WO2017031722A1 - 网络连接的切换方法及装置 - Google Patents

网络连接的切换方法及装置 Download PDF

Info

Publication number
WO2017031722A1
WO2017031722A1 PCT/CN2015/088162 CN2015088162W WO2017031722A1 WO 2017031722 A1 WO2017031722 A1 WO 2017031722A1 CN 2015088162 W CN2015088162 W CN 2015088162W WO 2017031722 A1 WO2017031722 A1 WO 2017031722A1
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
pgw
agw
mgw
terminal
Prior art date
Application number
PCT/CN2015/088162
Other languages
English (en)
French (fr)
Inventor
诸华林
李欢
靳维生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/088162 priority Critical patent/WO2017031722A1/zh
Priority to CN201580082255.XA priority patent/CN108141879A/zh
Publication of WO2017031722A1 publication Critical patent/WO2017031722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for switching a network connection.
  • Non-3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • UE user equipment
  • 3GPP 3rd Generation Partnership Project
  • Non-3GPP 3rd Generation Partnership Project
  • the network connection between the UE and the core network has only one network connection in the Non-3GPP network. This network connection mode is called a separate Non-3GPP network connection.
  • the Non-3GPP network and the 3GPP network are jointly covered, and the UE can search for Non-3GPP signals and 3GPP signals at the same location.
  • Multi-Stream Aggregation (MSA) network connections have been proposed.
  • MSA network connection the UE connects to the core network through the Non-3GPP network and the 3GPP network, so that the network service can be acquired by using the Non-3GPP network and the 3GPP network.
  • the embodiment of the present invention provides a method and an apparatus for switching a network connection.
  • the technical solution is as follows:
  • a method for switching a network connection is used to switch a terminal from a separate network connection to a multi-stream aggregation network connection, the method comprising:
  • the multi-stream aggregation gateway MGW receives a request message sent by one of the terminal, the PGW, and the aggregation gateway AGW, where the request message includes an identifier of the AGW, The identifier of the terminal and the identifier of the PGW;
  • the MGW receives the terminal, the PGW, and the aggregation gateway AGW after the terminal establishes a 3GPP network connection with the packet data gateway PGW.
  • a request message sent by a network element including:
  • the MGW receives a tunnel processing request message sent by the terminal after the terminal establishes a 3GPP network connection with the PGW, where the tunnel processing request message includes an identifier of the AGW, an identifier of the terminal, and the PGW. Identification; or,
  • the MGW receives a tunnel establishment request message sent by the AGW after the terminal establishes a 3GPP network connection with the PGW, where the tunnel establishment request message includes an identifier of the AGW, an identifier of the terminal, and the PGW. Identification; or,
  • the MGW receives a session deletion request message sent by the PGW after the terminal establishes a 3GPP network connection with the PGW, where the session deletion request message includes an identifier of the AGW, an identifier of the terminal, and the PGW. logo.
  • the MGW establishes a tunnel between the MGW and the AGW according to the identifier of the AGW and the identifier of the terminal.
  • the MGW sends a tunnel establishment request message to the AGW, where the tunnel establishment request message includes an identifier of the terminal and an identifier of the MGW, where the tunnel establishment request message is used by the AGW to establish the terminal in the A tunnel between the AGW and the MGW.
  • the MGW is based on the PGW
  • the identifier of the terminal and the identifier of the terminal are deleted from the network connection between the MGW and the PGW, including:
  • the MGW sends a session deletion request message to the PGW according to the identifier of the PGW, where the session deletion request message includes an identifier of the terminal, and the session deletion request message is used by the PGW to delete according to the identifier of the terminal.
  • the terminal is in a network connection between the MGW and the PGW.
  • the MGW is according to the PGW And the identifier of the terminal deletes the terminal between the MGW and the PGW After the network connection, it also includes:
  • the MGW sends, to the terminal, a result of establishing a tunnel between the MGW and the AGW, and a deletion result of a network connection between the MGW and the PGW.
  • the MGW sends a tunnel of the terminal between the MGW and the AGW to the terminal
  • the result of the establishment and the deletion result of the network connection between the MGW and the PGW by the terminal include:
  • the MGW sends a tunnel processing response message to the terminal, where the tunnel processing response message includes a result of establishing a tunnel between the MGW and the AGW, and the terminal is in the MGW and the PGW.
  • the result of the deletion of the network connection or,
  • the MGW sends a tunnel establishment response message to the AGW, where the tunnel establishment response message includes a result of establishing a tunnel between the MGW and the AGW, and the terminal is in the MGW and the PGW.
  • the tunnel establishment response message is used by the AGW to send a tunnel processing response message to the terminal, where the tunnel processing response message includes the establishment result and the deletion result.
  • a method for switching a network connection is used to switch a terminal from a separate network connection to a multi-stream aggregation network connection, the method comprising:
  • the aggregation gateway AGW receives a tunnel processing request message sent by the network element in the terminal and the mobility management network element MME, where the tunnel processing request message includes the multi-stream aggregation gateway MGW.
  • the AGW sends a tunnel establishment request message to the MGW according to the identifier of the MGW, where the tunnel establishment request message includes an identifier of the PGW and an identifier of the terminal, where the tunnel establishment request message is used to establish the MGW.
  • the terminal is connected to the tunnel between the MGW and the AGW and deletes a network connection between the MGW and the PGW.
  • the method further includes:
  • the AGW receives a tunnel establishment response message sent by the MGW, where the tunnel establishment response message includes an establishment result and a tunnel connection between the MGW and the AGW. Deleting a result of the network connection between the MGW and the PGW;
  • the AGW sends a tunnel processing response message to the terminal, where the tunnel processing response message includes the establishment result and the deletion result.
  • a method for switching a network connection is used to switch a terminal from a separate network connection to a multi-stream aggregation network connection, where the method includes:
  • the terminal establishes a 3GPP network connection with the packet data gateway PGW;
  • the terminal sends a tunnel processing request message to the aggregation gateway AGW, where the tunnel processing request message is used to trigger the AGW to send a tunnel establishment request message to the multi-flow aggregation MGW, where the tunnel establishment request message includes the identifier and location of the terminal.
  • the method further includes:
  • the service transmitted in the Non-3GPP is switched to the network connection established in the 3GPP network.
  • a fourth aspect a method for switching a network connection, is used for switching a terminal from a separate network connection to a multi-stream aggregation network connection, where the method includes:
  • the terminal establishes a 3GPP network connection with the packet data gateway PGW;
  • the terminal sends a tunnel processing request message to the multi-stream aggregation gateway MGW, where the tunnel processing request message includes an identifier of the terminal, an identifier of the aggregation gateway AGW, and an identifier of the PGW, where the tunnel processing request message is used to trigger the
  • the MGW sends a tunnel establishment request message to the AGW and deletes a network connection with the PGW, where the tunnel establishment request message includes an identifier of the terminal and an identifier of the MGW, where the tunnel establishment request message is used. Triggering the AGW to establish a tunnel with the MGW.
  • the method further includes:
  • the service transmitted in the Non-3GPP is switched to the network connection established in the 3GPP network.
  • a fifth aspect is a network connection switching device for switching a terminal from a separate network connection to a multi-stream aggregation multi-stream aggregation network connection, the switching device comprising a transceiver and a processor:
  • the transceiver is configured to receive a request message sent by one of the terminal, the PGW, and the aggregation gateway AGW after the terminal establishes a 3GPP network connection with the packet data gateway PGW, where the request message includes an AGW An identifier, an identifier of the terminal, and an identifier of the PGW;
  • the processor is configured to establish a tunnel between the switching device and the AGW according to the identifier of the AGW and the identifier of the terminal; and delete according to the identifier of the PGW and the identifier of the terminal
  • the terminal is in a network connection between the switching device and the PGW.
  • the transceiver is configured to receive a tunnel processing request message that is sent by the terminal after the terminal establishes a 3GPP network connection with the PGW, where the tunnel processing request message includes an identifier of the AGW, and an identifier of the terminal. And the identification of the PGW; or,
  • the transceiver is configured to receive a tunnel establishment request message that is sent by the AGW after the terminal establishes a 3GPP network connection with the PGW, where the tunnel establishment request message includes an identifier of the AGW, an identifier of the terminal, and The identifier of the PGW; or,
  • the transceiver is configured to receive a session deletion request message sent by the PGW after the terminal establishes a 3GPP network connection with the PGW, where the session deletion request message includes an identifier of the AGW, an identifier of the terminal, and The identifier of the PGW.
  • the transceiver is further configured to send a tunnel establishment request message to the AGW, where the tunnel establishment request message includes an identifier of the terminal and an identifier of the handover apparatus, where the tunnel establishment request message is used to establish the AGW.
  • the terminal is a tunnel between the AGW and the switching device.
  • the transceiver is configured to send a session deletion request message to the PGW according to the identifier of the PGW, where the session deletion request message includes an identifier of the terminal, and the session deletion request message is used by the PGW according to the The identifier of the terminal deletes the network connection between the switching device and the PGW.
  • the transceiver is further configured to send, to the terminal, a result of establishing a tunnel between the switching device and the AGW, and a network connection between the switching device and the PGW The result of the deletion.
  • the transceiver is configured to send a tunnel processing response message to the terminal, where the tunnel processing response message includes a result of establishing a tunnel between the switching device and the AGW, and the terminal is in the a deletion result of the network connection between the switching device and the PGW; or
  • the transceiver is configured to send a tunnel establishment response message to the AGW, where the tunnel establishment response message includes a result of establishing a tunnel between the switching device and the AGW, and the terminal is in the a tunneling response message is used to trigger the AGW to send a tunnel processing response message to the terminal, where the tunnel processing response message includes the establishment result and the location Describe the result.
  • a sixth aspect is a network connection switching apparatus, configured to switch a terminal from a separate network connection to a multi-stream aggregation network connection, where the switching apparatus includes: a receiver and a transmitter;
  • the receiver is configured to receive, after the terminal establishes a 3GPP network connection with the packet data gateway PGW, a tunnel processing request message sent by the network element in the terminal and the mobility management network element MME, where the tunnel processing request message includes multiple An identifier of the flow aggregation gateway MGW, an identifier of the terminal, and an identifier of the PGW;
  • the transmitter is configured to send a tunnel establishment request message to the MGW according to the identifier of the MGW, where the tunnel establishment request message includes an identifier of the PGW and an identifier of the terminal, where the tunnel establishment request message is used. Trimming the MGW to establish a tunnel connection between the MGW and the switching device, and deleting a network connection between the MGW and the PGW.
  • the receiver is further configured to receive a tunnel establishment response message sent by the MGW, where the tunnel establishment response message includes an establishment result of a tunnel connection between the MGW and the switching device by the terminal at the terminal. And a deletion result of the network connection between the MGW and the PGW;
  • the transmitter is further configured to send a tunnel processing response message to the terminal, where the tunnel processing response message includes the establishment result and the deletion result.
  • a 3GPP network connection between the terminal and the PGW is first established in the 3GPP network, and after the 3GPP network connection is established, the MGW can establish the terminal in the MGW and the AGW.
  • the tunnel between the MGW and the PGW is deleted, and the network connection mode of the terminal is switched from the separate Non-3GPP network connection to the MSA connection.
  • the terminal accesses both the Non-3GPP network and the 3GPP network. In this way, the terminal can transmit services through the Non-3GPP network and the 3GPP network, thereby improving the speed of service transmission.
  • FIG. 1 is a schematic diagram of a Non-3GPP network architecture provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a 3GPP network architecture provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an MSA network connection according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for switching a network connection according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of another method for switching a network connection according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a network connection switching apparatus according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another network connection switching apparatus according to an embodiment of the present invention.
  • the terminal may be a UE, and in the following example, the UE is taken as an example for description.
  • the communication network is divided into a Non-3GPP network and a 3GPP network. See the network architecture of the Non-3GPP network shown in FIG. 1.
  • the Non-3GPP network architecture includes network elements such as a Multi-Stream Aggregation Gateway (MGW) and a Packet Data Network Gateway (PGW).
  • MGW Multi-Stream Aggregation Gateway
  • PGW Packet Data Network Gateway
  • the 3GPP network architecture includes an Aggregate-Gateway (AGW), a Mobility Management Entity (MME), a Serving Gateway (SGW), and a PGW.
  • AGW Aggregate-Gateway
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • PGW Packet Data Network
  • Network element after the UE accesses the 3GPP network, the network connection between the UE and the PGW located in the core network in the 3GPP network includes a network connection between the UE and the AGW, a network connection between the AGW and the MME/SGW, and an MME/SGW A network connection with the PGW; the UE can transmit data to the PGW or receive data transmitted by the PGW through a network connection with the PGW.
  • the network element mentioned in this embodiment may be either a physical network element or a logical network element.
  • the SGW and the PGW may be one device in the entity, and all have a gateway anchor function.
  • the device can be the PGW here.
  • all network elements with similar functions are adapted to the above description, and are not limited to a specific network element.
  • the AGW may be a base station device in a 3GPP network or the same device as the SGW, and the MGW may be in a Non-3GPP network. Access device access point (AP) or gateway device in the Non-3GPP network, even physically the same device as the AGW.
  • AP Access device access point
  • the Non-3GPP network and the 3GPP network are jointly covered.
  • the UE only accesses the Non-3GPP network.
  • the network connection between the UE and the PGW in the Non-3GPP network includes only a single Non- 3GPP network connection.
  • the UE may search for a 3GPP network signal capable of covering itself. After the UE searches for the 3GPP network signal covering its own, the UE can switch the current separate Non-3GPP network connection to a Multi-Stream Aggregation Gateway (MSA) network connection, and the UE simultaneously accesses the MSA network connection.
  • MSA Multi-Stream Aggregation Gateway
  • Non-3GPP network and 3GPP network and the UE has an air interface connection in the 3GPP network and an air interface connection in Non-3GPP, and the two air interface connections are subsequently aggregated and connected with the core network, thereby utilizing the Non-3GPP network. And 3GPP network to obtain network services.
  • the method for switching a network connection mode of a UE from a separate Non-3GPP network connection to an MSA network connection includes at least the following steps: First, establishing a 3GPP network connection between the UE and the PGW in the 3GPP network, the second step Establish a UE between the AGW and the MGW in the AGW and The tunnel between the MGWs, the third step, deletes the network connection between the UE and the PGW.
  • the second step and the third step have no strict timing relationship. You can execute the second step and then the third step, or you can perform the third step and then the second step.
  • an embodiment of the present application provides a method for switching a network connection, which is used to switch a UE from a separate network connection to a multi-stream aggregation network connection, that is, to switch a UE from a separate Non-3GPP network connection to an MSA.
  • Network connection the method includes:
  • Step 101 After the UE establishes a 3GPP network connection with the PGW, the MGW receives a request message sent by one of the UE, the PGW, and the AGW.
  • the request message includes an identifier of the AGW, an identifier of the UE, and an identifier of the PGW.
  • Step 102 The MGW establishes a tunnel between the MGW and the AGW according to the identifier of the AGW and the identifier of the UE.
  • Step 103 The MGW deletes the network connection between the MGW and the PGW according to the identifier of the PGW and the identifier of the UE, to switch the UE from a separate Non-3GPP network connection to an MSA network connection.
  • a 3GPP network connection between the UE and the PGW is established in the 3GPP network.
  • the MGW can establish a tunnel between the MGW and the AGW, and delete the UE in the MGW and the
  • the network connection between the PGWs is implemented to switch the network connection mode of the UE from a separate Non-3GPP network connection to an MSA connection.
  • the UE simultaneously accesses the 3GPP network and the non-3GPP network, so that the UE can pass the 3GPP network and the non-3GPP network. To transmit services and increase the speed of business transmission.
  • the embodiment of the present application provides a method for switching a network connection, where the method is used to switch a UE from a separate Non-3GPP network connection to an MSA network connection.
  • the current network connection mode of the UE is a separate Non-3GPP network connection, that is, the UE is only connected to the Non-3GPP network. After the UE searches for the 3GPP network signal, the UE requests to switch the current network connection mode to the MSA network connection. Referring to FIG.
  • the handover process includes: establishing a 3GPP network connection between the UE and the PGW in the 3GPP network; the MME sends a tunnel establishment request to the AGW, requesting to establish a tunnel connection between the MGW and the AGW, and deleting the UE in the MGW and Network connection between PGWs.
  • FIG. 6 specifically includes:
  • Step 201 After the UE searches for the 3GPP network signal, the UE sends a handover request to the AGW.
  • the handover request message includes an identifier of the UE and an identifier of the MGW accessed by the UE.
  • the UE initially accesses only the Non-3GPP network, and there is a network connection between the UE and the MGW in the Non-3GPP network.
  • the MGW is the MGW accessed by the UE.
  • the 3GPP network signal that can cover itself is also searched in real time, and the 3GPP network signal is an air interface signal of the AGW broadcast in the 3GPP network; when one or more AGW broadcasts are searched
  • the UE decides to switch the network connection mode, and selects an AGW to obtain the MGW to which it accesses, and sends a handover request message to the selected AGW, where the handover request message includes the identifier of the UE and the identifier of the MGW.
  • the UE selects the AGW in multiple manners. For example, the UE may select the 3GPP network signal with the strongest signal strength from the received 3GPP network signal, and then obtain the AGW corresponding to the 3GPP network signal with the strongest signal strength; For example, the UE acquires the operator to which it belongs, and selects one AGW belonging to the operator from the AGW corresponding to each 3GPP network signal received by the UE.
  • the handover request message sent by the UE further includes MSA indication information, where the MSA indication information is used to request to switch the separate Non-3GPP network connection to the MSA connection.
  • the handover request message may also not include the MSA indication information.
  • the first step of switching the UE's network connection mode is to establish a 3GPP network connection between the UE and the PGW in the 3GPP network, where the 3GPP network connection includes a control plane connection and a user between the UE and the PGW. Face connection.
  • Steps 202-212 illustrate the establishment of a 3GPP network connection between the UE and the PGW in the 3GPP network.
  • the identifier of the AGW is saved, and the uplink control plane connection between the UE and the AGW is established. That is, when the UE needs to send the signaling of the control plane to the AGW, the UE may send the signaling to the AGW according to the identifier of the stored AGW, that is, the uplink control plane connection between the UE and the AGW is connected.
  • the AGW may be a 3GPP network element such as an Evolved Node B (eNodeB) or an SGW.
  • the identifier of the AGW may be an Internet Protocol (IP) address, etc., between the networks of the AGW.
  • the MGW can be a non-3GPP network element such as a Trusted WLAN (Wireless Local Area Networks) (TWAN), an Evolved Packet Data Gateway (ePDG), or even an AGW.
  • TWAN Trusted WLAN
  • ePDG Evolved Packet Data Gateway
  • the identifier of the MGW may be an IP address of the MGW, and the like.
  • Step 202 The AGW receives the handover request message, establishes a control plane connection with the UE according to the handover request message, and forwards the handover request message to the MME.
  • the AGW determines, according to the MSA indication information included in the handover request message, a network connection mode that needs to be switched, and then allocates a port for the UE, and saves the identifier of the UE included in the handover request message.
  • the correspondence between the ports such that the downlink control plane connection between the AGW and the UE has been established. That is, when the AGW needs to send the signaling of the control plane to the UE, the AGW can obtain the corresponding port according to the identifier of the stored UE, and send the signaling to the UE through the port, that is, the downlink control plane connection between the AGW and the UE. Connected, and the uplink control plane connection between the UE and the AGW is connected, so that the control plane connection between the AGW and the UE is established at this time.
  • the AGW after receiving the handover request message, the AGW also saves the correspondence between the identifier of the UE and the identifier of the MME, so that the uplink control plane connection between the AGW and the MME is established, that is, the AGW receives the message.
  • the identifier of the MME is obtained according to the identifier of the UE, and the signaling is sent to the MME according to the identifier of the MME, that is, the uplink control between the UE and the MME.
  • the face connection is connected.
  • Step 203 The MME receives the handover request message, and establishes a control plane connection between the MME and the AGW according to the handover request message, performs authentication on the UE, and obtains subscription data of the UE after the authentication is passed.
  • the subscription data of the UE is generated when the user corresponding to the UE subscribes to the service with the operator.
  • the operator stores the identifier of the UE and the subscription data of the UE in the correspondence between the identifier of the UE in the HSS and the subscription data.
  • the step may be: the MME receives the handover request message, and extracts an identifier of the UE, an identifier of the MGW, and an indication of the MSA from the handover request message, and determines, according to the indication information of the MSA, a network connection manner that needs to be switched, Then, the correspondence between the identifier of the UE and the identifier of the AGW is stored, so as to establish a control plane connection between the MME and the AGW, and perform authentication on the UE, and send the subscription data to the HSS after the authentication is passed.
  • a request message, the subscription data acquisition request message including an identifier of the UE.
  • the HSS receives the subscription data acquisition request message, and obtains the subscription data of the UE from the stored relationship between the identifier of the UE and the subscription data according to the identifier of the UE included in the subscription data acquisition request message, and sends the subscription data of the UE to the MME.
  • the MME receives the subscription data of the UE sent by the HSS.
  • the MME can authenticate the UE by using any one of the authentication methods currently available.
  • the subscription data of the UE includes the identity information of the user, for example, the subscription data includes a gold user or a bronze user, and the gold user or the bronze user is an identity information. Specific examples.
  • the MME stores the correspondence between the identifier of the UE and the identifier of the AGW, indicating that the downlink control plane between the MME and the AGW has been established, that is, when the MME receives the message that needs to be sent to the UE.
  • the MME obtains the identifier of the corresponding AGW according to the identifier of the UE
  • the signaling is sent to the AGW according to the identifier of the AGW, and then the signaling is forwarded by the AGW to the UE, that is, the downlink between the MME and the AGW.
  • the control plane is connected, and the uplink control plane connection between the AGW and the MME is connected, so that the UE's control plane connection between the MME and the AGW has been established.
  • Step 204 The MME selects the SGW and acquires the PGW accessed by the UE, and sends a session creation request message to the SGW, where the session creation request message includes the identifier of the UE, the subscription data of the UE, and the identifier of the PGW.
  • the step may be that the MME selects an SGW for the UE, and obtains the identifier of the PGW accessed by the UE from the HSS according to the identifier of the UE, where the PGW accessed by the UE is between the UE and the UE in the Non-3GPP network.
  • the MME sends a session creation request message to the SGW, where the session creation request message includes the subscription data of the UE and the identifier of the PGW.
  • the MME may select multiple SGWs for the UE. For example, the MME may select the SGW according to the location of the UE, and optionally, select one SGW that is closest to the UE. For another example, the MME selects the SGW according to the load condition of each SGW. Optionally, select the SGW with the least load.
  • the UE when the UE is connected to the Non-3GPP network, the UE establishes a network connection with the MGW, and then the MGW establishes a network connection with the PGW to enable the UE to access the PGW.
  • the HSS stores the identifier of the UE and the identifier of the PGW in the correspondence between the identifier of the UE and the identifier of the PGW.
  • the MME sends an acquisition request message to the HSS, where the acquisition request message includes the identifier of the UE, and the HSS acquires the PGW accessed by the UE from the identifier of the UE and the identifier of the PGW according to the identifier of the UE.
  • the identifier of the PGW that the UE accesses is sent to the MME; the MME further receives the identifier of the PGW.
  • the mapping between the identifier of the UE and the identifier of the SGW is also saved, so that the uplink control plane connection between the MME and the SGW is established, that is, after the MME receives the signaling sent by the UE, Obtaining the identifier of the corresponding SGW according to the identifier of the UE that is included in the signaling, and transmitting the signaling to the SGW according to the identifier of the SGW, that is, the uplink control plane connection between the MME and the SGW is connected.
  • the session creation request message may be a Create Session Request in this step.
  • Step 205 The SGW receives the session creation request message, establishes a control plane connection between the SGW and the MME, and forwards the session creation request message to the corresponding PGW according to the identifier of the PGW included in the session creation request message.
  • the SGW receives the session creation request message, and extracts the identifier of the UE and the identifier of the PGW from the session creation request message, and saves the identifier of the UE and the identifier of the MME, so as to establish a UE between the SGW and the MME.
  • the downlink control plane is connected, that is, when the SGW receives the signaling that needs to be sent to the UE, the SGW obtains the identifier of the corresponding MME according to the identifier of the UE that is included in the signaling, and sends the signaling to the MME according to the identifier of the MME. That is, the downlink control plane connection between the MME and the SGW is connected, and the uplink control plane connection between the SGW and the MME is connected, so that the UE is between the SGW and the MME.
  • the control plane connection is connected.
  • the SGW further saves the correspondence between the identifier of the UE and the identifier of the PGW, and implements establishing an uplink control connection and an uplink user plane connection between the SGW and the PGW; that is, when the SGW receives the UE, After the data, the SGW obtains the identifier of the corresponding PGW according to the identifier of the UE included in the data, and sends the data to the PGW according to the identifier of the PGW.
  • the data may be the signaling of the control plane or the data of the user plane, that is, the UE. Both the uplink control connection and the uplink user plane connection between the SGW and the PGW are connected.
  • Step 206 The PGW receives the session creation request message, establishes a network connection between the PGW and the SGW, and acquires policy information for the UE according to the session creation request message.
  • the step may be that the PGW receives the session creation request message, where the session creation request message includes the identifier of the UE and the subscription data of the UE, and stores a correspondence between the identifier of the UE and the identifier of the SGW, to establish that the UE is in the UE.
  • a network connection between the PGW and the SGW sends a policy request message to the PCRF (Policy and Charging Rules Function), where the policy request message includes subscription data of the UE.
  • the PCRF receives the policy request message, obtains current network status information, determines policy information according to the subscription data of the UE and the current network status information, and sends the policy information to the PGW.
  • the PGW receives the policy information, and the policy information may include information such as a bandwidth resource size allocated to the UE.
  • the PGW stores the correspondence between the identifier of the UE and the identifier of the SGW
  • the downlink control plane connection and the downlink user plane connection between the PGW and the SGW are established, that is, when the PGW needs to send data to the UE.
  • the identifier of the UE Obtaining, according to the identifier of the UE, the identifier of the corresponding SGW, the root Sending the data to the SGW according to the identifier of the SGW, where the data may be the signaling of the control plane or the data of the user plane, that is, the downlink control plane connection and the downlink user plane connection between the PGW and the SGW of the UE have been
  • the uplink control connection and the uplink user plane connection between the SGW and the PGW are also connected, so that the UE's network connection between the PGW and the SGW is established at this time.
  • the control plane connection between the UE and the PGW is connected.
  • the control plane connection includes a control plane connection between the UE and the AGW.
  • the UE is connected between the control plane of the AGW and the MME, and the UE is between the MME and the SGW.
  • the control plane connection and the UE are connected at the control plane between the SGW and the PGW.
  • Step 207 The PGW sends a session creation response message to the SGW, where the session creation response message includes the policy information.
  • the English of the session creation response message is Create Session Response.
  • Step 208 The SGW receives the session creation response message, and forwards the session creation response message to the MME.
  • Step 209 The MME receives the session creation response message, and sends an air interface connection establishment request message to the AGW.
  • the air interface connection establishment request message includes an identifier of the UE, an identifier of the SGW, and the policy information.
  • Step 210 The AGW receives the air interface connection establishment request message, establishes an uplink user plane connection between the AGW and the SGW, and establishes a user plane connection with the UE according to the identifier of the SGW included in the air interface connection establishment request message.
  • the AGW receives the air interface connection establishment request message, and extracts an identifier of the UE, an identifier of the SGW, and the policy information from the air interface connection establishment request message, and saves the identifier of the UE, the identifier of the SGW, and the policy information.
  • the UE receives the policy information and saves the policy information, so as to establish a user plane connection with the AGW.
  • the AGW When the AGW receives the data of the user plane sent by the UE, the AGW obtains the identifier and policy information of the corresponding SGW according to the identifier of the UE included in the data, and sends the data to the SGW according to the identifier of the SGW and the policy information, that is, the UE.
  • the uplink user plane connection between the AGW and the SGW is connected.
  • Step 211 The MME sends a bearer modification request message to the SGW, where the bearer modification request message includes an identifier of the UE and an identifier of the AGW.
  • Step 212 The SGW receives the bearer modification request message, and establishes a bearer modification request message according to the bearer modification request message.
  • the UE is connected to the downlink user plane between the SGW and the AGW.
  • the SGW receives the bearer modification request message, and extracts the identifier of the UE and the identifier of the AGW from the bearer modification request message, and saves a correspondence between the identifier of the UE and the identifier of the AGW, so as to establish a UE.
  • a downlink user plane connection between the SGW and the AGW, and an uplink user plane connection between the AGW and the SGW is established, so the UE user plane connection between the AGW and the SGW is established.
  • the user plane connection between the UE and the PGW is established, and the user plane connection between the UE and the PGW includes a user plane connection between the UE and the AGW, and the user plane between the UE and the SGW.
  • the UE is connected to the user plane between the SGW and the PGW.
  • the control plane connection between the UE and the PGW is already connected, so the 3GPP network connection between the UE and the PGW is already connected in the 3GPP network.
  • the UE After the UE is connected to the 3GPP network connection between the PGW, the UE can switch the traffic that it is transmitting in the Non-3GPP network to the 3GPP network.
  • the UE may send the data included in the service to the PGW through the 3GPP network connection between the UE and the PGW; the SGW further sends a bearer modification request message to the PGW, where the bearer modification request message is used to notify the PGW of the The 3GPP network connection is connected.
  • the PGW receives the bearer modification request message, determines that the 3GPP network connection between the UE and the UE is connected according to the bearer modification request message, and sends the data included in the service to the UE according to the 3GPP network connection between the PGW and the UE.
  • Steps 213-216 illustrate the establishment of a tunnel between the MGW and the AGW, and the deletion of the network connection between the MGW and the AGW.
  • Step 213 The MME sends a tunnel processing request message to the AGW, where the tunnel processing request message includes an identifier of the MGW, an identifier of the UE, and an identifier of the PGW.
  • the English of the tunnel processing request message is Tunnel Handle Request.
  • the tunnel processing request message further includes the MSA indication information.
  • Step 214 The AGW receives the tunnel processing request message, and sends the tunnel establishment request message to the MGW.
  • the tunnel establishment request message includes an identifier of the UE, an identifier of the PGW, and an identifier of the AGW.
  • the AGW receives the tunnel processing request message, and extracts the identifier of the MGW, the identifier of the UE, the identifier of the PGW, and the MSA indication information from the tunnel processing request message, according to the MSA indication information.
  • the tunnel in the direction of the AGW to the MGW is established.
  • the AGW can obtain the corresponding identifier according to the identifier of the UE included in the data.
  • the identifier of the MGW sends the data to the MGW according to the identifier of the MGW.
  • the tunnel establishment request message may be a Tunnel Build Request.
  • Step 215 The MGW receives the tunnel establishment request message, establishes a tunnel with the AGW according to the tunnel establishment request message, and sends a session deletion request message to the PGW, where the session deletion request message includes the identifier of the MGW and the identifier of the UE.
  • the MGW receives the tunnel establishment request message, and extracts the identifier of the UE, the identifier of the PGW, the identifier of the AGW, and the MSA indication information from the tunnel establishment request message, according to the MSA indication information. Determining the network connection mode of the UE to be switched, and then maintaining the correspondence between the identifier of the UE and the identifier of the AGW, so as to establish a tunnel in the direction of the MGW to the AGW, and the tunnel in the AGW to the MGW direction is established, so the implementation is established. A tunnel between the MGW and the AGW sends a session deletion request message to the PGW according to the identifier of the PGW.
  • the English deletion request message may be in the form of a Delete Session Request.
  • Step 216 The PGW receives the session deletion request message, and deletes the network connection with the MGW according to the session deletion request message.
  • the UE switches from the separate Non-3GPP network connection to the MSA connection.
  • the PGW sends a session deletion response message to the MGW, and the session deletion response message includes a deletion result of the network connection between the PGW and the MGW.
  • the MGW receives the session deletion response message, and sends a tunnel establishment response message to the AGW, where the tunnel establishment response message includes the deletion result and a tunnel establishment result between the MGW and the AGW, and the AGW receives the tunnel establishment response message, and respectively sends the response message to the UE.
  • the MME sends a tunnel processing response message, where the tunnel processing response message includes the deletion result and the establishment result.
  • the UE may prompt the user to switch the network connection mode to the MSA connection.
  • the UE when the network connection mode of the UE is a separate Non-3GPP network connection, after the UE searches for the 3GPP network signal, the UE is first established to establish a 3GPP network connection with the PGW. Then, if the current UE transmits the service in the Non-3GPP network, after the 3GPP network connection is established, the service transmitted in the Non-3GPP network is switched to the 3GPP network, and the service is transmitted through the 3GPP network connection, and then The tunnel between the AGW and the MGW is established, and the network connection between the MGW and the PGW is deleted, so that the service transmission interruption is avoided in the process of switching the network connection manner. After the UE is switched to the MSA connection, the UE can simultaneously transmit the service through the Non-3GPP network and the 3GPP network, thereby improving the rate of service transmission.
  • the embodiment of the present application provides a method for switching from a separate network connection to a multi-stream aggregation network connection, where the method is used to switch a UE from a separate Non-3GPP network connection to an MSA network connection.
  • the method includes: Establishing a network connection between the UE and the PGW in the 3GPP network; the UE sends a tunnel establishment request to the MGW, requesting to establish a tunnel between the MGW and the AGW; and deleting the network connection between the MGW and the AGW.
  • FIG. 8 specifically includes:
  • Step 301 After the UE searches for the 3GPP network signal, the UE sends a handover request message to the AGW, where the handover request message includes the identifier of the UE.
  • the UE after the UE accesses the Non-3GPP network, the UE also searches for a 3GPP network signal that can cover itself.
  • the 3GPP network signal of one or more AGW broadcasts is searched, the UE decides to switch the network connection mode, and selects one.
  • the AGW obtains the MGW connected thereto, and sends a handover request message to the selected AGW, where the handover request message includes the identifier of the UE.
  • the handover request message sent by the UE further includes MSA indication information, where the MSA indication information is used to request to switch the separate Non-3GPP network connection to the MSA connection.
  • the first step of switching the network connection mode of the UE is to establish a network connection between the UE and the PGW in the 3GPP network, where the network connection includes a control plane connection and a user plane connection between the UE and the PGW.
  • Steps 302-312 illustrate the establishment of a network connection between the UE and the PGW in the 3GPP network.
  • the identifier of the AGW is saved, and the uplink control plane connection between the UE and the AGW is established. That is, when the UE needs to send the signaling of the control plane to the AGW, the UE may send the signaling to the AGW according to the identifier of the stored AGW, that is, the uplink control plane connection between the UE and the AGW is connected.
  • Steps 302-312 The same as steps 202-212, respectively, please refer to the relevant content in the embodiment shown in FIG. 6, which will not be described in detail herein.
  • Steps 213-216 illustrate the establishment of a tunnel between the MGW and the AGW, and the deletion of the network connection between the MGW and the AGW.
  • Step 313 The UE sends a tunnel processing request message to the MGW, where the tunnel processing request message includes an identifier of the AGW, an identifier of the UE, and an identifier of the PGW.
  • the tunnel processing request message further includes the MSA indication information.
  • Step 314 The MGW receives the tunnel processing request message, and sends the tunnel establishment request message to the AGW according to the identifier of the AGW included in the tunnel processing request message, where the tunnel establishment request message includes the identifier of the UE and the identifier of the MGW.
  • the MGW receives the tunnel processing request message, and extracts the identifier of the AGW, the identifier of the UE, the identifier of the PGW, and the MSA indication information from the tunnel processing request message, according to the MSA indication information. Determining that the UE needs to switch the network connection mode, and then storing the correspondence between the identifier of the UE and the identifier of the AGW, and sending a tunnel establishment request message to the AGW, where the tunnel establishment request message includes the identifier of the UE and the identifier of the MGW; The tunnel establishment request message further includes the MSA indication information.
  • the tunnel in the direction of the MGW to the AGW is established.
  • the MGW can obtain the corresponding identifier according to the identifier of the UE included in the data.
  • the identifier of the AGW sends the data to the AGW according to the identifier of the AGW.
  • Step 315 The AGW receives the tunnel establishment request message, and establishes a tunnel with the MGW according to the tunnel establishment request message.
  • the AGW receives the tunnel establishment request message, and extracts the identifier of the UE, the identifier of the MGW, and the MSA indication information from the tunnel establishment request message, and determines, according to the MSA indication information, that the UE needs to switch the network.
  • the connection mode is followed by the mapping between the identifier of the UE and the identifier of the MGW, so as to establish a tunnel in the direction of the AGW to the MGW, and the tunnel in the direction of the MGW to the AGW is established, so that the establishment between the MGW and the AGW is implemented.
  • the tunnel sends a tunnel establishment response message to the MGW, where the tunnel establishment response message includes the establishment result of the tunnel establishment.
  • Step 316 The MGW sends a session deletion request message to the PGW, where the session deletion request message includes an identifier of the UE.
  • the session deletion request message further includes the MSA indication information.
  • Step 317 The PGW receives the session deletion request message, and deletes the network connection with the MGW according to the session deletion request message.
  • the UE switches from the separate Non-3GPP network connection to the MSA connection.
  • the PGW sends an MGW Send Session Delete Response message to the MGW, and the session deletion response message includes the deletion result.
  • the MGW receives the session deletion response message, and sends a tunnel processing response message to the UE, where the tunnel processing response message includes the deletion result and the establishment result, and the UE receives the tunnel processing response message, and prompts the user to switch the network connection mode to the MSA connection.
  • the order of the tunnel establishment process of the MGW and the AGW and the tunnel deletion process of the MGW and the PGW may be in no particular order, and the former may be performed first, or the former may be performed first.
  • the UE when the network connection mode of the UE is a separate Non-3GPP network connection, after the UE searches for the 3GPP network signal, the UE first establishes a 3GPP network connection with the PGW, if the current UE is in the Non- In the 3GPP network, after the 3GPP network connection is established, the service transmitted in the Non-3GPP network is switched to the 3GPP network, and the service is transmitted through the 3GPP network connection, and then the UE triggers the MGW to establish the AGW and The tunnel between the MGWs and the network connection between the MGW and the PGW are deleted, so that the service transmission interruption is avoided in the process of switching the network connection manner. After the UE is switched to the MSA connection, the UE can simultaneously transmit the service through the Non-3GPP network and the 3GPP network, thereby improving the rate of service transmission.
  • An embodiment of the present application provides a method for switching from a separate network connection to a multi-stream aggregation network connection, where the method is used to switch a UE from a separate Non-3GPP network connection to an MSA network connection.
  • the method includes: Establishing a network connection between the UE and the PGW in the 3GPP network; the UE sends a tunnel establishment request to the AGW, requesting to establish a tunnel between the MGW and the AGW; and deleting the network connection between the MGW and the AGW.
  • FIG. 10 specifically includes:
  • Step 401 After the UE searches for the 3GPP network signal, the UE sends a handover request message to the AGW, where the handover request message includes the identifier of the UE.
  • the 3GPP network signal that can cover itself is also searched in real time; when the 3GPP network signal of one or more AGW broadcasts is searched, the UE decides to switch.
  • the network connection mode selects an AGW, acquires the MGW connected thereto, and sends a handover request message to the selected AGW, where the handover request message includes the identifier of the UE.
  • the handover request message sent by the UE further includes MSA indication information, where the MSA indication information is used to request to switch the separate Non-3GPP network connection to the MSA connection.
  • the first step of switching the network connection mode of the UE is to establish a network connection between the UE and the PGW in the 3GPP network, where the network connection includes a control plane connection and a user plane connection between the UE and the PGW.
  • Steps 402-412 illustrate the establishment of a network connection between the UE and the PGW in the 3GPP network.
  • the identifier of the AGW is saved, and the uplink control plane connection between the UE and the AGW is established. That is, when the UE needs to send the signaling of the control plane to the AGW, the UE may send the signaling to the AGW according to the identifier of the stored AGW, that is, the uplink control plane connection between the UE and the AGW is connected.
  • Steps 402-412 The same as steps 202-212, respectively, please refer to the relevant content in the embodiment shown in FIG. 6, and will not be described in detail herein.
  • Steps 413-416 illustrate the establishment of a tunnel between the MGW and the AGW, and the deletion of the network connection between the MGW and the AGW.
  • Step 413 The UE sends a tunnel processing request message to the AGW, where the tunnel processing request message includes an identifier of the MGW, an identifier of the UE, and an identifier of the PGW.
  • the tunnel processing request message further includes the MSA indication information.
  • Step 414 The AGW receives the tunnel processing request message, and sends the tunnel establishment request message to the MGW according to the identifier of the MGW included in the tunnel processing request message, where the tunnel establishment request message includes the identifier of the UE, the identifier of the PGW, and the AGW. logo.
  • the AGW receives the tunnel processing request message, and extracts the identifier of the MGW, the identifier of the UE, the identifier of the PGW, and the MSA indication information from the tunnel processing request message, and determines, according to the MSA indication information, that the UE needs to switch the network. a connection mode, and then storing a correspondence between the identifier of the UE and the identifier of the MGW, and sending a tunnel establishment request message to the MGW, where the tunnel establishment request message includes an identifier of the UE, an identifier of the PGW, and an identifier of the AGW;
  • the tunnel establishment request message further includes the MSA indication information.
  • the AGW After the AGW saves the correspondence between the identifier of the UE and the identifier of the MGW, the AGW to the MGW The tunnel in the direction is established.
  • the AGW can obtain the identifier of the corresponding MGW according to the identifier of the UE included in the data, and send the data to the MGW according to the identifier of the MGW.
  • Step 415 The MGW receives the tunnel establishment request message, establishes a tunnel with the AGW according to the tunnel establishment request message, and sends a session deletion request message to the PGW, where the session deletion request message includes the identifier of the MGW and the identifier of the UE.
  • the MGW receives the tunnel establishment request message, and extracts the identifier of the UE, the identifier of the PGW, the identifier of the AGW, and the MSA indication information from the tunnel establishment request message, and determines, according to the MSA indication information, that the UE needs to switch the network.
  • the connection mode is followed by the mapping between the identifier of the UE and the identifier of the AGW, so as to establish a tunnel in the direction of the MGW to the AGW, and the tunnel in the direction of the AGW to the MGW has been established, so that the establishment between the MGW and the AGW is implemented.
  • the tunnel sends a session deletion request message to the PGW according to the identifier of the PGW. Further, the session deletion request message further includes the MSA indication information.
  • Step 416 The PGW receives the session deletion request message, and deletes the network connection with the MGW according to the session deletion request message.
  • the PGW determines, according to the MSA indication information, a network connection mode that needs to be switched, and then deletes the network connection with the MGW according to the session deletion request message including the identifier of the MGW and the identifier of the UE.
  • the PGW deletes the network connection with the MGW
  • the UE switches from a separate Non-3GPP network connection to an MSA connection.
  • the PGW sends an MGW Send Session Delete Response message to the MGW, and the session deletion response message includes the deletion result.
  • the MGW receives the session deletion response message, and sends a tunnel establishment response message to the AGW, where the tunnel establishment response message includes the deletion result and the establishment result of the tunnel between the MGW and the AGW, and the AGW receives the tunnel establishment response message and sends the message to the UE.
  • the tunnel processes a response message, and the tunnel processing response message includes the deletion result and the establishment result.
  • the UE may prompt the user to switch the network connection mode to the MSA connection.
  • the order of the tunnel establishment process of the MGW and the AGW and the tunnel deletion process of the MGW and the PGW may be in no particular order, and the former may be performed first, or the former may be performed first.
  • the UE when the network connection mode of the UE is a separate Non-3GPP network connection, after the UE searches for the 3GPP network signal, the UE first establishes a 3GPP network connection with the PGW, if the current UE is in the Non- The transmission service in the 3GPP network is established in the 3GPP network connection. After that, the service transmitted in the Non-3GPP network is switched to the 3GPP network, and the service is transmitted through the 3GPP network connection, and then the UE triggers the AGW to establish a tunnel between the AGW and the MGW, and deletes the relationship between the MGW and the PGW.
  • the network connection so as to avoid the interruption of service transmission in the process of switching the network connection mode.
  • the UE After the UE is switched to the MSA connection, the UE can simultaneously transmit the service through the Non-3GPP network and the 3GPP network, thereby improving the rate of service transmission.
  • the embodiment of the present application provides a method for switching from a separate network connection to a multi-stream aggregation network connection, where the method is used to switch a UE from a separate Non-3GPP network connection to an MSA network connection.
  • the method includes: A network connection between the UE and the PGW is established in the 3GPP network, and the PGW sends a tunnel deletion request to the MGW, requesting to delete the network connection between the PGW and the MGW, and establishing a tunnel between the MGW and the AGW.
  • FIG. 12 specifically includes:
  • Step 501 After the UE searches for the 3GPP network signal, the UE sends a handover request message to the AGW, where the handover request message includes the identifier of the UE.
  • the UE after the UE accesses the Non-3GPP network, the UE also searches for a 3GPP network signal that can cover itself.
  • the 3GPP network signal of one or more AGW broadcasts is searched, the UE decides to switch the network connection mode, and selects one.
  • the AGW obtains the MGW connected thereto, and sends a handover request message to the selected AGW, where the handover request message includes the identifier of the UE.
  • the handover request message sent by the UE further includes MSA indication information, where the MSA indication information is used to request to switch the separate Non-3GPP network connection to the MSA connection.
  • the first step of switching the network connection mode of the UE is to establish a network connection between the UE and the PGW in the 3GPP network, where the network connection includes a control plane connection and a user plane connection between the UE and the PGW.
  • Steps 502-512 illustrate the establishment of a network connection between the UE and the PGW in the 3GPP network.
  • the identifier of the AGW is saved, and the uplink control plane connection between the UE and the AGW is established. That is, when the UE needs to send the signaling of the control plane to the AGW, the UE may send the signaling to the AGW according to the identifier of the stored AGW, that is, the uplink control plane connection between the UE and the AGW is connected.
  • Step 502 The AGW receives the handover request message, establishes a control plane connection with the UE according to the handover request message, and forwards the handover request message to the MME, where the handover request message includes an identifier of the AGW and an identifier of the UE.
  • the AGW determines, according to the MSA indication information included in the handover request message, a network connection mode that needs to be switched, and then allocates a port to the UE, and saves the identifier of the UE and the port included in the handover request message.
  • Correspondence relationship such that the downlink control plane connection between the AGW and the UE has been established. That is, when the AGW needs to send the signaling of the control plane to the UE, the AGW can obtain the corresponding port according to the identifier of the stored UE, and send the signaling to the UE through the port, that is, the downlink control plane connection between the AGW and the UE. Connected, and the uplink control plane connection between the UE and the AGW is connected, so that the control plane connection between the AGW and the UE is established at this time.
  • the AGW after receiving the handover request message, the AGW also saves the correspondence between the identifier of the UE and the identifier of the MME, so that the uplink control plane connection between the AGW and the MME is established, that is, the AGW sends the UE to receive
  • the signaling of the MME is obtained according to the identifier of the UE that is included in the signaling, and the signaling is sent to the MME according to the identifier of the MME, that is, the uplink control plane connection between the AGW and the MME is connected.
  • Step 503 The MME receives the handover request message, establishes a control plane connection with the AGW according to the handover request message, performs authentication on the UE, and acquires subscription data of the UE after the authentication is passed.
  • the subscription data of the UE is generated when the user corresponding to the UE subscribes to the service with the operator.
  • the operator stores the identifier of the UE and the subscription data of the UE in the correspondence between the identifier of the UE in the HSS and the subscription data.
  • the step may be: the MME receives the handover request message, and extracts an identifier of the UE, an identifier of the MGW, and an indication of the MSA from the handover request message, and determines, according to the indication information of the MSA, a network connection manner that needs to be switched, Then, the corresponding relationship between the identifier of the UE and the identifier of the AGW is stored, so as to establish a control plane connection with the AGW, perform authentication on the UE, and send a subscription data acquisition request message to the HSS after the authentication is passed.
  • the subscription data acquisition request message includes an identifier of the UE.
  • the HSS receives the subscription data acquisition request message, and obtains the subscription data of the UE from the stored relationship between the identifier of the UE and the subscription data according to the identifier of the UE included in the subscription data acquisition request message, and sends the subscription data of the UE to the MME.
  • the MME receives the subscription data of the UE sent by the HSS.
  • the MME can authenticate the UE by using any one of the authentication methods currently available.
  • the subscription data of the UE includes the identity information of the user, for example, the subscription data includes a gold user or a bronze user, and the gold user or the bronze user is an identity information.
  • the MME stores the identifier between the UE and the identifier of the AGW.
  • Corresponding relationship indicating that the downlink control plane between the MME and the AGW is established, that is, after the MME receives the signaling that needs to be sent to the UE, the MME obtains the identifier of the corresponding AGW according to the identifier of the UE, and according to the identifier of the AGW, The AGW sends the signaling, and then the AGW forwards the signaling to the UE, that is, the downlink control plane between the MME and the AGW is connected, and the uplink control plane connection between the AGW and the MME is connected, so that the MME and the MME are connected at this time.
  • the control plane connection between the AGWs has been established.
  • Step 504 The MME selects the SGW and acquires the PGW accessed by the UE, and sends a session creation request message to the SGW.
  • the session creation request message includes the identifier of the UE, the subscription data of the UE, the identifier of the AGW, and the identifier of the PGW.
  • the step may be that the MME selects an SGW for the UE, and obtains the identifier of the PGW accessed by the UE from the HSS according to the identifier of the UE, where the PGW accessed by the UE is between the UE and the UE in the Non-3GPP network.
  • the PGW that has a network connection sends a session creation request message to the SGW, where the session creation request message includes an identifier of the UE, subscription data of the UE, an identifier of the AGW, and an identifier of the PGW.
  • the MME may select multiple SGWs for the UE. For example, the MME may select the SGW according to the location of the UE, and optionally, select one SGW that is closest to the UE. For another example, the MME selects the SGW according to the load condition of each SGW. Optionally, select the SGW with the least load.
  • the UE when the UE is connected to the Non-3GPP network, the UE establishes a network connection with the MGW, and then the MGW establishes a network connection with the PGW to enable the UE to access the PGW.
  • the HSS stores the identifier of the UE and the identifier of the PGW in the correspondence between the identifier of the UE and the identifier of the PGW.
  • the MME sends an acquisition request message to the HSS, where the acquisition request message includes the identifier of the UE, and the HSS acquires the PGW accessed by the UE from the identifier of the UE and the identifier of the PGW according to the identifier of the UE.
  • the identifier of the PGW that the UE accesses is sent to the MME; the MME further receives the identifier of the PGW.
  • the mapping between the identifier of the UE and the identifier of the SGW is also saved, so that the uplink control plane connection between the MME and the SGW is established, that is, after the MME receives the signaling sent by the UE, Obtaining the identifier of the corresponding SGW according to the identifier of the UE that is included in the signaling, and sending the signaling to the SGW according to the identifier of the SGW, that is, the uplink control plane connection between the MME and the SGW is connected.
  • the session creation request message may be a Create Session Request in this step.
  • Step 505 The SGW receives the session creation request message, establishes a control plane connection with the MME, and forwards the session creation request message to the corresponding PGW according to the identifier of the PGW included in the session creation request message.
  • the SGW receives the session creation request message, and extracts the identifier of the UE and the identifier of the PGW from the session creation request message, and saves the identifier of the UE and the identifier of the MME, so as to establish a downlink between the SGW and the MME.
  • Controlling the connection that is, when the SGW receives the signaling that needs to be sent to the UE, the SGW obtains the identifier of the corresponding MME according to the identifier of the UE that is included in the signaling, and sends the signaling to the MME according to the identifier of the MME, that is, The downlink control plane connection between the MME and the SGW is connected, and the uplink control plane connection between the SGW and the MME is connected, so that the control plane connection between the SGW and the MME is connected at this time.
  • the SGW further saves the correspondence between the identifier of the UE and the identifier of the PGW, and implements an uplink control connection and an uplink user plane connection between the SGW and the PGW; that is, after the SGW receives the data sent by the UE, The SGW obtains the identifier of the corresponding PGW according to the identifier of the UE included in the data, and sends the data to the PGW according to the identifier of the PGW.
  • the data may be the signaling of the control plane or the data of the user plane, that is, the SGW and the SGW.
  • the uplink control connection and the uplink user plane connection between the PGWs are all connected.
  • Step 506 The PGW receives the session creation request message, establishes a network connection with the SGW, and acquires policy information for the UE according to the create session request message.
  • the step may be that the PGW receives the session creation request message, where the session creation request message includes an identifier of the UE, a subscription data of the UE, an identifier of the AGW, and an identifier of the PGW, and stores the identifier of the UE and the SGW.
  • the corresponding relationship of the identifiers to establish a network connection with the SGW, and send a policy request message to the PCRF, the policy request message including the subscription data of the UE.
  • the PCRF receives the policy request message, obtains current network status information, determines policy information according to the subscription data of the UE and the current network status information, and sends the policy information to the PGW.
  • the PGW receives the policy information, and the policy information may include information such as a bandwidth resource size allocated to the UE.
  • the downlink control plane connection and the downlink user plane connection between the PGW and the SGW are established, that is, when the PGW needs to send data to the UE, according to the UE Identifying the identifier of the corresponding SGW, and sending the data to the SGW according to the identifier of the SGW, where the data may be the signaling of the control plane or the data of the user plane, that is, the downlink control plane connection between the PGW and the SGW.
  • the downlink user plane connection is connected, and the uplink control connection and the uplink user plane connection between the SGW and the PGW are also connected, so here A network connection between the PGW and the SGW is established.
  • the control plane connection between the UE and the PGW is connected.
  • the control plane connection includes a control plane connection between the UE and the AGW, a control plane connection between the AGW and the MME, and a control plane connection between the MME and the SGW. Connected to the control plane between the SGW and the PGW.
  • Steps 508-512 The same as steps 208-212, respectively, please refer to the relevant content in the embodiment shown in FIG. 6, and will not be described in detail herein.
  • the PGW After the PGW senses that the network connection between the UE and the PGW is established, the PGW can trigger the MGW to establish a tunnel between the MGW and the AGW, and delete the network connection between the MGW and the AGW.
  • the specific implementation process is as follows:
  • Step 513 The PGW sends a session deletion request message to the MGW, where the session deletion request message includes an identifier of the AGW, an identifier of the UE, and an identifier of the PGW.
  • the session deletion request message further includes the MSA indication information.
  • Step 514 The MGW receives the session deletion request message, and sends the tunnel establishment request message to the AGW according to the identifier of the AGW included in the session deletion request message, where the tunnel establishment request message includes the identifier of the UE and the identifier of the MGW.
  • the MGW receives the session deletion request message, and extracts the identifier of the AGW, the identifier of the UE, the identifier of the PGW, and the MSA indication information from the session deletion request message, according to the MSA indication information. Determining a network connection mode of the UE to be switched, and then storing a correspondence between the identifier of the UE and the identifier of the AGW, and sending a tunnel establishment request message to the AGW, where the tunnel establishment request message includes an identifier of the UE and an identifier of the MGW; The tunnel establishment request message further includes the MSA indication information.
  • the tunnel in the direction of the MGW to the AGW is established.
  • the MGW can obtain the corresponding identifier according to the identifier of the UE included in the data.
  • the identifier of the AGW sends the data to the AGW according to the identifier of the AGW.
  • Step 515 The AGW receives the tunnel establishment request message, and establishes a tunnel with the MGW according to the tunnel establishment request message.
  • the AGW receives the tunnel establishment request message, and extracts the identifier of the UE, the identifier of the MGW, and the MSA indication information from the tunnel establishment request message, and determines that the UE needs to be switched according to the MSA indication information.
  • the network connection mode, and then the correspondence between the identifier of the UE and the identifier of the MGW is saved, so as to establish a tunnel in the direction of the AGW to the MGW, and the MGW
  • the tunnel to the AGW is established. Therefore, the tunnel between the MGW and the AGW is established, and a tunnel establishment response message is sent to the MGW.
  • the tunnel establishment response message includes the establishment result.
  • Step 516 The MGW sends a session deletion response message to the PGW, where the session deletion response message includes a deletion result of the network connection between the MGW and the PGW and a tunnel establishment result of the AGW and the MGW.
  • Step 517 The MGW sends a tunnel processing response message to the UE, where the tunnel processing response message includes a result of the deletion and a tunnel establishment result between the MGW and the AGW, and a tunnel establishment result of the AGW and the MGW.
  • the UE receives the tunnel processing response message and prompts the user to switch the network connection mode to the MSA connection.
  • the UE when the network connection mode of the UE is a separate Non-3GPP network connection, after the UE searches for the 3GPP network signal, the UE first establishes a 3GPP network connection with the PGW, if the current UE is in the Non- In the 3GPP network, after the 3GPP network connection is established, the service transmitted in the Non-3GPP network is switched to the 3GPP network, and the service is transmitted through the 3GPP network connection, and then the GGW is triggered by the PGW to establish the AGW and The tunnel between the MGWs and the network connection between the MGW and the PGW are deleted, so that the service transmission interruption is avoided in the process of switching the network connection manner.
  • an embodiment of the present application provides a method for switching from a separate network connection to a multi-stream aggregation network connection, where the method is used to switch a UE from a separate Non-3GPP network connection to an MSA network connection, and the method includes:
  • Step 601 The UE establishes a 3GPP network connection with the PGW.
  • Step 602 The UE sends a tunnel processing request message to the network side, where the tunnel processing request message includes an identifier of the UE, an identifier of the PGW, and an identifier of the network element of the access side, where the access side network element is an AGW or an MGW, and the tunnel processing request is performed.
  • the message is used to trigger the network side to establish a tunnel between the AGW and the MGW and delete the network connection between the MGW and the PGW.
  • the UE first establishes a 3GPP network connection between the AGW and the PGW in the 3GPP network, and after the 3GPP network connection is established, requests the network side to establish a tunnel between the AGW and the MGW and delete the between the MGW and the PGW.
  • the network connection is implemented to switch the network connection mode of the UE from a separate Non-3GPP network connection to an MSA connection.
  • the UE simultaneously accesses the Non-3GPP network and the 3GPP network, so that the UE can transmit the service through the Non-3GPP network and the 3GPP network. , Improve the speed of business transmission.
  • FIG. 14 is a schematic structural diagram of a network connection switching apparatus 700 according to an embodiment of the present application.
  • the switching device 700 may be an MGW, and the UE is switched from a separate network connection to an MSA network connection.
  • the switching device 700 can produce a relatively large difference due to configuration or performance, and can include one or more processors 701, a transceiver 702, and a memory 732, one or more storage media 730 that store an application 742 or data 744. (eg one or one storage device in Shanghai).
  • the memory 732 and the storage medium 730 may be short-term storage or persistent storage.
  • the program stored on storage medium 730 may include one or more modules (not shown), each of which may include a series of instruction operations in said switching device 700.
  • the processor 722 can be configured to communicate with a storage medium 730 on which a series of instruction operations in the storage medium 730 are performed.
  • the operation instruction stored in the storage medium 730 may be an operation instruction corresponding to the step performed by the MGW in FIG. 4 to FIG. 13 .
  • the switching device 700 can also include one or more power sources 726, one or more wired or wireless network interfaces 750, one or more input and output interfaces 758, and/or one or more operating systems 741, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 741 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the transceiver 702 is configured to receive a request message sent by one of the UE, the PGW, and the aggregation gateway AGW after the UE establishes a 3GPP network connection with the packet data gateway PGW, where the request message includes an AGW. Identification of the UE, an identifier of the UE, and an identifier of the PGW;
  • the processor 701 is configured to establish, according to the identifier of the AGW and the identifier of the UE, a tunnel between the switching device 700 and the AGW, according to the identifier of the PGW and the UE Identifying a network connection of the UE between the switching device 700 and the PGW.
  • the transceiver 702 is configured to receive a tunnel processing request message that is sent by the UE after the UE establishes a 3GPP network connection with the PGW, where the tunnel processing request message includes an identifier of the AGW, and the UE Identification and identification of the PGW; or,
  • the transceiver 702 is configured to receive a tunnel establishment request message that is sent by the AGW after the UE establishes a 3GPP network connection with the PGW, where the tunnel establishment request message includes the AGW Identification, the identity of the UE, and the identity of the PGW; or,
  • the transceiver 702 is configured to receive a session deletion request message that is sent by the PGW after the UE establishes a 3GPP network connection with the PGW, where the session deletion request message includes an identifier of the AGW, and an identifier of the UE. And the identification of the PGW.
  • the transceiver 702 is further configured to send a tunnel establishment request message to the AGW, where the tunnel establishment request message includes an identifier of the UE and an identifier of the handover apparatus, where the tunnel establishment request message is used by Establishing, by the AGW, a tunnel between the AGW and the switching device.
  • the transceiver 702 is configured to send a session deletion request message to the PGW according to the identifier of the PGW, where the session deletion request message includes an identifier of the UE, where the session deletion request message is used by the The PGW deletes the network connection between the switching device and the PGW according to the identifier of the UE.
  • the transceiver 702 is further configured to send, to the UE, a result of establishing a tunnel between the switching device 700 and the AGW, and the UE is in the switching device 700 The result of deleting the network connection between the PGWs.
  • the transceiver 702 is configured to send a tunnel processing response message to the UE, where the tunnel processing response message includes a result of establishing a tunnel between the switching device 700 and the AGW, and the UE is in the UE a deletion result of the network connection between the switching device 700 and the PGW; or
  • the transceiver 702 is configured to send a tunnel establishment response message to the AGW, where the tunnel establishment response message includes a result of establishing a tunnel between the handover apparatus 700 and the AGW, and the UE is in the UE
  • the tunnel establishment response message is used to trigger the AGW to send a tunnel processing response message to the UE, where the tunnel processing response message includes the establishment result of the deletion of the network connection between the switching device 700 and the PGW. Results and the results of the deletion.
  • the embodiment of the present application provides a schematic structural diagram of a terminal device 800, which is used to switch a terminal device from a separate network connection to a multi-stream aggregation network connection.
  • the terminal device 800 may be a user equipment (UE) or a tablet computer.
  • Terminal equipment such as PDA (Personal Digital Assistant).
  • FIG. 15 is a block diagram showing a part of the structure of a terminal device 800 provided by an embodiment of the present invention.
  • the terminal device 800 includes a transceiver 810, a memory 820, an input unit 830, a display unit 840, a sensor 850, an audio circuit 860, a WiFi (wireless fidelity) module 870, a processor 880, and a power supply 890. component.
  • the terminal device structure shown in FIG. 15 is only an example of implementation, and does not constitute a limitation on the terminal device, and may include more or less components than those illustrated, or may combine some components. , or different parts layout.
  • the operation instruction stored in the memory 820 may be an operation instruction corresponding to the step performed by the UE in FIG. 4 to FIG. 13 .
  • the operation instruction stored in the memory 820 may be an operation instruction corresponding to the step performed by the UE in FIG. 4 to FIG. 13 .
  • the transceiver 810 can be an RF circuit, which can be used for transmitting and receiving information or during a call, receiving and transmitting signals, and in particular, receiving downlink information of the base station and processing it to the processor 880; in addition, transmitting the designed uplink data to the base station.
  • the transceiver 810 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, an LNA (Low Noise Amplifier), a duplexer, and the like.
  • the transceiver 810 can also communicate with the network and other devices via wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication), GPRS (General Packet Radio Service), CDMA (Code Division Multiple Access). , Code Division Multiple Access), WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), e-mail, SMS (Short Messaging Service), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • e-mail Short Messaging Service
  • the memory 820 can be used to store software programs and modules, and the processor 880 executes various functional applications and data processing of the terminal device 800 by running software programs and modules stored in the memory 820.
  • the memory 820 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to The data created by the use of the terminal device 800 (such as audio data, phone book, etc.) and the like.
  • memory 820 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 830 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the terminal device 800.
  • the input unit 830 may include a touch panel 831 for collecting user touch operations and other input devices 832.
  • Other input devices 832 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 840 can be used to display information input by the user or information provided to the user and various menus of the terminal device 800.
  • the display unit 840 can include a display panel 841,
  • the terminal device 800 may also include at least one type of sensor 850, such as a light sensor for measuring ambient light intensity, a motion sensor for measuring operational acceleration, and other sensors.
  • sensor 850 such as a light sensor for measuring ambient light intensity, a motion sensor for measuring operational acceleration, and other sensors.
  • An audio circuit 860, a speaker 861, and a microphone 862 can provide an audio interface between the user and the terminal device 800.
  • the audio circuit 860 can transmit the converted electrical data of the received audio data to the speaker 861 and convert it into a sound signal output by the speaker 861.
  • the terminal device 800 further includes a power source 890 (such as a battery) for supplying power to the various components.
  • a power source 890 such as a battery
  • the power source can be logically connected to the processor 880 through the power management system to manage functions such as charging, discharging, and power management through the power management system. .
  • the terminal device 800 may further include a camera, a Bluetooth module, and the like, and details are not described herein.
  • the processor 880 is configured to establish a 3GPP network connection with the packet data gateway PGW.
  • the transceiver 810 is further configured to send a tunnel processing request message to the network side, where the tunnel processing request message includes an identifier of the terminal device, an identifier of the PGW, and an identifier of an access side network element, where The access side network element is an AGW or an MGW, and the tunnel processing request message is used to trigger the access side network element to establish a tunnel between the AGW and the MGW, and delete the UE in the MGW and the Network connection between PGWs.
  • the tunnel processing request message includes an identifier of the terminal device, an identifier of the PGW, and an identifier of an access side network element, where The access side network element is an AGW or an MGW, and the tunnel processing request message is used to trigger the access side network element to establish a tunnel between the AGW and the MGW, and delete the UE in the MGW and the Network connection between PGWs.
  • the transceiver 810 is configured to send a tunnel processing request message to the AGW, where the tunnel processing request message is used by the AGW to send a tunnel establishment request message to the MGW, where the tunnel establishment request message includes An identifier of the terminal device 800, an identifier of the AGW, and an identifier of the PGW, where the tunnel establishment request message is used by the MGW to establish a tunnel between the MGW and the AGW of the terminal device 800, and Deleting the network connection between the MGW and the PGW by the terminal device 800; or
  • the transceiver 810 is configured to send a tunnel processing request message to the MGW, where the tunnel processing request message includes an identifier of the terminal device 800, an identifier of the AGW, and the PGW. And the tunneling request message is used by the MGW to send a tunnel establishment request message to the AGW and delete a network connection between the MGW and the PGW, where the tunnel establishment request message includes The tunnel establishment request message is used by the AGW to establish a tunnel between the AGW and the MGW of the terminal device 800.
  • the processor 880 is further configured to: after the terminal device 800 establishes a 3GPP network connection with the PGW, switch the service transmitted in the Non-3GPP to the established in the 3GPP network. On the network connection.
  • FIG. 16 is a schematic structural diagram of a network connection switching apparatus 900 according to an embodiment of the present application, for switching a UE from a separate network connection to a multi-stream aggregation network connection.
  • the switching device 900 can be an aggregation gateway (AGW).
  • AGW aggregation gateway
  • the switching device 900 can produce relatively large differences due to differences in configuration or performance, and can include one or more processors 901, receivers 902, transmitters 903, and memory 932, one or more storage applications 942 or data 944.
  • Storage medium 930 (for example, one or one storage device in Shanghai).
  • the memory 932 and the storage medium 930 may be short-term storage or persistent storage.
  • the program stored on storage medium 930 may include one or more modules (not shown), each of which may include a series of instruction operations in said switching device 900.
  • the processor 901 can be configured to communicate with a storage medium 930 on which a series of instruction operations in the storage medium 930 are performed.
  • the operation instruction stored in the storage medium 930 may be an operation instruction corresponding to the step performed by the aggregation gateway (AGW) in FIG. 4 to FIG. 13 .
  • AGW aggregation gateway
  • the switching device 900 can also include one or more power supplies 926, one or more wired or wireless network interfaces 950, one or more input and output interfaces 958, and/or one or more operating systems 941, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 941 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the receiver 902 is configured to receive, after the user equipment UE establishes a 3GPP network connection with the packet data gateway PGW, a tunnel processing request message sent by one of the UE and the mobility management network element MME, where the tunnel processing request is sent.
  • the message includes an identifier of the multi-stream aggregation gateway MGW, an identifier of the UE, and an identifier of the PGW;
  • the transmitter 903 is configured to send a tunnel to the MGW according to the identifier of the MGW.
  • a request message the tunnel establishment request message includes an identifier of the PGW and an identifier of the UE, where the tunnel establishment request message is used to trigger the MGW to establish the UE between the MGW and the handover apparatus 900
  • the tunnel connection and the network connection between the MGW and the PGW are deleted by the UE.
  • the receiver 902 is further configured to receive a tunnel establishment response message that is sent by the MGW, where the tunnel establishment response message includes that the UE is between the MGW and the switching device 900 in the UE.
  • the transmitter 903 is further configured to send a tunnel processing response message to the UE, where the tunnel processing response message includes the establishment result and the deletion result.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种网络连接的切换方法及装置,涉及通信领域,用于将终端从单独的网络连接切换到多流聚合网络连接,其特征在于,所述方法包括:多流聚合网关MGW在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,所述请求消息包括AGW的标识、所述终端的标识和所述PGW的标识;所述MGW根据所述AGW的标识和所述终端的标识建立所述终端在所述MGW与所述AGW之间的隧道;所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接。本发明能提高业务传输速度。

Description

网络连接的切换方法及装置 技术领域
本发明涉及通信领域,特别涉及一种网络连接的切换方法及装置。
背景技术
目前的通信网络分为第三代伙伴计划(The 3rd Generation Partnership Project,3GPP)网络和Non-3GPP网络。用户设备(User Equipment,UE)在接入网络时只选择接入Non-3GPP网络或只选择接入3GPP网络。在UE选择接入Non-3GPP网络时,UE与核心网之间的网络连接只有一条在Non-3GPP网络中的网络连接,这种网络连接方式被称为单独Non-3GPP网络连接。
随着通信网络的发展,目前在很多地方Non-3GPP网络和3GPP网络共同覆盖,UE可以在同一位置搜索到Non-3GPP信号和3GPP信号。为了让用户获取更快的网络服务,目前提出了多流聚合(Multi-Stream Aggregation,MSA)网络连接。在MSA网络连接中,UE通过Non-3GPP网络和3GPP网络与核心网进行连接,从而可以利用Non-3GPP网络和3GPP网络获取网络服务。
然而,现有技术并没有提供如何将单独Non-3GPP网络连接切换到MSA网络连接。
发明内容
为了提高业务传输速度,本发明实施例提供了一种网络连接的切换方法及装置。所述技术方案如下:
第一方面,一种网络连接的切换方法,用于将终端从单独的网络连接切换到多流聚合网络连接,所述方法包括:
多流聚合网关MGW在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,所述请求消息包括AGW的标识、所述终端的标识和所述PGW的标识;
所述MGW根据所述AGW的标识和所述终端的标识建立所述终端在所述MGW与所述AGW之间的隧道;
所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接。
结合第一方面,在第一方面的第一种可能的实现方式中,所述MGW在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,包括:
所述MGW接收所述终端在所述终端与所述PGW建立3GPP网络连接后发送的隧道处理请求消息,所述隧道处理请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
所述MGW接收所述AGW在所述终端与所述PGW建立3GPP网络连接后发送的隧道建立请求消息,所述隧道建立请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
所述MGW接收所述PGW在所述终端与所述PGW建立3GPP网络连接后发送的会话删除请求消息,所述会话删除请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识。
结合第一方面,在第一方面的第二种可能的实现方式中,所述MGW根据所述AGW的标识和所述终端的标识建立所述终端在所述MGW与所述AGW之间的隧道,包括:
所述MGW向所述AGW发送隧道建立请求消息,所述隧道建立请求消息包括所述终端的标识和所述MGW的标识,所述隧道建立请求消息用于所述AGW建立所述终端在所述AGW与所述MGW之间的隧道。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接,包括:
所述MGW根据所述PGW的标识向所述PGW发送会话删除请求消息,所述会话删除请求消息包括所述终端的标识,所述会话删除请求消息用于所述PGW根据所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接。
结合第一方面或第一方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的 网络连接之后,还包括:
所述MGW向所述终端发送所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述MGW向所述终端发送所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果,包括:
所述MGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果;或者,
所述MGW向所述AGW发送隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果,所述隧道建立响应消息用于所述AGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
第二方面,一种网络连接的切换方法,用于将终端从单独的网络连接切换到多流聚合网络连接,所述方法包括:
聚合网关AGW在终端与分组数据网关PGW建立3GPP网络连接后接收所述终端和移动性管理网元MME中的一个网元发送的隧道处理请求消息,所述隧道处理请求消息包括多流聚合网关MGW的标识、所述终端的标识和所述PGW的标识;
所述AGW根据所述MGW的标识向所述MGW发送隧道建立请求消息,所述隧道建立请求消息包括所述PGW的标识和所述终端的标识,所述隧道建立请求消息用于所述MGW建立所述终端在所述MGW与所述AGW之间的隧道连接以及删除所述终端在所述MGW与所述PGW之间的网络连接。
结合第二方面,在第二方面的第一种可能的实现方式中,所述所述AGW根据所述MGW的标识向所述MGW发送隧道建立请求消息之后,还包括:
所述AGW接收所述MGW发送的隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述MGW与所述AGW之间的隧道连接的建立结果和所 述终端在所述MGW与所述PGW之间的网络连接的删除结果;
所述AGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
第三方面,一种网络连接的切换方法,用于将终端从单独的网络连接切换到多流聚合网络连接,所述方法包括:
所述终端与分组数据网关PGW建立3GPP网络连接;
所述终端向聚合网关AGW发送隧道处理请求消息,所述隧道处理请求消息用于触发所述AGW向多流聚合MGW发送隧道建立请求消息,所述隧道建立请求消息包括所述终端的标识、所述AGW的标识和所述PGW的标识,所述隧道建立请求消息用于触发所述MGW建立与所述AGW之间的隧道以及删除与所述PGW之间的网络连接。
结合第三方面,在第三方面的第一种可能的实现方式中,所述方法还包括:
在所述终端与所述PGW建立3GPP网络连接后,将在所述Non-3GPP中传输的业务切换到在所述3GPP网络中建立的网络连接上。
第四方面,一种网络连接的切换方法,用于将终端从单独的网络连接切换到多流聚合网络连接,所述方法包括:
所述终端与分组数据网关PGW建立3GPP网络连接;
所述终端向多流聚合网关MGW发送隧道处理请求消息,所述隧道处理请求消息包括所述终端的标识、聚合网关AGW的标识和所述PGW的标识,所述隧道处理请求消息用于触发所述MGW向所述AGW发送隧道建立请求消息以及删除与所述PGW之间的网络连接,所述隧道建立请求消息包括所述终端的标识和所述MGW的标识,所述隧道建立请求消息用于触发所述AGW建立与所述MGW之间的隧道。
结合第四方面,在第四方面的第一种可能的实现方式中,所述方法还包括:
在所述终端与所述PGW建立3GPP网络连接后,将在所述Non-3GPP中传输的业务切换到在所述3GPP网络中建立的网络连接上。
第五方面,一种网络连接的切换装置,用于将终端从单独的网络连接切换到多流聚合多流聚合网络连接,所述切换装置包括收发器和处理器:
所述收发器,用于在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,所述请求消息包括AGW的标识、所述终端的标识和所述PGW的标识;
所述处理器,用于根据所述AGW的标识和所述终端的标识建立所述终端在所述切换装置与所述AGW之间的隧道;根据所述PGW的标识和所述终端的标识删除所述终端在所述切换装置与所述PGW之间的网络连接。
结合第五方面,在第五方面的第一种可能的实现方式中,
所述收发器,用于接收在所述终端在所述终端与所述PGW建立3GPP网络连接后发送的隧道处理请求消息,所述隧道处理请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
所述收发器,用于接收所述AGW在所述终端与所述PGW建立3GPP网络连接后发送的隧道建立请求消息,所述隧道建立请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
所述收发器,用于接收所述PGW在所述终端与所述PGW建立3GPP网络连接后发送的会话删除请求消息,所述会话删除请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识。
结合第二方面,在第二方面的第二种可能的实现方式中,
所述收发器,还用于向所述AGW发送隧道建立请求消息,所述隧道建立请求消息包括所述终端的标识和所述切换装置的标识,所述隧道建立请求消息用于所述AGW建立所述终端在所述AGW与所述切换装置之间的隧道。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,
所述收发器,用于根据所述PGW的标识向所述PGW发送会话删除请求消息,所述会话删除请求消息包括所述终端的标识,所述会话删除请求消息用于所述PGW根据所述终端的标识删除所述终端在所述切换装置与所述PGW之间的网络连接。
结合第二方面或第二方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,
所述收发器,还用于向所述终端发送所述终端在所述切换装置与所述AGW之间的隧道的建立结果以及所述终端在所述切换装置与所述PGW之间的网络连接的删除结果。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,
所述收发器,用于向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述终端在所述切换装置与所述AGW之间的隧道的建立结果以及所述终端在所述切换装置与所述PGW之间的网络连接的删除结果;或者,
所述收发器,用于向所述AGW发送隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述切换装置与所述AGW之间的隧道的建立结果以及所述终端在所述切换装置与所述PGW之间的网络连接的删除结果,所述隧道建立响应消息用于触发所述AGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
第六方面,一种网络连接的切换装置,用于将终端从单独的网络连接切换到多流聚合网络连接,所述切换装置包括:接收器和发送器;
所述接收器,用于在终端与分组数据网关PGW建立3GPP网络连接后接收所述终端和移动性管理网元MME中的一个网元发送的隧道处理请求消息,所述隧道处理请求消息包括多流聚合网关MGW的标识、所述终端的标识和所述PGW的标识;
所述发送器,用于根据所述MGW的标识向所述MGW发送隧道建立请求消息,所述隧道建立请求消息包括所述PGW的标识和所述终端的标识,所述隧道建立请求消息用于触发所述MGW建立所述终端在所述MGW与所述切换装置之间的隧道连接以及删除所述终端在所述MGW与所述PGW之间的网络连接。
结合第六方面,在第六方面的第一种可能的实现方式中,
所述接收器,还用于接收所述MGW发送的隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述终端在所述MGW与所述切换装置之间的隧道连接的建立结果和所述终端在所述MGW与所述PGW之间的网络连接的删除结果;
所述发送器,还用于向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
在本发明实施例中,先在3GPP网络中建立终端与PGW之间的3GPP网络连接,在该3GPP网络连接建立后MGW可以建立终端在MGW与AGW之 间的隧道以及删除终端在MGW与该PGW之间的网络连接,实现将终端的网络连接方式从单独Non-3GPP网络连接切换为MSA连接,切换后终端同时接入Non-3GPP网络和3GPP网络,这样终端可以通过Non-3GPP网络和3GPP网络来传输业务,提高业务传输的速度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的Non-3GPP网络架构示意图;
图2是本发明实施例提供的3GPP网络架构示意图;
图3是本发明实施例提供的MSA网络连接示意图;
图4是本发明实施例提供的一种网络连接的切换方法流程图;
图5是本发明实施例提供的另一种网络连接的切换方法流程图;
图6是本发明实施例提供的另一种网络连接的切换方法流程图;
图7是本发明实施例提供的另一种网络连接的切换方法流程图;
图8是本发明实施例提供的另一种网络连接的切换方法流程图;
图9是本发明实施例提供的另一种网络连接的切换方法流程图;
图10是本发明实施例提供的另一种网络连接的切换方法流程图;
图11是本发明实施例提供的另一种网络连接的切换方法流程图;
图12是本发明实施例提供的另一种网络连接的切换方法流程图;
图13是本发明实施例提供的另一种网络连接的切换方法流程图;
图14是本发明实施例提供的一种网络连接的切换装置结构示意图;
图15是本发明实施例提供的一种终端设备的结构示意图;
图16是本发明实施例提供的另一种网络连接的切换装置结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在本申请中终端可以为UE,在接来来的实施例中,以UE为例进行说明, 但此不作为对本申请保护范围的限制。通信网络分为Non-3GPP网络和3GPP网络,参见图1所示的Non-3GPP网络的网络架构。Non-3GPP网络架构包括多流聚合网关(Multi-Stream Aggregation Gateway,MGW)和分组数据网关(Packet Data Network Gateway,PGW)等网元。UE通过MGW在Non-3GPP中与PGW之间建立网络连接。
参见图2所示的3GPP网络的网络架构,3GPP网络架构包括聚合网关(Aggregate-Gateway,AGW)、移动性管理网元(Mobility Management Entity,MME)、服务网关(Serving Gateway,SGW)和PGW等网元;UE接入3GPP网络后,在3GPP网络中UE与位于核心网的PGW之间的网络连接包括UE与AGW之间的网络连接,AGW与MME/SGW之间的网络连接和MME/SGW与PGW之间的网络连接;UE可以通过与PGW之间的网络连接向PGW发送数据或接收PGW发送的数据。
其中,需要说明的是:在本实施例所提到的网元既可以是实体网元,也可以是逻辑网元,如SGW与PGW在实体上可以是一个设备,所有具有网关锚点功能的设备都可以是此处的PGW。并且所有具有类似功能的网元都适应上述描述,而不限定是某一具体的网元,如AGW可以是3GPP网络中的基站设备或者与SGW是同一设备,MGW可以是Non-3GPP网络中的接入设备接入点(Access Point,AP)或者Non-3GPP网络中的网关设备,甚至在实体上跟AGW是同一个设备等。
目前在很多地方Non-3GPP网络和3GPP网络共同覆盖,UE在通常情况下先只接入Non-3GPP网络,此时在Non-3GPP网络中UE与PGW之间的网络连接只包括一条单独Non-3GPP网络连接。参见图3,在UE接入Non-3GPP网络后,UE可以搜索能够覆盖其自身的3GPP网络信号。当UE搜索到覆盖其自身的3GPP网络信号后,UE可以将当前单独Non-3GPP网络连接切换为多流聚合网关(Multi-Stream Aggregation Gateway,MSA)网络连接,在MSA网络连接下UE同时接入Non-3GPP网络和3GPP网络,且UE在3GPP网络中存在一条空口连接和在Non-3GPP也存在一条空口连接,且该两条空口连接随后聚合且与核心网进行连接,从而利用Non-3GPP网络和3GPP网络获取网络服务。
本申请将UE的网络连接方式从单独Non-3GPP网络连接切换为MSA网络连接的方法,至少包括如下步骤:第一步,在3GPP网络中建立UE与PGW之间的3GPP网络连接,第二步,在AGW与MGW之间建立UE在AGW与 MGW之间的隧道,第三步,删除UE在MGW与PGW之间的网络连接。其中,第二步和第三步没有严格的时序关系,可以先执行第二步再执行第三步,也可以先执行第三步再执行第二步。
下面结合图4~图13,对本申请的网络连接方式的切换方法进行举例说明。
参见图4,本申请实施例提供了一种网络连接的切换方法,用将UE从单独的网络连接切换到多流聚合网络连接,即用于将UE从单独的Non-3GPP网络连接切换到MSA网络连接,该方法包括:
步骤101:MGW在UE与PGW建立3GPP网络连接后接收UE、PGW、AGW中的一个网元发送的请求消息,该请求消息包括AGW的标识、UE的标识和PGW的标识。
步骤102:MGW根据该AGW的标识和该UE的标识建立UE在MGW与该AGW之间的隧道。
步骤103:MGW根据该PGW的标识和该UE的标识删除UE在MGW与该PGW之间的网络连接,以将该UE从单独的Non-3GPP网络连接切换为MSA网络连接。
在本发明实施例中,先在3GPP网络中建立UE与PGW之间的3GPP网络连接,在该3GPP网络连接建立后MGW可以建立UE在MGW与该AGW之间的隧道以及删除UE在MGW与该PGW之间的网络连接,实现将UE的网络连接方式从单独的Non-3GPP网络连接切换为MSA连接,切换后UE同时接入3GPP网络和非3GPP网络,这样UE可以通过3GPP网络和非3GPP网络来传输业务,提高业务传输的速度。
本申请实施例提供了一种网络连接的切换方法,该方法用于将UE从单独的Non-3GPP网络连接切换到MSA网络连接。其中,在本发明实施例中,UE当前的网络连接方式为单独Non-3GPP网络连接,即UE只连接到Non-3GPP网络。当UE搜索到3GPP网络信号后,UE请求将当前的网络连接方式切换为MSA网络连接。参见图5,该切换过程包括:在3GPP网络中建立UE与PGW之间的3GPP网络连接;MME向AGW发送隧道建立请求,请求建立UE在MGW与AGW之间的隧道连接;删除UE在MGW与PGW之间的网络连接。
对于上述三步切换过程的详细流程,参见图6,具体包括:
步骤201:当UE搜索到3GPP网络信号后,UE向AGW发送切换请求消 息,该切换请求消息包括UE的标识和UE接入的MGW的标识。
UE最初只接入Non-3GPP网络,且在Non-3GPP网络中与一MGW之间存在网络连接,该MGW即为UE接入的MGW。
可选的,UE接入Non-3GPP网络后,还实时搜索能够覆盖其自身的3GPP网络信号,该3GPP网络信号为位于3GPP网络中的AGW广播的空口信号;当搜索到一个或多个AGW广播的3GPP网络信号后,UE决定切换网络连接方式,并选择一个AGW,获取其接入的MGW,向选择的AGW发送切换请求消息,该切换请求消息包括UE的标识和该MGW的标识。
可选的,UE选择AGW的方式有多种,例如,UE可以从接收的3GPP网络信号中选择信号强度最强的3GPP网络信号,然后获取该信号强度最强的3GPP网络信号对应的AGW;再如,UE获取其属于的运营商,从其接收的各3GPP网络信号对应的AGW中选择属于该运营商的一个AGW。
可选的,UE发送的切换请求消息还包括MSA指示信息,该MSA指示信息用于请求将单独Non-3GPP网络连接切换为MSA连接。其中,该切换请求消息也可以不包括该MSA指示信息。
其中,需要说明的是:切换UE的网络连接方式的第一步是:在3GPP网络中建立UE与PGW之间的3GPP网络连接,该3GPP网络连接包括UE与PGW之间的控制面连接和用户面连接。步骤202-212对在3GPP网络中建立UE与PGW之间的3GPP网络连接进行举例说明。
可选的,UE选择该AGW后会保存该AGW的标识,如此UE与该AGW之间的上行控制面连接已建立。即当UE需要向AGW发送控制面的信令时,UE可以根据存储的AGW的标识向该AGW发送该信令,也就是UE与AGW之间的上行控制面连接已连通。
其中,在本实施例中,AGW可以为演进型基站(Evolved Node B,eNodeB)、SGW等3GPP网元。AGW的标识可以为AGW的网络之间互连的协议(Internet Protocol,IP)地址等。MGW可以为可信WLAN网络(Trusted WLAN(Wireless Local Area Networks,无线局域网)Access Network,TWAN)、演进的分组数据网关(Evolved Packet Data Gateway,ePDG)等非3GPP网元,甚至还可以是AGW。MGW的标识可以为MGW的IP地址等。
步骤202:AGW接收该切换请求消息,根据该切换请求消息建立与该UE之间的控制面连接,向MME转发该切换请求消息。
可选的,AGW接收该切换请求消息后根据该切换请求消息包括的MSA指示信息确定需要切换UE的网络连接方式,然后为该UE分配端口,保存该切换请求消息包括的该UE的标识和该端口的对应关系,如此该AGW与该UE之间的下行控制面连接已建立。即当AGW需要向UE发送控制面的信令时,AGW可以根据存储的UE的标识获取对应的端口,通过该端口向该UE发送该信令,也就是AGW与UE之间的下行控制面连接已连通,而UE与AGW之间的上行控制面连接已连通,如此在此时该AGW与该UE之间的控制面连接已建立。
可选的,AGW接收该切换请求消息后,还保存该UE的标识与该MME的标识的对应关系,如此UE在该AGW与该MME之间的上行控制面连接已建立,即AGW当接收到UE发送的信令时,根据该信令包括的UE的标识获取到该MME的标识,根据该MME的标识向该MME发送该信令,也就是UE在该AGW与该MME之间的上行控制面连接已连通。
步骤203:MME接收该切换请求消息,根据该切换请求消息建立UE在MME与该AGW之间的控制面连接,对UE进行鉴权,并在鉴权通过后,获取UE的签约数据。
UE的签约数据是UE对应的用户与运营商签约业务时产生的。在产生UE的签约数据时,运营商将该UE的标识与该UE的签约数据存储在HSS中的UE的标识与签约数据的对应关系中。
可选的,本步骤可以为:MME接收该切换请求消息,从该切换请求消息中提取UE的标识、MGW的标识和MSA指示信息,根据该MSA指示信息确定出需要切换UE的网络连接方式,然后存储该UE的标识与该AGW的标识之间的对应关系,以实现建立UE在MME与AGW之间的控制面连接,对UE进行鉴权,并在鉴权通过后向HSS发送签约数据获取请求消息,该签约数据获取请求消息包括UE的标识。HSS接收该签约数据获取请求消息,根据该签约数据获取请求消息包括的UE的标识,从已存储的UE的标识与签约数据的对应关系中获取UE的签约数据,向MME发送UE的签约数据。MME接收HSS发送的UE的签约数据。
其中,在当前已出现多种鉴权方式,MME可以采用目前出现的任何一种鉴权方式来对UE进行鉴权。UE的签约数据中包括用户的身份信息等,例如,该签约数据包括金牌用户或铜牌用户,金牌用户或铜牌用户为一种身份信息的 具体实例。
其中,需要说明的是:MME存储该UE的标识与该AGW的标识之间的对应关系,表示UE在MME与AGW之间的下行控制面已建立,即当MME接收到需要发送给UE的信令后,MME根据该UE的标识获取对应的AGW的标识,根据该AGW的标识向该AGW发送该信令,再由AGW向UE转发该信令,也就是UE在MME与AGW之间的下行控制面已连通,而UE在AGW与MME之间的上行控制面连接已连通,如此在此时UE在MME与该AGW之间的控制面连接已建立完成。
步骤204:MME选择SGW并获取UE接入的PGW,向该SGW发送会话创建请求消息,该会话创建请求消息包括UE的标识,UE的签约数据和该PGW的标识。
可选的,本步骤可以为,MME为UE选择一个SGW,根据该UE的标识,从HSS中获取UE接入的PGW的标识,UE接入的PGW为在Non-3GPP网络中与UE之间存在网络连接的PGW。MME向该SGW发送会话创建请求消息,该会话创建请求消息包括UE的签约数据和该PGW的标识。
其中,MME为UE选择SGW的方式有多种,例如,MME可以根据UE的位置来选择SGW,可选的,选择离UE最近的一个SGW;再如,MME根据各SGW的负载情况来选择SGW,可选的,选择负载最小的SGW。
在HSS存储的UE的标识与PGW的标识的对应关系中,UE在连接到Non-3GPP网络时,UE先与MGW建立网络连接,然后MGW再与PGW建立网络连接,以使UE接入该PGW;同时HSS将该UE的标识和该PGW的标识存储在自身的UE的标识与PGW的标识的对应关系中。
相应地,在本步骤中,MME向HSS发送获取请求消息,该获取请求消息包括该UE的标识;HSS根据该UE的标识从自身存储的UE的标识与PGW的标识获取该UE接入的PGW的标识,向MME发送UE接入的PGW的标识;MME再接收该PGW的标识。
其中,MME选择SGW后还保存该UE的标识与该SGW的标识的对应关系,如此实现建立UE在该MME与该SGW之间的上行控制面连接,即当MME接收UE发送的信令后,根据该信令包括的UE的标识获取对应的SGW的标识,根据该SGW的标识向该SGW发送该信令,也就是UE在该MME与该SGW之间的上行控制面连接已连通。
其中,在本步骤中会话创建请求消息可以为Create Session Request。
步骤205:SGW接收该会话创建请求消息,建立UE在SGW与MME之间的控制面连接,根据该会话创建请求消息包括的PGW的标识向对应的PGW转发该会话创建请求消息。
可选的,SGW接收该会话创建请求消息,从该会话创建请求消息中提取UE的标识和PGW的标识,保存该UE的标识与该MME的标识,实现建立UE在该SGW与该MME之间的下行控制面连接,即当SGW接收到需要发送给UE的信令时,SGW根据该信令包括的UE的标识获取对应的MME的标识,根据该MME的标识向该MME发送该信令,也就是UE在该MME与该SGW之间的下行控制面连接已连通,而UE在该SGW与该MME之间的上行控制面连接已连通,如此在此时UE在该SGW与该MME之间的控制面连接已连接。
可选的,该SGW还保存该UE的标识与该PGW的标识的对应关系,实现建立UE在该SGW与该PGW之间的上行控制连接和上行用户面连接;即当SGW接收到UE发送的数据后,SGW根据该数据中包括的UE的标识获取对应的PGW的标识,根据该PGW的标识向该PGW发送该数据,该数据可以为控制面的信令或用户面的数据,也就是UE在该SGW与该PGW之间的上行控制连接和上行用户面连接均已连通。
步骤206:PGW接收该会话创建请求消息,建立UE在PGW与该SGW之间的网络连接,根据该会话创建请求消息为UE获取策略信息。
可选的,本步骤可以为,PGW接收该会话创建请求消息,该会话创建请求消息包括UE的标识和UE的签约数据,存储该UE的标识与该SGW的标识的对应关系,以建立UE在PGW与该SGW之间的网络连接,向PCRF(Policy and Charging Rules Function,策略与计费规则功能单元)发送策略请求消息,该策略请求消息包括该UE的签约数据。PCRF接收该策略请求消息,获取当前的网络状况信息,根据该UE的签约数据和当前的网络状况信息确定策略信息,向PGW发送该策略信息。PGW接收该策略信息,该策略信息可以包括为UE分配的带宽资源大小等信息。
可选的,PGW存储该UE的标识与该SGW的标识的对应关系后,实现建立UE在该PGW与该SGW之间的下行控制面连接和下行用户面连接,即当PGW需要发送数据给UE时,根据该UE的标识获取对应的SGW的标识,根 据该SGW的标识向该SGW发送该数据,该数据可以为控制面的信令或用户面的数据,也就是UE在该PGW与该SGW之间的下行控制面连接和下行用户面连接均已连通,而UE在该SGW与该PGW之间的上行控制连接和上行用户面连接也均已连通,如此在此时UE在该PGW与该SGW之间的网络连接已建立。
到此时,UE与PGW之间的控制面连接已连通,该控制面连接包括UE与AGW之间的控制面连接,UE在AGW与MME之间的控制面连接,UE在MME与SGW之间的控制面连接和UE在SGW与PGW之间的控制面连接。
步骤207:PGW向SGW发送会话创建响应消息,该会话创建响应消息包括该策略信息。
该会话创建响应消息的英文为Create Session Response。
步骤208:SGW接收该会话创建响应消息,向MME转发该会话创建响应消息。
步骤209:MME接收该会话创建响应消息,向AGW发送空口连接建立请求消息,该空口连接建立请求消息包括UE的标识、该SGW的标识和该策略信息。
步骤210:AGW接收该空口连接建立请求消息,根据该空口连接建立请求消息包括的SGW的标识建立UE在AGW与该SGW之间的上行用户面连接,以及建立与UE之间的用户面连接。
可选的,AGW接收该空口连接建立请求消息,从该空口连接建立请求消息中提取UE的标识、该SGW的标识和该策略信息,保存该UE的标识、该SGW的标识和该策略信息三者之间的对应关系,实现建立UE在该AGW与该SGW之间的上行用户面连接;根据该UE的标识向该UE发送该策略信息。其中,UE接收该策略信息并保存该策略信息,实现建立与AGW之间的用户面连接。当AGW接收到UE发送的用户面的数据时,AGW根据该数据包括的UE的标识获取对应的SGW的标识和策略信息,根据该SGW的标识和该策略信息向该SGW发送该数据,即UE在该AGW与该SGW之间的上行用户面连接已连通。
步骤211:MME向SGW发送承载修改请求消息,该承载修改请求消息包括UE的标识和AGW的标识。
步骤212:SGW接收该承载修改请求消息,根据该承载修改请求消息建立 UE在SGW与该AGW之间的下行用户面连接。
可选的,SGW接收该承载修改请求消息,从该承载修改请求消息中提取该UE的标识和该AGW的标识,保存该UE的标识与该AGW的标识之间的对应关系,实现建立UE在该SGW与该AGW之间的下行用户面连接,而UE在该AGW与该SGW之间的上行用户面连接已建立,所以UE在该AGW与该SGW之间的用户面连接已建立。在此时UE与PGW之间的用户面连接已建立,UE与该PGW之间的用户面连接包括该UE与该AGW之间的用户面连接,UE在该AGW与该SGW之间的用户面连接,UE在该SGW与该PGW之间的用户面连接。而UE与该PGW之间的控制面连接已接通,所以在3GPP网络中UE与PGW之间的3GPP网络连接已连通。
UE与PGW之间的3GPP网络连接连通后,UE可以将其在Non-3GPP网络中正在传输的业务切换到3GPP网络中。
可选的,UE可以通过其与PGW之间的3GPP网络连接向PGW发送该业务包括的数据;SGW还向PGW发送承载修改请求消息,该承载修改请求消息用于通知PGW其与UE之间的3GPP网络连接已连通。PGW接收该承载修改请求消息,根据该承载修改请求消息确定出其与UE之间的3GPP网络连接已连通,根据其与UE之间的3GPP网络连接向UE发送该业务包括的数据。
其中,建立完该UE与该PGW之间的3GPP网络连接后,还需要执行建立UE在MGW与AGW之间的隧道,以及删除UE在MGW与AGW之间的网络连接。步骤213-216对建立UE在MGW与AGW之间的隧道,以及删除UE在MGW与AGW之间的网络连接进行举例说明。
步骤213:MME向AGW发送隧道处理请求消息,该隧道处理请求消息包括该MGW的标识、该UE的标识和该PGW的标识。
其中,隧道处理请求消息的英文为Tunnel Handle Request。该隧道处理请求消息还包括该MSA指示信息。
步骤214:AGW接收该隧道处理请求消息,向该MGW发送该隧道建立请求消息,该隧道建立请求消息包括该UE的标识、该PGW的标识和该AGW的标识。
可选的,本步骤可以为,AGW接收该隧道处理请求消息,从该隧道处理请求消息中提取该MGW的标识、该UE的标识、该PGW的标识和该MSA指示信息,根据该MSA指示信息确定出需要切换UE的网络连接方式,然后保 存该UE的标识与该MGW的标识的对应关系,向该MGW发送隧道建立请求消息,该隧道建立请求消息包括该UE的标识、该PGW的标识和该AGW的标识,该隧道建立请求消息还包括该MSA指示信息。
AGW保存该UE的标识与该MGW的标识的对应关系后,AGW到MGW方向上的隧道已建立,当AGW中存在需要发送给UE的数据,AGW可以根据该数据包括的UE的标识获取对应的MGW的标识,根据该MGW的标识向该MGW发送该数据。
其中,该隧道建立请求消息可以为Tunnel Build Request。
步骤215:MGW接收该隧道建立请求消息,根据该隧道建立请求消息建立与AGW之间的隧道,向PGW发送会话删除请求消息,该会话删除请求消息包括该MGW的标识和UE的标识。
可选的,本步骤可以为,MGW接收该隧道建立请求消息,从该隧道建立请求消息中提取该UE的标识、该PGW的标识、该AGW的标识和该MSA指示信息,根据该MSA指示信息确定出需要切换UE的网络连接方式,然后保存该UE的标识与该AGW的标识的对应关系,以实现建立MGW到AGW方向上的隧道,而AGW到MGW方向上的隧道已建立,因此实现建立该MGW与AGW之间的隧道,根据该PGW的标识向该PGW发送会话删除请求消息。
其中,该会话删除请求消息的英文可以为Delete Session Request。
步骤216:PGW接收该会话删除请求消息,根据该会话删除请求消息删除与MGW之间的网络连接。
可选的,PGW删除与MGW之间的网络连接后,UE从单独Non-3GPP网络连接切换为MSA连接。另外,PGW删除与MGW之间的网络连接后,PGW向MGW发送会话删除响应消息,该会话删除响应消息包括该PGW与该MGW之间的网络连接的删除结果。MGW接收该会话删除响应消息,向AGW发送隧道建立响应消息,该隧道建立响应消息包括该删除结果和该MGW与该AGW之间的隧道的建立结果,AGW接收该隧道建立响应消息,分别向UE和MME发送隧道处理响应消息,该隧道处理响应消息包括该删除结果和该建立结果。其中,UE在接收到该隧道处理响应消息后可以提示用户已将网络连接方式切换为MSA连接。
在本发明实施例中,当UE的网络连接方式为单独Non-3GPP网络连接时,在UE搜索到3GPP网络信号后,首先使UE建立与PGW之间的3GPP网络连 接,如果当前UE在Non-3GPP网络中传输业务,则在该3GPP网络连接建立后,将在Non-3GPP网络中传输的业务切换到3GPP网络中,通过该3GPP网络连接来传输该业务,然后再建立AGW与MGW之间的隧道,以及删除MGW与PGW之间的网络连接,如此在切换网络连接方式的过程中避免业务传输中断。其中,UE切换为MSA连接后,UE可以同时通过Non-3GPP网络和3GPP网络来传输业务,从而提高业务传输的速率。
本申请实施例提供了一种从单独网络连接切换到多流聚合网络连接的方法,该方法用于将UE从单独的Non-3GPP网络连接切换到MSA网络连接,参见图7,该方法包括:在3GPP网络中建立UE与PGW之间的网络连接;UE向MGW发送隧道建立请求,请求建立MGW与AGW之间的隧道;删除MGW与AGW之间的网络连接。
对于上述三步切换过程的详细流程,参见图8,具体包括:
步骤301:当UE搜索到3GPP网络信号后,UE向AGW发送切换请求消息,该切换请求消息包括UE的标识。
可选的,UE接入Non-3GPP网络后,还实时搜索能够覆盖其自身的3GPP网络信号;当搜索到一个或多个AGW广播的3GPP网络信号后,UE决定切换网络连接方式,并选择一个AGW,获取与其连接的MGW,向选择的AGW发送切换请求消息,该切换请求消息包括UE的标识。
可选的,UE发送的切换请求消息还包括MSA指示信息,该MSA指示信息用于请求将单独Non-3GPP网络连接切换为MSA连接。
其中,需要说明的是:切换UE的网络连接方式的第一步是:在3GPP网络中建立UE与PGW之间的网络连接,该网络连接包括UE与PGW之间的控制面连接和用户面连接。步骤302-312对在3GPP网络中建立UE与PGW之间的网络连接进行举例说明。
可选的,UE选择该AGW后会保存该AGW的标识,如此UE与该AGW之间的上行控制面连接已建立。即当UE需要向AGW发送控制面的信令时,UE可以根据存储的AGW的标识向该AGW发送该信令,也就是UE与AGW之间的上行控制面连接已连通。
步骤302-312:分别与步骤202-212相同,请参见图6所示的实施例中的相关内容,在此不再详细说明。
其中,当UE感知到建立完该UE与该PGW之间的3GPP网络连接后,UE可以触发MGW建立MGW与AGW之间的隧道,以及删除MGW与AGW之间的网络连接。步骤213-216对建立MGW与AGW之间的隧道,以及删除MGW与AGW之间的网络连接进行举例说明。
步骤313:UE向MGW发送隧道处理请求消息,该隧道处理请求消息包括该AGW的标识、该UE的标识和该PGW的标识。
该隧道处理请求消息还包括该MSA指示信息。
步骤314:MGW接收该隧道处理请求消息,根据该隧道处理请求消息包括的AGW的标识向该AGW发送该隧道建立请求消息,该隧道建立请求消息包括该UE的标识和该MGW的标识。
可选的,本步骤可以为,MGW接收该隧道处理请求消息,从该隧道处理请求消息中提取该AGW的标识、该UE的标识、该PGW的标识和该MSA指示信息,根据该MSA指示信息确定UE需要切换网络连接方式,然后保存该UE的标识与该AGW的标识的对应关系,向该AGW发送隧道建立请求消息,该隧道建立请求消息包括该UE的标识和该MGW的标识;进一步地,该隧道建立请求消息还包括该MSA指示信息。
MGW保存该UE的标识与该AGW的标识的对应关系后,MGW到AGW方向上的隧道已建立,当MGW中存在需要发送给UE的数据,MGW可以根据该数据包括的UE的标识获取对应的AGW的标识,根据该AGW的标识向该AGW发送该数据。
步骤315:AGW接收该隧道建立请求消息,根据该隧道建立请求消息建立与MGW之间的隧道。
可选的,本步骤可以为,AGW接收该隧道建立请求消息,从该隧道建立请求消息中提取该UE的标识、该MGW的标识和该MSA指示信息,根据该MSA指示信息确定UE需要切换网络连接方式,然后保存该UE的标识与该MGW的标识的对应关系,以实现建立AGW到MGW方向上的隧道,而MGW到AGW方向上的隧道已建立,因此实现建立该MGW与AGW之间的隧道,向MGW发送隧道建立响应消息,该隧道建立响应消息包括该隧道建立的建立结果。
步骤316:MGW向PGW发送会话删除请求消息,该会话删除请求消息包括该UE的标识。
进一步地,该会话删除请求消息还包括该MSA指示信息。
步骤317:PGW接收该会话删除请求消息,根据该会话删除请求消息删除与MGW之间的网络连接。
可选的,PGW删除与MGW之间的网络连接后,UE从单独Non-3GPP网络连接切换为MSA连接。另外,PGW删除与MGW之间的网络连接后,PGW向MGW发送MGW发送会话删除响应消息,该会话删除响应消息包括删除结果。MGW接收该会话删除响应消息,向UE发送隧道处理响应消息,该隧道处理响应消息包括该删除结果和该建立结果,UE接收该隧道处理响应消息,并提示用户已将网络连接方式切换为MSA连接。
其中,需要说明的是:MGW与AGW的隧道建立过程与MGW与PGW的隧道删除过程的顺序可以不分先后,可以先进行前者再进行后者,也可以先进行后再进行前者。
在本发明实施例中,当UE的网络连接方式为单独Non-3GPP网络连接时,在UE搜索到3GPP网络信号后,首先使UE建立与PGW之间的3GPP网络连接,如果当前UE在Non-3GPP网络中传输业务,则在该3GPP网络连接建立后,将在Non-3GPP网络中传输的业务切换到3GPP网络中,通过该3GPP网络连接来传输该业务,然后再由UE触发MGW建立AGW与MGW之间的隧道,以及删除MGW与PGW之间的网络连接,如此在切换网络连接方式的过程中避免业务传输中断。其中,UE切换为MSA连接后,UE可以同时通过Non-3GPP网络和3GPP网络来传输业务,从而提高业务传输的速率。
本申请实施例提供了一种从单独网络连接切换到多流聚合网络连接的方法,该方法用于将UE从单独的Non-3GPP网络连接切换到MSA网络连接,参见图9,该方法包括:在3GPP网络中建立UE与PGW之间的网络连接;UE向AGW发送隧道建立请求,请求建立MGW与AGW之间的隧道;删除MGW与AGW之间的网络连接。
对于上述三步切换过程的详细流程,参见图10,具体包括:
步骤401当UE搜索到3GPP网络信号后,UE向AGW发送切换请求消息,该切换请求消息包括UE的标识。
可选的,UE接入Non-3GPP网络后,还实时搜索能够覆盖其自身的3GPP网络信号;当搜索到一个或多个AGW广播的3GPP网络信号后,UE决定切换 网络连接方式,并选择一个AGW,获取与其连接的MGW,向选择的AGW发送切换请求消息,该切换请求消息包括UE的标识。
可选的,UE发送的切换请求消息还包括MSA指示信息,该MSA指示信息用于请求将单独Non-3GPP网络连接切换为MSA连接。
其中,需要说明的是:切换UE的网络连接方式的第一步是:在3GPP网络中建立UE与PGW之间的网络连接,该网络连接包括UE与PGW之间的控制面连接和用户面连接。步骤402-412对在3GPP网络中建立UE与PGW之间的网络连接进行举例说明。
可选的,UE选择该AGW后会保存该AGW的标识,如此UE与该AGW之间的上行控制面连接已建立。即当UE需要向AGW发送控制面的信令时,UE可以根据存储的AGW的标识向该AGW发送该信令,也就是UE与AGW之间的上行控制面连接已连通。
步骤402-412:分别与步骤202-212相同,请参见图6所示的实施例中的相关内容,在此不再详细说明。
其中,当UE感知到建立完该UE与该PGW之间的3GPP网络连接后,UE可以触发AGW建立MGW与AGW之间的隧道,以及删除MGW与AGW之间的网络连接。步骤413-416对建立MGW与AGW之间的隧道,以及删除MGW与AGW之间的网络连接进行举例说明。
步骤413:UE向AGW发送隧道处理请求消息,该隧道处理请求消息包括该MGW的标识、该UE的标识和该PGW的标识。
该隧道处理请求消息还包括该MSA指示信息。
步骤414:AGW接收该隧道处理请求消息,根据该隧道处理请求消息包括的MGW的标识向该MGW发送该隧道建立请求消息,该隧道建立请求消息包括该UE的标识、该PGW的标识和该AGW的标识。
可选的,AGW接收该隧道处理请求消息,从该隧道处理请求消息中提取该MGW的标识、该UE的标识、该PGW的标识和该MSA指示信息,根据该MSA指示信息确定UE需要切换网络连接方式,然后保存该UE的标识与该MGW的标识的对应关系,向该MGW发送隧道建立请求消息,该隧道建立请求消息包括该UE的标识、该PGW的标识和该AGW的标识;进一步地,该隧道建立请求消息还包括该MSA指示信息。
AGW保存该UE的标识与该MGW的标识的对应关系后,AGW到MGW 方向上的隧道已建立,当AGW中存在需要发送给UE的数据,AGW可以根据该数据包括的UE的标识获取对应的MGW的标识,根据该MGW的标识向该MGW发送该数据。
步骤415:MGW接收该隧道建立请求消息,根据该隧道建立请求消息建立与AGW之间的隧道,向PGW发送会话删除请求消息,该会话删除请求消息包括该MGW的标识和UE的标识。
可选的,MGW接收该隧道建立请求消息,从该隧道建立请求消息中提取该UE的标识、该PGW的标识、该AGW的标识和该MSA指示信息,根据该MSA指示信息确定UE需要切换网络连接方式,然后保存该UE的标识与该AGW的标识的对应关系,以实现建立MGW到AGW方向上的隧道,而AGW到MGW方向上的隧道已建立,因此实现建立该MGW与AGW之间的隧道,根据该PGW的标识向该PGW发送会话删除请求消息。进一步地,该会话删除请求消息还包括该MSA指示信息。
步骤416:PGW接收该会话删除请求消息,根据该会话删除请求消息删除与MGW之间的网络连接。
可选的,PGW根据该MSA指示信息确定需要切换UE的网络连接方式,然后根据该会话删除请求消息包括该MGW的标识和UE的标识删除与MGW的网络连接。PGW删除与MGW之间的网络连接后,UE从单独Non-3GPP网络连接切换为MSA连接。另外,PGW删除与MGW之间的网络连接后,PGW向MGW发送MGW发送会话删除响应消息,该会话删除响应消息包括删除结果。MGW接收该会话删除响应消息,向AGW发送隧道建立响应消息,该隧道建立响应消息包括该删除结果和该MGW与该AGW之间的隧道的建立结果,AGW接收该隧道建立响应消息,向UE发送隧道处理响应消息,该隧道处理响应消息包括该删除结果和该建立结果。其中,UE在接收到该隧道处理响应消息后可以提示用户已将网络连接方式切换为MSA连接。
其中,需要说明的是:MGW与AGW的隧道建立过程与MGW与PGW的隧道删除过程的顺序可以不分先后,可以先进行前者再进行后者,也可以先进行后再进行前者。
在本发明实施例中,当UE的网络连接方式为单独Non-3GPP网络连接时,在UE搜索到3GPP网络信号后,首先使UE建立与PGW之间的3GPP网络连接,如果当前UE在Non-3GPP网络中传输业务,则在该3GPP网络连接建立 后,将在Non-3GPP网络中传输的业务切换到3GPP网络中,通过该3GPP网络连接来传输该业务,然后再由UE触发AGW建立AGW与MGW之间的隧道,以及删除MGW与PGW之间的网络连接,如此在切换网络连接方式的过程中避免业务传输中断。其中,UE切换为MSA连接后,UE可以同时通过Non-3GPP网络和3GPP网络来传输业务,从而提高业务传输的速率。
本申请实施例提供了一种从单独网络连接切换到多流聚合网络连接的方法,该方法用于将UE从单独的Non-3GPP网络连接切换到MSA网络连接,参见图11,该方法包括:在3GPP网络中建立UE与PGW之间的网络连接,由PGW向MGW发送隧道删除请求,请求删除PGW与MGW之间的网络连接,建立MGW与AGW之间的隧道。
对上述三步切换过程的详细流程,参见图12,具体包括:
步骤501:当UE搜索到3GPP网络信号后,UE向AGW发送切换请求消息,该切换请求消息包括UE的标识。
可选的,UE接入Non-3GPP网络后,还实时搜索能够覆盖其自身的3GPP网络信号;当搜索到一个或多个AGW广播的3GPP网络信号后,UE决定切换网络连接方式,并选择一个AGW,获取与其连接的MGW,向选择的AGW发送切换请求消息,该切换请求消息包括UE的标识。
可选的,UE发送的切换请求消息还包括MSA指示信息,该MSA指示信息用于请求将单独Non-3GPP网络连接切换为MSA连接。
其中,需要说明的是:切换UE的网络连接方式的第一步是:在3GPP网络中建立UE与PGW之间的网络连接,该网络连接包括UE与PGW之间的控制面连接和用户面连接。步骤502-512对在3GPP网络中建立UE与PGW之间的网络连接进行举例说明。
可选的,UE选择该AGW后会保存该AGW的标识,如此UE与该AGW之间的上行控制面连接已建立。即当UE需要向AGW发送控制面的信令时,UE可以根据存储的AGW的标识向该AGW发送该信令,也就是UE与AGW之间的上行控制面连接已连通。
步骤502:AGW接收该切换请求消息,根据该切换请求消息建立与该UE之间的控制面连接,向MME转发该切换请求消息,该切换请求消息包括该AGW的标识和该UE的标识。
可选的,AGW接收该切换请求消息后根据该切换请求消息包括的MSA指示信息确定需要切换UE的网络连接方式,然后为UE分配端口,保存该切换请求消息包括的该UE的标识和该端口的对应关系,如此该AGW与该UE之间的下行控制面连接已建立。即当AGW需要向UE发送控制面的信令时,AGW可以根据存储的UE的标识获取对应的端口,通过该端口向该UE发送该信令,也就是AGW与UE之间的下行控制面连接已连通,而UE与AGW之间的上行控制面连接已连通,如此在此时该AGW与该UE之间的控制面连接已建立。
可选的,AGW接收该切换请求消息后,还保存该UE的标识与该MME的标识的对应关系,如此该AGW与该MME之间的上行控制面连接已建立,即AGW当接收到UE发送的信令时,根据该信令包括的UE的标识获取到该MME的标识,根据该MME的标识向该MME发送该信令,也就是该AGW与该MME之间的上行控制面连接已连通。
步骤503:MME接收该切换请求消息,根据该切换请求消息建立与该AGW之间的控制面连接,对UE进行鉴权,并在鉴权通过后,获取UE的签约数据。
UE的签约数据是UE对应的用户与运营商签约业务时产生的。在产生UE的签约数据时,运营商将该UE的标识与该UE的签约数据存储在HSS中的UE的标识与签约数据的对应关系中。
可选的,本步骤可以为:MME接收该切换请求消息,从该切换请求消息中提取UE的标识、MGW的标识和MSA指示信息,根据该MSA指示信息确定出需要切换UE的网络连接方式,然后存储该UE的标识与该AGW的标识之间的对应关系,以实现建立与AGW之间的控制面连接,对UE进行鉴权,并在鉴权通过后向HSS发送签约数据获取请求消息,该签约数据获取请求消息包括UE的标识。HSS接收该签约数据获取请求消息,根据该签约数据获取请求消息包括的UE的标识,从已存储的UE的标识与签约数据的对应关系中获取UE的签约数据,向MME发送UE的签约数据。MME接收HSS发送的UE的签约数据。
其中,在当前已出现多种鉴权方式,MME可以采用目前出现的任何一种鉴权方式来对UE进行鉴权。UE的签约数据中包括用户的身份信息等,例如,该签约数据包括金牌用户或铜牌用户,金牌用户或铜牌用户为一种身份信息。
其中,需要说明的是:MME存储该UE的标识与该AGW的标识之间的 对应关系,表示MME与AGW之间的下行控制面已建立,即当MME接收到需要发送给UE的信令后,MME根据该UE的标识获取对应的AGW的标识,根据该AGW的标识向该AGW发送该信令,再由AGW向UE转发该信令,也就是MME与AGW之间的下行控制面已连通,而AGW与MME之间的上行控制面连接已连通,如此在此时MME与该AGW之间的控制面连接已建立完成。
步骤504:MME选择SGW并获取UE接入的PGW,向该SGW发送会话创建请求消息,该会话创建请求消息包括UE的标识、UE的签约数据、该AGW的标识和该PGW的标识。
可选的,本步骤可以为,MME为UE选择一个SGW,根据该UE的标识,从HSS中获取UE接入的PGW的标识,UE接入的PGW为在Non-3GPP网络中与UE之间存在网络连接的PGW,向该SGW发送会话创建请求消息,该会话创建请求消息包括该UE的标识、UE的签约数据、该AGW的标识和该PGW的标识。
其中,MME为UE选择SGW的方式有多种,例如,MME可以根据UE的位置来选择SGW,可选的,选择离UE最近的一个SGW;再如,MME根据各SGW的负载情况来选择SGW,可选的,选择负载最小的SGW。
在HSS存储的UE的标识与PGW的标识的对应关系中,UE在连接到Non-3GPP网络时,UE先与MGW建立网络连接,然后MGW再与PGW建立网络连接,以使UE接入该PGW;同时HSS将该UE的标识和该PGW的标识存储在自身的UE的标识与PGW的标识的对应关系中。
相应地,在本步骤中,MME向HSS发送获取请求消息,该获取请求消息包括该UE的标识;HSS根据该UE的标识从自身存储的UE的标识与PGW的标识获取该UE接入的PGW的标识,向MME发送UE接入的PGW的标识;MME再接收该PGW的标识。
可选的,MME选择SGW后还保存该UE的标识与该SGW的标识的对应关系,如此实现建立该MME与该SGW之间的上行控制面连接,即当MME接收UE发送的信令后,根据该信令包括的UE的标识获取对应的SGW的标识,根据该SGW的标识向该SGW发送该信令,也就是该MME与该SGW之间的上行控制面连接已连通。
其中,在本步骤中会话创建请求消息可以为Create Session Request。
步骤505:SGW接收该会话创建请求消息,建立与MME之间的控制面连接,根据该会话创建请求消息包括的PGW的标识向对应的PGW转发该会话创建请求消息。
可选的,SGW接收该会话创建请求消息,从该会话创建请求消息中提取UE的标识和PGW的标识,保存该UE的标识与该MME的标识,实现建立该SGW与该MME之间的下行控制面连接,即当SGW接收到需要发送给UE的信令时,SGW根据该信令包括的UE的标识获取对应的MME的标识,根据该MME的标识向该MME发送该信令,也就是该MME与该SGW之间的下行控制面连接已连通,而该SGW与该MME之间的上行控制面连接已连通,如此在此时该SGW与该MME之间的控制面连接已连接。
可选的,该SGW还保存该UE的标识与该PGW的标识的对应关系,实现建立该SGW与该PGW之间的上行控制连接和上行用户面连接;即当SGW接收到UE发送的数据后,SGW根据该数据中包括的UE的标识获取对应的PGW的标识,根据该PGW的标识向该PGW发送该数据,该数据可以为控制面的信令或用户面的数据,也就是该SGW与该PGW之间的上行控制连接和上行用户面连接均已连通。
步骤506:PGW接收该会话创建请求消息,建立与该SGW之间的网络连接,根据该创建会话请求消息为UE获取策略信息。
可选的,本步骤可以为,PGW接收该会话创建请求消息,该会话创建请求消息包括UE的标识、UE的签约数据、该AGW的标识和该PGW的标识,存储该UE的标识与该SGW的标识的对应关系,以建立与该SGW之间的网络连接,向PCRF发送策略请求消息,该策略请求消息包括该UE的签约数据。PCRF接收该策略请求消息,获取当前的网络状况信息,根据该UE的签约数据和当前的网络状况信息确定策略信息,向PGW发送该策略信息。PGW接收该策略信息,该策略信息可以包括为UE分配的带宽资源大小等信息。
PGW存储该UE的标识与该SGW的标识的对应关系后,实现建立该PGW与该SGW之间的下行控制面连接和下行用户面连接,即当PGW需要发送数据给UE时,根据该UE的标识获取对应的SGW的标识,根据该SGW的标识向该SGW发送该数据,该数据可以为控制面的信令或用户面的数据,也就是该PGW与该SGW之间的下行控制面连接和下行用户面连接均已连通,而该SGW与该PGW之间的上行控制连接和上行用户面连接也均已连通,如此在此 时该PGW与该SGW之间的网络连接已建立。
到此时,UE与PGW之间的控制面连接已连通,该控制面连接包括UE与AGW之间的控制面连接,AGW与MME之间的控制面连接,MME与SGW之间的控制面连接和SGW与PGW之间的控制面连接。
步骤508-512:分别与步骤208-212相同,请参见图6所示的实施例中的相关内容,在此不再详细说明。
其中,当PGW感知到建立完该UE与该PGW之间的网络连接后,PGW可以触发MGW建立MGW与AGW之间的隧道,以及删除MGW与AGW之间的网络连接,具体实现过程如下:
步骤513:PGW向MGW发送会话删除请求消息,该会话删除请求消息包括该AGW的标识、该UE的标识和该PGW的标识。
可选的,该会话删除请求消息还包括该MSA指示信息。
步骤514:MGW接收该会话删除请求消息,根据该会话删除请求消息包括的AGW的标识向该AGW发送该隧道建立请求消息,该隧道建立请求消息包括该UE的标识和该MGW的标识。
可选的,本步骤可以为,MGW接收该会话删除请求消息,从该会话删除请求消息中提取该AGW的标识、该UE的标识、该PGW的标识和该MSA指示信息,根据该MSA指示信息确定需要切换UE的网络连接方式,然后保存该UE的标识与该AGW的标识的对应关系,向该AGW发送隧道建立请求消息,该隧道建立请求消息包括该UE的标识和该MGW的标识;该隧道建立请求消息还包括该MSA指示信息。
MGW保存该UE的标识与该AGW的标识的对应关系后,MGW到AGW方向上的隧道已建立,当MGW中存在需要发送给UE的数据,MGW可以根据该数据包括的UE的标识获取对应的AGW的标识,根据该AGW的标识向该AGW发送该数据。
步骤515:AGW接收该隧道建立请求消息,根据该隧道建立请求消息建立与MGW之间的隧道。
可选的,本步骤可以为,AGW接收该隧道建立请求消息,从该隧道建立请求消息中提取该UE的标识、该MGW的标识和该MSA指示信息,根据该MSA指示信息确定需要切换UE的网络连接方式,然后保存该UE的标识与该MGW的标识的对应关系,以实现建立AGW到MGW方向上的隧道,而MGW 到AGW方向上的隧道已建立,因此实现建立该MGW与AGW之间的隧道,向MGW发送隧道建立响应消息,该隧道建立响应消息包括建立结果。
步骤516:MGW向PGW发送会话删除响应消息,该会话删除响应消息包括该MGW与该PGW之间的网络连接的删除结果和该AGW与该MGW的隧道建立结果。
步骤517:MGW向UE发送隧道处理响应消息,该隧道处理响应消息包括该删除结果与该MGW与该AGW之间的隧道的建立结果和该AGW与该MGW的隧道建立结果。
UE接收该隧道处理响应消息,并提示用户已将网络连接方式切换为MSA连接。
在本发明实施例中,当UE的网络连接方式为单独Non-3GPP网络连接时,在UE搜索到3GPP网络信号后,首先使UE建立与PGW之间的3GPP网络连接,如果当前UE在Non-3GPP网络中传输业务,则在该3GPP网络连接建立后,将在Non-3GPP网络中传输的业务切换到3GPP网络中,通过该3GPP网络连接来传输该业务,然后再由PGW触发MGW建立AGW与MGW之间的隧道,以及删除MGW与PGW之间的网络连接,如此在切换网络连接方式的过程中避免业务传输中断。
参见图13,本申请实施例提供了一种从单独网络连接切换到多流聚合网络连接的方法,该方法用于将UE从单独的Non-3GPP网络连接切换到MSA网络连接,该方法包括:
步骤601:UE与PGW建立3GPP网络连接。
步骤602:UE向网络侧发送隧道处理请求消息,该隧道处理请求消息包括UE的标识、PGW的标识和接入侧网元的标识,该接入侧网元为AGW或MGW,该隧道处理请求消息用于触发网络侧建立AGW与MGW之间的隧道以及删除MGW与PGW之间的网络连接。
在本发明实施例中,UE先在3GPP网络中建立其与PGW之间的3GPP网络连接,在该3GPP网络连接建立后请求网络侧建立AGW与MGW之间的隧道以及删除MGW与PGW之间的网络连接,实现将UE的网络连接方式从单独Non-3GPP网络连接切换为MSA连接,切换后UE同时接入Non-3GPP网络和3GPP网络,这样UE可以通过Non-3GPP网络和3GPP网络来传输业务, 提高业务传输的速度。
参见图14,图14是本申请实施例提供的一种网络连接的切换装置700的结构示意图。可选的,本实施例中,该切换装置700可以为MGW,将UE从单独网络连接切换为MSA网络连接。
所述切换装置700可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器701、收发器702和存储器732,一个或一个以上存储应用程序742或数据744的存储介质730(例如一个或一个以上海量存储设备)。其中,存储器732和存储介质730可以是短暂存储或持久存储。存储在存储介质730的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对所述切换装置700中的一系列指令操作。更进一步地,处理器722可以设置为与存储介质730通信,在所述切换装置700上执行存储介质730中的一系列指令操作。可选的,所述存储介质730存储的操作指令可以是本申请图4~图13中MGW执行的步骤所对应的操作指令,详见上述方法实施例,在此不再赘述。
所述切换装置700还可以包括一个或一个以上电源726,一个或一个以上有线或无线网络接口750,一个或一个以上输入输出接口758和/或,一个或一个以上操作系统741,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
所述收发器702,用于在所述UE与分组数据网关PGW建立3GPP网络连接后接收所述UE、所述PGW、聚合网关AGW中的一个网元发送的请求消息,所述请求消息包括AGW的标识、所述UE的标识和所述PGW的标识;
所述处理器701,用于根据所述AGW的标识和所述UE的标识建立所述UE在所述切换装置700与所述AGW之间的隧道;根据所述PGW的标识和所述UE的标识删除所述UE在所述切换装置700与所述PGW之间的网络连接。
可选的,
所述收发器702,用于接收在所述UE在所述UE与所述PGW建立3GPP网络连接后发送的隧道处理请求消息,所述隧道处理请求消息包括所述AGW的标识、所述UE的标识和所述PGW的标识;或者,
所述收发器702,用于接收所述AGW在所述UE与所述PGW建立3GPP网络连接后发送的隧道建立请求消息,所述隧道建立请求消息包括所述AGW 的标识、所述UE的标识和所述PGW的标识;或者,
所述收发器702,用于接收所述PGW在所述UE与所述PGW建立3GPP网络连接后发送的会话删除请求消息,所述会话删除请求消息包括所述AGW的标识、所述UE的标识和所述PGW的标识。
可选的,所述收发器702,还用于向所述AGW发送隧道建立请求消息,所述隧道建立请求消息包括所述UE的标识和所述切换装置的标识,所述隧道建立请求消息用于所述AGW建立所述UE在所述AGW与所述切换装置之间的隧道。
可选的,所述收发器702,用于根据所述PGW的标识向所述PGW发送会话删除请求消息,所述会话删除请求消息包括所述UE的标识,所述会话删除请求消息用于所述PGW根据所述UE的标识删除所述UE在所述切换装置与所述PGW之间的网络连接。
可选的,所述收发器702,还用于向所述UE发送所述UE在所述切换装置700与所述AGW之间的隧道的建立结果以及所述UE在所述切换装置700与所述PGW之间的网络连接的删除结果。
可选的,
所述收发器702,用于向所述UE发送隧道处理响应消息,所述隧道处理响应消息包括所述UE在所述切换装置700与所述AGW之间的隧道的建立结果以及所述UE在所述切换装置700与所述PGW之间的网络连接的删除结果;或者,
所述收发器702,用于向所述AGW发送隧道建立响应消息,所述隧道建立响应消息包括所述UE在所述切换装置700与所述AGW之间的隧道的建立结果以及所述UE在所述切换装置700与所述PGW之间的网络连接的删除结果,所述隧道建立响应消息用于触发所述AGW向所述UE发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
需要注意的是,在上述全部发明实施例中,流程的名称“Delete Session Request”,“Delete Session Response”,“Tunnel Build request”,“Tunnel Build response”,“Tunnel Handle Request”,“Tunnel Handle Response”等均表示对连接的处理的名称,在实际应用中并不限定于这些消息名称,任何符合这些对连接的处理的消息均适用。
参见图15,本申请实施例提供一种终端设备800的结构示意图,用于将终端设备从单独网络连接切换到多流聚合网络连接,所述终端设备800可以为用户设备(UE)、平板电脑、PDA(Personal Digital Assistant,个人数字助理)等终端设备。
图15示出的是与本发明实施例提供的终端设备800的部分结构的框图。参考图15,终端设备800包括收发器810、存储器820、输入单元830、显示单元840、传感器850、音频电路860、WiFi(wireless fidelity,无线保真)模块870、处理器880、以及电源890等部件。本领域技术人员可以理解,图15中示出的终端设备结构只做实现方式的举例,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。可选的,所述存储器820存储的操作指令可以是本申请图4~图13中UE执行的步骤所对应的操作指令,详见上述方法实施例,在此不再赘述。
收发器810可以为RF电路,可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器880处理;另外,将设计上行的数据发送给基站。通常,收发器810包括但不限于天线、至少一个放大器、收发信机、耦合器、LNA(Low Noise Amplifier,低噪声放大器)、双工器等。此外,收发器810还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、LTE(Long Term Evolution,长期演进)、电子邮件、SMS(Short Messaging Service,短消息服务)等。
存储器820可用于存储软件程序以及模块,处理器880通过运行存储在存储器820的软件程序以及模块,从而执行终端设备800的各种功能应用以及数据处理。存储器820可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端设备800的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器820可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元830可用于接收输入的数字或字符信息,以及产生与终端设备800的用户设置以及功能控制有关的键信号输入。具体地,输入单元830可包括用于收集用户触摸操作的触控面板831以及其他输入设备832。其他输入设备832可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元840可用于显示由用户输入的信息或提供给用户的信息以及终端设备800的各种菜单。显示单元840可包括显示面板841,
终端设备800还可包括至少一种传感器850,比如用于测量环境光线强度的光传感器、用于测量运行加速度的运动传感器以及其他传感器等。
音频电路860、扬声器861,传声器862可提供用户与终端设备800之间的音频接口。音频电路860可将接收到的音频数据转换后的电信号,传输到扬声器861,由扬声器861转换为声音信号输出。
终端设备800还包括给各个部件供电的电源890(比如电池),优选的,电源可以通过电源管理系统与处理器880逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,所述终端设备800还可以包括摄像头、蓝牙模块等,在此不再赘述。
所述处理器880,用于与分组数据网关PGW建立3GPP网络连接;
所述收发器810,还用于向所述网络侧发送隧道处理请求消息,所述隧道处理请求消息包括所述终端设备的标识、所述PGW的标识和接入侧网元的标识,所述接入侧网元为AGW或MGW,所述隧道处理请求消息用于触发所述接入侧网元建立UE在所述AGW与所述MGW之间的隧道以及删除UE在所述MGW与所述PGW之间的网络连接。
可选的,所述收发器810,用于向所述AGW发送隧道处理请求消息,所述隧道处理请求消息用于所述AGW向所述MGW发送隧道建立请求消息,所述隧道建立请求消息包括所述终端设备800的标识、所述AGW的标识和所述PGW的标识,所述隧道建立请求消息用于所述MGW建立所述终端设备800在所述MGW与所述AGW之间的隧道以及删除所述终端设备800在所述MGW与所述PGW之间的网络连接;或者,
所述收发器810,用于向所述MGW发送隧道处理请求消息,所述隧道处理请求消息包括所述终端设备800的标识、所述AGW的标识和所述PGW的 标识,所述隧道处理请求消息用于所述MGW向所述AGW发送隧道建立请求消息以及删除所述终端设备800在所述MGW与所述PGW之间的网络连接,所述隧道建立请求消息包括所述终端设备800的标识和所述MGW的标识,所述隧道建立请求消息用于所述AGW建立所述终端设备800在所述AGW与所述MGW之间的隧道。
可选的,所述处理器880,还用于在所述终端设备800与所述PGW建立3GPP网络连接后,将在所述Non-3GPP中传输的业务切换到在所述3GPP网络中建立的网络连接上。
参见图16,图16是本申请实施例提供的一种网络连接的切换装置900的结构示意图,用于将UE从单独网络连接切换到多流聚合网络连接。可选的,本实施例中,该切换装置900可以为聚合网关(AGW)。
所述切换装置900可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器901、接收器902、发送器903和存储器932,一个或一个以上存储应用程序942或数据944的存储介质930(例如一个或一个以上海量存储设备)。其中,存储器932和存储介质930可以是短暂存储或持久存储。存储在存储介质930的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对所述切换装置900中的一系列指令操作。更进一步地,处理器901可以设置为与存储介质930通信,在所述切换装置900上执行存储介质930中的一系列指令操作。可选的,所述存储介质930存储的操作指令可以是本申请图4~图13中聚合网关(AGW)执行的步骤所对应的操作指令,详见上述方法实施例,在此不再赘述。
所述切换装置900还可以包括一个或一个以上电源926,一个或一个以上有线或无线网络接口950,一个或一个以上输入输出接口958和/或,一个或一个以上操作系统941,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
所述接收器902,用于在用户设备UE与分组数据网关PGW建立3GPP网络连接后接收所述UE和移动性管理网元MME中的一个网元发送的隧道处理请求消息,所述隧道处理请求消息包括多流聚合网关MGW的标识、所述UE的标识和所述PGW的标识;
所述发送器903,用于根据所述MGW的标识向所述MGW发送隧道建立 请求消息,所述隧道建立请求消息包括所述PGW的标识和所述UE的标识,所述隧道建立请求消息用于触发所述MGW建立所述UE在所述MGW与所述切换装置900之间的隧道连接以及删除所述UE在所述MGW与所述PGW之间的网络连接。
可选的,所述接收器902,还用于接收所述MGW发送的隧道建立响应消息,所述隧道建立响应消息包括所述UE在所述UE在所述MGW与所述切换装置900之间的隧道连接的建立结果和所述UE在所述MGW与所述PGW之间的网络连接的删除结果;
所述发送器903,还用于向所述UE发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本申请,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种网络连接的切换方法,用于将终端从单独的网络连接切换到多流聚合网络连接,其特征在于,所述方法包括:
    多流聚合网关MGW在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,所述请求消息包括AGW的标识、所述终端的标识和所述PGW的标识;
    所述MGW根据所述AGW的标识和所述终端的标识建立所述终端在所述MGW与所述AGW之间的隧道;
    所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接。
  2. 如权利要求1所述的方法,其特征在于,所述MGW在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,包括:
    所述MGW接收所述终端在所述终端与所述PGW建立3GPP网络连接后发送的隧道处理请求消息,所述隧道处理请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
    所述MGW接收所述AGW在所述终端与所述PGW建立3GPP网络连接后发送的隧道建立请求消息,所述隧道建立请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
    所述MGW接收所述PGW在所述终端与所述PGW建立3GPP网络连接后发送的会话删除请求消息,所述会话删除请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识。
  3. 如权利要求1所述的方法,其特征在于,所述MGW根据所述AGW的标识和所述终端的标识建立所述终端在所述MGW与所述AGW之间的隧道,包括:
    所述MGW向所述AGW发送隧道建立请求消息,所述隧道建立请求消息包括所述终端的标识和所述MGW的标识,所述隧道建立请求消息用于所述AGW建立所述终端在所述AGW与所述MGW之间的隧道。
  4. 如权利要求1至3任一项权利要求所述的方法,其特征在于,所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接,包括:
    所述MGW根据所述PGW的标识向所述PGW发送会话删除请求消息,所述会话删除请求消息包括所述终端的标识,所述会话删除请求消息用于所述PGW根据所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接。
  5. 如权利要求1至4任一项权利要求所述的方法,其特征在于,所述MGW根据所述PGW的标识和所述终端的标识删除所述终端在所述MGW与所述PGW之间的网络连接之后,还包括:
    所述MGW向所述终端发送所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果。
  6. 如权利要求5所述的方法,其特征在于,所述MGW向所述终端发送所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果,包括:
    所述MGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果;或者,
    所述MGW向所述AGW发送隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述MGW与所述AGW之间的隧道的建立结果以及所述终端在所述MGW与所述PGW之间的网络连接的删除结果,所述隧道建立响应消息用于所述AGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
  7. 一种网络连接的切换方法,用于将终端从单独的网络连接切换到多流聚合网络连接,其特征在于,所述方法包括:
    聚合网关AGW在终端与分组数据网关PGW建立3GPP网络连接后接收所 述终端和移动性管理网元MME中的一个网元发送的隧道处理请求消息,所述隧道处理请求消息包括多流聚合网关MGW的标识、所述终端的标识和所述PGW的标识;
    所述AGW根据所述MGW的标识向所述MGW发送隧道建立请求消息,所述隧道建立请求消息包括所述PGW的标识和所述终端的标识,所述隧道建立请求消息用于所述MGW建立所述终端在所述MGW与所述AGW之间的隧道连接以及删除所述终端在所述MGW与所述PGW之间的网络连接。
  8. 如权利要求7所述的方法,其特征在于,所述所述AGW根据所述MGW的标识向所述MGW发送隧道建立请求消息之后,还包括:
    所述AGW接收所述MGW发送的隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述MGW与所述AGW之间的隧道连接的建立结果和所述终端在所述MGW与所述PGW之间的网络连接的删除结果;
    所述AGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
  9. 一种网络连接的切换装置,用于将终端从单独的网络连接切换到多流聚合多流聚合网络连接,其特征在于,所述切换装置包括收发器和处理器:
    所述收发器,用于在所述终端与分组数据网关PGW建立3GPP网络连接后接收所述终端、所述PGW、聚合网关AGW中的一个网元发送的请求消息,所述请求消息包括AGW的标识、所述终端的标识和所述PGW的标识;
    所述处理器,用于根据所述AGW的标识和所述终端的标识建立所述终端在所述切换装置与所述AGW之间的隧道;根据所述PGW的标识和所述终端的标识删除所述终端在所述切换装置与所述PGW之间的网络连接。
  10. 如权利要求9所述的切换装置,其特征在于,
    所述收发器,用于接收在所述终端在所述终端与所述PGW建立3GPP网络连接后发送的隧道处理请求消息,所述隧道处理请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识;或者,
    所述收发器,用于接收所述AGW在所述终端与所述PGW建立3GPP网络连接后发送的隧道建立请求消息,所述隧道建立请求消息包括所述AGW的标 识、所述终端的标识和所述PGW的标识;或者,
    所述收发器,用于接收所述PGW在所述终端与所述PGW建立3GPP网络连接后发送的会话删除请求消息,所述会话删除请求消息包括所述AGW的标识、所述终端的标识和所述PGW的标识。
  11. 如权利要求9所述的切换装置,其特征在于,
    所述收发器,还用于向所述AGW发送隧道建立请求消息,所述隧道建立请求消息包括所述终端的标识和所述切换装置的标识,所述隧道建立请求消息用于所述AGW建立所述终端在所述AGW与所述切换装置之间的隧道。
  12. 如权利要求9至11任一项权利要求所述的切换装置,其特征在于,
    所述收发器,用于根据所述PGW的标识向所述PGW发送会话删除请求消息,所述会话删除请求消息包括所述终端的标识,所述会话删除请求消息用于所述PGW根据所述终端的标识删除所述终端在所述切换装置与所述PGW之间的网络连接。
  13. 如权利要求9至12任一项权利要求所述的切换装置,其特征在于,所述收发器,还用于向所述终端发送所述终端在所述切换装置与所述AGW之间的隧道的建立结果以及所述终端在所述切换装置与所述PGW之间的网络连接的删除结果。
  14. 如权利要求13所述的切换装置,其特征在于,
    所述收发器,用于向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述终端在所述切换装置与所述AGW之间的隧道的建立结果以及所述终端在所述切换装置与所述PGW之间的网络连接的删除结果;或者,
    所述收发器,用于向所述AGW发送隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述切换装置与所述AGW之间的隧道的建立结果以及所述终端在所述切换装置与所述PGW之间的网络连接的删除结果,所述隧道建立响应消息用于触发所述AGW向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
  15. 一种网络连接的切换装置,用于将终端从单独的网络连接切换到多流聚合网络连接,其特征在于,所述切换装置包括:接收器和发送器;
    所述接收器,用于在终端与分组数据网关PGW建立3GPP网络连接后接收所述终端和移动性管理网元MME中的一个网元发送的隧道处理请求消息,所述隧道处理请求消息包括多流聚合网关MGW的标识、所述终端的标识和所述PGW的标识;
    所述发送器,用于根据所述MGW的标识向所述MGW发送隧道建立请求消息,所述隧道建立请求消息包括所述PGW的标识和所述终端的标识,所述隧道建立请求消息用于触发所述MGW建立所述终端在所述MGW与所述切换装置之间的隧道连接以及删除所述终端在所述MGW与所述PGW之间的网络连接。
  16. 如权利要求15所述的切换装置,其特征在于,
    所述接收器,还用于接收所述MGW发送的隧道建立响应消息,所述隧道建立响应消息包括所述终端在所述终端在所述MGW与所述切换装置之间的隧道连接的建立结果和所述终端在所述MGW与所述PGW之间的网络连接的删除结果;
    所述发送器,还用于向所述终端发送隧道处理响应消息,所述隧道处理响应消息包括所述建立结果和所述删除结果。
PCT/CN2015/088162 2015-08-26 2015-08-26 网络连接的切换方法及装置 WO2017031722A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/088162 WO2017031722A1 (zh) 2015-08-26 2015-08-26 网络连接的切换方法及装置
CN201580082255.XA CN108141879A (zh) 2015-08-26 2015-08-26 网络连接的切换方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088162 WO2017031722A1 (zh) 2015-08-26 2015-08-26 网络连接的切换方法及装置

Publications (1)

Publication Number Publication Date
WO2017031722A1 true WO2017031722A1 (zh) 2017-03-02

Family

ID=58099505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088162 WO2017031722A1 (zh) 2015-08-26 2015-08-26 网络连接的切换方法及装置

Country Status (2)

Country Link
CN (1) CN108141879A (zh)
WO (1) WO2017031722A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452092B1 (ko) 2018-07-20 2022-10-06 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 세션 관리 방법, 단말 기기 및 네트워크 기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033774A2 (en) * 2010-09-07 2012-03-15 Interdigital Patent Holdings, Inc. Bandwidth management, aggregation and internet protocol flow mobility across multiple-access technologies
CN102457924A (zh) * 2010-10-21 2012-05-16 华为技术有限公司 一种多载波的切换方法和装置
CN103650626A (zh) * 2011-07-12 2014-03-19 交互数字专利控股公司 用于多rat接入模式操作的方法和设备
EP2723144A1 (en) * 2012-10-19 2014-04-23 Fujitsu Limited Uplink buffer status report in Multi-RAT System
CN104718791A (zh) * 2012-10-18 2015-06-17 富士通株式会社 多rat系统中的无线通信

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033774A2 (en) * 2010-09-07 2012-03-15 Interdigital Patent Holdings, Inc. Bandwidth management, aggregation and internet protocol flow mobility across multiple-access technologies
CN102457924A (zh) * 2010-10-21 2012-05-16 华为技术有限公司 一种多载波的切换方法和装置
CN103650626A (zh) * 2011-07-12 2014-03-19 交互数字专利控股公司 用于多rat接入模式操作的方法和设备
CN104718791A (zh) * 2012-10-18 2015-06-17 富士通株式会社 多rat系统中的无线通信
EP2723144A1 (en) * 2012-10-19 2014-04-23 Fujitsu Limited Uplink buffer status report in Multi-RAT System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on service fast switch and return in TDD and FDD joint operation", 3GPP TSG-RAN WG1 #74 R1-133522, 23 August 2013 (2013-08-23), XP050716629 *
INTEL CORPORATION;: "Solutions for FDD-TDD joint operation", 3GPP TSG-RAN WG1 #74 R1-132932, 23 August 2013 (2013-08-23), XP050716171 *

Also Published As

Publication number Publication date
CN108141879A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2021159492A1 (zh) 接入控制方法、装置、通信设备及存储介质
US11330642B2 (en) Method for supporting and providing LADN service in wireless communication system and apparatus therefor
KR102267267B1 (ko) 세션 컨텍스트 변환
KR102570017B1 (ko) 세션 관리 방법 및 장치
CN109716826B (zh) 接入方法、网络设备、终端设备和amf设备
US11627486B2 (en) Data sending method and apparatus, and device
CN104798391B (zh) 服务网络、时区和uci的报告
US11917503B2 (en) SMS via NAS carried by non-cellular access
US11258708B2 (en) Communication method and communications apparatus
US10051607B2 (en) Data processing method, apparatus and system
WO2018228517A1 (zh) 一种接入控制的方法、网络设备以及终端设备
US20230047783A1 (en) Data transmission method and apparatus
US20180176340A1 (en) Data transmission method, and related device and system
TWI678903B (zh) 一種上行資料傳輸方法及終端
WO2017076279A1 (zh) 一种更新路由表项的方法、装置及系统
WO2017031722A1 (zh) 网络连接的切换方法及装置
WO2021077266A1 (zh) 网络接入方法、装置、通信设备及存储介质
WO2024022370A1 (zh) 信息获取和发送方法、服务器访问和会话建立方法及设备
WO2018137180A1 (zh) 域名访问方法及装置
US20230224769A1 (en) Method and apparatus for controlling data transmission rate communication device, and storage medium
WO2024067331A1 (zh) 个人物联网中的设备切换方法、通信方法及设备
WO2023240643A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2024092640A1 (zh) 信息处理方法以及装置、通信设备及存储介质
WO2023065088A1 (zh) 边缘应用服务器的选择方法及装置、网元设备、终端及存储介质
CN116267035A (zh) 边缘服务器的路由选择方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901993

Country of ref document: EP

Kind code of ref document: A1