WO2017030352A1 - Flexible transparent electrode having azo/ag/azo multilayered thin film structure, and manufacturing method therefor - Google Patents

Flexible transparent electrode having azo/ag/azo multilayered thin film structure, and manufacturing method therefor Download PDF

Info

Publication number
WO2017030352A1
WO2017030352A1 PCT/KR2016/009005 KR2016009005W WO2017030352A1 WO 2017030352 A1 WO2017030352 A1 WO 2017030352A1 KR 2016009005 W KR2016009005 W KR 2016009005W WO 2017030352 A1 WO2017030352 A1 WO 2017030352A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
transparent electrode
metal layer
flexible transparent
azo
Prior art date
Application number
PCT/KR2016/009005
Other languages
French (fr)
Korean (ko)
Inventor
김준호
성태연
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2017030352A1 publication Critical patent/WO2017030352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a flexible transparent electrode having an AZO / Ag / AZO multilayer thin film structure.
  • the flexible transparent electrode is an electrode in which a conductive pattern is formed on a flexible substrate, and is an electronic device usefully used in various fields such as a display, a transistor, a touch panel, and a solar cell.
  • ITO indium tin oxide
  • Silver is widely used in most transparent electrodes because of its high light transmittance and conductivity.
  • the ITO electrode material is replaced by the high temperature heat treatment process in the manufacturing process, the limited supply of indium, a rare metal used for the production of ITO, and the difficulty in securing flexible properties.
  • As various alternative materials for the purpose research and development on conductive oxides, carbon nanotubes, graphene, silver nanowires, and conductive polymers are being actively conducted.
  • a transparent electrode of an oxide / metal / oxide multilayer structure which does not require a heat treatment process as compared to an ITO transparent electrode requiring high temperature heat treatment. It has the advantage of being applicable to manufacturing, the process is economical, and the large area is easy.
  • Patent Document 1 a multilayer transparent electrode having a multilayer structure of silicon oxynitride / silver / silicon oxynitride (Patent Document 1), a multilayer transparent electrode having a multilayer structure of a first transparent oxide layer / silver / second transparent oxide layer ( Various techniques such as patent document 2) have been known.
  • AZO Al doped ZnO
  • Patent Document 3 a method of manufacturing a transparent conductive film coated with an AZO / Ag / AZO multilayer thin film and a technique related to a transparent conductive film formed by the method have been disclosed (Patent Document 3), and AZO / grown by a dual target DC sputtering method.
  • Non Patent Literature 1 The results of studies on the properties of the Ag / AZO multilayer structure have also been reported (Non Patent Literature 1), and the results of the research on the properties of the AZO / Ag / AZO multilayer structure deposited on the polyether sulfone substrate have also been reported.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2012-0028506
  • Patent Document 2 Republic of Korea Patent Publication No. 10-1996-0035092
  • Patent Document 3 Republic of Korea Patent Publication No. 10-2010-0089962
  • Non-Patent Document 1 Characteristics of indium-free GZO / Ag / GZO and AZO / Ag / AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Solar Energy Materials & Solar Cells 93 (2009) 1994 -2002
  • Non-Patent Document 2 Properties of AZO / Ag / AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate, TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, Vol. 14, No. 1, pp. 9-11, February 25, 2013
  • the AZO / Ag / AZO multilayer structure-based flexible structure that satisfies the characteristics such as light transmittance, sheet resistance, and flexibility, which are essential for applying the AZO / Ag / AZO multilayer structure to the flexible transparent electrode, is required. It is intended to provide a transparent electrode.
  • the present invention to solve the above problems,
  • a flexible transparent electrode comprising a ZnO layer doped with Al stacked on top and bottom surfaces of the Ag metal layer, respectively.
  • the Ag metal layer has a thickness of 15 nm to 23 nm
  • the Al doped ZnO layer provides a flexible transparent electrode, characterized in that the thickness of 15 nm to 60 nm.
  • the Ag metal layer may have a thickness of 19 nm, and the Al doped ZnO layers respectively stacked on the top and bottom surfaces of the Ag metal layer may each have a thickness of 36 nm.
  • the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 1 to 1: 4.
  • the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 2.
  • the flexible transparent electrode has a light transmittance of 80% or more in the visible light wavelength band, 5 ⁇ / sq. It may have a sheet resistance value and a figure of merit of 10 or more.
  • the Ag metal layer and the Al-doped ZnO layer is on a flexible substrate selected from the group consisting of polyethersulfone, polyethylene terephthalate, polycarbonate, polyimide, polyethylene naphthalate and glass material Can be stacked on.
  • the Ag metal layer may have a thickness of 19 nm, and the Al doped ZnO layers respectively stacked on the top and bottom surfaces of the Ag metal layer may each have a thickness of 36 nm.
  • the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 1 to 1: 4.
  • the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 2.
  • the steps a) to c) may be performed by any one process selected from the group consisting of sputtering, electron beam deposition, and continuous evaporation deposition.
  • the steps a) to c) may be performed by a batch process.
  • the present invention provides a solar cell including the flexible transparent electrode.
  • the present invention provides a light emitting diode including the flexible transparent electrode.
  • a flexible transparent electrode having a high permeability comparable to that of a conventional ITO electrode, having a low sheet resistance value, and manufactured by a room temperature deposition process, which can be manufactured as it is on a polymer substrate without requiring a high temperature heat treatment.
  • FIG. 1 is a transmission electron micrograph of a transparent electrode according to the invention prepared according to the method described in Example 1.
  • FIG. 1 is a transmission electron micrograph of a transparent electrode according to the invention prepared according to the method described in Example 1.
  • FIGS. 2A and 2B are graphs showing bending test photographs and test results for the transparent electrode 2a according to Example 1 and the conventional conventional ITO electrode 2b.
  • 3A and 3B are graphs showing the results of measuring specific resistance and sheet resistance, respectively, for the five samples (3a) prepared in Example 1 and the five samples (3b) prepared in Example 2, respectively.
  • 4A and 4B are graphs showing the results of measuring the transmittances of the five samples 4a prepared in Example 1 and the five samples 4b prepared in Example 2, respectively.
  • 5A and 5B are graphs showing the results of measuring the performance indices of the five samples (5a) prepared in Example 1 and the five samples (5b) prepared in Example 2, respectively.
  • FIG. 6 is a graph depicting the surface state RMS roughness of five samples prepared according to Example 1.
  • the transparent electrode of the AZO / Ag / AZO multilayer structure has various advantages such as excellent light transmittance, low sheet resistance, and no high temperature heat treatment during the manufacturing process.
  • the transparent electrode of the AZO / Ag / AZO multilayer structure is easy to large area, the surface resistance value is reduced to a minimum for the large area, and at the same time, the necessity of preventing the light transmittance is urgently needed.
  • one of the well-known disadvantages of the AZO / Ag / AZO multilayer structure transparent electrode is that the sheet resistance value is lower than that of ITO, but the light transmittance is lowered due to the Ag layer interposed between the AZO layer and the AZO layer. Therefore, the thicker the Ag layer is, the lower the sheet resistance value is, but at the same time, the problem that the light transmittance is also one of the important problems to be overcome in the prior art.
  • the present invention as a result of repeated studies to solve the above-described problems, when the thickness of the AZO layer and Ag layer is adjusted to within a predetermined range, and excellent when the thickness ratio of the AZO layer and Ag layer is adjusted to within a predetermined range
  • the present invention has been accomplished by recognizing that sheet resistance and light transmitting properties can be achieved together.
  • a flexible transparent electrode comprising a ZnO layer doped with Al stacked on top and bottom surfaces of the Ag metal layer, respectively.
  • the Ag metal layer has a thickness of 15 nm to 23 nm
  • the Al doped ZnO layer provides a flexible transparent electrode, characterized in that the thickness of 15 nm to 60 nm.
  • the thickness of the Ag metal layer is 15 nm to 23 nm and the thickness of the AZO layer is 15 nm to 60 nm in the AZO / Ag / AZO multilayer structure, excellent sheet resistance characteristics and light transmission characteristics can be simultaneously achieved.
  • the thickness ratio of the Ag metal layer and the thickness of the AZO layer should also be present in a predetermined range, which is 1: 1 to 1: 4 ratio. It is preferably present in the range of, more preferably about 1: 2.
  • the flexible transparent electrode according to the present invention has a light transmittance of 80% or more in the visible light wavelength band, and 5 ⁇ / sq. It has a sheet resistance value of less than 10 and a figure of merit of 10 or more.
  • the AZO / Ag / AZO multilayer structure according to the present invention can be fabricated as a flexible transparent electrode by laminating on a flexible substrate selected from the group consisting of polyethersulfone, polyethylene terephthalate, polycarbonate, polyimide, polyethylene naphthalate and glass materials. have.
  • the thickness of the Ag metal layer and the AZO layer and also the thickness ratio between the two layers are as described above.
  • the deposition of the Ag metal layer and the AZO layer may be performed using conventional flexible transparent electrode manufacturing methods such as, but not limited to, sputtering, electron beam deposition and continuous evaporation deposition. It is compatible with existing ITO processes, which is one of the most important advantages in practical industrial applications.
  • the steps a) to c) may be performed by a batch type process.
  • the flexible transparent electrode manufactured according to the present invention can be usefully used for the production of solar cells, light emitting diodes, and the like which require excellent light transmittance, electrical conductivity and flexibility.
  • the flexible transparent electrode according to the present invention can be manufactured as a flat and stable surface having a large area even without high temperature heat treatment, which has a great effect on the active layer of the organic material formed on the transparent electrode, thereby increasing the efficiency of a solar cell or a light emitting diode. It will be possible to improve.
  • the PET substrate was washed, and the AZO thin film was deposited to a thickness of 36 nm using the rf sputtering method at room temperature on the substrate.
  • the AZO target had a diameter of 2 inches and a sintered ZnO target doped with 2 wt% Al was used.
  • the rf power applied to the target was 90 W, the working vacuum was maintained at 10 mTorr, the distance between the target and the substrate was about 10 cm, and 30 sccm Ar gas was used as the sputtering gas.
  • an Ag layer was deposited to a thickness of 19 nm under conditions of rf output 30 W, deposition pressure 10 mTorr, and Ar gas flow rate of 13 sccm. A 36 nm thick AZO thin film was deposited on the Ag layer.
  • FIG. 1 shows a transmission electron micrograph of a transparent electrode prepared according to the above method.
  • the transparent electrode was prepared by the same method as the above method, but four more samples having different thicknesses of Ag layers of 15, 17, 21, and 23 nm were prepared.
  • a transparent electrode was prepared in the same manner as in Example 1, but a transparent electrode in which the thicknesses of the AZO layers were laminated at 9, 18, 27, 36, and 45 nm, respectively.
  • the bending test was carried out for 1000 cycles on the transparent electrode manufactured according to Example 1 and the conventional conventional ITO electrode (thickness 100 nm), and the resistance change rate ( ⁇ R / R 0 : ⁇ R-resistance change value, R with increasing cycle) 0 -initial resistance value) was measured.
  • 2A (Example 1) and 2B (formerly conventional ITO electrodes) show graphically the bending test photographs and the results.
  • the bending test was performed by fixing one side of the sample to the fixing device and narrowing the distance of the other side, and this process was performed by repeating 1000 times. 2A and 2B, the resistance change rate increased when 1000 cycles were performed in the conventional ITO electrode, but the resistance change rate remained almost constant even when the number of cycles was increased in the transparent electrode according to the first embodiment.
  • Example 2 For the five samples prepared in Example 1 and the five samples prepared in Example 2, specific resistance and sheet resistance were measured using a four-point sheet resistance measuring instrument, respectively, and the results are shown in FIGS. 3A (Example 1) and Shown in 3b (Example 2).
  • the resistivity and sheet resistance of the samples decrease as the thickness of the Ag layer increases, and the resistivity increases as the thickness of the AZO layer increases, but in the case of sheet resistance, the AZO layer thickness tends to be almost constant. It can be seen that.
  • Example 2 For the five samples prepared in Example 1 and the five samples prepared in Example 2, the transmittance was measured at 200 to 100 nm, respectively, based on the polymer substrate, and the results are shown in FIGS. 4A (Example 1) and 4b (Example 2).
  • the transmittance of the samples tends to increase as the thickness of the Ag and AZO layers decreases in the visible region.
  • T is the transmittance of the sample and R sh is the sheet resistance value.
  • Example 1 the performance index was calculated for each of the five samples prepared in Example 1 and the five samples prepared in Example 2, and the results are shown in FIGS. 5A (Example 1) and 5B (Example 2). .
  • the samples according to Examples 1 and 2 have a significantly superior figure of merit compared to conventional ITO, in particular, the thickness of the Ag layer is 19 nm, It can be seen that the performance index of the sample having a thickness of 36 nm is the highest.
  • Figure 6 graphically shows the surface state RMS roughness of the five samples prepared according to Example 1.
  • the AZO layer has the highest RMS roughness value, and thus, has the most even surface, and thus it can be seen that excellent characteristics can be exhibited even after various organic materials are stacked thereon. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a flexible transparent electrode having an AZO/Ag/AZO multilayered thin film structure and, more specifically, to a flexible transparent electrode comprising: an Ag metal layer; and Al-doped ZnO layers which are respectively laminated on the upper surface and the lower surface of the Ag metal layer, wherein the thickness of the Ag metal layer is 15 nm to 23 nm, and the thickness of the Al-doped ZnO layers is 15 nm to 60 nm. The present invention is capable of providing a flexible transparent electrode having high transmittance comparable to conventional ITO electrodes and having a low surface resistance value. Further, the flexible transparent electrode is manufactured by a room temperature deposition process, and thus can be manufactured on a polymer substrate without the need of a high-temperature heat treatment.

Description

AZO/AG/AZO 다층박막 구조를 갖는 플렉시블 투명 전극 및 그 제조방법Flexible transparent electrode having AZO / AG / AZO multilayer thin film structure and manufacturing method thereof
본 발명은 AZO/Ag/AZO 다층박막 구조를 갖는 플렉시블 투명 전극에 관한 것이다.The present invention relates to a flexible transparent electrode having an AZO / Ag / AZO multilayer thin film structure.
플렉시블 투명 전극이란, 플렉시블 기판 상에 도전성 패턴을 형성한 전극으로서, 디스플레이, 트랜지스터, 터치패널, 태양전지 등의 다양한 분야에 유용하게 활용되고 있는 전자소자이다.The flexible transparent electrode is an electrode in which a conductive pattern is formed on a flexible substrate, and is an electronic device usefully used in various fields such as a display, a transistor, a touch panel, and a solar cell.
현재 플렉시블 투명 전극에 가장 널리 활용되는 소재로는 투명 전도성 산화물, 탄소나노튜브, 그래핀 및 고분자 전도체 등이 알려져 있으며, 이러한 소재들 중에서도 투명 전도성 산화물의 일종인 인듐주석 산화물 (Indium Tin Oxide, ITO)은 높은 광투과도 및 전도성을 보유한 관계로 대부분의 투명 전극에 널리 활용되고 있다.Currently, the most widely used materials for flexible transparent electrodes are transparent conductive oxides, carbon nanotubes, graphene and polymer conductors. Among these materials, indium tin oxide (ITO), which is a kind of transparent conductive oxide, is known. Silver is widely used in most transparent electrodes because of its high light transmittance and conductivity.
그러나, ITO 전극 소재는 제조과정에서 고온의 열처리 공정을 필요로 하고, ITO의 제조에 사용되는 희소 금속인 인듐의 공급에 한계가 있다는 점, 및 플렉시블 특성의 확보가 어렵다는 점 등으로 인해서, 이를 대체하기 위한 다양한 대체 소재들로서, 전도성 산화물, 탄소나노튜브, 그래핀, 은 나노와이어 및 전도성 폴리머 등에 대한 연구 개발이 활발히 이루어지고 있다.However, the ITO electrode material is replaced by the high temperature heat treatment process in the manufacturing process, the limited supply of indium, a rare metal used for the production of ITO, and the difficulty in securing flexible properties. As various alternative materials for the purpose, research and development on conductive oxides, carbon nanotubes, graphene, silver nanowires, and conductive polymers are being actively conducted.
일 예로서, 전도성 산화물인 ZnO, SnO2에 다른 물질들을 도핑시켜 ITO를 대체하기 위한 연구가 진행되고 있으나, 플렉시블 특성이 부족하다는 단점 및 ITO에 비해서 전기적 및 광학적 특성이 열악하다는 단점이 있다. 또한, 상당한 연구가 진행되어 있고 상업적으로도 다양한 분야에 응용가능성이 큰 탄소나노튜브는, 도핑, 정제 및 합성과 관련해서 다양한 개선을 필요로 한다. 더 나아가, 그래핀은 저렴한 비용의 흑연을 이용하여 생산할 수 있으며, 탄소나노튜브보다 표면의 거칠기가 우수하다는 장점을 가지고 있지만, 높은 결정성의 대면적 그래핀 필름을 제조하는데 한계점을 드러내고 있다. 또한, 은 나노와이어는 다른 재료들에 비해 표면 거칠기가 좋지 못하고 헤이즈가 높아서 디스플레이에 응용하기에는 쉽지 않다는 단점이 있다. 마지막으로, 전도성 폴리머는 지난 20년 동안 꾸준히 투명전극으로 사용하기 위한 연구가 상당부분 진행되었지만, 기본적으로 유기 필름이 특유의 색을 갖고 있으며 대기 안정성이 부족하다는 단점이 있다.As an example, research has been conducted to replace ITO by doping other materials with ZnO and SnO 2 , which are conductive oxides. In addition, carbon nanotubes, which have undergone considerable research and are highly commercially applicable in various fields, require various improvements with respect to doping, purification and synthesis. Furthermore, graphene can be produced using low-cost graphite, and has the advantage of superior surface roughness than carbon nanotubes, but it shows limitations in producing large crystalline large-area graphene films. In addition, the silver nanowire has a disadvantage that it is not easy to apply to a display because the surface roughness and haze is high compared to other materials. Lastly, although conductive polymers have been studied for a long time as a transparent electrode, the organic polymer has a unique color and lacks atmospheric stability.
한편, ITO에 가장 근접한 특성을 나타내는 물질로서, 산화물/금속/산화물 다층 구조의 투명 전극이 제안된 바 있으며, 이는 고온 열처리가 필요한 ITO 투명 전극에 비해서 열처리 공정을 필요로 하지 않기 때문에 플렉시블 폴리머 기판의 제조에 적용이 가능하고, 공정이 경제적이며, 대면적화가 용이하다는 장점을 갖는다.On the other hand, as a material exhibiting properties closest to ITO, a transparent electrode of an oxide / metal / oxide multilayer structure has been proposed, which does not require a heat treatment process as compared to an ITO transparent electrode requiring high temperature heat treatment. It has the advantage of being applicable to manufacturing, the process is economical, and the large area is easy.
관련하여, 실리콘옥시나이트라이드/은/실리콘옥시나이트라이드의 다층 구조를 갖는 다층 투명전극 (특허문헌 1), 제1투명 산화물층/은/제2투명 산화물층의 다층 구조를 갖는 다층 투명전극 (특허문헌 2) 등 다양한 기술들이 공지된 바 있다. 또한, 이러한 산화물/금속/산화물의 다층 구조를 갖는 다층 투명전극들의 층 형성 재료로서, 다양한 물질들의 적용가능성이 시험되고 있으며, 그 중에서도 특히 AZO/Ag/AZO 다층 구조의 경우 (AZO: Al이 도핑된 ZnO), ITO에 비견할 만큼 높은 투과도를 나타내고, 낮은 면저항값을 가지며, 고온 열처리 과정이 필요 없기 때문에 폴리머 기판에 그대로 적용가능하다는 등 다양한 장점을 갖는다.Relatedly, a multilayer transparent electrode having a multilayer structure of silicon oxynitride / silver / silicon oxynitride (Patent Document 1), a multilayer transparent electrode having a multilayer structure of a first transparent oxide layer / silver / second transparent oxide layer ( Various techniques such as patent document 2) have been known. In addition, as a layer forming material of multilayer transparent electrodes having a multilayer structure of such an oxide / metal / oxide, the applicability of various materials has been tested, and in particular, in the case of the AZO / Ag / AZO multilayer structure (AZO: Al doped ZnO), which has a high transmittance comparable to that of ITO, has a low sheet resistance value, and can be applied directly to a polymer substrate since it does not require a high temperature heat treatment process.
따라서, AZO/Ag/AZO 다층박막이 코팅된 투명 전도막의 제조방법 및 이러한 방법에 의해서 형성된 투명 전도막에 관한 기술이 개시된 바 있으며 (특허문헌 3), 듀얼 타겟 DC 스퍼터링 방법에 의해서 성장된 AZO/Ag/AZO 다층 구조의 특성에 대한 연구 결과도 보고된 바 있고 (비특허문헌 1), 폴리에테르술폰 기판 상에 증착된 AZO/Ag/AZO 다층 구조의 특성에 관한 연구 결과도 보고된 바 있다.Therefore, a method of manufacturing a transparent conductive film coated with an AZO / Ag / AZO multilayer thin film and a technique related to a transparent conductive film formed by the method have been disclosed (Patent Document 3), and AZO / grown by a dual target DC sputtering method. The results of studies on the properties of the Ag / AZO multilayer structure have also been reported (Non Patent Literature 1), and the results of the research on the properties of the AZO / Ag / AZO multilayer structure deposited on the polyether sulfone substrate have also been reported.
그러나, 이러한 AZO/Ag/AZO 다층 구조를 플렉시블 투명 전극에 성공적으로 적용할 수 있기 위해서는, 다양한 요소들을 고려하여야 하는 바, 충분한 광투과도, 낮은 면저항 수치 및 높은 플렉시블 특성을 구비하여야 하며, 여러 번의 굽힘 테스트에도 이러한 특성들이 유지되어야 한다.However, in order to successfully apply this AZO / Ag / AZO multilayer structure to a flexible transparent electrode, various factors should be considered, and should have sufficient light transmittance, low sheet resistance and high flexibility, and bend several times. These characteristics must be maintained in the test.
(특허문헌)(Patent literature)
특허문헌 1: 대한민국 공개특허공보 제10-2012-0028506호Patent Document 1: Republic of Korea Patent Publication No. 10-2012-0028506
특허문헌 2: 대한민국 공개특허공보 제10-1996-0035092호Patent Document 2: Republic of Korea Patent Publication No. 10-1996-0035092
특허문헌 3: 대한민국 공개특허공보 제10-2010-0089962호Patent Document 3: Republic of Korea Patent Publication No. 10-2010-0089962
(비특허문헌)(Non-patent literature)
비특허문헌 1: Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Solar Energy Materials & Solar Cells 93 (2009) 1994-2002Non-Patent Document 1: Characteristics of indium-free GZO / Ag / GZO and AZO / Ag / AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics, Solar Energy Materials & Solar Cells 93 (2009) 1994 -2002
비특허문헌 2: Properties of AZO/Ag/AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate, TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, Vol. 14, No. 1, pp. 9-11, February 25, 2013[Non-Patent Document 2] Properties of AZO / Ag / AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate, TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, Vol. 14, No. 1, pp. 9-11, February 25, 2013
따라서, 본 발명에서는 AZO/Ag/AZO 다층 구조를 플렉시블 투명 전극에 적용하기 위해서 필수적으로 만족하여야 하는 광투과도, 면저항값 및 유연성 등의 특성들을 종합적으로 만족시키는 AZO/Ag/AZO 다층 구조 기반의 플렉시블 투명 전극을 제공하고자 한다.Accordingly, in the present invention, the AZO / Ag / AZO multilayer structure-based flexible structure that satisfies the characteristics such as light transmittance, sheet resistance, and flexibility, which are essential for applying the AZO / Ag / AZO multilayer structure to the flexible transparent electrode, is required. It is intended to provide a transparent electrode.
본 발명은 상기 과제를 해결하기 위해서,The present invention to solve the above problems,
Ag 금속층; 및Ag metal layer; And
상기 Ag 금속층의 상면 및 하면에 각각 적층된 Al이 도핑된 ZnO층을 포함하는 플렉시블 투명 전극으로서, A flexible transparent electrode comprising a ZnO layer doped with Al stacked on top and bottom surfaces of the Ag metal layer, respectively.
상기 Ag 금속층의 두께는 15 nm 내지 23 nm이며,The Ag metal layer has a thickness of 15 nm to 23 nm,
상기 Al이 도핑된 ZnO층의 두께는 15 nm 내지 60 nm인 것을 특징으로 하는 플렉시블 투명 전극을 제공한다.The Al doped ZnO layer provides a flexible transparent electrode, characterized in that the thickness of 15 nm to 60 nm.
본 발명의 일 구현예에 따르면, 상기 Ag 금속층의 두께는 19 nm이며, 상기 Ag 금속층의 상면 및 하면에 각각 적층된 상기 Al이 도핑된 ZnO층의 두께는 각각 36 nm일 수 있다.According to the exemplary embodiment of the present invention, the Ag metal layer may have a thickness of 19 nm, and the Al doped ZnO layers respectively stacked on the top and bottom surfaces of the Ag metal layer may each have a thickness of 36 nm.
본 발명의 다른 구현예에 따르면, 상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:1 내지 1:4일 수 있다.According to another embodiment of the present invention, the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 1 to 1: 4.
본 발명의 또 다른 구현예에 따르면, 상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:2일 수 있다.According to another embodiment of the present invention, the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 2.
본 발명의 또 다른 구현예에 따르면, 상기 플렉시블 투명 전극은 가시광선 파장대역에서 80% 이상의 광투과도를 갖고, 5 Ω/sq. 이하의 면저항값 및 10 이상의 성능 지수 (figure of merit)를 가질 수 있다.According to another embodiment of the present invention, the flexible transparent electrode has a light transmittance of 80% or more in the visible light wavelength band, 5 Ω / sq. It may have a sheet resistance value and a figure of merit of 10 or more.
본 발명의 또 다른 구현예에 따르면, 상기 Ag 금속층 및 상기 Al이 도핑된 ZnO층은 폴리에테르술폰, 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드, 폴리에틸렌나프탈레이트 및 글라스 재질로 이루어진 군으로부터 선택된 유연성 기판 상에 적층될 수 있다.According to another embodiment of the invention, the Ag metal layer and the Al-doped ZnO layer is on a flexible substrate selected from the group consisting of polyethersulfone, polyethylene terephthalate, polycarbonate, polyimide, polyethylene naphthalate and glass material Can be stacked on.
또한, 본 발명은 상기 과제를 해결하기 위해서,Moreover, in order to solve the said subject,
a) 기판 상에 Al이 도핑된 ZnO층을 15 nm 내지 60 nm의 두께로 형성하는 단계;a) forming an Al doped ZnO layer on a substrate with a thickness of 15 nm to 60 nm;
b) 상기 Al이 도핑된 ZnO층 상에 Ag 금속층을 15 nm 내지 25 nm의 두께로 형성하는 단계; 및b) forming an Ag metal layer having a thickness of 15 nm to 25 nm on the Al-doped ZnO layer; And
c) 상기 Ag 금속층 상에 다시 Al이 도핑된 ZnO층을 15 nm 내지 60 nm의 두께로 형성하는 단계를 포함하는 플렉시블 투명 전극의 제조방법을 제공한다.c) forming a ZnO layer Al-doped Al again on the Ag metal layer to a thickness of 15 nm to 60 nm.
본 발명의 일 구현예에 따르면, 상기 Ag 금속층의 두께는 19 nm이며, 상기 Ag 금속층의 상면 및 하면에 각각 적층된 상기 Al이 도핑된 ZnO층의 두께는 각각 36 nm일 수 있다.According to the exemplary embodiment of the present invention, the Ag metal layer may have a thickness of 19 nm, and the Al doped ZnO layers respectively stacked on the top and bottom surfaces of the Ag metal layer may each have a thickness of 36 nm.
본 발명의 다른 구현예에 따르면, 상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:1 내지 1:4일 수 있다.According to another embodiment of the present invention, the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 1 to 1: 4.
본 발명의 또 다른 구현예에 따르면, 상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:2일 수 있다.According to another embodiment of the present invention, the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer may be 1: 2.
본 발명의 또 다른 구현예에 따르면, 상기 a) 내지 c) 단계는 스퍼터링법, 전자빔 증착법 및 연속 증발 증착법으로 이루어진 군으로부터 선택된 어느 하나의 공정에 의해서 수행될 수 있다.According to another embodiment of the present invention, the steps a) to c) may be performed by any one process selected from the group consisting of sputtering, electron beam deposition, and continuous evaporation deposition.
본 발명의 또 다른 구현예에 따르면, 상기 a) 내지 c) 단계는 회분식 공정에 의해서 수행될 수 있다.According to another embodiment of the present invention, the steps a) to c) may be performed by a batch process.
또한, 본 발명은 상기 플렉시블 투명 전극을 포함하는 태양전지를 제공한다.In addition, the present invention provides a solar cell including the flexible transparent electrode.
또한, 본 발명은 상기 플렉시블 투명 전극을 포함하는 발광 다이오드를 제공한다.In addition, the present invention provides a light emitting diode including the flexible transparent electrode.
본 발명에 따르면, 종래 ITO 전극에 비견할 만한 높은 투과도를 지니면서도, 낮은 면저항값을 갖고, 상온 증착 공정에 의해서 제조되어 고온 열처리가 필요 없이 폴리머 기판에 그대로 제조가 가능한 플렉시블 투명전극을 제공할 수 있다.According to the present invention, it is possible to provide a flexible transparent electrode having a high permeability comparable to that of a conventional ITO electrode, having a low sheet resistance value, and manufactured by a room temperature deposition process, which can be manufactured as it is on a polymer substrate without requiring a high temperature heat treatment. have.
도 1은 실시예 1에 기재된 방법에 따라서 제조된 본 발명에 따른 투명 전극에 대한 투과 전자 현미경 사진이다.1 is a transmission electron micrograph of a transparent electrode according to the invention prepared according to the method described in Example 1. FIG.
도 2a 및 2b는 실시예 1에 따른 투명 전극 (2a) 및 종래 통상적인 ITO 전극 (2b)에 대한 굽힘 테스트 사진 및 테스트 결과를 그래프로 도시한 도면이다.2A and 2B are graphs showing bending test photographs and test results for the transparent electrode 2a according to Example 1 and the conventional conventional ITO electrode 2b.
도 3a 및 3b는 각각 실시예 1에서 제조된 5가지 샘플 (3a) 및 실시예 2에서 제조된 5가지 샘플 (3b)에 대해서 각각 비저항 및 면저항을 측정한 결과를 도시한 그래프이다.3A and 3B are graphs showing the results of measuring specific resistance and sheet resistance, respectively, for the five samples (3a) prepared in Example 1 and the five samples (3b) prepared in Example 2, respectively.
도 4a 및 4b는 각각 실시예 1에서 제조된 5가지 샘플 (4a) 및 실시예 2에서 제조된 5가지 샘플 (4b)에 대해서 각각 투과도를 측정한 결과를 도시한 그래프이다.4A and 4B are graphs showing the results of measuring the transmittances of the five samples 4a prepared in Example 1 and the five samples 4b prepared in Example 2, respectively.
도 5a 및 5b는 각각 실시예 1에서 제조된 5가지 샘플 (5a) 및 실시예 2에서 제조된 5가지 샘플 (5b)에 대해서 각각 성능지수를 측정한 결과를 도시한 그래프이다.5A and 5B are graphs showing the results of measuring the performance indices of the five samples (5a) prepared in Example 1 and the five samples (5b) prepared in Example 2, respectively.
도 6은 실시예 1에 따라서 제조된 5가지 샘플의 표면 상태 RMS 조도를 도시한 그래프이다.6 is a graph depicting the surface state RMS roughness of five samples prepared according to Example 1. FIG.
이하, 본 발명을 더욱 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
ITO에 가장 근접한 특성을 나타내는 것으로 알려진 산화물/금속/산화물 다층 구조의 투명 전극에 대해서는 현재까지 많은 연구가 이루어져 있다. 그 중에서도 특히 AZO/Ag/AZO 다층 구조의 투명 전극은 광투과도가 우수하고, 면저항값이 낮으며, 제조과정에 고온 열처리를 필요로 하지 않는다는 다양한 장점을 갖는다.Much research has been done to date on transparent electrodes of an oxide / metal / oxide multilayer structure known to exhibit the closest properties to ITO. In particular, the transparent electrode of the AZO / Ag / AZO multilayer structure has various advantages such as excellent light transmittance, low sheet resistance, and no high temperature heat treatment during the manufacturing process.
이러한 AZO/Ag/AZO 다층 구조의 투명 전극은 대면적화가 용이하며, 대면적화를 위해서는 면저항값을 최소한으로 낮추되, 동시에 광투과도의 저하를 방지해야 하는 필요성이 절실하다. 그러나, AZO/Ag/AZO 다층 구조 투명 전극의 잘 알려진 단점 중의 하나는 ITO에 비해서 면저항값은 낮지만, AZO층과 AZO층 사이에 개재되는 Ag층으로 인해서 광투과도가 낮아진다는 것이다. 따라서, Ag층의 두께가 두꺼워질수록 면저항값은 낮아지지만, 이와 동시에 광투과도도 낮아진다는 문제점은 종래기술에서 극복되어야 하는 중요한 문제점 중의 하나이다.The transparent electrode of the AZO / Ag / AZO multilayer structure is easy to large area, the surface resistance value is reduced to a minimum for the large area, and at the same time, the necessity of preventing the light transmittance is urgently needed. However, one of the well-known disadvantages of the AZO / Ag / AZO multilayer structure transparent electrode is that the sheet resistance value is lower than that of ITO, but the light transmittance is lowered due to the Ag layer interposed between the AZO layer and the AZO layer. Therefore, the thicker the Ag layer is, the lower the sheet resistance value is, but at the same time, the problem that the light transmittance is also one of the important problems to be overcome in the prior art.
이에, 본 발명에서는 전술한 문제점을 해결하고자 연구를 거듭한 결과, AZO층 및 Ag층의 두께가 소정 범위 내로 조절되는 경우, 또한 AZO층과 Ag층의 두께 비율이 소정 범위 내로 조절되는 경우에 우수한 면저항 특성 및 광투과 특성을 함께 달성할 수 있다는 사실을 인지하고 본 발명을 완성하게 되었다.Therefore, in the present invention, as a result of repeated studies to solve the above-described problems, when the thickness of the AZO layer and Ag layer is adjusted to within a predetermined range, and excellent when the thickness ratio of the AZO layer and Ag layer is adjusted to within a predetermined range The present invention has been accomplished by recognizing that sheet resistance and light transmitting properties can be achieved together.
따라서, 본 발명에서는,Therefore, in the present invention,
Ag 금속층; 및Ag metal layer; And
상기 Ag 금속층의 상면 및 하면에 각각 적층된 Al이 도핑된 ZnO층을 포함하는 플렉시블 투명 전극으로서, A flexible transparent electrode comprising a ZnO layer doped with Al stacked on top and bottom surfaces of the Ag metal layer, respectively.
상기 Ag 금속층의 두께는 15 nm 내지 23 nm이며,The Ag metal layer has a thickness of 15 nm to 23 nm,
상기 Al이 도핑된 ZnO층의 두께는 15 nm 내지 60 nm인 것을 특징으로 하는 플렉시블 투명 전극을 제공한다.The Al doped ZnO layer provides a flexible transparent electrode, characterized in that the thickness of 15 nm to 60 nm.
본 발명에서는 AZO/Ag/AZO 다층 구조 중, Ag 금속층의 두께를 15 nm 내지 23 nm로, AZO층의 두께를 15 nm 내지 60 nm로 적층하는 경우, 우수한 면저항 특성 및 광투과 특성이 동시에 달성될 수 있으며, 특히, 하기 실시예의 데이터로부터도 알 수 있는 바와 같이, Ag 금속층의 두께를 19 nm로, AZO층의 두께를 36 nm로 적층하는 경우 최적 특성을 달성할 수 있다는 사실을 밝혔다. 즉, 플렉시블 투명 전극에 요구되는 물리적 유연성, 전기적 특성 및 광특성을 동시에 충족하기 위해서는, Ag 금속층의 두께와 AZO층의 두께 비율 역시 소정 범위에 존재하여야 하는 바, 이는 1:1 내지 1:4 비율의 범위 내에 존재하는 것이 바람직하며, 더욱 바람직하게는 약 1:2일 수 있다.In the present invention, when the thickness of the Ag metal layer is 15 nm to 23 nm and the thickness of the AZO layer is 15 nm to 60 nm in the AZO / Ag / AZO multilayer structure, excellent sheet resistance characteristics and light transmission characteristics can be simultaneously achieved. In particular, as can be seen from the data of the following examples, it has been found that optimum characteristics can be achieved when the Ag metal layer is 19 nm thick and the AZO layer is 36 nm thick. That is, in order to simultaneously meet the physical flexibility, electrical characteristics, and optical characteristics required for the flexible transparent electrode, the thickness ratio of the Ag metal layer and the thickness of the AZO layer should also be present in a predetermined range, which is 1: 1 to 1: 4 ratio. It is preferably present in the range of, more preferably about 1: 2.
전술한 두께 범위 및 두께 비율을 만족하는 경우, 본 발명에 따른 플렉시블 투명 전극은 가시광선 파장대역에서 80% 이상의 광투과도를 갖고, 5 Ω/sq. 이하의 면저항값 및 10 이상의 성능 지수 (figure of merit)를 갖게 된다.When satisfying the above-described thickness range and thickness ratio, the flexible transparent electrode according to the present invention has a light transmittance of 80% or more in the visible light wavelength band, and 5 Ω / sq. It has a sheet resistance value of less than 10 and a figure of merit of 10 or more.
본 발명에 따른 AZO/Ag/AZO 다층 구조는 폴리에테르술폰, 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드, 폴리에틸렌나프탈레이트 및 글라스 재질로 이루어진 군으로부터 선택된 유연성 기판 상에 적층됨으로써 플렉시블 투명 전극으로 제작될 수 있다.The AZO / Ag / AZO multilayer structure according to the present invention can be fabricated as a flexible transparent electrode by laminating on a flexible substrate selected from the group consisting of polyethersulfone, polyethylene terephthalate, polycarbonate, polyimide, polyethylene naphthalate and glass materials. have.
한편, 본 발명은,On the other hand, the present invention,
a) 기판 상에 Al이 도핑된 ZnO층을 15 nm 내지 60 nm의 두께로 형성하는 단계;a) forming an Al doped ZnO layer on a substrate with a thickness of 15 nm to 60 nm;
b) 상기 Al이 도핑된 ZnO층 상에 Ag 금속층을 15 nm 내지 23 nm의 두께로 형성하는 단계; 및b) forming an Ag metal layer having a thickness of 15 nm to 23 nm on the Al-doped ZnO layer; And
c) 상기 Ag 금속층 상에 다시 Al이 도핑된 ZnO층을 15 nm 내지 60 nm의 두께로 형성하는 단계를 포함하는 플렉시블 투명 전극의 제조방법을 제공한다.c) forming a ZnO layer Al-doped Al again on the Ag metal layer to a thickness of 15 nm to 60 nm.
본 발명에 따른 방법에 있어서, Ag 금속층 및 AZO층의 두께, 또한 두 층 사이의 두께 비율은 전술한 바와 같다.In the method according to the invention, the thickness of the Ag metal layer and the AZO layer and also the thickness ratio between the two layers are as described above.
본 발명에 따른 방법에 있어서, Ag 금속층과 AZO층의 증착은, 이에 제한되는 것은 아니지만, 스퍼터링법, 전자빔 증착법 및 연속 증발 증착법 등과 같은 통상적인 플렉시블 투명 전극 제조방법을 사용하여 수행될 수 있는 바, 기존 ITO 공정과의 호환이 가능하며, 이는 실제 산업적 응용 측면에서 매우 중요한 장점 중의 하나이다. 또한, 상기 a) 내지 c) 단계는 회분식 공정 (batch type process)에 의해서 수행될 수 있다.In the method according to the present invention, the deposition of the Ag metal layer and the AZO layer may be performed using conventional flexible transparent electrode manufacturing methods such as, but not limited to, sputtering, electron beam deposition and continuous evaporation deposition. It is compatible with existing ITO processes, which is one of the most important advantages in practical industrial applications. In addition, the steps a) to c) may be performed by a batch type process.
본 발명에 따라서 제조된 플렉시블 투명 전극은 우수한 광투과성, 전기 전도성 및 유연성을 요구하는 태양전지, 발광 다이오드 등의 제조에 유용하게 사용될 수 있다. 특히, 본 발명에 따른 플렉시블 투명 전극은 고온 열처리 없이도 대면적의 평탄하고 안정된 표면으로 제작이 가능한 바, 이는 투명 전극 위에 형성되는 유기 물질의 활성층에도 큰 영향을 미치게 되므로, 태양전지 또는 발광 다이오드의 효율을 향상시킬 수 있게 된다.The flexible transparent electrode manufactured according to the present invention can be usefully used for the production of solar cells, light emitting diodes, and the like which require excellent light transmittance, electrical conductivity and flexibility. In particular, the flexible transparent electrode according to the present invention can be manufactured as a flat and stable surface having a large area even without high temperature heat treatment, which has a great effect on the active layer of the organic material formed on the transparent electrode, thereby increasing the efficiency of a solar cell or a light emitting diode. It will be possible to improve.
이하, 실시예를 통해서 본 발명을 더욱 상세하게 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are only intended to help the understanding of the present invention and do not limit the scope of the present invention.
실시예 1. Ag층 두께를 달리한 투명 전극의 제조Example 1 Preparation of Transparent Electrode with Different Ag Layer Thickness
PET 재질의 기판을 세척하고, 상기 기판 상에 상온에서 rf 스퍼터링 방법을 사용하여 AZO 박막을 36 nm의 두께로 증착하였다. 증착시 AZO 타겟은 2 인치의 직경을 가지며 Al이 2 중량% 도핑된 ZnO 타겟을 소결처리한 것을 사용하였다.The PET substrate was washed, and the AZO thin film was deposited to a thickness of 36 nm using the rf sputtering method at room temperature on the substrate. During deposition, the AZO target had a diameter of 2 inches and a sintered ZnO target doped with 2 wt% Al was used.
타겟에 인가되는 rf 출력은 90 W이었으며, 작업 진공도는 10 mTorr, 타겟과 기판과의 거리는 약 10 cm로 유지하였고, 스퍼터링 가스로는 30 sccm의 Ar 기체를 사용하였다.The rf power applied to the target was 90 W, the working vacuum was maintained at 10 mTorr, the distance between the target and the substrate was about 10 cm, and 30 sccm Ar gas was used as the sputtering gas.
이어서, 상기 AZO 박막 상에 Ag 타겟을 이용하여, rf 출력 30 W, 증착 압력 10 mTorr, Ar 기체 유량 13 sccm의 조건 하에서 Ag층을 19 nm의 두께로 증착하였으며, 전술한 조건과 동일한 조건으로 상기 Ag층 상에 36 nm 두께의 AZO 박막을 증착하였다.Subsequently, using an Ag target on the AZO thin film, an Ag layer was deposited to a thickness of 19 nm under conditions of rf output 30 W, deposition pressure 10 mTorr, and Ar gas flow rate of 13 sccm. A 36 nm thick AZO thin film was deposited on the Ag layer.
도 1에는 상기 방법에 따라서 제조된 투명 전극에 대한 투과 전자 현미경 사진을 도시하였다.1 shows a transmission electron micrograph of a transparent electrode prepared according to the above method.
한편, 상기 방법과 동일한 방법에 의해서 투명 전극을 제조하되, Ag층의 두께를 각각 15, 17, 21 및 23 nm로 달리한 4 가지 샘플을 더 제조하였다.Meanwhile, the transparent electrode was prepared by the same method as the above method, but four more samples having different thicknesses of Ag layers of 15, 17, 21, and 23 nm were prepared.
실시예 2. AZO층 두께를 달리한 투명 전극의 제조Example 2 Preparation of Transparent Electrode with Different AZO Layer Thickness
실시예 1과 동일한 방법에 의해서 투명 전극을 제조하되, AZO층의 두께를 각각 9, 18, 27, 36 및 45 nm로 적층한 투명 전극을 제조하였다.A transparent electrode was prepared in the same manner as in Example 1, but a transparent electrode in which the thicknesses of the AZO layers were laminated at 9, 18, 27, 36, and 45 nm, respectively.
평가예 1. 굽힘 테스트Evaluation Example 1. Bend Test
실시예 1에 따라서 제조된 투명 전극과 종래 통상적인 ITO 전극 (두께 100 nm)에 대해서 1000 사이클 동안 굽힘 테스트를 실시하였으며, 사이클 증가에 따른 저항 변화율 (ΔR/R0: ΔR - 저항 변화값, R0 - 초기 저항값)을 측정하였다. 도 2a (실시예 1) 및 2b (종래 통상적인 ITO 전극)에는 굽힘 테스트 사진 및 그 결과를 그래프로 도시하였다. 굽힘 테스트는 샘플의 한쪽 면을 고정 장치에 고정시키고, 다른 쪽 면의 거리를 좁힘으로써 수행하였으며, 이러한 과정을 1000회 반복하는 방식에 의해서 수행하였다. 도 2a 및 2b를 참조하면, 종래 통상적인 ITO 전극의 경우 1000 사이클 실시하였을시, 저항 변화율이 상승하였지만, 실시예 1에 따른 투명 전극의 경우 사이클 수가 증가하여도 저항 변화율이 거의 일정하게 유지되었다.The bending test was carried out for 1000 cycles on the transparent electrode manufactured according to Example 1 and the conventional conventional ITO electrode (thickness 100 nm), and the resistance change rate (ΔR / R 0 : ΔR-resistance change value, R with increasing cycle) 0 -initial resistance value) was measured. 2A (Example 1) and 2B (formerly conventional ITO electrodes) show graphically the bending test photographs and the results. The bending test was performed by fixing one side of the sample to the fixing device and narrowing the distance of the other side, and this process was performed by repeating 1000 times. 2A and 2B, the resistance change rate increased when 1000 cycles were performed in the conventional ITO electrode, but the resistance change rate remained almost constant even when the number of cycles was increased in the transparent electrode according to the first embodiment.
평가예 2. 면저항 측정Evaluation Example 2. Sheet Resistance Measurement
실시예 1에서 제조된 5가지 샘플 및 실시예 2에서 제조된 5가지 샘플에 대해서, 4 포인트 면저항 측정장비를 사용하여, 각각 비저항 및 면저항을 측정하였으며, 그 결과를 도 3a (실시예 1) 및 3b (실시예 2)에 도시하였다.For the five samples prepared in Example 1 and the five samples prepared in Example 2, specific resistance and sheet resistance were measured using a four-point sheet resistance measuring instrument, respectively, and the results are shown in FIGS. 3A (Example 1) and Shown in 3b (Example 2).
도면을 참조하면, 샘플들의 비저항 및 면저항은 Ag층의 두께가 증가할수록 감소하며, 비저항의 경우 AZO층의 두께가 증가할수록 함께 증가하지만, 면저항의 경우는 AZO층 두께가 증가하여도 거의 일정한 경향을 나타냄을 알 수 있다.Referring to the drawings, the resistivity and sheet resistance of the samples decrease as the thickness of the Ag layer increases, and the resistivity increases as the thickness of the AZO layer increases, but in the case of sheet resistance, the AZO layer thickness tends to be almost constant. It can be seen that.
평가예 3. 투과도 측정Evaluation Example 3 Measurement of Transmittance
실시예 1에서 제조된 5가지 샘플 및 실시예 2에서 제조된 5가지 샘플에 대해서 폴리머 기판을 베이스로 삼아서 200 ~ 100 nm에서 각각 투과도를 측정하였으며, 그 결과를 각각 도 4a (실시예 1) 및 4b (실시예 2)에 도시하였다.For the five samples prepared in Example 1 and the five samples prepared in Example 2, the transmittance was measured at 200 to 100 nm, respectively, based on the polymer substrate, and the results are shown in FIGS. 4A (Example 1) and 4b (Example 2).
도면을 참조하면, 샘플들의 투과도는 가시광선 영역에서 Ag층 및 AZO층의 두께가 감소할수록 증가하는 경향을 나타냄을 알 수 있다.Referring to the drawings, it can be seen that the transmittance of the samples tends to increase as the thickness of the Ag and AZO layers decreases in the visible region.
평가예 4. 성능 지수 (figure of merit) 산출Evaluation Example 4. Calculation of figure of merit
평가예 2 및 3에서 알 수 있는 바와 같이, 투명 전극의 경우, 박막의 두께에 따라서 전기 전도도와 광투과도가 서로 상충 관계에 있음을 알 수 있고, 따라서 각 투명 전극의 특성을 비교하기 위해서 Haacke에 의해서 정의된 (Journal of Applied Physics, Volume 47, Issue 9, pp. 4086-4089 (1976) 참조) 성능 지수를 도입하였는 바, 해당 성능 지수 (ΦTC)는 하기 식 1과 같이 정의된다:As can be seen from the evaluation examples 2 and 3, it can be seen that in the case of the transparent electrode, the electrical conductivity and the light transmittance are in a trade-off relationship with each other according to the thickness of the thin film. Therefore, in order to compare the characteristics of each transparent electrode, By introducing a performance index defined by (Journal of Applied Physics, Volume 47, Issue 9, pp. 4086-4089 (1976)), the corresponding performance index (Φ TC ) is defined as:
<식 1><Equation 1>
ΦTC = T10/Rsh Φ TC = T 10 / R sh
상기 식에서 T는 샘플의 투과도이며, Rsh는 면저항값이다.Where T is the transmittance of the sample and R sh is the sheet resistance value.
따라서, 실시예 1에서 제조된 5가지 샘플 및 실시예 2에서 제조된 5가지 샘플에 대해서 각각 성능 지수를 산출하였으며, 그 결과를 도 5a (실시예 1) 및 5b (실시예 2)에 도시하였다.Therefore, the performance index was calculated for each of the five samples prepared in Example 1 and the five samples prepared in Example 2, and the results are shown in FIGS. 5A (Example 1) and 5B (Example 2). .
도면을 참조하면, 실시예 1 및 2에 따른 샘플들은 종래 통상적인 ITO에 비해서 월등하게 우수한 성능 지수 값을 갖는다는 것을 알 수 있으며, 그 중에서도 특히, Ag층의 두께가 19 nm이고, AZO층의 두께가 36 nm인 샘플의 성능 지수가 가장 높다는 사실을 알 수 있다.Referring to the drawings, it can be seen that the samples according to Examples 1 and 2 have a significantly superior figure of merit compared to conventional ITO, in particular, the thickness of the Ag layer is 19 nm, It can be seen that the performance index of the sample having a thickness of 36 nm is the highest.
한편, 도 6에는 실시예 1에 따라서 제조된 5가지 샘플의 표면 상태 RMS 조도를 그래프로 도시하였다. 도 6을 참조하면, AZO층의 두께가 36 nm인 경우 가장 높은 RMS 조도값을 갖는 바, 가장 고른 표면을 갖고, 따라서 그 위에 다양한 유기물질이 적층된 이후에도 우수한 특성을 나타낼 수 있다는 점을 파악할 수 있다.On the other hand, Figure 6 graphically shows the surface state RMS roughness of the five samples prepared according to Example 1. Referring to FIG. 6, when the thickness of the AZO layer is 36 nm, the AZO layer has the highest RMS roughness value, and thus, has the most even surface, and thus it can be seen that excellent characteristics can be exhibited even after various organic materials are stacked thereon. have.

Claims (14)

  1. Ag 금속층; 및Ag metal layer; And
    상기 Ag 금속층의 상면 및 하면에 각각 적층된 Al이 도핑된 ZnO층을 포함하는 플렉시블 투명 전극으로서, A flexible transparent electrode comprising a ZnO layer doped with Al stacked on top and bottom surfaces of the Ag metal layer, respectively.
    상기 Ag 금속층의 두께는 15 nm 내지 23 nm이며,The Ag metal layer has a thickness of 15 nm to 23 nm,
    상기 Al이 도핑된 ZnO층의 두께는 15 nm 내지 60 nm인 것을 특징으로 하는 플렉시블 투명 전극.The thickness of the Al-doped ZnO layer is a flexible transparent electrode, characterized in that 15 nm to 60 nm.
  2. 제1항에 있어서,The method of claim 1,
    상기 Ag 금속층의 두께는 19 nm이며, 상기 Ag 금속층의 상면 및 하면에 각각 적층된 상기 Al이 도핑된 ZnO층의 두께는 각각 36 nm인 것을 특징으로 하는 플렉시블 투명 전극.The Ag metal layer has a thickness of 19 nm, and the thickness of the Al-doped ZnO layer deposited on the top and bottom surfaces of the Ag metal layer, respectively, is 36 nm.
  3. 제1항에 있어서,The method of claim 1,
    상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:1 내지 1:4인 것을 특징으로 하는 플렉시블 투명 전극.The ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer is 1: 1 to 1: 4, characterized in that the flexible transparent electrode.
  4. 제3항에 있어서,The method of claim 3,
    상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:2인 것을 특징으로 하는 플렉시블 투명 전극.The ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer is 1: 2, characterized in that the flexible transparent electrode.
  5. 제1항에 있어서,The method of claim 1,
    상기 플렉시블 투명 전극은 가시광선 파장대역에서 80% 이상의 광투과도를 갖고, 5 Ω/sq. 이하의 면저항값 및 10 이상의 성능 지수를 갖는 것을 특징으로 하는 플렉시블 투명 전극.The flexible transparent electrode has a light transmittance of 80% or more in the visible light wavelength band, 5 Ω / sq. A flexible transparent electrode having the following sheet resistance values and a performance index of 10 or more.
  6. 제1항에 있어서,The method of claim 1,
    상기 Ag 금속층 및 상기 Al이 도핑된 ZnO층은 폴리에테르술폰, 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리이미드, 폴리에틸렌나프탈레이트 및 글라스 재질로 이루어진 군으로부터 선택된 유연성 기판 상에 적층된 것을 특징으로 하는 플렉시블 투명 전극.The Ag metal layer and the Al-doped ZnO layer are stacked on a flexible substrate selected from the group consisting of polyether sulfone, polyethylene terephthalate, polycarbonate, polyimide, polyethylene naphthalate and glass material .
  7. a) 기판 상에 Al이 도핑된 ZnO층을 15 nm 내지 60 nm의 두께로 형성하는 단계;a) forming an Al doped ZnO layer on a substrate with a thickness of 15 nm to 60 nm;
    b) 상기 Al이 도핑된 ZnO층 상에 Ag 금속층을 15 nm 내지 23 nm의 두께로 형성하는 단계; 및b) forming an Ag metal layer having a thickness of 15 nm to 23 nm on the Al-doped ZnO layer; And
    c) 상기 Ag 금속층 상에 다시 Al이 도핑된 ZnO층을 15 nm 내지 60 nm의 두께로 형성하는 단계를 포함하는 플렉시블 투명 전극의 제조방법.c) forming an Al-doped ZnO layer on the Ag metal layer to a thickness of 15 nm to 60 nm.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 Ag 금속층의 두께는 19 nm이며, 상기 Ag 금속층의 상면 및 하면에 각각 적층된 상기 Al이 도핑된 ZnO층의 두께는 각각 36 nm인 것을 특징으로 하는 플렉시블 투명 전극의 제조방법.The thickness of the Ag metal layer is 19 nm, the thickness of the Al-doped ZnO layer laminated on the upper and lower surfaces of the Ag metal layer, respectively, 36 nm manufacturing method of a flexible transparent electrode.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:1 내지 1:4인 것을 특징으로 하는 플렉시블 투명 전극의 제조방법.The ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer is 1: 1 to 1: 4 manufacturing method of a flexible transparent electrode.
  10. 제9항에 있어서, 상기 Ag 금속층의 두께와 상기 Al이 도핑된 ZnO층의 두께의 비율은 1:2인 것을 특징으로 하는 플렉시블 투명 전극의 제조방법.10. The method of claim 9, wherein the ratio of the thickness of the Ag metal layer and the thickness of the Al-doped ZnO layer is 1: 2.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 a) 내지 c) 단계는 스퍼터링법, 전자빔 증착법 및 연속 증발 증착법으로 이루어진 군으로부터 선택된 어느 하나의 공정에 의해서 수행되는 것을 특징으로 하는 플렉시블 투명 전극의 제조방법.The steps a) to c) are performed by any one process selected from the group consisting of a sputtering method, an electron beam deposition method and a continuous evaporation deposition method.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 a) 내지 c) 단계는 회분식 공정에 의해서 수행되는 것을 특징으로 하는 플렉시블 투명 전극의 제조방법.Step a) to c) is a method of manufacturing a flexible transparent electrode, characterized in that carried out by a batch process.
  13. 제1항 내지 제6항 중 어느 한 항에 따른 플렉시블 투명 전극을 포함하는 태양전지.A solar cell comprising the flexible transparent electrode according to any one of claims 1 to 6.
  14. 제1항 내지 제6항 중 어느 한 항에 따른 플렉시블 투명 전극을 포함하는 발광 다이오드.A light emitting diode comprising the flexible transparent electrode according to any one of claims 1 to 6.
PCT/KR2016/009005 2015-08-18 2016-08-17 Flexible transparent electrode having azo/ag/azo multilayered thin film structure, and manufacturing method therefor WO2017030352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150116227A KR20170021619A (en) 2015-08-18 2015-08-18 Transparent electrode with AZO/Ag/AZO mulilayered structure and method for preparing the same
KR10-2015-0116227 2015-08-18

Publications (1)

Publication Number Publication Date
WO2017030352A1 true WO2017030352A1 (en) 2017-02-23

Family

ID=58051352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009005 WO2017030352A1 (en) 2015-08-18 2016-08-17 Flexible transparent electrode having azo/ag/azo multilayered thin film structure, and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20170021619A (en)
WO (1) WO2017030352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336070A (en) * 2018-02-11 2018-07-27 无锡博硕珈睿科技有限公司 The manufacturing method of capacitor device structure, capacitor and capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022835A (en) * 2003-02-13 2003-03-17 태원필 Humidity sensor using nanostructured-multilayered Al-doped ZnO:TiO2 thin films
KR20110049388A (en) * 2009-11-05 2011-05-12 동의대학교 산학협력단 Method of forming a thin film and luminescence device
KR20130058717A (en) * 2013-05-21 2013-06-04 영남대학교 산학협력단 Light emitting diode having doped zno layer and method of manufacturing thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733931B1 (en) 1995-03-22 2003-08-27 Toppan Printing Co., Ltd. Multilayered conductive film, and transparent electrode substrate and liquid crystal device using the same
KR20100089962A (en) 2009-02-05 2010-08-13 충남대학교산학협력단 PREPARTION METHOD FOR TRANSPARENT CONDUCTING FILM COATED BY AZO/Ag/AZO MULTILAYER
KR101145916B1 (en) 2010-09-15 2012-05-15 경희대학교 산학협력단 Method for manufacturing flexible multilayer transparent eletrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022835A (en) * 2003-02-13 2003-03-17 태원필 Humidity sensor using nanostructured-multilayered Al-doped ZnO:TiO2 thin films
KR20110049388A (en) * 2009-11-05 2011-05-12 동의대학교 산학협력단 Method of forming a thin film and luminescence device
KR20130058717A (en) * 2013-05-21 2013-06-04 영남대학교 산학협력단 Light emitting diode having doped zno layer and method of manufacturing thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG, YU SUP ET AL.: "Properties of AZO/Ag/AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate", TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, vol. 14, no. 1, 25 February 2013 (2013-02-25), XP055374110 *
KJM, SANG MO ET AL.: "AZO/Ag/AZO Multilayer Prepared on Polymer Substrate", PROCEEDINGS OF THE KOREAN SOCIETY OF SEMICONDUCTOR EQUIPMENT. TECHNOTOGY, 2007 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336070A (en) * 2018-02-11 2018-07-27 无锡博硕珈睿科技有限公司 The manufacturing method of capacitor device structure, capacitor and capacitor

Also Published As

Publication number Publication date
KR20170021619A (en) 2017-02-28

Similar Documents

Publication Publication Date Title
WO2010038954A2 (en) Transparent conductive film, and transparent electrode comprising same
KR101809296B1 (en) Transparent electode and electronic device comprising the same
KR20100089962A (en) PREPARTION METHOD FOR TRANSPARENT CONDUCTING FILM COATED BY AZO/Ag/AZO MULTILAYER
WO2012002723A2 (en) Transparent conductive film, method for manufacturing same, and transparent electrode and device using same
CN102934175B (en) Zinc oxide transparent conductive film and manufacture method thereof and purposes
WO2014021522A1 (en) Semiconductor device and method for producing same
US9249504B2 (en) Method of passivating ultra-thin AZO with nano-layer alumina
JPWO2014115770A1 (en) Transparent conductive substrate and method for producing the same
WO2012067444A2 (en) Conductive film with an oxide film and method for producing same
WO2015080496A1 (en) Conductive structure precursor, conductive structure and manufacturing method therefor
WO2017030352A1 (en) Flexible transparent electrode having azo/ag/azo multilayered thin film structure, and manufacturing method therefor
CN105910737B (en) A kind of stress alignment sensor and preparation method thereof, stress localization method
WO2017034078A1 (en) Flexible transparent electrode having tio2/ag/tio2 multi-layered thin film structure, and method for manufacturing same
WO2014048259A1 (en) Touch device structure and manufacturing method thereof
WO2019124743A1 (en) Method for manufacturing transparent conductive film
CN109742036B (en) Sensor, method and device for measuring film doping proportion
KR100989409B1 (en) Multi-layered flexible transparent electrode and its manufacturing method
WO2016186394A1 (en) Conductive laminate and transparent electrode including same
WO2016148514A1 (en) Conductive structure and electronic device comprising same
Wang et al. Enhanced optical, electrical, and mechanical characteristics of ZnO/Ag grids/ZnO flexible transparent electrodes
US9214254B2 (en) Ultra-thin AZO with nano-layer alumina passivation
WO2021193990A1 (en) Perovskite solar cell comprising buffer-integrated transparent electrode, and method for manufacturing same
CN114121346A (en) Corrosion-resistant silver nanowire composite transparent electrode and preparation method thereof
KR101782691B1 (en) Transparent electrode with IGZO/Ag/IGZO multilayered structure and method for preparing the same
KR101832521B1 (en) Transparent electode and electronic device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837294

Country of ref document: EP

Kind code of ref document: A1