of CO 2 absorbed as a greenhouse gas can be accurately grasped by observing the amount of photosynthesis in the ecosystem and the accuracy of climate change prediction can be improved.
- the irradiance of light including chlorophyll fluorescence is measured over a wide wavelength range, and the irradiance of chlorophyll fluorescence is acquired from a part of the wide wavelength range.
- a highly functional spectroradiometer is required.
- the configuration of the measurement apparatus may be complicated.
- One embodiment of the present invention has been made in view of the above problems, and provides a chlorophyll fluorescence measuring apparatus that can simplify the apparatus configuration and can be used even under the influence of sunlight.
- the purpose is to provide.
- a chlorophyll fluorescence measurement device receives first sunlight and obtains first irradiance that is irradiance in a first wavelength band of sunlight.
- a third measurement unit that obtains irradiance; a fourth measurement unit that receives light from a plant and obtains fourth irradiance that is irradiance in a second wavelength band of light from the plant; , First, second, third and fourth measuring units respectively The second, third, and fourth irradiances are obtained, and the fifth i
- a first wavelength band is a wavelength band including a wavelength corresponding to a predetermined Fraunhofer line, and is a wavelength band included in a wavelength range of chlorophyll fluorescence, and a second wavelength band Is a wavelength band included in a predetermined wavelength range from the first wavelength band.
- the first measurement unit measures the first irradiance at the absorption peak in the first wavelength band corresponding to a predetermined Fraunhofer line for sunlight. Further, the second irradiance of sunlight in a second wavelength band that does not correspond to a predetermined Fraunhofer line is measured by the second measurement unit. Moreover, the 3rd measurement part measures the 3rd irradiance in the absorption peak in the 1st wavelength band corresponding to a predetermined Fraunhofer line about the light from a plant. Moreover, the 4th irradiance in the 2nd wavelength band which does not respond
- the second wavelength band is a wavelength band included in a predetermined wavelength range from the first wavelength band. Therefore, in the second wavelength band, the reflectance, transmittance, and absorption rate in the plant are substantially the same as in the first wavelength band. For this reason, the calculating part can calculate the 5th irradiance which is the irradiance of chlorophyll fluorescence based on the measured 1st, 2nd, 3rd and 4th irradiance. Therefore, the apparatus configuration can be simplified and the apparatus can be used even under the influence of sunlight.
- a chlorophyll fluorescence measuring apparatus that can simplify the apparatus configuration and can be used even under the influence of sunlight.
- FIG. 1 is a schematic configuration diagram showing a chlorophyll fluorescence measuring apparatus according to an embodiment of the present invention.
- FIG. 2 is a graph showing the irradiance of sunlight and light from plants.
- FIG. 3 is a graph schematically showing an enlarged main part of FIG.
- FIG. 4 is a diagram showing the operation of the chlorophyll fluorescence measuring apparatus of FIG.
- FIG. 5 is a graph showing an example of irradiance of chlorophyll fluorescence measured by the chlorophyll fluorescence measuring apparatus according to the example.
- FIG. 6 is a graph showing an example of ecosystem photosynthetic rate measured by a micrometeorological method.
- FIG. 7 is a graph showing the correlation between the irradiance of chlorophyll fluorescence according to FIG. 5 and the ecosystem photosynthesis rate according to FIG.
- FIG. 8 is a diagram for explaining a method for calculating irradiance in the chlorophyll fluorescence measuring apparatus according to the modification.
- FIG. 1 is a schematic configuration diagram showing a chlorophyll fluorescence measuring apparatus according to an embodiment of the present invention.
- the chlorophyll fluorescence measurement device 1 is a device that measures the irradiance of chlorophyll fluorescence emitted by a plant P that receives sunlight H1 from the sun S.
- the chlorophyll fluorescence measuring apparatus 1 includes a tower 2 erected upward from the ground surface, an arm 3 extending from the top of the tower 2 to the side, and first, second, third, and third provided on the distal end side of the arm 3.
- a fourth measuring unit 4, 5, 6, 7 and a computing unit 8 electrically connected to the first, second, third and fourth measuring units 4, 5, 6, 7; Prepare.
- forest is illustrated as plant P used as a measuring object of chlorophyll fluorescence measuring device 1.
- the plant P is not particularly limited as long as it has chlorophyll and performs photosynthesis with sunlight H1, and may be, for example, a single leaf or a small group of plants, or a large group of plants at the ecosystem level. It may be.
- the tower 2 is for arranging the first, second, third, and fourth measurement units 4, 5, 6, and 7 at a position higher than the plant P in the vertical direction.
- the tower 2 is not limited to a specific material or structure, and may be configured by a framework such as metal or wood.
- the arm 3 is for arranging the first, second, third and fourth measuring units 4, 5, 6, and 7 above the plant P.
- the arm 3 extends from the tower 2 so that the tip side is located above the plant P.
- the first measurement unit 4 receives the sunlight H1 and acquires the first irradiance E1 that is the irradiance in the first wavelength band B1 of the sunlight H1.
- the first measurement unit 4 is an irradiance meter that can measure only the irradiance in the first wavelength band B1.
- the first measurement unit 4 is configured to include a circuit including a band-pass filter, a photodetection element such as a photodiode, and an operational amplifier.
- Such a first measurement unit 4 converts the sunlight H1 incident on the photodiode through a bandpass filter into an electrical signal, and inputs the electrical signal to a circuit configured with an operational amplifier or the like, thereby It has a configuration capable of measuring only the irradiance in one wavelength band B1.
- the first measuring unit 4 is disposed above the plant P.
- the first measurement unit 4 has a light receiving surface arranged vertically upward on the tip side of the arm 3 and has higher sensitivity to light from above than light in the horizontal direction. That is, the first measuring unit 4 receives sunlight H1 from above, but does not receive light emitted from the plant P from below (light H2 from the plant P).
- the light H2 from the plant P is emitted from the plant P including reflected light H2a in which the sunlight H1 is reflected by the plant P and chlorophyll fluorescence H2b emitted from the plant P that has received the sunlight H1. Light.
- FIG. 2 is a graph showing the irradiance of sunlight and light from plants
- FIG. 3 is a graph schematically showing an enlarged main part of FIG. 2 and 3, the broken line indicates the irradiance spectrum of the sunlight H ⁇ b> 1, and the solid line indicates the irradiance spectrum of the light H ⁇ b> 2 from the plant P.
- the irradiance spectrum of the light H2 from the plant P includes the irradiance spectrum of the reflected light that the sunlight H1 is reflected by the plant P and the plant P that has received the sunlight H1.
- the spectrum of the irradiance of sunlight H1 and light H2 from the plant P has an absorption peak at a wavelength corresponding to the Fraunhofer line.
- the spectrum corresponds to the O 2 -A line of the Fraunhofer line. It has an absorption peak at a certain 760 nm.
- the first wavelength band B1 is a wavelength band including a wavelength corresponding to the O 2 -A line in the Fraunhofer line, and more specifically, a 760 nm wavelength band.
- the first wavelength band B1 is a wavelength band included in the wavelength range of chlorophyll fluorescence (that is, a wavelength of about 650 nm to 900 nm). Note that the first wavelength band B1 shown in FIG. 3 actually has a width of, for example, 10 nm with 760 nm as the center wavelength.
- the second measuring unit 5 receives the sunlight H1 and acquires the second irradiance E2 that is the irradiance in the second wavelength band B2 of the sunlight H1.
- the second measurement unit 5 is an irradiance meter capable of measuring only the irradiance in the second wavelength band B2.
- the second measurement unit 5 can measure only the irradiance in the second wavelength band B2 by adopting the same configuration as that of the first measurement unit 4.
- the second measuring unit 5 is disposed above the plant P. Further, the second measuring unit 5 has a light receiving surface arranged vertically upward on the tip side of the arm 3 and has higher sensitivity to light from above than light in the horizontal direction. That is, the second measuring unit 5 receives sunlight H1 from above, but does not receive light H2 from the plant P from below.
- the second wavelength band B2 is a wavelength band included in a predetermined wavelength range from the first wavelength band B1. Specifically, in the chlorophyll fluorescence measuring apparatus 1, since the first wavelength band B1 is a 760 nm wavelength band, the second wavelength band B2 is, for example, a 750 nm wavelength band that is 10 nm away from the wavelength band. Note that the second wavelength band B2 shown in FIG. 3 actually has a width of, for example, 10 nm with 750 nm as the center wavelength.
- Third measurement unit 6 receives light H2 of the plant P, and obtains the third irradiance L 1 is a first irradiance in the wavelength band B1 of the light H2 of the plant P.
- the third measuring unit 6 is an irradiance meter capable of measuring only the irradiance in the first wavelength band B1.
- the third measurement unit 6 can measure only the irradiance in the first wavelength band B1 by adopting the same configuration as that of the first measurement unit 4.
- the third measuring unit 6 is disposed above the plant P.
- the third measurement unit 6 has a light receiving surface arranged vertically downward on the tip side of the arm 3 and has a higher sensitivity to light from below than light in the horizontal direction. That is, the third measuring unit 6 receives light H2 from the plant P from below, but does not receive sunlight H1 from above.
- Fourth measurement section 7 receives light H2 of the plant P, and obtains the fourth irradiance L 2 is the irradiance at the second wavelength band B2 of the light H2 of the plant P.
- the fourth measuring unit 7 is an irradiance meter capable of measuring only the irradiance in the second wavelength band B2.
- the fourth measurement unit 7 can measure only the irradiance in the second wavelength band B2 by adopting the same configuration as that of the first measurement unit 4.
- the fourth measuring unit 7 is disposed above the plant P. Further, the light receiving surface of the fourth measuring unit 7 is arranged vertically downward on the distal end side of the arm 3 and has higher sensitivity to light from below than light in the horizontal direction. That is, the fourth measuring unit 7 receives light H2 from the plant P from below, but does not receive sunlight H1 from above.
- Calculating unit 8 is for calculating the irradiance F S of the fifth is the irradiance of chlorophyll fluorescence.
- the arithmetic unit 8 is physically realized by an arithmetic device or the like including a personal computer having a CPU and a memory, a microprocessor, and the like.
- the calculation unit 8 is disposed on the top of the tower 2 and is connected to the first, second, third, and fourth measurement units 4, 5, 6, and 7 by cables.
- the calculating part 8 does not need to be arrange
- the first, second, third, and fourth measurement units 4, 5, 6, and 7 may be connected by a cable that extends from 7 to the lower portion of the tower 2.
- the calculation unit 8 includes first, second, third, and fourth irradiances E 1 , E 2 , and L 1 from the first, second, third, and fourth measurement units 4, 5, 6, and 7, respectively. , L 2, and based on the first, second, third, and fourth irradiances E 1 , E 2 , L 1 , L 2 , the fifth irradiance F S that is the irradiance of chlorophyll fluorescence. Is calculated.
- the computing unit 8 uses the ratio of the first and second irradiances E 1 and E 2 , which is the irradiance of the sunlight H1 in the first and second wavelength bands B1 and B2, to calculate the fifth irradiance F. S is calculated (ratio calculation).
- Computing unit 8 first, second, by substituting third and fourth irradiance E 1, E 2, L 1, L 2 to the arithmetic equation to calculate a fifth irradiance F S. Specifically, the calculation unit 8 sets the first, second, third, and fourth irradiances E 1 , E 2 , L 1 , and L 2 to the following formula (1); And the fifth irradiance is calculated.
- the irradiance of sunlight H1 is absorbed at a wavelength corresponding to the Fraunhofer line.
- the absorption peak exists in the wavelength corresponding to a Fraunhofer line in the spectrum of the irradiance of sunlight H1.
- the first wavelength band B1 since a wavelength band containing a wavelength corresponding to the Fraunhofer lines, first irradiance E 1 is the irradiance on the absorption peak.
- the second wavelength band B2 is a wavelength band included in a predetermined wavelength range from a wavelength band including a wavelength corresponding to the Fraunhofer line, and in particular, a wavelength different from a wavelength corresponding to the Fraunhofer line. (In this embodiment, it is a wavelength band including 10 nm shorter than the wavelength corresponding to the Fraunhofer line). For this reason, the second irradiance E 2 is not the irradiance on the absorption peak.
- the light H2 from the plant P includes reflected light H2a in which the sunlight H1 is reflected by the plant P.
- the irradiance in the first wavelength band B1 is the irradiance on the absorption peak of the irradiance spectrum
- the irradiance in the second wavelength band B2 is the irradiance. It is not the irradiance on the absorption peak of the spectrum.
- the light H2 from the plant P includes chlorophyll fluorescence emitted from the plant P that has received sunlight H1.
- the chlorophyll fluorescence has a substantially constant value regardless of the wavelength in the first and second wavelength bands B1 and B2.
- the third irradiance L1 in the first wavelength band B1 becomes the irradiance on the absorption peak as in the sunlight H1, and in the second wavelength band B2.
- fourth irradiance L 2 is not a irradiance on the absorption peak.
- FIG. 4 is a diagram showing the operation of the chlorophyll fluorescence measuring apparatus of FIG.
- the first and second measuring units 4 and 5 receive sunlight H1, and the first and second wavelengths in the first and second wavelength bands B1 and B2, respectively. It obtains the irradiance E 1, E 2, third and fourth measuring unit 6, 7 receives the light H2 of the plant P, the in the first and second wavelength bands B1, B2, respectively third and fourth irradiance L 1, L 2 and obtains (step S11).
- the calculation unit 8 receives the first, second, third, and fourth irradiances from the first, second, third, and fourth measurement units 4, 5, 6, and 7, respectively, via the cable.
- E 1 , E 2 , L 1 , L 2 are obtained, and the fifth irradiance F S is calculated by performing an operation based on the equation (1) (step S12).
- the calculation unit 8 outputs the calculated fifth irradiance F S to, for example, a display connected to the calculation unit 8.
- the arithmetic unit 8, the fifth irradiance F S calculated may be output as electronic data to another computer or the like, and printed on a paper medium using the connected printer or the like to the operation unit 8 You may output (step S13).
- the first irradiance E 1 at the absorption peak in the first wavelength band B1 corresponding to the predetermined Fraunhofer line is the first measuring unit for the sunlight H1. 4 is measured. Further, the second irradiance E 2 in the second wavelength band B 2 that does not correspond to the predetermined Fraunhofer line is measured by the second measuring unit 5 with respect to the sunlight H 1. Further, the light H2 of the plant P, the third irradiance L 1 at the absorption peak in the first wavelength band B1 which corresponds to a predetermined Fraunhofer lines is measured by the third measuring unit 6.
- the fourth measurement unit 7 measures the fourth irradiance L2 in the second wavelength band B2 that does not correspond to the predetermined Fraunhofer line.
- the second wavelength band B2 is a wavelength band included in a predetermined wavelength range from the first wavelength band B1. Therefore, in the second wavelength band B2, the reflectance, transmittance, and absorption rate in the plant P are substantially the same as in the first wavelength band B1. Therefore, calculation unit 8, first measured, the second, on the basis of the third and fourth irradiance E 1, E 2, L 1, L 2, of the chlorophyll fluorescence fifth is irradiance It is possible to calculate the irradiance F S. Therefore, the apparatus configuration can be simplified and the apparatus can be used even under the influence of sunlight.
- the calculation unit 8 calculates the first, second, irradiance E 1 of the third and 4, E 2, L 1, fifth irradiance by substituting L 2 to the arithmetic equation F S.
- the arithmetic unit 8 is possible to calculate the first, second, third and fourth irradiance E 1, E 2, L 1, easily by using the L 2 fifth irradiance F S of it can. For this reason, the amount of calculation in the calculating part 8 can be reduced.
- the calculation unit 8 substitutes the first, second, third, and fourth irradiances E 1 , E 2 , L 1 , and L 2 into the above formula (1) to obtain the fifth irradiance F S. calculate.
- the calculating part 8 can show
- the first wavelength band B1 is a wavelength band including a wavelength corresponding to the O 2 -A line in the Fraunhofer line.
- the width of the absorption peak in the spectrum of the irradiance of the sunlight H1 and the light H2 from the plant P is narrower than the wavelengths corresponding to the lines other than the O 2 -A line. Therefore, it is difficult for the second wavelength band B2 to overlap the bottom of the absorption peak in the spectra of the first and third irradiances E 1 and L 1 . Therefore, it is possible to a fifth irradiance F S accurately acquired.
- the first wavelength band B1 is a 760 nm wavelength band
- the second wavelength band B2 is a 750 nm wavelength band.
- 760nm wavelength range is a wavelength band containing a wavelength corresponding to the O 2 -A line of the Fraunhofer lines, compared to the wavelength corresponding to the line other than O 2 -A line in a wavelength corresponding to the O 2 -A line
- variety of the absorption peak in the spectrum of the irradiance of sunlight H1 and the light H2 from the plant P is narrow. Therefore, it is difficult for the second wavelength band B2 to overlap the bottom of the absorption peak in the spectra of the first and third irradiances E 1 and L 1 .
- the second wavelength band B2 is a relatively close wavelength band included in the wavelength range of 10 nm from the first wavelength band B1, the reflectance in the plant P compared to the first wavelength band B1.
- the transmittance and the absorption rate are substantially the same.
- the fifth irradiance F S can be accurately acquired.
- the chlorophyll fluorescence measuring apparatus sets the first wavelength band B1 as a wavelength band centered on 760 nm corresponding to the O 2 -A line in the Fraunhofer line, and the second wavelength band B2 as 750 nm.
- the wavelength band is centered around.
- the chlorophyll fluorescence measuring apparatus uses the plant P to be measured as rice in paddy fields.
- FIG. 5 is a graph showing an example of irradiance of chlorophyll fluorescence measured by the chlorophyll fluorescence measuring apparatus according to the example.
- the horizontal axis in FIG. 5 represents time (Japan Standard Time), and the vertical axis represents the irradiance of chlorophyll fluorescence emitted from paddy rice.
- FIG. 5 shows the result of averaging the irradiance of chlorophyll fluorescence measured by the chlorophyll fluorescence measuring device at the same time every 30 minutes every day in each month from June to September for each time. .
- the irradiance of chlorophyll fluorescence rises and falls with the peak time at the south-central time so as to draw a parabola in each month.
- FIG. 6 is a graph showing an example of ecosystem photosynthetic rate measured by a micrometeorological method.
- the ecosystem photosynthesis rate is measured as a comparison object with the irradiance of the chlorophyll fluorescence measured by the chlorophyll fluorescence measuring apparatus according to the present embodiment.
- the horizontal axis in FIG. 6 represents time (Japan Standard Time), and the vertical axis represents the ecosystem photosynthesis rate in paddy rice.
- FIG. 6 shows the ecosystem photosynthetic rate measured in the same paddy field simultaneously with FIG. That is, FIG. 6 shows the result of averaging the ecosystem photosynthetic rate measured at the same time every 30 minutes every day in each month from June to September for each time.
- Ecosystem photosynthetic rate rises and falls with the peak time at the south-central time so as to draw a parabola in each month.
- FIG. 7 is a graph showing the correlation between the irradiance of chlorophyll fluorescence according to FIG. 5 and the ecosystem photosynthesis rate according to FIG.
- the horizontal axis in FIG. 7 represents the irradiance of the chlorophyll fluorescence according to FIG. 5, and the vertical axis represents the ecosystem photosynthesis rate according to FIG.
- FIG. 7 shows that the irradiance of chlorophyll fluorescence and the ecosystem photosynthetic rate have a strong positive correlation with each other. Therefore, it was confirmed that the chlorophyll fluorescence measuring apparatus can reproduce the ecosystem photosynthetic rate measured by the micrometeorological method with high accuracy. From this, it can be said that the chlorophyll fluorescence measuring apparatus is very useful as an index representing the ecosystem photosynthetic rate.
- the first wavelength band B1 includes a wavelength including a wavelength corresponding to a line other than the O 2 -A line in the Fraunhofer line instead of a wavelength corresponding to the O 2 -A line in the Fraunhofer line. It may be a band.
- the first wavelength band B1 may be a wavelength band including a wavelength corresponding to the O 2 -B line in the Fraunhofer line. In this case, the first wavelength band B1 is a 680 nm wavelength band. There may be.
- the calculation unit 8 includes first, second, third, and fourth irradiances E 1 , E 2 , A data logger that acquires and stores L 1 and L 2, and obtains first, second, third, and fourth irradiances E 1 , E 2 , L 1 , and L 2 from the data logger, and chlorophyll it may be divided into a computer to calculate a fifth irradiance F S in the first wavelength band B1 of the fluorescence.
- FIG. 8 is a figure for demonstrating the calculation method of the irradiance in the chlorophyll fluorescence measuring apparatus which concerns on a modification, and as shown in FIG. 8, the chlorophyll fluorescence measuring apparatus 1 is the following structures, for example. There may be. That is, in the chlorophyll fluorescence measuring apparatus 1, the second measurement unit 5 includes two second irradiances E 2 a in two different second wavelength bands B2a (B2) and B2b (B2) of sunlight H1. (E 2 ) and E 2 b (E 2 ) are acquired.
- the arithmetic unit 8 two second irradiance E 2 a, on the basis of the E 2 b, sixth irradiance E 3 of an irradiance before absorption in the first wavelength band B1 of sunlight H1 Is estimated.
- the calculation unit 8 estimates the sixth irradiance E 3 by linearly interpolating the two second irradiances E 2 a and E 2 b. Specifically, irradiance E 3 of the sixth, in FIG.
- the fourth measuring unit 7 includes two fourth irradiances L 2 a (L 2 ) and L 2 b () in two different second wavelength bands B 2 a and B 2 b of the light H 2 from the plant P. L 2) to get.
- the arithmetic unit 8 two fourth irradiance L 2 a, on the basis of L 2 b, the seventh radiation is irradiance before absorption in the first wavelength band B1 of the light H2 of the plant P to estimate the illuminance L 3.
- the computing unit 8 estimates the seventh irradiance L 3 by linearly interpolating the two fourth irradiance L 2 a and L 2 b. Specifically, irradiance L 3 of the seventh, in FIG.
- the arithmetic unit 8 first, third, irradiance E 1 of the sixth and 7, L 1, E 3, L 3 may calculate the fifth irradiance F S used.
- 760 nm is set as the first wavelength band B1
- 750 nm and 780 nm are set as the two different second wavelength bands B2a and B2b, respectively.
- the second wavelength bands B2a and B2b do not easily overlap with the bottoms of the absorption peaks in the spectra of the first and third irradiances E 1 and L 1 . Therefore, it is possible to a fifth irradiance F S obtains more accuracy.
- the calculation unit 8 sets the first, third, sixth, and seventh irradiances E 1 , L 1 , E 3 , and L 3 to the following formula (2); And the fifth irradiance F S is calculated.
- the wavelength band irradiance L 3 of the 7 is acquired is the same as the first wavelength band B1 first irradiance E 1 is a wavelength band to be acquired.
- the calculation unit 8 can calculate the fifth irradiance F S with high accuracy based on the first, third, sixth, and seventh irradiance E 1 , L 1 , E 3 , L 3 .
- the calculation unit may calculate the fifth irradiance by substituting the first, second, third, and fourth irradiance into the calculation formula.
- the calculation unit can easily calculate the fifth irradiance using the first, second, third, and fourth irradiances. For this reason, the amount of calculation in a calculating part can be reduced.
- the calculation unit calculates the first, second, third, and fourth irradiance by the following formula (1); (However, E 1 is the first irradiance, the E 2 second irradiance, L 1 is the third irradiance, L 2 is the fourth irradiance, the F s represents the fifth irradiance. )
- the fifth irradiance may be calculated by substituting for. In this case, the calculation unit can preferably exhibit the above-described effects.
- the second measurement unit acquires two second irradiances in two different second wavelength bands of sunlight
- the fourth measurement unit includes two second irradiances of light from plants.
- Two fourth irradiances in the two wavelength bands are obtained, and the arithmetic unit is based on the two second irradiances, and is a sixth irradiance before absorption in the first wavelength band of sunlight.
- the fifth irradiance may be calculated using the irradiance of the sixth and seventh irradiances.
- the wavelength band from which the sixth irradiance is acquired is the same as the first wavelength band, which is the wavelength band from which the first irradiance is acquired, so compared to the first wavelength band, The reflectance, transmittance and absorptance in plants are the same.
- the wavelength band from which the seventh irradiance is acquired is the same as the first wavelength band, which is the wavelength band from which the first irradiance is acquired, so compared to the first wavelength band, The reflectance, transmittance and absorptance in plants are the same.
- the calculating part can calculate the 5th irradiance with high accuracy based on the first, third, sixth and seventh irradiances.
- the calculation unit calculates the first, third, sixth and seventh irradiances by the following formula (2); (However, E 1 represents the first irradiance, L 1 represents the third irradiance, E 3 represents the sixth irradiance, L 3 represents the seventh irradiance, and F s represents the fifth irradiance. )
- the fifth irradiance may be calculated by substituting for. In this case, the calculation unit can preferably exhibit the above-described effects.
- the first wavelength band may be a wavelength band including a wavelength corresponding to the O 2 -A line in the Fraunhofer line.
- the width of the absorption peak in the spectrum of the irradiance of sunlight and light from plants is narrower than the wavelength corresponding to the line other than the O 2 -A line. Therefore, the second wavelength band is unlikely to overlap the bottom of the absorption peak in the first and third irradiance spectra. Therefore, the fifth irradiance can be acquired with high accuracy.
- the first wavelength band may be a 760 nm wavelength band
- the second wavelength band may be a 750 nm wavelength band.
- 760nm wavelength range is a wavelength band containing a wavelength corresponding to the O 2 -A line of the Fraunhofer lines, compared to the wavelength corresponding to the line other than O 2 -A line in a wavelength corresponding to the O 2 -A line
- the width of the absorption peak in the spectrum of irradiance of sunlight and light from plants is narrow. Therefore, the second wavelength band is unlikely to overlap the bottom of the absorption peak in the first and third irradiance spectra.
- the second wavelength band is a relatively close wavelength band included in the wavelength range of 10 nm from the first wavelength band, compared to the first wavelength band, the reflectance, transmittance and The absorption rate is substantially the same. As described above, the fifth irradiance can be obtained with high accuracy.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
クロロフィル蛍光測定装置1は、太陽光H1を受光して、太陽光H1の第1及び第2の波長帯域B1,B2における各放射照度を取得する第1及び第2の測定部4,5と、クロロフィル蛍光を含む植物Pからの光H2を受光して、植物Pからの光H2の第1及び第2の波長帯域B1,B2における各放射照度を取得する第3及び第4の測定部6,7と、各放射照度に基づいて、クロロフィル蛍光の放射照度である第5の放射照度FSを算出する演算部8と、を備え、第1の波長帯域B1は、フラウンホーファー線に対応する波長を含む波長帯域であり、且つ、クロロフィル蛍光の波長範囲内に含まれる波長帯域であり、第2の波長帯域B2は、第1の波長帯域B1から所定の波長範囲内に含まれる波長帯域である。
Description
本発明は、クロロフィル蛍光測定装置に関する。
従来、植物のクロロフィル(葉緑素)における光合成量を推定する方法として、植物から放射されるクロロフィル蛍光を用いることが知られている。一般に、植物は、太陽光のエネルギーの内の20~80%程度しか光合成に利用できない。植物は、その光合成に利用できなかった太陽光のエネルギーの一部をクロロフィル蛍光(SIF: Sun-Induced Fluorescence)として放射する。クロロフィル蛍光は、植物の光合成量に関する情報を含んでおり、光合成量を推定する方法に用いられる。例えば、特許文献1には、クロロフィル蛍光の強度から推定される植物の光合成量に基づいて、植物の健康状態を診断する方法が記載されている。
クロロフィル蛍光を用いて光合成量を推定する方法は、個葉や小規模な植物群に限らず、生態系レベルの大規模な植物群にも適用される。このため、上記方法によって、例えば生態系の光合成量を観測することで温室効果ガスであるCO2の吸収量を正確に把握し、気候変動の予測精度を向上させることが期待されている。
しかしながら、従来の方法では、クロロフィル蛍光を含む光の放射照度が広い波長範囲に亘って測定され、その広い波長範囲の一部よりクロロフィル蛍光の放射照度が取得される。このため、高機能な分光放射計が必要となり、例えば野外の森林等において分光放射計を多数用いた多点同時観測を行うためには、測定装置の構成が複雑化する場合がある。
また、従来の方法では、背景に強い太陽光がある場合に、微弱なクロロフィル蛍光のみを検出することが非常に困難である。
本発明の一形態は、上記課題に鑑みて為されたものであり、装置構成を簡素化することができ、且つ、太陽光の影響下であっても使用することができるクロロフィル蛍光測定装置を提供することを目的とする。
上記課題を解決するため、本発明の一形態のクロロフィル蛍光測定装置は、太陽光を受光して、太陽光の第1の波長帯域における放射照度である第1の放射照度を取得する第1の測定部と、太陽光を受光して、太陽光の第2の波長帯域における放射照度である第2の放射照度を取得する第2の測定部と、太陽光が植物によって反射された反射光と、太陽光を受けた植物から放射されたクロロフィル蛍光と、を含んで植物から放射される植物からの光を受光して、植物からの光の第1の波長帯域における放射照度である第3の放射照度を取得する第3の測定部と、植物からの光を受光して、植物からの光の第2の波長帯域における放射照度である第4の放射照度を取得する第4の測定部と、第1、第2、第3及び第4の測定部からそれぞれ第1、第2、第3及び第4の放射照度を取得し、第1、第2、第3及び第4の放射照度に基づいて、クロロフィル蛍光の放射照度である第5の放射照度を算出する演算部と、を備え、第1の波長帯域は、所定のフラウンホーファー線に対応する波長を含む波長帯域であり、且つ、クロロフィル蛍光の波長範囲内に含まれる波長帯域であり、第2の波長帯域は、第1の波長帯域から所定の波長範囲内に含まれる波長帯域である。
このようなクロロフィル蛍光測定装置によれば、太陽光について、所定のフラウンホーファー線に対応した第1の波長帯域における吸収ピークでの第1の放射照度が、第1の測定部によって測定される。また、太陽光について、所定のフラウンホーファー線に対応していない第2の波長帯域における第2の放射照度が、第2の測定部によって測定される。また、植物からの光について、所定のフラウンホーファー線に対応した第1の波長帯域における吸収ピークでの第3の放射照度が、第3の測定部によって測定される。また、植物からの光について、所定のフラウンホーファー線に対応していない第2の波長帯域における第4の放射照度が、第4の測定部によって測定される。第2の波長帯域は、第1の波長帯域から所定の波長範囲内に含まれる波長帯域である。従って、第2の波長帯域では、第1の波長帯域に比較して、植物における反射率、透過率及び吸収率が略同一である。このため、演算部は、測定された第1、第2、第3及び第4の放射照度に基づいて、クロロフィル蛍光の放射照度である第5の放射照度を算出できる。よって、装置構成を簡素化することができ、且つ、太陽光の影響下であっても使用することができる。
本発明の一形態によれば、装置構成を簡素化することができ、且つ、太陽光の影響下であっても使用することができるクロロフィル蛍光測定装置を提供することができる。
以下、図面を参照しつつ本発明に係る観察システムの好適な実施形態について詳細に説明する。
図1は、本発明の実施形態に係るクロロフィル蛍光測定装置を示す概略構成図である。図1に示すように、クロロフィル蛍光測定装置1は、太陽Sからの太陽光H1を受光した植物Pが放射するクロロフィル蛍光の放射照度を測定する装置である。クロロフィル蛍光測定装置1は、地表から上方へ立設されたタワー2と、タワー2の上部から側方へ延びるアーム3と、アーム3の先端側に設けられた第1、第2、第3及び第4の測定部4,5,6,7と、第1、第2、第3及び第4の測定部4,5,6,7に対して電気的に接続された演算部8と、を備える。クロロフィル蛍光測定装置1の測定対象となる植物Pとして、本実施形態では、森林が例示されている。なお、植物Pは、クロロフィルを有し太陽光H1によって光合成を行うものであれば特に限定されず、例えば個葉や小規模な植物群であってもよく、生態系レベルの大規模な植物群であってもよい。
タワー2は、第1、第2、第3及び第4の測定部4,5,6,7を植物Pよりも鉛直方向に関して高い位置に配置するためのものである。タワー2は、特定の材料や構造に限定されるものではなく、例えば金属製、木製等の骨組みによって構成されていてもよい。
アーム3は、第1、第2、第3及び第4の測定部4,5,6,7を、植物Pの上方に配置するためのものである。アーム3は、先端側が植物Pの上方に位置するようにタワー2から延びている。
第1の測定部4は、太陽光H1を受光して、太陽光H1の第1の波長帯域B1における放射照度である第1の放射照度E1を取得する。第1の測定部4は、第1の波長帯域B1における放射照度のみを測定可能な放射照度計である。一例として、第1の測定部4は、バンドパスフィルタ、フォトダイオード等の光検出素子、及び、オペアンプ等を含む回路を備える構成である。このような第1の測定部4は、バンドパスフィルタを介してフォトダイオードに入射した太陽光H1を電気信号に変換し、当該電気信号をオペアンプ等で構成された回路に入力することによって、第1の波長帯域B1における放射照度のみを測定可能な構成を有している。
第1の測定部4は、植物Pの上方に配置されている。また、第1の測定部4は、その受光面がアーム3の先端側において鉛直方向上向きに配置され、水平方向の光よりも上方からの光に対する感度が大きい。つまり、第1の測定部4は、上方からの太陽光H1を受光する一方で、下方からの植物Pから放射される光(植物Pからの光H2)を受光しない。植物Pからの光H2とは、太陽光H1が植物Pによって反射された反射光H2aと、太陽光H1を受けた植物Pから放射されたクロロフィル蛍光H2bと、を含んで植物Pから放射される光である。
図2は、太陽光及び植物からの光の放射照度を示すグラフ、図3は、図2の要部を拡大して模式的に示すグラフである。図2及び図3において、破線は、太陽光H1の放射照度のスペクトルを示し、実線は、植物Pからの光H2の放射照度のスペクトルを示す。図1~図3に示すように、植物Pからの光H2の放射照度のスペクトルは、太陽光H1が植物Pによって反射された反射光の放射照度のスペクトルと、太陽光H1を受けた植物Pから放射されたクロロフィル蛍光の放射照度のスペクトルと、を含む。太陽光H1及び植物Pからの光H2の放射照度のスペクトルは、フラウンホーファー線に対応する波長において吸収ピークを有しており、例えばフラウンホーファー線の内のO2-A線に対応する波長である760nmに吸収ピークを有している。
第1の波長帯域B1は、フラウンホーファー線の内のO2-A線に対応する波長を含む波長帯域であり、より具体的には760nm波長帯域である。また、第1の波長帯域B1は、クロロフィル蛍光の波長範囲(すなわち、650nm~900nm程度の波長)内に含まれる波長帯域である。なお、図3中に示す第1の波長帯域B1は、実際には、760nmを中心波長として、例えば10nmの波長の幅を有している。
第2の測定部5は、太陽光H1を受光して、太陽光H1の第2の波長帯域B2における放射照度である第2の放射照度E2を取得する。第2の測定部5は、第2の波長帯域B2における放射照度のみを測定可能な放射照度計である。一例として、第2の測定部5は、第1の測定部4と同様な構成を採用することによって、第2の波長帯域B2における放射照度のみを測定可能とされる。
第2の測定部5は、植物Pの上方に配置されている。また、第2の測定部5は、その受光面がアーム3の先端側において鉛直方向上向きに配置され、水平方向の光よりも上方からの光に対する感度が大きい。つまり、第2の測定部5は、上方からの太陽光H1を受光する一方で、下方からの植物Pからの光H2を受光しない。
第2の波長帯域B2は、第1の波長帯域B1から所定の波長範囲内に含まれる波長帯域である。具体的に、クロロフィル蛍光測定装置1においては、第1の波長帯域B1が760nm波長帯域であることから、第2の波長帯域B2は、例えばその波長帯域から10nm離れた750nm波長帯域とされる。なお、図3中に示す第2の波長帯域B2は、実際には、750nmを中心波長として、例えば10nmの波長の幅を有している。
第3の測定部6は、植物Pからの光H2を受光して、植物Pからの光H2の第1の波長帯域B1における放射照度である第3の放射照度L1を取得する。第3の測定部6は、第1の波長帯域B1における放射照度のみを測定可能な放射照度計である。一例として、第3の測定部6は、第1の測定部4と同様な構成を採用することによって、第1の波長帯域B1における放射照度のみを測定可能とされる。
第3の測定部6は、植物Pの上方に配置されている。また、第3の測定部6は、その受光面がアーム3の先端側において鉛直方向下向きに配置され、水平方向の光よりも下方からの光に対する感度が大きい。つまり、第3の測定部6は、下方からの植物Pからの光H2を受光する一方で、上方からの太陽光H1を受光しない。
第4の測定部7は、植物Pからの光H2を受光して、植物Pからの光H2の第2の波長帯域B2における放射照度である第4の放射照度L2を取得する。第4の測定部7は、第2の波長帯域B2における放射照度のみを測定可能な放射照度計である。一例として、第4の測定部7は、第1の測定部4と同様な構成を採用することによって、第2の波長帯域B2における放射照度のみを測定可能とされる。
第4の測定部7は、植物Pの上方に配置されている。また、第4の測定部7は、その受光面がアーム3の先端側において鉛直方向下向きに配置され、水平方向の光よりも下方からの光に対する感度が大きい。つまり、第4の測定部7は、下方からの植物Pからの光H2を受光する一方で、上方からの太陽光H1を受光しない。
演算部8は、クロロフィル蛍光の放射照度である第5の放射照度FSを算出するためのものである。演算部8は、物理的には、CPU及びメモリを内蔵したパーソナルコンピュータ、マイクロプロセッサ等を含む演算装置等で実現される。演算部8は、タワー2の上部に配置され、第1、第2、第3及び第4の測定部4,5,6,7とケーブルで接続されている。なお、演算部8は、タワー2の上部に配置されていなくてもよく、例えば、タワー2の下部に配置され、第1、第2、第3及び第4の測定部4,5,6,7からタワー2の下部まで延びるケーブルによって第1、第2、第3及び第4の測定部4,5,6,7と接続されていてもよい。
演算部8は、第1、第2、第3及び第4の測定部4,5,6,7からそれぞれ第1、第2、第3及び第4の放射照度E1,E2,L1,L2を取得し、第1、第2、第3及び第4の放射照度E1,E2,L1,L2に基づいて、クロロフィル蛍光の放射照度である第5の放射照度FSを算出する。演算部8は、第1及び第2の波長帯域B1,B2における太陽光H1の放射照度である第1及び第2の放射照度E1,E2の比を用いて、第5の放射照度FSを算出する(比演算)。演算部8は、第1、第2、第3及び第4の放射照度E1,E2,L1,L2を演算式に代入して、第5の放射照度FSを算出する。具体的に、演算部8は、第1、第2、第3及び第4の放射照度E1,E2,L1,L2を下記式(1);
に代入して第5の放射照度を算出する。
続いて、クロロフィル蛍光測定装置1の動作について説明すると共に、クロロフィル蛍光測定装置1を用いたクロロフィル蛍光の測定方法について詳述する。
図2及び図3に示すように、太陽光H1の放射照度は、フラウンホーファー線に対応する波長で吸収されている。これにより、太陽光H1の放射照度のスペクトルには、フラウンホーファー線に対応する波長に吸収ピークが存在している。第1の波長帯域B1は、フラウンホーファー線に対応する波長を含む波長帯域であることから、第1の放射照度E1は吸収ピーク上の放射照度となる。
これに対し、第2の波長帯域B2は、フラウンホーファー線に対応する波長を含む波長帯域から所定の波長範囲内に含まれる波長帯域であり、特に、フラウンホーファー線に対応する波長とは異なる波長(本実施形態においては、フラウンホーファー線に対応する波長よりも10nm短い波長)を含む波長帯域である。このため、第2の放射照度E2は、吸収ピーク上の放射照度ではない。
植物Pからの光H2は、太陽光H1が植物Pによって反射された反射光H2aを含んでいる。この反射光H2aでは、太陽光H1と同様に、第1の波長帯域B1における放射照度は放射照度のスペクトルの吸収ピーク上の放射照度であり、第2の波長帯域B2における放射照度は放射照度のスペクトルの吸収ピーク上の放射照度ではない。また、植物Pからの光H2は、太陽光H1を受けた植物Pから放射されたクロロフィル蛍光を含んでいる。このクロロフィル蛍光は、第1及び第2の波長帯域B1,B2において、波長に関わらず略一定の値である。以上により、植物Pからの光H2全体としても、太陽光H1と同様に、第1の波長帯域B1における第3の放射照度L1は吸収ピーク上の放射照度となり、第2の波長帯域B2における第4の放射照度L2は吸収ピーク上の放射照度とはならない。
図4は、図1のクロロフィル蛍光測定装置の動作を示す図である。図1~図4に示すように、まず、第1及び第2の測定部4,5が太陽光H1を受光して、それぞれ第1及び第2の波長帯域B1,B2における第1及び第2の放射照度E1,E2を取得すると共に、第3及び第4の測定部6,7が植物Pからの光H2を受光して、それぞれ第1及び第2の波長帯域B1,B2における第3及び第4の放射照度L1,L2を取得する(ステップS11)。
続いて、演算部8は、ケーブルを介して、第1、第2、第3及び第4の測定部4,5,6,7からそれぞれ第1、第2、第3及び第4の放射照度E1,E2,L1,L2を取得し、式(1)に基づいて演算を行うことにより、第5の放射照度FSを算出する(ステップS12)。
続いて、演算部8は、算出した第5の放射照度FSを、例えば演算部8に接続されたディスプレイに出力する。なお、演算部8は、算出した第5の放射照度FSを、他のコンピュータ等に電子データとして出力してもよく、演算部8に接続されたプリンタ等を用いて紙媒体に印刷して出力してもよい(ステップS13)。
本実施形態に係るクロロフィル蛍光測定装置1では、太陽光H1について、所定のフラウンホーファー線に対応した第1の波長帯域B1における吸収ピークでの第1の放射照度E1が、第1の測定部4によって測定される。また、太陽光H1について、所定のフラウンホーファー線に対応していない第2の波長帯域B2における第2の放射照度E2が、第2の測定部5によって測定される。また、植物Pからの光H2について、所定のフラウンホーファー線に対応した第1の波長帯域B1における吸収ピークでの第3の放射照度L1が、第3の測定部6によって測定される。また、植物Pからの光H2について、所定のフラウンホーファー線に対応していない第2の波長帯域B2における第4の放射照度L2が、第4の測定部7によって測定される。第2の波長帯域B2は、第1の波長帯域B1から所定の波長範囲内に含まれる波長帯域である。従って、第2の波長帯域B2では、第1の波長帯域B1に比較して、植物Pにおける反射率、透過率及び吸収率が略同一である。このため、演算部8は、測定された第1、第2、第3及び第4の放射照度E1,E2,L1,L2に基づいて、クロロフィル蛍光の放射照度である第5の放射照度FSを算出できる。よって、装置構成を簡素化することができ、且つ、太陽光の影響下であっても使用することができる。
また、演算部8は、第1、第2、第3及び第4の放射照度E1,E2,L1,L2を演算式に代入して第5の放射照度FSを算出する。これにより、演算部8は、第1、第2、第3及び第4の放射照度E1,E2,L1,L2を用いて容易に第5の放射照度FSを算出することができる。このため、演算部8における演算量を削減することができる。
また、演算部8は、第1、第2、第3及び第4の放射照度E1,E2,L1,L2を上記式(1)に代入して第5の放射照度FSを算出する。これにより、演算部8は、クロロフィル蛍光測定装置1による上記作用効果を好適に奏することができる。
また、第1の波長帯域B1は、フラウンホーファー線の内のO2-A線に対応する波長を含む波長帯域である。O2-A線に対応する波長ではO2-A線以外の線に対応する波長に比較して、太陽光H1及び植物Pからの光H2の放射照度のスペクトルにおける吸収ピークの幅が狭い。従って、第1及び第3の放射照度E1,L1のスペクトルにおける吸収ピークの裾に第2の波長帯域B2が重なり難い。よって、第5の放射照度FSを精度良く取得することができる。
また、第1の波長帯域B1は、760nm波長帯域であり、第2の波長帯域B2は、750nm波長帯域である。760nm波長帯域はフラウンホーファー線の内のO2-A線に対応する波長を含む波長帯域であり、O2-A線に対応する波長ではO2-A線以外の線に対応する波長に比較して、太陽光H1及び植物Pからの光H2の放射照度のスペクトルにおける吸収ピークの幅が狭い。従って、第1及び第3の放射照度E1,L1のスペクトルにおける吸収ピークの裾に第2の波長帯域B2が重なり難い。また、第2の波長帯域B2は、第1の波長帯域B1から10nmの波長範囲内に含まれる比較的近い波長帯域であるため、第1の波長帯域B1に比較して、植物Pにおける反射率、透過率及び吸収率が略同一である。以上により、第5の放射照度FSを精度良く取得することができる。
以下、本実施形態のクロロフィル蛍光測定装置の実施例を示す。本実施例において、クロロフィル蛍光測定装置は、第1の波長帯域B1をフラウンホーファー線の内のO2-A線に対応する760nmを中心とした波長帯域としており、第2の波長帯域B2を750nmを中心とした波長帯域としている。また、クロロフィル蛍光測定装置は、測定対象である植物Pを、水田の稲としている。
図5は、実施例に係るクロロフィル蛍光測定装置によって測定されたクロロフィル蛍光の放射照度の一例を示すグラフである。図5の横軸は時刻(日本標準時)を表し、縦軸は水田の稲が放射するクロロフィル蛍光の放射照度を表している。図5には、6月から9月までの各月において、毎日30分置きの同時刻にクロロフィル蛍光測定装置によって測定されたクロロフィル蛍光の放射照度を、時刻毎に平均した結果が示されている。クロロフィル蛍光の放射照度は、各月において放物線を描くように南中時刻をピーク位置として上昇・下降している。
図6は、微気象学的手法によって測定された生態系光合成速度の一例を示すグラフである。ここでは、本実施例に係るクロロフィル蛍光測定装置によって測定されたクロロフィル蛍光の放射照度との比較対象として、生態系光合成速度を測定している。図6の横軸は時刻(日本標準時)を表し、縦軸は水田の稲における生態系光合成速度を表している。図6には、図5と同時に、同じ水田において測定された生態系光合成速度が示されている。すなわち、図6には、6月から9月までの各月において、毎日30分置きの同時刻に測定された生態系光合成速度を、時刻毎に平均した結果が示されている。生態系光合成速度は、各月において放物線を描くように南中時刻をピーク位置として上昇・下降している。
図7は、図5に係るクロロフィル蛍光の放射照度と図6に係る生態系光合成速度との相関を示すグラフである。図7の横軸は、図5に係るクロロフィル蛍光の放射照度を表し、縦軸は、図6に係る生態系光合成速度を表している。図7において、クロロフィル蛍光の放射照度と生態系光合成速度とが互いに強い正の相関を持つことが示されている。従って、クロロフィル蛍光測定装置が微気象学的手法によって測定された生態系光合成速度を高精度に再現可能であることが確認された。このことから、クロロフィル蛍光測定装置が、生態系光合成速度を代表する指標として非常に有用であるといえる。
以上、本発明の一実施形態について説明したが、本発明は、上記一実施形態に限定されるものではない。例えば、第1の波長帯域B1は、フラウンホーファー線の内のO2-A線に対応する波長に代えて、フラウンホーファー線の内のO2-A線以外の線に対応する波長を含む波長帯域としてもよい。例えば、第1の波長帯域B1は、フラウンホーファー線の内のO2-B線に対応する波長を含む波長帯域であってもよく、この場合、第1の波長帯域B1は、680nm波長帯域であってもよい。
また、演算部8は、第1、第2、第3及び第4の測定部4,5,6,7からそれぞれ第1、第2、第3及び第4の放射照度E1,E2,L1,L2を取得して記憶するデータロガーと、当該データロガーから第1、第2、第3及び第4の放射照度E1,E2,L1,L2を取得して、クロロフィル蛍光の第1の波長帯域B1における第5の放射照度FSを算出する計算機とに分かれていてもよい。
また、図8は、変形例に係るクロロフィル蛍光測定装置における放射照度の算出方法を説明するための図であり、図8に示すように、クロロフィル蛍光測定装置1は、例えば以下のような構成であってもよい。すなわち、クロロフィル蛍光測定装置1において、第2の測定部5は、太陽光H1の互いに異なる2つの第2の波長帯域B2a(B2),B2b(B2)における2つの第2の放射照度E2a(E2),E2b(E2)を取得する。そして、演算部8は、2つの第2の放射照度E2a,E2bに基づいて、太陽光H1の第1の波長帯域B1における吸収前の放射照度である第6の放射照度E3を推定する。例えば、演算部8は、2つの第2の放射照度E2a,E2bを線形内挿することによって、第6の放射照度E3を推定する。具体的に、第6の放射照度E3は、図8中において、太陽光H1の放射照度のスペクトルと、第2の波長帯域B2a,B2bを示す各線と、の交差する2点を直線で結んだ場合において、この直線と、第1の波長帯域B1を示す線と、の交差する点における放射照度とされる。同様に、第4の測定部7は、植物Pからの光H2の互いに異なる2つの第2の波長帯域B2a,B2bにおける2つの第4の放射照度L2a(L2),L2b(L2)を取得する。そして、演算部8は、2つの第4の放射照度L2a,L2bに基づいて、植物Pからの光H2の第1の波長帯域B1における吸収前の放射照度である第7の放射照度L3を推定する。例えば、演算部8は、2つの第4の放射照度L2a,L2bを線形内挿することによって、第7の放射照度L3を推定する。具体的に、第7の放射照度L3は、図8中において、植物Pからの光H2の放射照度のスペクトルと、第2の波長帯域B2a,B2bを示す各線と、の交差する2点を直線で結んだ場合において、この直線と、第1の波長帯域B1を示す線と、の交差する点における放射照度とされる。そして、演算部8は、第1、第3、第6及び第7の放射照度E1,L1,E3,L3を用いて第5の放射照度FSを算出してもよい。
ここで、例えば、第1の波長帯域B1としては、760nmが設定され、互いに異なる2つの第2の波長帯域B2a,B2bとしては、それぞれ750nm及び780nmが設定される。この場合、第1及び第3の放射照度E1,L1のスペクトルにおける吸収ピークの裾に第2の波長帯域B2a,B2bが重なり難い。このため、第5の放射照度FSを一層精度良く取得することができる。
この場合、第7の放射照度L3が取得される波長帯域は、第1の放射照度E1が取得される波長帯域である第1の波長帯域B1と同一である。このため、第1の波長帯域B1に比較して、植物Pにおける反射率、透過率及び吸収率が同一となる。よって、演算部8は、第1、第3、第6及び第7の放射照度E1,L1,E3,L3に基づいて、第5の放射照度FSを精度良く算出できる。
ここで、演算部は、第1、第2、第3及び第4の放射照度を演算式に代入して第5の放射照度を算出してもよい。この場合、演算部は、第1、第2、第3及び第4の放射照度を用いて容易に第5の放射照度を算出することができる。このため、演算部における演算量を削減することができる。
また、演算部は、第1、第2、第3及び第4の放射照度を下記式(1);
(但し、E1は第1の放射照度、E2は第2の放射照度、L1は第3の放射照度、L2は第4の放射照度、Fsは第5の放射照度を表す。)
に代入して第5の放射照度を算出してもよい。この場合、演算部は、上記作用効果を好適に奏することができる。
に代入して第5の放射照度を算出してもよい。この場合、演算部は、上記作用効果を好適に奏することができる。
また、第2の測定部は、太陽光の互いに異なる2つの第2の波長帯域における2つの第2の放射照度を取得し、第4の測定部は、植物からの光の互いに異なる2つの第2の波長帯域における2つの第4の放射照度を取得し、演算部は、2つの第2の放射照度に基づいて、太陽光の第1の波長帯域における吸収前の放射照度である第6の放射照度を推定し、2つの第4の放射照度に基づいて、植物からの光の第1の波長帯域における吸収前の放射照度である第7の放射照度を推定し、第1、第3、第6及び第7の放射照度の放射照度を用いて第5の放射照度を算出してもよい。この場合、第6の放射照度が取得される波長帯域は、第1の放射照度が取得される波長帯域である第1の波長帯域と同一であるため、第1の波長帯域に比較して、植物における反射率、透過率及び吸収率が同一である。同様に、第7の放射照度が取得される波長帯域は、第1の放射照度が取得される波長帯域である第1の波長帯域と同一であるため、第1の波長帯域に比較して、植物における反射率、透過率及び吸収率が同一である。このため、演算部は、第1、第3、第6及び第7の放射照度に基づいて、第5の放射照度を精度良く算出できる。
また、演算部は、第1、第3、第6及び第7の放射照度を下記式(2);
(但し、E1は第1の放射照度、L1は第3の放射照度、E3は第6の放射照度、L3は第7の放射照度、Fsは第5の放射照度を表す。)
に代入して第5の放射照度を算出してもよい。この場合、演算部は、上記作用効果を好適に奏することができる。
に代入して第5の放射照度を算出してもよい。この場合、演算部は、上記作用効果を好適に奏することができる。
また、第1の波長帯域は、フラウンホーファー線の内のO2-A線に対応する波長を含む波長帯域であってもよい。O2-A線に対応する波長ではO2-A線以外の線に対応する波長に比較して、太陽光及び植物からの光の放射照度のスペクトルにおける吸収ピークの幅が狭い。従って、第1及び第3の放射照度のスペクトルにおける吸収ピークの裾に第2の波長帯域が重なり難い。よって、第5の放射照度を精度良く取得することができる。
また、第1の波長帯域は、760nm波長帯域であり、第2の波長帯域は、750nm波長帯域であってもよい。760nm波長帯域はフラウンホーファー線の内のO2-A線に対応する波長を含む波長帯域であり、O2-A線に対応する波長ではO2-A線以外の線に対応する波長に比較して、太陽光及び植物からの光の放射照度のスペクトルにおける吸収ピークの幅が狭い。従って、第1及び第3の放射照度のスペクトルにおける吸収ピークの裾に第2の波長帯域が重なり難い。また、第2の波長帯域は、第1の波長帯域から10nmの波長範囲内に含まれる比較的近い波長帯域であるため、第1の波長帯域に比較して、植物における反射率、透過率及び吸収率が略同一である。以上により、第5の放射照度を精度良く取得することができる。
1…クロロフィル蛍光測定装置、4…第1の測定部、5…第2の測定部、6…第3の測定部、7…第4の測定部、8…演算部、H1…太陽光、H2…植物からの光、H2a…反射光、H2b…クロロフィル蛍光、P…植物、S…太陽。
Claims (7)
- 太陽光を受光して、太陽光の第1の波長帯域における放射照度である第1の放射照度を取得する第1の測定部と、
太陽光を受光して、太陽光の第2の波長帯域における放射照度である第2の放射照度を取得する第2の測定部と、
太陽光が植物によって反射された反射光と、太陽光を受けた前記植物から放射されたクロロフィル蛍光と、を含んで前記植物から放射される植物からの光を受光して、前記植物からの光の前記第1の波長帯域における放射照度である第3の放射照度を取得する第3の測定部と、
前記植物からの光を受光して、前記植物からの光の前記第2の波長帯域における放射照度である第4の放射照度を取得する第4の測定部と、
前記第1、第2、第3及び第4の測定部からそれぞれ前記第1、第2、第3及び第4の放射照度を取得し、前記第1、第2、第3及び第4の放射照度に基づいて、前記クロロフィル蛍光の放射照度である第5の放射照度を算出する演算部と、を備え、
前記第1の波長帯域は、所定のフラウンホーファー線に対応する波長を含む波長帯域であり、且つ、前記クロロフィル蛍光の波長範囲内に含まれる波長帯域であり、
前記第2の波長帯域は、前記第1の波長帯域から所定の波長範囲内に含まれる波長帯域である、
クロロフィル蛍光測定装置。 - 前記演算部は、前記第1、第2、第3及び第4の放射照度を演算式に代入して前記第5の放射照度を算出する、
請求項1記載のクロロフィル蛍光測定装置。 - 前記第2の測定部は、太陽光の互いに異なる2つの前記第2の波長帯域における2つの前記第2の放射照度を取得し、
前記第4の測定部は、前記植物からの光の互いに異なる2つの前記第2の波長帯域における2つの前記第4の放射照度を取得し、
前記演算部は、
2つの前記第2の放射照度に基づいて、太陽光の前記第1の波長帯域における吸収前の放射照度である第6の放射照度を推定し、
2つの前記第4の放射照度に基づいて、前記植物からの光の前記第1の波長帯域における吸収前の放射照度である第7の放射照度を推定し、
前記第1、第3、第6及び第7の放射照度の放射照度を用いて前記第5の放射照度を算出する、
請求項1記載のクロロフィル蛍光測定装置。 - 前記第1の波長帯域は、フラウンホーファー線の内のO2-A線に対応する波長を含む波長帯域である、
請求項1~5の何れか一項記載のクロロフィル蛍光測定装置。 - 前記第1の波長帯域は、760nm波長帯域であり、
前記第2の波長帯域は、750nm波長帯域である、
請求項1~3の何れか一項記載のクロロフィル蛍光測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017536761A JP6725154B2 (ja) | 2015-08-27 | 2016-08-15 | クロロフィル蛍光測定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015167581 | 2015-08-27 | ||
JP2015-167581 | 2015-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017033792A1 true WO2017033792A1 (ja) | 2017-03-02 |
Family
ID=58099990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/073845 WO2017033792A1 (ja) | 2015-08-27 | 2016-08-15 | クロロフィル蛍光測定装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6725154B2 (ja) |
WO (1) | WO2017033792A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110794472A (zh) * | 2019-10-24 | 2020-02-14 | 中国科学院地理科学与资源研究所 | 一种基于旋翼无人机的植被背景下隐藏地物的探测方法 |
JP2021148795A (ja) * | 2020-03-18 | 2021-09-27 | 浙江大学Zhejiang University | 全成長期間中の作物の観察に適応可能な太陽光励起クロロフィル蛍光測定システム |
CN114910458A (zh) * | 2022-05-10 | 2022-08-16 | 中国科学院地理科学与资源研究所 | 植被日光诱导叶绿素荧光垂直分层观测系统及方法 |
CN115266661A (zh) * | 2021-04-29 | 2022-11-01 | 中国农业大学 | 植物叶片叶绿素荧光参数检测装置及方法 |
IT202200017880A1 (it) * | 2022-08-31 | 2024-03-02 | Rem Tec S R L | Sistema per monitorare la crescita delle coltivazioni in un terreno agricolo basato su metodi ottici. |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102169084B1 (ko) * | 2018-09-18 | 2020-10-22 | 서울대학교산학협력단 | 엽록소 형광물질 측정 방법 및 장치 |
-
2016
- 2016-08-15 WO PCT/JP2016/073845 patent/WO2017033792A1/ja active Application Filing
- 2016-08-15 JP JP2017536761A patent/JP6725154B2/ja active Active
Non-Patent Citations (4)
Title |
---|
GUANTER,L. ET AL.: "Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands", JOURNAL OF GEOPHYSICAL RESEARCH, vol. 115, no. D19, 16 October 2010 (2010-10-16), pages D19303, XP055366702 * |
KENJI KURIYAMA ET AL., DAI 39 KAI REMOTE SENSING SYMPOSIUM KOEN RONBUNSHU, 15 November 2013 (2013-11-15), pages 9 - 12 * |
KENJI MASUDA, HOKKAIDO UNIVERSITY SOGO GIJUTSU KENKYUKAI HOKOKUSHU HEISEI 26 NENDO * |
LIU,LIANGYUN ET AL., IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 43/4, pages 827 - 832 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110794472A (zh) * | 2019-10-24 | 2020-02-14 | 中国科学院地理科学与资源研究所 | 一种基于旋翼无人机的植被背景下隐藏地物的探测方法 |
JP2021148795A (ja) * | 2020-03-18 | 2021-09-27 | 浙江大学Zhejiang University | 全成長期間中の作物の観察に適応可能な太陽光励起クロロフィル蛍光測定システム |
JP7083196B2 (ja) | 2020-03-18 | 2022-06-10 | 浙江大学 | 全成長期間中の作物の観察に適応可能な太陽光励起クロロフィル蛍光測定システム |
CN115266661A (zh) * | 2021-04-29 | 2022-11-01 | 中国农业大学 | 植物叶片叶绿素荧光参数检测装置及方法 |
CN114910458A (zh) * | 2022-05-10 | 2022-08-16 | 中国科学院地理科学与资源研究所 | 植被日光诱导叶绿素荧光垂直分层观测系统及方法 |
IT202200017880A1 (it) * | 2022-08-31 | 2024-03-02 | Rem Tec S R L | Sistema per monitorare la crescita delle coltivazioni in un terreno agricolo basato su metodi ottici. |
Also Published As
Publication number | Publication date |
---|---|
JP6725154B2 (ja) | 2020-07-15 |
JPWO2017033792A1 (ja) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017033792A1 (ja) | クロロフィル蛍光測定装置 | |
Bergsträsser et al. | HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging | |
Peng et al. | Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content | |
Meroni et al. | Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications | |
Garrity et al. | A simple filtered photodiode instrument for continuous measurement of narrowband NDVI and PRI over vegetated canopies | |
CN107084790A (zh) | 基于智能手机的便携式光谱仪及其光谱检测方法 | |
CN102175324B (zh) | 基于面阵探测器的多通道低杂散光光谱仪 | |
Wu et al. | Improved estimation of light use efficiency by removal of canopy structural effect from the photochemical reflectance index (PRI) | |
Wu et al. | The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland | |
Tubuxin et al. | Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves | |
CN101008611A (zh) | 带称重的便携式水果糖度无损检测装置 | |
Potůčková et al. | Comparison of reflectance measurements acquired with a contact probe and an integration sphere: Implications for the spectral properties of vegetation at a leaf level | |
CN103344645A (zh) | 多通道窄波段波谱反照率测量装置 | |
CN107389560A (zh) | 多波段全光纤高光谱分辨率整层大气透过率同时测量装置及测量方法 | |
GomezChova et al. | Solar induced fluorescence measurements using a field spectroradiometer | |
Falcioni et al. | A novel method for estimating chlorophyll and carotenoid concentrations in leaves: A two hyperspectral sensor approach | |
CN102798614A (zh) | 一种土壤总含钾量检测装置以及方法 | |
Moncholi-Estornell et al. | Impact of structural, photochemical and instrumental effects on leaf and canopy reflectance variability in the 500–600 nm range | |
Salter et al. | PARbars: cheap, easy to build ceptometers for continuous measurement of light interception in plant canopies | |
CN101514963A (zh) | 一种植被荧光探测方法及装置 | |
KR102315329B1 (ko) | 드론초분광영상을 이용한 생태교란종 모니터링 방법 | |
Keskin et al. | Reflectance-based sensor to predict visual quality ratings of turfgrass plots | |
CN103968943A (zh) | 一种光纤光谱仪信噪比的精确测量方法 | |
Strub et al. | Evaluation of spectrodirectional Alfalfa canopy data acquired during DAISEX'99 | |
CN201000430Y (zh) | 一种带称重的便携式水果糖度无损检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839139 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2017536761 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16839139 Country of ref document: EP Kind code of ref document: A1 |