WO2017031857A1 - 一种构建双溶腔盐穴储库地面沉降预测模型的装置 - Google Patents

一种构建双溶腔盐穴储库地面沉降预测模型的装置 Download PDF

Info

Publication number
WO2017031857A1
WO2017031857A1 PCT/CN2015/096203 CN2015096203W WO2017031857A1 WO 2017031857 A1 WO2017031857 A1 WO 2017031857A1 CN 2015096203 W CN2015096203 W CN 2015096203W WO 2017031857 A1 WO2017031857 A1 WO 2017031857A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
reservoir
model
analysis
rheological
Prior art date
Application number
PCT/CN2015/096203
Other languages
English (en)
French (fr)
Inventor
赵红霞
Original Assignee
深圳朝伟达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳朝伟达科技有限公司 filed Critical 深圳朝伟达科技有限公司
Publication of WO2017031857A1 publication Critical patent/WO2017031857A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the invention relates to the technical field of underground space, in particular to a device for constructing a prediction model for ground settlement of a double-solution cavity salt storage.
  • the double-cavity salt cavern storage is obtained by establishing the double-cavity salt cave model and using the probability integral formula derived from the semi-infinite mining in two-dimensional space.
  • the expression of settlement in the center of the reservoir, and then the expression of the settlement of the double-solution cavity reservoir center is used as a prediction model for the settlement of the double-cavity salt cavern reservoir.
  • the probability integral formula derived from the two-dimensional space semi-infinite mining does not reflect the anisotropic properties of the salt layer in three-dimensional space.
  • the correlation model of the double-cavity salt cavern reservoir land subsidence prediction model for the double-solution cavity It is not accurate enough to predict the ground subsidence of the salt cavern reservoir.
  • embodiments of the present invention provide a method and apparatus for constructing a prediction model for a ground settlement of a double-solution cavity reservoir.
  • the technical solution is as follows:
  • a method for constructing a prediction model for a ground settlement of a double-cavity salt cavern reservoir comprising:
  • the key points of the three-dimensional geological analysis model for selecting the double-solution cavity salt reservoir include:
  • the performing a rheological analysis on the key points includes:
  • a rheological analysis is performed on the key points by using a numerical simulation analysis method.
  • the ground settlement prediction model of the double-cavity salt cavern reservoir is constructed according to the rheological analysis result of the key point, including:
  • the determined time-varying model of each key point settlement and the horizontal attenuation model of land subsidence are determined as the prediction model of the ground settlement of the double-solution cavern reservoir.
  • the method further includes:
  • the ground settlement of the double-cavity salt cavern reservoir is predicted according to the prediction model of the ground settlement of the double-cavity salt cavern reservoir and the model parameters.
  • an apparatus for constructing a prediction model for a ground settlement of a double-solution cavity salt reservoir comprising:
  • An analysis module is configured to perform rheological analysis on the key points to obtain a rheological analysis result of the key points;
  • the construction module is used to construct a prediction model of the ground settlement of the double-solution cavern reservoir based on the rheological analysis results of the key points.
  • the selecting module includes:
  • a projection unit configured to project two vaults of the double-solution cavity salt reservoir to the ground
  • a determining unit configured to determine a midpoint of the projection connection as a center point
  • a selecting unit configured to use the center point as a starting point, select at least two points at a preset distance, and use the center point and the selected at least two points as the double-solution cavity salt storage Key points of the library's 3D geological analysis model.
  • the first analyzing module includes:
  • a determining unit for determining a rheological model of the three-dimensional geological analysis model of the double-solution cavity salt reservoir according to the rheological experiment result of the salt rock;
  • an analysis unit configured to perform rheological analysis on the key points under different internal pressures according to the rheological model by using a numerical simulation analysis method.
  • the building module includes:
  • a first determining unit configured to determine a settlement model of each key point with time and a horizontal attenuation model of the ground settlement according to the rheological analysis result of the key point;
  • the second determining unit is configured to determine the determined settling time variation model of each key point and the ground settlement horizontal direction attenuation model as a double settlement cavity salt storage reservoir ground settlement prediction model.
  • the device include:
  • a second analysis module is configured to perform regression analysis on the ground settlement prediction model of the double-solution cavity salt storage reservoir, and obtain model parameters of the ground settlement prediction model of the double-solution cavity salt storage;
  • the prediction module is configured to predict the ground subsidence of the double-solution cavity salt storage reservoir according to the prediction model of the ground settlement of the double-solution cavity reservoir and the model parameters.
  • the three-dimensional geological analysis model of the double-solution cavity salt reservoir is established by the information of the double-solution cavity reservoir, and the prediction model of the ground settlement of the double-solution cave reservoir is constructed according to the three-dimensional geological analysis model of the double-solution cavity reservoir. . Because the three-dimensional geological analysis model of the double-solution cavity reservoir can accurately reflect the anisotropy of the salt layer in three-dimensional space, the model of the ground settlement prediction model of the double-solution cavern reservoir is improved. The accuracy of the prediction of the ground settlement of the cavern salt reservoir.
  • FIG. 1 is a flow chart of a method for constructing a land subsidence prediction model for a double-solution cavity salt cavern according to a first embodiment of the present invention
  • FIG. 2 is a flow chart of a method for constructing a prediction model of a ground settlement of a double-solution chamber salt cavern according to a second embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the setting of key points of a double-solution chamber salt cavern storage provided by the second embodiment of the present invention.
  • FIG. 4 is a schematic view showing the variation of the settlement amount of the key point with the internal pressure when the rheological time is the same according to the second embodiment of the present invention
  • Figure 5 is a schematic view showing the change of the settlement amount of the key point with the rheological time when the internal pressure is the same according to the second embodiment of the present invention
  • FIG. 6 is a schematic structural view of a device for constructing a ground subsidence prediction model for a double-solution cavity salt storage tank according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a selection module according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a first analysis module according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a building module according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic structural diagram of a second apparatus for constructing a land subsidence prediction model for a double-solution cavity salt storage tank according to a third embodiment of the present invention.
  • the embodiment of the invention provides a prediction model for constructing the ground settlement of the double-cavity salt cavern reservoir.
  • the method can be used to predict the ground subsidence of the double-solution cavity salt reservoir by constructing the ground settlement model of the double-solution cavity reservoir, so as to provide guidance for the management of the double-solution salt cave reservoir in time.
  • the method process provided by this embodiment includes:
  • the key points of the three-dimensional geological analysis model of the double-solution cavity salt reservoir are selected, including:
  • At least two points are selected, and the center point and the selected two points are used as the key points of the three-dimensional geological analysis model of the double-solution cavity reservoir.
  • rheological analysis of key points includes:
  • the rheological model of the three-dimensional geological analysis model of the double-solution cavern reservoir is determined;
  • the numerical analysis method is used to analyze the rheological changes of key points.
  • the ground settlement prediction model of the double-solution cavity salt reservoir is constructed according to the rheological analysis result of the key points, including:
  • the determined time-varying model of each key point settlement and the horizontal attenuation model of land subsidence are determined as the prediction model of the ground settlement of the double-solution cavern reservoir.
  • the method further includes:
  • Regression analysis was carried out on the prediction model of the ground settlement of the double-solution cavern reservoir, and the model parameters of the prediction model of the ground settlement of the double-solution cavern reservoir were obtained.
  • the ground settlement of the double-cavity salt cavern reservoir is predicted.
  • the method provided by the embodiment establishes a three-dimensional geological analysis model of the double-solution cavity salt reservoir through the information of the double-solution cavity salt reservoir, and constructs the double-solution cavity salt according to the three-dimensional geological analysis model of the double-solution cavity salt reservoir. Prediction model for ground settlement of cave reservoirs. Because the three-dimensional geological analysis model of the double-solution cavity reservoir can accurately reflect the anisotropy of the salt layer in three-dimensional space, the model of the ground settlement prediction model of the double-solution cavern reservoir is improved. The accuracy of the prediction of the ground settlement of the cavern salt reservoir.
  • the embodiment of the present invention provides a method for constructing a prediction model of a ground settlement of a double-cavity salt cavern reservoir.
  • the double-solution cavity salt reservoir provided by the embodiment of the present invention is combined with the content of the first embodiment.
  • the method of predicting the land subsidence model is explained in detail. Referring to FIG. 2, the method process provided by this embodiment includes:
  • 201 Obtain information of the double-solution cavity salt reservoir, and establish a three-dimensional geological analysis model of the double-solution cavity salt reservoir according to the information of the double-solution cavity reservoir.
  • the information of the double-solution cavity salt reservoir includes, but is not limited to, the geological information of the double-solution cavity salt reservoir and the cavity shape parameters.
  • the geological information of the double-solution cavity reservoir includes, but is not limited to, the longitudinal and transverse profiles of the cavern reservoir, the distribution of the strata, the lithology, and the physical and mechanical parameters of the rock and soil.
  • Cavity shape parameters include, but are not limited to, the volume, height, width, cavity spacing, etc. of the cavity.
  • the ground layer is a soil layer, a mud layer, a salt layer, an interlayer, etc., and the embodiment does not specifically define the formation.
  • Physical and mechanical indicators of rock and soil include but not limited In terms of elastic modulus, Poisson's ratio, cohesiveness, tensile strength, and the like.
  • Methods for obtaining geological information from a double-solution chamber salt reservoir include, but are not limited to, acquisition using geological analysis equipment.
  • the manner in which the shape information of the cavity of the double-solution cavity reservoir is obtained includes, but is not limited to, acquisition by a measuring device.
  • the cavity shape and stratum distribution of the double-cavity salt cave reservoir are the physical mechanics of the rock and soil in the double-cavity salt cavern reservoir.
  • the indicators have an important impact: the physical and mechanical indexes of the rock and soil bodies of the double-cavity salt cavern reservoirs with different cavity shapes are different, and the physical and mechanical indexes of the rock and soil bodies of different strata in the same double-cavity salt cavern reservoir are also different. of.
  • each single chamber in the double-solution chamber is 250,000 cubic meters, and each chamber is 140 meters high.
  • An example in which each cavity has a width of 60 meters is described. See Table 1 for details.
  • 3D geological analysis model A method for establishing a three-dimensional geological analysis model of a double-solution cavity salt reservoir according to the information of the double-solution cavity reservoir, including but not limited to using the modeling software to construct a double according to the obtained information of the double-solution salt reservoir A three-dimensional geological analysis model of the cavern reservoir.
  • the modeling software used is not limited.
  • the three-dimensional geological analysis model of the double-solution cavity salt reservoir can be established according to the information of the double-solution cavity reservoir.
  • the key points of the three-dimensional geological analysis model of the double-solution cavern reservoir can represent the entire double-cavity salt cave reservoir
  • the key points are selected on the three-dimensional geological analysis model of the double-solution cavity salt reservoir, so that the subsequent steps can be analyzed by constructing the double-cavity salt cavern storage by selecting the key points of the three-dimensional geological analysis model of the selected double-solution cavern reservoir. Reservoir land subsidence prediction model.
  • the manner of selecting the key points of the three-dimensional geological analysis model of the double-solution cavity reservoir includes, but is not limited to, adopting the following methods:
  • the two vaults of the double-solution cavity salt reservoir are respectively projected to the ground, and the midpoint of the projection connection is determined as the center point;
  • the center point as the starting point and selecting the at least two points by the preset distance, and the center point and the selected at least two points are the key points of the three-dimensional geological analysis model of the double-solution cavity salt reservoir. .
  • the preset distance may be 20 meters, 50 meters, 60 meters, etc., and the preset distance is not specifically limited in this embodiment.
  • Figure 3 is a schematic illustration of the key point settings for a double-solution chamber salt reservoir.
  • the key point selected by the same preset distance is used as the step point.
  • the position of the double-solution cavity salt reservoir is larger, and the position near the center point is larger.
  • the key point is the main analysis point for predicting the ground subsidence of the double-solution cavern reservoir. Therefore, when selecting the key points, the points can be intensively close to the center point, and further away from the center point. Large step sizes select key points.
  • the method provided in this embodiment needs to perform rheological analysis on key points, and then Get the rheological analysis results of the key points.
  • the rheological analysis of the key points includes, but is not limited to, the following steps:
  • the rheological model of the three-dimensional geological analysis model of the double-solution cavity salt reservoir is determined according to the rheological experiment results of the salt rock;
  • the rheological model method includes, but is not limited to, performing a predetermined number of salt rock rheological experiments on a three-dimensional geological analysis model of a double-solution cavity salt reservoir, and obtaining experimental results of a predetermined number of salt rock rheological experiments.
  • the obtained results of the salt rock rheological experiment were fitted to obtain a rheological model of the three-dimensional geological analysis model of the double-solution cavity salt reservoir.
  • the obtained results of the salt rock rheological experiment including but not limited to the following formula:
  • ⁇ t is the initial creep strain
  • C is a constant
  • a and n are material parameters
  • ⁇ 1 and ⁇ 3 are the maximum stress and the minimum principal stress, respectively
  • B and ⁇ are material parameters
  • t is time. .
  • Model parameters of the rheological model In order to facilitate the subsequent analysis and calculation based on the rheological model of the three-dimensional geological analysis model of the double-solution cavity reservoir, it is necessary to first determine the three-dimensional geological analysis model of the double-solution cavity reservoir.
  • Model parameters of the rheological model The method for determining the model parameters of the rheological model of the three-dimensional geological analysis model of the double-solution cavity reservoir is not specifically limited in this embodiment.
  • the model parameters of the rheological model of the three-dimensional geological analysis model of the double-solution cavern reservoir are determined.
  • MPa is megapascal.
  • the rheological model is used to perform rheological analysis on key points using numerical simulation methods.
  • the numerical simulation analysis method is also called computer simulation method.
  • the numerical simulation analysis method is a kind of electronic computing method, which realizes the purpose of researching engineering problems, physical problems and even various problems in nature through numerical calculation and image display methods. method.
  • a more precise double solution is constructed.
  • the ground settlement prediction model of the cave salt reservoir this step can be used to analyze the rheological changes of key points according to the rheological model using numerical simulation analysis method.
  • the first case the rheological time is the same and the internal pressure is different;
  • a single variable principle can be used to analyze the rheological behavior of the double-solution cavity reservoir under different internal pressures under the same rheological time.
  • Fig. 4 is a graph showing the change in the amount of settlement at a critical point as a function of internal pressure at the same rheological time. It can be seen from Fig. 4 that when the rheological time is 2 years, the ground settlement when the internal pressure is 5 MPa is greater than the ground settlement when the internal pressure is 10 MPa; when the rheological time is 5 years, the key point is When the internal pressure is 5MPa, the ground settlement amount is greater than the ground settlement when the internal pressure is 10MPa; when the rheological time is 10 years, the ground settlement when the internal pressure is 5MPa is greater than the internal pressure is 10MPa.
  • the second case the rheology time is different and the internal pressure is the same.
  • Fig. 5 is a schematic diagram showing the change of the settlement amount of the key point with the rheological time when the internal pressure is the same.
  • the key points set are A, B, C, D, E in Fig. 3, and the internal pressure is 10 MPa as an example. It can be seen from Fig. 5 that when the rheological time is 10 years, the ground settlement of the key point A is smaller than the ground settlement of the key point B, and the ground settlement of the key point B is smaller than the ground settlement of the key point C, the key point The ground settlement of C is smaller than the ground settlement of key point D.
  • the ground settlement of key point D is smaller than the ground settlement of key point E, and the distance between key points A, B, C, D, E from the center point is gradually increased.
  • this step builds the double-lumen cavity salt based on the rheological analysis result of the key point on the basis of the above step 203.
  • Prediction model for ground settlement of cave reservoirs Specifically, according to the rheological analysis results of the key points, the ground settlement prediction model of the double-cavity salt cavern reservoir is constructed. According to the rheological analysis results of the key points, the settlement model of each key point with time and the attenuation model of the ground settlement horizontal direction can be determined. Then, the determined settlement model of each key point with time and the horizontal attenuation model of land subsidence are determined as the prediction model of the ground settlement of the double-solution cavern reservoir.
  • this step can determine the following model of settlement of each key point with time according to the results of this rheological analysis:
  • S is the ground settlement of the key points on the ground
  • t is the rheological time
  • a and b are the model parameters.
  • this step can determine the following attenuation model of the horizontal settlement according to the rheological analysis results:
  • Sr is the settlement of the ground from the center point r
  • r is the distance from the center point
  • c, d, e, and f are model parameters.
  • the model parameters of the prediction model of the ground settlement of the double-solution cavern reservoir are obtained, and then the ground settlement of the double-cavity salt cavern reservoir is predicted according to the prediction model of the ground settlement of the double-cavity salt cavern reservoir and the model parameters.
  • the regression analysis is based on the mastery of a large number of observation data, using mathematical statistics to establish a regression relationship function expression between the dependent variable and the independent variable.
  • the regression analysis is carried out on the prediction model of the ground settlement of the double-cavity salt cavern reservoir, and the model parameters of the prediction model of the ground settlement of the double-solution cavern reservoir are obtained in Table 3 and Table 4.
  • Table 3 is the model parameter of the key point settlement with time change when the internal pressure is 5MPa.
  • Table 4 shows the parameters of the surface subsidence horizontal direction attenuation fitting model when the internal pressure is 10 MPa.
  • a three-dimensional geological analysis model of a double-solution cavity salt reservoir is established by using information of a double-solution cavity salt reservoir, and a double-solution cavity is constructed according to a three-dimensional geological analysis model of a double-solution cavity salt reservoir.
  • Prediction model of ground subsidence in salt cavern storage Because the three-dimensional geological analysis model of the double-solution cavity reservoir can accurately reflect the anisotropy of the salt layer in three-dimensional space, the model of the ground settlement prediction model of the double-solution cavern reservoir is improved. The accuracy of the prediction of the ground settlement of the cavern salt reservoir.
  • an embodiment of the present invention provides a device for constructing a prediction model for a ground settlement of a double-solution cavity salt storage, the device comprising:
  • the obtaining module 601 is configured to obtain information about the double-solution cavity salt reservoir
  • the module 603 is selected to select a key point of the three-dimensional geological analysis model of the double-solution cavity salt reservoir,
  • the first analysis module 604 is configured to perform rheological analysis on the key points to obtain a rheological analysis result of the key points;
  • the construction module 605 is configured to construct a ground settlement prediction model of the double-solution cavity salt reservoir according to the rheological analysis result of the key points.
  • the selection module 603 includes:
  • a projection unit 6031 configured to project two vaults of the double-solution cavity salt reservoir to the ground;
  • a determining unit 6032 configured to determine a midpoint of the projection connection as a center point
  • the selecting unit 6033 is configured to select at least two points with the center point as a starting point and the preset distance as the starting point, and select the center point and the selected at least two points as the three-dimensional geological analysis model of the double-solution cavity salt reservoir. key point.
  • the first analysis module 604 includes:
  • a determining unit 6041 configured to determine a rheological model of the three-dimensional geological analysis model of the double-solution cavity salt reservoir according to the rheological experiment result of the salt rock;
  • the analyzing unit 6042 is configured to perform rheological analysis on the key points by using a numerical simulation analysis method according to the rheological model.
  • the building block 605 includes:
  • the first determining unit 6051 is configured to determine a settlement model of each key point with time and a horizontal attenuation model of the ground settlement according to the rheological analysis result of the key point;
  • the second determining unit 6052 is configured to determine the determined time-varying settlement model of each key point and the horizontal attenuation model of the ground subsidence as a prediction model of the ground settlement of the double-solution cavity salt storage.
  • the device further includes:
  • the second analysis module 606 is configured to perform regression analysis on the ground settlement prediction model of the double-solution cavity salt storage reservoir, and obtain model parameters of the ground settlement prediction model of the double-solution cavity salt storage;
  • the prediction module 607 is configured to predict the ground settlement of the double-solution cavity salt storage reservoir according to the ground settlement prediction model and the model parameters of the double-solution cavity reservoir.
  • the device provided by the embodiment of the invention establishes a three-dimensional geological analysis model of a double-solution cavity salt reservoir through the information of the double-solution cavity salt reservoir, and constructs a three-dimensional geological analysis model according to the double-solution cavity salt reservoir.
  • a prediction model for ground settlement of a double-solution cavern reservoir is constructed. Because the three-dimensional geological analysis model of the double-solution cavity reservoir can accurately reflect the anisotropy of the salt layer in three-dimensional space, the model of the ground settlement prediction model of the double-solution cavern reservoir is improved. The accuracy of the prediction of the ground settlement of the cavern salt reservoir.
  • the device for constructing a prediction model for the ground settlement of the double-cavity salt cavern storage provided by the above embodiment is only illustrated by the division of the above functional modules when constructing the prediction model of the ground settlement of the double-solution cavity reservoir.
  • the above function assignments may be completed by different functional modules as needed, and the internal structure of the device for constructing a double settlement cavity salt storage reservoir ground subsidence prediction model is divided into different functional modules to complete the above description. All or part of the function.
  • the apparatus for constructing a ground settlement prediction model for a double-solution cavity salt storage reservoir provided by the above embodiment and the method embodiment for constructing a ground settlement prediction model for a double-solution cavity salt storage reservoir belong to the same concept, and the specific implementation process thereof is described in the method implementation. For example, I won't go into details here.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种构建双溶腔盐穴储库地面沉降预测模型的装置,所述装置包括:获取模块(601),用于获取双溶腔盐穴储库的信息;建立模块(602),用于根据所述双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型;选取模块(603),用于选取所述双溶腔盐穴储库的三维地质分析模型的关键点,第一分析模块(604),用于对所述关键点进行流变分析,得到关键点的流变分析结果;构建模块(605),用于根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。提高了采用构建的双溶腔盐穴储库地面沉降预测模型对双溶腔盐穴储库地面沉降进行预测的准确性。

Description

一种构建双溶腔盐穴储库地面沉降预测模型的装置 技术领域
本发明涉及地下空间技术领域,特别涉及一种构建双溶腔盐穴储库地面沉降预测模型的装置。
背景技术
随着能源问题日益突出,能源战略储备变得至关重要,盐岩地层由于其特殊性,在盐岩地层挖掘盐穴,利用盐穴进行能源战略储备已在世界范围内得到广泛的应用。然而由于盐岩地层蠕变,使得溶腔体积减小,进而导致地面沉降,从而引发一系列灾害,给人们生命财产安全带来重大的损失。双溶腔盐穴储库由于具有两个溶腔,更易发生地面沉降,因此,为了确保双溶腔盐穴储库的安全,需要构建双溶腔盐穴储库地面沉降预测模型对双溶腔盐穴储库地面沉降进行预测。
相关技术在构建双溶腔盐穴储库地面沉降预测模型时,通过建立双溶腔盐穴模型,采用在二维空间半无限开采时推导出的概率积分公式,得出双溶腔盐穴储库中心沉降的表达式,进而将得到的双溶腔盐穴储库中心沉降的表达式作为双溶腔盐穴储库地面沉降预测模型。
在实现本发明的过程中,发明人发现相关技术至少存在以下问题:
相关技术在构建双溶腔盐穴储库地面沉降预测模型时,由于采用的二维空间半无限开采时推导出的概率积分公式不能很好地反应盐层在三维空间各向异性的性质,因此,相关技术构造的双溶腔盐穴储库地面沉降预测模型对双溶腔 盐穴储库地面沉降进行预测时不够准确。
发明内容
为了解决相关技术的问题,本发明实施例提供了一种构建双溶腔盐穴储库地面沉降预测模型的方法和装置。所述技术方案如下:
第一方面,提供了一种构建双溶腔盐穴储库地面沉降预测模型的方法,所述方法包括:
获取双溶腔盐穴储库的信息,根据所述双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型;
选取所述双溶腔盐穴储库的三维地质分析模型的关键点,对所述关键点进行流变分析,得到关键点的流变分析结果;
根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。
结合第一方面,在第一方面的第一种可能的实现方式中,所述选取所述双溶腔盐穴储库的三维地质分析模型的关键点,包括:
将所述双溶腔盐穴储库的两个拱顶分别向地面投影,并将所述投影连线的中点确定为中心点;
以所述中心点为起点,以预设距离为间隔,选取至少两个点,并将所述中心点和所述选取的至少两个点作为所述双溶腔盐穴储库的三维地质分析模型的关键点。
结合第一方面,在第一方面的第二种可能的实现方式中,所述对所述关键点进行流变分析,包括:
根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的流变 模型;
根据所述流变模型采用数值模拟分析方法对所述关键点进行流变分析。
结合第一方面,在第一方面的第三种可能的实现方式中,所述根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型,包括:
根据关键点的流变分析结果确定各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型;
将确定的各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型确定为双溶腔盐穴储库地面沉降预测模型。
结合第一方面,在第一方面的第四种可能的实现方式中,所述构建双溶腔盐穴储库地面沉降预测模型之后,还包括:
对所述双溶腔盐穴储库地面沉降预测模型进行回归分析,得到所述双溶腔盐穴储库地面沉降预测模型的模型参数;
根据所述双溶腔盐穴储库地面沉降预测模型及模型参数对所述双溶腔盐穴储库地面沉降进行预测。
第二方面,提供了一种构建双溶腔盐穴储库地面沉降预测模型的装置,所述装置包括:
获取模块,用于获取双溶腔盐穴储库的信息;
建立模块,用于根据所述双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型;
选取模块,用于选取所述双溶腔盐穴储库的三维地质分析模型的关键点,第
一分析模块,用于对所述关键点进行流变分析,得到关键点的流变分析结果;
构建模块,用于根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。
结合第二方面,在第二方面的第一种可能的实现方式中,所述选取模块,包括:
投影单元,用于将所述双溶腔盐穴储库的两个拱顶分别向地面投影;
确定单元,用于将所述投影连线的中点确定为中心点;
选取单元,用于以所述中心点为起点,以预设距离为间隔,选取至少两个点,并将所述中心点和所述选取的至少两个点作为所述双溶腔盐穴储库的三维地质分析模型的关键点。
结合第二方面,在第二方面的第二种可能的实现方式中,所述第一分析模块,包括:
确定单元,用于根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的流变模型;
分析单元,用于根据所述流变模型采用数值模拟分析方法对所述关键点进行不同内压下的流变分析。
结合第二方面,在第二方面的第三种可能的实现方式中,所述构建模块,包括:
第一确定单元,用于根据关键点的流变分析结果确定各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型;
第二确定单元,用于将确定的各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型确定为双溶腔盐穴储库地面沉降预测模型。
结合第二方面,在第二方面的第四种可能的实现方式中,所述装置,还包 括:
第二分析模块,用于对所述双溶腔盐穴储库地面沉降预测模型进行回归分析,得到所述双溶腔盐穴储库地面沉降预测模型的模型参数;
预测模块,用于根据所述双溶腔盐穴储库地面沉降预测模型及模型参数对所述双溶腔盐穴储库地面沉降进行预测。
本发明实施例提供的技术方案带来的有益效果是:
通过双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型,并根据双溶腔盐穴储库的三维地质分析模型构建双溶腔盐穴储库地面沉降预测模型。由于构建的双溶腔盐穴储库的三维地质分析模型能够准确的反应盐层在三维空间各向异性的性质,因此,提高了采用构建的双溶腔盐穴储库地面沉降预测模型对双溶腔盐穴储库地面沉降进行预测的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的一种构建双溶腔盐穴储库地面沉降预测模型的方法流程图;
图2是本发明实施例二提供的一种构建双溶腔盐穴储库地面沉降预测模型的方法流程图;
图3是本发明实施例二提供的双溶腔盐穴储库的关键点设置的示意图;
图4是本发明实施例二提供的在流变时间相同时关键点的沉降量随内压变化的示意图;
图5是本发明实施例二提供的在内压相同时关键点的沉降量随流变时间的变化的示意图;
图6是本发明实施例三提供的第一种构建双溶腔盐穴储库地面沉降预测模型的装置结构示意图;
图7是本发明实施例三提供的选取模块的结构示意图;
图8是本发明实施例三提供的第一分析模块的结构示意图;
图9是本发明实施例三提供的构建模块的结构示意图;
图10是本发明实施例三提供的第二种构建双溶腔盐穴储库地面沉降预测模型的装置结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
为了确保双溶腔盐穴储库的安全,避免双溶腔盐穴储库因地面沉降引发一系列的自然灾害,本发明实施例提供了一种构建双溶腔盐穴储库地面沉降预测模型的方法,通过构建的双溶腔盐穴储库地面沉降模型可对双溶腔盐穴储库地面沉降进行预测,从而及时地对双溶腔盐穴储库进行管理提供指导。参见图1,本实施例提供的方法流程包括:
101:获取双溶腔盐穴储库的信息,根据双溶腔盐穴储库的信息建立双溶腔 盐穴储库的三维地质分析模型。
102:选取双溶腔盐穴储库的三维地质分析模型的关键点,对关键点进行流变分析,得到关键点的流变分析结果。
作为一种可选的实施例,选取双溶腔盐穴储库的三维地质分析模型的关键点,包括:
将双溶腔盐穴储库的两个拱顶分别向地面投影,并将投影连线的中点确定为中心点;
以中心点为起点,以预设距离为间隔,选取至少两个点,并将中心点和选取的至少两个点作为双溶腔盐穴储库的三维地质分析模型的关键点。
作为一种可选的实施例,对关键点进行流变分析,包括:
根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的流变模型;
根据流变模型采用数值模拟分析方法对关键点进行流变分析。
103:根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。
作为一种可选的实施例,根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型,包括:
根据关键点的流变分析结果确定各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型;
将确定的各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型确定为双溶腔盐穴储库地面沉降预测模型。
作为一种可选的实施例,构建双溶腔盐穴储库地面沉降预测模型之后,还包括:
对双溶腔盐穴储库地面沉降预测模型进行回归分析,得到双溶腔盐穴储库地面沉降预测模型的模型参数;
根据双溶腔盐穴储库地面沉降预测模型及模型参数对双溶腔盐穴储库地面沉降进行预测。
本实施例提供的方法,通过双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型,并根据双溶腔盐穴储库的三维地质分析模型构建双溶腔盐穴储库地面沉降预测模型。由于构建的双溶腔盐穴储库的三维地质分析模型能够准确的反应盐层在三维空间各向异性的性质,因此,提高了采用构建的双溶腔盐穴储库地面沉降预测模型对双溶腔盐穴储库地面沉降进行预测的准确性。
实施例二
本发明实施例提供了一种构建双溶腔盐穴储库地面沉降预测模型的方法,为了便于理解,现结合上述实施例一的内容,对本发明实施例提供的构建双溶腔盐穴储库地面沉降预测模型的方法进行详细地解释说明。参见图2,本实施例提供的方法流程包括:
201:获取双溶腔盐穴储库的信息,根据双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型。
其中,双溶腔盐穴储库的信息包括但不限于双溶腔盐穴储库的地质信息及腔体形状参数等。双溶腔盐穴储库的地质信息包括但不限于溶腔盐穴储库的纵横剖面图、地层分布、岩性以及岩土体的物理力学指标等。腔体形状参数包括但不限于腔体的体积、高度、宽度、腔距等。其中,地层为土层、泥层、盐层、夹层等,本实施例不对地层作具体的限定。岩土体的物理力学指标包括但不限 于弹性模量、泊松比、粘聚度、抗拉强度等。
关于获取双溶腔盐穴储库的地质信息的方法,包括但不限于采用地质分析设备获取。关于获取双溶腔盐穴储库的腔体形状信息的方式,包括但不限于采用测量设备获取。
在对双溶腔盐穴储库的岩土体的物理力学指标进行研究可知,双溶腔盐穴储库的腔体形状及地层分布对双溶腔盐穴储库的岩土体的物理力学指标有重要影响:不同腔体形状的双溶腔盐穴储库的岩土体的物理力学指标是不同的,同一双溶腔盐穴储库的不同地层的岩土体的物理力学指标也是不同的。
为了直观地展现双溶腔盐穴储库的不同的地层所具有的不同力学性能,下面以双溶腔盐穴储库的每个单腔体积为25万立方米、每个腔体高140米、每个腔体宽度为60米的为例进行介绍。具体参见表1。
表1
Figure PCTCN2015096203-appb-000001
其中,表中Pa为帕斯卡,°为度,Kg/m3为千克每立方米。从表1可以看出,不同地层的岩土体的物理力学指标是不同的,同一地层不同的深度的岩土体的物理力学指标也是不同的。
进一步地,为了构建双溶腔盐穴储库地面沉降预测模型,在获取了双溶腔盐穴储库的信息之后,需要根据双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型。关于根据双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型的方法,包括但不限于根据获取到的双溶腔盐穴储库的信息采用建模软件构建双溶腔盐穴储库的三维地质分析模型。本实施例不对采用的建模软件进行限定,具体实施时,可根据双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型即可。
202:选取双溶腔盐穴储库的三维地质分析模型的关键点。
由于双溶腔盐穴储库的三维地质分析模型的关键点能够代表整个双溶腔盐穴储库的情况,因此,在建立了双溶腔盐穴储库的三维地质分析模型之后,可在双溶腔盐穴储库的三维地质分析模型上选取关键点,以使后续步骤可通过对选取的双溶腔盐穴储库的三维地质分析模型关键点进行分析,构建双溶腔盐穴储库地面沉降预测模型。
具体地,选取双溶腔盐穴储库的三维地质分析模型的关键点的方式,包括但不限于采用如下方式:
第一步,将双溶腔盐穴储库的两个拱顶分别向地面投影,并将投影连线的中点确定为中心点;
第二步,以中心点为起点,以预设距离为间隔,选取至少两个点,并将中心点和选取的至少两个点作为双溶腔盐穴储库的三维地质分析模型的关键点。
其中,预设距离可以是20米、50米、60米等,本实施例不对预设距离作具体的限定。
对于上述过程,为了便于理解,下面将以一个具体的例子进行详细地解释说明。
图3为双溶腔盐穴储库的关键点设置的示意图。在选取双溶腔盐穴储库的三维地质分析模型的关键点时,首先,将图3中的双溶腔盐穴储库的两个拱顶分别向地面作投影,并将投影进行连线得到连线的中心点为A点;其次,设定预设距离为25米,以中心点A点为起点、25米为间隔选取关键点,得到的关键点有A、B、C、D、E等。
需要说明的是,上述在选取关键点时以相同的预设距离为步长选取的关键点,在实际选取关键点时,由于双溶腔盐穴储库的长度较大,靠近中心点的位置的关键点为对双溶腔盐穴储库地面沉降进行预测的主要分析点,因此,在选取关键点时,可在靠近中心点处密集取点,在离中心点较远的地方上以更大的步长选取关键点。
203:对关键点进行流变分析,得到关键点的流变分析结果。
为了构建更为精准的双溶腔盐穴储库地面沉降预测模型,以便于对双溶腔盐穴储库的地面沉降进行预测,本实施例提供的方法需要对关键点进行流变分析,进而得到关键点的流变分析结果。
具体地,对关键点进行的流变分析,包括但不限于采用如下步骤:
第一步,根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的流变模型;
关于根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的 流变模型的方法,包括但不限于:对双溶腔盐穴储库的三维地质分析模型进行预设次数的盐岩流变实验,并获取预设次数的盐岩流变实验的实验结果,将获取到的盐岩流变实验的结果进行拟合,从而得到双溶腔盐穴储库的三维地质分析模型的流变模型。其中,将获取到的盐岩流变实验的结果进行拟合时,包括但不限于采用如下公式进行拟合:
ε=εlts=C+B(1-exp-βt)+A(σ13)nt
其中,
Figure PCTCN2015096203-appb-000002
为盐岩瞬时变形,
Figure PCTCN2015096203-appb-000003
为稳态蠕变率,εt为初始蠕变应变,C为常数,A、n为材料参数,σ1和σ3分别为最大应力和最小主应力,B、β为材料参数,t为时间。
在采用上述公式进行拟合之后,为了便于根据确定双溶腔盐穴储库的三维地质分析模型的流变模型进行后续的分析计算,需要先确定双溶腔盐穴储库的三维地质分析模型的流变模型的模型参数。关于确定双溶腔盐穴储库的三维地质分析模型的流变模型的模型参数的方法,本实施例不作具体的限定。
以表1所示的双溶腔盐穴储库的信息构建的三维地质分析模型为例,确定的该双溶腔盐穴储库的三维地质分析模型的流变模型的模型参数,可参见表2。
表2
Figure PCTCN2015096203-appb-000004
Figure PCTCN2015096203-appb-000005
其中,MPa为兆帕斯卡。
第二步,根据流变模型采用数值模拟分析方法对关键点进行流变分析。
其中,数值模拟分析方法也叫计算机模拟方法,数值模拟分析方法是以电子计算机为手段,通过数值计算和图像显示的方法,达到对工程问题和物理问题乃至自然界各类问题研究的目的的一种方法。为了确定内压和流变时间对双溶腔盐穴储库地面沉降的影响,进而根据确定的双溶腔盐穴地面沉降情况与内压及流变时间的关系,构造更为精准的双溶腔盐穴储库地面沉降预测模型,本步骤可根据流变模型采用数值模拟分析方法对关键点进行流变分析。
其中,在根据流变模型采用数值模拟分析方法对关键点进行流变分析时,可分为如下两种情况:
第一种情况:流变时间相同,内压不同;
为了确定内压对双溶腔盐穴地面沉降的影响,可采用单一变量原则,在同一流变时间下,对双溶腔盐穴储库在不同内压下进行流变分析。
为了便于理解上述过程,下面将以内压为5MPa和10MPa为例进行详细地解释说明。
图4为在流变时间相同时关键点的沉降量随内压变化的示意图。从图4可知,当流变时间为2年时,关键点在内压为5MPa时的地面沉降量要大于内压为10MPa时的地面沉降量;当流变时间为5年时,关键点在内压为5MPa时的地面沉降量要大于内压为10MPa时的地面沉降量;当流变时间为10年时,关键点在内压为5MPa时的地面沉降量要大于内压为10MPa时的地面沉降量;当流变 时间为20年时,关键点在内压为5MPa时的地面沉降量同样要大于内压为10MPa时的地面沉降量。因此,通过对图4的分析可得出如下结论:流变时间相同时,内压越多,双溶腔盐穴储库的地面沉降量越小。
第二种情况:流变时间不同,内压相同。
为了确定流变时间对双溶腔盐穴地面沉降的影响,可采用单一变量原则,在内压相同下,对双溶腔盐穴储库在不同流变时间下进行流变分析。
对于上述过程,为了便于理解,下面将以一个具体的例子进行详细地解释说明。
图5为在内压相同时关键点的沉降量随流变时间的变化的示意图,以设定的关键点为图3中的A、B、C、D、E,内压为10MPa为例。从图5可以看出,在流变时间为10年时,关键点A的地面沉降量小于关键点B的地面沉降量,关键点B的地面沉降量小于关键点C的地面沉降量,关键点C的地面沉降量小于关键点D的地面沉降量,关键点D的地面沉降量小于关键点E的地面沉降量,而关键点A、B、C、D、E距离中心点的距离是逐渐增大的,因此,通过对图5的分析可得出如下结论:流变时间相同时,随着关键点距离双溶腔盐穴储库的中心距离越远,地面沉降量越大。在流变时间不同时,以关键点为A点为例,在流变时间为5年时关键点A的地面沉降量要小于流变时间为10年时的地面沉降量,在流变时间为10年时关键点A的地面沉降量要小于流变时间为15年时的地面沉降量,在流变时间为15年时关键点A的地面沉降量要小于流变时间为20年时的地面沉降量,因此,通过对图5的分析还可得出如下结论:流变时间不同时,同一关键点随着流变时间的增大地面沉降量逐渐增大。
综上,通过对关键点进行不同内压下的流变分析,得到关键点的流变分析 结果如下:
第一:流变时间相同时,内压越多,双溶腔盐穴储库的地面沉降量越小。
第二:流变时间相同时,随着关键点距离双溶腔盐穴储库的中心距离越远,地面沉降量越大。
第三:流变时间不同时,同一关键点随着流变时间的增大地面沉降量逐渐增大。
204:根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。
由于上述步骤203中已对关键点流变分析,并得到的了关键点的流变分析结果,因此,本步骤在上述步骤203的基础上将根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。具体地,根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型时,可根据关键点的流变分析结果确定各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型,进而将确定的各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型确定为双溶腔盐穴储库地面沉降预测模型。
具体地,由于上述步骤203中在对关键点进行不同内压下的流变分析时,已经得到同一关键点随着流变时间的增大,地面沉降量逐渐增大这一关键点的流变分析结果,因此,本步骤可根据这一流变分析结果确定如下各个关键点沉降随时间变化模型:
S=a[1-exp(-bt)]
其中S为地面关键点地面沉降量,t为流变时间,a、b为模型参数。
具体地,由于上述步骤203中在对关键点进行不同内压下的流变分析时,已经得到流变时间相同时,内压越大双溶腔盐穴储库的地面沉降量越小,随着 关键点距离双溶腔盐穴储库的中心距离越远,地面沉降量越大的分析结果,因此,本步骤可根据这一流变分析结果确定如下及地面沉降水平方向衰减模型:
Sr=c-dexp(-erf)
其中,Sr为地面距中心点r处的沉降量,r为距中心点的距离,c、d、e、f为模型参数。
进一步地,构建双溶腔盐穴储库地面沉降预测模型之后,为了更好地对双溶腔盐穴储库地面沉降进行预测,还需对双溶腔盐穴储库地面沉降预测模型进行回归分析,得到双溶腔盐穴储库地面沉降预测模型的模型参数,进而根据双溶腔盐穴储库地面沉降预测模型及模型参数对双溶腔盐穴储库地面沉降进行预测。
其中,回归分析是在掌握大量观察数据的基础上利用数理统计的方法建立因变量与自变量之间的回归关系函数表达式的方法。具体地,在对双溶腔盐穴储库地面沉降预测模型进行回归分析,得到双溶腔盐穴储库地面沉降预测模型的模型参数可参见表3和表4。
表3
Figure PCTCN2015096203-appb-000006
其中,表3为内压5MPa时关键点沉降随时间变化拟合模型参数。
表4
Figure PCTCN2015096203-appb-000007
Figure PCTCN2015096203-appb-000008
其中,表4为内压10MPa时地表沉降水平方向衰减拟合模型参数。
本发明实施例提供的方法,通过双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型,并根据双溶腔盐穴储库的三维地质分析模型构建双溶腔盐穴储库地面沉降预测模型。由于构建的双溶腔盐穴储库的三维地质分析模型能够准确的反应盐层在三维空间各向异性的性质,因此,提高了采用构建的双溶腔盐穴储库地面沉降预测模型对双溶腔盐穴储库地面沉降进行预测的准确性。
实施例三
参见图6,本发明实施例提供了一种构建双溶腔盐穴储库地面沉降预测模型的装置,该装置包括:
获取模块601,用于获取双溶腔盐穴储库的信息;
建立模块602,用于根据双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型;
选取模块603,用于选取双溶腔盐穴储库的三维地质分析模型的关键点,第
第一分析模块604,用于对关键点进行流变分析,得到关键点的流变分析结果;
构建模块605,用于根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。
参见图7,选取模块603,包括:
投影单元6031,用于将双溶腔盐穴储库的两个拱顶分别向地面投影;
确定单元6032,用于将投影连线的中点确定为中心点;
选取单元6033,用于以中心点为起点,以预设距离为间隔,选取至少两个点,并将中心点和选取的至少两个点作为双溶腔盐穴储库的三维地质分析模型的关键点。
参见图8,第一分析模块604,包括:
确定单元6041,用于根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的流变模型;
分析单元6042,用于根据流变模型采用数值模拟分析方法对关键点进行流变分析。
参见图9,构建模块605,包括:
第一确定单元6051,用于根据关键点的流变分析结果确定各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型;
第二确定单元6052,用于将确定的各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型确定为双溶腔盐穴储库地面沉降预测模型。
参见图10,该装置,还包括:
第二分析模块606,用于对双溶腔盐穴储库地面沉降预测模型进行回归分析,得到双溶腔盐穴储库地面沉降预测模型的模型参数;
预测模块607,用于根据双溶腔盐穴储库地面沉降预测模型及模型参数对双溶腔盐穴储库地面沉降进行预测。
综上,本发明实施例提供的装置,通过双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型,并根据双溶腔盐穴储库的三维地质分析模型构 建双溶腔盐穴储库地面沉降预测模型。由于构建的双溶腔盐穴储库的三维地质分析模型能够准确的反应盐层在三维空间各向异性的性质,因此,提高了采用构建的双溶腔盐穴储库地面沉降预测模型对双溶腔盐穴储库地面沉降进行预测的准确性。
需要说明的是:上述实施例提供的构建双溶腔盐穴储库地面沉降预测模型的装置在构建双溶腔盐穴储库地面沉降预测模型时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将建双溶腔盐穴储库地面沉降预测模型的装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的建双溶腔盐穴储库地面沉降预测模型的装置与建双溶腔盐穴储库地面沉降预测模型的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种构建双溶腔盐穴储库地面沉降预测模型的装置,其特征在于,所述装置包括:
    获取模块,用于获取双溶腔盐穴储库的信息;
    建立模块,用于根据所述双溶腔盐穴储库的信息建立双溶腔盐穴储库的三维地质分析模型;
    选取模块,用于选取所述双溶腔盐穴储库的三维地质分析模型的关键点;
    第一分析模块,用于对所述关键点进行流变分析,得到关键点的流变分析结果;
    构建模块,用于根据关键点的流变分析结果构建双溶腔盐穴储库地面沉降预测模型。
  2. 根据权利要求1所述的装置,其特征在于,所述选取模块,包括:
    投影单元,用于将所述双溶腔盐穴储库的两个拱顶分别向地面投影;
    确定单元,用于将所述投影连线的中点确定为中心点;
    选取单元,用于以所述中心点为起点,以预设距离为间隔,选取至少两个点,并将所述中心点和所述选取的至少两个点作为所述双溶腔盐穴储库的三维地质分析模型的关键点。
  3. 根据权利要求1所述的装置,其特征在于,所述第一分析模块,包括:
    确定单元,用于根据盐岩的流变实验结果确定双溶腔盐穴储库的三维地质分析模型的流变模型;
    分析单元,用于根据所述流变模型采用数值模拟分析方法对所述关键点进行流变分析。
  4. 根据权利要求1所述的装置,其特征在于,所述构建模块,包括:
    第一确定单元,用于根据关键点的流变分析结果确定各个关键点沉降随时 间变化模型及地面沉降水平方向衰减模型;
    第二确定单元,用于将确定的各个关键点沉降随时间变化模型及地面沉降水平方向衰减模型确定为双溶腔盐穴储库地面沉降预测模型。
  5. 根据权利要求4所述的装置,其特征在于,所述装置,还包括:
    第二分析模块,用于对所述双溶腔盐穴储库地面沉降预测模型进行回归分析,得到所述双溶腔盐穴储库地面沉降预测模型的模型参数;
    预测模块,用于根据所述双溶腔盐穴储库地面沉降预测模型及模型参数对所述双溶腔盐穴储库地面沉降进行预测。
PCT/CN2015/096203 2015-08-24 2015-12-02 一种构建双溶腔盐穴储库地面沉降预测模型的装置 WO2017031857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/086597 WO2017031615A1 (zh) 2015-08-24 2015-08-24 一种构建双溶腔盐穴储库地面沉降预测模型的方法
CNPCT/CN2015/086597 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017031857A1 true WO2017031857A1 (zh) 2017-03-02

Family

ID=58099291

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/086597 WO2017031615A1 (zh) 2015-08-24 2015-08-24 一种构建双溶腔盐穴储库地面沉降预测模型的方法
PCT/CN2015/096203 WO2017031857A1 (zh) 2015-08-24 2015-12-02 一种构建双溶腔盐穴储库地面沉降预测模型的装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086597 WO2017031615A1 (zh) 2015-08-24 2015-08-24 一种构建双溶腔盐穴储库地面沉降预测模型的方法

Country Status (1)

Country Link
WO (2) WO2017031615A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109388887A (zh) * 2018-10-09 2019-02-26 首都师范大学 一种地面沉降影响因素定量分析方法及系统
CN109558630A (zh) * 2018-10-22 2019-04-02 杭州叙简科技股份有限公司 一种适用于地下空间的三维自动建模方法
CN114320828A (zh) * 2021-12-13 2022-04-12 中国能源建设集团江苏省电力设计院有限公司 一种蓄热式压缩空气储能系统及控制方法
CN115688480A (zh) * 2022-11-18 2023-02-03 山东鲁银盐穴储能工程技术有限公司 多夹层盐穴储库沉渣储存能力确定方法
CN117367536A (zh) * 2023-10-07 2024-01-09 中煤浙江勘测设计有限公司 一种盐穴储气库腔体稳定性的监测方法及系统
CN117367536B (zh) * 2023-10-07 2024-05-14 中煤浙江勘测设计有限公司 一种盐穴储气库腔体稳定性的监测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985340B (zh) * 2018-06-22 2021-06-01 西安电子科技大学 基于双模型融合的盾构施工地面沉降量预测方法
CN110210650B (zh) * 2019-05-06 2021-07-02 同济大学 一种应急避难场所避难人口需求的预测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669734A (en) * 1995-11-29 1997-09-23 Texas Brine Corporation Process for making underground storage caverns
CN105320830A (zh) * 2014-07-28 2016-02-10 中国石油天然气集团公司 构建双溶腔盐穴储库地面沉降预测模型的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284120B2 (en) * 2012-05-25 2016-03-15 Praxair Technology, Inc. Methods for storing hydrogen in a salt cavern with a permeation barrier
CN102721407B (zh) * 2012-07-06 2014-08-06 中国石油大学(华东) 地下盐穴储气库地表沉降测量装置及测量方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669734A (en) * 1995-11-29 1997-09-23 Texas Brine Corporation Process for making underground storage caverns
CN105320830A (zh) * 2014-07-28 2016-02-10 中国石油天然气集团公司 构建双溶腔盐穴储库地面沉降预测模型的方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUANG, YAOXIAN: "Study on Theoretical Model and Numerical Simulation of Surface Subsidence Caused by Gas Storage of Rock Salt", SCIENCE -ENGINEERING (B), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 March 2013 (2013-03-15), pages 11 - 19 . 55-72 and 95-106, ISSN: 1674-0246 *
REN, SONG ET AL.: "Study on a New Probability Integral 3D Model for Forecasting Solution Mining Subsidence of Rock Salt", ROCK AND SOIL MECHANICS, vol. 28, no. 1, 31 January 2007 (2007-01-31), pages 133 - 138, ISSN: 1000-7598 *
YANG, WENDONG ET AL.: "Research on Nonlinear Rheological Model of Diabase and Treatment for Creep Loading History", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 30, no. 7, 31 July 2011 (2011-07-31), pages 1405 - 1412, ISSN: 1000-6915 *
ZHANG, NING ET AL.: "Calculation and Analysis for Failure Risk Probability of Ground Settlement on Area of Salt Rock Underground Gas Storage", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 31, no. 2, 30 September 2012 (2012-09-30), pages 3757 - 3762, ISSN: 1000-6915 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109388887A (zh) * 2018-10-09 2019-02-26 首都师范大学 一种地面沉降影响因素定量分析方法及系统
CN109388887B (zh) * 2018-10-09 2023-01-13 首都师范大学 一种地面沉降影响因素定量分析方法及系统
CN109558630A (zh) * 2018-10-22 2019-04-02 杭州叙简科技股份有限公司 一种适用于地下空间的三维自动建模方法
CN114320828A (zh) * 2021-12-13 2022-04-12 中国能源建设集团江苏省电力设计院有限公司 一种蓄热式压缩空气储能系统及控制方法
CN114320828B (zh) * 2021-12-13 2024-01-23 中国能源建设集团江苏省电力设计院有限公司 一种蓄热式压缩空气储能系统及控制方法
CN115688480A (zh) * 2022-11-18 2023-02-03 山东鲁银盐穴储能工程技术有限公司 多夹层盐穴储库沉渣储存能力确定方法
CN115688480B (zh) * 2022-11-18 2024-01-12 山东鲁银盐穴储能工程技术有限公司 多夹层盐穴储库沉渣储存能力确定方法
CN117367536A (zh) * 2023-10-07 2024-01-09 中煤浙江勘测设计有限公司 一种盐穴储气库腔体稳定性的监测方法及系统
CN117367536B (zh) * 2023-10-07 2024-05-14 中煤浙江勘测设计有限公司 一种盐穴储气库腔体稳定性的监测方法及系统

Also Published As

Publication number Publication date
WO2017031615A1 (zh) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2017031857A1 (zh) 一种构建双溶腔盐穴储库地面沉降预测模型的装置
Deng et al. Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling
Hunsweck et al. A finite element approach to the simulation of hydraulic fractures with lag
US9836561B2 (en) Optimizing multistage hydraulic fracturing design based on three-dimensional (3D) continuum damage mechanics
Xu et al. Characterization of hydraulically-induced fracture network using treatment and microseismic data in a tight-gas formation: A geomechanical approach
US20180293789A1 (en) Three-dimensional geomechanical modeling of casing deformation for hydraulic fracturing treatment design
CN105840187A (zh) 致密性油藏水平井分段压裂产能计算方法
US20170169139A1 (en) Predicting and modeling changes in capillary pressure and relative permeabilities in a porous medium due to mineral precipitation and dissolution
NO20110986A1 (no) System og fremgangsmate for a forutsi fluidstromningsegenskaper i frakturerte reservoarer under overflaten
CN109138974A (zh) 一种缝洞型碳酸盐岩油藏离散数值试井分析方法及系统
Wang et al. Failure analysis of overhanging blocks in the walls of a gas storage salt cavern: a case study
CN106886046B (zh) 确定缝洞型气藏未投产区块可动用储量的方法
Li et al. Stress redistribution and fracture propagation during restimulation of gas shale reservoirs
CN113255123B (zh) 煤层顶板水平井分段多簇压裂适用性地质条件的评价方法
Manjunath et al. Multi-stage hydraulic fracture monitoring at the lab scale
CN105320830A (zh) 构建双溶腔盐穴储库地面沉降预测模型的方法和装置
Mukhtar et al. Coupled multiphysics 3-D generalized finite element method simulations of hydraulic fracture propagation experiments
Schofield et al. Optimization of well pad & completion design for hydraulic fracture stimulation in unconventional reservoirs
Xu et al. Back-analysis approach for the determination of hydraulic conductivity in rock caverns
Gao et al. An Integrated Geomechanics-Reservoir Modeling Workflow for Hydraulic Fracturing Optimisation and EUR Prediction for a Shale Gas Play in Sichuan Basin
Zhang et al. Fracability evaluation method of a fractured-vuggy carbonate reservoir in the shunbei block
Kabir et al. Understanding variable well performance in a chalk reservoir
Xu et al. Numerical modeling and candidate selection of re-fracturing with micro-seismic data in shale gas productions
CN112377184A (zh) 串珠状缝洞型碳酸盐岩储层物性参数分析方法及装置
Zeynal et al. Understanding and quantifying variable drainage volume for unconventional wells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902126

Country of ref document: EP

Kind code of ref document: A1