WO2017030313A1 - Method and apparatus for controlling electrolyte flow rate of redox flow battery - Google Patents

Method and apparatus for controlling electrolyte flow rate of redox flow battery Download PDF

Info

Publication number
WO2017030313A1
WO2017030313A1 PCT/KR2016/008744 KR2016008744W WO2017030313A1 WO 2017030313 A1 WO2017030313 A1 WO 2017030313A1 KR 2016008744 W KR2016008744 W KR 2016008744W WO 2017030313 A1 WO2017030313 A1 WO 2017030313A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
flow rate
value
stack
pressure drop
Prior art date
Application number
PCT/KR2016/008744
Other languages
French (fr)
Korean (ko)
Inventor
오은선
예희창
하태정
김재민
김수환
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2017030313A1 publication Critical patent/WO2017030313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method and apparatus for controlling the flow rate of an electrolyte solution supplied to a cell of a redox flow battery.
  • electromagnetic flow meters differential pressure meters, area flow meters, volumetric flowmeters, turbine flowmeters, ultrasonic (propagation time differential) flowmeters, vortex flowmeters, thermal mass flowmeters, Coriolis flowmeters, isostatic (pitot tube) flowmeters It can be applied to the system by either diaphragm flow meter or paddle flow meter.
  • the electrolyte used in the redox flow battery has strong acid properties, it is necessary to use a flow meter having high corrosion resistance against acidic solutions.
  • the pressure drop of the electrolyte due to the use of a flow meter should be minimized in order to maximize the effect of increasing the system efficiency.
  • the circulation flow rate of the electrolyte used in the redox flow battery is not high, a flow meter capable of precise measurement even at a low flow rate is required.
  • the electrolyte in order to control the flow rate with high precision to ensure battery efficiency, the electrolyte must be flowed at a certain level or more, in which case there is a problem that an unnecessary large pressure drop may occur.
  • the electrolyte used in the redox flow battery is characterized in that the current flows, there is a problem that the flowmeter equipped with an electronic element there may be affected by the current flowing through the electrolyte.
  • the method for controlling the flow rate of the first electrolyte or the second electrolyte supplied to the stack of redox flow battery measuring the state of charge of the stack, the Measuring a temperature value of the first electrolyte solution or the second electrolyte solution, measuring a pressure drop value of the first electrolyte solution or the second electrolyte solution passing through the stack, the state of charge value, the temperature value, and the pressure Calculating a current flow rate of the first electrolyte solution or the second electrolyte solution using a drop value and referring to the current flow rate so that the actual flow rate of the first electrolyte solution or the second electrolyte solution reaches a preset target flow rate; Controlling the pump of the dox flow cell.
  • the step of controlling the actual flow rate of the first electrolyte or the second electrolyte solution to reach a preset target flow rate with reference to the current flow rate is a difference value between the target flow rate and the current flow rate. And calculating a rotation speed or speed of a pump connected between the stack and the electrolyte tank with reference to the difference value between the target flow rate and the current flow rate.
  • measuring the pressure drop value of the electrolyte passing through the stack measuring the first pressure value of the first electrolyte or the second electrolyte flowing into the stack, the stack Measuring a second pressure value of the first electrolyte solution or the second electrolyte solution flowing out of the second electrolyte solution; and calculating the pressure drop value by using a difference between the first pressure value and the second pressure value.
  • controlling the pump of the redox flow battery includes independently controlling the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte.
  • the device for controlling the flow rate of the first electrolyte or the second electrolyte supplied to the stack of redox flow battery is a state of charge measurement unit for measuring the state of charge of the stack, Temperature value measuring unit for measuring the temperature value of the first electrolyte or the second electrolyte, pressure drop value measuring unit for measuring the pressure drop value of the first electrolyte or the second electrolyte passing through the stack, the state of charge Calculate a current flow rate of the first electrolyte or the second electrolyte using the temperature value and the pressure drop value, and set an actual flow rate of the first electrolyte or the second electrolyte with reference to the current flow rate. And a controller for controlling the pump of the redox flow battery to reach a flow rate.
  • control unit calculates a difference value between the target flow rate and the current flow rate, and refers to the difference between the target flow rate and the current flow rate of the pump connected between the stack and the electrolyte tank. Adjust the rotation speed or speed.
  • the pressure drop value measuring unit of the first pressure value of the first electrolyte or the second electrolyte solution flowing into the stack and the first electrolyte or the second electrolyte solution flowing out of the stack A second pressure value is measured and the pressure drop value is calculated using the difference between the first pressure value and the second pressure value.
  • the controller independently controls the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte.
  • the flow rate of the electrolyte solution of the redox flow battery can be appropriately controlled by using the pressure drop measurement of the electrolyte solution without using a flow meter.
  • the present invention has the advantage that it is possible to precisely control the flow rate of the electrolyte of the redox flow battery at a relatively low cost.
  • variable conditions such as temperature and state of charge
  • affect the efficiency of the redox flow cell which can be reflected in real time by observing and feeding back these operating conditions.
  • the flow rate of the electrolyte may be adjusted using only a pressure sensor without a flow meter by using the relationship between the pressure drop, the temperature, the state of charge, and the flow rate of the electrolyte generated in the redox flow battery.
  • the customized flow rate control is possible by independently controlling the flow rate of the positive electrode and the negative electrode reflecting the variable conditions (temperature, state of charge).
  • the viscosity of the electrolyte solution of the positive electrode and the negative electrode is different during charging and discharging, they have different pressure values at the same time.
  • a vanadium aqueous solution having the same composition is used as an electrolyte for the positive electrode and the negative electrode, but the ion valences are different during charging and discharging, and thus the physical properties of the electrolyte change differently.
  • the electrolyte of each of the positive electrode and the negative electrode has a different pressure value, so it is necessary to measure the pressure of each of the positive electrode and the negative electrode to control the flow rate of the electrolyte. Therefore, the present invention can control the flow rate more precisely by independently measuring each pressure drop through a pressure sensor disposed on each of the anode and the cathode, and by independently controlling the flow rate of the electrolyte according to the anode and cathode portions. have.
  • FIG. 1 is a block diagram of a redox flow battery and an electrolyte flow control device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a change in the pressure drop value of the first electrolyte according to the change in the state of charge SOC in one embodiment of the present invention.
  • FIG 3 is a graph showing a change in the pressure drop value of the second electrolyte according to the change of the state of charge SOC in one embodiment of the present invention.
  • FIG. 4 is a graph showing an error rate between a current flow rate of an electrolyte solution and an actual flow rate of an electrolyte solution measured by an electrolyte flow rate control device according to an embodiment of the present invention over time.
  • FIG. 5 is a flowchart of a redox flow battery and an electrolyte flow rate control method according to an exemplary embodiment of the present invention.
  • the flow rate of the electrolyte has a significant effect on the characteristics of the redox flow battery. Element. Therefore, in order to increase the efficiency of the redox flow battery, it is necessary to precisely control the flow rate of the electrolyte solution in consideration of the temperature and the state of charge of the battery that changes in real time.
  • conventional flow control using a flow meter is undesirable in terms of precision and price.
  • the present invention provides a method and apparatus for controlling an electrolyte flow rate of a redox flow battery capable of appropriately controlling the flow rate of an electrolyte solution of a redox flow battery by using a pressure drop measurement of the electrolyte solution without using a flow meter.
  • FIG. 1 is a block diagram of a redox flow battery and an electrolyte flow control device according to an embodiment of the present invention.
  • a redox flow battery may include a first electrolyte tank 102, a first pump 104, a first pressure sensor 106, a second pressure sensor 110, The second electrolyte tank 112, the second pump 114, the third pressure gauge 116, the fourth pressure gauge 120, and the stack 122 are included.
  • first electrolyte tank 102 and the second electrolyte tank 112 a first electrolyte solution and a second electrolyte solution are respectively accommodated.
  • the first electrolyte may be a cathode electrolyte including a cathode electrolyte
  • the second electrolyte may be a cathode electrolyte including a cathode electrolyte.
  • the first electrolyte may be a positive electrolyte and the second electrolyte may be a negative electrolyte.
  • the first pump 104 performs a pump operation for supplying the first electrolyte solution contained in the first electrolyte tank 102 to the first path 108.
  • the second pump 114 performs a pump operation for supplying the second electrolyte solution contained in the second electrolyte tank 112 to the second path 118.
  • the flow rate of the electrolyte supplied to the first path 108 and the second path 118 is determined according to the rotation speed of the first pump 104 and the second pump 114 or the speed of the pump. In other words, as the number of revolutions or the speed per unit time of the first pump 104 and the second pump 114 increases, the flow rate of the electrolyte supplied to the first path 108 and the second path 118 increases.
  • the stack 122 In the stack 122, charging or discharging of electrical energy occurs through the oxidation-reduction reaction of the incoming electrolyte.
  • the stack 122 is composed of a plurality of cells, and each cell constituting the stack 122 includes a diaphragm through which ions can pass. Through the diaphragm, ions contained in the first electrolyte solution and the second electrolyte solution introduced into each cell may be exchanged with each other. By such ion exchange, oxidation-reduction reaction between electrolytes occurs inside the cell. Due to the redox reaction, the electrical energy may be charged inside the stack 122 or may be discharged to the outside.
  • all flow paths connecting the stack 122 and the first electrolyte tank 102 are defined as the first flow path 108.
  • all the flow paths connecting the stack 122 and the second electrolyte tank 112 are defined as the second flow path 118.
  • the electrolyte flow rate control device 10 according to an embodiment of the present invention, the state of charge measurement unit 12, the temperature value measuring unit 14, the pressure drop value measuring unit 16, the control unit (18).
  • the state of charge measurement unit 12 measures a state of charge (SOC) value of the stack 122 using a state of charge value sensor (not shown) disposed in the stack 122.
  • SOC state of charge
  • the temperature value measuring unit 14 may measure temperature values of the first electrolyte solution and the second electrolyte solution, respectively, using a temperature sensor (not shown).
  • the temperature sensor (not shown) may be disposed in the first electrolyte tank 102 and the second electrolyte tank 112, or may be disposed in the stack 122. In some embodiments, a temperature sensor (not shown) may be disposed in the first flow path 108 or the second flow path 118.
  • the pressure drop value measuring unit 16 measures the pressure drop value of the electrolyte passing through the stack 122.
  • the pressure drop value means a difference value between the pressure value of the electrolyte flowing into the stack 122 and the pressure value of the electrolyte flowing out of the stack 122.
  • the first pressure sensor 106 and the second pressure sensor 110 are disposed at both ends of the stack 122 on the first flow path 108 and the second flow path.
  • a third pressure sensor 116 and a fourth pressure sensor 120 are disposed at both ends of the stack 122 on 118.
  • the pressure drop value measuring unit 16 measures the first pressure value of the first electrolyte flowing into the stack 122 using the first pressure sensor 106, The second pressure value of the first electrolyte flowing out of the stack 122 is measured using the second pressure sensor 110. Then, the pressure drop value measuring unit 16 determines the difference value between the second pressure value and the first pressure value as the pressure drop value of the first electrolyte solution. The pressure drop value of the second electrolyte may also be determined in this same manner.
  • the controller 18 may calculate a current flow rate of each electrolyte supplied to the first path 108 and the second path 118 using the state of charge value, the temperature value, and the pressure drop value obtained as described above. .
  • the relationship between the state of charge value, the temperature value, the pressure drop value, the current flow rate is used to calculate the current flow rate of each of the first electrolyte and the second electrolyte passing through the stack 122 without using a flow meter. This relationship can be derived by experiment and calculation as described below.
  • FIG. 2 is a graph showing a change in the pressure drop value of the first electrolyte according to the change in the state of charge value SOC in one embodiment of the present invention
  • FIG. 3 is a state of charge value SOC in one embodiment of the present invention. It is a graph showing the change in the pressure drop value of the second electrolyte with the change of. More specifically, the graphs shown in FIGS. 2 and 3 show each path according to the change of state of charge value SOC while fixing the temperature of the stack 122 and the flow rate of the electrolyte flowing into the respective paths 108 and 118. The result of measuring the pressure drop value ( ⁇ P) is shown.
  • the operating conditions for each result shown in FIGS. 2 and 3 and the relationship between the state of charge SOC and the pressure drop ⁇ P are as follows.
  • (1) 202, 302 temperature 5 ° C., flow rate 0.7 ML, MIN-1, CM-2
  • ⁇ P FR x [(-0.00037 x T 2 + 0.02303 x T-0.5023) x SOC + 0.06276 x T 2 + 4.7994 x T + 138.59]
  • ⁇ P FR ⁇ [(-0.000066 ⁇ T 2 + 0.004799 ⁇ T-0.1295) ⁇ SOC + 0.0270 ⁇ T 2 + 2.339 ⁇ T + 78.976]
  • FR is the current flow rate of each electrolyte
  • ⁇ P is the pressure drop value of each electrolyte
  • T is the temperature value of each electrolyte
  • SOC is the state of charge of the stack.
  • FIG. 4 is a graph showing an error rate between a current flow rate of an electrolyte solution and an actual flow rate of an electrolyte solution measured by an electrolyte flow rate control device according to an embodiment of the present invention over time.
  • FIG. 4 shows an error rate 402 between the current flow rate of the first electrolyte solution measured by the electrolyte flow control apparatus 10 according to an embodiment of the present invention and the actual flow rate of the first electrolyte solution measured through the actual ultrasonic flowmeter, and the electrolyte solution.
  • the error rate 404 between the current flow rate of the second electrolyte measured by the flow control device 10 and the actual flow rate of the second electrolyte measured through the actual ultrasonic flow meter is shown, respectively.
  • the error rate between the current flow rate measured by the electrolyte flow control apparatus 10 according to an embodiment of the present invention and the actual flow rate measured by the actual ultrasonic flowmeter does not exceed 5%. Therefore, it can be seen that the flow rate of each path 108 and 118 can be measured relatively accurately by using the electrolyte solution flow control apparatus 10 according to an embodiment of the present invention.
  • the controller 18 calculates the current flow rate FR of each electrolyte by using the state of charge, temperature and pressure drop values obtained as described above and the relational expression described in [Equation 1]. Can be.
  • the controller 18 controls the pumps 104 and 114 so that the actual flow rate of the electrolyte reaches a preset target flow rate with reference to the current flow rate of the electrolyte solution calculated in this way.
  • the target flow rate may be set according to the temperature and the state of charge of the redox flow battery so that the redox flow battery can operate efficiently.
  • a target flow rate may be arbitrarily designated by the user, or a target flow rate suitable for the current temperature and state of charge of the redox flow battery may be automatically set using a table or a formula stored in advance.
  • the controller 18 may calculate a difference value between the current flow rate of each electrolyte and the preset target flow rate calculated through Equation 1 above. Then, the controller 18 adjusts the number of revolutions or the speed of each pump 104, 114 by referring to the difference value between the calculated current flow rate and the target flow rate, so that the actual flow rate of the electrolyte flowing into the stack 122 is the target flow rate. Control to reach For example, when the calculated current flow rate is lower than the target flow rate, the controller 18 may control the respective pumps 104 and 114 to individually increase the flow rate of the first electrolyte or the second electrolyte flowing into the stack 122. have.
  • the electrolyte flow rate control apparatus 10 is the actual flow rate of the first electrolyte flowing into the stack 122 and the actual amount of the second electrolyte flowing into the stack 122 Flow rate can be adjusted independently.
  • FIG. 5 is a flowchart of a redox flow battery and an electrolyte flow rate control method according to an exemplary embodiment of the present invention.
  • the electrolyte flow control apparatus first measures the state of charge of the stack (502), and measures the temperature value of each electrolyte flowing into the stack (504).
  • the electrolyte flow rate control device measures the pressure drop value of each electrolyte passing through the stack (506).
  • the electrolyte flow rate control apparatus may determine the difference between the first pressure value of the electrolyte flowing into each stack and the second pressure value of the electrolyte flowing out of each stack as the pressure drop value of the electrolyte.
  • the step 506 of measuring the pressure drop value of the electrolyte passing through the stack may include measuring the first pressure value of the first electrolyte or the second electrolyte flowing into the stack and exiting the stack. Measuring a second pressure value of the first electrolyte solution or the second electrolyte solution, and calculating a pressure drop value by using a difference between the first pressure value and the second pressure value.
  • the electrolyte flow rate control apparatus calculates a current flow rate of each electrolyte using the state of charge value, temperature value, and pressure drop value measured previously (508). At this time, the electrolyte flow rate control device may calculate the current flow rate of the electrolyte solution using [Equation 1].
  • the electrolyte flow rate control apparatus controls the pump of the redox flow battery so that the actual flow rate of the electrolyte reaches a preset target flow rate with reference to the current flow rate calculated as described above (510).
  • the electrolyte flow rate controller may increase the flow rate of each electrolyte flowing into the stack by controlling each pump when the calculated current flow rate is lower than the target flow rate.
  • the electrolyte flow rate control apparatus can independently adjust the actual flow rate of the first electrolyte solution and the actual flow rate of the second electrolyte solution.
  • the step (510) of controlling the pump of the redox flow battery so that the actual flow rate of the electrolyte reaches a preset target flow rate with reference to the current flow rate calculates a difference value between the target flow rate and the current flow rate. And adjusting the rotation speed or speed of the pump connected between the stack and the electrolyte tank with reference to the difference between the target flow rate and the current flow rate.
  • controlling the pump of the redox flow battery 510 includes independently controlling the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte.
  • the flow rate of the electrolyte is an important factor that greatly affects the characteristics of the redox flow battery. Therefore, in order to increase the efficiency of the redox flow battery, it is necessary to precisely control the flow rate of the electrolyte solution in consideration of the temperature and the state of charge of the battery that changes in real time.
  • conventional flow control using a flow meter is undesirable in terms of precision and price.
  • electromagnetic flow meters differential pressure meters, area flow meters, volumetric flowmeters, turbine flowmeters, ultrasonic (propagation time differential) flowmeters, vortex flowmeters, thermal mass flowmeters, Coriolis flowmeters, isostatic (pitot tube) flowmeters It can be applied to the system by either diaphragm flow meter or paddle flow meter.
  • the electrolyte solution used in the redox flow battery system has a strong acid property
  • a flow meter having a high level of sulfuric acid corrosion resistance is suitable.
  • the pressure drop by the sensor of the flow meter should be minimized in order to maximize the effect of increasing system efficiency.
  • the circulation flow rate of the electrolyte used in the redox flow battery is not high, it can be said that a flowmeter capable of precise measurement even at a low linear velocity is suitable.
  • the electrolyte in order to control the flow rate with high precision to ensure the system efficiency, the electrolyte must be flowed at a certain level or higher, in which case there is a problem that an unnecessary large pressure drop may occur.
  • the current used in the electrolyte used in the redox flow battery is characterized by the fact that the current flows in the case of a flowmeter equipped with an electronic device therein, which also affects the measurement of the flowmeter. Element.
  • the flowmeters applicable to redox flow cell systems are narrowed down to paddle-type and ultrasonic flowmeters.
  • the ultrasonic flowmeter has a disadvantage in that the initial investment cost is increased because the price is very high.
  • the flow rate of the electrolyte is controlled using the pressure drop measurement of the electrolyte, the flow rate can be precisely controlled at a relatively low cost compared to the conventional flow rate control using the flow meter.
  • variable conditions such as temperature and state of charge
  • affect the efficiency of the redox flow cell which can be reflected in real time by observing and feeding back these operating conditions.
  • the flow rate of the electrolyte may be adjusted using only a pressure sensor without a flow meter by using the relationship between the pressure drop, the temperature, the state of charge, and the flow rate of the electrolyte generated in the redox flow battery.
  • the customized flow rate control is possible by independently controlling the flow rate of the positive electrode and the negative electrode reflecting the variable conditions (temperature, state of charge).
  • the viscosity of the electrolyte solution of the positive electrode and the negative electrode is different during charging and discharging, they have different pressure values at the same time.
  • a vanadium aqueous solution having the same composition is used as an electrolyte for the positive electrode and the negative electrode, but the ion valences are different during charging and discharging, and thus the physical properties of the electrolyte change differently.
  • the electrolyte of each of the positive electrode and the negative electrode has a different pressure value, so it is necessary to measure the pressure of each of the positive electrode and the negative electrode to control the flow rate of the electrolyte. Therefore, the present invention can control the flow rate more precisely by independently measuring each pressure drop through a pressure sensor disposed on each of the anode and the cathode, and by independently controlling the flow rate of the electrolyte according to the anode and cathode portions. have.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a method and apparatus for controlling a flow rate of an electrolyte supplied to a cell of a redox flow battery. According to an embodiment of the present invention, a method for controlling a flow rate of an electrolyte supplied to a stack of a redox flow battery comprises the steps of: measuring a charged state value of the stack; measuring a temperature value of the electrolyte; measuring a pressure drop value of the electrolyte that passes through the stack; calculating a current flow rate of the electrolyte supplied to the stack, using the charged state value, the temperature value, and the pressure drop value; and controlling a pump of the redox flow battery to enable an actual flow rate of the electrolyte to reach a previously set target flow rate, by referring to the current flow rate. The present invention is advantageous in that a flow rate of an electrolyte of a redox flow battery can be appropriately controlled by only measuring a pressure drop of the electrolyte, without using a flowmeter.

Description

레독스 흐름 전지의 전해액 유량 제어 방법 및 장치Method and apparatus for controlling the flow rate of electrolyte in redox flow battery
본 발명은 레독스 흐름 전지의 셀에 공급되는 전해액의 유량을 제어하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for controlling the flow rate of an electrolyte solution supplied to a cell of a redox flow battery.
레독스 흐름 전지의 효율을 높이기 위해서는 스택에 공급되는 전해액의 유량을 정밀하게 제어해야 한다. 전해액의 유량을 정밀하게 제어하기 위해서는 레독스 흐름 전지 내에서 흐르는 전해액의 유량을 정확하게 측정해야 한다. 전해액의 유량을 측정하기 위해 가장 흔히 이용되는 것이 유량계이다.In order to increase the efficiency of the redox flow battery, it is necessary to precisely control the flow rate of the electrolyte supplied to the stack. In order to precisely control the flow rate of the electrolyte, it is necessary to accurately measure the flow rate of the electrolyte flowing in the redox flow battery. The most commonly used flow meter to measure the flow rate of the electrolyte is a flow meter.
레독스 흐름전지 시스템의 전해질 용액의 유량을 정밀하게 제어하기 위해서는 조건에 맞는 유량계를 선정하는 것이 중요하고, 이를 위해서는 측정 유체의 상태를 파악하는 것이 선행돼야 한다. 측정 유체에 적합한 유량계를 선정하기 위해 고려해야 할 사항으로는 관로의 형상, 유체흐름의 상태, 유체의 종류, 유체의 조건, 유체의 성상, 유량의 측정범위, 배관의 직관부, 허용 압력손실 등이 있다. 이와 같은 요소들을 고려하여 전자 유량계, 차압 유량계, 면적식 유량계, 용적식 유량계, 터빈 유량계, 초음파 (전파시간차방식) 유량계, vortex 유량계, 열질량 유량계, 코리올리 (Coriolis) 유량계, 등압식 (피토관) 유량계, 격막식 유량계, 패들형 유량계 중 택일하여 시스템에 적용할 수 있다.In order to precisely control the flow rate of the electrolyte solution of the redox flow battery system, it is important to select a flow meter suitable for the conditions, and to do so, it is necessary to first understand the state of the measurement fluid. In order to select a flowmeter suitable for the measurement fluid, considerations include the shape of the pipe, the state of the fluid flow, the type of fluid, the condition of the fluid, the properties of the fluid, the measurement range of the flow rate, the straight pipe section, and the allowable pressure loss. have. Considering these factors, electromagnetic flow meters, differential pressure meters, area flow meters, volumetric flowmeters, turbine flowmeters, ultrasonic (propagation time differential) flowmeters, vortex flowmeters, thermal mass flowmeters, Coriolis flowmeters, isostatic (pitot tube) flowmeters It can be applied to the system by either diaphragm flow meter or paddle flow meter.
레독스 흐름 전지에서 사용되는 전해액은 강산 특성을 갖기 때문에, 산성 용액에 대한 높은 내식성을 갖는 유량계를 사용해야 한다. 뿐만 아니라 시스템 효율 증대 효과를 극대화시키기 위해서는 유량계의 사용으로 인한 전해액의 압력 강하가 최소화되어야 한다. 또한 일반적으로 레독스 흐름전지에 사용되는 전해액의 순환 유속이 높지 않기 때문에 낮은 유속에서도 정밀한 측정이 가능한 유량계가 필요하다. Since the electrolyte used in the redox flow battery has strong acid properties, it is necessary to use a flow meter having high corrosion resistance against acidic solutions. In addition, the pressure drop of the electrolyte due to the use of a flow meter should be minimized in order to maximize the effect of increasing the system efficiency. In addition, since the circulation flow rate of the electrolyte used in the redox flow battery is not high, a flow meter capable of precise measurement even at a low flow rate is required.
그러나 전지 효율을 보장할 수 있는 수준으로 높은 정밀도를 가지고 유량을 제어하기 위해서는 일정 수준 이상의 속도로 전해액을 흘려주어야 하는데, 이 경우 불필요하게 큰 압력 강하가 발생할 수 있다는 문제점이 있다.However, in order to control the flow rate with high precision to ensure battery efficiency, the electrolyte must be flowed at a certain level or more, in which case there is a problem that an unnecessary large pressure drop may occur.
또한 레독스 흐름 전지에 사용되는 전해액에는 전류가 흐른다는 특징이 있는데, 내부에 전자 소자를 장착한 유량계의 경우 전해액에 흐르는 전류로 인한 영향을 받을 수 있다는 문제도 있다. In addition, the electrolyte used in the redox flow battery is characterized in that the current flows, there is a problem that the flowmeter equipped with an electronic element there may be affected by the current flowing through the electrolyte.
이와 같은 문제점들로 인해 레독스 흐름 전지에 적용될 수 있는 유량계의 종류는 매우 한정적이다. 또한 위와 같은 모든 조건을 충족시키는 유량계의 경우 가격이 매우 높기 때문에 레독스 흐름 전지 시스템을 구축하는 비용을 상승시킨다는 문제점이 있다.Due to these problems, the type of flowmeter that can be applied to a redox flow battery is very limited. In addition, there is a problem that the cost of building a redox flow cell system is increased because the price is very high in the case of a flow meter that satisfies all the above conditions.
본 발명은 유량계를 사용하지 않고 전해액의 압력 강하 측정 만으로 레독스 흐름 전지의 전해액의 유량을 적절히 제어할 수 있는 레독스 흐름 전지의 전해액 유량 제어 방법 및 장치를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method and apparatus for controlling the flow rate of an electrolyte solution of a redox flow battery capable of appropriately controlling the flow rate of an electrolyte solution of a redox flow battery without measuring a pressure drop of the electrolyte solution without using a flow meter.
또한 본 발명은 비교적 저렴한 비용으로 레독스 흐름 전지의 전해액의 유량을 정확하게 제어할 수 있는 레독스 흐름 전지의 전해액 유량 제어 방법 및 장치를 제공하는 것을 다른 목적으로 한다.It is another object of the present invention to provide a method and apparatus for controlling the flow rate of an electrolyte solution of a redox flow battery capable of accurately controlling the flow rate of an electrolyte solution of a redox flow battery at a relatively low cost.
또한 본 발명은 레독스 흐름 전지에서 사용되는 전해액의 특성에 영향을 받지 않고 레독스 흐름 전지의 전해액의 유량을 정확하게 제어할 수 있는 레독스 흐름 전지의 전해액 유량 제어 방법 및 장치를 제공하는 것을 다른 목적으로 한다.It is another object of the present invention to provide a method and apparatus for controlling an electrolyte flow rate of a redox flow battery capable of accurately controlling the flow rate of an electrolyte solution of a redox flow battery without being affected by the characteristics of the electrolyte solution used in the redox flow battery. It is done.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention, which are not mentioned above, can be understood by the following description, and more clearly by the embodiments of the present invention. Also, it will be readily appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
이러한 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 레독스 흐름 전지의 스택에 공급되는 제1 전해액 또는 제2 전해액의 유량을 제어하는 방법은 상기 스택의 충전 상태 값을 측정하는 단계, 상기 제1 전해액 또는 상기 제2 전해액의 온도 값을 측정하는 단계, 상기 스택을 통과하는 상기 제1 전해액 또는 상기 제2 전해액의 압력 강하 값을 측정하는 단계, 상기 충전 상태 값, 상기 온도 값 및 상기 압력 강하 값을 이용하여 상기 제1 전해액 또는 상기 제2 전해액의 현재 유량을 계산하는 단계 및 상기 현재 유량을 참조하여 상기 제1 전해액 또는 상기 제2 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 상기 레독스 흐름 전지의 펌프를 제어하는 단계를 포함한다.According to an embodiment of the present invention for achieving the above object, the method for controlling the flow rate of the first electrolyte or the second electrolyte supplied to the stack of redox flow battery, measuring the state of charge of the stack, the Measuring a temperature value of the first electrolyte solution or the second electrolyte solution, measuring a pressure drop value of the first electrolyte solution or the second electrolyte solution passing through the stack, the state of charge value, the temperature value, and the pressure Calculating a current flow rate of the first electrolyte solution or the second electrolyte solution using a drop value and referring to the current flow rate so that the actual flow rate of the first electrolyte solution or the second electrolyte solution reaches a preset target flow rate; Controlling the pump of the dox flow cell.
본 발명의 일 실시예에 따르면, 상기 현재 유량을 참조하여 상기 제1 전해액 또는 상기 제2 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 제어하는 단계는 상기 목표 유량과 상기 현재 유량의 차이 값을 계산하는 단계 및 상기 목표 유량과 상기 현재 유량의 차이 값을 참조하여 상기 스택과 전해액 탱크 사이에 연결되는 펌프의 회전 수 또는 속도를 조절하는 단계를 포함한다.According to one embodiment of the present invention, the step of controlling the actual flow rate of the first electrolyte or the second electrolyte solution to reach a preset target flow rate with reference to the current flow rate is a difference value between the target flow rate and the current flow rate. And calculating a rotation speed or speed of a pump connected between the stack and the electrolyte tank with reference to the difference value between the target flow rate and the current flow rate.
본 발명의 일 실시예에 따르면, 상기 스택을 통과하는 전해액의 압력 강하 값을 측정하는 단계는 상기 스택으로 유입되는 상기 제1 전해액 또는 상기 제2 전해액의 제1 압력 값을 측정하는 단계, 상기 스택으로부터 유출되는 상기 제1 전해액 또는 상기 제2 전해액의 제2 압력 값을 측정하는 단계 및 상기 제1 압력 값 및 상기 제2 압력 값의 차이를 이용하여 상기 압력 강하 값을 계산하는 단계를 포함한다.According to one embodiment of the present invention, measuring the pressure drop value of the electrolyte passing through the stack, measuring the first pressure value of the first electrolyte or the second electrolyte flowing into the stack, the stack Measuring a second pressure value of the first electrolyte solution or the second electrolyte solution flowing out of the second electrolyte solution; and calculating the pressure drop value by using a difference between the first pressure value and the second pressure value.
본 발명의 일 실시예에 따르면, 상기 레독스 흐름 전지의 펌프를 제어하는 단계는 상기 제1 전해액의 실제 유량과 상기 제2 전해액의 실제 유량을 독립적으로 제어하는 단계를 포함한다.According to one embodiment of the present invention, controlling the pump of the redox flow battery includes independently controlling the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte.
한편, 본 발명의 일 실시예에 따르면, 레독스 흐름 전지의 스택에 공급되는 제1 전해액 또는 제2 전해액의 유량을 제어하는 장치는 상기 스택의 충전 상태 값을 측정하는 충전 상태 값 측정부, 상기 제1 전해액 또는 상기 제2 전해액의 온도 값을 측정하는 온도 값 측정부, 상기 스택을 통과하는 상기 제1 전해액 또는 상기 제2 전해액의 압력 강하 값을 측정하는 압력 강하 값 측정부, 상기 충전 상태 값, 상기 온도 값 및 상기 압력 강하 값을 이용하여 상기 제1 전해액 또는 상기 제2 전해액의 현재 유량을 계산하고, 상기 현재 유량을 참조하여 상기 제1 전해액 또는 상기 제2 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 상기 레독스 흐름 전지의 펌프를 제어하는 제어부를 포함한다.On the other hand, according to an embodiment of the present invention, the device for controlling the flow rate of the first electrolyte or the second electrolyte supplied to the stack of redox flow battery is a state of charge measurement unit for measuring the state of charge of the stack, Temperature value measuring unit for measuring the temperature value of the first electrolyte or the second electrolyte, pressure drop value measuring unit for measuring the pressure drop value of the first electrolyte or the second electrolyte passing through the stack, the state of charge Calculate a current flow rate of the first electrolyte or the second electrolyte using the temperature value and the pressure drop value, and set an actual flow rate of the first electrolyte or the second electrolyte with reference to the current flow rate. And a controller for controlling the pump of the redox flow battery to reach a flow rate.
본 발명의 일 실시예에 따르면, 상기 제어부는 상기 목표 유량과 상기 현재 유량의 차이 값을 계산하고, 상기 목표 유량과 상기 현재 유량의 차이 값을 참조하여 상기 스택과 전해액 탱크 사이에 연결되는 펌프의 회전 수 또는 속도를 조절한다.According to an embodiment of the present invention, the control unit calculates a difference value between the target flow rate and the current flow rate, and refers to the difference between the target flow rate and the current flow rate of the pump connected between the stack and the electrolyte tank. Adjust the rotation speed or speed.
본 발명의 일 실시예에 따르면, 상기 압력 강하 값 측정부는 상기 스택으로 유입되는 상기 제1 전해액 또는 상기 제2 전해액의 제1 압력 값 및 상기 스택으로부터 유출되는 상기 제1 전해액 또는 상기 제2 전해액의 제2 압력 값을 측정하고, 상기 제1 압력 값 및 상기 제2 압력 값의 차이를 이용하여 상기 압력 강하 값을 계산한다.According to one embodiment of the present invention, the pressure drop value measuring unit of the first pressure value of the first electrolyte or the second electrolyte solution flowing into the stack and the first electrolyte or the second electrolyte solution flowing out of the stack A second pressure value is measured and the pressure drop value is calculated using the difference between the first pressure value and the second pressure value.
본 발명의 일 실시예에 따르면, 상기 제어부는 상기 제1 전해액의 실제 유량과 상기 제2 전해액의 실제 유량을 독립적으로 제어한다.According to an embodiment of the present invention, the controller independently controls the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte.
전술한 바와 같은 본 발명에 의하면, 유량계를 사용하지 않고 전해액의 압력 강하 측정을 이용하여 레독스 흐름 전지의 전해액의 유량을 적절히 제어할 수 있는 장점이 있다.According to the present invention as described above, there is an advantage that the flow rate of the electrolyte solution of the redox flow battery can be appropriately controlled by using the pressure drop measurement of the electrolyte solution without using a flow meter.
또한 본 발명에 의하면 비교적 저렴한 비용으로 레독스 흐름 전지의 전해액의 유량을 정밀하게 제어할 수 있는 장점이 있다.In addition, the present invention has the advantage that it is possible to precisely control the flow rate of the electrolyte of the redox flow battery at a relatively low cost.
또한 본 발명에 의하면 레독스 흐름 전지에서 사용되는 전해액의 특성에 영향을 받지 않고 레독스 흐름 전지의 전해액의 유량을 정밀하게 제어할 수 있는 장점이 있다.In addition, according to the present invention there is an advantage that can accurately control the flow rate of the electrolyte of the redox flow battery without being affected by the characteristics of the electrolyte solution used in the redox flow battery.
본 발명의 장점을 정리하면 다음과 같다. 첫째, 온도나 충전 상태와 같은 가변적인 조건이 레독스 흐름 전지의 효율에 영향을 미치는데, 이러한 운전 조건들을 관측하고 피드백하여 실시간적으로 반영할 수 있다. 본 발명에 따르면 레독스 흐름 전지 내에서 발생하는 전해액의 압력 강하, 온도, 충전 상태, 유량 간의 관계를 이용하여 유량계 없이 압력 센서만을 이용하여 전해액의 유량을 조절할 수 있다.The advantages of the present invention are summarized as follows. First, variable conditions, such as temperature and state of charge, affect the efficiency of the redox flow cell, which can be reflected in real time by observing and feeding back these operating conditions. According to the present invention, the flow rate of the electrolyte may be adjusted using only a pressure sensor without a flow meter by using the relationship between the pressure drop, the temperature, the state of charge, and the flow rate of the electrolyte generated in the redox flow battery.
둘째, 가변 조건(온도, 충전 상태)을 반영하여 양극부과 음극부의 유량을 독립적으로 제어함으로써 맞춤형 유량 제어가 가능해진다는 장점이 있다. 레독스 흐름 전지에서는 충전과 방전시 양극과 음극의 전해질 용액의 점도가 다르기 때문에 동일한 시간에 서로 다른 압력 값을 가지게 된다. 바나듐 레독스 흐름 전지의 경우, 양극과 음극에 동일한 조성의 바나듐 수용액을 전해액으로 사용하나, 충전과 방전시에 이온 가수가 서로 다르며 이에 따라 전해액의 물리적 성질인 점도가 다르게 변한다. 이로 인해 양극과 음극 각각의 전해액은 서로 다른 압력 값을 갖게 되기 때문에 전해액의 유량 제어를 위해서 양극과 음극 각각의 압력을 측정해야 한다. 이에 본 발명은 양극과 음극에 각각 배치되어 있는 압력 센서를 통해 각각의 압력 강하를 독립적으로 측정하고, 이에 따른 전해액의 유량 제어를 양극부과 음극부 별로 독립적으로 수행함으로써 보다 정밀하게 유량을 제어할 수 있다.Second, there is an advantage that the customized flow rate control is possible by independently controlling the flow rate of the positive electrode and the negative electrode reflecting the variable conditions (temperature, state of charge). In the redox flow battery, since the viscosity of the electrolyte solution of the positive electrode and the negative electrode is different during charging and discharging, they have different pressure values at the same time. In the case of the vanadium redox flow battery, a vanadium aqueous solution having the same composition is used as an electrolyte for the positive electrode and the negative electrode, but the ion valences are different during charging and discharging, and thus the physical properties of the electrolyte change differently. Because of this, the electrolyte of each of the positive electrode and the negative electrode has a different pressure value, so it is necessary to measure the pressure of each of the positive electrode and the negative electrode to control the flow rate of the electrolyte. Therefore, the present invention can control the flow rate more precisely by independently measuring each pressure drop through a pressure sensor disposed on each of the anode and the cathode, and by independently controlling the flow rate of the electrolyte according to the anode and cathode portions. have.
결국 본 발명에 따르면 i) 유량계를 배제한 시스템의 구현이 가능하므로 유량계로 인해 발생되는 비용 상승 및 시스템 오류 가능성을 최소화하고, ii) 각각의 전해액의 유량을 독립적으로 제어함으로써 보다 정밀한 펌프 출력 제어가 가능해지고, 이에 따른 시스템 효율의 향상이 가능하다.As a result, according to the present invention, i) implementation of a system excluding the flow meter is possible, thereby minimizing the possibility of cost increase and system error caused by the flow meter, and ii) more precise pump output control by independently controlling the flow rate of each electrolyte. As a result, it is possible to improve the system efficiency.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지 및 전해액 유량 제어 장치의 구성도이다.1 is a block diagram of a redox flow battery and an electrolyte flow control device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에서 충전 상태 값(SOC)의 변화에 따른 제1 전해액의 압력 강하 값의 변화를 나타내는 그래프이다.2 is a graph showing a change in the pressure drop value of the first electrolyte according to the change in the state of charge SOC in one embodiment of the present invention.
도 3은 본 발명의 일 실시예에서 충전 상태 값(SOC)의 변화에 따른 제2 전해액의 압력 강하 값의 변화를 나타내는 그래프이다.3 is a graph showing a change in the pressure drop value of the second electrolyte according to the change of the state of charge SOC in one embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 전해액 유량 제어 장치에 의해 측정된 전해액의 현재 유량과 전해액의 실제 유량 간 오차율을 시간의 흐름에 따라서 나타낸 그래프이다.4 is a graph showing an error rate between a current flow rate of an electrolyte solution and an actual flow rate of an electrolyte solution measured by an electrolyte flow rate control device according to an embodiment of the present invention over time.
도 5는 본 발명의 일 실시예에 따른 레독스 흐름 전지 및 전해액 유량 제어 방법의 흐름도이다.5 is a flowchart of a redox flow battery and an electrolyte flow rate control method according to an exemplary embodiment of the present invention.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above objects, features, and advantages will be described in detail with reference to the accompanying drawings, whereby those skilled in the art to which the present invention pertains may easily implement the technical idea of the present invention. In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
전술한 바와 같이, 레독스 흐름 전지의 운전 시 스택으로 유입되는 전해액의 유량에 따라 펌프의 기계적 출력과 전지의 전기적 출력이 달라지므로, 전해액의 유량은 레독스 흐름 전지의 특성에 큰 영향을 미치는 중요한 요소이다. 따라서 레독스 흐름 전지의 효율을 높이기 위해서는 실시간으로 변하는 전지의 온도나 충전 상태 등을 감안하여 전해액의 유량을 정밀하게 제어할 필요가 있다. 그러나 유량계를 이용한 종래의 유량 제어는 정밀도와 가격 측면에서 바람직하지 않다.As described above, since the mechanical output of the pump and the electrical output of the battery vary depending on the flow rate of the electrolyte flowing into the stack during operation of the redox flow battery, the flow rate of the electrolyte has a significant effect on the characteristics of the redox flow battery. Element. Therefore, in order to increase the efficiency of the redox flow battery, it is necessary to precisely control the flow rate of the electrolyte solution in consideration of the temperature and the state of charge of the battery that changes in real time. However, conventional flow control using a flow meter is undesirable in terms of precision and price.
따라서 본 발명은 유량계를 사용하지 않고 전해액의 압력 강하 측정을 이용하여 레독스 흐름 전지의 전해액의 유량을 적절히 제어할 수 있는 레독스 흐름 전지의 전해액 유량 제어 방법 및 장치를 제공한다.Accordingly, the present invention provides a method and apparatus for controlling an electrolyte flow rate of a redox flow battery capable of appropriately controlling the flow rate of an electrolyte solution of a redox flow battery by using a pressure drop measurement of the electrolyte solution without using a flow meter.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지 및 전해액 유량 제어 장치의 구성도이다.1 is a block diagram of a redox flow battery and an electrolyte flow control device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 레독스 흐름 전지는 제1 전해액 탱크(102), 제1 펌프(104), 제1 압력 센서(106), 제2 압력 센서(110), 제2 전해액 탱크(112), 제2 펌프(114), 제3 압력계(116), 제4 압력계(120), 스택(122)을 포함한다.Referring to FIG. 1, a redox flow battery according to an exemplary embodiment of the present invention may include a first electrolyte tank 102, a first pump 104, a first pressure sensor 106, a second pressure sensor 110, The second electrolyte tank 112, the second pump 114, the third pressure gauge 116, the fourth pressure gauge 120, and the stack 122 are included.
제1 전해액 탱크(102) 및 제2 전해액 탱크(112)에는 각각 제1 전해액과 제2 전해액이 수용된다. 본 발명의 일 실시예에서 제1 전해액은 음극 전해질이 포함된 음극 전해액일 수 있고, 제2 전해액은 양극 전해질이 포함된 양극 전해액일 수 있다. 그러나 실시예에 따라서 제1 전해액이 양극 전해액, 제2 전해액이 음극 전해액일 수도 있다.In the first electrolyte tank 102 and the second electrolyte tank 112, a first electrolyte solution and a second electrolyte solution are respectively accommodated. In one embodiment of the present invention, the first electrolyte may be a cathode electrolyte including a cathode electrolyte, and the second electrolyte may be a cathode electrolyte including a cathode electrolyte. However, depending on the embodiment, the first electrolyte may be a positive electrolyte and the second electrolyte may be a negative electrolyte.
제1 펌프(104)는 제1 전해액 탱크(102)에 수용된 제1 전해액을 제1 경로(108)로 공급하기 위한 펌프 동작을 수행한다. 또한 제2 펌프(114)는 제2 전해액 탱크(112)에 수용된 제2 전해액을 제2 경로(118)로 공급하기 위한 펌프 동작을 수행한다. 제1 경로(108) 및 제2 경로(118)에 공급되는 전해액의 유량은 제1 펌프(104) 및 제2 펌프(114)의 회전 수 또는 펌프의 속도에 따라서 결정된다. 다시 말해서, 제1 펌프(104) 및 제2 펌프(114)의 단위 시간 당 회전 수 또는 속도가 높아질 수록 제1 경로(108) 및 제2 경로(118)에 공급되는 전해액의 유량이 증가한다.The first pump 104 performs a pump operation for supplying the first electrolyte solution contained in the first electrolyte tank 102 to the first path 108. In addition, the second pump 114 performs a pump operation for supplying the second electrolyte solution contained in the second electrolyte tank 112 to the second path 118. The flow rate of the electrolyte supplied to the first path 108 and the second path 118 is determined according to the rotation speed of the first pump 104 and the second pump 114 or the speed of the pump. In other words, as the number of revolutions or the speed per unit time of the first pump 104 and the second pump 114 increases, the flow rate of the electrolyte supplied to the first path 108 and the second path 118 increases.
스택(122)에서는 유입되는 전해액의 산화-환원 반응을 통해 전기에너지의 충전 또는 방전이 일어난다. 스택(122)은 다수의 셀(cell)로 구성되며, 스택(122)을 구성하는 각각의 셀은 이온이 통과할 수 있는 격막을 포함한다. 이 격막을 통해 각 셀에 유입되는 제1 전해액과 제2 전해액에 포함된 이온이 서로 교환될 수 있다. 이러한 이온 교환에 의해 셀 내부에서는 전해액 간 산화-환원 반응이 일어난다. 이러한 산화-환원 반응으로 인해 스택(122) 내부에 전기 에너지가 충전되거나 스택(122) 내부에 충전된 전기 에너지가 외부로 방전될 수 있다.In the stack 122, charging or discharging of electrical energy occurs through the oxidation-reduction reaction of the incoming electrolyte. The stack 122 is composed of a plurality of cells, and each cell constituting the stack 122 includes a diaphragm through which ions can pass. Through the diaphragm, ions contained in the first electrolyte solution and the second electrolyte solution introduced into each cell may be exchanged with each other. By such ion exchange, oxidation-reduction reaction between electrolytes occurs inside the cell. Due to the redox reaction, the electrical energy may be charged inside the stack 122 or may be discharged to the outside.
도 1에서, 스택(122)과 제1 전해액 탱크(102)를 연결하는 모든 유로는 제1 유로(108)로 정의된다. 또한 스택(122)과 제2 전해액 탱크(112)를 연결하는 모든 유로는 제2 유로(118)로 정의된다.In FIG. 1, all flow paths connecting the stack 122 and the first electrolyte tank 102 are defined as the first flow path 108. In addition, all the flow paths connecting the stack 122 and the second electrolyte tank 112 are defined as the second flow path 118.
다시 도 1을 참조하면, 본 발명의 일 실시예에 따른 전해액 유량 제어 장치(10)는 충전 상태 값 측정부(12), 온도 값 측정부(14), 압력 강하 값 측정부(16), 제어부(18)를 포함한다.Referring back to Figure 1, the electrolyte flow rate control device 10 according to an embodiment of the present invention, the state of charge measurement unit 12, the temperature value measuring unit 14, the pressure drop value measuring unit 16, the control unit (18).
충전 상태 값 측정부(12)는 스택(122)에 배치되는 충전 상태 값 측정 센서(미도시)를 이용하여 스택(122)의 충전 상태(State Of Charge, SOC) 값을 측정한다.The state of charge measurement unit 12 measures a state of charge (SOC) value of the stack 122 using a state of charge value sensor (not shown) disposed in the stack 122.
온도 값 측정부(14)는 온도 센서(미도시)를 이용하여 제1 전해액 및 제2 전해액의 온도 값을 각각 측정할 수 있다. 온도 센서(미도시)는 제1 전해액 탱크(102) 및 제2 전해액 탱크(112)에 각각 배치될 수도 있고, 스택(122) 에 배치될 수도 있다. 또한 실시예에 따라서 온도 센서(미도시)는 제1 유로(108) 또는 제2 유로(118)에 배치될 수도 있다.The temperature value measuring unit 14 may measure temperature values of the first electrolyte solution and the second electrolyte solution, respectively, using a temperature sensor (not shown). The temperature sensor (not shown) may be disposed in the first electrolyte tank 102 and the second electrolyte tank 112, or may be disposed in the stack 122. In some embodiments, a temperature sensor (not shown) may be disposed in the first flow path 108 or the second flow path 118.
압력 강하 값 측정부(16)는 스택(122)을 통과하는 전해액의 압력 강하 값을 측정한다. 여기서 압력 강하 값은 스택(122)으로 유입되는 전해액의 압력 값과 스택(122)으로부터 유출되는 전해액의 압력 값 간의 차이 값을 의미한다. 압력 강하 값 측정을 위해, 본 발명의 일 실시예에서는 제1 유로(108) 상에서 스택(122)의 양단에 제1 압력 센서(106) 및 제2 압력 센서(110)가 배치되고, 제2 유로(118) 상에서 스택(122)의 양단에 제3 압력 센서(116) 및 제4 압력 센서(120)가 배치된다.The pressure drop value measuring unit 16 measures the pressure drop value of the electrolyte passing through the stack 122. Here, the pressure drop value means a difference value between the pressure value of the electrolyte flowing into the stack 122 and the pressure value of the electrolyte flowing out of the stack 122. In order to measure the pressure drop value, in one embodiment of the present invention, the first pressure sensor 106 and the second pressure sensor 110 are disposed at both ends of the stack 122 on the first flow path 108 and the second flow path. A third pressure sensor 116 and a fourth pressure sensor 120 are disposed at both ends of the stack 122 on 118.
제1 유로(108)를 예로 들어 설명하면, 압력 강하 값 측정부(16)는 제1 압력 센서(106)를 이용하여 스택(122)으로 유입되는 제1 전해액의 제1 압력 값을 측정하고, 제2 압력 센서(110)를 이용하여 스택(122)으로부터 유출되는 제1 전해액의 제2 압력 값을 측정한다. 그리고 나서, 압력 강하 값 측정부(16)는 제2 압력 값과 제1 압력 값 간의 차이 값을 제1 전해액의 압력 강하 값으로 결정한다. 제2 전해액의 압력 강하 값 또한 이와 동일한 방식으로 결정될 수 있다.Referring to the first flow path 108 as an example, the pressure drop value measuring unit 16 measures the first pressure value of the first electrolyte flowing into the stack 122 using the first pressure sensor 106, The second pressure value of the first electrolyte flowing out of the stack 122 is measured using the second pressure sensor 110. Then, the pressure drop value measuring unit 16 determines the difference value between the second pressure value and the first pressure value as the pressure drop value of the first electrolyte solution. The pressure drop value of the second electrolyte may also be determined in this same manner.
제어부(18)는 전술한 바와 같이 획득되는 충전 상태 값, 온도 값 및 압력 강하 값을 이용하여, 제1 경로(108) 및 제2 경로(118)에 공급되는 각 전해액의 현재 유량을 계산할 수 있다.The controller 18 may calculate a current flow rate of each electrolyte supplied to the first path 108 and the second path 118 using the state of charge value, the temperature value, and the pressure drop value obtained as described above. .
본 발명에서는 유량계를 사용하지 않고 스택(122)을 통과하는 제1 전해액 및 제2 전해액 각각의 현재 유량을 계산하기 위해 충전 상태 값, 온도 값, 압력 강하 값, 현재 유량 간의 관계식을 이용한다. 이 관계식은 아래에서 설명되는 바와 같은 실험 및 계산에 의해 도출될 수 있다.In the present invention, the relationship between the state of charge value, the temperature value, the pressure drop value, the current flow rate is used to calculate the current flow rate of each of the first electrolyte and the second electrolyte passing through the stack 122 without using a flow meter. This relationship can be derived by experiment and calculation as described below.
도 2는 본 발명의 일 실시예에서 충전 상태 값(SOC)의 변화에 따른 제1 전해액의 압력 강하 값의 변화를 나타내는 그래프이고, 도 3은 본 발명의 일 실시예에서 충전 상태 값(SOC)의 변화에 따른 제2 전해액의 압력 강하 값의 변화를 나타내는 그래프이다. 보다 구체적으로, 도 2 및 도 3에 도시된 그래프는 스택(122)의 온도 및 각 경로(108, 118)로 유입되는 전해액의 유량을 고정한 상태에서 충전 상태 값(SOC)의 변화에 따른 각 경로의 압력 강하 값(ΔP)을 측정한 결과를 나타낸다. 도 2 및 도 3에 도시된 각 결과 별 운전 조건, 그리고 충전 상태 값(SOC)과 압력 강하 값(ΔP)간의 관계는 다음과 같다.2 is a graph showing a change in the pressure drop value of the first electrolyte according to the change in the state of charge value SOC in one embodiment of the present invention, and FIG. 3 is a state of charge value SOC in one embodiment of the present invention. It is a graph showing the change in the pressure drop value of the second electrolyte with the change of. More specifically, the graphs shown in FIGS. 2 and 3 show each path according to the change of state of charge value SOC while fixing the temperature of the stack 122 and the flow rate of the electrolyte flowing into the respective paths 108 and 118. The result of measuring the pressure drop value (ΔP) is shown. The operating conditions for each result shown in FIGS. 2 and 3 and the relationship between the state of charge SOC and the pressure drop ΔP are as follows.
(1) 202, 302: 온도 5℃, 유량 0.7 ML·MIN-1·CM-2(1) 202, 302: temperature 5 ° C., flow rate 0.7 ML, MIN-1, CM-2
- 제1 전해액(202): ΔP = -0.2829×SOC + 81.786First electrolyte 202: ΔP = -0.2829 x SOC + 81.786
- 제2 전해액(302): ΔP = -0.0745×SOC + 47.610Second electrolyte 302: ΔP = -0.0745 x SOC + 47.610
(2) 204, 304: 온도 25℃, 유량 0.7 ML·MIN-1·CM-2(2) 204, 304: temperature 25 ° C., flow rate 0.7 ML MIN-1 CM-2
- 제1 전해액(204): ΔP = -0.1252×SOC + 41.892First electrolyte solution 204: ΔP = -0.1252 x SOC + 41.892
- 제2 전해액(304): ΔP = -0.0341×SOC + 26.292Second electrolyte 304: ΔP = -0.0341 x SOC + 26.292
(3) 206, 306: 온도 35℃, 유량 0.7 ML·MIN-1·CM-2(3) 206, 306: temperature 35 ° C., flow rate 0.7 ML, MIN-1, CM-2
- 제1 전해액(206): ΔP = -0.0959×SOC + 32.775First electrolyte 206: ΔP = -0.0959 × SOC + 32.775
- 제2 전해액(306): ΔP = -0.0302×SOC + 21.103Second electrolyte 306: ΔP = -0.0302 x SOC + 21.103
위 (1), (2), (3)을 통해 도출된 관계식들을 이용하여 셀의 충전 상태 값, 각 전해액의 온도 값, 각 경로에 흐르는 전해액의 압력 강하 값, 각 경로에 흐르는 전해액의 현재 유량 간의 관계식을 다음과 같이 구할 수 있다.Using the relations derived from (1), (2), and (3) above, the state of charge of the cell, the temperature of each electrolyte, the pressure drop of the electrolyte flowing in each path, and the current flow rate of the electrolyte flowing in each path The relationship between
- 제1 전해액: ΔP = FR×[(-0.00037×T2 + 0.02303×T - 0.5023)×SOC + 0.06276×T2 + 4.7994×T + 138.59]First electrolyte: ΔP = FR x [(-0.00037 x T 2 + 0.02303 x T-0.5023) x SOC + 0.06276 x T 2 + 4.7994 x T + 138.59]
- 제2 전해액: ΔP = FR×[(-0.000066×T2 + 0.004799×T - 0.1295)×SOC + 0.0270×T2 + 2.339×T + 78.976]-Second electrolyte: ΔP = FR × [(-0.000066 × T 2 + 0.004799 × T-0.1295) × SOC + 0.0270 × T 2 + 2.339 × T + 78.976]
여기서 FR은 각 전해액의 현재 유량, ΔP는 각 전해액의 압력 강하 값, T는 각 전해액의 온도 값, SOC는 스택의 충전 상태 값을 나타낸다.Where FR is the current flow rate of each electrolyte, ΔP is the pressure drop value of each electrolyte, T is the temperature value of each electrolyte, and SOC is the state of charge of the stack.
결국 충전 상태 값(SOC), 온도 값(T), 압력 강하 값(ΔP), 현재 유량(FR) 간의 관계식은 다음과 같이 정리할 수 있다.As a result, the relationship between the state of charge value SOC, the temperature value T, the pressure drop value ΔP and the current flow rate FR can be summarized as follows.
Figure PCTKR2016008744-appb-M000001
Figure PCTKR2016008744-appb-M000001
(단, a, b, c, d, e, f는 실험에 의해 획득되는 상수)(Where a, b, c, d, e and f are constants obtained by experiment)
도 4는 본 발명의 일 실시예에 따른 전해액 유량 제어 장치에 의해 측정된 전해액의 현재 유량과 전해액의 실제 유량 간 오차율을 시간의 흐름에 따라서 나타낸 그래프이다.4 is a graph showing an error rate between a current flow rate of an electrolyte solution and an actual flow rate of an electrolyte solution measured by an electrolyte flow rate control device according to an embodiment of the present invention over time.
도 4에는 본 발명의 일 실시예에 따른 전해액 유량 제어 장치(10)에 의해 측정된 제1전해액의 현재 유량과 실제 초음파 유량계를 통해 측정된 제1 전해액의 실제 유량 간 오차율(402), 그리고 전해액 유량 제어 장치(10)에 의해 측정된 제2 전해액의 현재 유량과 실제 초음파 유량계를 통해 측정된 제2 전해액의 실제 유량 간 오차율(404)이 각각 도시되어 있다. 도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전해액 유량 제어 장치(10)에 의해 측정된 현재 유량과 실제 초음파 유량계를 통해 측정된 실제 유량 간 오차율은 5%를 넘지 않는다. 따라서 본 발명의 일 실시예에 따른 전해액 유량 제어 장치(10)를 이용하여 비교적 정확하게 각 경로(108, 118)의 유량을 측정할 수 있음을 알 수 있다.4 shows an error rate 402 between the current flow rate of the first electrolyte solution measured by the electrolyte flow control apparatus 10 according to an embodiment of the present invention and the actual flow rate of the first electrolyte solution measured through the actual ultrasonic flowmeter, and the electrolyte solution. The error rate 404 between the current flow rate of the second electrolyte measured by the flow control device 10 and the actual flow rate of the second electrolyte measured through the actual ultrasonic flow meter is shown, respectively. As shown in FIG. 4, the error rate between the current flow rate measured by the electrolyte flow control apparatus 10 according to an embodiment of the present invention and the actual flow rate measured by the actual ultrasonic flowmeter does not exceed 5%. Therefore, it can be seen that the flow rate of each path 108 and 118 can be measured relatively accurately by using the electrolyte solution flow control apparatus 10 according to an embodiment of the present invention.
다시 도 1을 참조하면, 제어부(18)는 전술한 바와 같이 획득되는 충전 상태 값, 온도 값 및 압력 강하 값과 [수학식 1]에 기재된 관계식을 이용하여 각 전해액의 현재 유량(FR)을 계산할 수 있다.Referring back to FIG. 1, the controller 18 calculates the current flow rate FR of each electrolyte by using the state of charge, temperature and pressure drop values obtained as described above and the relational expression described in [Equation 1]. Can be.
제어부(18)는 이와 같이 계산된 전해액의 현재 유량을 참조하여, 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 펌프(104, 114)를 제어한다.The controller 18 controls the pumps 104 and 114 so that the actual flow rate of the electrolyte reaches a preset target flow rate with reference to the current flow rate of the electrolyte solution calculated in this way.
본 발명에서는 레독스 흐름 전지가 효율적으로 동작할 수 있도록 레독스 흐름 전지의 온도 및 충전 상태에 따라 목표 유량이 설정될 수 있다. 이와 같은 목표 유량은 사용자에 의해 임의로 지정될 수도 있고, 미리 저장된 테이블이나 수식을 이용하여 레독스 흐름 전지의 현재 온도 및 충전 상태에 적합한 목표 유량이 자동으로 설정될 수도 있다.In the present invention, the target flow rate may be set according to the temperature and the state of charge of the redox flow battery so that the redox flow battery can operate efficiently. Such a target flow rate may be arbitrarily designated by the user, or a target flow rate suitable for the current temperature and state of charge of the redox flow battery may be automatically set using a table or a formula stored in advance.
제어부(18)는 앞서 [수학식 1]을 통해 계산된 각 전해액의 현재 유량과 미리 설정된 목표 유량의 차이 값을 계산할 수 있다. 그리고 나서, 제어부(18)는 계산된 현재 유량과 목표 유량 간 차이 값을 참조하여 각 펌프(104, 114)의 회전 수 또는 속도를 조절함으로써 스택(122)으로 유입되는 전해액의 실제 유량이 목표 유량에 도달하도록 제어한다. 예를 들어 제어부(18)는 계산된 현재 유량이 목표 유량보다 낮은 경우 각 펌프(104, 114)를 제어하여 스택(122)으로 유입되는 제1 전해액 또는 제2 전해액의 유량을 개별적으로 증가시킬 수 있다.The controller 18 may calculate a difference value between the current flow rate of each electrolyte and the preset target flow rate calculated through Equation 1 above. Then, the controller 18 adjusts the number of revolutions or the speed of each pump 104, 114 by referring to the difference value between the calculated current flow rate and the target flow rate, so that the actual flow rate of the electrolyte flowing into the stack 122 is the target flow rate. Control to reach For example, when the calculated current flow rate is lower than the target flow rate, the controller 18 may control the respective pumps 104 and 114 to individually increase the flow rate of the first electrolyte or the second electrolyte flowing into the stack 122. have.
전술한 바와 같은 과정을 통해, 본 발명의 일 실시예에 따른 전해액 유량 제어 장치(10)는 스택(122)에 유입되는 제1 전해액의 실제 유량과 스택(122)에 유입되는 제2 전해액의 실제 유량을 독립적으로 조절할 수 있다.Through the process as described above, the electrolyte flow rate control apparatus 10 according to an embodiment of the present invention is the actual flow rate of the first electrolyte flowing into the stack 122 and the actual amount of the second electrolyte flowing into the stack 122 Flow rate can be adjusted independently.
도 5는 본 발명의 일 실시예에 따른 레독스 흐름 전지 및 전해액 유량 제어 방법의 흐름도이다.5 is a flowchart of a redox flow battery and an electrolyte flow rate control method according to an exemplary embodiment of the present invention.
본 발명의 일 실시예에 따른 전해액 유량 제어 장치는 먼저 스택의 충전 상태 값을 측정하고(502), 스택으로 유입되는 각 전해액의 온도 값을 측정한다(504). 또한 전해액 유량 제어 장치는 스택을 통과하는 각 전해액의 압력 강하 값을 측정한다(506). 본 발명의 일 실시예에서, 전해액 유량 제어 장치는 각 스택으로 유입되는 전해액의 제1 압력 값과 각 스택으로부터 유출되는 전해액의 제2 압력 값의 차이를 전해액의 압력 강하 값으로 결정할 수 있다.The electrolyte flow control apparatus according to an embodiment of the present invention first measures the state of charge of the stack (502), and measures the temperature value of each electrolyte flowing into the stack (504). In addition, the electrolyte flow rate control device measures the pressure drop value of each electrolyte passing through the stack (506). In one embodiment of the present invention, the electrolyte flow rate control apparatus may determine the difference between the first pressure value of the electrolyte flowing into each stack and the second pressure value of the electrolyte flowing out of each stack as the pressure drop value of the electrolyte.
본 발명의 일 실시예에 따르면, 스택을 통과하는 전해액의 압력 강하 값을 측정하는 단계(506)는 스택으로 유입되는 제1 전해액 또는 제2 전해액의 제1 압력 값을 측정하는 단계, 스택으로부터 유출되는 제1 전해액 또는 제2 전해액의 제2 압력 값을 측정하는 단계 및 제1 압력 값 및 제2 압력 값의 차이를 이용하여 압력 강하 값을 계산하는 단계를 포함한다.According to one embodiment of the present invention, the step 506 of measuring the pressure drop value of the electrolyte passing through the stack may include measuring the first pressure value of the first electrolyte or the second electrolyte flowing into the stack and exiting the stack. Measuring a second pressure value of the first electrolyte solution or the second electrolyte solution, and calculating a pressure drop value by using a difference between the first pressure value and the second pressure value.
다음으로, 전해액 유량 제어 장치는 앞서 측정된 충전 상태 값, 온도 값 및 압력 강하 값을 이용하여 각 전해액의 현재 유량을 계산한다(508). 이 때 전해액 유량 제어 장치는 [수학식 1]을 이용하여 전해액의 현재 유량을 계산할 수 있다.Next, the electrolyte flow rate control apparatus calculates a current flow rate of each electrolyte using the state of charge value, temperature value, and pressure drop value measured previously (508). At this time, the electrolyte flow rate control device may calculate the current flow rate of the electrolyte solution using [Equation 1].
전해액 유량 제어 장치는 이와 같이 계산된 현재 유량을 참조하여 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 레독스 흐름 전지의 펌프를 제어한다(510). 예를 들어 전해액 유량 제어 장치는 계산된 현재 유량이 목표 유량보다 낮은 경우 각 펌프를 제어하여 스택으로 유입되는 각 전해액의 유량을 증가시킬 수 있다. 이와 같이 본 발명에 따른 전해액 유량 제어 장치는 제1 전해액의 실제 유량과 제2 전해액의 실제 유량을 독립적으로 조절할 수 있다.The electrolyte flow rate control apparatus controls the pump of the redox flow battery so that the actual flow rate of the electrolyte reaches a preset target flow rate with reference to the current flow rate calculated as described above (510). For example, the electrolyte flow rate controller may increase the flow rate of each electrolyte flowing into the stack by controlling each pump when the calculated current flow rate is lower than the target flow rate. Thus, the electrolyte flow rate control apparatus according to the present invention can independently adjust the actual flow rate of the first electrolyte solution and the actual flow rate of the second electrolyte solution.
본 발명의 일 실시예에 따르면, 현재 유량을 참조하여 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 레독스 흐름 전지의 펌프를 제어하는 단계(510)는 목표 유량과 현재 유량의 차이 값을 계산하는 단계 및 목표 유량과 상기 현재 유량의 차이 값을 참조하여 스택과 전해액 탱크 사이에 연결되는 펌프의 회전 수 또는 속도를 조절하는 단계를 포함한다.According to one embodiment of the present invention, the step (510) of controlling the pump of the redox flow battery so that the actual flow rate of the electrolyte reaches a preset target flow rate with reference to the current flow rate calculates a difference value between the target flow rate and the current flow rate. And adjusting the rotation speed or speed of the pump connected between the stack and the electrolyte tank with reference to the difference between the target flow rate and the current flow rate.
또한 본 발명의 일 실시예에 따르면, 레독스 흐름 전지의 펌프를 제어하는 단계(510)는 제1 전해액의 실제 유량과 제2 전해액의 실제 유량을 독립적으로 제어하는 단계를 포함한다.In addition, according to an embodiment of the present invention, controlling the pump of the redox flow battery 510 includes independently controlling the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte.
레독스 흐름 전지의 운전 시 스택으로 유입되는 전해액의 유량에 따라 펌프의 기계적 출력과 전지의 전기적 출력이 달라지므로, 전해액의 유량은 레독스 흐름 전지의 특성에 큰 영향을 미치는 중요한 요소이다. 따라서 레독스 흐름 전지의 효율을 높이기 위해서는 실시간으로 변하는 전지의 온도나 충전 상태 등을 감안하여 전해액의 유량을 정밀하게 제어할 필요가 있다. 그러나 유량계를 이용한 종래의 유량 제어는 정밀도와 가격 측면에서 바람직하지 않다.Since the mechanical output of the pump and the electrical output of the battery vary depending on the flow rate of the electrolyte flowing into the stack during operation of the redox flow battery, the flow rate of the electrolyte is an important factor that greatly affects the characteristics of the redox flow battery. Therefore, in order to increase the efficiency of the redox flow battery, it is necessary to precisely control the flow rate of the electrolyte solution in consideration of the temperature and the state of charge of the battery that changes in real time. However, conventional flow control using a flow meter is undesirable in terms of precision and price.
레독스 흐름전지 시스템의 전해질 용액의 유량을 정밀하게 제어하기 위해서는 조건에 맞는 유량계를 선정하는 것이 중요하고, 이를 위해서는 측정 유체의 상태를 파악하는 것이 선행돼야 한다. 측정 유체에 적합한 유량계를 선정하기 위해 고려해야 할 사항으로는 관로의 형상, 유체흐름의 상태, 유체의 종류, 유체의 조건, 유체의 성상, 유량의 측정범위, 배관의 직관부, 허용 압력손실 등이 있다. 이와 같은 요소들을 고려하여 전자 유량계, 차압 유량계, 면적식 유량계, 용적식 유량계, 터빈 유량계, 초음파 (전파시간차방식) 유량계, vortex 유량계, 열질량 유량계, 코리올리 (Coriolis) 유량계, 등압식 (피토관) 유량계, 격막식 유량계, 패들형 유량계 중 택일하여 시스템에 적용할 수 있다. In order to precisely control the flow rate of the electrolyte solution of the redox flow battery system, it is important to select a flow meter suitable for the conditions, and to do so, it is necessary to first understand the state of the measurement fluid. In order to select a flowmeter suitable for the measurement fluid, considerations include the shape of the pipe, the state of the fluid flow, the type of fluid, the condition of the fluid, the properties of the fluid, the measurement range of the flow rate, the straight pipe section, and the allowable pressure loss. have. Considering these factors, electromagnetic flow meters, differential pressure meters, area flow meters, volumetric flowmeters, turbine flowmeters, ultrasonic (propagation time differential) flowmeters, vortex flowmeters, thermal mass flowmeters, Coriolis flowmeters, isostatic (pitot tube) flowmeters It can be applied to the system by either diaphragm flow meter or paddle flow meter.
또한, 레독스 흐름전지 시스템에 사용되는 전해질 용액은 강산 특성이 있기 때문에 높은 수준의 황산 내식성을 갖는 유량계가 적합하다. 뿐만 아니라 시스템 효율 증대 효과를 극대화시키기 위해서는 유량계의 센서에 의한 압력강하가 최소화돼야 한다. 또한, 일반적으로 레독스 흐름전지에 사용되는 전해액의 순환 유속이 높지 않기 때문에 낮은 선속도에서도 정밀한 측정이 가능한 유량계가 적합하다고 할 수 있다. In addition, since the electrolyte solution used in the redox flow battery system has a strong acid property, a flow meter having a high level of sulfuric acid corrosion resistance is suitable. In addition, the pressure drop by the sensor of the flow meter should be minimized in order to maximize the effect of increasing system efficiency. In addition, in general, since the circulation flow rate of the electrolyte used in the redox flow battery is not high, it can be said that a flowmeter capable of precise measurement even at a low linear velocity is suitable.
하지만 일반적으로 시스템 효율을 보장할 수 있는 수준으로 높은 정밀도를 가지고 유량을 제어하기 위해서는 일정 수준 이상의 선속도로 전해액을 흘려주어야 하는데, 이 경우 불필요하게 큰 압력강하가 발생할 수 있다는 문제점이 있다. 더불어 레독스 흐름 전지에 사용되는 전해액에는 전류가 흐른다는 특징이 있는데, 내부에 전자소자를 장착한 유량계의 경우 전해액에 흐르는 전류가 계측기에 영향을 줄 수 있기 때문에 이 점 또한 유량계 선정에 제약을 가하는 요소이다.However, in general, in order to control the flow rate with high precision to ensure the system efficiency, the electrolyte must be flowed at a certain level or higher, in which case there is a problem that an unnecessary large pressure drop may occur. In addition, the current used in the electrolyte used in the redox flow battery is characterized by the fact that the current flows in the case of a flowmeter equipped with an electronic device therein, which also affects the measurement of the flowmeter. Element.
이런 점들을 감안할 때, 레독스 흐름 전지 시스템에 적용할 수 있는 유량계는 패들형 유량계와 초음파 유량계로 범위가 좁혀진다. 하지만 패들형 유량계의 경우 낮은 유속의 조건에서는 측정 신뢰도를 유지하기 어려워 측정 상의 오차가 크거나 측정 자체가 불가능할 수 있다는 단점이 있다. 한편, 초음파 유량계의 경우는 가격이 매우 높기 때문에 초기 매몰 비용을 증가시킨다는 단점이 있다.Given these considerations, the flowmeters applicable to redox flow cell systems are narrowed down to paddle-type and ultrasonic flowmeters. However, in the case of a paddle-type flow meter, it is difficult to maintain the measurement reliability under low flow conditions, so that the measurement error may be large or the measurement itself may be impossible. On the other hand, the ultrasonic flowmeter has a disadvantage in that the initial investment cost is increased because the price is very high.
본 발명에 따르면 전해액의 압력 강하 측정을 이용하여 전해액의 유량을 제어하므로, 유량계를 이용한 종래의 유량 제어에 비해 상대적으로 낮은 비용으로 정밀하게 유량을 제어할 수 있다. According to the present invention, since the flow rate of the electrolyte is controlled using the pressure drop measurement of the electrolyte, the flow rate can be precisely controlled at a relatively low cost compared to the conventional flow rate control using the flow meter.
본 발명의 장점을 정리하면 다음과 같다. 첫째, 온도나 충전 상태와 같은 가변적인 조건이 레독스 흐름 전지의 효율에 영향을 미치는데, 이러한 운전 조건들을 관측하고 피드백하여 실시간적으로 반영할 수 있다. 본 발명에 따르면 레독스 흐름 전지 내에서 발생하는 전해액의 압력 강하, 온도, 충전 상태, 유량 간의 관계를 이용하여 유량계 없이 압력 센서만을 이용하여 전해액의 유량을 조절할 수 있다.The advantages of the present invention are summarized as follows. First, variable conditions, such as temperature and state of charge, affect the efficiency of the redox flow cell, which can be reflected in real time by observing and feeding back these operating conditions. According to the present invention, the flow rate of the electrolyte may be adjusted using only a pressure sensor without a flow meter by using the relationship between the pressure drop, the temperature, the state of charge, and the flow rate of the electrolyte generated in the redox flow battery.
둘째, 가변 조건(온도, 충전 상태)을 반영하여 양극부과 음극부의 유량을 독립적으로 제어함으로써 맞춤형 유량 제어가 가능해진다는 장점이 있다. 레독스 흐름 전지에서는 충전과 방전시 양극과 음극의 전해질 용액의 점도가 다르기 때문에 동일한 시간에 서로 다른 압력 값을 가지게 된다. 바나듐 레독스 흐름 전지의 경우, 양극과 음극에 동일한 조성의 바나듐 수용액을 전해액으로 사용하나, 충전과 방전시에 이온 가수가 서로 다르며 이에 따라 전해액의 물리적 성질인 점도가 다르게 변한다. 이로 인해 양극과 음극 각각의 전해액은 서로 다른 압력 값을 갖게 되기 때문에 전해액의 유량 제어를 위해서 양극과 음극 각각의 압력을 측정해야 한다. 이에 본 발명은 양극과 음극에 각각 배치되어 있는 압력 센서를 통해 각각의 압력 강하를 독립적으로 측정하고, 이에 따른 전해액의 유량 제어를 양극부과 음극부 별로 독립적으로 수행함으로써 보다 정밀하게 유량을 제어할 수 있다.Second, there is an advantage that the customized flow rate control is possible by independently controlling the flow rate of the positive electrode and the negative electrode reflecting the variable conditions (temperature, state of charge). In the redox flow battery, since the viscosity of the electrolyte solution of the positive electrode and the negative electrode is different during charging and discharging, they have different pressure values at the same time. In the case of the vanadium redox flow battery, a vanadium aqueous solution having the same composition is used as an electrolyte for the positive electrode and the negative electrode, but the ion valences are different during charging and discharging, and thus the physical properties of the electrolyte change differently. Because of this, the electrolyte of each of the positive electrode and the negative electrode has a different pressure value, so it is necessary to measure the pressure of each of the positive electrode and the negative electrode to control the flow rate of the electrolyte. Therefore, the present invention can control the flow rate more precisely by independently measuring each pressure drop through a pressure sensor disposed on each of the anode and the cathode, and by independently controlling the flow rate of the electrolyte according to the anode and cathode portions. have.
결국 본 발명에 따르면 i) 유량계를 배제한 시스템의 구현이 가능하므로 유량계로 인해 발생되는 비용 상승 및 시스템 오류 가능성을 최소화하고, ii) 각각의 전해액의 유량을 독립적으로 제어함으로써 보다 정밀한 펌프 출력 제어가 가능해지고, 이에 따른 시스템 효율의 향상이 가능하다.As a result, according to the present invention, i) implementation of a system excluding the flow meter is possible, thereby minimizing the possibility of cost increase and system error caused by the flow meter, and ii) more precise pump output control by independently controlling the flow rate of each electrolyte. As a result, it is possible to improve the system efficiency.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the spirit of the present invention for those skilled in the art to which the present invention pertains. It is not limited by.

Claims (10)

  1. 레독스 흐름 전지의 스택에 공급되는 제1 전해액 또는 제2 전해액의 유량을 제어하는 방법에 있어서,In the method for controlling the flow rate of the first electrolyte or the second electrolyte supplied to the stack of redox flow battery,
    상기 스택의 충전 상태 값을 측정하는 단계;Measuring a state of charge of the stack;
    상기 제1 전해액 또는 상기 제2 전해액의 온도 값을 측정하는 단계;Measuring a temperature value of the first electrolyte solution or the second electrolyte solution;
    상기 스택을 통과하는 상기 제1 전해액 또는 상기 제2 전해액의 압력 강하 값을 측정하는 단계;Measuring a pressure drop value of the first electrolyte or the second electrolyte passing through the stack;
    상기 충전 상태 값, 상기 온도 값 및 상기 압력 강하 값을 이용하여 상기 제1 전해액 또는 상기 제2 전해액의 현재 유량을 계산하는 단계; 및Calculating a current flow rate of the first electrolyte or the second electrolyte by using the state of charge value, the temperature value, and the pressure drop value; And
    상기 현재 유량을 참조하여 상기 제1 전해액 또는 상기 제2 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 상기 레독스 흐름 전지의 펌프를 제어하는 단계를Controlling a pump of the redox flow battery such that an actual flow rate of the first electrolyte solution or the second electrolyte solution reaches a preset target flow rate with reference to the current flow rate;
    포함하는 레독스 흐름 전지의 전해액 유량 제어 방법.Electrolyte flow rate control method of a redox flow battery comprising.
  2. 제1항에 있어서,The method of claim 1,
    상기 현재 유량을 참조하여 상기 제1 전해액 또는 상기 제2 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 제어하는 단계는The step of controlling the actual flow rate of the first electrolyte or the second electrolyte to reach a predetermined target flow rate with reference to the current flow rate
    상기 목표 유량과 상기 현재 유량의 차이 값을 계산하는 단계; 및Calculating a difference value between the target flow rate and the current flow rate; And
    상기 목표 유량과 상기 현재 유량의 차이 값을 참조하여 상기 스택과 전해액 탱크 사이에 연결되는 펌프의 회전 수 또는 속도를 조절하는 단계를Adjusting a rotation speed or speed of a pump connected between the stack and the electrolyte tank by referring to the difference between the target flow rate and the current flow rate;
    포함하는 레독스 흐름 전지의 전해액 유량 제어 방법.Electrolyte flow rate control method of a redox flow battery comprising.
  3. 제1항에 있어서,The method of claim 1,
    상기 현재 유량은 하기 [수학식 1]에 의해 계산되는The current flow rate is calculated by the following [Equation 1]
    레독스 흐름 전지의 전해액 유량 제어 방법.Method for controlling electrolyte flow rate of redox flow battery.
    [수학식 1][Equation 1]
    Figure PCTKR2016008744-appb-I000001
    Figure PCTKR2016008744-appb-I000001
    (단, FR은 상기 현재 유량, ΔP는 상기 압력 강하 값, T는 상기 온도 값, SOC는 상기 충전 상태 값, a, b, c, d, e, f는 상수 값)(Where FR is the current flow rate, ΔP is the pressure drop value, T is the temperature value, and SOC is the state of charge value, a, b, c, d, e, f is a constant value)
  4. 제1항에 있어서,The method of claim 1,
    상기 스택을 통과하는 전해액의 압력 강하 값을 측정하는 단계는Measuring the pressure drop value of the electrolyte passing through the stack
    상기 스택으로 유입되는 상기 제1 전해액 또는 상기 제2 전해액의 제1 압력 값을 측정하는 단계;Measuring a first pressure value of the first electrolyte or the second electrolyte flowing into the stack;
    상기 스택으로부터 유출되는 상기 제1 전해액 또는 상기 제2 전해액의 제2 압력 값을 측정하는 단계; 및Measuring a second pressure value of the first electrolyte or the second electrolyte flowing out of the stack; And
    상기 제1 압력 값 및 상기 제2 압력 값의 차이를 이용하여 상기 압력 강하 값을 계산하는 단계를 포함하는Calculating the pressure drop value using the difference between the first pressure value and the second pressure value.
    레독스 흐름 전지의 전해액 유량 제어 방법.Method for controlling electrolyte flow rate of redox flow battery.
  5. 제1항에 있어서,The method of claim 1,
    상기 레독스 흐름 전지의 펌프를 제어하는 단계는Controlling the pump of the redox flow battery
    상기 제1 전해액의 실제 유량과 상기 제2 전해액의 실제 유량을 독립적으로 제어하는 단계를 포함하는Independently controlling the actual flow rate of the first electrolyte solution and the actual flow rate of the second electrolyte solution;
    레독스 흐름 전지의 전해액 유량 제어 방법.Method for controlling electrolyte flow rate of redox flow battery.
  6. 레독스 흐름 전지의 스택에 공급되는 제1 전해액 또는 제2 전해액의 유량을 제어하는 장치에 있어서,In the apparatus for controlling the flow rate of the first electrolyte or the second electrolyte supplied to the stack of redox flow battery,
    상기 스택의 충전 상태 값을 측정하는 충전 상태 값 측정부;A charge state value measurer configured to measure a charge state value of the stack;
    상기 제1 전해액 또는 상기 제2 전해액의 온도 값을 측정하는 온도 값 측정부;A temperature value measuring unit measuring a temperature value of the first electrolyte solution or the second electrolyte solution;
    상기 스택을 통과하는 상기 제1 전해액 또는 상기 제2 전해액의 압력 강하 값을 측정하는 압력 강하 값 측정부;A pressure drop value measuring unit measuring a pressure drop value of the first electrolyte solution or the second electrolyte solution passing through the stack;
    상기 충전 상태 값, 상기 온도 값 및 상기 압력 강하 값을 이용하여 상기 제1 전해액 또는 상기 제2 전해액의 현재 유량을 계산하고, 상기 현재 유량을 참조하여 상기 제1 전해액 또는 상기 제2 전해액의 실제 유량이 미리 설정된 목표 유량에 도달하도록 상기 레독스 흐름 전지의 펌프를 제어하는 제어부를The current flow rate of the first electrolyte or the second electrolyte is calculated using the state of charge value, the temperature value, and the pressure drop value, and the actual flow rate of the first electrolyte or the second electrolyte with reference to the current flow rate. A control unit for controlling the pump of the redox flow battery to reach the predetermined target flow rate
    포함하는 레독스 흐름 전지의 전해액 유량 제어 장치.Electrolyte flow rate control device of a redox flow battery comprising.
  7. 제6항에 있어서,The method of claim 6,
    상기 제어부는The control unit
    상기 목표 유량과 상기 현재 유량의 차이 값을 계산하고, 상기 목표 유량과 상기 현재 유량의 차이 값을 참조하여 상기 스택과 전해액 탱크 사이에 연결되는 펌프의 회전 수 또는 속도를 조절하는Calculating a difference value between the target flow rate and the current flow rate, and adjusting a rotation speed or speed of a pump connected between the stack and the electrolyte tank with reference to the difference value between the target flow rate and the current flow rate
    레독스 흐름 전지의 전해액 유량 제어 장치.Electrolyte flow control device of redox flow battery.
  8. 제6항에 있어서,The method of claim 6,
    상기 현재 유량은 하기 [수학식 1]에 의해 계산되는The current flow rate is calculated by the following [Equation 1]
    레독스 흐름 전지의 전해액 유량 제어 장치.Electrolyte flow control device of redox flow battery.
    [수학식 1][Equation 1]
    Figure PCTKR2016008744-appb-I000002
    Figure PCTKR2016008744-appb-I000002
    (단, FR은 상기 현재 유량, ΔP는 상기 압력 강하 값, T는 상기 온도 값, SOC는 상기 충전 상태 값, a, b, c, d, e, f는 상수 값)(Where FR is the current flow rate, ΔP is the pressure drop value, T is the temperature value, and SOC is the state of charge value, a, b, c, d, e, f is a constant value)
  9. 제6항에 있어서,The method of claim 6,
    상기 압력 강하 값 측정부는The pressure drop value measuring unit
    상기 스택으로 유입되는 상기 제1 전해액 또는 상기 제2 전해액의 제1 압력 값 및 상기 스택으로부터 유출되는 상기 제1 전해액 또는 상기 제2 전해액의 제2 압력 값을 측정하고, 상기 제1 압력 값 및 상기 제2 압력 값의 차이를 이용하여 상기 압력 강하 값을 계산하는The first pressure value of the first electrolyte or the second electrolyte flowing into the stack and the second pressure value of the first electrolyte or the second electrolyte flowing out of the stack are measured, and the first pressure value and the The pressure drop value is calculated using the difference between the second pressure values.
    레독스 흐름 전지의 전해액 유량 제어 장치.Electrolyte flow control device of redox flow battery.
  10. 제6항에 있어서,The method of claim 6,
    상기 제어부는The control unit
    상기 제1 전해액의 실제 유량과 상기 제2 전해액의 실제 유량을 독립적으로 제어하는Independently controlling the actual flow rate of the first electrolyte and the actual flow rate of the second electrolyte
    레독스 흐름 전지의 전해액 유량 제어 장치.Electrolyte flow control device of redox flow battery.
PCT/KR2016/008744 2015-08-14 2016-08-09 Method and apparatus for controlling electrolyte flow rate of redox flow battery WO2017030313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0115052 2015-08-14
KR1020150115052A KR101772274B1 (en) 2015-08-14 2015-08-14 Method and apparatus for controlling flow of electrolytic solution in redox flow battery

Publications (1)

Publication Number Publication Date
WO2017030313A1 true WO2017030313A1 (en) 2017-02-23

Family

ID=58052240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008744 WO2017030313A1 (en) 2015-08-14 2016-08-09 Method and apparatus for controlling electrolyte flow rate of redox flow battery

Country Status (2)

Country Link
KR (1) KR101772274B1 (en)
WO (1) WO2017030313A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151834A (en) * 2020-04-08 2020-12-29 国家电投集团科学技术研究院有限公司 Electrolyte energy-saving conveying control device and method and flow battery system
CN112941539A (en) * 2021-01-28 2021-06-11 湖南钒谷新能源技术有限公司 Vanadium electrolyte production method and production system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855290B1 (en) 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
KR101862725B1 (en) * 2017-11-29 2018-05-30 스탠다드에너지(주) Redox flow battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815112B2 (en) * 1989-01-23 1998-10-27 住友電気工業株式会社 Electrolyte recycling secondary battery
JP2006147376A (en) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The Redox flow battery
KR20130071731A (en) * 2011-12-21 2013-07-01 현대자동차주식회사 Control method for pressure flow oscillation in the anode of fuel cell stack
KR20140080567A (en) * 2012-12-11 2014-07-01 전자부품연구원 Battery Operating System and Operating Method thereof
KR20150063813A (en) * 2013-12-02 2015-06-10 전자부품연구원 Battery management system for redox flow battery and method for controlling the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114359A (en) 2004-10-14 2006-04-27 Kansai Electric Power Co Inc:The Method for operating redox flow battery
JP5027384B2 (en) 2004-11-19 2012-09-19 関西電力株式会社 Redox flow battery and operation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815112B2 (en) * 1989-01-23 1998-10-27 住友電気工業株式会社 Electrolyte recycling secondary battery
JP2006147376A (en) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The Redox flow battery
KR20130071731A (en) * 2011-12-21 2013-07-01 현대자동차주식회사 Control method for pressure flow oscillation in the anode of fuel cell stack
KR20140080567A (en) * 2012-12-11 2014-07-01 전자부품연구원 Battery Operating System and Operating Method thereof
KR20150063813A (en) * 2013-12-02 2015-06-10 전자부품연구원 Battery management system for redox flow battery and method for controlling the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151834A (en) * 2020-04-08 2020-12-29 国家电投集团科学技术研究院有限公司 Electrolyte energy-saving conveying control device and method and flow battery system
CN112941539A (en) * 2021-01-28 2021-06-11 湖南钒谷新能源技术有限公司 Vanadium electrolyte production method and production system
CN112941539B (en) * 2021-01-28 2023-06-23 湖南钒谷新能源技术有限公司 Vanadium electrolyte production method and production system

Also Published As

Publication number Publication date
KR101772274B1 (en) 2017-08-29
KR20170020687A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2017030313A1 (en) Method and apparatus for controlling electrolyte flow rate of redox flow battery
CN109638319B (en) Method and device for detecting fluid distribution consistency of fuel cell stack
WO2018074807A1 (en) Method and system for effective battery cell balancing through duty control
EP3429053A1 (en) Battery monitoring device and method
WO2012115393A2 (en) Soc correcting system having multiple packs in parallel
WO2019066278A1 (en) Method for measuring entropy of battery using kalman filter
WO2014065614A1 (en) Apparatus and method for estimating state of charge of battery
WO2015046702A1 (en) Device for detecting charging current accuracy of charger and discharger
CN104614680A (en) Layered battery internal resistance measuring apparatus
CN106597297A (en) Lithium ion battery pseudo soldering detection method
WO2019117487A1 (en) Voltage measurement device and method
WO2020189998A1 (en) Battery bank control device and method
CN208015388U (en) A kind of protection circuit of battery pack
WO2022145830A1 (en) Battery diagnosis device, battery diagnosis method, battery pack, and electric vehicle
CN108347071A (en) Battery device with voltage balance control function and control method thereof
CN110010934B (en) Method for measuring resistance of electrolyte of flow battery on line
WO2020204462A1 (en) Device for measuring water level by using capacitive technique, and method therefor
WO2018084425A1 (en) Battery management system
WO2016105130A1 (en) Method and apparatus for controlling operation of redox flow battery
WO2019066358A1 (en) Method for preventing swelling of battery cell and battery pack using same
WO2022141292A1 (en) Equalization method and device for battery module, battery module, and power supply management controller
CN210375469U (en) Battery heat production measuring device
WO2020166860A1 (en) Battery module detecting high temperature of battery cell and method for detecting high temperature of battery cell
JP7248029B2 (en) Redox flow battery system
WO2019117608A1 (en) Current measurement device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837255

Country of ref document: EP

Kind code of ref document: A1