WO2017031046A1 - Methods for removing acidic impurities from halogenated propenes - Google Patents

Methods for removing acidic impurities from halogenated propenes Download PDF

Info

Publication number
WO2017031046A1
WO2017031046A1 PCT/US2016/047009 US2016047009W WO2017031046A1 WO 2017031046 A1 WO2017031046 A1 WO 2017031046A1 US 2016047009 W US2016047009 W US 2016047009W WO 2017031046 A1 WO2017031046 A1 WO 2017031046A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
halogenated
acid
reactive agent
acid reactive
Prior art date
Application number
PCT/US2016/047009
Other languages
French (fr)
Inventor
Haiyou Wang
Hsueh Sung Tung
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to EP21189983.6A priority Critical patent/EP3922623A1/en
Priority to JP2018508765A priority patent/JP6893915B2/en
Priority to CN201680060958.7A priority patent/CN108137448B/en
Priority to MX2018002004A priority patent/MX2018002004A/en
Priority to EP16837644.0A priority patent/EP3337778B1/en
Priority to KR1020187006551A priority patent/KR20180031780A/en
Priority to ES16837644T priority patent/ES2896499T3/en
Publication of WO2017031046A1 publication Critical patent/WO2017031046A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/42Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the invention pertains to a method for removing acidic impurities from halogenated olefins, especially methods for removing acidic impurities from halogenated propenes, and even more particularly to methods for removing acidic impurities from 1,3,3,3-tetrafluoro-l-propene (HFO-1234ze), 2,3,3,3-tetrafluoro-l- propene (HFO-1234yf), l-chloro-3,3,3-trifluoro-l-propene (HCFO-1233zd), and 2- chloro-3,3,3-trifluoro-l-propene (HCFO-1233xf).
  • HFO-1234ze 1,3,3,3-tetrafluoro-l-propene
  • HFO-1234yf 2,3,3,3-tetrafluoro-l- propene
  • HCFO-1233zd 2- chloro-3,3,3-trifluoro-l-propene
  • HCFO-1233xf 2-
  • Chlorofluorocarbons like trichlorofluoromethane
  • dichlorodifluoro-methane have been used as refrigerants, blowing agents and diluents for gaseous sterilization.
  • chloro-fluorocarbons might be detrimental to the Earth's ozone layer.
  • halocarbons which contain fewer or no chlorine substituents.
  • hydrofluorocarbons, or compounds containing only carbon, hydrogen and fluorine has been the subject of increasing interest to provide environmentally desirable products for use as solvents, blowing agents, refrigerants, cleaning agents, aerosol propellants, heat transfer media, dielectrics, fire extinguishing compositions and power cycle working fluids.
  • trans- 1,3,3,3-tetrafluoro-propene (trans-1234ze or 1234zeE), trans-l-chloro-3,3,3- trifluoropropene (trans-1233zd or 1233zdE), and 2,3,3,3-tetrafluoropropene (1234yf) are among a number of products that have been or are being commercialized for various applications.
  • concentrated sulfuric acid is often used as a drying agent since it has a very strong affinity for water.
  • the absorption of water into sulfuric acid can be realized in a typical drying acid system, which typically consists of a drying tower, acid pump tank, acid pump, acid cooler, piping, and instrumentation and controls.
  • a typical drying tower is a vertical cylindrical vessel designed to contact process gas and strong sulfuric acid (93% to 98.5% H 2 SO 4 ) for the purpose of drying the gas.
  • halogenated propenes are reactive with sulfuric acid, generating small amounts of acids, non- exclusively including HF and HC1, which could cause corrosion to the down-stream processing equipment such as distillation columns, pumps, storage tanks, etc.
  • Non- limiting examples of these halogenated propenes include 1,3,3,3-tetrafluoropropene (1234ze), l-chloro-3,3,3-trifluoropropene (1233zd), and 2-chloro-3,3,3- trifluoropropene (1233xf).
  • the first two can be used as final products, while the third is a useful intermediate for making 2,3,3,3-tetrafluoropropene. Therefore, there is a need for means by which the acid(s) present in various halogenated propene streams can be removed using a cost-effective method.
  • halogenated propenes non-exclusively including 1,3,3,3-tetrafluoropropene (1234ze), 2,3,3,3-tetrafluoro-l -propene (1234yf), l-chloro-3,3,3-trifluoropropene (1233zd), and 2-chloro-3,3,3-trifluoropropene (1233xf).
  • acidic impurities include hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid ( H 2 SO 4 ), trifluoroacetic acid (CF 3 COOH), and mixtures of two or more of such acids.
  • the acid reactive agent can be selected from the group consisting of metal oxides such as aluminum oxide, alkaline earth metal oxide, alkali metal oxide, metal hydroxides such as aluminum hydroxide, alkaline earth metal hydroxide, and alkali metal hydroxide, aluminosilicate minerals such as andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate, silicon oxide, and their various combinations.
  • the solid adsorbent bed additionally contains a water absorbing agent.
  • the water absorbing agent can be selected from the group comprising inorganic salts such as magnesium sulfate, calcium sulfate (Drierite), and calcium chloride, molecular sieves (molsiv) such as 3A, 4A, 5A, AW500, XH-7, XH- 9, and 13X, silica gel, activated carbons, and various combinations of thereof.
  • the solid adsorbent bed contains an acid reactive agent at the top section and a water absorbing agent at the bottom section, and the halogenated propene stream enters the solid adsorbent bed from the top section.
  • activated alumina is used as acid reactive agent, 3 A or XH-9 as water absorbing agent.
  • one embodiment of the invention is a method for removing acidic impurity from halogenated olefins comprising contacting a liquid or gas stream comprising a halogenated olefin by passing the stream through a solid adsorbent bed which contains at least one acid reactive agent and wherein the solid adsorbent bed additionally contains a water absorbing agent; and wherein the acidic impurities are selected from the group consisting of hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid ( H 2 SO 4 ), trifluoroacetic acid (CF 3 COOH), and mixtures of two or more of these acids.
  • HF hydrogen fluoride
  • HC1 hydrogen chloride
  • sulfuric acid H 2 SO 4
  • CF 3 COOH trifluoroacetic acid
  • One embodiment of the invention is a method for removing acidic impurity from halogenated olefins comprising contacting a liquid or gas stream comprising a halogenated olefin by passing the stream through a solid adsorbent bed comprising at least one acid reactive agent and at least one water absorbing agent; wherein the acidic impurities are selected from the group consisting of hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid ( H 2 SO 4 ),
  • halogenated olefins comprise halogenated propenes selected from the group consisting of 1,3,3,3-tetrafluoro-l-propene (HFO-1234ze), 2,3,3,3- tetrafluoro-l-propene (HFO-1234yf), l-chloro-3,3,3-trifluoro-l-propene (HCFO- 1233zd), and 2-chloro-3,3,3-trifluoro-l-propene (HCFO-1233xf).
  • HFO-1234ze 1,3,3,3-tetrafluoro-l-propene
  • HFO-1234yf 2,3,3,3- tetrafluoro-l-propene
  • HCFO- 1233zd 2-chloro-3,3,3-trifluoro-l-propene
  • the acid reactive agent is selected from:
  • aluminosilicate mineral selected from the group consisting of andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate, and mixtures thereof;
  • the water absorbing agent is selected from:
  • the present invention can be generally described as a method for removing acidic impurities, non-exclusively including hydrogen fluoride (HF), hydrogen chloride (HQ), sulfuric acid ( H 2 SO 4 ), and trifluoroacetic acid (CF 3 COOH) present in a liquid or gas stream of halogenated propene, non-exclusively selected from the group comprising 1,3,3,3-tetrafluoropropene (1234ze), 2,3,3,3-tetrafiuoro-l-propene (1234yf), l-chloro-3,3,3-trifluoropropene (1233zd), and 2-chloro-3,3,3- trifluoropropene (1233x0, by passing the halogenated propene stream in liquid or gas form through a solid adsorbent bed containing at least an acid reactive agent.
  • HF hydrogen fluoride
  • HQ hydrogen chloride
  • SO 4 sulfuric acid
  • CF 3 COOH trifluoroacetic acid
  • the organic portion of halogenated propene stream is a purified product comprising a single halogenated propene (e.g., trans-1234ze, trans-1233zd, 1233xf, or 1234yf).
  • the organic portion of halogenated propene stream is a crude product comprising one or more halogenated propenes, and one or more halogenated propanes (e.g., a mixture of trans- 1234ze, cis-1234ze, 245fa, etc.).
  • the passage of halogenated propene stream through the solid adsorbent bed is a once-through process, in which the organic stream is passed through the adsorbent bed only for a single time.
  • the passage of halogenated propene stream through the solid adsorbent bed is a circulation process, in which the organic stream is circulated through the adsorbent bed for multiple times.
  • the acid reactive agent can be selected from the group comprising metal oxides such as aluminum oxide (alumina), alkaline earth metal oxide, alkali metal oxide, metal hydroxides such as aluminum hydroxide, alkaline earth metal hydroxide, and alkali metal hydroxide, aluminosilicate minerals such as andalusite, kyanite , sillimanite, calcium aluminosilicate, sodium aluminosilicate, silicon oxide, and their various combinations.
  • metal oxides such as aluminum oxide (alumina), alkaline earth metal oxide, alkali metal oxide, metal hydroxides such as aluminum hydroxide, alkaline earth metal hydroxide, and alkali metal hydroxide, aluminosilicate minerals such as andalusite, kyanite , sillimanite, calcium aluminosilicate, sodium aluminosilicate, silicon oxide, and their various combinations.
  • alumina is used as acid reactive agent.
  • activated alumina is used.
  • Activated alumina is a porous, granular substance, and can be manufactured from aluminum hydroxide by dehydroxylating it in a way that produces a highly porous material.
  • Activated alumina can have a surface area significantly over 200 rrrVg.
  • the solid adsorbent bed additionally contains a water absorbing agent.
  • the water absorbing agent can be selected from the group comprising inorganic salts such as magnesium sulfate, calcium sulfate (Drierite), and calcium chloride, molecular sieves such as 3A, 4A, 5A, AW500, XH-7, XH-9, and 13X, silica gel, activated carbons, and various combinations of thereof.
  • a molecular sieve is used as water absorbing agent.
  • a molecular sieve is a material with very small holes of precise and uniform size. These holes are small enough to block large molecules, while allowing small molecules to pass.
  • 3A is used for once- through process.
  • XH-9 is used for circulation process.
  • the acid reactive agent is at the top section and the water absorbing agent at the bottom section, and the halogenated propene stream enters the solid adsorbent bed from the top section (in other words, the acid reactive agent contacts the organic stream first).
  • the amount of water absorbing agent layer relative to acid reactive agent layer can be determined experimentally or based on their adsorption capacities. In some embodiments of this invention, the volume of water absorbing agent layer is 10 to 60%. In some embodiments of this invention, the volume of water absorbing agent layer is 30 to 50%.
  • the contact between the halogenated propene stream and the acid reactive agent may be conducted in any suitable vessel or reactor, which should preferably be constructed from materials that are resistant to the corrosive effects of various acids including stainless steel, Hastelloy, Inconel, Incoloy, Monel, or fluoropolymer-lined.
  • the temperature during the contacting step is from about -20°C to about 200°C. In some embodiments of this invention, the temperature during the contacting step is from about 0°C to about 100°C. In some embodiments of this invention, the temperature during the contacting step is from about 10°C to about 50°C. In some embodiments of this invention, the temperature during the contacting step is about room temperature.
  • the pressure during the contacting step is not critical and can be in the range of from about 10 kPa to about 3000 kPa.
  • the mixture of halogenated propene and acidic impurity is scrubbed with acid reactive agent in the contacting vessel, and the acidic impurity is removed.
  • the concentration of at least one acidic impurity in the mixture is reduced to 0.S ppm or less. In some embodiments of this invention, the concentration of at least one acidic impurity in the mixture is reduced to 0.1 ppm or less. In some embodiments of this invention, the concentration of at least one acidic impurity in the mixture is reduced to 0.0S ppm or less. In some embodiments of this invention, the amount of at least one acidic impurity in the mixture is reduced by at least about 50% by weight relative to the amount originally present. In some embodiments of this invention, the amount of at least one acidic impurity in the mixture is reduced by at least about 80% by weight relative to the amount originally present. In some embodiments of this invention, the amount of at least one acidic impurity in the mixture is reduced by at least about 95% by weight relative to the amount originally present.
  • the halogenated propene having reduced concentration of the acidic impurity obtained from the contacting step can be recovered using techniques well-known in the art, such as condensation or distillation.
  • the halogenated propene obtained from the contacting step may be further purified by fractional distillation.
  • Example 1 The removal of acid(s) included in crude 1234zeE over various solid adsorbents
  • the organic was crude 1234zeE, which contained 45-60% 1234zeE, 30-45% 245fa, and 5-15% 1234zeZ.
  • the solid adsorbents tested include silica gel, alumina, XH-9, 3A and 4A molsiv.
  • HF was indeed formed in sulfuric acid reactor. Nevertheless, its level in DI water trap (i.e., in the outlet of solid adsorbent column) was significantly lower.
  • the concentration of HF in organic stream after solid adsorbent column was calculated and listed in the last column of Table 1. One can see negligible amount of HF was detected when alumina, 3A molsiv, or 4A molsiv was used.
  • Example 2 The removal of acid(s) included in crude 1234zeE over alumina
  • reactor effluent samples i.e., alumina column inlet samples
  • DI water samples i.e., alumina column outlet samples
  • the organic was crude 1234zeE, which contained 45-60% 1234zeE, 30-45% 245fa, and 5-15% 1234zeZ.
  • Table 2 while the HF concentration in the inlet of alumina column was about 22 ppm on average, negligible amount of HF was detected in the outlet of the column, once again indicating alumina was efficient for removing HF.
  • Calculation using total organic amount passed through the alumina column and averaged HF concentrations in the inlet and the outlet of the alumina column showed the amount of HF adsorbed reached 9.2% of alumina weight after 25 days on stream.
  • the organic was 1234zeE product, which was 99.9+% pure.
  • the IC analysis results showed negligible HF ( ⁇ 0.1 ppm) was present in DI water.
  • reactor effluent samples i.e., alumina column inlet samples
  • DI water samples i.e., alumina column outlet samples
  • the organic was 1233xf intermediate, which was 99+% pure.
  • the IC analysis results showed the average concentrations of HF and HC1 in the inlet of alumina/3A column were about 1, and 65 ppm, respectively, but negligible amounts ( ⁇ 0.1 ppm) of HF and HC1 were detected in the outlet of the column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

This invention pertains to a method for removing acidic impurity from halogenated olefins, especially methods for removing acidic impurity from halogenated propenes, and even more particularly to methods for removing acidic impurity from 1,3,3,3-tetrafluoro-1-propene (HFO-1234ze), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), 1-chloro-3,3,3-trifluoro-1-propene (HCFO-1233zd), and 2-chloro-3,3,3-trifluoro-1-propene (HCFO-1233xf). The method is conducted by passing the halogenated olefin stream, in liquid or gas form, through a solid adsorbent bed, which contains at least one acid reactive agent.

Description

METHODS FOR REMOVING ACIDIC IMPURITIES
FROM HALOGENATED PROPENES
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims domestic priority from commonly owned, copending, U.S. Provisional Patent Application Serial No. 62/206,916, filed 19 August 2015, the disclosure of which is hereby incorporated herein by reference.
FIELD OF THE INVENTION
The invention pertains to a method for removing acidic impurities from halogenated olefins, especially methods for removing acidic impurities from halogenated propenes, and even more particularly to methods for removing acidic impurities from 1,3,3,3-tetrafluoro-l-propene (HFO-1234ze), 2,3,3,3-tetrafluoro-l- propene (HFO-1234yf), l-chloro-3,3,3-trifluoro-l-propene (HCFO-1233zd), and 2- chloro-3,3,3-trifluoro-l-propene (HCFO-1233xf).
BACKGROUND OF THE INVENTION
Chlorofluorocarbons (CFCs) like trichlorofluoromethane and
dichlorodifluoro-methane have been used as refrigerants, blowing agents and diluents for gaseous sterilization. In recent years, there has been widespread concern that certain chloro-fluorocarbons might be detrimental to the Earth's ozone layer. As a result, there is a worldwide effort to use halocarbons which contain fewer or no chlorine substituents. Accordingly, the production of hydrofluorocarbons, or compounds containing only carbon, hydrogen and fluorine, has been the subject of increasing interest to provide environmentally desirable products for use as solvents, blowing agents, refrigerants, cleaning agents, aerosol propellants, heat transfer media, dielectrics, fire extinguishing compositions and power cycle working fluids. In this regard, trans- 1,3,3,3-tetrafluoro-propene (trans-1234ze or 1234zeE), trans-l-chloro-3,3,3- trifluoropropene (trans-1233zd or 1233zdE), and 2,3,3,3-tetrafluoropropene (1234yf) are among a number of products that have been or are being commercialized for various applications.
There are numerous processes directed to the manufacture of fluorinated organic compounds and to compositions containing such compounds. Many of these processes involve the reaction of an organic compound, such as a chloroalkane or chloroalkene, with hydrogen fluoride (HF) in the presence of a fluorination catalyst. In many of these processes, water is present in one or more of the reaction product streams containing the desired fluorinated organic compound. This water may originate as an impurity in the reactants or other starting materials. The water also may be formed as a byproduct from the reaction process, including reaction of HF with the catalyst, and/or as a product of the catalyst regeneration process. Moreover, the water may be entrained from an upstream unit operation such as a caustic solution scrubber in which acidic gases are neutralized and removed.
To remove the water included in acid-free hydrofluorcarbon and/or hydrochloro-fluorocarbon streams, concentrated sulfuric acid is often used as a drying agent since it has a very strong affinity for water. The absorption of water into sulfuric acid can be realized in a typical drying acid system, which typically consists of a drying tower, acid pump tank, acid pump, acid cooler, piping, and instrumentation and controls. A typical drying tower is a vertical cylindrical vessel designed to contact process gas and strong sulfuric acid (93% to 98.5% H2SO4) for the purpose of drying the gas.
Recently, Applicants have unexpectedly discovered that certain halogenated propenes are reactive with sulfuric acid, generating small amounts of acids, non- exclusively including HF and HC1, which could cause corrosion to the down-stream processing equipment such as distillation columns, pumps, storage tanks, etc. Non- limiting examples of these halogenated propenes include 1,3,3,3-tetrafluoropropene (1234ze), l-chloro-3,3,3-trifluoropropene (1233zd), and 2-chloro-3,3,3- trifluoropropene (1233xf). The first two can be used as final products, while the third is a useful intermediate for making 2,3,3,3-tetrafluoropropene. Therefore, there is a need for means by which the acid(s) present in various halogenated propene streams can be removed using a cost-effective method.
SUMMARY OF THE INVENTION
The present inventors have come to appreciate a need in the art for a method of removing acidic impurities included in halogenated propenes, non-exclusively including 1,3,3,3-tetrafluoropropene (1234ze), 2,3,3,3-tetrafluoro-l -propene (1234yf), l-chloro-3,3,3-trifluoropropene (1233zd), and 2-chloro-3,3,3-trifluoropropene (1233xf). Non-limiting examples of acidic impurities include hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid ( H2SO4), trifluoroacetic acid (CF3COOH), and mixtures of two or more of such acids.
It has been found that mis need can be satisfied by passing the halogenated propene stream in liquid or gas form through a solid adsorbent bed, which contains at least one acid reactive agent. The acid reactive agent can be selected from the group consisting of metal oxides such as aluminum oxide, alkaline earth metal oxide, alkali metal oxide, metal hydroxides such as aluminum hydroxide, alkaline earth metal hydroxide, and alkali metal hydroxide, aluminosilicate minerals such as andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate, silicon oxide, and their various combinations.
In view that water may be generated from the reaction between acid and acid reactive agent, preferably, the solid adsorbent bed additionally contains a water absorbing agent. The water absorbing agent can be selected from the group comprising inorganic salts such as magnesium sulfate, calcium sulfate (Drierite), and calcium chloride, molecular sieves (molsiv) such as 3A, 4A, 5A, AW500, XH-7, XH- 9, and 13X, silica gel, activated carbons, and various combinations of thereof.
Preferably, the solid adsorbent bed contains an acid reactive agent at the top section and a water absorbing agent at the bottom section, and the halogenated propene stream enters the solid adsorbent bed from the top section. In preferred embodiment, activated alumina is used as acid reactive agent, 3 A or XH-9 as water absorbing agent. By applying this teaching, a halogenated propene stream that is essentially free of acid can be achieved.
Thus, one embodiment of the invention is a method for removing acidic impurity from halogenated olefins comprising contacting a liquid or gas stream comprising a halogenated olefin by passing the stream through a solid adsorbent bed which contains at least one acid reactive agent and wherein the solid adsorbent bed additionally contains a water absorbing agent; and wherein the acidic impurities are selected from the group consisting of hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid ( H2SO4), trifluoroacetic acid (CF3COOH), and mixtures of two or more of these acids.
One embodiment of the invention is a method for removing acidic impurity from halogenated olefins comprising contacting a liquid or gas stream comprising a halogenated olefin by passing the stream through a solid adsorbent bed comprising at least one acid reactive agent and at least one water absorbing agent; wherein the acidic impurities are selected from the group consisting of hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid ( H2SO4),
trifluoroacetic acid (CF3COOH), and mixtures of two or more of these acids; and wherein the halogenated olefins comprise halogenated propenes selected from the group consisting of 1,3,3,3-tetrafluoro-l-propene (HFO-1234ze), 2,3,3,3- tetrafluoro-l-propene (HFO-1234yf), l-chloro-3,3,3-trifluoro-l-propene (HCFO- 1233zd), and 2-chloro-3,3,3-trifluoro-l-propene (HCFO-1233xf).
In certain embodiments, the acid reactive agent is selected from:
(a) the group consisting of metal oxides, alkaline earth metal oxides, alkali metal oxides, and mixtures thereof;
(b) the group consisting of metal hydroxides, alkaline earth metal hydroxides, alkali metal hydroxides, and mixtures thereof; (c) an aluminosilicate mineral selected from the group consisting of andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate, and mixtures thereof;
(d) silicon oxide; and
(e) activated alumina.
In certain embodiments, the water absorbing agent is selected from:
(a) the group consisting of inorganic salts, magnesium sulfate, calcium sulfate, calcium chloride, and combinations thereof;
(b) the group consisting of molecular sieves 3A, 4A, 5 A, AW500, XH-7, XH-9, 13X and combinations thereof; and
(c) the group consisting of silica gel, activated carbon, and combinations of thereof.
It should be appreciated by those persons having ordinary skill in the art(s) to which the present invention relates that any of the features described herein in respect of any particular aspect and/or embodiment of the present invention can be combined with one or more of any of the other features of any other aspects and/or embodiments of the present invention described herein, with modifications as appropriate to ensure compatibility of the combinations. Such combinations are considered to be part of the present invention contemplated by this disclosure.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein.
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be generally described as a method for removing acidic impurities, non-exclusively including hydrogen fluoride (HF), hydrogen chloride (HQ), sulfuric acid ( H2SO4), and trifluoroacetic acid (CF3COOH) present in a liquid or gas stream of halogenated propene, non-exclusively selected from the group comprising 1,3,3,3-tetrafluoropropene (1234ze), 2,3,3,3-tetrafiuoro-l-propene (1234yf), l-chloro-3,3,3-trifluoropropene (1233zd), and 2-chloro-3,3,3- trifluoropropene (1233x0, by passing the halogenated propene stream in liquid or gas form through a solid adsorbent bed containing at least an acid reactive agent.
In some embodiments of this invention, the organic portion of halogenated propene stream is a purified product comprising a single halogenated propene (e.g., trans-1234ze, trans-1233zd, 1233xf, or 1234yf). In some embodiments of this invention, the organic portion of halogenated propene stream is a crude product comprising one or more halogenated propenes, and one or more halogenated propanes (e.g., a mixture of trans- 1234ze, cis-1234ze, 245fa, etc.). In some embodiments of this invention, the passage of halogenated propene stream through the solid adsorbent bed is a once-through process, in which the organic stream is passed through the adsorbent bed only for a single time. In some embodiments of mis invention, the passage of halogenated propene stream through the solid adsorbent bed is a circulation process, in which the organic stream is circulated through the adsorbent bed for multiple times.
The acid reactive agent can be selected from the group comprising metal oxides such as aluminum oxide (alumina), alkaline earth metal oxide, alkali metal oxide, metal hydroxides such as aluminum hydroxide, alkaline earth metal hydroxide, and alkali metal hydroxide, aluminosilicate minerals such as andalusite, kyanite , sillimanite, calcium aluminosilicate, sodium aluminosilicate, silicon oxide, and their various combinations. In some preferred embodiments, alumina is used as acid reactive agent. In some even more preferred embodiments, activated alumina is used. Activated alumina is a porous, granular substance, and can be manufactured from aluminum hydroxide by dehydroxylating it in a way that produces a highly porous material. Activated alumina can have a surface area significantly over 200 rrrVg.
In view that water may be generated from the reaction between acid and acid reactive agent, preferably, the solid adsorbent bed additionally contains a water absorbing agent. The water absorbing agent can be selected from the group comprising inorganic salts such as magnesium sulfate, calcium sulfate (Drierite), and calcium chloride, molecular sieves such as 3A, 4A, 5A, AW500, XH-7, XH-9, and 13X, silica gel, activated carbons, and various combinations of thereof.
In some preferred embodiments, a molecular sieve is used as water absorbing agent. A molecular sieve is a material with very small holes of precise and uniform size. These holes are small enough to block large molecules, while allowing small molecules to pass. In an even more preferred embodiment, 3A is used for once- through process. In another more preferred embodiment, XH-9 is used for circulation process.
When both acid reactive agent and water absorbing agent are present in the solid adsorbent bed, preferably, the acid reactive agent is at the top section and the water absorbing agent at the bottom section, and the halogenated propene stream enters the solid adsorbent bed from the top section (in other words, the acid reactive agent contacts the organic stream first). The amount of water absorbing agent layer relative to acid reactive agent layer can be determined experimentally or based on their adsorption capacities. In some embodiments of this invention, the volume of water absorbing agent layer is 10 to 60%. In some embodiments of this invention, the volume of water absorbing agent layer is 30 to 50%.
The contact between the halogenated propene stream and the acid reactive agent (or both the acid reactive agent and the water absorbing agent) may be conducted in any suitable vessel or reactor, which should preferably be constructed from materials that are resistant to the corrosive effects of various acids including stainless steel, Hastelloy, Inconel, Incoloy, Monel, or fluoropolymer-lined.
In some embodiments of this invention, the temperature during the contacting step is from about -20°C to about 200°C. In some embodiments of this invention, the temperature during the contacting step is from about 0°C to about 100°C. In some embodiments of this invention, the temperature during the contacting step is from about 10°C to about 50°C. In some embodiments of this invention, the temperature during the contacting step is about room temperature. The pressure during the contacting step is not critical and can be in the range of from about 10 kPa to about 3000 kPa. During the contacting step, the mixture of halogenated propene and acidic impurity is scrubbed with acid reactive agent in the contacting vessel, and the acidic impurity is removed. In some embodiments of this invention, the concentration of at least one acidic impurity in the mixture is reduced to 0.S ppm or less. In some embodiments of this invention, the concentration of at least one acidic impurity in the mixture is reduced to 0.1 ppm or less. In some embodiments of this invention, the concentration of at least one acidic impurity in the mixture is reduced to 0.0S ppm or less. In some embodiments of this invention, the amount of at least one acidic impurity in the mixture is reduced by at least about 50% by weight relative to the amount originally present. In some embodiments of this invention, the amount of at least one acidic impurity in the mixture is reduced by at least about 80% by weight relative to the amount originally present. In some embodiments of this invention, the amount of at least one acidic impurity in the mixture is reduced by at least about 95% by weight relative to the amount originally present.
The halogenated propene having reduced concentration of the acidic impurity obtained from the contacting step can be recovered using techniques well-known in the art, such as condensation or distillation. In some embodiments of this invention, the halogenated propene obtained from the contacting step may be further purified by fractional distillation.
EXAMPLES
The following non-limiting examples serve to illustrate the invention.
Example 1 - The removal of acid(s) included in crude 1234zeE over various solid adsorbents
15 ml 95% H2SO4 was charged into a PFA reactor vessel, which was heated to 38°C using an oil bath. The temperature was maintained at the set point for 30 min before the addition of organic was started to ensure the H2SO4 was uniformly heated to the set point. Magnetic stirring was applied to the reactor vessel throughout the experiment to ensure constant temperature and mixing of the organic and the H2SO4. The reactor outlet was connected to a solid adsorbent column and then a PFA trap containing 20 ml Dl-water to absorb acids (if any). At the end of experiments, the contents of the PFA- H2SO4 reactor vessel were analyzed by 19F-NMR and the contents of the Dl-Water trap by IC.
In this example, the organic was crude 1234zeE, which contained 45-60% 1234zeE, 30-45% 245fa, and 5-15% 1234zeZ. The solid adsorbents tested include silica gel, alumina, XH-9, 3A and 4A molsiv. As shown in Table 1, HF was indeed formed in sulfuric acid reactor. Nevertheless, its level in DI water trap (i.e., in the outlet of solid adsorbent column) was significantly lower. The concentration of HF in organic stream after solid adsorbent column was calculated and listed in the last column of Table 1. One can see negligible amount of HF was detected when alumina, 3A molsiv, or 4A molsiv was used.
Table 1
Figure imgf000011_0001
1 The acidity was most likely originated from SiF4 hydrolysis as evidence by the presence of silicon ion in DI water
Example 2 - The removal of acid(s) included in crude 1234zeE over alumina
15 ml 95% H2SO4 was charged into a PFA reactor vessel, which was heated to 38°C using an oil bath. The temperature was maintained at the set point for 30 min before the flow of organic was started at an average flow rate of 106 g/h to ensure the H2SO4 was uniformly heated to the set point. Magnetic stirring was applied to the reactor vessel throughout the experiment to ensure constant temperature and mixing of the organic and the H2SO4. The outlet from the reactor vessel was connected to an activated alumina column containing 20 ml (15.1 g) alumina and then to a PFA trap containing 40 ml Dl-water to "scrub" the reactor effluent gases. During experiments, reactor effluent samples (i.e., alumina column inlet samples) and DI water samples (i.e., alumina column outlet samples) were periodically taken and analyzed by means of IC to determine the HF levels in the inlet and outlet of alumina column. In this example, the organic was crude 1234zeE, which contained 45-60% 1234zeE, 30-45% 245fa, and 5-15% 1234zeZ. As shown in Table 2, while the HF concentration in the inlet of alumina column was about 22 ppm on average, negligible amount of HF was detected in the outlet of the column, once again indicating alumina was efficient for removing HF. Calculation using total organic amount passed through the alumina column and averaged HF concentrations in the inlet and the outlet of the alumina column showed the amount of HF adsorbed reached 9.2% of alumina weight after 25 days on stream.
Table 2
Figure imgf000012_0001
Figure imgf000013_0001
Example 3 - The removal of acid(s) included in 1234zeE product
15 ml 95% H2SO4 was charged into a PFA reactor vessel, which was heated to 38°C using an oil bath. The temperature was maintained at the set point for 30 min before the flow of organic was started at an average flow rate of 35 g/h to ensure the H2SO4 was uniformly heated to the set point. Magnetic stirring was applied to the reactor vessel throughout the experiment to ensure constant temperature and mixing of die organic and the H2SO4. The outlet from the reactor vessel was connected to a combined 20 ml alumina/20ml XH-9 molsiv column and then a PFA trap containing 20 ml Dl-water to absorb acids (if any). At the end of experiments, which lasted for 59 hours, the contents of the Dl-Water trap were analyzed by IC.
In mis example, the organic was 1234zeE product, which was 99.9+% pure. The IC analysis results showed negligible HF (< 0.1 ppm) was present in DI water.
Example 4 - The removal of acid(s) included in 1233xf intermediate
15 ml 95-98% H2SO4 was charged into a PFA reactor vessel, which was heated to 38°C using an oil bath. The temperature was maintained at the set point for 30 min before the flow of organic was started at an average flow rate of 30 g/h to ensure the H2SO4 was uniformly heated to the set point. Magnetic stirring was applied to the reactor vessel throughout the experiment to ensure constant temperature and mixing of the organic and the H2SO4. The outlet from the reactor vessel was connected to a combined 20 ml alumina/20 ml 3A molsiv column and then a PFA trap containing 20 ml Dl-water to absorb acids (if any). During experiments, reactor effluent samples (i.e., alumina column inlet samples) and DI water samples (i.e., alumina column outlet samples) were periodically taken and analyzed by means of IC to determine the HF levels in the inlet and outlet of alumina column.
In this example, the organic was 1233xf intermediate, which was 99+% pure. The IC analysis results showed the average concentrations of HF and HC1 in the inlet of alumina/3A column were about 1, and 65 ppm, respectively, but negligible amounts (< 0.1 ppm) of HF and HC1 were detected in the outlet of the column.
As used herein, the singular forms "a", "an" and "the" include plural unless the context clearly dictates otherwise. Moreover, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
From the foregoing, it will be appreciated that although specific examples have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit or scope of this disclosure. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and mat it be understood that it is the following claims, including all equivalents, that are intended to particularly point out and distinctly claim the claimed subject matter.

Claims

WHAT IS CLAIMED IS:
1. A method for removing acidic impurity from halogenated olefins comprising contacting a liquid or gas stream comprising a halogenated olefin by passing the stream through a solid adsorbent bed comprising at least one acid reactive agent and at least one water absorbing agent; and wherein the acidic impurities are selected from the group consisting of hydrogen fluoride (HF), hydrogen chloride (HC1), sulfuric acid (H2SO4), trifluoroacetic acid (CF3COOH), and mixtures of two or more of these acids.
2. The method of Claim 1 , wherein the halogenated olefins comprise halogenated propenes selected from the group consisting of 1,3,3,3-tetrafluoro-l-
Figure imgf000015_0001
3. The method of Claim 1, wherein the acid reactive agent is selected from the group consisting of metal oxides, alkaline earth metal oxides, alkali metal oxides, and mixtures thereof.
4. The method of Claim 1 , wherein the acid reactive agent is selected from the group consisting of metal hydroxides, alkaline earth metal hydroxides, alkali metal hydroxides, and mixtures thereof.
5. The method of Claim 1, wherein the acid reactive agent comprises an aluminosilicate mineral selected from the group consisting of andalusite, kyanite, sillimanite, calcium aluminosilicate, sodium aluminosilicate, and mixtures thereof.
6. The method of Claim 1, wherein the acid reactive agent comprises silicon oxide.
7. The method of Claim 1, wherein the acid reactive agent comprises activated alumina.
8. The method of Claim 1 , wherein the water absorbing agent is selected from the group consisting of inorganic salts, magnesium sulfate, calcium sulfate, calcium chloride, and combinations thereof.
9. The method of Claim 1, wherein the water absorbing agent is selected from the group consisting of molecular sieves 3 A, 4A, 5 A, AW500, XH-7, XH-9, 13X and combinations thereof.
10. The method of Claim 1, wherein the water absorbing agent is selected from die group consisting of silica gel, activated carbon, and combinations of thereof
PCT/US2016/047009 2015-08-19 2016-08-15 Methods for removing acidic impurities from halogenated propenes WO2017031046A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21189983.6A EP3922623A1 (en) 2015-08-19 2016-08-15 Methods for removing acidic impurities from halogenated propenes
JP2018508765A JP6893915B2 (en) 2015-08-19 2016-08-15 How to remove acid impurities from halogenated propene
CN201680060958.7A CN108137448B (en) 2015-08-19 2016-08-15 Process for removing acidic impurities from halopropenes
MX2018002004A MX2018002004A (en) 2015-08-19 2016-08-15 Methods for removing acidic impurities from halogenated propenes.
EP16837644.0A EP3337778B1 (en) 2015-08-19 2016-08-15 Methods for removing acidic impurities from halogenated propenes
KR1020187006551A KR20180031780A (en) 2015-08-19 2016-08-15 Method for removing acidic impurities from halogenated propene
ES16837644T ES2896499T3 (en) 2015-08-19 2016-08-15 Methods for removing acidic impurities from halogenated propenes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562206916P 2015-08-19 2015-08-19
US62/206,916 2015-08-19
US15/232,089 US9938213B2 (en) 2015-08-19 2016-08-09 Methods for removing acidic impurities from halogenated propenes
US15/232,089 2016-08-09

Publications (1)

Publication Number Publication Date
WO2017031046A1 true WO2017031046A1 (en) 2017-02-23

Family

ID=58052237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/047009 WO2017031046A1 (en) 2015-08-19 2016-08-15 Methods for removing acidic impurities from halogenated propenes

Country Status (8)

Country Link
US (1) US9938213B2 (en)
EP (2) EP3337778B1 (en)
JP (1) JP6893915B2 (en)
KR (1) KR20180031780A (en)
CN (2) CN113683479A (en)
ES (1) ES2896499T3 (en)
MX (1) MX2018002004A (en)
WO (1) WO2017031046A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086287A1 (en) 2018-09-26 2020-03-27 Arkema France STABILIZATION OF 1-CHLORO-3,3,3-TRIFLUOROPROPENE
US11242304B2 (en) 2018-05-16 2022-02-08 Arkema France Method for producing 1-chloro-3,3,3- trifluoropropene
US11286221B2 (en) 2018-06-27 2022-03-29 Arkema France Method for producing 1-chloro-3,3,3-trifluoropropene
EP3891114A4 (en) * 2018-12-03 2022-08-03 Honeywell International Inc. Processes for producing high-purity trifluoroiodomethane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534951B (en) * 2018-12-30 2021-09-28 山东华安新材料有限公司 Separation device and separation method for 2,3,3, 3-tetrafluoropropene mixture
CN110922293A (en) * 2019-12-04 2020-03-27 南京恒道医药科技有限公司 Green production method of 1- (2, 3-dimethylphenyl) -1-chloroethane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181220A (en) 1999-12-28 2001-07-03 Kureha Chem Ind Co Ltd Method for producing purified fluorocarbon or chlorofluorocarbon
US20070117939A1 (en) * 2005-11-22 2007-05-24 Iaccino Larry L Polymerization process and reactor system
WO2013049742A1 (en) * 2011-09-30 2013-04-04 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US20130158305A1 (en) * 2010-09-07 2013-06-20 Daikin Industries Ltd. Method for removing moisture from fluorine-containing compounds
CN103420781A (en) 2012-05-17 2013-12-04 中国石油化工股份有限公司 Deacidification and dehydration method of 3-chloropropene
WO2014150889A1 (en) * 2013-03-15 2014-09-25 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
WO2014158663A1 (en) 2013-03-13 2014-10-02 Arkema Inc. Methods for purifying and stabilizing hydrofluoroolefins and hydrochlorofluoroolefins

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339187A (en) * 2003-03-18 2004-12-02 Nippon Sanso Corp Method for purification and film-forming of perfluoro-compound
US20090266745A1 (en) 2008-04-23 2009-10-29 Kanazirev Vladislav I Method for removing hydrofluoric acid and organic fluorides from a fluid stream
US9051231B2 (en) * 2008-09-25 2015-06-09 Central Glass Company, Limited Process for producing 1,3,3,3-tetrafluoropropene
JP2010121927A (en) 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
US8436218B2 (en) 2010-05-27 2013-05-07 Honeywell International Inc. Azeotrope-like composition of hexafluoropropane, hexafluoropropene and hydrogen fluoride
US9890096B2 (en) * 2011-01-19 2018-02-13 Honeywell International Inc. Methods of making 2,3,3,3-tetrafluoro-2-propene
FR2973717B1 (en) * 2011-04-08 2013-03-29 Ceca Sa PROCESS FOR REDUCING TOTAL ACIDITY OF REFRIGERANT COMPOSITIONS
US9000240B2 (en) 2011-05-19 2015-04-07 Honeywell International Inc. Integrated process for the production of 1-chloro-3,3,3-trifluoropropene
US20140352537A1 (en) 2012-02-29 2014-12-04 Arkema France Air purification system for a vehicle
CN103896214B (en) 2012-12-28 2016-04-27 上海梅思泰克环境股份有限公司 A kind of method using aluminum oxide to remove hydrogen fluoride gas in hydrogen chloride gas
CN104529692B (en) 2015-01-07 2016-04-20 黎明化工研究设计院有限责任公司 A kind of method of purifying hexafluoroethane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181220A (en) 1999-12-28 2001-07-03 Kureha Chem Ind Co Ltd Method for producing purified fluorocarbon or chlorofluorocarbon
US20070117939A1 (en) * 2005-11-22 2007-05-24 Iaccino Larry L Polymerization process and reactor system
US20130158305A1 (en) * 2010-09-07 2013-06-20 Daikin Industries Ltd. Method for removing moisture from fluorine-containing compounds
WO2013049742A1 (en) * 2011-09-30 2013-04-04 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
CN103420781A (en) 2012-05-17 2013-12-04 中国石油化工股份有限公司 Deacidification and dehydration method of 3-chloropropene
WO2014158663A1 (en) 2013-03-13 2014-10-02 Arkema Inc. Methods for purifying and stabilizing hydrofluoroolefins and hydrochlorofluoroolefins
WO2014150889A1 (en) * 2013-03-15 2014-09-25 Honeywell International Inc. Methods for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3337778A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242304B2 (en) 2018-05-16 2022-02-08 Arkema France Method for producing 1-chloro-3,3,3- trifluoropropene
US11286221B2 (en) 2018-06-27 2022-03-29 Arkema France Method for producing 1-chloro-3,3,3-trifluoropropene
FR3086287A1 (en) 2018-09-26 2020-03-27 Arkema France STABILIZATION OF 1-CHLORO-3,3,3-TRIFLUOROPROPENE
WO2020065166A1 (en) 2018-09-26 2020-04-02 Arkema France Stabilization of 1-chloro-3,3,3-trifluoropropene
US11952322B2 (en) 2018-09-26 2024-04-09 Arkema France Stabilization of 1-chloro-3,3,3-trifluoropropene
EP3891114A4 (en) * 2018-12-03 2022-08-03 Honeywell International Inc. Processes for producing high-purity trifluoroiodomethane

Also Published As

Publication number Publication date
EP3337778A1 (en) 2018-06-27
ES2896499T3 (en) 2022-02-24
EP3922623A1 (en) 2021-12-15
JP2018523690A (en) 2018-08-23
CN108137448B (en) 2022-02-22
US20170050905A1 (en) 2017-02-23
CN108137448A (en) 2018-06-08
KR20180031780A (en) 2018-03-28
EP3337778B1 (en) 2021-10-06
CN113683479A (en) 2021-11-23
JP6893915B2 (en) 2021-06-23
EP3337778A4 (en) 2019-04-10
US9938213B2 (en) 2018-04-10
MX2018002004A (en) 2018-06-19

Similar Documents

Publication Publication Date Title
US9938213B2 (en) Methods for removing acidic impurities from halogenated propenes
JP7470744B2 (en) Process for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene products
US9862660B2 (en) Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene
US8252964B2 (en) Process for the purification of 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
JP6463756B6 (en) Method for purification of hydrochloric acid
ES2655871T3 (en) Method to produce fluorinated olefins
JP6935423B2 (en) Method for manufacturing 2,3,3,3-tetrafluoropropene
JPWO2017104828A1 (en) Method for producing hydrofluoroolefin
JP2018528223A (en) Process for purifying and drying a hydrofluoroolefin stream
JP2018525355A (en) Process for drying hydro (chloro) fluoroolefins
WO2017104829A1 (en) Method for producing hydrofluoroolefin
KR102569740B1 (en) METHOD FOR REMOVING UNSATURATED HALOGENATED IMPURITIES FROM 2,3,3,3-TETRAFLUOROPROPENE(HFO-1234yf)
WO2016163522A1 (en) Process for producing hydrofluoroolefin
WO2021049605A1 (en) Method for purifying fluoroolefin having =cf2 or =chf structure, high purity fluoroolefin, and manufacturing method therefor
JP6697048B2 (en) Reaction system and method for producing fluorinated organic compounds
JP2024096818A (en) Process for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018508765

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002004

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006551

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016837644

Country of ref document: EP