WO2017033428A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2017033428A1
WO2017033428A1 PCT/JP2016/003691 JP2016003691W WO2017033428A1 WO 2017033428 A1 WO2017033428 A1 WO 2017033428A1 JP 2016003691 W JP2016003691 W JP 2016003691W WO 2017033428 A1 WO2017033428 A1 WO 2017033428A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
value
inverter circuit
voltage
Prior art date
Application number
PCT/JP2016/003691
Other languages
French (fr)
Japanese (ja)
Inventor
智規 伊藤
祐輔 岩松
後藤 周作
賢治 花村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017033428A1 publication Critical patent/WO2017033428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device that converts DC power into AC power.
  • an inverter circuit using a bridge circuit In many of the power conversion devices that convert DC power into AC power, an inverter circuit using a bridge circuit is used.
  • a bridge circuit two or three switching elements (arms) connected in series are connected in parallel to a high-side reference line and a low-side reference line connected to a DC power supply, and are operated in a complementary manner. Generate AC power.
  • the switching element for example, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or the like is used (see, for example, Patent Document 1).
  • the dead time compensation methods are roughly classified into a feed forward compensation method based on current detection and a feedback compensation method based on voltage detection.
  • the polarity of the current that flows during the dead time period is detected from the phase of the output current, and the compensation value corresponding to the detected polarity is applied to the voltage command value for driving the inverter circuit. to add.
  • the size can be reduced.
  • the polarity detection unit easily malfunctions due to the current waveform and the offset of the current detector.
  • the output voltage of the inverter circuit is detected and compared with the drive signal of the inverter circuit to compensate the voltage command value.
  • this method can perform highly accurate compensation, a voltage detection unit that detects the output voltage of the inverter circuit is required.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a power conversion device capable of compensating for an error generated by power conversion using an inverter circuit with high accuracy while suppressing a circuit scale.
  • a power conversion device includes an inverter circuit that converts DC power into AC power and a reactor, and attenuates high-frequency components of AC power output from the inverter circuit.
  • a filter circuit ; a current detection circuit that detects a current flowing through the reactor; and a control circuit that generates a drive signal for the inverter circuit based on a voltage command value.
  • the control circuit estimates the output voltage of the inverter circuit before passing through the filter circuit based on the current detected by the current detection circuit, and the estimated output voltage of the inverter circuit is supplied to the inverter circuit.
  • the voltage command value is corrected based on the relationship with the drive signal.
  • FIG. 1 is a diagram for explaining a configuration of a power conversion device 20 according to Embodiment 1 of the present invention.
  • the power converter 20 converts the DC power supplied from the DC power supply 10 into AC power and causes the system 30 to reversely flow.
  • An AC load may be connected instead of the system 30.
  • the DC power supply 10 is, for example, a solar cell or a fuel cell.
  • the power conversion device 20 functions as a power conditioner that converts DC power generated by the solar cell or fuel cell into AC power.
  • the inverter circuit 22 converts DC power supplied from the DC power supply 10 into AC power.
  • FIG. 1 shows an example in which the inverter circuit 22 is configured by a full bridge circuit.
  • the full bridge circuit includes a first arm in which the first switching element S1 and the second switching element S2 are connected in series, and a second arm in which the third switching element S3 and the fourth switching element S4 are connected in series. The arm and the second arm are connected in parallel. AC power is output from the midpoint N1 of the first arm and the midpoint N2 of the second arm.
  • IGBTs can be used for the first switching element S1 to the fourth switching element S4.
  • the first free-wheeling diode D1 to the fourth free-wheeling diode D4 are respectively connected in parallel to the first switching element S1 to the fourth switching element S4 in the reverse direction.
  • MOSFETs Metal-Oxide-Semiconductor-Field-Effect-Transistors
  • the first free-wheeling diode D1 to the fourth free-wheeling diode D4 can use parasitic diodes formed in the direction from the source to the drain.
  • FIG. 2 is a diagram for explaining a dead time error generated in the inverter circuit 22.
  • the drive signal Vg PWM signal
  • the gate voltage Vs1 of the first switching element S1 is at a high level and the gate voltage Vs2 of the second switching element S2 is at a low level.
  • the drive signal Vg transitions from the high level to the low level, the first switching element S1 is immediately turned off, but the second switching element S2 is turned on after the dead time Td has elapsed.
  • Td a negative current flows through the first free-wheeling diode D1.
  • a component obtained by multiplying this current by half the voltage of the DC power supply 10 is an error component (see the hatched portion of the midpoint voltage Vn1 (negative current)). Since this error component acts in the direction of decreasing the output power of the inverter circuit 22, it is necessary to estimate the error component and add it to the input power of the inverter circuit 22 in order to compensate for the error component.
  • the gate voltage Vs1 of the first switching element S1 is at a low level
  • the gate voltage Vs2 of the second switching element S2 is at a high level.
  • the second switching element S2 is immediately turned off, but the first switching element S1 is turned on after the dead time Td has elapsed.
  • a current in the positive direction flows through the second free-wheeling diode D2 during the dead time Td.
  • a component obtained by multiplying this current by half the voltage of the DC power supply 10 is an error component (see the hatched portion of the midpoint voltage Vn1 (positive current)). Since this error component acts to increase the output power of the inverter circuit 22, in order to compensate for the error component, it is necessary to estimate the error component and remove it from the input power of the inverter circuit 22.
  • the filter circuit 23 includes a first reactor L1, a second reactor L2, and a second capacitor C2.
  • the filter circuit 23 attenuates the harmonic component of the AC power output from the inverter circuit 22, and the output voltage and output current of the inverter circuit 22 are reduced. Move closer to a sine wave. The AC power output from the filter circuit 23 flows backward to the system 30.
  • the DC voltage detection circuit 24 detects the input voltage of the inverter circuit 22 and outputs it to the control circuit 27.
  • the current detection circuit 25 detects the alternating current that flows from the inverter circuit 22 and flows through the first reactor L1 using the current sensor CT, and outputs the detected current to the control circuit 27.
  • the AC voltage detection circuit 26 detects the AC voltage output from the inverter circuit 22 and passed through the filter circuit 23 and outputs the AC voltage to the control circuit 27.
  • the control circuit 27 generates a drive signal for the inverter circuit 22 based on the voltage command value, and supplies the drive signal to the inverter circuit 22.
  • a PWM signal is generated as a drive signal and supplied to the gate terminals of the first switching element S1 to the fourth switching element S4.
  • the output power of the inverter circuit 22 can be increased by increasing the duty ratio of the PWM signal, and the output power of the inverter circuit 22 can be decreased by decreasing the duty ratio of the PWM signal.
  • control circuit 27 estimates the output voltage of the inverter circuit 22 before passing through the filter circuit 23 based on the current detected by the current detection circuit 25, and the estimated output voltage of the inverter circuit 22 and the inverter The voltage command value is corrected based on the relationship with the drive signal supplied to the circuit 22. This will be specifically described below.
  • the control circuit 27 includes a first subtractor 27a, a first compensator 27b, a first adder 27c, a second adder 27d, a drive signal generator 27e, a first multiplier 27f, a second subtractor 27g, and a first division. Part 27h and a third subtracting part 27i.
  • the configuration of the control circuit 27 can be realized by cooperation of hardware resources and software resources, or only by hardware resources.
  • hardware resources analog elements, microcomputers, DSPs, ROMs, RAMs, FPGAs, and other LSIs can be used.
  • Firmware and other programs can be used as software resources.
  • First subtracting unit 27a subtracts the current value I L that is detected by the current detecting circuit 25 from the target current value Iref.
  • First compensator 27b based on the deviation between the target current value Iref and the current value I L, and generates a voltage command value Vref by PI compensation or P compensation.
  • the first adder 27c adds the voltage obtained by dividing the AC voltage value Vout detected by the AC voltage detection circuit 26 by the DC voltage value Vdc detected by the DC voltage detection circuit 24 to the voltage command value Vref. Compensates for disturbance components due to system voltage.
  • the second adder 27d adds the dead time error component compensation value to the voltage command value Vref to generate a voltage command value Vref ′ after dead time error compensation.
  • the drive signal generator 27e generates a drive signal Vg for the inverter circuit 22 based on the voltage command value Vref ′ after dead time error compensation.
  • the drive signal generation unit 27e includes, for example, a comparator to which the voltage command value Vref 'and a triangular wave carrier signal are input.
  • the comparator outputs a PWM signal corresponding to the comparison result between the voltage command value Vref ′ and the carrier signal.
  • the PWM signal is input to the gate terminals of the first switching element S1 and the fourth switching element S4 of the inverter circuit 22, and the signal having the opposite phase to the phase of the PWM signal is the gate of the second switching element S2 and the third switching element S3. Input to the terminal.
  • the PWM signal is a signal that defines the duty ratio of the first switching element S1 to the fourth switching element S4, and is also output to the third subtraction unit 27i.
  • the first multiplication unit 27f is the current value I L that is detected by the current detection circuit 25, by multiplying the reactance of the first reactor L1, estimates the voltage across the first reactor L1.
  • the second subtraction unit 27g subtracts the voltage across the first reactor L1 from the AC voltage value Vout (output voltage of the first reactor L1) detected by the AC voltage detection circuit 26, and outputs the output voltage value of the inverter circuit 22. (Input voltage of the first reactor L1) is estimated.
  • the first multiplication unit 27f and the second subtraction unit 27g function as a voltage estimation unit that estimates the output voltage (including the dead time error component) of the inverter circuit 22.
  • the first divider 27h divides the estimated output voltage of the inverter circuit 22 (including the dead time error component) by the DC voltage value Vdc detected by the DC voltage detection circuit 24 to estimate the output voltage of the inverter circuit 22.
  • a duty value corresponding to the value (including the dead time error component) is calculated.
  • the third subtractor 27i subtracts the duty value including the dead time error component supplied from the first divider 27h from the duty value not including the dead time error component of the inverter circuit 22 supplied from the drive signal generator 27e. By doing so, the dead time error component compensation value is estimated.
  • the third subtractor 27i outputs the calculated dead time error component compensation value to the second adder 27d.
  • the second addition unit 27d corrects the voltage command value Vref ′ by adding the dead time error component compensation value to the voltage command value Vref.
  • FIG. 3 is a diagram for explaining the configuration of the power conversion device 20 according to the comparative example.
  • the comparative example is an example in which an actual measurement value is used for the output voltage value (including the dead time error component) of the inverter circuit 22.
  • an AC voltage detection circuit 28 that detects an output voltage value (including a dead time error component) of the inverter circuit 22 before passing through the filter circuit 23 is additionally provided.
  • the output voltage value (including the dead time error component) of inverter circuit 22 is estimated from the output current of inverter circuit 22 by calculation.
  • the AC voltage detection circuit 28 is not necessary.
  • the power conversion using the inverter circuit 22 is performed without providing the AC voltage detection circuit 28 for detecting the output voltage of the inverter circuit 22 before passing through the filter circuit 23.
  • the generated error component can be compensated by feedback control based on voltage detection.
  • the feedback compensation method based on voltage detection has higher compensation accuracy than the feedforward compensation method based on current detection, the power conversion device 20 according to the first embodiment has a highly accurate dead time while suppressing the circuit scale.
  • the error component can be compensated.
  • FIG. 4 is a diagram for explaining the configuration of the power conversion device 20 according to the second embodiment of the present invention.
  • a dead time error component compensation value is calculated by digital signal processing using a processor such as a microcomputer or DSP. Since digital signal processing is discretely performed according to the clock frequency, a control delay occurs. Specifically, the dead time error component compensation value is calculated based on the current value detected at time (n ⁇ 1), and the voltage command value at time n is corrected.
  • the current value detected by the current detection circuit 25 is an alternating current value, it changes in a sine wave shape. Therefore, strictly speaking, the current value detected at time (n ⁇ 1) is different from the current value detected at time n. The same argument applies to the voltage value detected by the AC voltage detection circuit 26.
  • a compensation method that takes into account an error due to a control delay caused by the digital signal processing is realized.
  • the control circuit 27 includes a first subtraction unit 27a, a first compensation unit 27b, a first addition unit 27c, a second addition unit 27d, a drive signal generation unit 27e, a predicted current calculation unit 27j, and an error component compensation.
  • a value calculation unit 27k is included.
  • the predicted current calculation unit 27j predicts a current value ahead of one control cycle (hereinafter referred to as “step”) from the current current value detected by the current detection circuit 25.
  • the prediction method is not particularly limited.
  • the current phase may be detected, the amplitude may be calculated from the current current value and phase, and the current value one step ahead may be estimated from the amplitude and the phase one step ahead.
  • the error component compensation value calculator 27k estimates the output voltage value (including the dead time error component) of the inverter circuit 22 one step ahead based on the output current estimated value of the inverter circuit 22 one step ahead. This estimation operation generates a delay time for one step.
  • the error component compensation value calculation unit 27k is based on the output voltage estimated value (including the dead time error component) of the inverter circuit 22 delayed by this one step time and the input voltage estimated value of the inverter circuit 22 at that time. An error component generated by power conversion using the inverter circuit 22 is estimated, and a compensation value thereof is calculated. Other processes are the same as those of the first embodiment.
  • FIG. 5 is a signal flow diagram of power conversion device 20 according to Embodiment 2 of the present invention.
  • the first subtraction unit 27a subtracts the current value I L (n ⁇ 1) detected by the current detection circuit 25 from the target current value Iref (n).
  • First compensator 27b based on the deviation between the target current value Iref (n) and the current value I L (n-1), and generates a voltage command value Vref by PI compensation or P compensation (n).
  • the AC voltage value Vout (n) detected by the AC voltage detection circuit 26 is delayed by a processing time for one step by the first delay unit 27l.
  • the second division unit 27m divides the AC voltage value Vout (n ⁇ 1) delayed by the processing time for one step by the first delay unit 27l by the DC voltage value Vdc detected by the DC voltage detection circuit 24. Generate a voltage value.
  • the first adder 27c adds a voltage value obtained by dividing the AC voltage value Vout (n ⁇ 1) by the DC voltage value Vdc to the voltage command value Vref [n] to compensate for a disturbance component due to the system voltage.
  • the fourth subtracting unit 27n subtracts an error compensation value ⁇ ⁇ Vnoise (n) / Vdc for compensating an error component generated in the inverter circuit 22 from the voltage command value Vref (n).
  • ⁇ ⁇ Vnoise (n ⁇ 1) indicates a predicted value of an error voltage component that is estimated at time (n ⁇ 1) and is generated in the inverter circuit 22 at time n.
  • the fourth subtractor 27n outputs the voltage command value after error component compensation to the second multiplier 22a and the error component compensation value calculator 27k as the duty value duty (n).
  • the second multiplier 22a multiplies the duty value duty (n) and the DC voltage value Vdc to calculate the output voltage value Vinv (n) of the inverter circuit 22 (not including the error component ⁇ Vnoise (n)).
  • the third adder 22b adds an error component ⁇ Vnoise (n) generated by power conversion using the inverter circuit 22 to the output voltage value Vinv (n) of the inverter circuit 22 calculated by the second multiplier 22a.
  • the processing of the second multiplier 22a and the third adder 22b represents power conversion by the inverter circuit 22 of FIG.
  • the second subtraction unit 27g subtracts the AC voltage value Vout (n) detected by the AC voltage detection circuit 26 from the output voltage value Vinv ′ (n) (including the error component ⁇ Vnoise (n)) of the inverter circuit 22. .
  • the third multiplier L1a multiplies the both-ends voltage V L (n) of the first reactor L1 by the reactance of the first reactor L1, and calculates the predicted current value I L (n) of the first reactor L1.
  • the second delay unit 27ka outputs the current value I L (n ⁇ 1) of the first reactor L1 obtained by delaying the current value I L (n) of the first reactor L1 by a processing time for one step.
  • the processing of the second delay unit 27ka represents an operation delay by the processor.
  • the reactance of the first reactor L1 is expressed as a function of the z conversion region.
  • the predicted current calculation unit 27j calculates a current value ⁇ I L (n) one step ahead from the current value I L (n-1) of the first reactor L1 by a prediction calculation.
  • the error component compensation value calculator 27k calculates an error compensation value ⁇ ⁇ Vnoise (n-1) / Vdc based on the current value ⁇ I L (n) and the duty value duty (n) one step ahead.
  • the current value I L (n) of the first reactor L1, which is the output current value of the inverter circuit 22, can be defined by the following (formula 1).
  • I L (n) (Vinv (n) + ⁇ Vnoise (n) ⁇ Vout (n)) ⁇ 1 / (z ⁇ 1) ⁇ Ts / L) (Equation 1)
  • the error component ⁇ Vnoise (n) generated in the inverter circuit 22 can be defined by the following (formula 2).
  • ⁇ Vnoise (n) (Vout (n) + (z ⁇ 1) ⁇ L / Ts ⁇ I L (n)) ⁇ Vinv (n) (Formula 2)
  • the predicted value ⁇ ⁇ Vnoise (n) of the error component is calculated by the following (Expression 3) using the predicted current value ⁇ I L (n) one step ahead from the above (Expression 2).
  • ⁇ ⁇ Vnoise (n) ( Vout (n-1) + L / Ts ( ⁇ I L (n) -I L (n-1))) - Vinv (n-1) ... ( Equation 3)
  • the output voltage value Vinv (n ⁇ 1) (not including the error component ⁇ Vnoise (n ⁇ 1)) of the inverter circuit 22 in the above (Equation 3) is the duty value duty (n ⁇ 1) and the DC voltage value Vdc (n ⁇ It can be calculated by multiplying by 1).
  • the error component ⁇ Vnoise (n) is compensated by previously subtracting the error component compensation value ⁇ Vnoise (n) / Vdc calculated by the error component compensation value calculating unit 27k from the duty value duty (n).
  • the current value before the delay is estimated by performing the prediction calculation in consideration of the control delay with respect to the current value delayed due to the control delay of the digital signal processing by the processor. .
  • the dead time error voltage is estimated and corrected to correct the drive signal.
  • FIG. 6 is a diagram for explaining the configuration of the power conversion device 20 according to the third embodiment of the present invention.
  • the power conversion device 20 according to the third embodiment has a configuration in which a clamp circuit 29 is added to the power conversion device 20 according to the second embodiment shown in FIG.
  • the clamp circuit 29 is provided between the inverter circuit 22 and the filter circuit 23, can short-circuit between the AC output terminals (N1, N2) of the inverter circuit 22, and can switch the conduction direction at the time of the short-circuit.
  • the clamp circuit 29 is connected between the AC output terminals (N1, N2) of the inverter circuit 22 with the fifth switching element S5 and the sixth switching element S6 connected in series in opposite directions.
  • IGBTs are used for the fifth switching element S5 and the sixth switching element S6, the emitter terminal of the fifth switching element S5 is connected to the first output line of the inverter circuit 22, and the sixth switching element S6 Are connected to the second output line of the inverter circuit 22.
  • the collector terminals of the fifth switching element S5 and the sixth switching element S6 are connected.
  • a fifth free-wheeling diode D5 is connected in parallel with the fifth switching element S5 in a direction in which current flows from the emitter to the collector, and in parallel with the sixth switching element S6, in the direction in which current flows in the direction from the emitter to the collector.
  • a 6-return diode D6 is connected. Therefore, when the fifth switching element S5 is in the on state and the sixth switching element S6 is in the off state, a current flows only in the direction from the second output line to the first output line, and the fifth switching element S5 is in the off state and the sixth switching element. When S6 is on, current flows only from the first output line to the second output line.
  • FIG. 7 is a diagram for explaining the operation of the power conversion device 20 according to the third embodiment of the present invention.
  • the PWM control in which the first switching element S1 and the fourth switching element S4 are repeatedly turned on and off is performed, the second switching element S2 and the fourth switching element S4 are controlled to be in the off state, and the fifth switching element S5 Is controlled to be in an on state, and the sixth switching element S6 is controlled to be in an off state.
  • the positive voltage + E is output to the filter circuit 23 while the first switching element S1 and the fourth switching element S4 are on. During the period when the first switching element S1 and the third switching element S3 are off, the current based on the energy accumulated in the filter circuit 23 circulates through the clamp circuit 29, so that the input voltage and the output voltage of the filter circuit 23 are both It becomes zero.
  • PWM control is performed in which the second switching element S2 and the third switching element S3 are repeatedly turned on and off, the first switching element S1 and the fourth switching element S4 are controlled to be in the off state, and the fifth switching element S5 Is controlled to be in the off state, and the sixth switching element S6 is controlled to be in the on state.
  • the negative voltage ⁇ E is output to the filter circuit 23 while the second switching element S2 and the third switching element S3 are on. During the period when the second switching element S2 and the third switching element S3 are off, the current based on the energy accumulated in the filter circuit 23 circulates through the clamp circuit 29, so that both the input voltage and the output voltage of the filter circuit 23 are It becomes zero.
  • the filter circuit 23 generates a sine wave (see dotted line) based on the three levels of positive voltage + E, zero, and negative voltage ⁇ E.
  • current distortion due to dead time increases near the zero crossing (see symbol R). Therefore, in the current method in which the current polarity is determined and the feed forward compensation is performed, the compensation accuracy is lowered.
  • the present invention is effective for application to a three-level inverter in which the absolute value of current becomes small near the zero cross and the erroneous determination of polarity is likely to occur. Similarly, it is also effective for application to a unipolar modulation system in which the absolute value of current becomes small near the zero cross of the system voltage. Further, current distortion caused by dead time that stands out in the vicinity of the zero crossing can be suppressed.
  • FIG. 8 is a diagram for explaining the configuration of the power conversion device 20 according to the fourth embodiment of the present invention.
  • Embodiment 4 is an example applied to current control of a single-phase grid-connected inverter using rotational coordinate transformation. Since the configuration other than the control circuit 27 of the power conversion device 20 according to the fourth embodiment is the same as that of the power conversion device 20 according to the first embodiment, the description thereof is omitted.
  • control circuit 27 includes a first rotation coordinate conversion unit 27o, a second rotation coordinate conversion unit 27p, a d-axis subtraction unit 27q, a q-axis subtraction unit 27r, a d-axis compensation unit 27s, a q-axis compensation unit 27t, A d-axis addition unit 27u, a q-axis addition unit 27v, a reverse rotation coordinate conversion unit 27w, a second addition unit 27d, a drive signal generation unit 27e, a predicted current calculation unit 27j, and an error component compensation value calculation unit 27k are included.
  • First rotating coordinate transformation unit 27o is the current value I L that is detected by the current detection circuit 25, by rotating the coordinate transformation the phase ⁇ of the system voltage as the rotation angle of the d-axis component current value Iout d and q-axis component
  • the current value Iout q (reactive current value) is calculated.
  • the second rotation coordinate conversion unit 27p converts the voltage value Vout detected by the AC voltage detection circuit 26 into rotation coordinates using the phase ⁇ of the system voltage as a rotation angle, and converts the voltage value Vout d of the d-axis component and the q-axis component.
  • the voltage value Vout q is calculated.
  • the d-axis subtraction unit 27q subtracts the d-axis component current value Iout d from the d-axis component target current value Iref d.
  • the q-axis subtractor 27r subtracts the q-axis component current value Iout q from the q-axis component target current value Iref q.
  • the d-axis compensation unit 27s generates a voltage command value Vrefd for the d-axis component by PI compensation or P-compensation based on the deviation between the target current value Iref d for the d-axis component and the current value Iout d for the d-axis component. To do.
  • the q-axis compensation unit 27t generates a voltage command value Vref q for the q-axis component by PI compensation or P-compensation based on the deviation between the target current value Iref q for the q-axis component and the current value Iout q for the q-axis component. To do.
  • the d-axis addition unit 27u adds the d-axis component voltage value Vout d to the d-axis component voltage command value Vref d.
  • the q-axis addition unit 27v adds the q-axis component voltage value Vout q to the q-axis component voltage command value Vref q.
  • the reverse rotation coordinate conversion unit 27w performs reverse rotation coordinate conversion of the voltage command value Vref d of the d-axis component and the voltage command value Vref q of the q-axis component after system voltage compensation to calculate the voltage command value Vref of the stationary coordinate system. To do.
  • the second adder 27d adds the dead time error component compensation value ⁇ ⁇ Vnoise (n) / Vdc to the voltage command value Vref to generate a voltage command value Vref ′ after dead time error compensation.
  • Other processes are the same as those described in the second embodiment.
  • power factor control and reactive power injection can be performed by independently controlling the d-axis component and the q-axis component.
  • the reverse rotation coordinate conversion is performed.
  • the compensation value is added to the subsequent voltage command value Vref. This simplifies the configuration and reduces the amount of calculation.
  • the PWM signal is assumed as the drive signal Vg of the first switching element S1 to the fourth switching element S4 included in the inverter circuit 22, but the duty ratio may be controlled using the phase shift signal.
  • the present compensation technique is a power that converts DC power into three-phase AC power. It can also be applied to a conversion device.
  • the control circuit (27) outputs the m (m is a natural number) step ahead of the inverter circuit (22) based on the current value (I L [nm]) detected by the current detection circuit (25).
  • the power converter (20) according to item 1, wherein the voltage (Vinv ′ [n]) is estimated and the voltage command value (Vref [n]) of m steps ahead is corrected. Thereby, it is possible to compensate for a control deviation between the current at the time of detection and the current at the time of error component compensation.
  • a clamp circuit (29) capable of short-circuiting between AC output terminals of the inverter circuit (22) is further provided between the inverter circuit (22) and the filter circuit (23), 3.
  • the control circuit (27) generates the voltage command value in accordance with a deviation between the current detected by the current detection circuit (25) and a target current. Power conversion device (20). According to this, the output current can be stabilized.
  • the control circuit (27) A rotational coordinate conversion unit (27o) for calculating a current value of a d-axis component and a current value of a q-axis component by performing rotational coordinate conversion on the current detected by the current detection circuit (25); A d-axis compensator (27s) that generates a d-axis component voltage command value based on a deviation between the d-axis component target current value and the d-axis component current value calculated by the rotating coordinate converter (27o).
  • a q-axis compensator (27t) that generates a voltage command value for the q-axis component based on the deviation between the q-axis component target current value and the q-axis component current value calculated by the rotating coordinate converter (27o).
  • a reverse rotation coordinate conversion unit (27w) that performs reverse rotation coordinate conversion of the voltage command value of the d-axis component and the voltage command value of the q-axis component to calculate a voltage command value of a stationary coordinate system
  • a compensation value adding unit (27d) for adding a compensation value of an error component generated in the inverter circuit (22) to the voltage command value of the stationary coordinate system; 5.
  • the power conversion device according to any one of items 1 to 4, wherein the power conversion device includes: According to this, the error component of the inverter using the rotation coordinate transformation can be compensated with high accuracy.
  • the present invention can be used for a solar cell power conditioner and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter circuit 22 converts DC power into AC power. A filter circuit 23 has a reactor L1, and attenuates the high-frequency component of AC power outputted by the inverter circuit 22. A current detection circuit 25 detects the current flowing through the reactor L1. A control circuit 27 generates a drive signal of the inverter circuit 22 on the basis of a voltage command value. On the basis of the current detected by the current detection circuit 25, the control circuit 27 estimates the output voltage of the inverter circuit 22 prior to passage through the filter circuit 23, and corrects the voltage command value on the basis of the relation between the estimated output voltage of the inverter circuit 22 and the drive signal supplied to the inverter circuit 22.

Description

電力変換装置Power converter
 本発明は、直流電力を交流電力に変換する電力変換装置に関する。 The present invention relates to a power conversion device that converts DC power into AC power.
 直流電力を交流電力に変換する電力変換装置の多くでは、ブリッジ回路を用いたインバータ回路が用いられる。ブリッジ回路では、直流電源に接続されるハイサイド基準線とローサイド基準線に、直列に接続された2つのスイッチング素子(アーム)を2つ又は3つ並列に接続し、相補的に動作させることにより交流電力を生成する。スイッチング素子には例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor))等が使用される(例えば、特許文献1参照)。 In many of the power conversion devices that convert DC power into AC power, an inverter circuit using a bridge circuit is used. In a bridge circuit, two or three switching elements (arms) connected in series are connected in parallel to a high-side reference line and a low-side reference line connected to a DC power supply, and are operated in a complementary manner. Generate AC power. As the switching element, for example, an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), or the like is used (see, for example, Patent Document 1).
 アームを構成する2つのスイッチング素子が同時にオンすると貫通電流が流れ、消費電力が増大する。そこで、ハイサイドのスイッチング素子とローサイドのスイッチング素子のオン/オフ切替時にデッドタイムが挿入される(後述の図2参照)。電流が正方向の場合、ハイサイドのスイッチング素子のターンオン時に挿入されるデッドタイムの期間中に、ローサイドのスイッチング素子に並列に接続された還流ダイオードが導通する。その際、直流電源電圧の半分の負電圧が相電圧として出力される。反対に電流が負方向の場合、ローサイドのスイッチング素子のターンオン時に挿入されるデッドタイムの期間中に、ハイサイドのスイッチング素子に並列に接続された還流ダイオードが導通する。その際、直流電源電圧の半分の正電圧が相電圧として出力される。 When the two switching elements composing the arm are simultaneously turned on, a through current flows and power consumption increases. Therefore, a dead time is inserted when the high-side switching element and the low-side switching element are switched on / off (see FIG. 2 described later). When the current is in the positive direction, the free-wheeling diode connected in parallel to the low-side switching element becomes conductive during the dead time period inserted when the high-side switching element is turned on. At that time, a negative voltage that is half the DC power supply voltage is output as a phase voltage. On the other hand, when the current is in the negative direction, the free-wheeling diode connected in parallel to the high-side switching element becomes conductive during the dead time period inserted when the low-side switching element is turned on. At that time, a positive voltage that is half the DC power supply voltage is output as a phase voltage.
 デッドタイムはインバータ回路の出力電圧に誤差成分として現れるため、その誤差成分を補償する必要がある。デッドタイムの補償方式には大別すると、電流検出に基づくフィードフォワード補償方式と電圧検出に基づくフィードバック補償方式がある。 Since dead time appears as an error component in the output voltage of the inverter circuit, it is necessary to compensate for the error component. The dead time compensation methods are roughly classified into a feed forward compensation method based on current detection and a feedback compensation method based on voltage detection.
特開2015-77061号公報Japanese Patent Laying-Open No. 2015-77061
 電流検出に基づくフィードフォワード補償方式では、出力電流の位相からデッドタイムの期間中に流れる電流の極性を検出し、インバータ回路を駆動するための電圧指令値に、検出した極性に応じた補償値を加算する。この方式ではソフトウェア化が容易であるため小型化を図ることができるが、電流波形や電流検出器のオフセットにより極性検出部が誤動作しやすい課題がある。 In the feedforward compensation method based on current detection, the polarity of the current that flows during the dead time period is detected from the phase of the output current, and the compensation value corresponding to the detected polarity is applied to the voltage command value for driving the inverter circuit. to add. In this method, since it is easy to make software, the size can be reduced. However, there is a problem that the polarity detection unit easily malfunctions due to the current waveform and the offset of the current detector.
 電圧検出に基づくフィードバック補償方式では、インバータ回路の出力電圧を検出し、インバータ回路の駆動信号と比較して、電圧指令値を補償する。この方式では高精度な補償ができるが、インバータ回路の出力電圧を検出する電圧検出部が必要となる。 In the feedback compensation method based on voltage detection, the output voltage of the inverter circuit is detected and compared with the drive signal of the inverter circuit to compensate the voltage command value. Although this method can perform highly accurate compensation, a voltage detection unit that detects the output voltage of the inverter circuit is required.
 本発明はこうした状況に鑑みなされたものであり、その目的は、インバータ回路を用いた電力変換により発生する誤差を、回路規模を抑えつつ高精度に補償できる電力変換装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a power conversion device capable of compensating for an error generated by power conversion using an inverter circuit with high accuracy while suppressing a circuit scale.
 上記課題を解決するために、本発明のある態様の電力変換装置は、直流電力を交流電力に変換するインバータ回路と、リアクトルを有し、前記インバータ回路の出力する交流電力の高周波成分を減衰するフィルタ回路と、前記リアクトルに流れる電流を検出する電流検出回路と、電圧指令値をもとに前記インバータ回路の駆動信号を生成する制御回路と、を備える。前記制御回路は、前記電流検出回路で検出された電流に基づいて前記フィルタ回路を通過前の前記インバータ回路の出力電圧を推定し、推定した前記インバータ回路の出力電圧と、前記インバータ回路に供給される駆動信号との関係に基づき前記電圧指令値を補正する。 In order to solve the above-described problem, a power conversion device according to an aspect of the present invention includes an inverter circuit that converts DC power into AC power and a reactor, and attenuates high-frequency components of AC power output from the inverter circuit. A filter circuit; a current detection circuit that detects a current flowing through the reactor; and a control circuit that generates a drive signal for the inverter circuit based on a voltage command value. The control circuit estimates the output voltage of the inverter circuit before passing through the filter circuit based on the current detected by the current detection circuit, and the estimated output voltage of the inverter circuit is supplied to the inverter circuit. The voltage command value is corrected based on the relationship with the drive signal.
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and a representation obtained by converting the expression of the present invention between a method, an apparatus, a system, and the like are also effective as an aspect of the present invention.
 本発明によれば、インバータ回路を用いた電力変換により発生する誤差を、回路規模を抑えつつ高精度に補償できる。 According to the present invention, errors generated by power conversion using an inverter circuit can be compensated with high accuracy while suppressing the circuit scale.
本発明の実施の形態1に係る電力変換装置の構成を説明するための図である。It is a figure for demonstrating the structure of the power converter device which concerns on Embodiment 1 of this invention. インバータ回路で発生するデッドタイム誤差を説明するための図である。It is a figure for demonstrating the dead time error which generate | occur | produces in an inverter circuit. 比較例に係る電力変換装置の構成を説明するための図である。It is a figure for demonstrating the structure of the power converter device which concerns on a comparative example. 本発明の実施の形態2に係る電力変換装置の構成を説明するための図である。It is a figure for demonstrating the structure of the power converter device which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る電力変換装置のシグナルフロー図である。It is a signal flow figure of the power converter device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電力変換装置の構成を説明するための図である。It is a figure for demonstrating the structure of the power converter device which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る電力変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power converter device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る電力変換装置の構成を説明するための図である。It is a figure for demonstrating the structure of the power converter device which concerns on Embodiment 4 of this invention.
 図1は、本発明の実施の形態1に係る電力変換装置20の構成を説明するための図である。電力変換装置20は直流電源10から供給される直流電力を交流電力に変換して系統30に逆潮流させる。なお系統30の代わりに交流負荷を接続してもよい。直流電源10は例えば太陽電池または燃料電池であり、その場合、電力変換装置20は太陽電池または燃料電池により発電された直流電力を交流電力に変換するパワーコンディショナとして機能する。 FIG. 1 is a diagram for explaining a configuration of a power conversion device 20 according to Embodiment 1 of the present invention. The power converter 20 converts the DC power supplied from the DC power supply 10 into AC power and causes the system 30 to reversely flow. An AC load may be connected instead of the system 30. The DC power supply 10 is, for example, a solar cell or a fuel cell. In this case, the power conversion device 20 functions as a power conditioner that converts DC power generated by the solar cell or fuel cell into AC power.
 インバータ回路22は、直流電源10から供給される直流電力を交流電力に変換する。図1ではインバータ回路22をフルブリッジ回路で構成する例を示している。フルブリッジ回路は、第1スイッチング素子S1と第2スイッチング素子S2が直列接続された第1アームと、第3スイッチング素子S3と第4スイッチング素子S4が直列接続された第2アームを含み、第1アームと第2アームが並列接続される。第1アームの中点N1と第2アームの中点N2から交流電力が出力される。 The inverter circuit 22 converts DC power supplied from the DC power supply 10 into AC power. FIG. 1 shows an example in which the inverter circuit 22 is configured by a full bridge circuit. The full bridge circuit includes a first arm in which the first switching element S1 and the second switching element S2 are connected in series, and a second arm in which the third switching element S3 and the fourth switching element S4 are connected in series. The arm and the second arm are connected in parallel. AC power is output from the midpoint N1 of the first arm and the midpoint N2 of the second arm.
 第1スイッチング素子S1~第4スイッチング素子S4には例えば、IGBTを使用できる。第1還流ダイオードD1~第4還流ダイオードD4は、第1スイッチング素子S1~第4スイッチング素子S4にそれぞれ並列に、逆向きに接続される。なお第1スイッチング素子S1~第4スイッチング素子S4にMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用してもよい。この場合、第1還流ダイオードD1~第4還流ダイオードD4は、ソースからドレイン方向に形成される寄生ダイオードを利用できる。 For example, IGBTs can be used for the first switching element S1 to the fourth switching element S4. The first free-wheeling diode D1 to the fourth free-wheeling diode D4 are respectively connected in parallel to the first switching element S1 to the fourth switching element S4 in the reverse direction. Note that MOSFETs (Metal-Oxide-Semiconductor-Field-Effect-Transistors) may be used for the first switching element S1 to the fourth switching element S4. In this case, the first free-wheeling diode D1 to the fourth free-wheeling diode D4 can use parasitic diodes formed in the direction from the source to the drain.
 図2は、インバータ回路22で発生するデッドタイム誤差を説明するための図である。制御回路27で生成される駆動信号Vg(PWM信号)がハイレベルの状態では、第1スイッチング素子S1のゲート電圧Vs1がハイレベルになり、第2スイッチング素子S2のゲート電圧Vs2がローレベルになる。駆動信号Vgがハイレベルからローレベルに遷移すると第1スイッチング素子S1は直ぐにターンオフするが、第2スイッチング素子S2はデッドタイムTdの経過後にターンオンする。このデッドタイムTdの期間に第1還流ダイオードD1に負方向の電流が流れる。この電流に、直流電源10の半分の電圧を掛けた成分が誤差成分となる(中点電圧Vn1(負電流)の斜線部分参照)。この誤差成分はインバータ回路22の出力電力を低下させる方向に作用するため、当該誤差成分を補償するには、当該誤差成分を推定してインバータ回路22の入力電力に追加する必要がある。 FIG. 2 is a diagram for explaining a dead time error generated in the inverter circuit 22. When the drive signal Vg (PWM signal) generated by the control circuit 27 is at a high level, the gate voltage Vs1 of the first switching element S1 is at a high level and the gate voltage Vs2 of the second switching element S2 is at a low level. . When the drive signal Vg transitions from the high level to the low level, the first switching element S1 is immediately turned off, but the second switching element S2 is turned on after the dead time Td has elapsed. During the dead time Td, a negative current flows through the first free-wheeling diode D1. A component obtained by multiplying this current by half the voltage of the DC power supply 10 is an error component (see the hatched portion of the midpoint voltage Vn1 (negative current)). Since this error component acts in the direction of decreasing the output power of the inverter circuit 22, it is necessary to estimate the error component and add it to the input power of the inverter circuit 22 in order to compensate for the error component.
 駆動信号Vgがローレベルの状態では、第1スイッチング素子S1のゲート電圧Vs1がローレベルになり、第2スイッチング素子S2のゲート電圧Vs2がハイレベルになる。駆動信号Vgがローレベルからハイレベルに遷移すると第2スイッチング素子S2は直ぐにターンオフするが、第1スイッチング素子S1はデッドタイムTdの経過後にターンオンする。このデッドタイムTdの期間に第2還流ダイオードD2に正方向の電流が流れる。この電流に、直流電源10の半分の電圧を掛けた成分が誤差成分となる(中点電圧Vn1(正電流)の斜線部分参照)。この誤差成分はインバータ回路22の出力電力を上昇させる方向に作用するため、当該誤差成分を補償するには、当該誤差成分を推定してインバータ回路22の入力電力から除去する必要がある。 When the drive signal Vg is at a low level, the gate voltage Vs1 of the first switching element S1 is at a low level, and the gate voltage Vs2 of the second switching element S2 is at a high level. When the drive signal Vg transitions from the low level to the high level, the second switching element S2 is immediately turned off, but the first switching element S1 is turned on after the dead time Td has elapsed. A current in the positive direction flows through the second free-wheeling diode D2 during the dead time Td. A component obtained by multiplying this current by half the voltage of the DC power supply 10 is an error component (see the hatched portion of the midpoint voltage Vn1 (positive current)). Since this error component acts to increase the output power of the inverter circuit 22, in order to compensate for the error component, it is necessary to estimate the error component and remove it from the input power of the inverter circuit 22.
 図1に戻る。フィルタ回路23は、第1リアクトルL1、第2リアクトルL2及び第2コンデンサC2を含み、インバータ回路22から出力される交流電力の高調波成分を減衰させて、インバータ回路22の出力電圧および出力電流を正弦波に近づける。フィルタ回路23から出力される交流電力は系統30に逆潮流される。 Return to Figure 1. The filter circuit 23 includes a first reactor L1, a second reactor L2, and a second capacitor C2. The filter circuit 23 attenuates the harmonic component of the AC power output from the inverter circuit 22, and the output voltage and output current of the inverter circuit 22 are reduced. Move closer to a sine wave. The AC power output from the filter circuit 23 flows backward to the system 30.
 直流電圧検出回路24は、インバータ回路22の入力電圧を検出して制御回路27に出力する。電流検出回路25は、インバータ回路22から出力され、第1リアクトルL1に流れる交流電流を電流センサCTを用いて検出し、制御回路27に出力する。交流電圧検出回路26は、インバータ回路22から出力される、フィルタ回路23を通過後の交流電圧を検出して制御回路27に出力する。 The DC voltage detection circuit 24 detects the input voltage of the inverter circuit 22 and outputs it to the control circuit 27. The current detection circuit 25 detects the alternating current that flows from the inverter circuit 22 and flows through the first reactor L1 using the current sensor CT, and outputs the detected current to the control circuit 27. The AC voltage detection circuit 26 detects the AC voltage output from the inverter circuit 22 and passed through the filter circuit 23 and outputs the AC voltage to the control circuit 27.
 制御回路27は、電圧指令値をもとにインバータ回路22の駆動信号を生成し、当該駆動信号をインバータ回路22に供給する。本実施の形態では駆動信号としてPWM信号を生成して、第1スイッチング素子S1~第4スイッチング素子S4のゲート端子に供給する。PWM信号のデューティ比を上げることによりインバータ回路22の出力電力を上げることができ、PWM信号のデューティ比を下げることによりインバータ回路22の出力電力を下げることができる。 The control circuit 27 generates a drive signal for the inverter circuit 22 based on the voltage command value, and supplies the drive signal to the inverter circuit 22. In the present embodiment, a PWM signal is generated as a drive signal and supplied to the gate terminals of the first switching element S1 to the fourth switching element S4. The output power of the inverter circuit 22 can be increased by increasing the duty ratio of the PWM signal, and the output power of the inverter circuit 22 can be decreased by decreasing the duty ratio of the PWM signal.
 本実施の形態では制御回路27は、電流検出回路25で検出された電流に基づいてフィルタ回路23を通過前のインバータ回路22の出力電圧を推定し、推定したインバータ回路22の出力電圧と、インバータ回路22に供給される駆動信号との関係に基づき電圧指令値を補正する。以下、具体的に説明する。 In the present embodiment, the control circuit 27 estimates the output voltage of the inverter circuit 22 before passing through the filter circuit 23 based on the current detected by the current detection circuit 25, and the estimated output voltage of the inverter circuit 22 and the inverter The voltage command value is corrected based on the relationship with the drive signal supplied to the circuit 22. This will be specifically described below.
 制御回路27は、第1減算部27a、第1補償部27b、第1加算部27c、第2加算部27d、駆動信号生成部27e、第1乗算部27f、第2減算部27g、第1除算部27h、及び第3減算部27iを含む。 The control circuit 27 includes a first subtractor 27a, a first compensator 27b, a first adder 27c, a second adder 27d, a drive signal generator 27e, a first multiplier 27f, a second subtractor 27g, and a first division. Part 27h and a third subtracting part 27i.
 制御回路27の構成は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。 The configuration of the control circuit 27 can be realized by cooperation of hardware resources and software resources, or only by hardware resources. As hardware resources, analog elements, microcomputers, DSPs, ROMs, RAMs, FPGAs, and other LSIs can be used. Firmware and other programs can be used as software resources.
 第1減算部27aは、目標電流値Irefから電流検出回路25で検出された電流値Iを減算する。第1補償部27bは、目標電流値Irefと電流値Iとの偏差をもとに、PI補償またはP補償により電圧指令値Vrefを生成する。第1加算部27cは当該電圧指令値Vrefに、交流電圧検出回路26で検出された交流電圧値Voutを、直流電圧検出回路24で検出された直流電圧値Vdcで割った電圧を加算して、系統電圧による外乱成分を補償する。第2加算部27dは、電圧指令値Vrefにデッドタイム誤差成分補償値を加算して、デッドタイム誤差補償後の電圧指令値Vref’を生成する。 First subtracting unit 27a subtracts the current value I L that is detected by the current detecting circuit 25 from the target current value Iref. First compensator 27b, based on the deviation between the target current value Iref and the current value I L, and generates a voltage command value Vref by PI compensation or P compensation. The first adder 27c adds the voltage obtained by dividing the AC voltage value Vout detected by the AC voltage detection circuit 26 by the DC voltage value Vdc detected by the DC voltage detection circuit 24 to the voltage command value Vref. Compensates for disturbance components due to system voltage. The second adder 27d adds the dead time error component compensation value to the voltage command value Vref to generate a voltage command value Vref ′ after dead time error compensation.
 駆動信号生成部27eは、デッドタイム誤差補償後の電圧指令値Vref’をもとにインバータ回路22の駆動信号Vgを生成する。駆動信号生成部27eは例えば、当該電圧指令値Vref’と三角波のキャリア信号が入力されるコンパレータを含む。当該コンパレータは、当該電圧指令値Vref’とキャリア信号の比較結果に応じたPWM信号を出力する。当該PWM信号はインバータ回路22の第1スイッチング素子S1及び第4スイッチング素子S4のゲート端子に入力され、当該PWM信号の位相と逆位相の信号が第2スイッチング素子S2及び第3スイッチング素子S3のゲート端子に入力される。当該PWM信号は、第1スイッチング素子S1~第4スイッチング素子S4のデューティ比を規定する信号であり、第3減算部27iにも出力される。 The drive signal generator 27e generates a drive signal Vg for the inverter circuit 22 based on the voltage command value Vref ′ after dead time error compensation. The drive signal generation unit 27e includes, for example, a comparator to which the voltage command value Vref 'and a triangular wave carrier signal are input. The comparator outputs a PWM signal corresponding to the comparison result between the voltage command value Vref ′ and the carrier signal. The PWM signal is input to the gate terminals of the first switching element S1 and the fourth switching element S4 of the inverter circuit 22, and the signal having the opposite phase to the phase of the PWM signal is the gate of the second switching element S2 and the third switching element S3. Input to the terminal. The PWM signal is a signal that defines the duty ratio of the first switching element S1 to the fourth switching element S4, and is also output to the third subtraction unit 27i.
 第1乗算部27fは、電流検出回路25で検出された電流値Iに、第1リアクトルL1のリアクタンスを乗算して、第1リアクトルL1の両端電圧を推定する。第2減算部27gは、交流電圧検出回路26で検出された交流電圧値Vout(第1リアクトルL1の出力電圧)から、第1リアクトルL1の両端電圧を減算して、インバータ回路22の出力電圧値(第1リアクトルL1の入力電圧)を推定する。このように第1乗算部27f及び第2減算部27gは、インバータ回路22の出力電圧(デッドタイム誤差成分を含む)を推定する電圧推定部として機能する。 The first multiplication unit 27f is the current value I L that is detected by the current detection circuit 25, by multiplying the reactance of the first reactor L1, estimates the voltage across the first reactor L1. The second subtraction unit 27g subtracts the voltage across the first reactor L1 from the AC voltage value Vout (output voltage of the first reactor L1) detected by the AC voltage detection circuit 26, and outputs the output voltage value of the inverter circuit 22. (Input voltage of the first reactor L1) is estimated. Thus, the first multiplication unit 27f and the second subtraction unit 27g function as a voltage estimation unit that estimates the output voltage (including the dead time error component) of the inverter circuit 22.
 第1除算部27hは、インバータ回路22の出力電圧推定値(デッドタイム誤差成分を含む)を、直流電圧検出回路24で検出される直流電圧値Vdcで除算して、インバータ回路22の出力電圧推定値(デッドタイム誤差成分を含む)に対応するデューティ値を算出する。第3減算部27iは、駆動信号生成部27eから供給されるインバータ回路22のデッドタイム誤差成分を含まないデューティ値から、第1除算部27hから供給されるデッドタイム誤差成分を含むデューティ値を減算することにより、デッドタイム誤差成分補償値を推定する。第3減算部27iは、算出したデッドタイム誤差成分補償値を第2加算部27dに出力する。第2加算部27dは、デッドタイム誤差成分補償値を電圧指令値Vrefに加算して、電圧指令値Vref’を補正する。 The first divider 27h divides the estimated output voltage of the inverter circuit 22 (including the dead time error component) by the DC voltage value Vdc detected by the DC voltage detection circuit 24 to estimate the output voltage of the inverter circuit 22. A duty value corresponding to the value (including the dead time error component) is calculated. The third subtractor 27i subtracts the duty value including the dead time error component supplied from the first divider 27h from the duty value not including the dead time error component of the inverter circuit 22 supplied from the drive signal generator 27e. By doing so, the dead time error component compensation value is estimated. The third subtractor 27i outputs the calculated dead time error component compensation value to the second adder 27d. The second addition unit 27d corrects the voltage command value Vref ′ by adding the dead time error component compensation value to the voltage command value Vref.
 図3は、比較例に係る電力変換装置20の構成を説明するための図である。比較例は、インバータ回路22の出力電圧値(デッドタイム誤差成分を含む)に実測値を使用する例である。比較例では、フィルタ回路23を通過前のインバータ回路22の出力電圧値(デッドタイム誤差成分を含む)を検出する交流電圧検出回路28が、追加で設けられる。これに対して図1に示した実施の形態1に係る電力変換装置20では、インバータ回路22の出力電圧値(デッドタイム誤差成分を含む)を、インバータ回路22の出力電流から演算により推定するため交流電圧検出回路28は不要となる。 FIG. 3 is a diagram for explaining the configuration of the power conversion device 20 according to the comparative example. The comparative example is an example in which an actual measurement value is used for the output voltage value (including the dead time error component) of the inverter circuit 22. In the comparative example, an AC voltage detection circuit 28 that detects an output voltage value (including a dead time error component) of the inverter circuit 22 before passing through the filter circuit 23 is additionally provided. In contrast, in power converter 20 according to the first embodiment shown in FIG. 1, the output voltage value (including the dead time error component) of inverter circuit 22 is estimated from the output current of inverter circuit 22 by calculation. The AC voltage detection circuit 28 is not necessary.
 以上説明したように実施の形態1によれば、フィルタ回路23を通過前のインバータ回路22の出力電圧を検出するための交流電圧検出回路28を設けずに、インバータ回路22を用いた電力変換により発生する誤差成分を、電圧検出に基づくフィードバック制御で補償することができる。一般的に、電圧検出に基づくフィードバック補償方式のほうが電流検出に基づくフィードフォワード補償方式より補償精度が高いため、実施の形態1に係る電力変換装置20は、回路規模を抑えつつ高精度にデッドタイム誤差成分を補償することができる。 As described above, according to the first embodiment, power conversion using the inverter circuit 22 is performed without providing the AC voltage detection circuit 28 for detecting the output voltage of the inverter circuit 22 before passing through the filter circuit 23. The generated error component can be compensated by feedback control based on voltage detection. In general, since the feedback compensation method based on voltage detection has higher compensation accuracy than the feedforward compensation method based on current detection, the power conversion device 20 according to the first embodiment has a highly accurate dead time while suppressing the circuit scale. The error component can be compensated.
 図4は、本発明の実施の形態2に係る電力変換装置20の構成を説明するための図である。実施の形態2ではマイクロコンピュータやDSP等のプロセッサを用いたデジタル信号処理により、デッドタイム誤差成分補償値を演算することを前提にする。デジタル信号処理ではクロック周波数に従い離散的に処理されるため、制御遅れが発生する。具体的には時刻(n-1)で検出された電流値をもとにデッドタイム誤差成分補償値を演算し、時刻nの電圧指令値を補正することになる。 FIG. 4 is a diagram for explaining the configuration of the power conversion device 20 according to the second embodiment of the present invention. In the second embodiment, it is assumed that a dead time error component compensation value is calculated by digital signal processing using a processor such as a microcomputer or DSP. Since digital signal processing is discretely performed according to the clock frequency, a control delay occurs. Specifically, the dead time error component compensation value is calculated based on the current value detected at time (n−1), and the voltage command value at time n is corrected.
 電流検出回路25で検出される電流値は交流電流値であるため、正弦波状に変化する。従って厳密には、時刻(n-1)で検出される電流値と時刻nで検出される電流値は異なる値になる。交流電圧検出回路26で検出される電圧値にも同様の議論が当てはまる。実施の形態2では、このデジタル信号処理による制御遅れによる誤差も加味した補償方式を実現する。 Since the current value detected by the current detection circuit 25 is an alternating current value, it changes in a sine wave shape. Therefore, strictly speaking, the current value detected at time (n−1) is different from the current value detected at time n. The same argument applies to the voltage value detected by the AC voltage detection circuit 26. In the second embodiment, a compensation method that takes into account an error due to a control delay caused by the digital signal processing is realized.
 実施の形態2に係る電力変換装置20の制御回路27以外の構成は、実施の形態1に係る電力変換装置20と共通するため説明を省略する。実施の形態2では制御回路27は、第1減算部27a、第1補償部27b、第1加算部27c、第2加算部27d、駆動信号生成部27e、予測電流算出部27j、及び誤差成分補償値算出部27kを含む。 Configurations other than the control circuit 27 of the power conversion device 20 according to the second embodiment are the same as those of the power conversion device 20 according to the first embodiment, and thus description thereof is omitted. In the second embodiment, the control circuit 27 includes a first subtraction unit 27a, a first compensation unit 27b, a first addition unit 27c, a second addition unit 27d, a drive signal generation unit 27e, a predicted current calculation unit 27j, and an error component compensation. A value calculation unit 27k is included.
 予測電流算出部27jは、電流検出回路25で検出された現在の電流値から1制御周期(以下、ステップという)先の電流値を予測する。予測方法は特に限定しない。例えば電流の位相を検出し、現在の電流値と位相から振幅を算出し、当該振幅と1ステップ先の位相から1ステップ先の電流値を推定してもよい。 The predicted current calculation unit 27j predicts a current value ahead of one control cycle (hereinafter referred to as “step”) from the current current value detected by the current detection circuit 25. The prediction method is not particularly limited. For example, the current phase may be detected, the amplitude may be calculated from the current current value and phase, and the current value one step ahead may be estimated from the amplitude and the phase one step ahead.
 誤差成分補償値算出部27kは、1ステップ先のインバータ回路22の出力電流推定値をもとに1ステップ先のインバータ回路22の出力電圧値(デッドタイム誤差成分を含む)を推定する。この推定演算で1ステップ分の遅延時間が発生する。誤差成分補償値算出部27kは、この1ステップ時間分遅延したインバータ回路22の出力電圧推定値(デッドタイム誤差成分を含む)と、その時刻のインバータ回路22の入力電圧推定値をもとに、インバータ回路22を使用した電力変換で発生する誤差成分を推定し、その補償値を算出する。その他の処理は実施の形態1の処理と同様である。 The error component compensation value calculator 27k estimates the output voltage value (including the dead time error component) of the inverter circuit 22 one step ahead based on the output current estimated value of the inverter circuit 22 one step ahead. This estimation operation generates a delay time for one step. The error component compensation value calculation unit 27k is based on the output voltage estimated value (including the dead time error component) of the inverter circuit 22 delayed by this one step time and the input voltage estimated value of the inverter circuit 22 at that time. An error component generated by power conversion using the inverter circuit 22 is estimated, and a compensation value thereof is calculated. Other processes are the same as those of the first embodiment.
 図5は、本発明の実施の形態2に係る電力変換装置20のシグナルフロー図である。第1減算部27aは、目標電流値Iref(n)から電流検出回路25で検出された電流値I(n-1)を減算する。第1補償部27bは、目標電流値Iref(n)と電流値I(n-1)との偏差をもとに、PI補償またはP補償により電圧指令値Vref(n)を生成する。 FIG. 5 is a signal flow diagram of power conversion device 20 according to Embodiment 2 of the present invention. The first subtraction unit 27a subtracts the current value I L (n−1) detected by the current detection circuit 25 from the target current value Iref (n). First compensator 27b, based on the deviation between the target current value Iref (n) and the current value I L (n-1), and generates a voltage command value Vref by PI compensation or P compensation (n).
 交流電圧検出回路26で検出された交流電圧値Vout(n)は第1遅延部27lで1ステップ分の処理時間、遅延される。第2除算部27mは、第1遅延部27lで1ステップ分の処理時間が遅延された交流電圧値Vout(n-1)を、直流電圧検出回路24で検出された直流電圧値Vdcで割った電圧値を生成する。第1加算部27cは、電圧指令値Vref[n]に、交流電圧値Vout(n-1)を直流電圧値Vdcで割った電圧値を加算して、系統電圧による外乱成分を補償する。 The AC voltage value Vout (n) detected by the AC voltage detection circuit 26 is delayed by a processing time for one step by the first delay unit 27l. The second division unit 27m divides the AC voltage value Vout (n−1) delayed by the processing time for one step by the first delay unit 27l by the DC voltage value Vdc detected by the DC voltage detection circuit 24. Generate a voltage value. The first adder 27c adds a voltage value obtained by dividing the AC voltage value Vout (n−1) by the DC voltage value Vdc to the voltage command value Vref [n] to compensate for a disturbance component due to the system voltage.
 第4減算部27nは、電圧指令値Vref(n)から、インバータ回路22で発生する誤差成分を補償するための誤差補償値Δ^Vnoise(n)/Vdcを減算する。Δ^Vnoise(n-1)は、時刻(n-1)に推定された、時刻nにインバータ回路22で発生する誤差電圧成分の予測値を示している。第4減算部27nは、誤差成分補償後の電圧指令値をデューティ値duty(n)として第2乗算部22aと誤差成分補償値算出部27kに出力する。 The fourth subtracting unit 27n subtracts an error compensation value Δ ^ Vnoise (n) / Vdc for compensating an error component generated in the inverter circuit 22 from the voltage command value Vref (n). Δ ^ Vnoise (n−1) indicates a predicted value of an error voltage component that is estimated at time (n−1) and is generated in the inverter circuit 22 at time n. The fourth subtractor 27n outputs the voltage command value after error component compensation to the second multiplier 22a and the error component compensation value calculator 27k as the duty value duty (n).
 第2乗算部22aは、デューティ値duty(n)と直流電圧値Vdcを乗算して、インバータ回路22の出力電圧値Vinv(n)(誤差成分ΔVnoise(n)を含まない)を算出する。第3加算部22bは、第2乗算部22aで算出されたインバータ回路22の出力電圧値Vinv(n)に、インバータ回路22を用いた電力変換で発生する誤差成分ΔVnoise(n)を加算する。第2乗算部22a及び第3加算部22bの処理は、図4のインバータ回路22による電力変換を表している。 The second multiplier 22a multiplies the duty value duty (n) and the DC voltage value Vdc to calculate the output voltage value Vinv (n) of the inverter circuit 22 (not including the error component ΔVnoise (n)). The third adder 22b adds an error component ΔVnoise (n) generated by power conversion using the inverter circuit 22 to the output voltage value Vinv (n) of the inverter circuit 22 calculated by the second multiplier 22a. The processing of the second multiplier 22a and the third adder 22b represents power conversion by the inverter circuit 22 of FIG.
 第2減算部27gは、インバータ回路22の出力電圧値Vinv’(n)(誤差成分ΔVnoise(n)を含む)から、交流電圧検出回路26で検出された交流電圧値Vout(n)を減算する。第3乗算部L1aは、第1リアクトルL1の両端電圧V(n)に第1リアクトルL1のリアクタンスを乗算して第1リアクトルL1の予測電流値I(n)を算出する。第2遅延部27kaは、第1リアクトルL1の電流値I(n)を1ステップ分の処理時間、遅延させた第1リアクトルL1の電流値I(n-1)を出力する。第2遅延部27kaの処理はプロセッサによる演算遅延を表している。図5では第1リアクトルL1のリアクタンスを、z変換領域の関数で表記している。 The second subtraction unit 27g subtracts the AC voltage value Vout (n) detected by the AC voltage detection circuit 26 from the output voltage value Vinv ′ (n) (including the error component ΔVnoise (n)) of the inverter circuit 22. . The third multiplier L1a multiplies the both-ends voltage V L (n) of the first reactor L1 by the reactance of the first reactor L1, and calculates the predicted current value I L (n) of the first reactor L1. The second delay unit 27ka outputs the current value I L (n−1) of the first reactor L1 obtained by delaying the current value I L (n) of the first reactor L1 by a processing time for one step. The processing of the second delay unit 27ka represents an operation delay by the processor. In FIG. 5, the reactance of the first reactor L1 is expressed as a function of the z conversion region.
 予測電流算出部27jは、第1リアクトルL1の電流値I(n-1)から、1ステップ先の電流値^I(n)を予測演算により算出する。誤差成分補償値算出部27kは、1ステップ先の電流値^I(n)、デューティ値duty(n)をもとに誤差補償値Δ^Vnoise(n-1)/Vdcを算出する。 The predicted current calculation unit 27j calculates a current value ^ I L (n) one step ahead from the current value I L (n-1) of the first reactor L1 by a prediction calculation. The error component compensation value calculator 27k calculates an error compensation value Δ ^ Vnoise (n-1) / Vdc based on the current value ^ I L (n) and the duty value duty (n) one step ahead.
 インバータ回路22の出力電流値である第1リアクトルL1の電流値I(n)は下記(式1)で規定できる。
(n)=(Vinv(n)+ΔVnoise(n)-Vout(n))・1/(z-1)・Ts/L) …(式1)
The current value I L (n) of the first reactor L1, which is the output current value of the inverter circuit 22, can be defined by the following (formula 1).
I L (n) = (Vinv (n) + ΔVnoise (n) −Vout (n)) · 1 / (z−1) · Ts / L) (Equation 1)
 上記(式1)から、インバータ回路22で発生する誤差成分ΔVnoise(n)は下記(式2)で規定できる。
ΔVnoise(n)=(Vout(n)+(z-1)・L/Ts・I(n))-Vinv(n) …(式2)
From the above (formula 1), the error component ΔVnoise (n) generated in the inverter circuit 22 can be defined by the following (formula 2).
ΔVnoise (n) = (Vout (n) + (z−1) · L / Ts · I L (n)) − Vinv (n) (Formula 2)
 上記(式2)から1ステップ先の予測電流値^I(n)を用いて、誤差成分の予測値Δ^Vnoise(n)を下記(式3)で算出する。
Δ^Vnoise(n)=(Vout(n-1)+L/Ts(^I(n)-I(n-1)))-Vinv(n-1) …(式3)
The predicted value Δ ^ Vnoise (n) of the error component is calculated by the following (Expression 3) using the predicted current value ^ I L (n) one step ahead from the above (Expression 2).
Δ ^ Vnoise (n) = ( Vout (n-1) + L / Ts (^ I L (n) -I L (n-1))) - Vinv (n-1) ... ( Equation 3)
 上記(式3)のインバータ回路22の出力電圧値Vinv(n-1)(誤差成分ΔVnoise(n-1)を含まない)は、デューティ値duty(n-1)と直流電圧値Vdc(n-1)を掛けることにより算出できる。誤差成分補償値算出部27kにより算出された誤差成分補償値Δ^Vnoise(n)/Vdcを予めデューティ値duty(n)から引いておくことにより、誤差成分ΔVnoise(n)を補償している。 The output voltage value Vinv (n−1) (not including the error component ΔVnoise (n−1)) of the inverter circuit 22 in the above (Equation 3) is the duty value duty (n−1) and the DC voltage value Vdc (n− It can be calculated by multiplying by 1). The error component ΔVnoise (n) is compensated by previously subtracting the error component compensation value ΔΔVnoise (n) / Vdc calculated by the error component compensation value calculating unit 27k from the duty value duty (n).
 以上説明したように実施の形態2では、プロセッサによるデジタル信号処理の制御遅れの影響で遅延した電流値に対して、制御遅れを考慮した予測演算を行うことで遅延する前の電流値を推定する。推定した電流値とインバータ回路22の駆動信号をもとにデッドタイム誤差電圧を推定演算して駆動信号を補正する。これにより、一般的な電流検出に基づくフィードフォワード補償に比べて、応答性・補償精度に優れた補償を実現できる。 As described above, in the second embodiment, the current value before the delay is estimated by performing the prediction calculation in consideration of the control delay with respect to the current value delayed due to the control delay of the digital signal processing by the processor. . Based on the estimated current value and the drive signal of the inverter circuit 22, the dead time error voltage is estimated and corrected to correct the drive signal. As a result, it is possible to realize compensation with excellent responsiveness and compensation accuracy as compared with feedforward compensation based on general current detection.
 図6は、本発明の実施の形態3に係る電力変換装置20の構成を説明するための図である。実施の形態3に係る電力変換装置20は、図4に示した実施の形態2に係る電力変換装置20にクランプ回路29が追加された構成である。クランプ回路29は、インバータ回路22とフィルタ回路23の間に設けられ、インバータ回路22の交流出力端子(N1、N2)間を短絡可能であり、短絡時の導通方向を切替可能な回路である。 FIG. 6 is a diagram for explaining the configuration of the power conversion device 20 according to the third embodiment of the present invention. The power conversion device 20 according to the third embodiment has a configuration in which a clamp circuit 29 is added to the power conversion device 20 according to the second embodiment shown in FIG. The clamp circuit 29 is provided between the inverter circuit 22 and the filter circuit 23, can short-circuit between the AC output terminals (N1, N2) of the inverter circuit 22, and can switch the conduction direction at the time of the short-circuit.
 クランプ回路29は、第5スイッチング素子S5と第6スイッチング素子S6が逆向きに直列接続されて、インバータ回路22の交流出力端子(N1、N2)間に接続される。図6に示す例では、第5スイッチング素子S5及び第6スイッチング素子S6にIGBTが使用され、第5スイッチング素子S5のエミッタ端子がインバータ回路22の第1出力線に接続され、第6スイッチング素子S6のエミッタ端子がインバータ回路22の第2出力線に接続される。第5スイッチング素子S5と第6スイッチング素子S6のコレクタ端子は接続される。 The clamp circuit 29 is connected between the AC output terminals (N1, N2) of the inverter circuit 22 with the fifth switching element S5 and the sixth switching element S6 connected in series in opposite directions. In the example shown in FIG. 6, IGBTs are used for the fifth switching element S5 and the sixth switching element S6, the emitter terminal of the fifth switching element S5 is connected to the first output line of the inverter circuit 22, and the sixth switching element S6 Are connected to the second output line of the inverter circuit 22. The collector terminals of the fifth switching element S5 and the sixth switching element S6 are connected.
 第5スイッチング素子S5と並列に、エミッタからコレクタの方向に電流が流れる向きに第5還流ダイオードD5が接続され、第6スイッチング素子S6と並列に、エミッタからコレクタの方向に電流が流れる向きに第6還流ダイオードD6が接続される。従って第5スイッチング素子S5がオン状態で第6スイッチング素子S6がオフ状態では、第2出力線から第1出力線の方向にのみ電流が流れ、第5スイッチング素子S5がオフ状態で第6スイッチング素子S6がオン状態では、第1出力線から第2出力線の方向にのみ電流が流れる。 A fifth free-wheeling diode D5 is connected in parallel with the fifth switching element S5 in a direction in which current flows from the emitter to the collector, and in parallel with the sixth switching element S6, in the direction in which current flows in the direction from the emitter to the collector. A 6-return diode D6 is connected. Therefore, when the fifth switching element S5 is in the on state and the sixth switching element S6 is in the off state, a current flows only in the direction from the second output line to the first output line, and the fifth switching element S5 is in the off state and the sixth switching element. When S6 is on, current flows only from the first output line to the second output line.
 図7は、本発明の実施の形態3に係る電力変換装置20の動作を説明するための図である。一周期の前半は、第1スイッチング素子S1及び第4スイッチング素子S4がオン・オフを繰り返すPWM制御され、第2スイッチング素子S2及び第4スイッチング素子S4がオフ状態に制御され、第5スイッチング素子S5がオン状態に制御され、第6スイッチング素子S6がオフ状態に制御される。 FIG. 7 is a diagram for explaining the operation of the power conversion device 20 according to the third embodiment of the present invention. In the first half of one cycle, the PWM control in which the first switching element S1 and the fourth switching element S4 are repeatedly turned on and off is performed, the second switching element S2 and the fourth switching element S4 are controlled to be in the off state, and the fifth switching element S5 Is controlled to be in an on state, and the sixth switching element S6 is controlled to be in an off state.
 第1スイッチング素子S1及び第4スイッチング素子S4がオンの期間はフィルタ回路23に正電圧+Eが出力される。第1スイッチング素子S1及び第3スイッチング素子S3がオフの期間は、フィルタ回路23に蓄積されたエネルギーに基づく電流がクランプ回路29を介して還流するためフィルタ回路23の入力電圧および出力電圧はいずれもゼロになる。 The positive voltage + E is output to the filter circuit 23 while the first switching element S1 and the fourth switching element S4 are on. During the period when the first switching element S1 and the third switching element S3 are off, the current based on the energy accumulated in the filter circuit 23 circulates through the clamp circuit 29, so that the input voltage and the output voltage of the filter circuit 23 are both It becomes zero.
 一周期の後半は、第2スイッチング素子S2及び第3スイッチング素子S3がオン・オフを繰り返すPWM制御され、第1スイッチング素子S1及び第4スイッチング素子S4がオフ状態に制御され、第5スイッチング素子S5がオフ状態に制御され、第6スイッチング素子S6がオン状態に制御される。 In the second half of one cycle, PWM control is performed in which the second switching element S2 and the third switching element S3 are repeatedly turned on and off, the first switching element S1 and the fourth switching element S4 are controlled to be in the off state, and the fifth switching element S5 Is controlled to be in the off state, and the sixth switching element S6 is controlled to be in the on state.
 第2スイッチング素子S2及び第3スイッチング素子S3がオンの期間はフィルタ回路23に負電圧-Eが出力される。第2スイッチング素子S2及び第3スイッチング素子S3がオフの期間は、フィルタ回路23に蓄積されたエネルギーに基づく電流がクランプ回路29を介して還流するためフィルタ回路23の入力電圧および出力電圧はいずれもゼロになる。 The negative voltage −E is output to the filter circuit 23 while the second switching element S2 and the third switching element S3 are on. During the period when the second switching element S2 and the third switching element S3 are off, the current based on the energy accumulated in the filter circuit 23 circulates through the clamp circuit 29, so that both the input voltage and the output voltage of the filter circuit 23 are It becomes zero.
 フィルタ回路23は、正電圧+E、ゼロ、負電圧-Eの3レベルをもとに正弦波(点線参照)を生成する。このような3レベルインバータでは、ゼロクロス付近(符号R参照)でデッドタイムに起因する電流の歪が大きくなる。従って、電流の極性を判定してフィードフォワード補償する電流方式では補償精度が低下する。 The filter circuit 23 generates a sine wave (see dotted line) based on the three levels of positive voltage + E, zero, and negative voltage −E. In such a three-level inverter, current distortion due to dead time increases near the zero crossing (see symbol R). Therefore, in the current method in which the current polarity is determined and the feed forward compensation is performed, the compensation accuracy is lowered.
 以上に説明した構成および動作以外は、実施の形態2で説明したものと同様である。なお図1に示した実施の形態1に係る電力変換装置20にクランプ回路29が追加された構成であってもよい。 The configuration and operation other than those described above are the same as those described in the second embodiment. In addition, the structure by which the clamp circuit 29 was added to the power converter device 20 which concerns on Embodiment 1 shown in FIG. 1 may be sufficient.
 以上説明したように実施の形態3によれば、極性判定を用いずにデッドタイム誤差成分を補償するため誤動作が発生しにくい。従って、ゼロクロス付近において電流絶対値が小さくなり極性の誤判定が発生しやすい3レベルインバータへの適用に有効である。同様に系統電圧のゼロクロス付近において電流絶対値が小さくなるユニポーラ変調方式への適用にも有効である。また、ゼロクロス付近で際立つデッドタイムに起因される電流の歪みを抑制することができる。 As described above, according to the third embodiment, since a dead time error component is compensated without using polarity determination, malfunctions are unlikely to occur. Therefore, the present invention is effective for application to a three-level inverter in which the absolute value of current becomes small near the zero cross and the erroneous determination of polarity is likely to occur. Similarly, it is also effective for application to a unipolar modulation system in which the absolute value of current becomes small near the zero cross of the system voltage. Further, current distortion caused by dead time that stands out in the vicinity of the zero crossing can be suppressed.
 図8は、本発明の実施の形態4に係る電力変換装置20の構成を説明するための図である。実施の形態4は、回転座標変換を用いた単相系統連系インバータの電流制御に適用する例である。実施の形態4に係る電力変換装置20の制御回路27以外の構成は、実施の形態1に係る電力変換装置20と共通するため説明を省略する。実施の形態4では制御回路27は、第1回転座標変換部27o、第2回転座標変換部27p、d軸減算部27q、q軸減算部27r、d軸補償部27s、q軸補償部27t、d軸加算部27u、q軸加算部27v、逆回転座標変換部27w、第2加算部27d、駆動信号生成部27e、予測電流算出部27j、及び誤差成分補償値算出部27kを含む。 FIG. 8 is a diagram for explaining the configuration of the power conversion device 20 according to the fourth embodiment of the present invention. Embodiment 4 is an example applied to current control of a single-phase grid-connected inverter using rotational coordinate transformation. Since the configuration other than the control circuit 27 of the power conversion device 20 according to the fourth embodiment is the same as that of the power conversion device 20 according to the first embodiment, the description thereof is omitted. In the fourth embodiment, the control circuit 27 includes a first rotation coordinate conversion unit 27o, a second rotation coordinate conversion unit 27p, a d-axis subtraction unit 27q, a q-axis subtraction unit 27r, a d-axis compensation unit 27s, a q-axis compensation unit 27t, A d-axis addition unit 27u, a q-axis addition unit 27v, a reverse rotation coordinate conversion unit 27w, a second addition unit 27d, a drive signal generation unit 27e, a predicted current calculation unit 27j, and an error component compensation value calculation unit 27k are included.
 第1回転座標変換部27oは、電流検出回路25で検出された電流値Iを、系統電圧の位相θを回転角として回転座標変換してd軸成分の電流値Iout dとq軸成分の電流値Iout q(無効電流値)を算出する。第2回転座標変換部27pは、交流電圧検出回路26で検出された電圧値Voutを、系統電圧の位相θを回転角として回転座標変換してd軸成分の電圧値Vout dとq軸成分の電圧値Vout qを算出する。 First rotating coordinate transformation unit 27o is the current value I L that is detected by the current detection circuit 25, by rotating the coordinate transformation the phase θ of the system voltage as the rotation angle of the d-axis component current value Iout d and q-axis component The current value Iout q (reactive current value) is calculated. The second rotation coordinate conversion unit 27p converts the voltage value Vout detected by the AC voltage detection circuit 26 into rotation coordinates using the phase θ of the system voltage as a rotation angle, and converts the voltage value Vout d of the d-axis component and the q-axis component. The voltage value Vout q is calculated.
 d軸減算部27qは、d軸成分の目標電流値Iref dからd軸成分の電流値Iout dを減算する。q軸減算部27rは、q軸成分の目標電流値Iref qからq軸成分の電流値Iout qを減算する。d軸補償部27sは、d軸成分の目標電流値Iref dとd軸成分の電流値Iout dとの偏差をもとに、PI補償またはP補償によりd軸成分の電圧指令値Vref dを生成する。q軸補償部27tは、q軸成分の目標電流値Iref qとq軸成分の電流値Iout qとの偏差をもとに、PI補償またはP補償によりq軸成分の電圧指令値Vref qを生成する。d軸加算部27uは、d軸成分の電圧指令値Vref dにd軸成分の電圧値Vout dを加算する。q軸加算部27vは、q軸成分の電圧指令値Vref qにq軸成分の電圧値Vout qを加算する。 The d-axis subtraction unit 27q subtracts the d-axis component current value Iout d from the d-axis component target current value Iref d. The q-axis subtractor 27r subtracts the q-axis component current value Iout q from the q-axis component target current value Iref q. The d-axis compensation unit 27s generates a voltage command value Vrefd for the d-axis component by PI compensation or P-compensation based on the deviation between the target current value Iref d for the d-axis component and the current value Iout d for the d-axis component. To do. The q-axis compensation unit 27t generates a voltage command value Vref q for the q-axis component by PI compensation or P-compensation based on the deviation between the target current value Iref q for the q-axis component and the current value Iout q for the q-axis component. To do. The d-axis addition unit 27u adds the d-axis component voltage value Vout d to the d-axis component voltage command value Vref d. The q-axis addition unit 27v adds the q-axis component voltage value Vout q to the q-axis component voltage command value Vref q.
 逆回転座標変換部27wは、系統電圧補償後のd軸成分の電圧指令値Vref dとq軸成分の電圧指令値Vref qを逆回転座標変換して、静止座標系の電圧指令値Vrefを算出する。第2加算部27dは、電圧指令値Vrefにデッドタイム誤差成分補償値Δ^Vnoise(n)/Vdcを加算して、デッドタイム誤差補償後の電圧指令値Vref’を生成する。その他の処理は、実施の形態2で説明した処理と同じである。このようにd軸成分とq軸成分を独立に制御することにより力率制御や無効電力の注入を行うことができる。 The reverse rotation coordinate conversion unit 27w performs reverse rotation coordinate conversion of the voltage command value Vref d of the d-axis component and the voltage command value Vref q of the q-axis component after system voltage compensation to calculate the voltage command value Vref of the stationary coordinate system. To do. The second adder 27d adds the dead time error component compensation value Δ ^ Vnoise (n) / Vdc to the voltage command value Vref to generate a voltage command value Vref ′ after dead time error compensation. Other processes are the same as those described in the second embodiment. Thus, power factor control and reactive power injection can be performed by independently controlling the d-axis component and the q-axis component.
 以上説明したように実施の形態4によれば、逆回転座標変換前の電圧指令値Vref dとq軸成分の電圧指令値Vref qにそれぞれの補償値を加算するのではなく、逆回転座標変換後の電圧指令値Vrefに補償値を加算する。これにより構成がシンプルになり演算量を少なくできる。 As described above, according to the fourth embodiment, instead of adding the respective compensation values to the voltage command value Vref d before the reverse rotation coordinate conversion and the voltage command value Vref 成分 q of the q-axis component, the reverse rotation coordinate conversion is performed. The compensation value is added to the subsequent voltage command value Vref. This simplifies the configuration and reduces the amount of calculation.
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. The embodiments are exemplifications, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. .
 例えば実施の形態2では、検出した電流値I(n-1)から1ステップ先の電流値^I(n)を予測したが、検出した電流値I(n-m(mは2以上の整数))からmステップ先の電流値^I(n)を予測してもよい。プロセッサによる演算遅延がmステップ分の処理時間である場合、mステップ先の電流値^I(n)を予測する必要がある。 For example exemplary Embodiment 2 of, but predicted the detected current value I L (n-1) from one step destination of the current value ^ I L (n), the detected current value I L (n-m (m is 2 The current value ^ I L (n) after m steps may be predicted from the above integer))). If the computation delay by the processor is the processing time for m steps, it is necessary to predict the current value ^ I L (n) of m steps ahead.
 また上述の説明では、インバータ回路22に含まれる第1スイッチング素子S1~第4スイッチング素子S4の駆動信号VgとしてPWM信号を想定したが、位相シフト信号を用いてデューティ比を制御してもよい。 In the above description, the PWM signal is assumed as the drive signal Vg of the first switching element S1 to the fourth switching element S4 included in the inverter circuit 22, but the duty ratio may be controlled using the phase shift signal.
 また上述の説明では、直流電力を単相交流電力に変換する電力変換装置20で発生するデッドタイムを補償する例を説明したが、本補償技術は、直流電力を三相交流電力に変換する電力変換装置にも適用可能である。 In the above description, the example of compensating for the dead time generated in the power conversion device 20 that converts DC power into single-phase AC power has been described. However, the present compensation technique is a power that converts DC power into three-phase AC power. It can also be applied to a conversion device.
 なお、実施の形態は、以下の項目によって特定されてもよい。 Note that the embodiment may be specified by the following items.
[項目1]
 直流電力を交流電力に変換するインバータ回路(22)と、
 リアクトル(L1)を有し、前記インバータ回路(22)の出力する交流電力の高周波成分を減衰するフィルタ回路(23)と、
 前記リアクトル(L1)に流れる電流を検出する電流検出回路(25)と、
 電圧指令値をもとに前記インバータ回路(22)の駆動信号を生成する制御回路(27)と、を備え、
 前記制御回路(27)は、前記電流検出回路(25)で検出された電流に基づいて前記フィルタ回路(23)を通過前の前記インバータ回路(22)の出力電圧を推定し、推定した前記インバータ回路(22)の出力電圧と、前記インバータ回路(22)に供給される駆動信号との関係に基づき前記電圧指令値を補正することを特徴とする電力変換装置(20)。
 これにより、インバータ回路(22)の出力電圧を実際に測定せずに、インバータ回路(22)で発生する誤差成分を推定することができ、電圧指令値を補正することができる。
[項目2]
 前記制御回路(27)は、前記電流検出回路(25)で検出された電流値(I[n-m])に基づいて前記インバータ回路(22)のm(mは自然数)ステップ先の出力電圧(Vinv’[n])を推定し、mステップ先の電圧指令値(Vref[n])を補正することを特徴とする項目1に記載の電力変換装置(20)。
 これにより検出時の電流と、誤差成分補償時の電流との制御ずれも補償することができる。
[項目3]
 前記インバータ回路(22)と前記フィルタ回路(23)の間に、前記インバータ回路(22)の交流出力端子間を短絡可能なクランプ回路(29)をさらに備え、
 前記電流検出回路(25)は、前記クランプ回路(29)より後段に設けられることを特徴とする項目1または2に記載の電力変換装置(20)。
 これによれば、3レベルインバータの誤差成分も高精度に補償することができる。
[項目4]
 前記制御回路(27)は、前記電流検出回路(25)で検出された電流と目標電流との偏差に応じて前記電圧指令値を生成することを特徴とする項目1から3のいずれかに記載の電力変換装置(20)。
 これによれば、出力電流を安定化させることができる。
[項目5]
 前記制御回路(27)は、
 前記電流検出回路(25)で検出された電流を回転座標変換してd軸成分の電流値とq軸成分の電流値を算出する回転座標変換部(27o)と、
 d軸成分の目標電流値と前記回転座標変換部(27o)で算出されたd軸成分の電流値との偏差をもとにd軸成分の電圧指令値を生成するd軸補償部(27s)と、
 q軸成分の目標電流値と前記回転座標変換部(27o)で算出されたq軸成分の電流値との偏差をもとにq軸成分の電圧指令値を生成するq軸補償部(27t)と、
 前記d軸成分の電圧指令値と前記q軸成分の電圧指令値を逆回転座標変換して、静止座標系の電圧指令値を算出する逆回転座標変換部(27w)と、
 前記静止座標系の電圧指令値に前記インバータ回路(22)で発生する誤差成分の補償値を加算する補償値加算部(27d)と、
 を含むことを特徴とする項目1から4のいずれかに記載の電力変換装置。
 これによれば、回転座標変換を用いたインバータの誤差成分も高精度に補償することができる。
[Item 1]
An inverter circuit (22) for converting DC power into AC power;
A filter circuit (23) having a reactor (L1) for attenuating a high-frequency component of AC power output from the inverter circuit (22);
A current detection circuit (25) for detecting a current flowing through the reactor (L1);
A control circuit (27) for generating a drive signal for the inverter circuit (22) based on a voltage command value,
The control circuit (27) estimates the output voltage of the inverter circuit (22) before passing through the filter circuit (23) based on the current detected by the current detection circuit (25), and the estimated inverter The power converter (20), wherein the voltage command value is corrected based on a relationship between an output voltage of the circuit (22) and a drive signal supplied to the inverter circuit (22).
Thereby, an error component generated in the inverter circuit (22) can be estimated without actually measuring the output voltage of the inverter circuit (22), and the voltage command value can be corrected.
[Item 2]
The control circuit (27) outputs the m (m is a natural number) step ahead of the inverter circuit (22) based on the current value (I L [nm]) detected by the current detection circuit (25). The power converter (20) according to item 1, wherein the voltage (Vinv ′ [n]) is estimated and the voltage command value (Vref [n]) of m steps ahead is corrected.
Thereby, it is possible to compensate for a control deviation between the current at the time of detection and the current at the time of error component compensation.
[Item 3]
A clamp circuit (29) capable of short-circuiting between AC output terminals of the inverter circuit (22) is further provided between the inverter circuit (22) and the filter circuit (23),
3. The power conversion device (20) according to item 1 or 2, wherein the current detection circuit (25) is provided downstream of the clamp circuit (29).
According to this, the error component of the three-level inverter can be compensated with high accuracy.
[Item 4]
The control circuit (27) generates the voltage command value in accordance with a deviation between the current detected by the current detection circuit (25) and a target current. Power conversion device (20).
According to this, the output current can be stabilized.
[Item 5]
The control circuit (27)
A rotational coordinate conversion unit (27o) for calculating a current value of a d-axis component and a current value of a q-axis component by performing rotational coordinate conversion on the current detected by the current detection circuit (25);
A d-axis compensator (27s) that generates a d-axis component voltage command value based on a deviation between the d-axis component target current value and the d-axis component current value calculated by the rotating coordinate converter (27o). When,
A q-axis compensator (27t) that generates a voltage command value for the q-axis component based on the deviation between the q-axis component target current value and the q-axis component current value calculated by the rotating coordinate converter (27o). When,
A reverse rotation coordinate conversion unit (27w) that performs reverse rotation coordinate conversion of the voltage command value of the d-axis component and the voltage command value of the q-axis component to calculate a voltage command value of a stationary coordinate system;
A compensation value adding unit (27d) for adding a compensation value of an error component generated in the inverter circuit (22) to the voltage command value of the stationary coordinate system;
5. The power conversion device according to any one of items 1 to 4, wherein the power conversion device includes:
According to this, the error component of the inverter using the rotation coordinate transformation can be compensated with high accuracy.
 10 直流電源、 20 電力変換装置、 22 インバータ回路、 S1 第1スイッチング素子、 S2 第2スイッチング素子、 S3 第3スイッチング素子、 S4 第4スイッチング素子、 S5 第5スイッチング素子、 S6 第6スイッチング素子、 D1 第1還流ダイオード、 D2 第2還流ダイオード、 D3 第3還流ダイオード、 D4 第4還流ダイオード、 D5 第5還流ダイオード、 D6 第6還流ダイオード、 C1 第1コンデンサ、 C2 第2コンデンサ、 L1 第1リアクトル、 L2 第2リアクトル、 L1a 第3乗算部、 23 フィルタ回路、 24 直流電圧検出回路、 25 電流検出回路、 26 交流電圧検出回路、 27 制御回路、 27a 第1減算部、 27b 第1補償部、 27c 第1加算部、 27d 第2加算部、 27e 駆動信号生成部、 27f 第1乗算部、 27g 第2減算部、 27h 第1除算部、 27i 第3減算部、 27j 予測電流算出部、 27k 誤差成分補償値算出部、 27ka 第2遅延部、 27l 第1遅延部、 27m 第2除算部、 27n 第4減算部、 27o 第1回転座標変換部、 27p 第2回転座標変換部、 27q d軸減算部、 27r q軸減算部、 27s d軸補償部、 27t q軸補償部、 27u d軸加算部、 27v q軸加算部、 27w 逆回転座標変換部、 28 交流電圧検出回路、 29 クランプ回路、 30 系統。 10 DC power supply, 20 power converter, 22 inverter circuit, S1 first switching element, S2 second switching element, S3 third switching element, S4 fourth switching element, S5 fifth switching element, S6 sixth switching element, D1 1st freewheeling diode, D2 2nd freewheeling diode, D3 3rd freewheeling diode, D4 4th freewheeling diode, D5 5th freewheeling diode, D6 6th freewheeling diode, C1 1st capacitor, C2 2nd capacitor, L1 1st reactor, L2 second reactor, L1a third multiplication unit, 23 filter circuit, 24 DC voltage detection circuit, 25 current detection circuit, 26 AC voltage detection circuit, 27 control circuit, 27a first subtraction unit, 27b first compensation unit, 27c first addition unit, 27d second addition unit, 27e drive signal generation unit, 27f first multiplication unit, 27g second subtraction unit, 27h first division unit, 27i third subtraction unit, 27j third subtraction unit, 27j prediction Current calculation unit, 27k error component compensation value calculation unit, 27ka second delay unit, 27l first delay unit, 27m second division unit, 27n fourth subtraction unit, 27o first rotation coordinate conversion unit, 27p second rotation coordinate conversion Unit, 27q d-axis subtraction unit, 27r q-axis subtraction unit, 27s d-axis compensation unit, 27t q-axis compensation unit, 27u d-axis addition unit, 27v q-axis addition unit, 27w reverse rotation coordinate conversion unit, 28 AC voltage detection circuit 29 clamp circuit, 30 systems.
 本発明は、太陽電池のパワーコンディショナ等に利用可能である。 The present invention can be used for a solar cell power conditioner and the like.

Claims (5)

  1.  直流電力を交流電力に変換するインバータ回路と、
     リアクトルを有し、前記インバータ回路の出力する交流電力の高周波成分を減衰するフィルタ回路と、
     前記リアクトルに流れる電流を検出する電流検出回路と、
     電圧指令値をもとに前記インバータ回路の駆動信号を生成する制御回路と、を備え、
     前記制御回路は、前記電流検出回路で検出された電流に基づいて前記フィルタ回路を通過前の前記インバータ回路の出力電圧を推定し、推定した前記インバータ回路の出力電圧と、前記インバータ回路に供給される駆動信号との関係に基づき前記電圧指令値を補正することを特徴とする電力変換装置。
    An inverter circuit for converting DC power into AC power;
    A filter circuit that has a reactor and attenuates a high-frequency component of AC power output from the inverter circuit;
    A current detection circuit for detecting a current flowing through the reactor;
    A control circuit that generates a drive signal for the inverter circuit based on a voltage command value,
    The control circuit estimates the output voltage of the inverter circuit before passing through the filter circuit based on the current detected by the current detection circuit, and the estimated output voltage of the inverter circuit is supplied to the inverter circuit. The power command device corrects the voltage command value based on the relationship with the drive signal.
  2.  前記制御回路は、前記電流検出回路で検出された電流値(I[n-m])に基づいて前記インバータ回路のm(mは自然数)ステップ先の出力電圧(Vinv’[n])を推定し、mステップ先の電圧指令値(Vref[n])を補正することを特徴とする請求項1に記載の電力変換装置。 The control circuit calculates an output voltage (Vinv ′ [n]) of m (m is a natural number) step ahead of the inverter circuit based on the current value (I L [nm]) detected by the current detection circuit. The power conversion device according to claim 1, wherein the power conversion device estimates and corrects the voltage command value (Vref [n]) ahead of m steps.
  3.  前記インバータ回路と前記フィルタ回路の間に、前記インバータ回路の交流出力端子間を短絡可能なクランプ回路をさらに備え、
     前記電流検出回路は、前記クランプ回路より後段に設けられることを特徴とする請求項1または2に記載の電力変換装置。
    A clamp circuit capable of short-circuiting between the AC output terminals of the inverter circuit is further provided between the inverter circuit and the filter circuit,
    The power converter according to claim 1, wherein the current detection circuit is provided at a stage subsequent to the clamp circuit.
  4.  前記制御回路は、前記電流検出回路で検出された電流と目標電流との偏差に応じて前記電圧指令値を生成することを特徴とする請求項1から3のいずれかに記載の電力変換装置。 4. The power conversion device according to claim 1, wherein the control circuit generates the voltage command value according to a deviation between a current detected by the current detection circuit and a target current.
  5.  前記制御回路は、
     前記電流検出回路で検出された電流を回転座標変換してd軸成分の電流値とq軸成分の電流値を算出する回転座標変換部と、
     d軸成分の目標電流値と前記回転座標変換部で算出されたd軸成分の電流値との偏差をもとにd軸成分の電圧指令値を生成するd軸補償部と、
     q軸成分の目標電流値と前記回転座標変換部で算出されたq軸成分の電流値との偏差をもとにq軸成分の電圧指令値を生成するq軸補償部と、
     前記d軸成分の電圧指令値と前記q軸成分の電圧指令値を逆回転座標変換して、静止座標系の電圧指令値を算出する逆回転座標変換部と、
     前記静止座標系の電圧指令値に前記インバータ回路で発生する誤差成分の補償値を加算する補償値加算部と、
     を含むことを特徴とする請求項1から4のいずれかに記載の電力変換装置。
    The control circuit includes:
    A rotational coordinate conversion unit for calculating a current value of a d-axis component and a current value of a q-axis component by performing rotational coordinate conversion on the current detected by the current detection circuit;
    a d-axis compensator that generates a voltage command value for the d-axis component based on a deviation between the target current value of the d-axis component and the current value of the d-axis component calculated by the rotational coordinate converter;
    a q-axis compensator that generates a voltage command value for the q-axis component based on the deviation between the target current value for the q-axis component and the current value for the q-axis component calculated by the rotating coordinate converter;
    A reverse rotation coordinate conversion unit that performs reverse rotation coordinate conversion of the voltage command value of the d-axis component and the voltage command value of the q-axis component to calculate a voltage command value of a stationary coordinate system;
    A compensation value adding unit that adds a compensation value of an error component generated in the inverter circuit to the voltage command value of the stationary coordinate system;
    5. The power conversion device according to claim 1, comprising:
PCT/JP2016/003691 2015-08-27 2016-08-10 Power conversion device WO2017033428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015168210A JP2017046500A (en) 2015-08-27 2015-08-27 Power conversion device
JP2015-168210 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017033428A1 true WO2017033428A1 (en) 2017-03-02

Family

ID=58099710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003691 WO2017033428A1 (en) 2015-08-27 2016-08-10 Power conversion device

Country Status (2)

Country Link
JP (1) JP2017046500A (en)
WO (1) WO2017033428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115776262A (en) * 2023-02-13 2023-03-10 中国科学院宁波材料技术与工程研究所 Dynamic compensation method and compensation system for dead zone of rim motor and rim motor system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376239B1 (en) * 2017-04-12 2018-08-22 株式会社明電舎 Control device for power conversion circuit
JP7237747B2 (en) * 2019-06-18 2023-03-13 シャープ株式会社 Inverter device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268583A (en) * 2009-05-13 2010-11-25 Shindengen Electric Mfg Co Ltd Inverter
JP2014176253A (en) * 2013-03-12 2014-09-22 Aisin Seiki Co Ltd Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268583A (en) * 2009-05-13 2010-11-25 Shindengen Electric Mfg Co Ltd Inverter
JP2014176253A (en) * 2013-03-12 2014-09-22 Aisin Seiki Co Ltd Power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115776262A (en) * 2023-02-13 2023-03-10 中国科学院宁波材料技术与工程研究所 Dynamic compensation method and compensation system for dead zone of rim motor and rim motor system

Also Published As

Publication number Publication date
JP2017046500A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6735827B2 (en) Power converter
EP3054572A1 (en) Power conversion device
US10541638B2 (en) Control apparatus and control method
JP6250160B2 (en) Power converter
US10637370B2 (en) Apparatus for controlling DC-AC converter to reduce distortions in output current
JP2015195678A (en) Power conversion device, power generation system, control device and power conversion method
US10148195B2 (en) Power converter for outputting three-phase alternating-current voltages to a power system
US11218107B2 (en) Control device for power converter
US9350227B2 (en) Power converter control method
US20130088903A1 (en) Control architecture for a multi-level active rectifier
WO2017033429A1 (en) Power conversion device
WO2017033428A1 (en) Power conversion device
US9923505B2 (en) Methods and systems for controlling an electric motor
JP2011239564A (en) Neutral point clamp type power conversion equipment
WO2012117642A1 (en) Electrical power conversion device, electrical power conversion system, and motor inverter
US10862404B2 (en) Power conversion device including an asymmetrical carrier signal generator
JP6540315B2 (en) Power converter
KR101764949B1 (en) Apparatus for compensating phase error in inverter output voltage
JP2017127114A (en) Power conversion device
JP6113248B1 (en) Power converter
WO2022264916A1 (en) Power converting device, and control method for power converting device
JP7211097B2 (en) Power control method and power control device
US11767848B2 (en) Power conversion apparatus, motor drive apparatus, blower, compressor, and air conditioner
JP2012151966A (en) Power conversion device
JP2021132505A (en) Power conversion system and control method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838779

Country of ref document: EP

Kind code of ref document: A1