WO2017033480A1 - All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery - Google Patents

All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery Download PDF

Info

Publication number
WO2017033480A1
WO2017033480A1 PCT/JP2016/057063 JP2016057063W WO2017033480A1 WO 2017033480 A1 WO2017033480 A1 WO 2017033480A1 JP 2016057063 W JP2016057063 W JP 2016057063W WO 2017033480 A1 WO2017033480 A1 WO 2017033480A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion conductive
conductive layer
secondary battery
positive electrode
solid
Prior art date
Application number
PCT/JP2016/057063
Other languages
French (fr)
Japanese (ja)
Inventor
西村 勝憲
純 川治
久仁夫 福地
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017033480A1 publication Critical patent/WO2017033480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to an all-solid lithium secondary battery using a solid electrolyte as an electrolyte that propagates lithium ions, and a secondary battery system including the secondary battery.
  • lithium ion secondary batteries have a higher energy density than other secondary batteries, they are advantageous for reducing the size and weight of secondary batteries and increasing their capacity and output. For this reason, lithium-ion secondary batteries are used for power sources for automobiles such as small electric devices (for example, portable personal computers and mobile phones) and large electric devices (for example, HEV (hybrid vehicles) and EVs (electric vehicles)). Power supply and power storage power source).
  • lithium ion secondary batteries having a heat resistance of at least 80 ° C. or more are being studied. Secondary batteries are in demand.
  • the conventional lithium ion secondary battery using a non-aqueous electrolyte is generally said to have a heat resistance temperature of about 60 ° C., and the solvent constituting the non-aqueous electrolyte is flammable. Therefore, there is a weak point from the viewpoint of heat resistance and fire resistance.
  • All-solid lithium secondary batteries using solid electrolytes instead of non-aqueous electrolytes are currently being actively researched.
  • All solid-state lithium secondary batteries use conventional lithium ions that use non-aqueous electrolytes because the solid electrolytes used (eg, solid polymer electrolytes and inorganic electrolytes) have a heat-resistant temperature exceeding 100 ° C and are not flammable. There is an advantage that it can be used in a higher temperature environment than a secondary battery. It is also said that the all solid lithium secondary battery can increase the energy density as compared with the conventional non-aqueous electrolyte lithium secondary battery.
  • the solid electrolyte as a lithium ion conduction path does not have fluidity. Therefore, in order to increase the output of the secondary battery, the solid electrolyte itself needs to have high ionic conductivity. In addition, it is necessary to construct a good conduction path for lithium ions between the solid electrolyte and the electrode active material (to reduce the obstacle of ion conduction as much as possible). However, it is known that solid electrolytes with high ion conductivity are prone to oxidative degradation if they are repeatedly charged and discharged in direct contact with an electrode active material (especially a positive electrode active material). From the viewpoint of (for example, improving cycle characteristics), a device for preventing deterioration of the solid electrolyte is necessary.
  • Patent Document 1 discloses a polymer lithium secondary battery in which an organic electrolyte is interposed between a positive electrode material and a negative electrode material, and the surface of the positive electrode active material particles constituting the positive electrode is A polymer lithium secondary, characterized in that at least a part thereof is coated with a deposit having ion conductivity and electron conductivity that is not easily oxidized even when oxygen is supplied from the positive electrode active material.
  • a battery is disclosed.
  • the deposit is composed of fine particles of an inorganic solid electrolyte having ion conductivity and fine particles of a conductive material having electronic conductivity, and the fine particles of the inorganic solid electrolyte include phosphate, silicic acid containing lithium. It is disclosed that it consists of any one of salts, borates, sulfates, aluminates and the like, or a mixture thereof.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-059409 discloses an all solid state battery in which a polymer solid electrolyte is interposed between a positive electrode material and a negative electrode material, and the surface of positive electrode active material particles constituting the positive electrode.
  • An all solid state battery characterized in that an inorganic oxide containing lithium is adhered to at least a part or the entire surface of the battery without being easily oxidized even when oxygen is supplied from the positive electrode active material.
  • the inorganic oxide is composed only of a metal element and oxygen, and LiAlO 2 is preferable.
  • Patent Documents 1 and 2 (republished WO2006 / 018921 and JP2007-059409), the surface of the positive electrode active material particles only needs to be at least partially coated with inorganic solid electrolyte particles having ion conductivity. It is said that. This is because the inorganic solid electrolyte particles serve as a gateway for lithium ions to escape to the polymer solid electrolyte (organic electrolyte) and prevent the positive electrode active material and the polymer solid electrolyte from coming into direct contact. This is because the oxidative decomposition of the polymer solid electrolyte can be suppressed.
  • the surface portion of the positive electrode active material particles not covered with the inorganic solid electrolyte particles does not serve as a gateway for lithium ions to escape to the polymer solid electrolyte, the positive electrode active material particles / polymer solid electrolyte interface of this portion Even if a by-product is deposited on the battery, it does not cause a significant decrease in battery performance.
  • the inorganic solid electrolyte particles serving as the lithium ion gateway are attached to only a part of the surface of the positive electrode active material particles means that the lithium ion conduction paths are small and narrow, and the positive electrode active material particles It is thought that the effective ionic conduction resistance between the solid electrolyte and the polymer solid electrolyte is increased.
  • the adhesion between particles is considered to be close to point contact in principle, even if the entire surface of the positive electrode active material particles is covered with inorganic solid electrolyte particles, the effective contact area is not so large. It is done.
  • the secondary batteries described in Patent Documents 1 and 2 (republished WO2006 / 018921 and Japanese Patent Application Laid-Open No. 2007-059409) are likely to be restricted in charge / discharge characteristics (for example, charge / discharge rate). It is.
  • an object of the present invention is to provide a bulk type all-solid lithium secondary battery that can be used in a higher temperature environment than a conventional non-aqueous electrolyte lithium secondary battery and has a high balance between charge / discharge characteristics and cycle characteristics.
  • An object of the present invention is to provide a battery and a secondary battery system including the all-solid lithium secondary battery.
  • One aspect of the present invention is an all-solid lithium secondary battery in which a positive electrode and a negative electrode are stacked via a solid electrolyte layer,
  • the positive electrode includes positive electrode active material particles, a first ion conductive layer, and a second ion conductive layer,
  • the positive electrode active material particles form secondary particles in which a plurality of primary particles are aggregated
  • the first ion conductive layer is a material that mediates lithium ions between the positive electrode active material particles and the second ion conductive layer, and covers the secondary particles and constitutes the secondary particles.
  • the second ion conductive layer is a substance that conducts lithium ions between the first ion conductive layer and the solid electrolyte layer, and the secondary particles coated with the first ion conductive layer are laminated and coated.
  • An all-solid lithium secondary battery is provided, wherein the first ion conductive layer, the second ion conductive layer, and the solid electrolyte layer are made of different materials.
  • the present invention can be improved or changed as follows.
  • the conductivity of the first ion conductive layer is 1 ⁇ 10 ⁇ 6 S / cm or more and 1 ⁇ 10 ⁇ 3 S / cm or less
  • the conductivity of the second ion conductive layer is 1 ⁇ 10 ⁇ 5 S / cm or more and 1 ⁇ 10 ⁇ 2 S / cm or less
  • the conductivity of the solid electrolyte layer is 1 ⁇ 10 ⁇ 4 S / cm or more.
  • the first ion conductive layer is made of an oxide electrolyte containing lithium
  • the second ion conductive layer is made of an ion conductive polymer containing lithium salt or a ceramic electrolyte containing lithium.
  • the positive electrode active material particles are included in an amount of 60 parts by mass to 90 parts by mass. It is.
  • the first ion conductive layer is 5 parts by mass or more and 30 parts by mass or less. included.
  • the conductivity of the solid electrolyte layer is higher than the conductivity of the second ion conductive layer.
  • the positive electrode further includes a conductive material.
  • Another aspect of the present invention provides a secondary battery system including the all-solid lithium secondary battery according to the above invention.
  • the present invention is a bulk-type all-solid lithium secondary battery that can be easily increased in capacity, can be used in a higher temperature environment than a conventional non-aqueous electrolyte lithium secondary battery, and has charge and discharge characteristics. It is possible to provide an all-solid lithium secondary battery in which the cycle characteristics are balanced at a high level. In addition, by using the all solid lithium secondary battery, it is possible to provide a secondary battery system that can be used in a higher temperature environment than a conventional non-aqueous electrolyte lithium secondary battery.
  • the solid electrolyte layer needs to have high ionic conductivity, and a good conduction path for lithium ions is established between the solid electrolyte layer and the electrode active material particles. There is a need to.
  • a solid electrolyte layer having high ion conductivity is likely to be oxidized and deteriorated when repeated charging and discharging in direct contact with electrode active material particles (particularly positive electrode active material particles). A device to prevent deterioration is necessary.
  • an oxidation-resistant ion conductive material is formed on the surface of the electrode active material particles as taught in Patent Documents 1 and 2 (Republished WO2006 / 018921 and JP2007-059409). Doing is considered one of the effective solutions. However, all-solid lithium secondary batteries taught in Patent Documents 1 and 2 (republished WO2006 / 018921 and JP2007-059409) are considered to have room for further improvement in charge / discharge characteristics and cycle characteristics. It was.
  • the present inventors conducted a detailed investigation and examination on factors affecting the charge / discharge characteristics and cycle characteristics of the bulk type all-solid lithium secondary battery.
  • the electrode active material particles are likely to form secondary particles in which a plurality of fine primary particles are aggregated, and voids remain between the primary particles in the secondary particles. understood.
  • the primary particles on the outermost circumference constituting the secondary particles directly contribute to the charge and discharge of the secondary battery, but the primary particles inside the secondary particles (in contact with the oxidation-resistant ion conductive material). No primary particles) have a small contribution to the charge / discharge of the secondary battery, and thus it is considered that the charge / discharge characteristics are restricted.
  • the primary particles on which the oxidation-resistant ion conductive material is not formed are exposed on the surface.
  • the newly exposed primary particles come into contact with the solid electrolyte, it is considered that it causes oxidation deterioration of the solid electrolyte layer (thereby causing deterioration of cycle characteristics).
  • FIG. 1 is a schematic cross-sectional view showing a basic structure of a single cell in an all-solid lithium secondary battery according to the present invention and an enlarged schematic cross-sectional view of a positive electrode.
  • a single cell 100 of an all solid lithium secondary battery according to the present invention has a positive electrode 110 and a negative electrode 130 stacked with a solid electrolyte layer 120 interposed therebetween.
  • the positive electrode 110 includes a positive electrode current collector 111 and a positive electrode mixture layer 112, and the negative electrode 130 includes a negative electrode current collector 131 and a negative electrode mixture layer 132.
  • the positive electrode current collector 111 is not particularly limited as long as it is a low-resistance conductor having heat resistance that can withstand heat treatment when forming an ion conductive layer / solid electrolyte layer described later.
  • the same thing as the positive electrode electrical power collector in a secondary battery can be used.
  • metal foil thickness of 10 ⁇ m or more and 100 ⁇ m or less
  • perforated metal foil thickness of 10 ⁇ m or more and 100 ⁇ m or less, pore diameter of 0.1 mm or more and 10 mm or less
  • species aluminum, stainless steel, titanium, a noble metal (for example, gold, silver, platinum) etc. can be used.
  • the positive electrode mixture layer 112 includes positive electrode active material particles (primary particles 113 and secondary particles 114), a first ion conductive layer 115, and a second ion conductive layer 116.
  • positive electrode active material particles primary particles 113 and secondary particles 114
  • first ion conductive layer 115 positive electrode active material particles
  • second ion conductive layer 116 second ion conductive layer 116.
  • a conductive material not shown
  • the positive electrode active material particles used in the single cell 100 of the all-solid lithium secondary battery of the present invention form secondary particles 114 in which a plurality of primary particles 113 are aggregated.
  • the first ion conductive layer 115 covers the secondary particles 114 and fills the gaps between the primary particles 113 constituting the secondary particles 114, and between the positive electrode active material particles and the second ion conductive layer 116. Mediates lithium ions.
  • the second ion conductive layer 116 is formed by laminating and covering the secondary particles 114 covered with the first ion conductive layer 115, and mediates lithium ions between the first ion conductive layer 115 and the solid electrolyte layer 120.
  • the first ion conductive layer 115, the second ion conductive layer 116, and the solid electrolyte layer 120 are preferably made of different materials.
  • a positive electrode active material used in a conventional lithium ion secondary battery can be used.
  • a lithium composite oxide containing a transition metal is preferable, and specific examples include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn.
  • the particle diameter of the positive electrode active material particles (secondary particles 114) is defined to be equal to or less than the thickness of the positive electrode mixture layer 112.
  • the coarse particles are removed in advance by sieving classification, wind classification, etc. Particles having a thickness equal to or smaller than that of the positive electrode mixture layer 112 are selected.
  • the particle size of the positive electrode active material particles is the average particle size of the secondary particles 114, and can be measured using a known particle size distribution measuring apparatus using a laser scattering method.
  • the conductive material was made from conductive fibers (for example, vapor-grown carbon, carbon nanotubes, pitch (byproducts such as petroleum, coal, coal tar, etc.) and carbonized at high temperature, and acrylic fibers. Carbon fiber etc.) are preferably used.
  • the conductive material may be a material having a lower electrical resistivity than the positive electrode active material and not oxidatively dissolved at the charge / discharge potential of the positive electrode (usually 2.5 to 4.5 V). Examples include corrosion resistant metals (such as titanium and gold), carbides (such as SiC and WC), and nitrides (such as Si 3 N 4 and BN).
  • a carbon material having a high specific surface area for example, carbon black or activated carbon can also be used.
  • the first ion conductive layer 115 covers the secondary particles 114 and fills the gaps between the primary particles 113 constituting the secondary particles 114, so that the positive electrode active material particles and the second ion conductive layers are filled. It is a substance that mediates lithium ions with 116.
  • the first ion conductive layer 115 is required not to undergo oxidative degradation at the charge / discharge potential of the positive electrode, and is chemically inert to the positive electrode active material (primary particles 113) (for example, the positive electrode active material). It does not chemically react with the substance).
  • the conductivity of the first ion conductive layer 115 is applicable to the present invention as long as it is in the range of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 3 S / cm, and the charge / discharge potential of the positive electrode is higher than the high conductivity. Priority is given not to oxidative degradation. For example, even if the conductivity of the first ion transmission layer 115 is a relatively low value in the range of 1 to 10 ⁇ 6 to 1 ⁇ 10 ⁇ 5 S / cm, it is better to select a material with excellent oxidation resistance. Effective for extending the life of secondary batteries.
  • an oxide electrolyte containing lithium can be preferably used as the first ion conductive layer 115.
  • Specific examples are perovskite type La 0.51 Li 0.34 TiO 2.94 , NASICON type Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , garnet type Li 7 La 3 Zr 2 O 12 , amorphous type Li 2.9 PO 3.3 N 0.4 or Li 3.6 Si 0.6 P 0.4 O 4 , glass type 50Li 4 SiO 4 -50Li 3 BO 3 , Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 3 BO 3 , LiVO 3 etc. are mentioned.
  • the present invention since all the primary particles 113 of the positive electrode active material are in contact with the first ion conductive layer 115, the movement / exit of lithium ions is facilitated, and all the primary particles 113 are in contact with each other.
  • the particles 113 can directly contribute to charge / discharge of the secondary battery. As a result, the charge / discharge characteristics of the secondary battery can be improved.
  • the first ion conductive layer 115 is preferably the minimum amount necessary to coat the positive electrode active material particles (primary particles 113 and secondary particles 114) (do not coat the positive electrode active material particles excessively). .
  • the stress caused by the volume change of the positive electrode active material particles due to charge / discharge (lithium ion occlusion / release) It can be easily absorbed, and an effect of suppressing crushing of the secondary particles 114 can be expected.
  • the second ion conductive layer 116 is formed by laminating and covering the secondary particles 114 coated with the first ion conductive layer 115, and a substance that mediates lithium ions between the first ion conductive layer 115 and the solid electrolyte layer 120. It is. Further, the second ion conductive layer 116 is made of a material different from that of the first ion conductive layer 115, and it is desired to contribute to the improvement of the surface flatness of the positive electrode mixture layer 112.
  • the conductivity of the second ion conductive layer 116 is applicable in the range of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 2 S / cm. It is more preferable to select a material having a conductivity of 1 ⁇ 10 ⁇ 4 S / cm or more, and it is further preferable to select a material having a higher conductivity than that of the first ion conductive layer 115.
  • an ion conductive polymer having an average molecular weight of 5,000 to 500,000 is preferable.
  • Specific examples include polyethylene glycol (PEG), polyethylene oxide (PEO), polyaniline (PAn), and polyvinylidene fluoride. (PVDF).
  • a lithium salt for example, LiBF 4 , lithium trifluoromethanesulfonimide (LiTFSI)
  • LiTFSI lithium trifluoromethanesulfonimide
  • a ceramic electrolyte containing lithium with an electrolyte different from that of the first ion conductive layer 115 can be preferably used.
  • Specific examples include Li 3 BO 3 , Li 7 La 3 Zr 2 O.
  • the significance of stacking the secondary particles 114 with the second ion conductive layer 116 made of a material different from that of the first ion conductive layer 115 is as follows.
  • the interface between the first ion conductive layer 115 and the second ion conductive layer 116 is the same kind of interface.
  • the crack progresses (as a result, the secondary particles 114 are crushed). ) Can hardly be expected.
  • the secondary particles 114 are laminated and coated with the second ion conductive layer 116 made of a different material from the first ion conductive layer 115, a different interface is formed between the first ion conductive layer 115 and the second ion conductive layer 116. Therefore, the effect of suppressing the progress of cracks and suppressing the crushing of the secondary particles 114 can be expected. Further, even if the secondary particles 114 are crushed, the secondary particles 114 and the solid electrolyte 120 are prevented from coming into direct contact with each other (suppressing oxidative deterioration of the solid electrolyte 120). Can also be expected. As a result, the cycle characteristics of the secondary battery can be improved.
  • the secondary particles 114 covered with the first ion conductive layer 115 are basically still in the form of particles, if the positive electrode mixture layer 112 is formed without the second ion conductive layer 116 being laminated, the positive electrode mixture layer Irregularities caused by the secondary particles 114 are likely to remain on the surface of 112. In that case, since the solid electrolyte layer 120 does not have fluidity, it is difficult to ensure a sufficient contact area between the positive electrode mixture layer 112 and the solid electrolyte layer 120, which is a cause of a decrease in charge / discharge characteristics of the secondary battery. It is easy to become.
  • the surface of the positive electrode mixture layer 112 has high flatness.
  • the secondary particles 114 coated with the first ion conductive layer 115 are laminated and coated with the second ion conductive layer 116, thereby embedding irregularities caused by the secondary particles 114, and the positive electrode mixture layer
  • the surface flatness of 112 is improved.
  • the solid electrolyte layer 120 is a solid of a conventional all-solid lithium secondary battery.
  • An electrolyte can be used.
  • a ceramic electrolyte containing lithium with an electrolyte different from the second ion conductive layer 116 for example, Li 10 GeP 2 S 12 , Li 7 P 3 S 13 , 70Li 2 S-30P 2 S 5 , La 0.1 Li 0.34 TiO 2.94 , Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 etc.
  • a ceramic electrolyte containing lithium with an electrolyte different from the second ion conductive layer 116 for example, Li 10 GeP 2 S 12 , Li 7 P 3 S 13 , 70Li 2 S-30P 2 S 5 , La 0.1 Li 0.34 TiO 2.94 , Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 etc.
  • an ion conductive polymer for example, PEG, PEO, PAn, PVDF
  • a lithium salt for example, LiBF 4 or LiTFSI
  • the conductivity of the solid electrolyte layer 120 is applicable as long as it is 1 ⁇ 10 ⁇ 4 S / cm or more, and a material having a higher conductivity than that of the second ion conductive layer 116 is selected. In particular, it is preferable to select a material of 1 ⁇ 10 ⁇ 3 S / cm or more.
  • the thickness of the solid electrolyte layer 120 is preferably 5 ⁇ m or more and 200 ⁇ m or less. When the thickness of the solid electrolyte layer 120 is less than 5 ⁇ m, the mechanical strength of the solid electrolyte layer 120 is insufficient and the positive electrode 110 and the negative electrode 130 are easily short-circuited. On the other hand, when the thickness of the solid electrolyte layer 120 exceeds 200 ⁇ m, the electric resistance of the solid electrolyte layer 120 becomes too large and the capacity of the secondary battery decreases.
  • the thickness of the solid electrolyte layer 120 is more preferably 10 ⁇ m or more and 100 ⁇ m or less, and further preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode current collector 131 is not particularly limited as long as it is a low-resistance conductor having heat resistance that can withstand heat treatment when forming the ion conductive layer / solid electrolyte layer.
  • the same thing as the negative electrode electrical power collector in the nonaqueous electrolyte lithium secondary battery of this can be used.
  • metal foil thinness of 10 ⁇ m or more and 100 ⁇ m or less
  • perforated metal foil thickness of 10 ⁇ m or more and 100 ⁇ m or less, pore diameter of 0.1 mm or more and 10 mm or less
  • species copper, stainless steel, titanium, a noble metal (for example, gold
  • the negative electrode mixture layer 132 includes at least a negative electrode active material, and further includes a third ion conductive layer as necessary. Further, for the purpose of improving the conductivity of the negative electrode mixture layer 132, a conductive material may be further added to and mixed with the negative electrode active material. As the conductive material to be added to and mixed with the negative electrode mixture layer 132, the same material as that of the positive electrode mixture layer 112 can be used.
  • Non- electrode active material there is no particular limitation on the material of the negative electrode active material, and a negative electrode active material used in a conventional lithium ion secondary battery can be used.
  • carbon-based materials eg, graphite, graphitizable carbon material, amorphous carbon material
  • conductive polymer materials eg, polyacene, polyparaphenylene, polyaniline, polyacetylene
  • lithium composite oxide For example, lithium titanate: Li 4 Ti 5 O 12
  • metal lithium or a metal alloyed with lithium (eg, aluminum, silicon, tin) can be used.
  • the third ion conductive layer covers the negative electrode active material particles and fills the gaps between the particles, and is a material that mediates lithium ions between the negative electrode active material and the solid electrolyte layer 120.
  • the third ion conductive layer is required not to undergo reductive degradation at the charge / discharge potential of the negative electrode.
  • polyethylene oxide (PEO) holding an electrolyte such as lithium borohydride (LiBH 4 ), lithium bistrifluoromethanesulfonylimide (LiTFSI), or lithium phosphate oxynitride (LiPON) can be preferably used.
  • LiBH 4 lithium borohydride
  • LiTFSI lithium bistrifluoromethanesulfonylimide
  • LiPON lithium phosphate oxynitride
  • the third ion conductive layer may not be used.
  • the negative electrode active material is formed of a low resistance conductor equivalent to the negative electrode current collector 131 in a foil shape or a plate shape, the negative electrode active material may also serve as the negative electrode current collector 131.
  • the positive electrode 110 is manufactured by applying and heating and drying a positive electrode mixture slurry on one or both surfaces of the positive electrode current collector 111, followed by compression molding using a press or the like, and cutting into a predetermined size.
  • the negative electrode 130 is obtained by applying a negative electrode mixture slurry to one or both surfaces of the negative electrode current collector 131 and heating and drying, and then compressing and molding the negative electrode slurry using a press machine or the like. Produced.
  • the application method of the positive electrode mixture slurry and the negative electrode mixture slurry there is no particular limitation on the application method of the positive electrode mixture slurry and the negative electrode mixture slurry, and conventional methods (for example, a doctor blade method, a dipping method, a spray method) can be used. Moreover, it is also possible to laminate
  • the positive electrode mixture slurry and the negative electrode mixture slurry are prepared by coating each electrode active material with a predetermined ion conductive layer and then mixing a conductive material, a binder, a solvent, and the like as necessary.
  • the method of forming and filling the first ion conductive layer 115 on the surface of the secondary particles 114 of the positive electrode active material and the gaps between the primary particles 113 inside as a result of such a configuration.
  • a solution and a secondary solution of a salt of a metal element constituting the first ion conductive layer 115 (for example, in the case of perovskite type La 0.51 Li 0.34 TiO 2.94 , carbonates or hydroxides of La, Li, Ti)
  • a heat treatment at a temperature of 300 ° C. or more and 1000 ° C. or less in the atmosphere or nitrogen or argon atmosphere in which the oxygen concentration is controlled
  • a heat treatment is performed to form the first ion conductive layer 115 in a desired manner. Can be formed and filled to form.
  • the positive electrode mixture layer 112 is formed while the secondary particles 114 covered with the first ion conductive layer 115 are further laminated and covered with the second ion conductive layer 116.
  • the method of laminating and coating with the second ion conductive layer 116 is sufficient that such a configuration is obtained as a result.
  • the same method as that for the first ion conductive layer 115 can be used. Thereafter, a conductive material, a binder, a solvent, and the like are mixed with the secondary particles 114 that are laminated and coated with the first ion conductive layer 115 and the second ion conductive layer 116 to produce a positive electrode mixture slurry.
  • a desired positive electrode mixture layer 112 can be formed by applying and heating and drying a positive electrode mixture slurry.
  • a ceramic electrolyte powder to be the second ion conductive layer 116 is separately prepared and mixed with the secondary particles 114 coated with the first ion conductive layer 115 together with a conductive material, a binder, a solvent, and the like.
  • a positive electrode mixture slurry is prepared.
  • heat treatment in the atmosphere or in an atmosphere of nitrogen or argon with a controlled oxygen concentration, a temperature of 300 ° C. or higher and 1000 ° C. or lower
  • the positive electrode mixture layer 112 can be formed while forming the conductive layer 116 in a desired form.
  • the second ion conductive layer 116 when an ion conductive polymer to which a lithium salt is added is used as the second ion conductive layer 116, first, the lithium salt, the ion conductive polymer, an appropriate solvent (for example, a nonaqueous solvent), and the first ion conductive layer.
  • the secondary particles 114 coated with 115 are mixed well. Thereafter, a conductive material and a binder are further mixed to produce a positive electrode mixture slurry.
  • the positive electrode mixture layer 112 can be formed while the second ion conductive layer 116 is formed in a desired form by applying and heating and drying the positive electrode mixture slurry. Further, the second ion conductive layer 116 can be filled in the gap between the secondary particles 114.
  • the mixing ratio of the positive electrode active material (secondary particle 114) and the ion conductive layer (first ion conductive layer 115, second ion conductive layer 116) is the secondary particle 114 when the total of both is 100 parts by mass. Is preferably 60 parts by mass or more and 90 parts by mass or less, and the ion conductive layer is preferably the remainder (that is, 10 parts by mass or more and 40 parts by mass or less).
  • the mixing ratio of the secondary particles 114 is less than 60 parts by mass, the positive electrode active material is insufficient and the energy density of the secondary battery is lowered.
  • the mixing ratio of the secondary particles 114 exceeds 90 parts by mass, the maximum current value that can be charged / discharged due to the lack of the ion conductive layer is reduced, and the cycle characteristics are deteriorated.
  • the mixing ratio of the first ion conductive layer 115 is preferably 5 parts by mass or more and 30 parts by mass or less.
  • the mixing ratio of the first ion conductive layer 115 is less than 5 parts by mass, the gap between the primary particles 113 inside the secondary particles 114 cannot be sufficiently filled.
  • the mixing ratio of the first ion conductive layer 115 exceeds 30 parts by mass, the second ion conductive layer 116 is insufficient and the secondary ion 114 cannot be sufficiently laminated and covered with the second ion conductive layer 116.
  • the negative electrode active material when the negative electrode active material is in the form of particles, it is preferable to coat the negative electrode active material particles with the third ion conductive layer.
  • the method of forming the third ion conductive layer on the surface of the negative electrode active material particles there is no particular limitation on the method of forming the third ion conductive layer on the surface of the negative electrode active material particles, and it is sufficient that such a form is obtained as a result.
  • the electrolyte constituting the third ion conductive layer, the ion conductive polymer, a suitable solvent (for example, a non-aqueous solvent), and negative electrode active material particles are mixed well. Thereafter, a conductive material and a binder are further mixed to prepare a negative electrode mixture slurry.
  • the third ion conductive layer can be formed in a desired form by applying and heating and drying the negative electrode mixture slurry. Further, the gap between the negative electrode active material particles can be filled with the third ion conductive layer.
  • the mixing ratio of the negative electrode active material particles and the third ion conductive layer is 70 parts by mass or more and 95 parts by mass or less of the negative electrode active material particles when the total of both is 100 parts by mass, and the remaining third ion conductive layer (That is, 5 parts by mass or more and 30 parts by mass or less).
  • the mixing ratio of the negative electrode active material particles is less than 70 parts by mass, the energy density of the secondary battery decreases.
  • the mixing ratio of the negative electrode active material particles exceeds 95 parts by mass, the maximum current value that can be charged / discharged due to the shortage of the third ion conductive layer is lowered and the cycle characteristics are also lowered.
  • the third ion conductive layer may not be used.
  • the negative electrode active material is formed of a low resistance conductor equivalent to the negative electrode current collector 131 in a foil shape or a plate shape, the negative electrode active material may also serve as the negative electrode current collector 131.
  • the mixing ratio of the conductive material is, when the total of the electrode active material particles and the ion conductive layer is 100 parts by mass, 3 parts by mass or more and 10 parts by mass or less are preferable.
  • the mixing ratio of the conductive material is less than 3 parts by mass, the effect of mixing the conductive material (improvement of conductivity of the electrode mixture layer) is hardly obtained.
  • the mixing ratio of the conductive material exceeds 10 parts by mass, the effect of mixing the conductive material is saturated, and the relative ratio of the electrode active material in the electrode mixture layer is decreased. The energy density of the battery decreases.
  • the formation method of the solid electrolyte layer 120 is not particularly limited, and a conventional method can be used.
  • a ceramic electrolyte is used as the solid electrolyte layer 120
  • the ceramic electrolyte is synthesized and pulverized to prepare a powder of the ceramic electrolyte, and then mixed with a binder, a solvent, etc. to produce a solid electrolyte slurry.
  • a desired solid electrolyte layer 120 can be formed by applying and drying the solid electrolyte slurry.
  • solid electrolyte layer 120 when an ion conductive polymer to which a lithium salt is added is used as the solid electrolyte layer 120, a desired solid electrolyte layer 120 can be formed in the same manner as the formation method in the second ion conductive layer 116.
  • FIG. 2 is a schematic cross-sectional view showing an example of an all-solid lithium secondary battery according to the present invention.
  • the all-solid lithium secondary battery 200 shown in FIG. 2 strip-shaped single cells 100 are stacked via a solid electrolyte layer 120 to form an electrode group 210. Since the solid electrolyte layer 120 does not have fluidity, the solid electrolyte layer 120 can also serve as a separator that prevents a short circuit between the positive electrode 110 and the negative electrode 130 in the all-solid lithium secondary battery. In other words, the all-solid lithium secondary battery 200 does not require a separate separator as used in the conventional non-aqueous electrolyte lithium secondary battery.
  • the structure of the electrode group 210 is not limited to a stack of strip-shaped single cells 100, but is a structure in which long single cells 100 are wound (for example, a columnar shape or a flat columnar shape). There may be.
  • the electrode group 210 is accommodated in a battery container 220 having at least an inner surface electrically insulated so that the accommodated electrode group 210 is not in electrical contact with the battery container 220.
  • a shape for example, a rectangular tube shape, a cylindrical shape, or a flat and long cylindrical shape
  • the material of the battery case 220 is selected from materials having mechanical strength and corrosion resistance (for example, aluminum, stainless steel, nickel-plated steel, aluminum laminate film, engineering plastic).
  • the battery container 220 is sealed with a lid 221 so that oxygen in the atmosphere does not enter the battery.
  • a conventional method for example, welding, caulking, adhesion
  • the positive electrode 110 is connected to the positive electrode external terminal 213 via the positive electrode lead 211, and the negative electrode 130 is connected to the negative electrode external terminal 214 via the negative electrode lead 212.
  • the external terminals 213 and 214 are electrically insulated from the battery container 220 and the lid 221 by an electrical insulating seal 222 so as not to be short-circuited via the battery container 220 and the lid 221.
  • the leads 211 and 212 can take any shape (for example, a wire shape, a foil shape, or a plate shape), and a structure and material that can reduce electrical loss and ensure chemical stability are selected.
  • the electrical insulating seal 222 is selected from materials (for example, a fluororesin, a thermosetting resin, and a glass hermetic seal) that are excellent in electrical insulation and airtightness.
  • an all-solid lithium secondary battery that can be charged and discharged at a high voltage of 3 V or higher can be provided.
  • FIG. 3 is a schematic diagram showing a configuration example of the secondary battery system according to the present invention.
  • two all-solid lithium secondary batteries 200A and 200B are connected in series.
  • the negative external terminal 215 of the all-solid lithium secondary battery 200A arranged on the right side of FIG. 3 is connected to the negative input terminal of the charge / discharge control mechanism 320 by the power cable 311.
  • the negative external terminal 215 of the all solid lithium secondary battery 200B arranged on the left side of the drawing is connected to the positive external terminal 214 of the all solid lithium secondary battery 200A by the power cable 312.
  • the positive external terminal 214 of the all-solid lithium secondary battery 200B is connected to the positive input terminal of the charge / discharge control mechanism 320 by the power cable 313.
  • the charge / discharge control mechanism 320 exchanges power with the external device 330 via the power cables 314 and 315.
  • the external device 330 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge control mechanism 320 in addition to an external load.
  • an inverter and a converter can be provided according to the kind of alternating current and direct current which an external apparatus respond
  • the power generator 340 is connected to the charge / discharge control mechanism 320 via power cables 316 and 317.
  • a power generation device that generates renewable energy for example, a wind power generation device, a geothermal power generation device, or a solar cell
  • a normal power generation device for example, a fuel cell, a gas turbine generator, or the like
  • the charging / discharging control mechanism 320 shifts to the charging mode, supplies power to the external device 330, and charges surplus power to the all-solid lithium secondary batteries 200A and 200B.
  • the charge / discharge control mechanism 320 shifts to the discharge mode so that power is supplied from the all-solid lithium secondary batteries 200A, 200B.
  • the charge / discharge control mechanism 320 preferably stores a program so that such charge / discharge mode transition is automatically performed.
  • the charge / discharge control mechanism 320 preferably stores a program so as to control the charge / discharge range of the all-solid lithium secondary batteries 200A, 200B to a range of 10% to 90%. Thereby, durability of the secondary battery system 300 can be improved.
  • the secondary battery system 300 includes, for example, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, an electric construction machine, a transporting device, a construction machine, a care device, a light vehicle, an electric tool, a robot, and a home use. It can be used as a power source for power storage systems, remote island power storage systems, space stations, and the like.
  • Examples 1 to 7 and Comparative Example 1 were made such that the combinations of the positive electrode active material, the first ion conductive layer, the second ion conductive layer, the solid electrolyte layer, and the negative electrode active material were as shown in Table 1 described later.
  • the electrode groups (1) to (3) were prepared, an all-solid lithium secondary battery was assembled, and the battery characteristics of the produced all-solid lithium secondary battery were evaluated.
  • the ion conductive layer formed on the positive electrode active material particles has a two-layer structure, and the mixing ratio of the positive electrode active material particles, the first ion conductive layer, and the second ion conductive layer is set to “ 60 parts by mass: 10 parts by mass: 30 parts by mass ”.
  • the ion conductive layer formed on the positive electrode active material particles has a single layer structure, and the mixing ratio of the positive electrode active material and the ion conductive layer is set to “60 parts by mass: 40 "Mass parts”.
  • LiCoO 2 average particle size of secondary particles 5 ⁇ m
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 secondary particles of An average particle diameter of 5 ⁇ m
  • LiFePO 4 average particle diameter of secondary particles of 7 ⁇ m
  • Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO 2.94 , Li 2.9 PO 3.3 N 0.4 , 50Li 4 SiO 4 -50Li 3 BO 3 , and LiVO 3 were used as the first ion conductive layer. .
  • the conductivity (unit: S / cm) at 25 ° C. of each first ion conductive layer is also shown in Table 1.
  • the second ion conductive layer polyethylene oxide (PEO) to which lithium trifluoromethanesulfonimide (LiTFSI) was added and Li 7 La 3 Zr 2 O 12 were used.
  • the conductivity (unit: S / cm) at 25 ° C. of each second ion conductive layer is also shown in Table 1.
  • Formation and filling of the first ion conductive layer on the positive electrode active material particles are carried out by thoroughly mixing the phosphate solution of the metal element constituting the first ion conductive layer and the positive electrode active material particles, followed by heat treatment (in air, 650 C.).
  • Example 1 to 3 For samples using PEO to which LiTFSI was added as the second ion conductive layer (Examples 1 to 3), a solution in which LiTFSI and PEO (average molecular weight 20000) were dissolved using propanol as a solvent was prepared.
  • the positive electrode mixture slurries of Examples 1 to 3 were prepared by thoroughly mixing with the positive electrode active material particles having the layer formed therein.
  • the positive electrode mixture slurries of Examples 1 to 3 were applied to both sides of the positive electrode current collector (gold foil with a thickness of 20 ⁇ m) using the doctor blade method, and dried by heating (in the atmosphere, 150 ° C.). A positive electrode mixture layer was formed. Thereafter, it was compression-molded by a roll press and cut into a predetermined size to produce positive electrodes of Examples 1 to 3.
  • the positive electrode mixture slurries of Examples 4 to 7 were applied to both surfaces of the positive electrode current collector (gold foil with a thickness of 20 ⁇ m) using the doctor blade method, and after heat drying (in the atmosphere, 150 ° C.) Then, heat treatment (in an argon atmosphere, 700 ° C.) was performed to form a positive electrode mixture layer. Thereafter, the positive electrodes of Examples 4 to 7 were produced by cutting into a predetermined size.
  • the ion conduction layer of Comparative Example 1 was only Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 used as the first ion conduction layer in Example 4.
  • the ion conductive layer was formed on the positive electrode active material particles after thoroughly mixing the phosphate solution of the metal element constituting the ion conductive layer and the positive electrode active material particles, followed by heat treatment (in air , 650 ° C.). Thereafter, ethyl cellulose (binder) and butyl carbitol acetate (solvent) were added to and mixed with the positive electrode active material particles on which the ion conductive layer was formed to prepare the positive electrode mixture slurry of Comparative Example 1.
  • the positive electrode mixture slurry of Comparative Example 1 was applied to both surfaces of the positive electrode current collector (gold foil with a thickness of 20 ⁇ m) using the doctor blade method in the same manner as in Example 1, and dried by heating (in the atmosphere, 150 ° C) to form a positive electrode mixture layer. Then, it compression-molded with the roll press machine, cut
  • the positive electrode of Comparative Example 1 can be said to be an example in which the second ion conductive layer is absent from the positive electrode of Example 4.
  • the ion conductive layer of Comparative Example 2 was only Li 7 La 3 Zr 2 O 12 used as the second ion conductive layer in Example 4.
  • Li 7 La 3 Zr 2 O 12 powder (average particle size 300 nm) and positive electrode active material particles were mixed well, then ethyl cellulose (binder) and butyl carbitol acetate (solvent) were further added and mixed. Two positive electrode mixture slurries were prepared.
  • the ion conductive layer of Comparative Example 3 includes the ion conductive layer material (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ) of Comparative Example 1 and the ion conductive layer material (Li 7 La 3 Zr 2 O 12 ) of Comparative Example 2. A mixture of was used.
  • Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 was prepared as a powder having an average particle diameter of 300 nm by preparing a bulk of the substance using a sol-gel method and pulverizing the obtained bulk.
  • the mixing ratio of the positive electrode active material particles, the Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 powder, and the Li 7 La 3 Zr 2 O 12 powder is “60 parts by mass: 10 parts by mass: 30 parts by mass”, and they are often used.
  • ethyl cellulose (binder) and butyl carbitol acetate (solvent) were further added and mixed to prepare the positive electrode mixture slurry of Comparative Example 3.
  • the positive electrode mixture slurries of Comparative Examples 2 to 3 were applied to both surfaces of the positive electrode current collector (gold foil with a thickness of 20 ⁇ m) using the doctor blade method, as in Examples 4 to 7, and dried by heating. After heat treatment (in air, 150 ° C.), heat treatment (in argon atmosphere, 700 ° C.) was performed to form a positive electrode mixture layer. Thereafter, the positive electrodes of Comparative Examples 2 to 3 were produced by cutting into a predetermined size.
  • the positive electrode of Comparative Example 2 can be said to be an example in which the first ion conductive layer is absent from the positive electrode of Example 4. Further, the positive electrode of Comparative Example 3 can be said to be an example in which the first ion conductive layer and the second ion conductive layer are not in a laminated structure with respect to the positive electrode of Example 4.
  • Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 was used as the solid electrolyte layer.
  • a predetermined amount of Li 3 PO 4 , AlPO 4 , and TiPO 4 as raw materials are mixed, melted at a high temperature of 1000 to 1500 ° C., and then rapidly cooled to obtain glassy Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 bulk was obtained.
  • the bulk was pulverized to prepare Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 powder (average particle size 300 nm). Thereafter, ethyl cellulose (binder) and butyl carbitol acetate (solvent) were added and mixed to prepare a solid electrolyte slurry.
  • the solid electrolyte slurry was applied to both surfaces of the positive electrode and the negative electrode prepared in advance using a doctor blade method, and the solvent was evaporated to form a solid electrolyte layer.
  • the positive electrode and the negative electrode are alternately laminated through the solid electrolyte layer, and the laminate is dried by heating (in the atmosphere, 150 ° C.) and then compression-molded by a press machine.
  • the electrode groups of Examples 1 to 3 were produced. The whole was heated to 100 ° C. during compression molding, and each electrode and the solid electrolyte layer were brought into close contact with each other.
  • the electrical conductivity (unit: S / cm) at 25 ° C. of the solid electrolyte layer is also shown in Table 1.
  • Examples 1, 2, 4, 5, 7 and Comparative Examples 1 to 3 For secondary batteries using LiCoO 2 or LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material (Examples 1, 2, 4, 5, 7 and Comparative Examples 1 to 3) First, the secondary battery was placed in an environment of 120 ° C. to stabilize the temperature. Next, the battery was charged at a constant current (2.5 A) corresponding to a 2-hour rate (0.5 C rate) until the battery voltage reached 4.2 V from the open circuit state. After the battery voltage reached 4.2 V, 4.2 V was maintained until the current value was equivalent to 100 hours. Thereafter, charging was stopped and a 30-minute rest period was provided. Next, constant current discharge corresponding to a 2-hour rate (0.5 C rate) was started, and the battery was discharged until the battery voltage reached 3.0 V. Thereafter, the discharge was stopped and a 30 minute rest period was provided. The process so far is referred to as initial aging. The discharge capacity obtained after repeating this initial aging three times was used as the 0.5 C rate initial capacity of the secondary battery
  • the charge / discharge time rate means a current value for charging / discharging the design capacity of the secondary battery in a predetermined time.
  • the 1 hour rate (1C rate) is a current value for charging and discharging the design capacity of the secondary battery in 1 hour.
  • the current value of the 2-hour rate is C / 2 (unit: A).
  • Example 5 Each of the secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 was manufactured, and the above test was performed in the same manner to calculate the average value of 0.5C rate initial capacity. For the rated capacity, an initial capacity of 0.5C rate of 95% or more was evaluated as “pass”, and an initial capacity of 0.5C rate of less than 95% was evaluated as “fail”. The results are shown in Table 2 described later.
  • the average value of 5 pieces was calculated as above.
  • the 1C rate initial capacity of 90% or more with respect to the rated capacity was evaluated as “pass”, and the 0.5C rate initial capacity of less than 90% was evaluated as “fail”.
  • the results are shown in Table 2.
  • Comparative Example 1 having no second ion conductive layer there is a high possibility that the contact between the positive electrode mixture layer and the solid electrolyte layer is insufficient, and charging in a high-temperature environment. It is thought that the deterioration of the solid electrolyte layer was induced by the discharge. As a result, it was considered that the 1C rate initial capacity and the 0.5C rate capacity after 20 cycles were significantly reduced.
  • Comparative Example 2 having no first ion conductive layer, the initial capacity of the 0.5C rate is greatly reduced because the gap between the primary particles constituting the positive electrode active material secondary particles is not filled with the ion conductive layer. It was considered.
  • the second ion conductive layer is in direct contact with the positive electrode active material particles, it is considered that the second ion conductive layer, which has lower oxidation resistance than the first ion conductive layer, was oxidized and deteriorated due to charge / discharge in a high temperature environment. It was.
  • the second ion conductive layer is in direct contact with the positive electrode active material particles and constitutes the positive electrode active material secondary particles. Since the gap between the particles was not filled with the ion conductive layer, it was considered that the result was as if the weak points of Comparative Examples 1 and 2 were combined.
  • the secondary batteries of Examples 1 to 7 passed all the test evaluations of 0.5C rate initial capacity, 1C rate initial capacity, and 0.5C rate capacity after 20 cycles. That is, the secondary battery according to the present invention can be used in a higher temperature environment than the conventional non-aqueous electrolyte lithium secondary battery, and is a bulk-type all solid that balances charge and discharge characteristics and cycle characteristics at a high level. It was proved to be a lithium secondary battery.

Abstract

The purpose of the present invention is to provide a bulk-type all-solid-state lithium secondary battery which is able to be used in a higher temperature environment in comparison to conventional nonaqueous electrolyte lithium secondary batteries, while achieving a good balance between charge/discharge characteristics and cycle characteristics at high levels. An all-solid-state lithium secondary battery according to the present invention is characterized in that: a positive electrode and a negative electrode are laminated, with a solid electrolyte layer being interposed therebetween; the positive electrode contains positive electrode active material particles, a first ion conducting layer and a second ion conducting layer; the positive electrode active material particles are in the form of secondary particles, in each of which primary particles aggregate; the first ion conducting layer is a substance that transmits lithium ions between the positive electrode active material particles and the second ion conducting layer, and covers the secondary particles, while filling up the gaps among the primary particles which constitute the secondary particles; the second ion conducting layer is a substance that transmits lithium ions between the first ion conducting layer and the solid electrolyte layer, and additionally covers the secondary particles that are covered by the first ion conducting layer; and the first ion conducting layer, the second ion conducting layer and the solid electrolyte layer are formed from substances that are different from each other.

Description

全固体リチウム二次電池および該二次電池を備えた二次電池システムAll-solid lithium secondary battery and secondary battery system including the secondary battery
 本発明は、リチウムイオン二次電池に関し、特に、リチウムイオンを伝搬する電解質として固体電解質を用いた全固体リチウム二次電池、および該二次電池を備えた二次電池システムに関するものである。 The present invention relates to a lithium ion secondary battery, and more particularly to an all-solid lithium secondary battery using a solid electrolyte as an electrolyte that propagates lithium ions, and a secondary battery system including the secondary battery.
 リチウムイオン二次電池は、その他の二次電池と比較して高いエネルギー密度を有することから、二次電池の小型・軽量化や大容量・高出力化に有利である。そのため、リチウムイオン二次電池の用途は、小型電子機器(例えば、携帯パソコンや、携帯電話機)に加えて、大型電気機器(例えば、HEV(ハイブリッド自動車)やEV(電気自動車)などの自動車用動力電源や、電力貯蔵用電源)にも拡大してきている。 Since lithium ion secondary batteries have a higher energy density than other secondary batteries, they are advantageous for reducing the size and weight of secondary batteries and increasing their capacity and output. For this reason, lithium-ion secondary batteries are used for power sources for automobiles such as small electric devices (for example, portable personal computers and mobile phones) and large electric devices (for example, HEV (hybrid vehicles) and EVs (electric vehicles)). Power supply and power storage power source).
 近年では、大型電気機器に対するリチウムイオン二次電池の利用性拡大の観点から、エンジンルーム内や屋外などの高温環境での設置が検討されており、少なくとも80℃以上の耐熱性を有するリチウムイオン二次電池が求められている。しかしながら、非水電解液を用いる従来のリチウムイオン二次電池は、一般的に非水電解液の耐熱温度が60℃程度と言われている上に、非水電解液を構成する溶媒が引火性を有するため、耐熱性・耐火性の観点で弱点がある。 In recent years, from the viewpoint of expanding the availability of lithium ion secondary batteries for large electrical equipment, installation in a high temperature environment such as in an engine room or outdoors has been studied, and lithium ion secondary batteries having a heat resistance of at least 80 ° C. or more are being studied. Secondary batteries are in demand. However, the conventional lithium ion secondary battery using a non-aqueous electrolyte is generally said to have a heat resistance temperature of about 60 ° C., and the solvent constituting the non-aqueous electrolyte is flammable. Therefore, there is a weak point from the viewpoint of heat resistance and fire resistance.
 これに対し、非水電解液の代わりに固体電解質を用いた全固体リチウム二次電池が、現在、精力的に研究されている。全固体リチウム二次電池は、用いられる固体電解質(例えば、固体高分子電解質、無機電解質)が100℃を超える耐熱温度を有し引火性もないことから、非水電解液を用いる従来のリチウムイオン二次電池よりも高温環境での利用が可能になる利点がある。また、全固体リチウム二次電池は、従来の非水電解液リチウム二次電池よりもエネルギー密度を高めることができるとも言われている。 In contrast, all-solid lithium secondary batteries using solid electrolytes instead of non-aqueous electrolytes are currently being actively researched. All solid-state lithium secondary batteries use conventional lithium ions that use non-aqueous electrolytes because the solid electrolytes used (eg, solid polymer electrolytes and inorganic electrolytes) have a heat-resistant temperature exceeding 100 ° C and are not flammable. There is an advantage that it can be used in a higher temperature environment than a secondary battery. It is also said that the all solid lithium secondary battery can increase the energy density as compared with the conventional non-aqueous electrolyte lithium secondary battery.
 一方、全固体リチウム二次電池では、リチウムイオン伝導経路としての固体電解質が流動性を有しないことから、二次電池の高出力化のためには、固体電解質自体が高いイオン伝導性を有する必要があると共に、固体電解質と電極活物質との間でリチウムイオンの良好な伝導パスを構築する(イオン伝導の障害を極力低減する)必要がある。ただし、イオン伝導性が高い固体電解質は、電極活物質(特に、正極活物質)と直接接触した状態で充放電を繰り返すと酸化劣化し易いことが知られており、二次電池の長寿命化(例えば、サイクル特性向上)の観点から、固体電解質の劣化防止のための工夫が必要である。 On the other hand, in an all-solid lithium secondary battery, the solid electrolyte as a lithium ion conduction path does not have fluidity. Therefore, in order to increase the output of the secondary battery, the solid electrolyte itself needs to have high ionic conductivity. In addition, it is necessary to construct a good conduction path for lithium ions between the solid electrolyte and the electrode active material (to reduce the obstacle of ion conduction as much as possible). However, it is known that solid electrolytes with high ion conductivity are prone to oxidative degradation if they are repeatedly charged and discharged in direct contact with an electrode active material (especially a positive electrode active material). From the viewpoint of (for example, improving cycle characteristics), a device for preventing deterioration of the solid electrolyte is necessary.
 例えば、特許文献1(再公表WO2006/018921)には、正極材と負極材との間に有機電解質を介在させたポリマーリチウム二次電池であって、正極を構成する正極活物質粒子の表面が、該正極活物質より酸素を供給されても容易に酸化することのないイオン伝導性および電子伝導性を有する付着物により少なくともその一部が被覆されている、ことを特徴とするポリマーリチウム二次電池が開示されている。さらに、前記付着物は、イオン伝導性を有する無機固体電解質の微粒子と電子伝導性を有する導電材の微粒子とから構成され、前記無機固体電解質の微粒子は、リチウムを含む、リン酸塩、ケイ酸塩、ホウ酸塩、硫酸塩、アルミン酸塩等のいずれか、又はこれらの混合物からなる、ことが開示されている。 For example, Patent Document 1 (Republished WO2006 / 018921) discloses a polymer lithium secondary battery in which an organic electrolyte is interposed between a positive electrode material and a negative electrode material, and the surface of the positive electrode active material particles constituting the positive electrode is A polymer lithium secondary, characterized in that at least a part thereof is coated with a deposit having ion conductivity and electron conductivity that is not easily oxidized even when oxygen is supplied from the positive electrode active material. A battery is disclosed. Further, the deposit is composed of fine particles of an inorganic solid electrolyte having ion conductivity and fine particles of a conductive material having electronic conductivity, and the fine particles of the inorganic solid electrolyte include phosphate, silicic acid containing lithium. It is disclosed that it consists of any one of salts, borates, sulfates, aluminates and the like, or a mixture thereof.
 また、特許文献2(特開2007-059409)には、正極材と負極材との間に高分子固体電解質を介在させた全固体型電池であって、正極を構成する正極活物質粒子の表面の少なくとも一部又は全面に、該正極活物質より酸素を供給されても容易に酸化することのなく、かつ、リチウムを含有する無機酸化物を付着させた、ことを特徴とする全固体型電池が開示されている。さらに、前記無機酸化物は、金属元素および酸素のみから構成され、LiAlO2が好ましい、ことが開示されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-059409) discloses an all solid state battery in which a polymer solid electrolyte is interposed between a positive electrode material and a negative electrode material, and the surface of positive electrode active material particles constituting the positive electrode. An all solid state battery characterized in that an inorganic oxide containing lithium is adhered to at least a part or the entire surface of the battery without being easily oxidized even when oxygen is supplied from the positive electrode active material. Is disclosed. Furthermore, it is disclosed that the inorganic oxide is composed only of a metal element and oxygen, and LiAlO 2 is preferable.
 特許文献1~2(再公表WO2006/018921や特開2007-059409)に記載された全固体リチウム二次電池は、高電圧下での高分子固体電解質の酸化分解を抑制してサイクル特性を向上させるとともに、高エネルギー密度化を達成することができるとされている。 The all-solid lithium secondary battery described in Patent Documents 1 and 2 (republished WO2006 / 018921 and JP2007-059409) improves cycle characteristics by suppressing oxidative decomposition of the polymer solid electrolyte under high voltage In addition, it is said that high energy density can be achieved.
再公表WO2006/018921号公報Republished WO2006 / 018921 特開2007-059409号公報JP 2007-059409 A
 特許文献1~2(再公表WO2006/018921や特開2007-059409)によると、正極活物質粒子の表面は、イオン伝導性を有する無機固体電解質粒子によって少なくともその一部が被覆されていればよいとされている。これは、該無機固体電解質粒子が、リチウムイオンが高分子固体電解質(有機電解質)に抜け出るためのゲートウェイとなると共に、正極活物質と高分子固体電解質とが直接接触することを妨げ、この部分での高分子固体電解質の酸化分解を抑制できるためとされている。また、該無機固体電解質粒子により被覆されていない正極活物質粒子の表面部分は、リチウムイオンが高分子固体電解質に抜け出るためのゲートウェイとならないため、この部分の正極活物質粒子/高分子固体電解質界面に副生成物が堆積したとしても電池性能を大きく低下させる要因にはならないためとされている。 According to Patent Documents 1 and 2 (republished WO2006 / 018921 and JP2007-059409), the surface of the positive electrode active material particles only needs to be at least partially coated with inorganic solid electrolyte particles having ion conductivity. It is said that. This is because the inorganic solid electrolyte particles serve as a gateway for lithium ions to escape to the polymer solid electrolyte (organic electrolyte) and prevent the positive electrode active material and the polymer solid electrolyte from coming into direct contact. This is because the oxidative decomposition of the polymer solid electrolyte can be suppressed. Further, since the surface portion of the positive electrode active material particles not covered with the inorganic solid electrolyte particles does not serve as a gateway for lithium ions to escape to the polymer solid electrolyte, the positive electrode active material particles / polymer solid electrolyte interface of this portion Even if a by-product is deposited on the battery, it does not cause a significant decrease in battery performance.
 しかしながら、リチウムイオンのゲートウェイとなる無機固体電解質粒子が、正極活物質粒子表面の一部のみに付着しているということは、リチウムイオンの導通路が少なくかつ狭いことを意味し、正極活物質粒子と高分子固体電解質との間の実効的なイオン伝導抵抗が高くなることにつながると考えられる。また、粒子同士の付着は、原理的に点接触に近いと考えられるため、仮に正極活物質粒子の表面全体を無機固体電解質粒子が覆ったとしても、実効的な接触面積はさほど大きくないと考えられる。そして、それらの結果として、特許文献1~2(再公表WO2006/018921や特開2007-059409)に記載の二次電池は、充放電特性(例えば、充放電レート)に制約が生じることが危惧される。 However, the fact that the inorganic solid electrolyte particles serving as the lithium ion gateway are attached to only a part of the surface of the positive electrode active material particles means that the lithium ion conduction paths are small and narrow, and the positive electrode active material particles It is thought that the effective ionic conduction resistance between the solid electrolyte and the polymer solid electrolyte is increased. In addition, since the adhesion between particles is considered to be close to point contact in principle, even if the entire surface of the positive electrode active material particles is covered with inorganic solid electrolyte particles, the effective contact area is not so large. It is done. As a result, the secondary batteries described in Patent Documents 1 and 2 (republished WO2006 / 018921 and Japanese Patent Application Laid-Open No. 2007-059409) are likely to be restricted in charge / discharge characteristics (for example, charge / discharge rate). It is.
 一方、大型電気機器用の二次電池を想定した場合、小型電子機器用の二次電池のような比較的短期間での交換は、経済的観点から許容されるものではない。言い換えると、大型電気機器用の二次電池では、その長寿命化(例えば、サイクル特性向上)は至上命題の内の一つである。 On the other hand, when assuming a secondary battery for a large electric device, replacement in a relatively short period of time such as a secondary battery for a small electronic device is not allowed from an economical viewpoint. In other words, in a secondary battery for a large electric device, extending its life (for example, improving cycle characteristics) is one of the most promising issues.
 なお、全固体リチウム二次電池はバルク型と薄膜型とに大別できるが、電池容量の観点からは電極活物質の絶対量を多くできるバルク型が有利である。すなわち、大型電気機器用の大容量二次電池を想定した場合、バルク型の全固体リチウム二次電池が対象となる。言い換えると、バルク型の構成であれば電池容量に余裕が取れるので、電気機器の大小(消費電力量の大小)による制約が少なくなり、幅広く適用することが可能となる。 Although all solid lithium secondary batteries can be broadly classified into bulk types and thin film types, a bulk type that can increase the absolute amount of the electrode active material is advantageous from the viewpoint of battery capacity. That is, when a large-capacity secondary battery for large-sized electrical equipment is assumed, a bulk-type all-solid lithium secondary battery is a target. In other words, since the battery capacity can be afforded with a bulk type configuration, there is less restriction due to the size of the electric device (the amount of power consumption), and the device can be widely applied.
 したがって、本発明の目的は、従来の非水電解液リチウム二次電池よりも高温環境で利用可能であり、かつ充放電特性とサイクル特性とが高いレベルでバランスしたバルク型の全固体リチウム二次電池、および該全固体リチウム二次電池を備えた二次電池システムを提供することにある。 Accordingly, an object of the present invention is to provide a bulk type all-solid lithium secondary battery that can be used in a higher temperature environment than a conventional non-aqueous electrolyte lithium secondary battery and has a high balance between charge / discharge characteristics and cycle characteristics. An object of the present invention is to provide a battery and a secondary battery system including the all-solid lithium secondary battery.
 (I)本発明の一態様は、正極と負極とが固体電解質層を介して積層された全固体リチウム二次電池であって、
前記正極は、正極活物質粒子と第一イオン伝導層と第二イオン伝導層とを含み、
前記正極活物質粒子は、複数の一次粒子が集合した二次粒子を形成しており、
前記第一イオン伝導層は、前記正極活物質粒子と前記第二イオン伝導層との間でリチウムイオンを媒介する物質であり、前記二次粒子を被覆すると共に該二次粒子を構成する前記一次粒子同士の間隙に充満しており、
前記第二イオン伝導層は、前記第一イオン伝導層と前記固体電解質層との間でリチウムイオンを伝導する物質であり、前記第一イオン伝導層で被覆された前記二次粒子を積層被覆しており、
前記第一イオン伝導層と前記第二イオン伝導層と前記固体電解質層とが互いに異なる物質からなることを特徴とする全固体リチウム二次電池を提供する。
(I) One aspect of the present invention is an all-solid lithium secondary battery in which a positive electrode and a negative electrode are stacked via a solid electrolyte layer,
The positive electrode includes positive electrode active material particles, a first ion conductive layer, and a second ion conductive layer,
The positive electrode active material particles form secondary particles in which a plurality of primary particles are aggregated,
The first ion conductive layer is a material that mediates lithium ions between the positive electrode active material particles and the second ion conductive layer, and covers the secondary particles and constitutes the secondary particles. It fills the gaps between the particles,
The second ion conductive layer is a substance that conducts lithium ions between the first ion conductive layer and the solid electrolyte layer, and the secondary particles coated with the first ion conductive layer are laminated and coated. And
An all-solid lithium secondary battery is provided, wherein the first ion conductive layer, the second ion conductive layer, and the solid electrolyte layer are made of different materials.
 本発明は、上記の発明に係る全固体リチウム二次電池(I)において、以下のような改良や変更を加えることができる。
(i)前記第一イオン伝導層の導電率が1×10-6 S/cm以上1×10-3 S/cm以下であり、前記第二イオン伝導層の導電率が1×10-5 S/cm以上1×10-2 S/cm以下であり、前記固体電解質層の導電率が1×10-4 S/cm以上である。
(ii)前記第一イオン伝導層はリチウムを含む酸化物電解質からなり、前記第二イオン伝導層はリチウム塩を含むイオン伝導性ポリマまたはリチウムを含むセラミック電解質からなる。
(iii)前記正極活物質粒子と前記第一イオン伝導層と前記第二イオン伝導層との合計を100質量部としたときに、前記正極活物質粒子が60質量部以上90質量部以下で含まれる。
(iv)前記正極活物質粒子と前記第一イオン伝導層と前記第二イオン伝導層との合計を100質量部としたときに、前記第一イオン伝導層が5質量部以上30質量部以下で含まれる。
(v)前記固体電解質層の導電率は、前記第二イオン伝導層の導電率よりも高い。
(vi)前記正極は、導電材を更に含む。
In the all solid lithium secondary battery (I) according to the present invention, the present invention can be improved or changed as follows.
(I) The conductivity of the first ion conductive layer is 1 × 10 −6 S / cm or more and 1 × 10 −3 S / cm or less, and the conductivity of the second ion conductive layer is 1 × 10 −5 S / cm or more and 1 × 10 −2 S / cm or less, and the conductivity of the solid electrolyte layer is 1 × 10 −4 S / cm or more.
(Ii) The first ion conductive layer is made of an oxide electrolyte containing lithium, and the second ion conductive layer is made of an ion conductive polymer containing lithium salt or a ceramic electrolyte containing lithium.
(Iii) When the total of the positive electrode active material particles, the first ion conductive layer, and the second ion conductive layer is 100 parts by mass, the positive electrode active material particles are included in an amount of 60 parts by mass to 90 parts by mass. It is.
(Iv) When the total of the positive electrode active material particles, the first ion conductive layer, and the second ion conductive layer is 100 parts by mass, the first ion conductive layer is 5 parts by mass or more and 30 parts by mass or less. included.
(V) The conductivity of the solid electrolyte layer is higher than the conductivity of the second ion conductive layer.
(Vi) The positive electrode further includes a conductive material.
 (II)本発明の他の一態様は、上記の発明に係る全固体リチウム二次電池を備えたことを特徴とする二次電池システムを提供する。 (II) Another aspect of the present invention provides a secondary battery system including the all-solid lithium secondary battery according to the above invention.
 本発明によれば、大容量化が容易なバルク型の全固体リチウム二次電池であって、従来の非水電解液リチウム二次電池よりも高温環境で利用可能であり、かつ充放電特性とサイクル特性とが高いレベルでバランスした全固体リチウム二次電池を提供することができる。また、該全固体リチウム二次電池を用いることによって、従来の非水電解液リチウム二次電池よりも高温環境で利用可能な二次電池システムを提供することができる。 According to the present invention, it is a bulk-type all-solid lithium secondary battery that can be easily increased in capacity, can be used in a higher temperature environment than a conventional non-aqueous electrolyte lithium secondary battery, and has charge and discharge characteristics. It is possible to provide an all-solid lithium secondary battery in which the cycle characteristics are balanced at a high level. In addition, by using the all solid lithium secondary battery, it is possible to provide a secondary battery system that can be used in a higher temperature environment than a conventional non-aqueous electrolyte lithium secondary battery.
本発明に係る全固体リチウム二次電池における単セルの基本構造を示す断面模式図および正極の拡大断面模式図である。It is the cross-sectional schematic diagram which shows the basic structure of the single cell in the all-solid-state lithium secondary battery which concerns on this invention, and the expanded cross-sectional schematic diagram of a positive electrode. 本発明に係る全固体リチウム二次電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the all-solid-state lithium secondary battery which concerns on this invention. 本発明に係る二次電池システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the secondary battery system which concerns on this invention.
 (本発明の基本思想)
 前述したように、全固体リチウム二次電池においては、固体電解質層が高いイオン伝導性を有する必要があると共に、固体電解質層と電極活物質粒子との間でリチウムイオンの良好な伝導パスを構築する必要がある。また、イオン伝導性が高い固体電解質層は、電極活物質粒子(特に、正極活物質粒子)と直接接触した状態で充放電を繰り返すと酸化劣化し易いことが知られており、固体電解質層の劣化防止のための工夫が必要である。
(Basic idea of the present invention)
As described above, in an all-solid lithium secondary battery, the solid electrolyte layer needs to have high ionic conductivity, and a good conduction path for lithium ions is established between the solid electrolyte layer and the electrode active material particles. There is a need to. In addition, it is known that a solid electrolyte layer having high ion conductivity is likely to be oxidized and deteriorated when repeated charging and discharging in direct contact with electrode active material particles (particularly positive electrode active material particles). A device to prevent deterioration is necessary.
 固体電解質層の劣化抑制に関しては、特許文献1~2(再公表WO2006/018921や特開2007-059409)で教示されているように耐酸化性のイオン伝導物質を電極活物質粒子の表面に形成することは、有効な解の一つと考えられる。ただし、特許文献1~2(再公表WO2006/018921や特開2007-059409)で教示されている全固体リチウム二次電池は、充放電特性やサイクル特性において、更なる改善の余地があると考えられた。 Regarding the suppression of deterioration of the solid electrolyte layer, an oxidation-resistant ion conductive material is formed on the surface of the electrode active material particles as taught in Patent Documents 1 and 2 (Republished WO2006 / 018921 and JP2007-059409). Doing is considered one of the effective solutions. However, all-solid lithium secondary batteries taught in Patent Documents 1 and 2 (republished WO2006 / 018921 and JP2007-059409) are considered to have room for further improvement in charge / discharge characteristics and cycle characteristics. It was.
 そこで、本発明者等は、バルク型の全固体リチウム二次電池における充放電特性やサイクル特性に影響を与える因子について、詳細な調査・検討を行った。その調査・検討の結果、電極活物質粒子は、微細な一次粒子が複数集合した二次粒子を形成し易く、該二次粒子中の一次粒子同士の間には空隙が残存していることが判った。このことから、二次粒子を構成する最外周の一次粒子は、二次電池の充放電に直接的に寄与するが、二次粒子の内部の一次粒子(耐酸化性のイオン伝導物質と接していない一次粒子)は、二次電池の充放電への寄与が小さいため、充放電特性に制約が生じていると考えられた。 Therefore, the present inventors conducted a detailed investigation and examination on factors affecting the charge / discharge characteristics and cycle characteristics of the bulk type all-solid lithium secondary battery. As a result of the investigation and examination, the electrode active material particles are likely to form secondary particles in which a plurality of fine primary particles are aggregated, and voids remain between the primary particles in the secondary particles. understood. From this, the primary particles on the outermost circumference constituting the secondary particles directly contribute to the charge and discharge of the secondary battery, but the primary particles inside the secondary particles (in contact with the oxidation-resistant ion conductive material). No primary particles) have a small contribution to the charge / discharge of the secondary battery, and thus it is considered that the charge / discharge characteristics are restricted.
 また、二次電池の充放電の繰り返し等によって二次粒子が破砕した場合、表面に耐酸化性のイオン伝導物質が形成されていない一次粒子が露出することになる。そして、その新たに露出した一次粒子が固体電解質と接触すると、固体電解質層の酸化劣化(それによるサイクル特性の劣化)の要因になると考えられた。 Also, when the secondary particles are crushed due to repeated charging / discharging of the secondary battery, the primary particles on which the oxidation-resistant ion conductive material is not formed are exposed on the surface. When the newly exposed primary particles come into contact with the solid electrolyte, it is considered that it causes oxidation deterioration of the solid electrolyte layer (thereby causing deterioration of cycle characteristics).
 本発明者等は、上記のような問題点を克服すべく鋭意研究を行った。その結果、第一イオン伝導層で電極活物質の二次粒子を被覆すると共に該二次粒子を構成する一次粒子同士の間隙を充満することによって、全ての一次粒子を二次電池の充放電に直接的に寄与させられることを見出した。また、第一イオン伝導層で被覆された二次粒子を、第一イオン伝導層と異なる物質からなる第二イオン伝導層で積層被覆することによって、充放電の繰り返しによる二次粒子の破砕を抑制できる可能性を見出した。本発明は、当該知見に基づいて完成されたものである。 The present inventors have conducted intensive research to overcome the above problems. As a result, by covering the secondary particles of the electrode active material with the first ion conductive layer and filling the gaps between the primary particles constituting the secondary particles, all the primary particles can be used for charging and discharging of the secondary battery. It was found that it can be directly contributed. In addition, secondary particles coated with the first ion conductive layer are covered with a second ion conductive layer made of a material different from the first ion conductive layer, thereby suppressing secondary particle crushing due to repeated charge and discharge. I found a possibility. The present invention has been completed based on this finding.
 以下、本発明に係る実施形態について、図面を参照しながらより具体的に説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。また、図面において、同義の部材・部位には同じ符号を付して重複する説明を省略する。 Hereinafter, embodiments according to the present invention will be described more specifically with reference to the drawings. However, the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the invention. In the drawings, the same reference numerals are given to the same members / parts, and duplicate descriptions are omitted.
 [全固体リチウム二次電池の単セルの基本構造]
 図1は、本発明に係る全固体リチウム二次電池における単セルの基本構造を示す断面模式図および正極の拡大断面模式図である。図1に示したように、本発明に係る全固体リチウム二次電池の単セル100は、正極110と負極130とが固体電解質層120を介して積層されている。正極110は、正極集電体111と正極合剤層112とからなり、負極130は、負極集電体131と負極合剤層132とからなる。
[Basic structure of a single cell of an all-solid lithium secondary battery]
FIG. 1 is a schematic cross-sectional view showing a basic structure of a single cell in an all-solid lithium secondary battery according to the present invention and an enlarged schematic cross-sectional view of a positive electrode. As shown in FIG. 1, a single cell 100 of an all solid lithium secondary battery according to the present invention has a positive electrode 110 and a negative electrode 130 stacked with a solid electrolyte layer 120 interposed therebetween. The positive electrode 110 includes a positive electrode current collector 111 and a positive electrode mixture layer 112, and the negative electrode 130 includes a negative electrode current collector 131 and a negative electrode mixture layer 132.
 各構成材に関して、より具体的に説明する。 各 More specific explanation will be given for each component.
 (正極集電体)
 正極集電体111は、後述するイオン伝導層・固体電解質層を形成する際の熱処理に耐えられる耐熱性を有する低抵抗導電体であれば特段の限定はなく、従前の非水電解液リチウム二次電池における正極集電体と同様のものを用いることができる。例えば、金属箔(厚さ10μm以上100μm以下)、穿孔金属箔(厚さ10μm以上100μm以下、孔径0.1 mm以上10 mm以下)、エキスパンドメタル、発泡金属板、ガラス状炭素板などが挙げられる。また、金属種としては、アルミニウム、ステンレス鋼、チタン、貴金属(例えば、金、銀、白金)などを用いることができる。
(Positive electrode current collector)
The positive electrode current collector 111 is not particularly limited as long as it is a low-resistance conductor having heat resistance that can withstand heat treatment when forming an ion conductive layer / solid electrolyte layer described later. The same thing as the positive electrode electrical power collector in a secondary battery can be used. For example, metal foil (thickness of 10 μm or more and 100 μm or less), perforated metal foil (thickness of 10 μm or more and 100 μm or less, pore diameter of 0.1 mm or more and 10 mm or less), expanded metal, foamed metal plate, glassy carbon plate and the like can be mentioned. Moreover, as a metal seed | species, aluminum, stainless steel, titanium, a noble metal (for example, gold, silver, platinum) etc. can be used.
 (正極合剤層)
 正極合剤層112は、正極活物質粒子(一次粒子113、二次粒子114)と第一イオン伝導層115と第二イオン伝導層116とを含む。また、正極合剤層112の導電性向上を意図して、正極活物質の二次粒子114に付着させるように導電材(図示せず)を添加することは好ましい。
(Positive electrode mixture layer)
The positive electrode mixture layer 112 includes positive electrode active material particles (primary particles 113 and secondary particles 114), a first ion conductive layer 115, and a second ion conductive layer 116. In addition, for the purpose of improving the conductivity of the positive electrode mixture layer 112, it is preferable to add a conductive material (not shown) so as to adhere to the secondary particles 114 of the positive electrode active material.
 図1に示したように、本発明の全固体リチウム二次電池の単セル100で用いる正極活物質粒子は、複数の一次粒子113が集合した二次粒子114を形成している。第一イオン伝導層115は、二次粒子114を被覆すると共に二次粒子114を構成する一次粒子113同士の間隙に充満しており、正極活物質粒子と第二イオン伝導層116との間でリチウムイオンを媒介する。第二イオン伝導層116は、第一イオン伝導層115で被覆された二次粒子114を積層被覆しており、第一イオン伝導層115と固体電解質層120との間でリチウムイオンを媒介する。また、本発明では、第一イオン伝導層115と第二イオン伝導層116と固体電解質層120とが互いに異なる物質からなることが好ましい。 As shown in FIG. 1, the positive electrode active material particles used in the single cell 100 of the all-solid lithium secondary battery of the present invention form secondary particles 114 in which a plurality of primary particles 113 are aggregated. The first ion conductive layer 115 covers the secondary particles 114 and fills the gaps between the primary particles 113 constituting the secondary particles 114, and between the positive electrode active material particles and the second ion conductive layer 116. Mediates lithium ions. The second ion conductive layer 116 is formed by laminating and covering the secondary particles 114 covered with the first ion conductive layer 115, and mediates lithium ions between the first ion conductive layer 115 and the solid electrolyte layer 120. In the present invention, the first ion conductive layer 115, the second ion conductive layer 116, and the solid electrolyte layer 120 are preferably made of different materials.
 (正極活物質)
 正極活物質粒子の材料に特段の限定はなく、従前のリチウムイオン二次電池で用いられる正極活物質を利用することができる。例えば、遷移金属を含むリチウム複合酸化物が好ましく、具体例としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO3、LiMn2O3、LiMnO2、Li4Mn5O12、Li2Mn3MO8(M=Fe,Co,Ni,Cu,Zn)、Li1-xMxMn2O4(M=Mg,B,Al,Fe,Co,Ni,Cr,Zn,Ca、x=0.01~0.1)、LiMn2-xMxO2(M=Co,Ni,Fe,Cr,Zn,Ta、x=0.01~0.2)、LiCo1-xMxO2(M=Ni,Fe,Mn、x=0.01~0.2)、LiNi1-xMxO2(M=Mn,Fe,Co,Al,Ga,Ca,Mg、x=0.01~0.2)、LiNi1-x-yMnxCoyO2(x=0.1~0.8、y=0.1~0.8、x+y=0.1~0.9)、LiFeO2、LiFePO4、LiMnPO4などが挙げられる。
(Positive electrode active material)
There is no particular limitation on the material of the positive electrode active material particles, and a positive electrode active material used in a conventional lithium ion secondary battery can be used. For example, a lithium composite oxide containing a transition metal is preferable, and specific examples include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn. 3 MO 8 (M = Fe, Co, Ni, Cu, Zn), Li 1-x M x Mn 2 O 4 (M = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, x = 0.01-0.1), LiMn 2-x M x O 2 (M = Co, Ni, Fe, Cr, Zn, Ta, x = 0.01-0.2), LiCo 1-x M x O 2 (M = Ni, Fe, Mn, x = 0.01 to 0.2), LiNi 1-x M x O 2 (M = Mn, Fe, Co, Al, Ga, Ca, Mg, x = 0.01 to 0.2), LiNi 1-xy Mn x Co y O 2 (x = 0.1 to 0.8, y = 0.1 to 0.8, x + y = 0.1 to 0.9), LiFeO 2 , LiFePO 4 , LiMnPO 4 and the like.
 正極活物質粒子(二次粒子114)の粒径は、正極合剤層112の厚さ以下になるように規定される。正極活物質の粉末中に、形成しようとする正極合剤層112の厚さ以上の粒径を有する粗粒がある場合、予めふるい分級、風流分級などにより粗粒を除去し、平均粒径が正極合剤層112の厚さ以下の粒子を選別する。なお、正極活物質粒子の粒径とは、二次粒子114の平均粒径であり、レーザー散乱法を利用した公知の粒径分布測定装置を用いて測定することができる。 The particle diameter of the positive electrode active material particles (secondary particles 114) is defined to be equal to or less than the thickness of the positive electrode mixture layer 112. When there are coarse particles in the positive electrode active material powder having a particle size equal to or larger than the thickness of the positive electrode mixture layer 112 to be formed, the coarse particles are removed in advance by sieving classification, wind classification, etc. Particles having a thickness equal to or smaller than that of the positive electrode mixture layer 112 are selected. The particle size of the positive electrode active material particles is the average particle size of the secondary particles 114, and can be measured using a known particle size distribution measuring apparatus using a laser scattering method.
 (導電材)
 導電材としては、導電性繊維(例えば、気相成長炭素、カーボンナノチューブ、ピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して製造した繊維、アクリル繊維から製造した炭素繊維など)が好適に用いられる。また、導電材は、正極活物質よりも電気抵抗率の低い材料であって、正極の充放電電位(通常は2.5~4.5 Vである)にて酸化溶解しない材料を使用してもよい。例えば、耐食性金属(チタンや金など)、炭化物(SiCやWCなど)、窒化物(Si3N4やBNなど)が挙げられる。高比表面積の炭素材料(例えば、カーボンブラックや活性炭など)も使用できる。
(Conductive material)
The conductive material was made from conductive fibers (for example, vapor-grown carbon, carbon nanotubes, pitch (byproducts such as petroleum, coal, coal tar, etc.) and carbonized at high temperature, and acrylic fibers. Carbon fiber etc.) are preferably used. The conductive material may be a material having a lower electrical resistivity than the positive electrode active material and not oxidatively dissolved at the charge / discharge potential of the positive electrode (usually 2.5 to 4.5 V). Examples include corrosion resistant metals (such as titanium and gold), carbides (such as SiC and WC), and nitrides (such as Si 3 N 4 and BN). A carbon material having a high specific surface area (for example, carbon black or activated carbon) can also be used.
 (第一イオン伝導層)
 前述したように、第一イオン伝導層115は、二次粒子114を被覆すると共に二次粒子114を構成する一次粒子113同士の間隙に充満しており、正極活物質粒子と第二イオン伝導層116との間でリチウムイオンを媒介する物質である。第一イオン伝導層115には、正極の充放電電位において、自身が酸化劣化しないことが求められると共に、正極活物質(一次粒子113)に対して化学的に不活性である(例えば、正極活物質と化学反応しない)ことが求められる。
(First ion conduction layer)
As described above, the first ion conductive layer 115 covers the secondary particles 114 and fills the gaps between the primary particles 113 constituting the secondary particles 114, so that the positive electrode active material particles and the second ion conductive layers are filled. It is a substance that mediates lithium ions with 116. The first ion conductive layer 115 is required not to undergo oxidative degradation at the charge / discharge potential of the positive electrode, and is chemically inert to the positive electrode active material (primary particles 113) (for example, the positive electrode active material). It does not chemically react with the substance).
 第一イオン伝導層115の導電率は、1×10-6~1×10-3 S/cmの範囲であれば本発明に適用可能であり、導電率の高さよりも正極の充放電電位において酸化分解しないことが優先される。例えば、第一イオン伝道層115の導電率が1~10-6~1×10-5 S/cmの範囲の比較的低い値であっても、耐酸化性に優れた材料を選択した方が二次電池の長寿命化に有効である。 The conductivity of the first ion conductive layer 115 is applicable to the present invention as long as it is in the range of 1 × 10 −6 to 1 × 10 −3 S / cm, and the charge / discharge potential of the positive electrode is higher than the high conductivity. Priority is given not to oxidative degradation. For example, even if the conductivity of the first ion transmission layer 115 is a relatively low value in the range of 1 to 10 −6 to 1 × 10 −5 S / cm, it is better to select a material with excellent oxidation resistance. Effective for extending the life of secondary batteries.
 第一イオン伝導層115としては、リチウムを含む酸化物電解質を好ましく用いることができる。具体例としては、ペロブスカイト型のLa0.51Li0.34TiO2.94、NASICON型のLi1.3Al0.3Ti1.7(PO4)3、ガーネット型のLi7La3Zr2O12、アモルファス型のLi2.9PO3.3N0.4やLi3.6Si0.6P0.4O4、ガラス型の50Li4SiO4-50Li3BO3、Li1.07Al0.69Ti1.46(PO4)3、Li1.5Al0.5Ge1.5(PO4)3、Li3BO3、LiVO3などが挙げられる。 As the first ion conductive layer 115, an oxide electrolyte containing lithium can be preferably used. Specific examples are perovskite type La 0.51 Li 0.34 TiO 2.94 , NASICON type Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , garnet type Li 7 La 3 Zr 2 O 12 , amorphous type Li 2.9 PO 3.3 N 0.4 or Li 3.6 Si 0.6 P 0.4 O 4 , glass type 50Li 4 SiO 4 -50Li 3 BO 3 , Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 3 BO 3 , LiVO 3 etc. are mentioned.
 図1に示したように、本発明では、正極活物質の全ての一次粒子113が第一イオン伝導層115と接触していることから、リチウムイオンの移動・出入りが容易になり、全ての一次粒子113を二次電池の充放電に直接的に寄与させることができる。その結果、二次電池の充放電特性を向上させることができる。 As shown in FIG. 1, in the present invention, since all the primary particles 113 of the positive electrode active material are in contact with the first ion conductive layer 115, the movement / exit of lithium ions is facilitated, and all the primary particles 113 are in contact with each other. The particles 113 can directly contribute to charge / discharge of the secondary battery. As a result, the charge / discharge characteristics of the secondary battery can be improved.
 なお、第一イオン伝導層115は、正極活物質粒子(一次粒子113および二次粒子114)を被覆するのに必要な最少量であること(正極活物質粒子を過剰に被覆しないこと)が好ましい。第一イオン伝導層115で正極活物質粒子を過剰に被覆しないことにより、充放電(リチウムイオンの吸蔵・放出)に伴う正極活物質粒子の体積変化に起因する応力を第一イオン伝導層115で吸収し易くなり、二次粒子114の破砕を抑制できる作用効果が期待できる。また、二次粒子114の破砕を抑制することで、一次粒子113と第二イオン伝導層116との直接接触を抑制し、第二イオン伝導層116の酸化劣化を抑制できる副次的な作用効果も期待できる。 The first ion conductive layer 115 is preferably the minimum amount necessary to coat the positive electrode active material particles (primary particles 113 and secondary particles 114) (do not coat the positive electrode active material particles excessively). . By not covering the positive electrode active material particles excessively with the first ion conductive layer 115, the stress caused by the volume change of the positive electrode active material particles due to charge / discharge (lithium ion occlusion / release) It can be easily absorbed, and an effect of suppressing crushing of the secondary particles 114 can be expected. In addition, by suppressing the crushing of the secondary particles 114, it is possible to suppress the direct contact between the primary particles 113 and the second ion conductive layer 116 and to prevent the secondary ion conductive layer 116 from being oxidized and deteriorated. Can also be expected.
 (第二イオン伝導層)
 第二イオン伝導層116は、第一イオン伝導層115で被覆された二次粒子114を積層被覆しており、第一イオン伝導層115と固体電解質層120との間でリチウムイオンを媒介する物質である。また、第二イオン伝導層116は、第一イオン伝導層115と異なる物質からなり、正極合剤層112の表面平坦性の向上に貢献することが望まれる。
(Second ion conduction layer)
The second ion conductive layer 116 is formed by laminating and covering the secondary particles 114 coated with the first ion conductive layer 115, and a substance that mediates lithium ions between the first ion conductive layer 115 and the solid electrolyte layer 120. It is. Further, the second ion conductive layer 116 is made of a material different from that of the first ion conductive layer 115, and it is desired to contribute to the improvement of the surface flatness of the positive electrode mixture layer 112.
 第二イオン伝導層116の導電率は、1×10-5~1×10-2 S/cmの範囲であれば適用可能である。導電率が1×10-4 S/cm以上の材料を選択することがより好ましく、第一イオン伝導層115よりも高い導電率を有する材料を選択することが更に好ましい。 The conductivity of the second ion conductive layer 116 is applicable in the range of 1 × 10 −5 to 1 × 10 −2 S / cm. It is more preferable to select a material having a conductivity of 1 × 10 −4 S / cm or more, and it is further preferable to select a material having a higher conductivity than that of the first ion conductive layer 115.
 第二イオン伝導層116としては、例えば、平均分子量5000以上500000以下のイオン伝導性ポリマが好ましく、具体例としては、ポリエチレングリコール(PEG)、ポリエチレンオキシド(PEO)、ポリアニリン(PAn)、ポリフッ化ビニリデン(PVDF)などが挙げられる。これらのイオン伝導性ポリマには、リチウム塩(例えば、LiBF4、リチウムトリフルオロメタンスルホンイミド(LiTFSI))を添加することが好ましい。 As the second ion conductive layer 116, for example, an ion conductive polymer having an average molecular weight of 5,000 to 500,000 is preferable. Specific examples include polyethylene glycol (PEG), polyethylene oxide (PEO), polyaniline (PAn), and polyvinylidene fluoride. (PVDF). It is preferable to add a lithium salt (for example, LiBF 4 , lithium trifluoromethanesulfonimide (LiTFSI)) to these ion conductive polymers.
 また、第二イオン伝導層116としては、第一イオン伝導層115と異なる電解質でリチウムを含むセラミック電解質を好ましく用いることができ、具体例としては、Li3BO3、Li7La3Zr2O12、Li7P3S11、Li3.25P0.95S4、Li10GeP2S12、Li3.25Ge0.25P0.75S4、30Li2S-26B2S3-44LiI、63Li2S-36SiS2-1Li3PO4、57Li2S-38SiS2-5Li4SiO4、70Li2S-30P2S5、50Li2S-50GeS2などが挙げられる。 As the second ion conductive layer 116, a ceramic electrolyte containing lithium with an electrolyte different from that of the first ion conductive layer 115 can be preferably used. Specific examples include Li 3 BO 3 , Li 7 La 3 Zr 2 O. 12 , Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 , Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S-26B 2 S 3 -44LiI, 63Li 2 S-36SiS 2- 1Li 3 PO 4 , 57Li 2 S-38SiS 2 -5Li 4 SiO 4 , 70Li 2 S-30P 2 S 5 , 50Li 2 S-50GeS 2 and the like.
 第一イオン伝導層115と異なる物質からなる第二イオン伝導層116で二次粒子114を積層被覆することの意義は次のようである。 The significance of stacking the secondary particles 114 with the second ion conductive layer 116 made of a material different from that of the first ion conductive layer 115 is as follows.
 第一イオン伝導層115と第二イオン伝導層116とを同一物質で形成した場合、第一イオン伝導層115と第二イオン伝導層116との間の界面は同種界面となる。そして、その状態で、充放電(リチウムイオンの吸蔵・放出)に伴う電極活物質の体積変化などに起因してクラックが発生したとすると、該クラックの進展(結果として、二次粒子114の破砕)を抑制する作用効果はほとんど期待できない。 When the first ion conductive layer 115 and the second ion conductive layer 116 are formed of the same material, the interface between the first ion conductive layer 115 and the second ion conductive layer 116 is the same kind of interface. In this state, if a crack occurs due to a change in the volume of the electrode active material associated with charge / discharge (lithium ion occlusion / release), the crack progresses (as a result, the secondary particles 114 are crushed). ) Can hardly be expected.
 これに対し、第一イオン伝導層115と異なる物質からなる第二イオン伝導層116で二次粒子114を積層被覆すると、第一イオン伝導層115と第二イオン伝導層116との間に異種界面が形成されるため、クラックの進展を抑制して二次粒子114の破砕を抑制できる作用効果が期待できる。さらに、仮に二次粒子114が破砕した場合であっても、一次粒子113と固体電解質120とが直ちに直接接触することを抑制する(固体電解質120の酸化劣化を抑制する)副次的な作用効果も期待できる。これらの結果、二次電池のサイクル特性を向上させることができる。 On the other hand, when the secondary particles 114 are laminated and coated with the second ion conductive layer 116 made of a different material from the first ion conductive layer 115, a different interface is formed between the first ion conductive layer 115 and the second ion conductive layer 116. Therefore, the effect of suppressing the progress of cracks and suppressing the crushing of the secondary particles 114 can be expected. Further, even if the secondary particles 114 are crushed, the secondary particles 114 and the solid electrolyte 120 are prevented from coming into direct contact with each other (suppressing oxidative deterioration of the solid electrolyte 120). Can also be expected. As a result, the cycle characteristics of the secondary battery can be improved.
 また、第一イオン伝導層115で被覆した二次粒子114は基本的に依然として粒子状であるため、第二イオン伝導層116を積層被覆しないで正極合剤層112を形成すると、正極合剤層112の表面は、当該二次粒子114に起因する凹凸が残存し易くなる。その場合、固体電解質層120が流動性を有しないため、正極合剤層112と固体電解質層120との接触面積を十分に確保することが困難になり、二次電池の充放電特性の低下要因となり易い。さらに、正極合剤層112と固体電解質層120との接触が不十分な状態かつ高温環境で二次電池を充放電すると、正極合剤層112と固体電解質層120との接触点に電界集中が生じるため、固体電解質層120の劣化を誘発する可能性がある。 Further, since the secondary particles 114 covered with the first ion conductive layer 115 are basically still in the form of particles, if the positive electrode mixture layer 112 is formed without the second ion conductive layer 116 being laminated, the positive electrode mixture layer Irregularities caused by the secondary particles 114 are likely to remain on the surface of 112. In that case, since the solid electrolyte layer 120 does not have fluidity, it is difficult to ensure a sufficient contact area between the positive electrode mixture layer 112 and the solid electrolyte layer 120, which is a cause of a decrease in charge / discharge characteristics of the secondary battery. It is easy to become. Furthermore, when the secondary battery is charged and discharged in a high temperature environment with insufficient contact between the positive electrode mixture layer 112 and the solid electrolyte layer 120, electric field concentration occurs at the contact point between the positive electrode mixture layer 112 and the solid electrolyte layer 120. As a result, deterioration of the solid electrolyte layer 120 may be induced.
 言い換えると、固体電解質層120と正極合剤層112との接触面積を十分に確保し、固体電解質層120の劣化を抑制するためは、正極合剤層112の表面は平坦性が高い方が望ましい。そこで、本発明においては、第一イオン伝導層115で被覆された二次粒子114を第二イオン伝導層116で積層被覆することにより、二次粒子114に起因する凹凸を埋め込み、正極合剤層112の表面平坦性を向上させるようにしている。それにより、正極合剤層112と固体電解質層120との接触面積を十分に確保できると共に固体電解質層120の劣化を抑制できるという副次的な作用効果を示すと考えられる。 In other words, in order to secure a sufficient contact area between the solid electrolyte layer 120 and the positive electrode mixture layer 112 and suppress deterioration of the solid electrolyte layer 120, it is desirable that the surface of the positive electrode mixture layer 112 has high flatness. . Therefore, in the present invention, the secondary particles 114 coated with the first ion conductive layer 115 are laminated and coated with the second ion conductive layer 116, thereby embedding irregularities caused by the secondary particles 114, and the positive electrode mixture layer The surface flatness of 112 is improved. Thereby, it is considered that the secondary operation and effect that the contact area between the positive electrode mixture layer 112 and the solid electrolyte layer 120 can be sufficiently secured and the deterioration of the solid electrolyte layer 120 can be suppressed are exhibited.
 (固体電解質層)
 固体電解質層120は、高いイオン伝導性(第一イオン伝導層115および第二イオン伝導層116に比して相対的に高いイオン伝導性)を有する限り、従前の全固体リチウム二次電池の固体電解質を利用することができる。例えば、第二イオン伝導層116と異なる電解質でリチウムを含むセラミック電解質(例えば、Li10GeP2S12、Li7P3S13、70Li2S-30P2S5、La0.1Li0.34TiO2.94、Li1.1Al0.7Ti1.5(PO4)3など)を好ましく用いることができる。また、第二イオン伝導層116と異なる電解質でリチウム塩(例えば、LiBF4、LiTFSI)を添加した平均分子量5000以上20000以下のイオン伝導性ポリマ(例えば、PEG、PEO、PAn、PVDF)を好ましく用いることができる。
(Solid electrolyte layer)
As long as the solid electrolyte layer 120 has high ionic conductivity (relatively higher ionic conductivity than the first ionic conductive layer 115 and the second ionic conductive layer 116), the solid electrolyte layer 120 is a solid of a conventional all-solid lithium secondary battery. An electrolyte can be used. For example, a ceramic electrolyte containing lithium with an electrolyte different from the second ion conductive layer 116 (for example, Li 10 GeP 2 S 12 , Li 7 P 3 S 13 , 70Li 2 S-30P 2 S 5 , La 0.1 Li 0.34 TiO 2.94 , Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 etc.) can be preferably used. In addition, an ion conductive polymer (for example, PEG, PEO, PAn, PVDF) having an average molecular weight of 5000 or more and 20000 or less obtained by adding a lithium salt (for example, LiBF 4 or LiTFSI) with an electrolyte different from that of the second ion conductive layer 116 is preferably used. be able to.
 固体電解質層120の導電率は、1×10-4 S/cm以上であれば適用可能であり、第二イオン伝導層116よりも高い導電率を有する材料を選択する。特に、1×10-3 S/cm以上の材料を選択することが好適である。 The conductivity of the solid electrolyte layer 120 is applicable as long as it is 1 × 10 −4 S / cm or more, and a material having a higher conductivity than that of the second ion conductive layer 116 is selected. In particular, it is preferable to select a material of 1 × 10 −3 S / cm or more.
 固体電解質層120の厚さは、5μm以上200μm以下が好ましい。固体電解質層120の厚さが5μm未満になると、固体電解質層120の機械的強度が不足して正極110と負極130とが短絡し易くなる。一方、固体電解質層120の厚さが200μm超になると、固体電解質層120の電気抵抗が大きくなり過ぎて二次電池の容量が低下する。固体電解質層120の厚さは、10μm以上100μm以下がより好ましく、20μm以上50μm以下が更に好ましい。 The thickness of the solid electrolyte layer 120 is preferably 5 μm or more and 200 μm or less. When the thickness of the solid electrolyte layer 120 is less than 5 μm, the mechanical strength of the solid electrolyte layer 120 is insufficient and the positive electrode 110 and the negative electrode 130 are easily short-circuited. On the other hand, when the thickness of the solid electrolyte layer 120 exceeds 200 μm, the electric resistance of the solid electrolyte layer 120 becomes too large and the capacity of the secondary battery decreases. The thickness of the solid electrolyte layer 120 is more preferably 10 μm or more and 100 μm or less, and further preferably 20 μm or more and 50 μm or less.
 (負極集電体)
 負極集電体131も、正極集電体111と同様に、イオン伝導層・固体電解質層を形成する際の熱処理に耐えられる耐熱性を有する低抵抗導電体であれば特段の限定はなく、従前の非水電解液リチウム二次電池における負極集電体と同様のものを用いることができる。例えば、金属箔(厚さ10μm以上100μm以下)、穿孔金属箔(厚さ10μm以上100μm以下、孔径0.1 mm以上10 mm以下)、エキスパンドメタル、発泡金属板、ガラス状炭素板などが挙げられる。また、金属種としては、銅、ステンレス鋼、チタン、貴金属(例えば、金、銀、白金)などを用いることができる。
(Negative electrode current collector)
Similarly to the positive electrode current collector 111, the negative electrode current collector 131 is not particularly limited as long as it is a low-resistance conductor having heat resistance that can withstand heat treatment when forming the ion conductive layer / solid electrolyte layer. The same thing as the negative electrode electrical power collector in the nonaqueous electrolyte lithium secondary battery of this can be used. For example, metal foil (thickness of 10 μm or more and 100 μm or less), perforated metal foil (thickness of 10 μm or more and 100 μm or less, pore diameter of 0.1 mm or more and 10 mm or less), expanded metal, foamed metal plate, glassy carbon plate and the like can be mentioned. Moreover, as a metal seed | species, copper, stainless steel, titanium, a noble metal (for example, gold | metal | money, silver, platinum) etc. can be used.
 (負極合剤層)
 負極合剤層132は、少なくとも負極活物質を含み、必要に応じて第三イオン伝導層を更に含む。また、負極合剤層132の導電性向上を意図して、負極活物質に導電材を更に添加・混合してもよい。負極合剤層132に添加・混合する導電材としては、正極合剤層112のそれと同様のものを用いることができる。
(Negative electrode mixture layer)
The negative electrode mixture layer 132 includes at least a negative electrode active material, and further includes a third ion conductive layer as necessary. Further, for the purpose of improving the conductivity of the negative electrode mixture layer 132, a conductive material may be further added to and mixed with the negative electrode active material. As the conductive material to be added to and mixed with the negative electrode mixture layer 132, the same material as that of the positive electrode mixture layer 112 can be used.
 (負極活物質)
 負極活物質の材料に特段の限定はなく、従前のリチウムイオン二次電池で用いられる負極活物質を利用することができる。具体的には、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:Li4Ti5O12)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズ)を用いることができる。
(Negative electrode active material)
There is no particular limitation on the material of the negative electrode active material, and a negative electrode active material used in a conventional lithium ion secondary battery can be used. Specifically, carbon-based materials (eg, graphite, graphitizable carbon material, amorphous carbon material), conductive polymer materials (eg, polyacene, polyparaphenylene, polyaniline, polyacetylene), lithium composite oxide ( For example, lithium titanate: Li 4 Ti 5 O 12 ), metal lithium, or a metal alloyed with lithium (eg, aluminum, silicon, tin) can be used.
 (第三イオン伝導層)
 負極活物質が粒子状である場合、第三イオン伝導層を用いることが好ましい。第三イオン伝導層は、負極活物質の粒子を被覆すると共に該粒子同士の間隙を充満しており、負極活物質と固体電解質層120との間でリチウムイオンを媒介する物質である。第三イオン伝導層には、負極の充放電電位において、自身が還元劣化しないことが求められる。例えば、水素化ホウ素リチウム(LiBH4)やリチウムビストリフルオロメタンスルホニルイミド(LiTFSI)やリン酸リチウムオキシナイトライド(LiPON)等の電解質を保持させたポリエチレンオキシド(PEO)を好ましく用いることができる。
(Third ion conduction layer)
When the negative electrode active material is particulate, it is preferable to use a third ion conductive layer. The third ion conductive layer covers the negative electrode active material particles and fills the gaps between the particles, and is a material that mediates lithium ions between the negative electrode active material and the solid electrolyte layer 120. The third ion conductive layer is required not to undergo reductive degradation at the charge / discharge potential of the negative electrode. For example, polyethylene oxide (PEO) holding an electrolyte such as lithium borohydride (LiBH 4 ), lithium bistrifluoromethanesulfonylimide (LiTFSI), or lithium phosphate oxynitride (LiPON) can be preferably used.
 なお、負極活物質が粒子状でない場合(例えば、箔状や板状の場合)、第三イオン伝導層を用いなくてもよい。また、負極活物質が箔形状や板形状で負極集電体131と同等の低抵抗導電体からなる場合、該負極活物質で負極集電体131を兼ねてもよい。 In addition, when the negative electrode active material is not in a particulate form (for example, in the case of a foil form or a plate form), the third ion conductive layer may not be used. In the case where the negative electrode active material is formed of a low resistance conductor equivalent to the negative electrode current collector 131 in a foil shape or a plate shape, the negative electrode active material may also serve as the negative electrode current collector 131.
 (単セルの製造方法)
 次に、全固体リチウム二次電池の単セル100の製造方法について、簡単に説明する。
(Single cell manufacturing method)
Next, a method for manufacturing the single cell 100 of the all-solid lithium secondary battery will be briefly described.
 正極110は、正極集電体111の片面または両面に正極合剤スラリを塗布・加熱乾燥させた後、プレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。同様に、負極130は、負極集電体131の片面または両面に負極合剤スラリを塗布・加熱乾燥させた後、プレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。 The positive electrode 110 is manufactured by applying and heating and drying a positive electrode mixture slurry on one or both surfaces of the positive electrode current collector 111, followed by compression molding using a press or the like, and cutting into a predetermined size. . Similarly, the negative electrode 130 is obtained by applying a negative electrode mixture slurry to one or both surfaces of the negative electrode current collector 131 and heating and drying, and then compressing and molding the negative electrode slurry using a press machine or the like. Produced.
 正極合剤スラリおよび負極合剤スラリの塗布方法に特段の限定はなく、従前の方法(例えば、ドクターブレード法、ディッピング法、スプレー法)を利用することができる。また、塗布から加熱乾燥までを複数回行うことにより、複数の合剤層を集電体に積層することも可能である。 There is no particular limitation on the application method of the positive electrode mixture slurry and the negative electrode mixture slurry, and conventional methods (for example, a doctor blade method, a dipping method, a spray method) can be used. Moreover, it is also possible to laminate | stack a several mixture layer on a collector by performing from application | coating to heat drying in multiple times.
 正極合剤スラリおよび負極合剤スラリは、各電極活物質を所定のイオン伝導層で被覆した後、必要に応じて導電材、バインダ、溶媒などを混合して作製される。 The positive electrode mixture slurry and the negative electrode mixture slurry are prepared by coating each electrode active material with a predetermined ion conductive layer and then mixing a conductive material, a binder, a solvent, and the like as necessary.
 第一イオン伝導層115を、正極活物質の二次粒子114の表面および内部の一次粒子113同士の間隙に形成・充満させる方法に特段の限定はなく、結果としてそのような形態なっていればよい。例えば、第一イオン伝導層115を構成する金属元素の塩(例えば、ペロブスカイト型のLa0.51Li0.34TiO2.94の場合には、La、Li、Tiの炭酸塩や水酸化物)の溶液と二次粒子114とをよく混合した後に、熱処理(大気中、または酸素濃度を制御した窒素またはアルゴンの雰囲気中、300℃以上1000℃以下の温度)を施すことにより、第一イオン伝導層115を所望の形態に形成・充満させることができる。 There is no particular limitation on the method of forming and filling the first ion conductive layer 115 on the surface of the secondary particles 114 of the positive electrode active material and the gaps between the primary particles 113 inside, as a result of such a configuration. Good. For example, a solution and a secondary solution of a salt of a metal element constituting the first ion conductive layer 115 (for example, in the case of perovskite type La 0.51 Li 0.34 TiO 2.94 , carbonates or hydroxides of La, Li, Ti) After thoroughly mixing the particles 114, a heat treatment (at a temperature of 300 ° C. or more and 1000 ° C. or less in the atmosphere or nitrogen or argon atmosphere in which the oxygen concentration is controlled) is performed to form the first ion conductive layer 115 in a desired manner. Can be formed and filled to form.
 次に、第一イオン伝導層115で被覆された二次粒子114を第二イオン伝導層116で更に積層被覆しながら、正極合剤層112を形成する。第二イオン伝導層116で積層被覆する方法に特段の限定はなく、結果としてそのような形態なっていればよい。 Next, the positive electrode mixture layer 112 is formed while the secondary particles 114 covered with the first ion conductive layer 115 are further laminated and covered with the second ion conductive layer 116. There is no particular limitation on the method of laminating and coating with the second ion conductive layer 116, and it is sufficient that such a configuration is obtained as a result.
 例えば、第二イオン伝導層116としてセラミック電解質を用いる場合、先の第一イオン伝導層115と同様の方法で行うことができる。その後、第一イオン伝導層115および第二イオン伝導層116で積層被覆された二次粒子114に対して、導電材、バインダ、溶媒などを混合して正極合剤スラリを作製する。正極合剤スラリの塗布・加熱乾燥によって、所望の正極合剤層112を形成することができる。 For example, when a ceramic electrolyte is used as the second ion conductive layer 116, the same method as that for the first ion conductive layer 115 can be used. Thereafter, a conductive material, a binder, a solvent, and the like are mixed with the secondary particles 114 that are laminated and coated with the first ion conductive layer 115 and the second ion conductive layer 116 to produce a positive electrode mixture slurry. A desired positive electrode mixture layer 112 can be formed by applying and heating and drying a positive electrode mixture slurry.
 別の方法としては、第二イオン伝導層116となるセラミックス電解質の粉末を別途用意し、導電材、バインダ、溶媒などと共に、第一イオン伝導層115で被覆された二次粒子114と混合して正極合剤スラリを作製する。この場合、正極合剤スラリの塗布・加熱乾燥の後に、熱処理(大気中、または酸素濃度を制御した窒素またはアルゴンの雰囲気中、300℃以上1000℃以下の温度)を施すことにより、第二イオン伝導層116を所望の形態に形成しながら、正極合剤層112を形成することができる。 As another method, a ceramic electrolyte powder to be the second ion conductive layer 116 is separately prepared and mixed with the secondary particles 114 coated with the first ion conductive layer 115 together with a conductive material, a binder, a solvent, and the like. A positive electrode mixture slurry is prepared. In this case, after applying the positive electrode mixture slurry and heating and drying, heat treatment (in the atmosphere or in an atmosphere of nitrogen or argon with a controlled oxygen concentration, a temperature of 300 ° C. or higher and 1000 ° C. or lower) is applied to the second ion. The positive electrode mixture layer 112 can be formed while forming the conductive layer 116 in a desired form.
 一方、第二イオン伝導層116としてリチウム塩を添加したイオン伝導性ポリマを用いる場合、まず、該リチウム塩と該イオン伝導性ポリマと適当な溶媒(例えば、非水溶媒)と第一イオン伝導層115で被覆された二次粒子114とをよく混合する。その後、導電材やバインダを更に混合して正極合剤スラリを作製する。 On the other hand, when an ion conductive polymer to which a lithium salt is added is used as the second ion conductive layer 116, first, the lithium salt, the ion conductive polymer, an appropriate solvent (for example, a nonaqueous solvent), and the first ion conductive layer. The secondary particles 114 coated with 115 are mixed well. Thereafter, a conductive material and a binder are further mixed to produce a positive electrode mixture slurry.
 この場合、正極合剤スラリの塗布・加熱乾燥によって、第二イオン伝導層116を所望の形態に形成しながら、正極合剤層112を形成することができる。また、二次粒子114同士の間隙にも第二イオン伝導層116を充満させることができる。 In this case, the positive electrode mixture layer 112 can be formed while the second ion conductive layer 116 is formed in a desired form by applying and heating and drying the positive electrode mixture slurry. Further, the second ion conductive layer 116 can be filled in the gap between the secondary particles 114.
 正極活物質(二次粒子114)とイオン伝導層(第一イオン伝導層115、第二イオン伝導層116)との混合比率は、両者の合計を100質量部としたときに、二次粒子114を60質量部以上90質量部以下とし、イオン伝導層を残部(すなわち、10質量部以上40質量部以下)とすることが好ましい。二次粒子114の混合比率が60質量部未満では、正極活物質が不足して二次電池のエネルギー密度が低下する。一方、二次粒子114の混合比率が90質量部超では、イオン伝導層が不足して充放電できる最大電流値が低下すると共に、サイクル特性が低下する。 The mixing ratio of the positive electrode active material (secondary particle 114) and the ion conductive layer (first ion conductive layer 115, second ion conductive layer 116) is the secondary particle 114 when the total of both is 100 parts by mass. Is preferably 60 parts by mass or more and 90 parts by mass or less, and the ion conductive layer is preferably the remainder (that is, 10 parts by mass or more and 40 parts by mass or less). When the mixing ratio of the secondary particles 114 is less than 60 parts by mass, the positive electrode active material is insufficient and the energy density of the secondary battery is lowered. On the other hand, when the mixing ratio of the secondary particles 114 exceeds 90 parts by mass, the maximum current value that can be charged / discharged due to the lack of the ion conductive layer is reduced, and the cycle characteristics are deteriorated.
 また、第一イオン伝導層115の混合比率は、5質量部以上30質量部以下が好ましい。第一イオン伝導層115の混合比率が5質量部未満では、二次粒子114の内部の一次粒子113同士の間隙を十分充満させることができない。一方、第一イオン伝導層115の混合比率が30質量部超では、第二イオン伝導層116が不足して第二イオン伝導層116で二次粒子114を十分に積層被覆することができない。 The mixing ratio of the first ion conductive layer 115 is preferably 5 parts by mass or more and 30 parts by mass or less. When the mixing ratio of the first ion conductive layer 115 is less than 5 parts by mass, the gap between the primary particles 113 inside the secondary particles 114 cannot be sufficiently filled. On the other hand, when the mixing ratio of the first ion conductive layer 115 exceeds 30 parts by mass, the second ion conductive layer 116 is insufficient and the secondary ion 114 cannot be sufficiently laminated and covered with the second ion conductive layer 116.
 前述したように、負極活物質が粒子状である場合、負極活物質粒子を第三イオン伝導層で被覆することが好ましい。第三イオン伝導層を負極活物質粒子の表面に形成させる方法に特段の限定はなく、結果としてそのような形態なっていればよい。 As described above, when the negative electrode active material is in the form of particles, it is preferable to coat the negative electrode active material particles with the third ion conductive layer. There is no particular limitation on the method of forming the third ion conductive layer on the surface of the negative electrode active material particles, and it is sufficient that such a form is obtained as a result.
 例えば、第三イオン伝導層を構成する電解質とイオン伝導性ポリマと適当な溶媒(例えば、非水溶媒)と負極活物質粒子とをよく混合する。その後、導電材やバインダを更に混合して負極合剤スラリを作製する。負極合剤スラリの塗布・加熱乾燥によって、第三イオン伝導層を所望の形態に形成させることができる。また、負極活物質粒子同士の間隙にも第三イオン伝導層を充満させることができる。 For example, the electrolyte constituting the third ion conductive layer, the ion conductive polymer, a suitable solvent (for example, a non-aqueous solvent), and negative electrode active material particles are mixed well. Thereafter, a conductive material and a binder are further mixed to prepare a negative electrode mixture slurry. The third ion conductive layer can be formed in a desired form by applying and heating and drying the negative electrode mixture slurry. Further, the gap between the negative electrode active material particles can be filled with the third ion conductive layer.
 負極活物質粒子と第三イオン伝導層との混合比率は、両者の合計を100質量部としたときに、負極活物質粒子を70質量部以上95質量部以下とし、第三イオン伝導層を残部(すなわち、5質量部以上30質量部以下)とすることが好ましい。負極活物質粒子の混合比率が70質量部未満では、二次電池のエネルギー密度が低下する。一方、負極活物質粒子の混合比率が95質量部超では、第三イオン伝導層が不足して充放電できる最大電流値が低下すると共に、サイクル特性が低下する。 The mixing ratio of the negative electrode active material particles and the third ion conductive layer is 70 parts by mass or more and 95 parts by mass or less of the negative electrode active material particles when the total of both is 100 parts by mass, and the remaining third ion conductive layer (That is, 5 parts by mass or more and 30 parts by mass or less). When the mixing ratio of the negative electrode active material particles is less than 70 parts by mass, the energy density of the secondary battery decreases. On the other hand, when the mixing ratio of the negative electrode active material particles exceeds 95 parts by mass, the maximum current value that can be charged / discharged due to the shortage of the third ion conductive layer is lowered and the cycle characteristics are also lowered.
 なお、前述したように、負極活物質が粒子状でない場合(例えば、箔状や板状の場合)、第三イオン伝導層を用いなくてもよい。また、負極活物質が箔形状や板形状で負極集電体131と同等の低抵抗導電体からなる場合、該負極活物質で負極集電体131を兼ねてもよい。 As described above, when the negative electrode active material is not particulate (for example, foil or plate), the third ion conductive layer may not be used. In the case where the negative electrode active material is formed of a low resistance conductor equivalent to the negative electrode current collector 131 in a foil shape or a plate shape, the negative electrode active material may also serve as the negative electrode current collector 131.
 電極合剤スラリ(正極合剤スラリ、負極合剤スラリ)に導電材を混合する場合、導電材の混合比率は、電極活物質粒子とイオン伝導層との合計を100質量部としたときに、3質量部以上10質量部以下が好ましい。導電材の混合比率が3質量部未満では、導電材を混合することの作用効果(電極合剤層の導電性向上)がほとんど得られない。導電材の混合比率が10質量部超になると、導電材を混合することの作用効果が飽和することに加えて、電極合剤層中の電極活物質の相対比率が低下することから、二次電池のエネルギー密度が低下する。 When the conductive material is mixed with the electrode mixture slurry (positive electrode mixture slurry, negative electrode mixture slurry), the mixing ratio of the conductive material is, when the total of the electrode active material particles and the ion conductive layer is 100 parts by mass, 3 parts by mass or more and 10 parts by mass or less are preferable. When the mixing ratio of the conductive material is less than 3 parts by mass, the effect of mixing the conductive material (improvement of conductivity of the electrode mixture layer) is hardly obtained. When the mixing ratio of the conductive material exceeds 10 parts by mass, the effect of mixing the conductive material is saturated, and the relative ratio of the electrode active material in the electrode mixture layer is decreased. The energy density of the battery decreases.
 固体電解質層120の形成方法に特段の限定はなく、従前の方法を利用できる。例えば、固体電解質層120としてセラミック電解質を用いる場合、該セラミック電解質を合成・粉砕して該セラミック電解質の粉末を用意した後、バインダ、溶媒などと混合して固体電解質スラリを作製する。固体電解質スラリの塗布・加熱乾燥によって、所望の固体電解質層120を形成することができる。 The formation method of the solid electrolyte layer 120 is not particularly limited, and a conventional method can be used. For example, when a ceramic electrolyte is used as the solid electrolyte layer 120, the ceramic electrolyte is synthesized and pulverized to prepare a powder of the ceramic electrolyte, and then mixed with a binder, a solvent, etc. to produce a solid electrolyte slurry. A desired solid electrolyte layer 120 can be formed by applying and drying the solid electrolyte slurry.
 また、固体電解質層120としてリチウム塩を添加したイオン伝導性ポリマを用いる場合、第二イオン伝導層116における形成方法と同様にして、所望の固体電解質層120を形成することができる。 Further, when an ion conductive polymer to which a lithium salt is added is used as the solid electrolyte layer 120, a desired solid electrolyte layer 120 can be formed in the same manner as the formation method in the second ion conductive layer 116.
 [全固体リチウム二次電池の全体構成]
 全固体リチウム二次電池の全体構成について説明する。図2は、本発明に係る全固体リチウム二次電池の一例を示す断面模式図である。図2に示した全固体リチウム二次電池200は、短冊状の単セル100が固体電解質層120を介して積層されて電極群210を形成している。固体電解質層120は、自身に流動性がないことから、全固体リチウム二次電池において正極110と負極130との短絡を防ぐセパレータの役割を兼ねることができる。言い換えると、全固体リチウム二次電池200では、従前の非水電解液リチウム二次電池で用いられるような別体のセパレータを必要としない。
[Overall configuration of all-solid lithium secondary battery]
The overall configuration of the all-solid lithium secondary battery will be described. FIG. 2 is a schematic cross-sectional view showing an example of an all-solid lithium secondary battery according to the present invention. In the all-solid lithium secondary battery 200 shown in FIG. 2, strip-shaped single cells 100 are stacked via a solid electrolyte layer 120 to form an electrode group 210. Since the solid electrolyte layer 120 does not have fluidity, the solid electrolyte layer 120 can also serve as a separator that prevents a short circuit between the positive electrode 110 and the negative electrode 130 in the all-solid lithium secondary battery. In other words, the all-solid lithium secondary battery 200 does not require a separate separator as used in the conventional non-aqueous electrolyte lithium secondary battery.
 なお、電極群210の構造は、短冊状の単セル100を積層したものに限定されるものではなく、長尺の単セル100を捲回したもの(例えば、円柱状、扁平長円柱状)であってもよい。 Note that the structure of the electrode group 210 is not limited to a stack of strip-shaped single cells 100, but is a structure in which long single cells 100 are wound (for example, a columnar shape or a flat columnar shape). There may be.
 電極群210は、少なくとも内面が電気絶縁された電池容器220に収容されており、収容された電極群210が電池容器220と電気的に接触しないようになっている。電池容器220の形状は、通常、電極群210の形状に合わせた形状(例えば、角筒状、円筒状、扁平長円筒状)が選択される。電池容器220の材料は、機械的強度・耐食性のある材料(例えば、アルミニウム、ステンレス鋼、ニッケルメッキ鋼、アルミラミネートフィルム、エンジニアリングプラスチック)から選択される。 The electrode group 210 is accommodated in a battery container 220 having at least an inner surface electrically insulated so that the accommodated electrode group 210 is not in electrical contact with the battery container 220. As the shape of the battery container 220, a shape (for example, a rectangular tube shape, a cylindrical shape, or a flat and long cylindrical shape) that matches the shape of the electrode group 210 is usually selected. The material of the battery case 220 is selected from materials having mechanical strength and corrosion resistance (for example, aluminum, stainless steel, nickel-plated steel, aluminum laminate film, engineering plastic).
 電極群210中の電解質の酸化劣化を抑制するため、大気中の酸素が電池内部に侵入しないように、電池容器220は蓋221で密封される。電池容器220への蓋221の取り付けに特段の限定はなく、従前の方法(例えば、溶接、かしめ、接着)を採用することができる。 In order to suppress oxidative deterioration of the electrolyte in the electrode group 210, the battery container 220 is sealed with a lid 221 so that oxygen in the atmosphere does not enter the battery. There is no particular limitation on the attachment of the lid 221 to the battery case 220, and a conventional method (for example, welding, caulking, adhesion) can be employed.
 正極110は、正極リード211を介して正極外部端子213に接続されており、負極130は、負極リード212を介して負極外部端子214に接続されている。外部端子213,214は、電池容器220および蓋221を介して短絡しないように、電気絶縁シール222で電池容器220および蓋221に対して電気絶縁されている。リード211、212は、任意の形状(例えば、ワイヤ状、箔状、板状)を採ることができ、電気的損失が小さくかつ化学的安定性を確保できるような構造・材質が選定される。電気絶縁シール222は、電気絶縁性および気密性に優れた材料(例えば、フッ素樹脂、熱硬化性樹脂、ガラスハーメチックシール)から選択される。 The positive electrode 110 is connected to the positive electrode external terminal 213 via the positive electrode lead 211, and the negative electrode 130 is connected to the negative electrode external terminal 214 via the negative electrode lead 212. The external terminals 213 and 214 are electrically insulated from the battery container 220 and the lid 221 by an electrical insulating seal 222 so as not to be short-circuited via the battery container 220 and the lid 221. The leads 211 and 212 can take any shape (for example, a wire shape, a foil shape, or a plate shape), and a structure and material that can reduce electrical loss and ensure chemical stability are selected. The electrical insulating seal 222 is selected from materials (for example, a fluororesin, a thermosetting resin, and a glass hermetic seal) that are excellent in electrical insulation and airtightness.
 正極リード211または負極リード212の途中、あるいは正極リード211と正極外部端子213との接続部や、負極リード212と負極外部端子214との接続部に、正温度係数抵抗素子を利用した電流遮断機構(図示せず)を設けることは好ましい。電流遮断機構を設けると、電池内部の温度が高くなったときに、全固体リチウム二次電池200の充放電を停止させ、電池を保護することが可能となる。 Current blocking mechanism using a positive temperature coefficient resistance element in the middle of the positive electrode lead 211 or the negative electrode lead 212, or in the connection part between the positive electrode lead 211 and the positive electrode external terminal 213, or in the connection part between the negative electrode lead 212 and the negative electrode external terminal 214 (Not shown) is preferably provided. When the current interruption mechanism is provided, when the temperature inside the battery becomes high, charging / discharging of the all-solid lithium secondary battery 200 can be stopped to protect the battery.
 以上のような構成により、3 V以上の高い電圧で充放電が可能な全固体リチウム二次電池を提供することができる。 With the above configuration, an all-solid lithium secondary battery that can be charged and discharged at a high voltage of 3 V or higher can be provided.
 [二次電池システム]
 全固体リチウム二次電池を備えた二次電池システムの構成について説明する。本発明に係る二次電池システムとは、少なくとも2個以上の全固体リチウム二次電池を直列あるいは並列に接続し、かつ充放電制御機構を有するシステムと定義する。図3は、本発明に係る二次電池システムの構成例を示す模式図である。
[Secondary battery system]
A configuration of a secondary battery system including an all solid lithium secondary battery will be described. The secondary battery system according to the present invention is defined as a system having at least two or more all-solid lithium secondary batteries connected in series or in parallel and having a charge / discharge control mechanism. FIG. 3 is a schematic diagram showing a configuration example of the secondary battery system according to the present invention.
 図3に示した二次電池システム300では、2個の全固体リチウム二次電池200A,200Bが直列に接続されている。図3の紙面右側に配置した全固体リチウム二次電池200Aの負極外部端子215は、電力ケーブル311により充放電制御機構320の負極入力ターミナルに接続されている。紙面左側に配置した全固体リチウム二次電池200Bの負極外部端子215は、電力ケーブル312により全固体リチウム二次電池200Aの正極外部端子214に接続されている。さらに、全固体リチウム二次電池200Bの正極外部端子214は、電力ケーブル313により充放電制御機構320の正極入力ターミナルに接続されている。このような配線構成によって、2個の全固体リチウム二次電池200A,200Bを充放電制御機構320で制御しながら充電または放電させることができる。 In the secondary battery system 300 shown in FIG. 3, two all-solid lithium secondary batteries 200A and 200B are connected in series. The negative external terminal 215 of the all-solid lithium secondary battery 200A arranged on the right side of FIG. 3 is connected to the negative input terminal of the charge / discharge control mechanism 320 by the power cable 311. The negative external terminal 215 of the all solid lithium secondary battery 200B arranged on the left side of the drawing is connected to the positive external terminal 214 of the all solid lithium secondary battery 200A by the power cable 312. Further, the positive external terminal 214 of the all-solid lithium secondary battery 200B is connected to the positive input terminal of the charge / discharge control mechanism 320 by the power cable 313. With such a wiring configuration, the two all-solid lithium secondary batteries 200A and 200B can be charged or discharged while being controlled by the charge / discharge control mechanism 320.
 充放電制御機構320は、電力ケーブル314,315を介して、外部機器330との間で電力の授受を行う。外部機器330は、外部負荷の他、充放電制御機構320に給電するための外部電源や回生モータ等の各種電気機器を含む。また、外部機器が対応する交流、直流の種類に応じて、インバータやコンバータを設けることができる。 The charge / discharge control mechanism 320 exchanges power with the external device 330 via the power cables 314 and 315. The external device 330 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge control mechanism 320 in addition to an external load. Moreover, an inverter and a converter can be provided according to the kind of alternating current and direct current which an external apparatus respond | corresponds.
 発電装置340は、電力ケーブル316,317を介して充放電制御機構320に接続される。発電装置340としては、再生可能エネルギーを生み出す発電装置(例えば、風力発電装置、地熱発電装置、太陽電池)や、通常の発電装置(例えば、燃料電池、ガスタービン発電機など)を用いることができる。 The power generator 340 is connected to the charge / discharge control mechanism 320 via power cables 316 and 317. As the power generation device 340, a power generation device that generates renewable energy (for example, a wind power generation device, a geothermal power generation device, or a solar cell) or a normal power generation device (for example, a fuel cell, a gas turbine generator, or the like) can be used. .
 発電装置340が発電しているときには、充放電制御機構320が充電モードに移行し、外部機器330に給電するとともに、余剰電力を全固体リチウム二次電池200A,200Bに充電する。発電装置340の発電量が外部機器330の要求電力よりも少ないときには、全固体リチウム二次電池200A,200Bから電力供給させるように充放電制御機構320が放電モードに移行する。 When the power generation device 340 is generating power, the charging / discharging control mechanism 320 shifts to the charging mode, supplies power to the external device 330, and charges surplus power to the all-solid lithium secondary batteries 200A and 200B. When the power generation amount of the power generator 340 is less than the required power of the external device 330, the charge / discharge control mechanism 320 shifts to the discharge mode so that power is supplied from the all-solid lithium secondary batteries 200A, 200B.
 充放電制御機構320は、そのような充放電のモード移行が自動的に行われるようにプログラムが記憶されていることが好ましい。また、充放電制御機構320は、全固体リチウム二次電池200A,200Bの充放電範囲を10%以上90%以下の範囲に制御するようにプログラムが記憶されていることが好ましい。これにより、二次電池システム300の耐久性を高めることができる。 The charge / discharge control mechanism 320 preferably stores a program so that such charge / discharge mode transition is automatically performed. The charge / discharge control mechanism 320 preferably stores a program so as to control the charge / discharge range of the all-solid lithium secondary batteries 200A, 200B to a range of 10% to 90%. Thereby, durability of the secondary battery system 300 can be improved.
 本発明に係る二次電池システム300は、例えば、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、電動式建設機械、運搬機器、建設機械、介護機器、軽車両、電動工具、ロボット、家庭用蓄電システム、離島の電力貯蔵システム、宇宙ステーションなどの電源として利用することができる。 The secondary battery system 300 according to the present invention includes, for example, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, an electric construction machine, a transporting device, a construction machine, a care device, a light vehicle, an electric tool, a robot, and a home use. It can be used as a power source for power storage systems, remote island power storage systems, space stations, and the like.
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples.
 [全固体リチウム二次電池の作製と評価]
 正極活物質、第一イオン伝導層、第二イオン伝導層、固体電解質層、および負極活物質の組み合わせが後述する表1に示した組み合わせになるようにして、実施例1~7および比較例1~3の電極群を作製し、全固体リチウム二次電池を組み立て、作製した全固体リチウム二次電池の電池特性を評価した。
[Production and evaluation of all-solid lithium secondary battery]
Examples 1 to 7 and Comparative Example 1 were made such that the combinations of the positive electrode active material, the first ion conductive layer, the second ion conductive layer, the solid electrolyte layer, and the negative electrode active material were as shown in Table 1 described later. The electrode groups (1) to (3) were prepared, an all-solid lithium secondary battery was assembled, and the battery characteristics of the produced all-solid lithium secondary battery were evaluated.
 本発明に係る実施例1~7は、正極活物質粒子上に形成するイオン伝導層を二層構造とし、正極活物質粒子と第一イオン伝導層と第二イオン伝導層との混合比率を「60質量部:10質量部:30質量部」とした。一方、本発明の規定から外れる比較例1~3では、正極活物質粒子上に形成するイオン伝導層を単層構造とし、正極活物質とイオン伝導層との混合比率を「60質量部:40質量部」とした。 In Examples 1 to 7 according to the present invention, the ion conductive layer formed on the positive electrode active material particles has a two-layer structure, and the mixing ratio of the positive electrode active material particles, the first ion conductive layer, and the second ion conductive layer is set to “ 60 parts by mass: 10 parts by mass: 30 parts by mass ”. On the other hand, in Comparative Examples 1 to 3 that deviate from the definition of the present invention, the ion conductive layer formed on the positive electrode active material particles has a single layer structure, and the mixing ratio of the positive electrode active material and the ion conductive layer is set to “60 parts by mass: 40 "Mass parts".
 (全固体リチウム二次電池の作製)
 (1)実施例1~7の正極の作製
 正極活物質粒子として、LiCoO2(二次粒子の平均粒径5μm)、LiNi1/3Mn1/3Co1/3O2(二次粒子の平均粒径5μm)、およびLiFePO4(二次粒子の平均粒径7μm)を用いた。なお、LiFePO4は、二次粒子の表面に炭素層を担持させたものを用意した。
(Preparation of all-solid lithium secondary battery)
(1) Production of positive electrodes of Examples 1 to 7 As positive electrode active material particles, LiCoO 2 (average particle size of secondary particles 5 μm), LiNi 1/3 Mn 1/3 Co 1/3 O 2 (secondary particles of An average particle diameter of 5 μm) and LiFePO 4 (average particle diameter of secondary particles of 7 μm) were used. LiFePO 4 was prepared by supporting a carbon layer on the surface of secondary particles.
 第一イオン伝導層としては、Li1.3Al0.3Ti1.7(PO4)3、La0.51Li0.34TiO2.94、Li2.9PO3.3N0.4、50Li4SiO4-50Li3BO3、およびLiVO3を用いた。各第一イオン伝導層の25℃における導電率(単位:S/cm)を表1中に併記した。 Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , La 0.51 Li 0.34 TiO 2.94 , Li 2.9 PO 3.3 N 0.4 , 50Li 4 SiO 4 -50Li 3 BO 3 , and LiVO 3 were used as the first ion conductive layer. . The conductivity (unit: S / cm) at 25 ° C. of each first ion conductive layer is also shown in Table 1.
 また、第二イオン伝導層としては、リチウムトリフルオロメタンスルホンイミド(LiTFSI)を添加したポリエチレンオキシド(PEO)、およびLi7La3Zr2O12を用いた。各第二イオン伝導層の25℃における導電率(単位:S/cm)を表1中に併記した。 As the second ion conductive layer, polyethylene oxide (PEO) to which lithium trifluoromethanesulfonimide (LiTFSI) was added and Li 7 La 3 Zr 2 O 12 were used. The conductivity (unit: S / cm) at 25 ° C. of each second ion conductive layer is also shown in Table 1.
 正極活物質粒子への第一イオン伝導層の形成・充満は、第一イオン伝導層を構成する金属元素のリン酸塩溶液と正極活物質粒子とをよく混合した後、熱処理(大気中、650℃)を施すことにより行った。 Formation and filling of the first ion conductive layer on the positive electrode active material particles are carried out by thoroughly mixing the phosphate solution of the metal element constituting the first ion conductive layer and the positive electrode active material particles, followed by heat treatment (in air, 650 C.).
 第二イオン伝導層としてLiTFSIを添加したPEOを用いた試料(実施例1~3)においては、プロパノールを溶媒としてLiTFSIとPEO(平均分子量20000)とを溶解した溶液を用意し、第一イオン伝導層を形成した正極活物質粒子とよく混合して実施例1~3の正極合剤スラリを調合した。 For samples using PEO to which LiTFSI was added as the second ion conductive layer (Examples 1 to 3), a solution in which LiTFSI and PEO (average molecular weight 20000) were dissolved using propanol as a solvent was prepared. The positive electrode mixture slurries of Examples 1 to 3 were prepared by thoroughly mixing with the positive electrode active material particles having the layer formed therein.
 次に、これら実施例1~3の正極合剤スラリを、正極集電体(厚さ20μmの金箔)の両面にドクターブレード法を用いて塗布し、加熱乾燥(大気中、150℃)させて、正極合剤層を形成した。その後、ロールプレス機により圧縮成形し、所定の大きさに切断して実施例1~3の正極を作製した。 Next, the positive electrode mixture slurries of Examples 1 to 3 were applied to both sides of the positive electrode current collector (gold foil with a thickness of 20 μm) using the doctor blade method, and dried by heating (in the atmosphere, 150 ° C.). A positive electrode mixture layer was formed. Thereafter, it was compression-molded by a roll press and cut into a predetermined size to produce positive electrodes of Examples 1 to 3.
 一方、第二イオン伝導層としてLi7La3Zr2O12を用いた試料(実施例4~7)においては、第一イオン伝導層を形成した正極活物質粒子とLi7La3Zr2O12粉末(平均粒径300 nm)とよく混合した後、エチルセルロース(バインダ)とブチルカルビトールアセテート(溶媒)とを更に添加・混合して、実施例4~7の正極合剤スラリを調合した。 On the other hand, in the samples using Li 7 La 3 Zr 2 O 12 as the second ion conductive layer (Examples 4 to 7), the positive electrode active material particles on which the first ion conductive layer was formed and Li 7 La 3 Zr 2 O After thoroughly mixing with 12 powders (average particle size 300 nm), ethyl cellulose (binder) and butyl carbitol acetate (solvent) were further added and mixed to prepare positive electrode mixture slurries of Examples 4-7.
 次に、これら実施例4~7の正極合剤スラリを、正極集電体(厚さ20μmの金箔)の両面にドクターブレード法を用いて塗布し、加熱乾燥(大気中、150℃)の後、熱処理(アルゴン雰囲気中、700℃)を施して、正極合剤層を形成した。その後、所定の大きさに切断して実施例4~7の正極を作製した。 Next, the positive electrode mixture slurries of Examples 4 to 7 were applied to both surfaces of the positive electrode current collector (gold foil with a thickness of 20 μm) using the doctor blade method, and after heat drying (in the atmosphere, 150 ° C.) Then, heat treatment (in an argon atmosphere, 700 ° C.) was performed to form a positive electrode mixture layer. Thereafter, the positive electrodes of Examples 4 to 7 were produced by cutting into a predetermined size.
 (2)比較例1~3の正極の作製
 比較例1~3の正極活物質としては、実施例4と同じLiCoO2(二次粒子の平均粒径5μm)を用いた。
(2) Production of Positive Electrodes of Comparative Examples 1 to 3 As the positive electrode active materials of Comparative Examples 1 to 3, the same LiCoO 2 (average particle diameter of secondary particles 5 μm) as in Example 4 was used.
 比較例1のイオン伝導層は、実施例4において第一イオン伝導層として用いたLi1.3Al0.3Ti1.7(PO4)3のみとした。正極活物質粒子への該イオン伝導層の形成は、実施例4と同様に、イオン伝導層を構成する金属元素のリン酸塩溶液と正極活物質粒子とをよく混合した後、熱処理(大気中、650℃)を施すことにより行った。その後、イオン伝導層を形成した正極活物質粒子に、エチルセルロース(バインダ)とブチルカルビトールアセテート(溶媒)とを添加・混合して、比較例1の正極合剤スラリを調合した。 The ion conduction layer of Comparative Example 1 was only Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 used as the first ion conduction layer in Example 4. In the same manner as in Example 4, the ion conductive layer was formed on the positive electrode active material particles after thoroughly mixing the phosphate solution of the metal element constituting the ion conductive layer and the positive electrode active material particles, followed by heat treatment (in air , 650 ° C.). Thereafter, ethyl cellulose (binder) and butyl carbitol acetate (solvent) were added to and mixed with the positive electrode active material particles on which the ion conductive layer was formed to prepare the positive electrode mixture slurry of Comparative Example 1.
 次に、比較例1の正極合剤スラリを、実施例1と同様に、正極集電体(厚さ20μmの金箔)の両面にドクターブレード法を用いて塗布し、加熱乾燥(大気中、150℃)させて、正極合剤層を形成した。その後、ロールプレス機により圧縮成形し、所定の大きさに切断して比較例1の正極を作製した。比較例1の正極は、実施例4の正極に対して第二イオン伝導層がない例と言える。 Next, the positive electrode mixture slurry of Comparative Example 1 was applied to both surfaces of the positive electrode current collector (gold foil with a thickness of 20 μm) using the doctor blade method in the same manner as in Example 1, and dried by heating (in the atmosphere, 150 ° C) to form a positive electrode mixture layer. Then, it compression-molded with the roll press machine, cut | disconnected to the predetermined magnitude | size, and produced the positive electrode of the comparative example 1. The positive electrode of Comparative Example 1 can be said to be an example in which the second ion conductive layer is absent from the positive electrode of Example 4.
 比較例2のイオン伝導層は、実施例4において第二イオン伝導層として用いたLi7La3Zr2O12のみとした。Li7La3Zr2O12粉末(平均粒径300 nm)と正極活物質粒子とよく混合した後、エチルセルロース(バインダ)とブチルカルビトールアセテート(溶媒)とを更に添加・混合して、比較例2の正極合剤スラリを調合した。 The ion conductive layer of Comparative Example 2 was only Li 7 La 3 Zr 2 O 12 used as the second ion conductive layer in Example 4. Li 7 La 3 Zr 2 O 12 powder (average particle size 300 nm) and positive electrode active material particles were mixed well, then ethyl cellulose (binder) and butyl carbitol acetate (solvent) were further added and mixed. Two positive electrode mixture slurries were prepared.
 比較例3のイオン伝導層は、比較例1のイオン伝導層物質(Li1.3Al0.3Ti1.7(PO4)3)と比較例2のイオン伝導層物質(Li7La3Zr2O12)とを混合したものを用いた。ここで、Li1.3Al0.3Ti1.7(PO4)3は、ゾルゲル法を用いて該物質のバルクを作製し、得られたバルクを粉砕することにより平均粒径300 nmの粉末として用意した。正極活物質粒子とLi1.3Al0.3Ti1.7(PO4)3粉末とLi7La3Zr2O12粉末との混合比率を「60質量部:10質量部:30質量部」として、それらをよく混合した後、エチルセルロース(バインダ)とブチルカルビトールアセテート(溶媒)とを更に添加・混合して、比較例3の正極合剤スラリを調合した。 The ion conductive layer of Comparative Example 3 includes the ion conductive layer material (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ) of Comparative Example 1 and the ion conductive layer material (Li 7 La 3 Zr 2 O 12 ) of Comparative Example 2. A mixture of was used. Here, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 was prepared as a powder having an average particle diameter of 300 nm by preparing a bulk of the substance using a sol-gel method and pulverizing the obtained bulk. The mixing ratio of the positive electrode active material particles, the Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 powder, and the Li 7 La 3 Zr 2 O 12 powder is “60 parts by mass: 10 parts by mass: 30 parts by mass”, and they are often used. After mixing, ethyl cellulose (binder) and butyl carbitol acetate (solvent) were further added and mixed to prepare the positive electrode mixture slurry of Comparative Example 3.
 次に、これら比較例2~3の正極合剤スラリを、実施例4~7と同様に、正極集電体(厚さ20μmの金箔)の両面にドクターブレード法を用いて塗布し、加熱乾燥(大気中、150℃)の後、熱処理(アルゴン雰囲気中、700℃)を施して、正極合剤層を形成した。その後、所定の大きさに切断して比較例2~3の正極を作製した。比較例2の正極は、実施例4の正極に対して第一イオン伝導層がない例と言える。また、比較例3の正極は、実施例4の正極に対して第一イオン伝導層と第二イオン伝導層とが積層構造になっていない例と言える。 Next, the positive electrode mixture slurries of Comparative Examples 2 to 3 were applied to both surfaces of the positive electrode current collector (gold foil with a thickness of 20 μm) using the doctor blade method, as in Examples 4 to 7, and dried by heating. After heat treatment (in air, 150 ° C.), heat treatment (in argon atmosphere, 700 ° C.) was performed to form a positive electrode mixture layer. Thereafter, the positive electrodes of Comparative Examples 2 to 3 were produced by cutting into a predetermined size. The positive electrode of Comparative Example 2 can be said to be an example in which the first ion conductive layer is absent from the positive electrode of Example 4. Further, the positive electrode of Comparative Example 3 can be said to be an example in which the first ion conductive layer and the second ion conductive layer are not in a laminated structure with respect to the positive electrode of Example 4.
 (3)負極の作製
 負極活物質と負極集電体とを兼ねるかたちで金属リチウム箔(厚さ0.3 mm)を用い、所定の大きさに切断して全固体リチウム二次電池用の負極を作製した。
(3) Production of negative electrode Using lithium metal foil (thickness 0.3 mm) as a negative electrode active material and a negative electrode current collector, cut to a predetermined size to produce a negative electrode for an all-solid lithium secondary battery did.
 (4)電極群の作製
 固体電解質層としてはLi1.1Al0.7Ti1.5(PO4)3を用いた。まず、原料となるLi3PO4、AlPO4、TiPO4を所定量混合し、1000~1500℃の高温で溶融させた後、急冷することにより、ガラス状のLi1.1Al0.7Ti1.5(PO4)3バルクを得た。次に、該バルクを粉砕して、Li1.1Al0.7Ti1.5(PO4)3粉末(平均粒径300 nm)を用意した。その後、エチルセルロース(バインダ)とブチルカルビトールアセテート(溶媒)とを添加・混合して固体電解質スラリを調合した。
(4) Production of electrode group Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 was used as the solid electrolyte layer. First, a predetermined amount of Li 3 PO 4 , AlPO 4 , and TiPO 4 as raw materials are mixed, melted at a high temperature of 1000 to 1500 ° C., and then rapidly cooled to obtain glassy Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 bulk was obtained. Next, the bulk was pulverized to prepare Li 1.1 Al 0.7 Ti 1.5 (PO 4 ) 3 powder (average particle size 300 nm). Thereafter, ethyl cellulose (binder) and butyl carbitol acetate (solvent) were added and mixed to prepare a solid electrolyte slurry.
 該固体電解質スラリを、先に用意した正極および負極の両面にドクターブレード法を用いて塗布し、溶媒を揮発させて固体電解質層を形成した。次に、該固体電解質層を介して正極と負極とを交互に積層し、該積層体を加熱乾燥(大気中、150℃)した後、プレス機により圧縮成形して実施例1~7および比較例1~3の電極群を作製した。圧縮成形時に全体を100℃に加熱して、各電極と固体電解質層とを密着させた。なお、固体電解質層の25℃における導電率(単位:S/cm)を表1中に併記した。 The solid electrolyte slurry was applied to both surfaces of the positive electrode and the negative electrode prepared in advance using a doctor blade method, and the solvent was evaporated to form a solid electrolyte layer. Next, the positive electrode and the negative electrode are alternately laminated through the solid electrolyte layer, and the laminate is dried by heating (in the atmosphere, 150 ° C.) and then compression-molded by a press machine. The electrode groups of Examples 1 to 3 were produced. The whole was heated to 100 ° C. during compression molding, and each electrode and the solid electrolyte layer were brought into close contact with each other. The electrical conductivity (unit: S / cm) at 25 ° C. of the solid electrolyte layer is also shown in Table 1.
 (4)全固体リチウム二次電池の組立
 上記の電極群を用いて、実施例1~7および比較例1~3の全固体リチウム二次電池(図2参照)を組み立てた。作製した全固体リチウム二次電池は、100 mm×70 mm×20 mmの外形寸法を有し、5 Ahの定格容量となるように設計した。
(4) Assembly of all-solid lithium secondary battery All-solid lithium secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 (see FIG. 2) were assembled using the above electrode group. The produced all solid lithium secondary battery was designed to have an outer dimension of 100 mm × 70 mm × 20 mm and a rated capacity of 5 Ah.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (試験評価)
 (a)低速充放電試験(0.5Cレート初期容量評価)
 上記で用意した全固体リチウム二次電池について、以下の低速充放電試験を実施し、初期容量を評価した。
(Test evaluation)
(A) Low-speed charge / discharge test (0.5C rate initial capacity evaluation)
About the all-solid-state lithium secondary battery prepared above, the following low-speed charge / discharge tests were implemented and initial capacity was evaluated.
 正極活物質としてLiCoO2またはLiNi1/3Mn1/3Co1/3O2を用いた二次電池(実施例1,2,4,5,7および比較例1~3)に対しては、まず、当該二次電池を120℃の環境に設置して温度を安定させた。次に、開回路の状態から電池電圧が4.2 Vになるまで、2時間率(0.5Cレート)相当の定電流(2.5A)にて充電した。電池電圧が4.2 Vに達した後は、電流値が100時間率相当になるまで4.2 Vを保持した。その後、充電を停止し、30分間の休止時間を設けた。次いで、2時間率(0.5Cレート)相当の定電流の放電を開始し、電池電圧が3.0 Vに達するまで放電させた。その後、放電を停止し、30分の休止時間を設けた。ここまでの工程を初期エージングと称す。この初期エージングを3回繰り返した後に得られた放電容量を当該二次電池の0.5Cレート初期容量とした。 For secondary batteries using LiCoO 2 or LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material (Examples 1, 2, 4, 5, 7 and Comparative Examples 1 to 3) First, the secondary battery was placed in an environment of 120 ° C. to stabilize the temperature. Next, the battery was charged at a constant current (2.5 A) corresponding to a 2-hour rate (0.5 C rate) until the battery voltage reached 4.2 V from the open circuit state. After the battery voltage reached 4.2 V, 4.2 V was maintained until the current value was equivalent to 100 hours. Thereafter, charging was stopped and a 30-minute rest period was provided. Next, constant current discharge corresponding to a 2-hour rate (0.5 C rate) was started, and the battery was discharged until the battery voltage reached 3.0 V. Thereafter, the discharge was stopped and a 30 minute rest period was provided. The process so far is referred to as initial aging. The discharge capacity obtained after repeating this initial aging three times was used as the 0.5 C rate initial capacity of the secondary battery.
 二次電池正極活物質としてLiFePO4を用いた二次電池(実施例3,6)に対しては、初期エージングの充放電電圧を4.0~2.0 Vの範囲で行った他は、上記と同様にして0.5Cレート初期容量を測定した。 For secondary batteries using LiFePO 4 as the secondary battery positive electrode active material (Examples 3 and 6), the same as above except that the charge / discharge voltage of the initial aging was in the range of 4.0 to 2.0 V. The initial capacity of 0.5C rate was measured.
 なお、充放電の時間率(Cレート)とは、二次電池の設計容量を所定の時間で充放電する電流値を意味する。例えば、1時間率(1Cレート)とは、二次電池の設計容量を1時間で充放電する電流値である。具体的には、電池の設計容量をC(単位:Ah)とすると、2時間率(0.5Cレート)の電流値はC/2(単位:A)となる。 The charge / discharge time rate (C rate) means a current value for charging / discharging the design capacity of the secondary battery in a predetermined time. For example, the 1 hour rate (1C rate) is a current value for charging and discharging the design capacity of the secondary battery in 1 hour. Specifically, when the design capacity of the battery is C (unit: Ah), the current value of the 2-hour rate (0.5 C rate) is C / 2 (unit: A).
 実施例1~7および比較例1~3の二次電池をそれぞれ5個作製し、上述した試験を同様に実施して、0.5Cレート初期容量の平均値を算出した。定格容量に対して、95%以上の0.5Cレート初期容量を「合格」と評価し、95%未満の0.5Cレート初期容量を「不合格」と評価した。結果を後述する表2に示す。 Example 5 Each of the secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 was manufactured, and the above test was performed in the same manner to calculate the average value of 0.5C rate initial capacity. For the rated capacity, an initial capacity of 0.5C rate of 95% or more was evaluated as “pass”, and an initial capacity of 0.5C rate of less than 95% was evaluated as “fail”. The results are shown in Table 2 described later.
 (b)高速充放電試験(1Cレート初期容量評価)
 上記の低速充放電試験を行った後、十分な休止時間を置いた。その後、各二次電池を85℃の環境に設置して温度を安定させた。次に、充放電電圧の条件を低速充放電試験と同じにし、充放電の時間率(Cレート)を1時間率(1Cレート)とした条件で1Cレート初期容量を測定した。
(B) High-speed charge / discharge test (1C rate initial capacity evaluation)
After performing the above-mentioned low-speed charge / discharge test, a sufficient rest time was set. Thereafter, each secondary battery was placed in an environment of 85 ° C. to stabilize the temperature. Next, the initial charge capacity of the 1C rate was measured under the condition that the charge / discharge voltage conditions were the same as in the low-speed charge / discharge test, and the charge / discharge time rate (C rate) was 1 hour rate (1C rate).
 上記と同じく5個の平均値を算出した。定格容量に対して、90%以上の1Cレート初期容量を「合格」と評価し、90%未満の0.5Cレート初期容量を「不合格」と評価した。結果を表2に併記した。 The average value of 5 pieces was calculated as above. The 1C rate initial capacity of 90% or more with respect to the rated capacity was evaluated as “pass”, and the 0.5C rate initial capacity of less than 90% was evaluated as “fail”. The results are shown in Table 2.
 (c)サイクル試験(サイクル特性評価)
 上記の高速充放電試験を行った後、十分な休止時間を置いた。その後、各二次電池を120℃の環境に設置して温度を安定させた。次に、先の低速充放電試験と同じ条件で充放電を20サイクル繰り返した後の0.5Cレート容量を測定した。
(C) Cycle test (cycle characteristic evaluation)
After performing the above high-speed charge / discharge test, sufficient rest time was set. Thereafter, each secondary battery was placed in an environment of 120 ° C. to stabilize the temperature. Next, the 0.5 C rate capacity after 20 cycles of charge and discharge were measured under the same conditions as in the previous low-speed charge and discharge test.
 上記と同じく5個の平均値を算出した。0.5Cレート初期容量に対して、-5%以内の0.5Cレート容量を「合格」と評価し、-5%超の0.5Cレート容量を「不合格」と評価した。結果を表2に併記した。 The average value of 5 pieces was calculated as above. A 0.5C rate capacity within -5% with respect to the initial capacity of 0.5C rate was evaluated as "pass", and a 0.5C rate capacity with more than -5% was evaluated as "fail". The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1~2に示したように、本発明の規定から外れる比較例1~3は、0.5Cレート初期容量、1Cレート初期容量、および20サイクル後0.5Cレート容量の全ての試験評価において不合格であった。個別に見てみると、第二イオン伝導層を有しない比較例1は、正極合剤層と固体電解質層との接触が不十分な状態である可能性が高く、かつ高温環境下での充放電によって固体電解質層の劣化を誘発したと考えられる。その結果、特に1Cレート初期容量や20サイクル後0.5Cレート容量が大きく低下したものと考えられた。 As shown in Tables 1 and 2, Comparative Examples 1 to 3 that are out of the scope of the present invention failed in all test evaluations of 0.5C rate initial capacity, 1C rate initial capacity, and 0.5C rate capacity after 20 cycles. Met. When viewed individually, in Comparative Example 1 having no second ion conductive layer, there is a high possibility that the contact between the positive electrode mixture layer and the solid electrolyte layer is insufficient, and charging in a high-temperature environment. It is thought that the deterioration of the solid electrolyte layer was induced by the discharge. As a result, it was considered that the 1C rate initial capacity and the 0.5C rate capacity after 20 cycles were significantly reduced.
 第一イオン伝導層を有しない比較例2は、正極活物質二次粒子を構成する一次粒子同士の間隙がイオン伝導層で充満されていないことから、特に0.5Cレート初期容量が大きく低下したものと考えられた。また、第二イオン伝導層が正極活物質粒子と直接接触することから、第一イオン伝導層よりも耐酸化性が低い第二イオン伝導層が高温環境下の充放電によって酸化劣化したと考えられた。 In Comparative Example 2 having no first ion conductive layer, the initial capacity of the 0.5C rate is greatly reduced because the gap between the primary particles constituting the positive electrode active material secondary particles is not filled with the ion conductive layer. It was considered. In addition, since the second ion conductive layer is in direct contact with the positive electrode active material particles, it is considered that the second ion conductive layer, which has lower oxidation resistance than the first ion conductive layer, was oxidized and deteriorated due to charge / discharge in a high temperature environment. It was.
 第一イオン伝導層と第二イオン伝導層とが積層構造になっていない比較例3は、第二イオン伝導層が正極活物質粒子と直接接触し、かつ正極活物質二次粒子を構成する一次粒子同士の間隙がイオン伝導層で充満されていないことから、比較例1~2の弱点を兼ね備えたような結果になったと考えられた。 In Comparative Example 3 in which the first ion conductive layer and the second ion conductive layer do not have a laminated structure, the second ion conductive layer is in direct contact with the positive electrode active material particles and constitutes the positive electrode active material secondary particles. Since the gap between the particles was not filled with the ion conductive layer, it was considered that the result was as if the weak points of Comparative Examples 1 and 2 were combined.
 これら比較例1~3に対し、実施例1~7の二次電池は、0.5Cレート初期容量、1Cレート初期容量、および20サイクル後0.5Cレート容量の全ての試験評価において合格であった。すなわち、本発明に係る二次電池は、従来の非水電解液リチウム二次電池よりも高温環境で利用可能であり、かつ充放電特性とサイクル特性とが高いレベルでバランスしたバルク型の全固体リチウム二次電池であることが実証された。 In contrast to Comparative Examples 1 to 3, the secondary batteries of Examples 1 to 7 passed all the test evaluations of 0.5C rate initial capacity, 1C rate initial capacity, and 0.5C rate capacity after 20 cycles. That is, the secondary battery according to the present invention can be used in a higher temperature environment than the conventional non-aqueous electrolyte lithium secondary battery, and is a bulk-type all solid that balances charge and discharge characteristics and cycle characteristics at a high level. It was proved to be a lithium secondary battery.
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and examples are described for the purpose of helping understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification can be deleted, replaced with other configurations, and added with other configurations.
 100…単セル、110…正極、111…正極集電体、112…正極合剤層、113…一次粒子、114…二次粒子、115…第一イオン伝導層、116…第二イオン伝導層、120…固体電解質層、130…負極、131…負極集電体、132…負極合剤層、200,200A,200B…全固体リチウム二次電池、210…電極群、211…正極リード、212…負極リード、213…正極外部端子、214…負極外部端子、220…電池容器、221…蓋、222…電気絶縁シール、300…二次電池システム、311,312,313,314,315,316,317…電力ケーブル、320…充放電制御機構、330…外部機器、340…発電装置。 100 ... single cell, 110 ... positive electrode, 111 ... positive electrode current collector, 112 ... positive electrode mixture layer, 113 ... primary particles, 114 ... secondary particles, 115 ... first ion conductive layer, 116 ... second ion conductive layer, 120 ... Solid electrolyte layer, 130 ... Negative electrode, 131 ... Negative electrode current collector, 132 ... Negative electrode mixture layer, 200, 200A, 200B ... All solid lithium secondary battery, 210 ... Electrode group, 211 ... Positive electrode lead, 212 ... Negative electrode Lead, 213 ... Positive electrode external terminal, 214 ... Negative electrode external terminal, 220 ... Battery container, 221 ... Lid, 222 ... Electrical insulation seal, 300 ... Secondary battery system, 311, 312, 313, 314, 315, 316, 317 ... Power cable, 320 ... charge / discharge control mechanism, 330 ... external device, 340 ... power generation device.

Claims (8)

  1.  正極と負極とが固体電解質層を介して積層された全固体リチウム二次電池であって、
    前記正極は、正極活物質粒子と第一イオン伝導層と第二イオン伝導層とを含み、
    前記正極活物質粒子は、複数の一次粒子が集合した二次粒子を形成しており、
    前記第一イオン伝導層は、前記正極活物質粒子と前記第二イオン伝導層との間でリチウムイオンを媒介する物質であり、前記二次粒子を被覆すると共に該二次粒子を構成する前記一次粒子同士の間隙に充満しており、
    前記第二イオン伝導層は、前記第一イオン伝導層と前記固体電解質層との間でリチウムイオンを伝導する物質であり、前記第一イオン伝導層で被覆された前記二次粒子を積層被覆しており、
    前記第一イオン伝導層と前記第二イオン伝導層と前記固体電解質層とが互いに異なる物質からなることを特徴とする全固体リチウム二次電池。
    An all-solid lithium secondary battery in which a positive electrode and a negative electrode are laminated via a solid electrolyte layer,
    The positive electrode includes positive electrode active material particles, a first ion conductive layer, and a second ion conductive layer,
    The positive electrode active material particles form secondary particles in which a plurality of primary particles are aggregated,
    The first ion conductive layer is a material that mediates lithium ions between the positive electrode active material particles and the second ion conductive layer, and covers the secondary particles and constitutes the secondary particles. It fills the gaps between the particles,
    The second ion conductive layer is a substance that conducts lithium ions between the first ion conductive layer and the solid electrolyte layer, and the secondary particles coated with the first ion conductive layer are laminated and coated. And
    The all-solid lithium secondary battery, wherein the first ion conductive layer, the second ion conductive layer, and the solid electrolyte layer are made of different materials.
  2.  請求項1に記載の全固体リチウム二次電池において、
    前記第一イオン伝導層の導電率が1×10-6 S/cm以上1×10-3 S/cm以下であり、
    前記第二イオン伝導層の導電率が1×10-5 S/cm以上1×10-2 S/cm以下であり、
    前記固体電解質層の導電率が1×10-4 S/cm以上であることを特徴とする全固体リチウム二次電池。
    In the all-solid-state lithium secondary battery of Claim 1,
    The conductivity of the first ion conductive layer is 1 × 10 −6 S / cm or more and 1 × 10 −3 S / cm or less,
    The conductivity of the second ion conductive layer is 1 × 10 −5 S / cm or more and 1 × 10 −2 S / cm or less,
    An all-solid lithium secondary battery, wherein the solid electrolyte layer has an electrical conductivity of 1 × 10 −4 S / cm or more.
  3.  請求項1又は請求項2に記載の全固体リチウム二次電池において、
    前記第一イオン伝導層は、リチウムを含む酸化物電解質からなり、
    前記第二イオン伝導層は、リチウム塩を含むイオン伝導性ポリマまたはリチウムを含むセラミック電解質からなることを特徴とする全固体リチウム二次電池。
    In the all-solid-state lithium secondary battery of Claim 1 or Claim 2,
    The first ion conductive layer is made of an oxide electrolyte containing lithium,
    The all-solid lithium secondary battery, wherein the second ion conductive layer is made of an ion conductive polymer containing a lithium salt or a ceramic electrolyte containing lithium.
  4.  請求項1乃至請求項3のいずれかに記載の全固体リチウム二次電池において、
    前記正極活物質粒子と前記第一イオン伝導層と前記第二イオン伝導層との合計を100質量部としたときに、前記正極活物質粒子が60質量部以上90質量部以下で含まれることを特徴とする全固体リチウム二次電池。
    In the all-solid-state lithium secondary battery in any one of Claims 1 thru | or 3,
    When the total of the positive electrode active material particles, the first ion conductive layer, and the second ion conductive layer is 100 parts by mass, the positive electrode active material particles are included in an amount of 60 parts by mass to 90 parts by mass. An all-solid lithium secondary battery.
  5.  請求項4に記載の全固体リチウム二次電池において、
    前記第一イオン伝導層が5質量部以上30質量部以下で含まれることを特徴とする全固体リチウム二次電池。
    In the all-solid-state lithium secondary battery of Claim 4,
    The all-solid lithium secondary battery, wherein the first ion conductive layer is included in an amount of 5 parts by mass or more and 30 parts by mass or less.
  6.  請求項1乃至請求項5のいずれかに記載の全固体リチウム二次電池において、
    前記固体電解質層の導電率は、前記第二イオン伝導層の導電率よりも高いことを特徴とする全固体リチウム二次電池。
    In the all-solid-state lithium secondary battery in any one of Claims 1 thru | or 5,
    The all-solid lithium secondary battery, wherein the solid electrolyte layer has a conductivity higher than that of the second ion conductive layer.
  7.  請求項1乃至請求項6のいずれかに記載の全固体リチウム二次電池において、
    前記正極は、導電材を更に含むことを特徴とする全固体リチウム二次電池。
    The all solid lithium secondary battery according to any one of claims 1 to 6,
    The all-solid lithium secondary battery, wherein the positive electrode further includes a conductive material.
  8.  請求項1乃至請求項7のいずれかに記載の全固体リチウム二次電池を備えたことを特徴とする二次電池システム。 A secondary battery system comprising the all solid lithium secondary battery according to any one of claims 1 to 7.
PCT/JP2016/057063 2015-08-26 2016-03-08 All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery WO2017033480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015166491A JP2018185883A (en) 2015-08-26 2015-08-26 All-solid lithium secondary battery and secondary battery system including the same
JP2015-166491 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017033480A1 true WO2017033480A1 (en) 2017-03-02

Family

ID=58099829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057063 WO2017033480A1 (en) 2015-08-26 2016-03-08 All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery

Country Status (2)

Country Link
JP (1) JP2018185883A (en)
WO (1) WO2017033480A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183255A1 (en) * 2016-04-19 2017-10-26 株式会社村田製作所 Solid electrolyte and all-solid-state battery
DE102017204852A1 (en) * 2017-03-22 2018-09-27 Robert Bosch Gmbh Lithium-cell cathode with different sulfide lithium-ion conductors
CN111370760A (en) * 2020-03-19 2020-07-03 香港科技大学 Wide electrochemical window composite solid electrolyte and preparation method thereof
JP2020155225A (en) * 2019-03-18 2020-09-24 太平洋セメント株式会社 Manufacturing method of composite positive electrode active material particles for all-solid lithium ion secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870441B (en) 2016-06-01 2018-07-31 湖南杉杉能源科技股份有限公司 A kind of high-rate type lithium cobaltate positive electrode and preparation method thereof
JP2020107604A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Electrode active material and manufacturing method for the same, and all-solid-state battery using electrode active material
CN112216822B (en) * 2019-07-10 2021-10-01 宁德时代新能源科技股份有限公司 Lithium ion secondary battery and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117942A (en) * 1997-06-19 1999-01-12 Matsushita Electric Ind Co Ltd Total solid lithium battery
WO2006018921A1 (en) * 2004-08-18 2006-02-23 Central Research Institute Of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP2007059409A (en) * 2006-10-11 2007-03-08 Central Res Inst Of Electric Power Ind All-solid battery
JP2008226463A (en) * 2007-03-08 2008-09-25 Toyota Motor Corp Lithium secondary battery, manufacturing method of particle for cathode active material coating, and manufacturing method of lithium secondary battery
WO2011145462A1 (en) * 2010-05-17 2011-11-24 住友電気工業株式会社 Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
JP2012209106A (en) * 2011-03-29 2012-10-25 Denso Corp All-solid battery
JP2013026003A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp All-solid battery, and method of manufacturing the same
JP2013089321A (en) * 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
WO2013073038A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
WO2013121642A1 (en) * 2012-02-17 2013-08-22 ソニー株式会社 Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device
JP2015005398A (en) * 2013-06-20 2015-01-08 トヨタ自動車株式会社 Positive electrode for all-solid lithium ion battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117942A (en) * 1997-06-19 1999-01-12 Matsushita Electric Ind Co Ltd Total solid lithium battery
WO2006018921A1 (en) * 2004-08-18 2006-02-23 Central Research Institute Of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP2007059409A (en) * 2006-10-11 2007-03-08 Central Res Inst Of Electric Power Ind All-solid battery
JP2008226463A (en) * 2007-03-08 2008-09-25 Toyota Motor Corp Lithium secondary battery, manufacturing method of particle for cathode active material coating, and manufacturing method of lithium secondary battery
WO2011145462A1 (en) * 2010-05-17 2011-11-24 住友電気工業株式会社 Positive electrode body for nonaqueous electrolyte battery, method for producing same, and nonaqueous electrolyte battery
JP2012209106A (en) * 2011-03-29 2012-10-25 Denso Corp All-solid battery
JP2013026003A (en) * 2011-07-20 2013-02-04 Toyota Motor Corp All-solid battery, and method of manufacturing the same
JP2013089321A (en) * 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
WO2013073038A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
WO2013121642A1 (en) * 2012-02-17 2013-08-22 ソニー株式会社 Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device
JP2015005398A (en) * 2013-06-20 2015-01-08 トヨタ自動車株式会社 Positive electrode for all-solid lithium ion battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183255A1 (en) * 2016-04-19 2017-10-26 株式会社村田製作所 Solid electrolyte and all-solid-state battery
JPWO2017183255A1 (en) * 2016-04-19 2018-10-25 株式会社村田製作所 Solid electrolyte and all-solid battery
DE102017204852A1 (en) * 2017-03-22 2018-09-27 Robert Bosch Gmbh Lithium-cell cathode with different sulfide lithium-ion conductors
CN108630914A (en) * 2017-03-22 2018-10-09 罗伯特·博世有限公司 Lithium cell cathode with different sulfide type lithium ion conductors
JP2020155225A (en) * 2019-03-18 2020-09-24 太平洋セメント株式会社 Manufacturing method of composite positive electrode active material particles for all-solid lithium ion secondary battery
JP7152974B2 (en) 2019-03-18 2022-10-13 太平洋セメント株式会社 Method for producing composite positive electrode active material particles for all-solid lithium ion secondary battery
CN111370760A (en) * 2020-03-19 2020-07-03 香港科技大学 Wide electrochemical window composite solid electrolyte and preparation method thereof
CN111370760B (en) * 2020-03-19 2023-06-23 香港科技大学 Composite solid electrolyte with wide electrochemical window and preparation method thereof

Also Published As

Publication number Publication date
JP2018185883A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
US11349119B2 (en) Method for making silicon-containing composite electrodes for lithium-based batteries
WO2017033480A1 (en) All-solid-state lithium secondary battery and secondary battery system provided with said secondary battery
KR102165543B1 (en) Ion-conducting batteries with solid state electrolyte materials
JP5333184B2 (en) All solid state secondary battery
KR101907700B1 (en) Electrode material for lithium secondary battery and lithium secondary battery
WO2017046915A1 (en) Composite electrolyte for secondary batteries, secondary battery and battery pack
US11362318B2 (en) Lithium ion secondary battery
US11374218B2 (en) Multilayer siloxane coatings for silicon negative electrode materials for lithium ion batteries
JP2015534242A (en) Solid battery electrode
TW201611393A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
US11888149B2 (en) Solid state battery system usable at high temperatures and methods of use and manufacture thereof
JP5867396B2 (en) Secondary battery
JP2021048146A (en) High safety and high energy density battery
JP5920217B2 (en) Secondary battery
TW201826592A (en) Anodes, cathodes, and separators for batteries and methods to make and use same
JPWO2013038939A1 (en) Lithium secondary battery pack, electronic device using the same, charging system and charging method
JP2019040709A (en) All-solid lithium ion secondary battery and method for manufacturing the same
JP2015109214A (en) Collector and lithium ion secondary battery
JPWO2017046917A1 (en) Composite electrolyte for secondary battery, secondary battery and battery pack
US20160079634A1 (en) All-solid-state battery and method for producing the same, and method for restoring capacity of the same
WO2012147647A1 (en) Lithium ion secondary cell
JPWO2016093246A1 (en) Lithium ion secondary battery
JP2016115403A (en) Lithium ion secondary battery and method for manufacturing the same
JP2017045593A (en) All-solid type lithium secondary battery, and secondary battery system with the same
JP2014041732A (en) Positive electrode active material, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP