WO2017029738A1 - Wireless communication apparatus, wireless communication system, and transmission bandwidth control method - Google Patents

Wireless communication apparatus, wireless communication system, and transmission bandwidth control method Download PDF

Info

Publication number
WO2017029738A1
WO2017029738A1 PCT/JP2015/073279 JP2015073279W WO2017029738A1 WO 2017029738 A1 WO2017029738 A1 WO 2017029738A1 JP 2015073279 W JP2015073279 W JP 2015073279W WO 2017029738 A1 WO2017029738 A1 WO 2017029738A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
unit
transmission bandwidth
wireless communication
transmission
Prior art date
Application number
PCT/JP2015/073279
Other languages
French (fr)
Japanese (ja)
Inventor
木村 大
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/073279 priority Critical patent/WO2017029738A1/en
Publication of WO2017029738A1 publication Critical patent/WO2017029738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a transmission bandwidth control method.
  • Millimeter-wave communication is expected to achieve a throughput of several tens of Gbps using a frequency bandwidth of several GHz.
  • the frequency bandwidth of several GHz and the throughput of several tens of Gbps are compared with the frequency bandwidth of 100 MHz or less and the throughput of several hundred Mbps or less in conventional wireless communication such as LTE (Long Term Evolution) and WiFi (Wireless Fidelity). large.
  • LTE Long Term Evolution
  • WiFi Wireless Fidelity
  • the power consumption of the radio unit that is, RF (Radio Frequency) unit
  • the power consumption of the radio unit that is, RF (Radio Frequency) unit
  • the transmission power in the radio unit can be suppressed by using a technique such as beam forming, for example, the increase rate of power consumption in the radio unit is relatively smaller than that in the baseband unit. is assumed. Therefore, in order to reduce the power consumption when the frequency bandwidth is increased, it is particularly important to reduce the power consumption of the baseband part.
  • the frequency bandwidth may be simply referred to as “bandwidth”.
  • Equation (1) P T [W] is the transmission power
  • is the efficiency of the power amplifier
  • Equation (2) C [bps] is the throughput.
  • Equation (3) B [Hz] is a bandwidth used for transmission of a radio signal (hereinafter sometimes referred to as “transmission bandwidth”), L is a propagation loss between radio transmission and reception (that is, a path loss), N 0 [W / Hz] is thermal noise per unit bandwidth. L is a true value.
  • the power consumption of the baseband part increases as the processing amount of digital signal processing increases, and the processing amount of digital signal processing increases as the transmission bandwidth increases, so the baseband increases as the transmission bandwidth increases.
  • the power consumption of the part increases.
  • the energy efficiency is calculated assuming that the power consumption of the circuit is fixed as in the conventional power consumption model (Equation (1)). Since it becomes difficult to calculate optimum energy efficiency, it is difficult to reduce power consumption.
  • the disclosed technology has been made in view of the above, and aims to reduce the power consumption of a wireless communication device.
  • the wireless communication device includes a baseband unit, a wireless unit, and a control unit.
  • the baseband unit performs digital signal processing on transmission data to generate a baseband signal.
  • the wireless unit wirelessly transmits an analog signal converted from the baseband signal by digital analog conversion.
  • the control unit includes first power consumption that is power consumption of the baseband unit, the first power consumption that depends on a transmission bandwidth of the analog signal, and second power consumption that is power consumption of the wireless unit.
  • the transmission bandwidth that maximizes the energy efficiency is determined based on a power consumption model including the second power consumption that depends on the transmission power of the analog signal.
  • the power consumption of the wireless communication device can be reduced.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating an example of a base station according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of numerical calculation results of the first embodiment.
  • FIG. 5 is a diagram illustrating an example of numerical calculation results of the first embodiment.
  • FIG. 6 is a diagram for explaining the effect of the first embodiment.
  • FIG. 7 is a diagram for explaining an operation example of the wireless communication system according to the second embodiment.
  • FIG. 8 is a functional block diagram illustrating an example of a communication terminal according to the third embodiment.
  • FIG. 9 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the third embodiment.
  • FIG. 10 is a diagram for explaining an operation example of the wireless communication system according to the fourth embodiment.
  • FIG. 11 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the fifth embodiment.
  • FIG. 12 is a diagram for explaining an operation example of the wireless communication system according to the sixth embodiment.
  • FIG. 13 is a diagram illustrating a hardware configuration example of the base station.
  • FIG. 14 is a diagram illustrating a hardware configuration example of the communication terminal.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment.
  • a radio communication system 100 includes base stations 10-1 to 10-3, communication terminals 20-1 to 20-3, and a central control station 30.
  • the central control station 30 is connected to a core network (not shown).
  • the base station 10-1 and the communication terminal 20-1 perform wireless communication
  • the base station 10-2 and the communication terminal 20-2 perform wireless communication
  • the base station 10-3 and the communication terminal 20-3 Performs wireless communication.
  • the centralized control station 30 performs centralized control on the base stations 10-1 to 10-3.
  • the centralized control station 30 transmits each of the base stations 10-1 to 10-3 to each of the base stations 10-1 to 10-3 within the frequency band that can be used in the wireless communication system 100. Allocate the frequency band used for communication.
  • a frequency band that can be used in the radio communication system 100 is a “system band”, a frequency band allocated to each base station 10 or each communication terminal 20 in the system band is an “allocated band”, and a system band Is sometimes referred to as “system bandwidth”.
  • Each allocation band is indicated by the center frequency of each allocation band, for example.
  • a radio signal from the base station 10 to the communication terminal 20 is called a “downlink signal”, and a radio signal from the communication terminal 20 to the base station 10 is called an “uplink signal”.
  • the base station 10 and the communication terminal 20 are examples of a wireless communication device.
  • FIG. 2 is a functional block diagram illustrating an example of a base station according to the first embodiment.
  • the base station 10 illustrated in FIG. 2 includes a wired communication unit 11, a communication control unit 12, a baseband unit 13, a radio unit 14, an antenna 15, and a power consumption model storage unit 16.
  • the antenna 15 is, for example, an array antenna having a plurality of antenna elements.
  • the wired communication unit 11 is connected to the central control station 30 by, for example, an optical fiber.
  • the wired communication unit 11 transmits user data input from the baseband unit 13 via the communication control unit 12 to the centralized control station 30 and receives user data received from the centralized control station 30 via the communication control unit 12. Output to the band unit 13. Further, the wired communication unit 11 receives a signal for notifying the allocated band (hereinafter also referred to as “allocated band notification signal”) from the centralized control station 30 and outputs the signal to the communication control unit 12.
  • the communication control unit 12 controls wireless communication. For example, the communication control unit 12 determines the transmission bandwidth and transmission power of the downlink signal based on the power consumption model stored in the power consumption model storage unit 16. The communication control unit 12 instructs the baseband unit 13 on the determined transmission bandwidth, and instructs the radio unit 14 on the determined transmission power. Further, the communication control unit 12 instructs the radio unit 14 of the allocated band notified by the allocated band notification signal. Details of the processing of the communication control unit 12 will be described later.
  • the baseband unit 13 generates a baseband transmission signal by performing digital signal processing such as encoding processing and modulation processing on transmission data such as user data. At this time, the baseband unit 13 performs digital signal processing according to the transmission bandwidth instructed from the communication control unit 12.
  • the baseband unit 13 generates an OFDM signal, which is a baseband transmission signal, by performing, for example, OFDM (Orthogonal Frequency Division Multiplexing) modulation as modulation processing on transmission data.
  • the baseband unit 13 changes the number of transmission data allocated to the plurality of subcarriers forming the OFDM signal according to the transmission bandwidth determined by the communication control unit 12. For example, when an OFDM signal is formed of 1024 subcarriers and the bandwidth of the OFDM signal corresponds to the system bandwidth, when transmission data is allocated to 512 subcarriers, the transmission bandwidth is equal to the system bandwidth. A half.
  • the baseband unit 13 converts the generated baseband transmission signal into an analog signal by digital-analog conversion (D / A conversion), and outputs the converted baseband signal to the radio unit 14.
  • the baseband unit 13 converts the baseband received signal input from the wireless unit 14 into a digital signal by analog-digital conversion (A / D conversion).
  • the baseband unit 13 obtains received data such as user data from the communication terminal 20 by performing digital signal processing such as demodulation processing and decoding processing on the baseband signal converted into the digital signal.
  • the radio unit 14 performs analog signal processing such as up-conversion processing and power amplification processing on the baseband transmission signal (that is, analog signal) input from the baseband unit 13, and transmits the transmission signal after analog signal processing.
  • the data is transmitted to the communication terminal 20 via the antenna 15.
  • the radio unit 14 performs an up-conversion process according to the allocated bandwidth instructed from the communication control unit 12.
  • the radio unit 14 amplifies the power of the transmission signal according to the transmission power instructed from the communication control unit 12.
  • the radio unit 14 performs analog signal processing such as down-conversion processing on the reception signal received via the antenna 15 to obtain a baseband reception signal and outputs the baseband reception signal to the baseband unit 13.
  • the baseband unit 13 performs D / A conversion and A / D conversion.
  • the wireless unit 14 performs D / A conversion and A / D conversion. good.
  • the baseband unit 13 and the radio unit 14 do not perform D / A conversion and A / D conversion, and a conversion unit that performs D / A conversion and A / D conversion is provided between the baseband unit 13 and the radio unit 14. May be provided.
  • the power consumption model storage unit 16 stores a power consumption model. Details of the power consumption model will be described later.
  • the power consumption model P total [W] stored in the power consumption model storage unit 16 is expressed by the following equation (4).
  • P RF [W] is the power consumption of the wireless unit 14
  • P BB [W] is the power consumption of the baseband unit 13
  • P T [W] is the transmission power
  • B [Hz] is the transmission bandwidth. It is. That is, in Expression (4), the power consumption of the wireless unit 14 is a function of the transmission power and depends on the transmission power
  • the power consumption of the baseband unit 13 is a function of the transmission bandwidth and depends on the transmission bandwidth.
  • the power consumption of the base station 10 is modeled as the sum of the power consumption of the radio unit 14 and the power consumption of the baseband unit 13.
  • the energy efficiency ⁇ EE [bit / J] is expressed by the following equation (5) and is a function of the transmission power PT and the transmission bandwidth B.
  • C [bps] is the throughput
  • L is the path loss
  • N 0 [W / Hz] is the thermal noise (true value) per unit bandwidth.
  • the thermal noise N 0 is a constant value.
  • the power consumption P RF of the wireless unit 14 is modeled, for example, as expressed in the following formula (6).
  • is the efficiency (a constant value) of the power amplifier included in the wireless unit 14
  • P RF, 0 [W] is the fixed power consumption in the wireless unit 14.
  • the power consumption of the baseband unit 13 is modeled, for example, as expressed in the following equation (7).
  • is a predetermined proportional constant
  • P BB, 0 [W] is a fixed power consumption in the baseband unit 13. That is, the power consumption of the baseband unit 13 is modeled so as to be proportional to the transmission bandwidth B, for example.
  • Equation (8) B opt is the optimal transmission bandwidth
  • P Topt is the optimal transmission power
  • B max is the maximum transmission bandwidth
  • P T, max is the maximum transmission power.
  • B max is usually the maximum bandwidth (that is, the system bandwidth) of the wireless communication system 100.
  • the communication control unit 12 sets B opt and P Topt that maximize ⁇ EE according to the equations (5) and (8) based on the power consumption models shown in the equations (4), (6), and (7).
  • the combination with is determined.
  • the power consumption models shown in Equations (4), (6), and (7) are stored in advance in the power consumption model storage unit 16, and the calculation algorithm according to Equations (5) and (8) is stored in advance in the communication control unit 12.
  • the communication control unit 12 notifies the determined B opt to the baseband unit 13 and notifies the determined P Topt to the wireless unit 14. Since energy efficiency is the power consumption per transmitted bit when maximized becomes minimum, by determining the combination of B opt and P Topt the eta EE is maximized, the base required to transmit the same amount of data The power consumption of the station 10 can be reduced.
  • the communication control unit 12 fixes the transmission power P T to a constant value P T, 0 and then maximizes the energy efficiency ⁇ EE (that is, the optimal transmission bandwidth B opt ). May be determined.
  • the optimum transmission bandwidth B opt when the transmission power P T is fixed to a constant value P T, 0 is obtained according to the following equation (9). By determining the transmission bandwidth according to Equation (9), it is possible to reduce the amount of calculation required to determine the optimum transmission bandwidth that can reduce the power consumption of the base station 10.
  • the communication control unit 12 determines a transmission bandwidth B (that is, an optimal transmission bandwidth B opt ) that maximizes the energy efficiency ⁇ EE after ensuring a throughput C that is equal to or greater than the threshold C min. Also good. That is, the communication control unit 12 may determine a transmission bandwidth B that obtains a throughput C that is equal to or greater than the threshold C min .
  • the optimum transmission bandwidth B opt when the throughput C is maintained at the threshold value C min or more and the transmission power P T is fixed to the constant value P T, 0 is obtained according to the following equation (10). By determining the transmission bandwidth according to the equation (10), it is possible to determine an optimal transmission bandwidth that can reduce the power consumption of the base station 10 while securing a desired throughput.
  • the communication control unit 12 determines an optimal transmission bandwidth based on the power consumption model represented by the following equation (11) instead of the power consumption model represented by the equation (4). May be. That is, in equation (11), the power consumption P BB of the baseband unit 13 is dependent on the throughput is a function of the throughput is different from the equation (4). However, since the throughput depends on the transmission bandwidth, the power consumption of the baseband unit 13 eventually depends on the transmission bandwidth also in the equation (11).
  • the power consumption models shown in the equations (4), (6), and (7) may be stored in the power consumption model storage unit 16 in a table format instead of as mathematical equations.
  • FIG. 3 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the first embodiment.
  • step S101 the base station 10 transmits a reference signal to the communication terminal 20, and the communication terminal 20 receives the reference signal from the base station 10.
  • the reference signal is generated by the baseband unit 13 and transmitted to the communication terminal 20 by the radio unit 14.
  • the reference signal is transmitted from the base station 10 with constant power, and the transmission power value of the reference signal from the base station 10 is known to the communication terminal 20.
  • step S103 the communication terminal 20 estimates a path loss between the base station 10 and the communication terminal 20. For example, the communication terminal 20 estimates the path loss by dividing the known transmission power value of the reference signal by the reception power value of the reference signal.
  • step S105 the communication terminal 20 notifies the base station 10 of the path loss estimated in step S103.
  • the communication terminal 20 generates a notification signal that notifies the path loss, and transmits the generated notification signal to the base station 10.
  • the path loss notification signal is received by the radio unit 14 of the base station 10 and input to the communication control unit 12 via the baseband unit 13.
  • step S107 the communication control unit 12 uses the path loss notified from the communication terminal 20, for example, based on the power consumption models shown in the equations (4), (6), and (7). According to (8), the combination of B opt and P Topt that maximizes ⁇ EE is determined. The communication control unit 12 instructs the determined B opt to the baseband unit 13, and instructs the determined P Topt to the radio unit 14. Further, the communication control unit 12 instructs the radio unit 14 about the allocated bandwidth.
  • step S109 the base station 10 notifies the communication terminal 20 of the transmission bandwidth and the allocated bandwidth.
  • a notification signal for notifying the transmission bandwidth and the allocated bandwidth is generated by the communication control unit 12 and transmitted by the wireless unit 14.
  • step S111 the base station 10 transmits a downlink signal to the communication terminal 20 according to the transmission bandwidth and the allocated bandwidth notified to the communication terminal 20 in step S109.
  • the communication terminal 20 receives the downlink signal according to the transmission bandwidth and the allocated bandwidth notified from the base station 10 in step S109.
  • 4 and 5 are examples of numerical calculation results of the first embodiment. 4 shows a case where the distance between the base station 10 and the communication terminal 20 is 10 m, and FIG. 5 shows a case where the distance between the base station 10 and the communication terminal 20 is 100 m.
  • N t is the number of transmitting antenna elements of the base station 10.
  • the maximum value of the transmission bandwidth is 20 GHz
  • the distance between the base station 10 and the communication terminal 20 is 10 m, as shown in FIG. 4, when communication is performed with a transmission bandwidth of 20 GHz, energy efficiency and Throughput is maximized.
  • the energy efficiency is maximized based on the power consumption model including the power consumption of the baseband unit 13 that depends on the transmission bandwidth and the power consumption of the wireless unit 14 that depends on the transmission power. Determine the transmission bandwidth to be
  • the power consumption of the base station 10 can be reduced.
  • the communication control unit 12 generates a notification signal for notifying the determined transmission bandwidth (hereinafter also referred to as “transmission bandwidth notification signal”), and the generated transmission bandwidth notification signal is transmitted to the wired communication unit 11. Output to.
  • the wired communication unit 11 transmits a transmission bandwidth notification signal to the central control station 30.
  • the centralized control station 30 that has received the transmission bandwidth notification signal from the base station 10 assigns a frequency band to each base station 10 based on the transmission bandwidth determined by the base station 10.
  • FIG. 7 is a diagram for explaining an operation example of the wireless communication system according to the second embodiment.
  • the base stations 10-1 to 10-3 and the communication terminals 20-1 to 20-3 shown in FIG. 7 correspond to the base stations 10-1 to 10-3 and the communication terminals 20-1 to 20-3 shown in FIG. To do.
  • Base station 10-1 and base station 10-2 are adjacent to each other, base station 10-2 and base station 10-3 are adjacent to each other, while base station 10-1 and base station 10-3 are adjacent to each other do not do.
  • the system bandwidth is 20 GHz and the unit bandwidth is 5 GHz.
  • the base station 10-1 determines the transmission bandwidth to 15 GHz
  • the base station 10-2 determines the transmission bandwidth to 5 GHz
  • the base station 10-3 determines the transmission bandwidth to 10 GHz.
  • the centralized control station 30 determines the allocation bands for the base station 10-1 to be three frequency bands of the center frequencies f1, f2, and f4, while the allocation band for the base station 10-2 is one of the center frequencies f3. Determine the frequency band. Therefore, in the base station 10-1, the communication control unit 12 instructs the radio unit 14 to transmit the bandwidth 15 GHz and the allocated bands f1, f2, and f4, and the radio unit 14 uses the allocated bands f1, f2, and f4. A downlink signal having a transmission bandwidth of 15 GHz is transmitted.
  • the communication control unit 12 instructs the radio unit 14 about the transmission bandwidth 5 GHz and the allocated band f3, and the radio unit 14 uses the allocated band f3 to send a downlink signal with the transmission bandwidth 5 GHz. Send.
  • the frequency bands used for downlink signal transmission do not overlap between the base stations 10-1 and 10-2 adjacent to each other. Can reduce signal interference.
  • the centralized control station 30 determines the allocated band for the base station 10-2 as one frequency band of the center frequency f3, the allocated band for the base station 10-3 is determined as two frequency bands of the center frequencies f1 and f2. To do. Therefore, in the base station 10-3, the communication control unit 12 instructs the radio unit 14 about the transmission bandwidth 10 GHz and the allocation bands f1 and f2, and the radio unit 14 uses the allocation bands f1 and f2 to transmit the transmission bandwidth 10 GHz. The downstream signal is transmitted. As a result, the frequency bands used for downlink signal transmission do not overlap between the base stations 10-2 and 10-3 adjacent to each other, and therefore, between the base stations 10-2 and 10-3. Can reduce signal interference.
  • Example 2 since the frequency bands used for downlink signal transmission do not overlap between adjacent base stations, signal interference between base stations can be reduced. For this reason, the throughput of the downlink signal in the entire wireless communication system can be improved.
  • Example 3 In the first embodiment, the downlink signal transmission bandwidth is determined. In contrast, in the third embodiment, a case where the transmission bandwidth of the uplink signal is determined will be described.
  • FIG. 8 is a functional block diagram illustrating an example of a communication terminal according to the third embodiment.
  • the communication terminal 20 illustrated in FIG. 8 includes a communication control unit 21, a baseband unit 22, a radio unit 23, an antenna 24, and a power consumption model storage unit 25.
  • the antenna 24 is, for example, an array antenna having a plurality of antenna elements.
  • the communication control unit 21 controls wireless communication. For example, the communication control unit 21 determines the uplink signal transmission bandwidth and transmission power based on the power consumption model stored in the power consumption model storage unit 25, as in the first embodiment. The communication control unit 21 instructs the determined transmission bandwidth to the baseband unit 22 and instructs the wireless unit 23 about the determined transmission power. In addition, the communication control unit 21 instructs the radio unit 23 about the allocated bandwidth notified from the base station 10.
  • the baseband unit 22 performs digital signal processing such as encoding processing and modulation processing on transmission data such as user data to generate a baseband transmission signal. At this time, the baseband unit 22 performs digital signal processing according to the transmission bandwidth instructed from the communication control unit 21 as in the first embodiment.
  • the baseband unit 22 converts the generated baseband transmission signal into an analog signal by D / A conversion, and outputs the baseband signal after conversion to an analog signal to the radio unit 23.
  • the baseband unit 22 converts the baseband received signal input from the wireless unit 23 into a digital signal by A / D conversion.
  • the baseband unit 22 performs digital signal processing such as demodulation processing and decoding processing on the baseband signal converted into a digital signal to obtain received data such as user data from the base station 10.
  • the radio unit 23 performs analog signal processing such as up-conversion processing and power amplification processing on the baseband transmission signal input from the baseband unit 22, and transmits the transmission signal after power amplification via the antenna 24 to the base station. 10 to send. At this time, the radio unit 23 amplifies the power of the transmission signal in accordance with the transmission power instructed from the communication control unit 21. In addition, the radio unit 23 performs analog signal processing such as down-conversion processing on the reception signal received via the antenna 24 to obtain a baseband reception signal and outputs the baseband reception signal to the baseband unit 22.
  • analog signal processing such as up-conversion processing and power amplification processing on the baseband transmission signal input from the baseband unit 22, and transmits the transmission signal after power amplification via the antenna 24 to the base station. 10 to send. At this time, the radio unit 23 amplifies the power of the transmission signal in accordance with the transmission power instructed from the communication control unit 21. In addition, the radio unit 23 performs analog signal processing such as down-conversion processing on the reception signal received via
  • the baseband unit 22 performs D / A conversion and A / D conversion.
  • the radio unit 23 may perform D / A conversion and A / D conversion instead of the baseband unit 22. good.
  • the baseband unit 22 and the radio unit 23 do not perform D / A conversion and A / D conversion, and a conversion unit that performs D / A conversion and A / D conversion is provided between the baseband unit 22 and the radio unit 23. May be provided.
  • the power consumption model storage unit 25 stores a power consumption model, as in the first embodiment.
  • processing related to the determination of the transmission bandwidth in the communication terminal 20 of the third embodiment is the same as the processing related to the determination of the transmission bandwidth in the base station 10 of the first embodiment, and thus the description thereof is omitted.
  • FIG. 9 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the third embodiment.
  • the processing in steps S101 and S103 is the same as that in the first embodiment.
  • the communication control unit 21 of the communication terminal 20 estimates a path loss between the base station 10 and the communication terminal 20.
  • step S201 the communication control unit 21 uses the estimated path loss, for example, based on the power consumption models shown in the equations (4), (6), and (7), according to the equations (5) and (8).
  • the combination of B opt and P Topt that maximizes ⁇ EE is determined.
  • the communication control unit 21 instructs the determined B opt to the baseband unit 22, and instructs the determined P Topt to the radio unit 23.
  • step S203 the communication terminal 20 notifies the base station 10 of the transmission bandwidth.
  • a transmission bandwidth notification signal is generated by the communication control unit 21 and transmitted by the wireless unit 23.
  • step S205 the communication control unit 12 of the base station 10 determines the allocated bandwidth for the communication terminal 20 based on the transmission bandwidth notified from the communication terminal 20.
  • step S207 the communication control unit 12 generates an allocated band notification signal that notifies the allocated band determined in step S205, and the wireless unit 14 transmits the allocated band notification signal to the communication terminal 20.
  • the communication control unit 21 instructs the radio unit 23 about the allocated band indicated in the allocated band notification signal.
  • step S209 the communication terminal 20 transmits an uplink signal to the base station 10 according to the transmission bandwidth determined in step S201 and the allocated bandwidth notified from the base station 10 in step S207.
  • the base station 10 receives the uplink signal according to the transmission bandwidth notified from the communication terminal 20 in step S203 and the allocated bandwidth determined in step S205.
  • the communication terminal 20 may transmit an uplink signal according to a CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) method.
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • the communication terminal 20 determines the transmission bandwidth of the uplink signal as the transmission bandwidth that maximizes the energy efficiency, so that the power consumption of the communication terminal 20 can be reduced.
  • the upstream signal also has a vacant bandwidth when the transmission bandwidth that maximizes the energy efficiency (that is, the optimum transmission bandwidth) is smaller than the system bandwidth.
  • the base station 10 that has received the transmission bandwidth notification signal from the communication terminal 20 assigns a frequency band to each communication terminal 20 based on the transmission bandwidth determined by the communication terminal 20.
  • FIG. 10 is a diagram for explaining an operation example of the wireless communication system according to the fourth embodiment.
  • the base station 10-1 and communication terminals 20-1 to 20-3 shown in FIG. 10 correspond to the base station 10-1 and communication terminals 20-1 to 20-3 shown in FIG. However, in FIG. 10, base station 10-1 communicates simultaneously with three communication terminals, communication terminals 20-1 to 20-3.
  • the system bandwidth is 20 GHz, and the unit bandwidth is 5 GHz.
  • the communication terminal 20-1 determines the transmission bandwidth to 15 GHz
  • the communication terminal 20-2 determines the transmission bandwidth to 5 GHz
  • the communication terminal 20 -3 assumes that the transmission bandwidth is determined to be 10 GHz.
  • the base station 10-1 receives the transmission bandwidth notification signal from the communication terminals 20-1 to 20-3.
  • the system bandwidth is 20 GHz
  • the transmission bandwidth 15 GHz of the communication terminal 20-1, the transmission bandwidth 5 GHz of the communication terminal 20-2, and the transmission bandwidth 10 GHz of the communication terminal 20-3 are They overlap each other in the band. Therefore, as shown in FIG. 10, the communication control unit 12 of the base station 10 first changes the transmission bandwidth of the communication terminal 20-1 from 15 GHz to 10 GHz, and changes the transmission bandwidth of the communication terminal 20-3 from 10 GHz. Change to 5GHz.
  • the communication control unit 12 determines the allocation band for the communication terminal 20-1 as two frequency bands of the center frequencies f1 and f4, and determines the allocation band for the communication terminal 20-2 as one frequency band of the center frequency f3. Then, the allocated band for the communication terminal 20-3 is determined as one frequency band of the center frequency f2. The communication control unit 12 generates an allocated band notification signal indicating the allocated band determined in this way, and the radio unit 14 transmits the allocated band notification signal to the communication terminals 20-1 to 20-3.
  • the communication control unit 21 instructs the baseband unit 22 to transmit a bandwidth of 10 GHz, and instructs the radio unit 23 to allocate bands of the center frequencies f1 and f4. Therefore, the radio unit 23 of the communication terminal 20-1 transmits an uplink signal having a transmission bandwidth of 10 GHz using the allocated bands f1 and f4.
  • the communication control unit 21 instructs the baseband unit 22 to transmit a bandwidth of 5 GHz, and instructs the radio unit 23 to allocate the center frequency f3. Therefore, the radio unit 23 of the communication terminal 20-2 transmits an uplink signal having a transmission bandwidth of 5 GHz using the allocated band f3.
  • the communication control unit 21 instructs the baseband unit 22 to transmit a 5 GHz transmission bandwidth and instructs the radio unit 23 to allocate the center frequency f2. Therefore, the radio unit 23 of the communication terminal 20-3 transmits an uplink signal having a transmission bandwidth of 5 GHz using the allocated band f2.
  • the frequency bands used for uplink signal transmission do not overlap each other between a plurality of communication terminals, signal interference between communication terminals can be reduced. Therefore, it is possible to improve the uplink signal throughput in the entire wireless communication system.
  • the communication terminal determines the transmission bandwidth of the uplink signal.
  • the base station determines the transmission bandwidth of the uplink signal.
  • FIG. 11 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the fifth embodiment.
  • the processing in step S101 is the same as that in the first embodiment.
  • step S301 the communication control unit 21 of the communication terminal 20 generates a notification signal for notifying parameters of the power consumption model (hereinafter sometimes referred to as “parameter notification signal”), and the wireless unit 23 transmits the parameter notification signal. Transmit to the base station 10.
  • the parameters of the power consumption model include, for example, the received power value of the reference signal, the transmission power value P T of the radio unit 23, the proportionality constant ⁇ , the power consumption value P RF of the radio unit 23, and the thermal noise value N 0 .
  • the communication control unit 21 measures the reception power value of the reference signal and determines the transmission power value PT of the radio unit 23. Further, the proportionality constant ⁇ , the power consumption value P RF of the wireless unit 23 and the thermal noise value N 0 are stored in the power consumption model storage unit 25, and the communication control unit 21 stores these values in the power consumption model storage unit 25. Get from.
  • the communication control unit 12 determines the transmission bandwidth B that maximizes the energy efficiency ⁇ EE expressed by the following equation (13). For example, the communication control unit 12 estimates the path loss L by dividing the known transmission power value of the reference signal by the reception power value of the reference signal.
  • step S305 the base station 10 notifies the communication terminal 20 of the transmission bandwidth and the allocated bandwidth.
  • a notification signal for notifying the transmission bandwidth and the allocated bandwidth is generated by the communication control unit 12 and transmitted by the wireless unit 14.
  • step S307 the communication terminal 20 transmits an uplink signal to the base station 10 according to the transmission bandwidth and the allocated bandwidth notified from the base station 10 in step S305.
  • the base station 10 receives the uplink signal according to the transmission bandwidth and the assigned bandwidth determined in step S303.
  • the communication terminal can omit the processing related to the determination of the transmission bandwidth, so that the configuration of the communication terminal can be simplified and the communication terminal Power consumption can be suppressed.
  • path loss and interference from other cells or other wireless communication systems may vary individually for each frequency band obtained by dividing the system band into a plurality of parts.
  • the communication control unit 12 of the base station 10 determines a set ⁇ of transmission bandwidths B sub that maximizes the energy efficiency ⁇ EE expressed by the following equation (14).
  • the number of subbands N sub to allocate (i.e., the size of the set kappa)
  • L k is the path loss in the sub-band B k
  • I k is the interference in the sub-band B k.
  • FIG. 12 is a diagram for explaining an operation example of the wireless communication system according to the sixth embodiment.
  • the system band is divided into two sub-bands SB1, SB2 having the same bandwidth B 0. Therefore, there are three subband allocation patterns, allocation candidates # 1 to # 3, as shown in FIG. That is, only subband SB1 is used in allocation candidate # 1, only subband SB2 is used in allocation candidate # 2, and both subbands SB1 and SB2 are used in allocation candidate # 3. Therefore, when the total transmission power is the same, the transmission power density of allocation candidate # 3 is halved compared to the transmission power densities of allocation candidates # 1 and # 2. Therefore, the energy efficiency of allocation candidate # 1 is represented by the following equation (15), the energy efficiency of allocation candidate # 2 is represented by the following equation (16), and the energy efficiency of allocation candidate # 3 is (17)
  • the communication control unit 12 of the base station 10 sets the transmission bandwidth B that maximizes the energy efficiency ⁇ EE to ⁇ EE ( ⁇ 1 ), ⁇ EE ( ⁇ 2 ), and ⁇ EE ( ⁇ 3 ). Ask for. Then, the communication control unit 12 sets the transmission bandwidth B corresponding to the maximum energy efficiency among ⁇ EE ( ⁇ 1 ), ⁇ EE ( ⁇ 2 ), and ⁇ EE ( ⁇ 3 ) as the final transmission bandwidth. decide. That is, the communication control unit 12 determines a transmission bandwidth by applying different power consumption models to each of the sub-bands SB1 and SB2 included in the system band.
  • the optimal transmission bandwidth can be determined, and thus the power consumption of the base station 10 can be reduced.
  • FIG. 13 is a diagram illustrating a hardware configuration example of the base station.
  • the base station 10 includes a processor 10a, a memory 10b, a wireless communication module 10c, and a wired communication module 10d as hardware components.
  • the processor 10a include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • the base station 10 may include an LSI (Large Scale Integrated circuit) including a processor 10a and peripheral circuits.
  • Examples of the memory 10b include RAM such as SDRAM, ROM, flash memory, and the like.
  • the wireless unit 14 and the antenna 15 are realized by the wireless communication module 10c.
  • the wired communication unit 11 is realized by the wired communication module 10d.
  • the communication control unit 12 and the baseband unit 13 are realized by the processor 10a.
  • the power consumption model storage unit 16 is realized by the memory 10b.
  • FIG. 14 is a diagram illustrating a hardware configuration example of the communication terminal.
  • the communication terminal 20 includes a processor 20a, a memory 20b, and a wireless communication module 20c as hardware components.
  • the processor 20a include a CPU, DSP, FPGA, and the like.
  • the communication terminal 20 may include an LSI including a processor 20a and peripheral circuits.
  • Examples of the memory 20b include RAM such as SDRAM, ROM, flash memory, and the like.
  • the wireless unit 23 and the antenna 24 are realized by the wireless communication module 20c.
  • the communication control unit 21 and the baseband unit 22 are realized by the processor 20a.
  • the power consumption model storage unit 25 is realized by the memory 20b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station with reduced power consumption. In this base station (10), a baseband unit (13) performs digital signal processing on transmission data, thereby generating a baseband signal. A wireless unit (14) wirelessly transmits an analog signal to which the baseband signal has been converted by a digital-to-analog conversion. A communication control unit (12) determines a transmission bandwidth that maximizes energy efficiency, on the basis of a power consumption model including a first power consumption which is power consumption by the baseband unit (13) and which depends on a transmission bandwidth of the analog signal, and a second power consumption which is power consumption by the wireless communication unit (14) and which depends on a transmission power of the analog signal.

Description

無線通信装置、無線通信システム及び送信帯域幅制御方法Wireless communication apparatus, wireless communication system, and transmission bandwidth control method
 本発明は、無線通信装置、無線通信システム及び送信帯域幅制御方法に関する。 The present invention relates to a wireless communication device, a wireless communication system, and a transmission bandwidth control method.
 無線通信の発展に伴い、無線通信の通信量が飛躍的に増加している。このため、無線通信のエネルギー効率(Energy Efficiency;以下では「EE」と呼ぶことがある)を向上させることが重要となっている。特に、ミリ波通信では従来の数十倍の大容量の通信が可能となるため、ミリ波通信のエネルギー効率を向上させることは、無線通信システム全体のエネルギー効率の向上に大きく寄与すると考えられる。 With the development of wireless communication, the amount of wireless communication traffic has increased dramatically. For this reason, it is important to improve the energy efficiency (hereinafter referred to as “EE”) of wireless communication. In particular, in millimeter wave communication, communication with a capacity that is several tens of times larger than conventional ones is possible. Therefore, improving the energy efficiency of millimeter wave communication is considered to greatly contribute to improving the energy efficiency of the entire wireless communication system.
 ミリ波通信では、数GHzの周波数帯域幅を用いて数十Gbpsのスループットを実現することが期待されている。数GHzという周波数帯域幅や数十Gbpsというスループットは、例えばLTE(Long Term Evolution)やWiFi(Wireless Fidelity)等の従来の無線通信における100MHz以下の周波数帯域幅や数百Mbps以下のスループットに比べて大きい。このため、ミリ波通信では、周波数帯域幅の増加に伴って、符号化処理や変調処理等のデジタル信号処理を行うベースバンド部の消費電力の増加が見込まれる。また、周波数帯域幅の増加に伴って、アップコンバートや信号の電力の増幅等のアナログ信号処理を行って無線信号を送信する無線部(つまり、RF(Radio Frequency)部)の消費電力の増加も見込まれる。しかし、例えばビームフォーミング等の技術を用いることにより、無線部での送信電力を抑えることが可能であるため、ベースバンド部に比べて、無線部での消費電力の増加率は相対的に小さくなると想定される。よって、周波数帯域幅の増加の際の消費電力の低減には、特にベースバンド部の消費電力の低減が重要となる。なお、以下では、周波数帯域幅を単に「帯域幅」と呼ぶことがある。 Millimeter-wave communication is expected to achieve a throughput of several tens of Gbps using a frequency bandwidth of several GHz. The frequency bandwidth of several GHz and the throughput of several tens of Gbps are compared with the frequency bandwidth of 100 MHz or less and the throughput of several hundred Mbps or less in conventional wireless communication such as LTE (Long Term Evolution) and WiFi (Wireless Fidelity). large. For this reason, in millimeter wave communication, power consumption of a baseband unit that performs digital signal processing such as encoding processing and modulation processing is expected to increase with an increase in frequency bandwidth. As the frequency bandwidth increases, the power consumption of the radio unit (that is, RF (Radio Frequency) unit) that transmits radio signals by performing analog signal processing such as up-conversion and signal power amplification also increases. Expected. However, since the transmission power in the radio unit can be suppressed by using a technique such as beam forming, for example, the increase rate of power consumption in the radio unit is relatively smaller than that in the baseband unit. is assumed. Therefore, in order to reduce the power consumption when the frequency bandwidth is increased, it is particularly important to reduce the power consumption of the baseband part. Hereinafter, the frequency bandwidth may be simply referred to as “bandwidth”.
 これに対し、従来は、以下の式(1),(2)に表すように、回路の消費電力P[W]を固定と仮定した消費電力モデルPtotal[W]を用いてエネルギー効率ηEE[bit/J]を算出していた。式(1)において、P[W]は送信電力、ρはパワーアンプの効率であり、式(2)において、C[bps]はスループットである。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
On the other hand, conventionally, as shown in the following formulas (1) and (2), the energy efficiency η using a power consumption model P total [W] in which the power consumption P c [W] of the circuit is assumed to be fixed. EE [bit / J] was calculated. In Equation (1), P T [W] is the transmission power, ρ is the efficiency of the power amplifier, and in Equation (2), C [bps] is the throughput.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また、スループットCは、以下の式(3)によって表される。式(3)において、B[Hz]は無線信号の送信に用いられる帯域幅(以下では「送信帯域幅」と呼ぶことがある)、Lは無線送受信間の伝搬損失(つまり、パスロス)、N[W/Hz]は単位帯域幅あたりの熱雑音である。なお、Lは真値である。
Figure JPOXMLDOC01-appb-M000003
Further, the throughput C is expressed by the following formula (3). In Equation (3), B [Hz] is a bandwidth used for transmission of a radio signal (hereinafter sometimes referred to as “transmission bandwidth”), L is a propagation loss between radio transmission and reception (that is, a path loss), N 0 [W / Hz] is thermal noise per unit bandwidth. L is a true value.
Figure JPOXMLDOC01-appb-M000003
特表2012-526431号公報Special table 2012-526431 gazette
 一般に、デジタル信号処理の処理量が増加するほどベースバンド部の消費電力は増加し、送信帯域幅が増加するほどデジタル信号処理の処理量は増加するので、送信帯域幅が増加するほど、ベースバンド部の消費電力は増加する。ベースバンド部の消費電力が送信帯域幅に応じて変化する場合に、従来の消費電力モデル(式(1))のように、回路の消費電力を固定と仮定してエネルギー効率を算出したのでは、最適なエネルギー効率を算出することは難しくなるため、消費電力の低減を図ることが困難になる。 Generally, the power consumption of the baseband part increases as the processing amount of digital signal processing increases, and the processing amount of digital signal processing increases as the transmission bandwidth increases, so the baseband increases as the transmission bandwidth increases. The power consumption of the part increases. When the power consumption of the baseband part changes according to the transmission bandwidth, the energy efficiency is calculated assuming that the power consumption of the circuit is fixed as in the conventional power consumption model (Equation (1)). Since it becomes difficult to calculate optimum energy efficiency, it is difficult to reduce power consumption.
 開示の技術は、上記に鑑みてなされたものであって、無線通信装置の消費電力を低減することを目的とする。 The disclosed technology has been made in view of the above, and aims to reduce the power consumption of a wireless communication device.
 開示の態様では、無線通信装置は、ベースバンド部と、無線部と、制御部とを有する。前記ベースバンド部は、送信データに対してデジタル信号処理を行ってベースバンド信号を生成する。前記無線部は、デジタルアナログ変換によって前記ベースバンド信号から変換されたアナログ信号を無線送信する。前記制御部は、前記ベースバンド部の消費電力である第一消費電力あって、前記アナログ信号の送信帯域幅に依存する前記第一消費電力と、前記無線部の消費電力である第二消費電力であって、前記アナログ信号の送信電力に依存する前記第二消費電力とを含む消費電力モデルに基づいて、エネルギー効率が最大になる前記送信帯域幅を決定する。 In the disclosed aspect, the wireless communication device includes a baseband unit, a wireless unit, and a control unit. The baseband unit performs digital signal processing on transmission data to generate a baseband signal. The wireless unit wirelessly transmits an analog signal converted from the baseband signal by digital analog conversion. The control unit includes first power consumption that is power consumption of the baseband unit, the first power consumption that depends on a transmission bandwidth of the analog signal, and second power consumption that is power consumption of the wireless unit. The transmission bandwidth that maximizes the energy efficiency is determined based on a power consumption model including the second power consumption that depends on the transmission power of the analog signal.
 開示の態様によれば、無線通信装置の消費電力を低減することができる。 According to the disclosed aspect, the power consumption of the wireless communication device can be reduced.
図1は、実施例1の無線通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment. 図2は、実施例1の基地局の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating an example of a base station according to the first embodiment. 図3は、実施例1の無線通信システムの処理シーケンスの一例を示す図である。FIG. 3 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the first embodiment. 図4は、実施例1の数値計算結果例を示す図である。FIG. 4 is a diagram illustrating an example of numerical calculation results of the first embodiment. 図5は、実施例1の数値計算結果例を示す図である。FIG. 5 is a diagram illustrating an example of numerical calculation results of the first embodiment. 図6は、実施例1の効果の説明に供する図である。FIG. 6 is a diagram for explaining the effect of the first embodiment. 図7は、実施例2の無線通信システムの動作例の説明に供する図である。FIG. 7 is a diagram for explaining an operation example of the wireless communication system according to the second embodiment. 図8は、実施例3の通信端末の一例を示す機能ブロック図である。FIG. 8 is a functional block diagram illustrating an example of a communication terminal according to the third embodiment. 図9は、実施例3の無線通信システムの処理シーケンスの一例を示す図である。FIG. 9 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the third embodiment. 図10は、実施例4の無線通信システムの動作例の説明に供する図である。FIG. 10 is a diagram for explaining an operation example of the wireless communication system according to the fourth embodiment. 図11は、実施例5の無線通信システムの処理シーケンスの一例を示す図である。FIG. 11 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the fifth embodiment. 図12は、実施例6の無線通信システムの動作例の説明に供する図である。FIG. 12 is a diagram for explaining an operation example of the wireless communication system according to the sixth embodiment. 図13は、基地局のハードウェア構成例を示す図である。FIG. 13 is a diagram illustrating a hardware configuration example of the base station. 図14は、通信端末のハードウェア構成例を示す図である。FIG. 14 is a diagram illustrating a hardware configuration example of the communication terminal.
 以下に、本願の開示する無線通信装置、無線通信システム及び送信帯域幅制御方法の実施例を図面に基づいて詳細に説明する。なお、この実施例により本願の開示する無線通信装置、無線通信システム及び送信帯域幅制御方法が限定されるものではない。また、各実施例において同一の機能を有する構成、及び、同一の処理を行うステップには同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of a wireless communication device, a wireless communication system, and a transmission bandwidth control method disclosed in the present application will be described in detail with reference to the drawings. Note that the wireless communication device, the wireless communication system, and the transmission bandwidth control method disclosed in the present application are not limited by this embodiment. Moreover, the same code | symbol is attached | subjected to the structure which has the same function in each Example, and the step which performs the same process, and the overlapping description is abbreviate | omitted.
 [実施例1]
 <無線通信システムの構成例>
 図1は、実施例1の無線通信システムの構成例を示す図である。図1において、無線通信システム100は、基地局10-1~10-3と、通信端末20-1~20-3と、集中制御局30とを有する。集中制御局30は、コアネットワーク(図示せず)に繋がっている。例えば、基地局10-1と通信端末20-1とが無線通信を行い、基地局10-2と通信端末20-2とが無線通信を行い、基地局10-3と通信端末20-3とが無線通信を行う。集中制御局30は、基地局10-1~10-3に対する集中制御を行う。例えば、集中制御局30は、基地局10-1~10-3の各々に対して、無線通信システム100で使用可能な周波数帯域の中で、基地局10-1~10-3の各々の無線通信に使用する周波数帯域を割り当てる。
[Example 1]
<Configuration example of wireless communication system>
FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment. In FIG. 1, a radio communication system 100 includes base stations 10-1 to 10-3, communication terminals 20-1 to 20-3, and a central control station 30. The central control station 30 is connected to a core network (not shown). For example, the base station 10-1 and the communication terminal 20-1 perform wireless communication, the base station 10-2 and the communication terminal 20-2 perform wireless communication, and the base station 10-3 and the communication terminal 20-3 Performs wireless communication. The centralized control station 30 performs centralized control on the base stations 10-1 to 10-3. For example, the centralized control station 30 transmits each of the base stations 10-1 to 10-3 to each of the base stations 10-1 to 10-3 within the frequency band that can be used in the wireless communication system 100. Allocate the frequency band used for communication.
 以下では、基地局10-1~10-3を特に区別しない場合には、基地局10と総称することがあり、通信端末20-1~20-3を特に区別しない場合には、通信端末20と総称することがある。また以下では、無線通信システム100で使用可能な周波数帯域を「システム帯域」、システム帯域の中で各基地局10または各通信端末20に対して割り当てられた周波数帯域を「割当帯域」、システム帯域の帯域幅を「システム帯域幅」と呼ぶことがある。各割当帯域は、例えば、各割当帯域の中心周波数で示される。基地局10から通信端末20への無線信号は「下り信号(downlink signal)」と呼ばれ、通信端末20から基地局10への無線信号は「上り信号(uplink signal)」と呼ばれる。なお、基地局10及び通信端末20は、無線通信装置の一例である。 In the following, when the base stations 10-1 to 10-3 are not particularly distinguished, they may be collectively referred to as the base station 10, and when the communication terminals 20-1 to 20-3 are not particularly distinguished, the communication terminal 20 May be collectively referred to. In the following, a frequency band that can be used in the radio communication system 100 is a “system band”, a frequency band allocated to each base station 10 or each communication terminal 20 in the system band is an “allocated band”, and a system band Is sometimes referred to as “system bandwidth”. Each allocation band is indicated by the center frequency of each allocation band, for example. A radio signal from the base station 10 to the communication terminal 20 is called a “downlink signal”, and a radio signal from the communication terminal 20 to the base station 10 is called an “uplink signal”. The base station 10 and the communication terminal 20 are examples of a wireless communication device.
 <基地局の構成例>
 図2は、実施例1の基地局の一例を示す機能ブロック図である。図2に示す基地局10は、有線通信部11と、通信制御部12と、ベースバンド部13と、無線部14と、アンテナ15と、消費電力モデル記憶部16とを有する。アンテナ15は、例えば、複数のアンテナ素子を有するアレイアンテナである。
<Configuration example of base station>
FIG. 2 is a functional block diagram illustrating an example of a base station according to the first embodiment. The base station 10 illustrated in FIG. 2 includes a wired communication unit 11, a communication control unit 12, a baseband unit 13, a radio unit 14, an antenna 15, and a power consumption model storage unit 16. The antenna 15 is, for example, an array antenna having a plurality of antenna elements.
 有線通信部11は、例えば光ファイバによって、集中制御局30と接続されている。有線通信部11は、ベースバンド部13から通信制御部12を介して入力されたユーザデータを集中制御局30へ送信し、集中制御局30から受信したユーザデータを通信制御部12を介してベースバンド部13へ出力する。また、有線通信部11は、割当帯域を通知する信号(以下では「割当帯域通知信号」と呼ぶことがある)を集中制御局30から受信して通信制御部12へ出力する。 The wired communication unit 11 is connected to the central control station 30 by, for example, an optical fiber. The wired communication unit 11 transmits user data input from the baseband unit 13 via the communication control unit 12 to the centralized control station 30 and receives user data received from the centralized control station 30 via the communication control unit 12. Output to the band unit 13. Further, the wired communication unit 11 receives a signal for notifying the allocated band (hereinafter also referred to as “allocated band notification signal”) from the centralized control station 30 and outputs the signal to the communication control unit 12.
 通信制御部12は、無線通信の制御を行う。例えば、通信制御部12は、消費電力モデル記憶部16に記憶されている消費電力モデルに基づいて、下り信号の送信帯域幅と送信電力とを決定する。通信制御部12は、決定した送信帯域幅をベースバンド部13へ指示し、決定した送信電力を無線部14へ指示する。また、通信制御部12は、割当帯域通知信号によって通知された割当帯域を無線部14へ指示する。通信制御部12の処理の詳細は後述する。 The communication control unit 12 controls wireless communication. For example, the communication control unit 12 determines the transmission bandwidth and transmission power of the downlink signal based on the power consumption model stored in the power consumption model storage unit 16. The communication control unit 12 instructs the baseband unit 13 on the determined transmission bandwidth, and instructs the radio unit 14 on the determined transmission power. Further, the communication control unit 12 instructs the radio unit 14 of the allocated band notified by the allocated band notification signal. Details of the processing of the communication control unit 12 will be described later.
 ベースバンド部13は、ユーザデータ等の送信データに対して符号化処理及び変調処理等のデジタル信号処理を行ってベースバンドの送信信号を生成する。この際、ベースバンド部13は、通信制御部12から指示された送信帯域幅に応じてデジタル信号処理を行う。ベースバンド部13は、送信データに対する変調処理として、例えばOFDM(Orthogonal Frequency Division Multiplexing)変調を行うことにより、ベースバンドの送信信号であるOFDM信号を生成する。このとき、ベースバンド部13は、OFDM信号を形成する複数のサブキャリアへの送信データの割当数を、通信制御部12によって決定された送信帯域幅に応じて変化させる。例えば、OFDM信号が1024個のサブキャリアから形成され、そのOFDM信号の帯域幅がシステム帯域幅に対応する場合、512個のサブキャリアに送信データが割り当てられると、送信帯域幅はシステム帯域幅の2分の1となる。 The baseband unit 13 generates a baseband transmission signal by performing digital signal processing such as encoding processing and modulation processing on transmission data such as user data. At this time, the baseband unit 13 performs digital signal processing according to the transmission bandwidth instructed from the communication control unit 12. The baseband unit 13 generates an OFDM signal, which is a baseband transmission signal, by performing, for example, OFDM (Orthogonal Frequency Division Multiplexing) modulation as modulation processing on transmission data. At this time, the baseband unit 13 changes the number of transmission data allocated to the plurality of subcarriers forming the OFDM signal according to the transmission bandwidth determined by the communication control unit 12. For example, when an OFDM signal is formed of 1024 subcarriers and the bandwidth of the OFDM signal corresponds to the system bandwidth, when transmission data is allocated to 512 subcarriers, the transmission bandwidth is equal to the system bandwidth. A half.
 また、ベースバンド部13は、生成したベースバンドの送信信号をデジタルアナログ変換(D/A変換)によってアナログ信号に変換し、アナログ信号に変換後のベースバンド信号を無線部14へ出力する。また、ベースバンド部13は、無線部14から入力されるベースバンドの受信信号をアナログデジタル変換(A/D変換)によってデジタル信号に変換する。ベースバンド部13は、デジタル信号に変換後のベースバンド信号に対して復調処理及び復号処理等のデジタル信号処理を行って通信端末20からのユーザデータ等の受信データを得る。 The baseband unit 13 converts the generated baseband transmission signal into an analog signal by digital-analog conversion (D / A conversion), and outputs the converted baseband signal to the radio unit 14. The baseband unit 13 converts the baseband received signal input from the wireless unit 14 into a digital signal by analog-digital conversion (A / D conversion). The baseband unit 13 obtains received data such as user data from the communication terminal 20 by performing digital signal processing such as demodulation processing and decoding processing on the baseband signal converted into the digital signal.
 無線部14は、ベースバンド部13から入力されるベースバンドの送信信号(つまり、アナログ信号)に対してアップコンバート処理及び電力増幅処理等のアナログ信号処理を行い、アナログ信号処理後の送信信号をアンテナ15を介して通信端末20へ送信する。この際、無線部14は、通信制御部12から指示された割当帯域に従ってアップコンバート処理を行う。また、無線部14は、通信制御部12から指示された送信電力に従って送信信号の電力を増幅する。また、無線部14は、アンテナ15を介して受信した受信信号に対してダウンコンバート処理等のアナログ信号処理を行ってベースバンドの受信信号を得てベースバンド部13へ出力する。 The radio unit 14 performs analog signal processing such as up-conversion processing and power amplification processing on the baseband transmission signal (that is, analog signal) input from the baseband unit 13, and transmits the transmission signal after analog signal processing. The data is transmitted to the communication terminal 20 via the antenna 15. At this time, the radio unit 14 performs an up-conversion process according to the allocated bandwidth instructed from the communication control unit 12. Further, the radio unit 14 amplifies the power of the transmission signal according to the transmission power instructed from the communication control unit 12. In addition, the radio unit 14 performs analog signal processing such as down-conversion processing on the reception signal received via the antenna 15 to obtain a baseband reception signal and outputs the baseband reception signal to the baseband unit 13.
 なお、上記説明では、ベースバンド部13がD/A変換及びA/D変換を行ったが、ベースバンド部13に代えて、無線部14がD/A変換及びA/D変換を行っても良い。また、ベースバンド部13及び無線部14がD/A変換及びA/D変換を行わずに、D/A変換及びA/D変換を行う変換部をベースバンド部13と無線部14との間に設けても良い。 In the above description, the baseband unit 13 performs D / A conversion and A / D conversion. However, instead of the baseband unit 13, the wireless unit 14 performs D / A conversion and A / D conversion. good. Further, the baseband unit 13 and the radio unit 14 do not perform D / A conversion and A / D conversion, and a conversion unit that performs D / A conversion and A / D conversion is provided between the baseband unit 13 and the radio unit 14. May be provided.
 消費電力モデル記憶部16は、消費電力モデルを記憶する。消費電力モデルの詳細は後述する。 The power consumption model storage unit 16 stores a power consumption model. Details of the power consumption model will be described later.
 <基地局の処理>
 消費電力モデル記憶部16に記憶されている消費電力モデルPtotal[W]は以下の式(4)によって表される。式(4)において、PRF[W]は無線部14の消費電力、PBB[W]はベースバンド部13の消費電力、P[W]は送信電力、B[Hz]は送信帯域幅である。すなわち、式(4)において、無線部14の消費電力は送信電力の関数になって送信電力に依存し、ベースバンド部13の消費電力は送信帯域幅の関数になって送信帯域幅に依存する。そして、基地局10の消費電力は、無線部14の消費電力とベースバンド部13の消費電力との合計としてモデル化される。
Figure JPOXMLDOC01-appb-M000004
<Base station processing>
The power consumption model P total [W] stored in the power consumption model storage unit 16 is expressed by the following equation (4). In Expression (4), P RF [W] is the power consumption of the wireless unit 14, P BB [W] is the power consumption of the baseband unit 13, P T [W] is the transmission power, and B [Hz] is the transmission bandwidth. It is. That is, in Expression (4), the power consumption of the wireless unit 14 is a function of the transmission power and depends on the transmission power, and the power consumption of the baseband unit 13 is a function of the transmission bandwidth and depends on the transmission bandwidth. . The power consumption of the base station 10 is modeled as the sum of the power consumption of the radio unit 14 and the power consumption of the baseband unit 13.
Figure JPOXMLDOC01-appb-M000004
 このとき、エネルギー効率ηEE[bit/J]は以下の式(5)によって表され、送信電力P及び送信帯域幅Bの関数になる。式(5)において、C[bps]はスループット、Lはパスロス、N[W/Hz]は単位帯域幅あたりの熱雑音(真値)である。なお、熱雑音Nは一定値である。
Figure JPOXMLDOC01-appb-M000005
At this time, the energy efficiency η EE [bit / J] is expressed by the following equation (5) and is a function of the transmission power PT and the transmission bandwidth B. In equation (5), C [bps] is the throughput, L is the path loss, and N 0 [W / Hz] is the thermal noise (true value) per unit bandwidth. The thermal noise N 0 is a constant value.
Figure JPOXMLDOC01-appb-M000005
 また、無線部14の消費電力PRFは、例えば以下の式(6)に表すようにモデル化される。式(6)において、ρは無線部14が備えるパワーアンプの効率(一定値)であり、PRF,0[W]は無線部14における固定の消費電力である。
Figure JPOXMLDOC01-appb-M000006
Further, the power consumption P RF of the wireless unit 14 is modeled, for example, as expressed in the following formula (6). In Expression (6), ρ is the efficiency (a constant value) of the power amplifier included in the wireless unit 14, and P RF, 0 [W] is the fixed power consumption in the wireless unit 14.
Figure JPOXMLDOC01-appb-M000006
 一方で、ベースバンド部13の消費電力は、例えば以下の式(7)に表すようにモデル化される。式(7)において、αは所定の比例定数、PBB,0[W]はベースバンド部13における固定の消費電力である。つまり、ベースバンド部13の消費電力は、例えば、送信帯域幅Bに比例するようにモデル化される。
Figure JPOXMLDOC01-appb-M000007
On the other hand, the power consumption of the baseband unit 13 is modeled, for example, as expressed in the following equation (7). In Expression (7), α is a predetermined proportional constant, and P BB, 0 [W] is a fixed power consumption in the baseband unit 13. That is, the power consumption of the baseband unit 13 is modeled so as to be proportional to the transmission bandwidth B, for example.
Figure JPOXMLDOC01-appb-M000007
 よって、エネルギー効率ηEEが式(5)によって表されるとき、パスロスLが決定すれば、エネルギー効率ηEEを最大化する送信帯域幅Bと送信電力Pとの組合せ(つまり、送信帯域幅Bと送信電力Pとの最適な組合せ)は、以下の式(8)に従って得られる。式(8)において、Boptは最適な送信帯域幅、PToptは最適な送信電力、Bmaxは最大の送信帯域幅、PT,maxは最大の送信電力である。Bmaxは、通常、無線通信システム100の最大帯域幅(つまり、システム帯域幅)である。
Figure JPOXMLDOC01-appb-M000008
Therefore, when the energy efficiency η EE is expressed by the equation (5), if the path loss L is determined, the combination of the transmission bandwidth B and the transmission power P T that maximizes the energy efficiency η EE (that is, the transmission bandwidth) (Optimal combination of B and transmission power PT ) is obtained according to the following equation (8). In Equation (8), B opt is the optimal transmission bandwidth, P Topt is the optimal transmission power, B max is the maximum transmission bandwidth, and P T, max is the maximum transmission power. B max is usually the maximum bandwidth (that is, the system bandwidth) of the wireless communication system 100.
Figure JPOXMLDOC01-appb-M000008
 そこで、通信制御部12は、式(4),(6),(7)に示す消費電力モデルに基づいて、式(5),(8)に従って、ηEEが最大になるBoptとPToptとの組合せを決定する。式(4),(6),(7)に示す消費電力モデルが消費電力モデル記憶部16に予め記憶され、式(5),(8)に従った計算アルゴリズムが通信制御部12に予め記憶されている。通信制御部12は、決定したBoptをベースバンド部13へ通知し、決定したPToptを無線部14へ通知する。エネルギー効率が最大になるとき送信ビットあたりの消費電力は最低になるため、ηEEが最大になるBoptとPToptとの組合せを決定することにより、同量のデータを送信するのに要する基地局10の消費電力を低減することができる。 Therefore, the communication control unit 12 sets B opt and P Topt that maximize η EE according to the equations (5) and (8) based on the power consumption models shown in the equations (4), (6), and (7). The combination with is determined. The power consumption models shown in Equations (4), (6), and (7) are stored in advance in the power consumption model storage unit 16, and the calculation algorithm according to Equations (5) and (8) is stored in advance in the communication control unit 12. Has been. The communication control unit 12 notifies the determined B opt to the baseband unit 13 and notifies the determined P Topt to the wireless unit 14. Since energy efficiency is the power consumption per transmitted bit when maximized becomes minimum, by determining the combination of B opt and P Topt the eta EE is maximized, the base required to transmit the same amount of data The power consumption of the station 10 can be reduced.
 また、例えば、通信制御部12は、送信電力Pを一定値PT,0に固定した上で、エネルギー効率ηEEを最大化する送信帯域幅B(つまり、最適な送信帯域幅Bopt)を決定しても良い。送信電力Pを一定値PT,0に固定したときの最適な送信帯域幅Boptは、以下の式(9)に従って得られる。式(9)に従って送信帯域幅を決定することで、基地局10の消費電力の低減を図ることができる最適な送信帯域幅の決定に要する計算量を削減することができる。
Figure JPOXMLDOC01-appb-M000009
Further, for example, the communication control unit 12 fixes the transmission power P T to a constant value P T, 0 and then maximizes the energy efficiency η EE (that is, the optimal transmission bandwidth B opt ). May be determined. The optimum transmission bandwidth B opt when the transmission power P T is fixed to a constant value P T, 0 is obtained according to the following equation (9). By determining the transmission bandwidth according to Equation (9), it is possible to reduce the amount of calculation required to determine the optimum transmission bandwidth that can reduce the power consumption of the base station 10.
Figure JPOXMLDOC01-appb-M000009
 また、例えば、通信制御部12は、閾値Cmin以上のスループットCを確保した上で、エネルギー効率ηEEを最大化する送信帯域幅B(つまり、最適な送信帯域幅Bopt)を決定しても良い。つまり、通信制御部12は、閾値Cmin以上のスループットCを得る送信帯域幅Bを決定しても良い。スループットCを閾値Cmin以上に維持し、かつ、送信電力Pを一定値PT,0に固定したときの最適な送信帯域幅Boptは、以下の式(10)に従って得られる。式(10)に従って送信帯域幅を決定することで、所望のスループットを確保した上で、基地局10の消費電力の低減を図ることができる最適な送信帯域幅を決定するこができる。
Figure JPOXMLDOC01-appb-M000010
Further, for example, the communication control unit 12 determines a transmission bandwidth B (that is, an optimal transmission bandwidth B opt ) that maximizes the energy efficiency η EE after ensuring a throughput C that is equal to or greater than the threshold C min. Also good. That is, the communication control unit 12 may determine a transmission bandwidth B that obtains a throughput C that is equal to or greater than the threshold C min . The optimum transmission bandwidth B opt when the throughput C is maintained at the threshold value C min or more and the transmission power P T is fixed to the constant value P T, 0 is obtained according to the following equation (10). By determining the transmission bandwidth according to the equation (10), it is possible to determine an optimal transmission bandwidth that can reduce the power consumption of the base station 10 while securing a desired throughput.
Figure JPOXMLDOC01-appb-M000010
 また、例えば、通信制御部12は、式(4)に表された消費電力モデルに代えて、以下の式(11)によって表される消費電力モデルに基づいて、最適な送信帯域幅を決定しても良い。すなわち、式(11)では、ベースバンド部13の消費電力PBBがスループットの関数になってスループットに依存することが式(4)と異なる。但し、スループットは送信帯域幅に依存するため、式(11)においても、結局は、ベースバンド部13の消費電力は、送信帯域幅に依存していることになる。
Figure JPOXMLDOC01-appb-M000011
Further, for example, the communication control unit 12 determines an optimal transmission bandwidth based on the power consumption model represented by the following equation (11) instead of the power consumption model represented by the equation (4). May be. That is, in equation (11), the power consumption P BB of the baseband unit 13 is dependent on the throughput is a function of the throughput is different from the equation (4). However, since the throughput depends on the transmission bandwidth, the power consumption of the baseband unit 13 eventually depends on the transmission bandwidth also in the equation (11).
Figure JPOXMLDOC01-appb-M000011
 なお、式(4),(6),(7)に示す消費電力モデルは、数式としてではなく、テーブル形式で消費電力モデル記憶部16に格納されていても良い。 Note that the power consumption models shown in the equations (4), (6), and (7) may be stored in the power consumption model storage unit 16 in a table format instead of as mathematical equations.
 <無線通信システムの処理>
 図3は、実施例1の無線通信システムの処理シーケンスの一例を示す図である。
<Processing of wireless communication system>
FIG. 3 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the first embodiment.
 ステップS101では、基地局10は参照信号を通信端末20へ送信し、通信端末20は基地局10から参照信号を受信する。参照信号はベースバンド部13で生成されて無線部14によって通信端末20へ送信される。参照信号は一定の電力で基地局10から送信され、基地局10からの参照信号の送信電力値は通信端末20に既知である。 In step S101, the base station 10 transmits a reference signal to the communication terminal 20, and the communication terminal 20 receives the reference signal from the base station 10. The reference signal is generated by the baseband unit 13 and transmitted to the communication terminal 20 by the radio unit 14. The reference signal is transmitted from the base station 10 with constant power, and the transmission power value of the reference signal from the base station 10 is known to the communication terminal 20.
 ステップS103では、通信端末20は、基地局10と通信端末20との間のパスロスを推定する。例えば、通信端末20は、参照信号の既知の送信電力値を参照信号の受信電力値で除算することによりパスロスを推定する。 In step S103, the communication terminal 20 estimates a path loss between the base station 10 and the communication terminal 20. For example, the communication terminal 20 estimates the path loss by dividing the known transmission power value of the reference signal by the reception power value of the reference signal.
 ステップS105では、通信端末20は、ステップS103で推定したパスロスを基地局10へ通知する。通信端末20は、パスロスを通知する通知信号を生成し、生成した通知信号を基地局10へ送信する。パスロスの通知信号は基地局10の無線部14により受信され、ベースバンド部13を介して通信制御部12へ入力される。 In step S105, the communication terminal 20 notifies the base station 10 of the path loss estimated in step S103. The communication terminal 20 generates a notification signal that notifies the path loss, and transmits the generated notification signal to the base station 10. The path loss notification signal is received by the radio unit 14 of the base station 10 and input to the communication control unit 12 via the baseband unit 13.
 ステップS107では、通信制御部12は、通信端末20から通知されたパスロスを用いて、例えば、式(4),(6),(7)に示す消費電力モデルに基づいて、式(5),(8)に従って、ηEEが最大になるBoptとPToptとの組合せを決定する。通信制御部12は、決定したBoptをベースバンド部13へ指示し、決定したPToptを無線部14へ指示する。また、通信制御部12は、割当帯域を無線部14へ指示する。 In step S107, the communication control unit 12 uses the path loss notified from the communication terminal 20, for example, based on the power consumption models shown in the equations (4), (6), and (7). According to (8), the combination of B opt and P Topt that maximizes η EE is determined. The communication control unit 12 instructs the determined B opt to the baseband unit 13, and instructs the determined P Topt to the radio unit 14. Further, the communication control unit 12 instructs the radio unit 14 about the allocated bandwidth.
 ステップS109では、基地局10は、送信帯域幅と割当帯域とを通信端末20へ通知する。送信帯域幅と割当帯域とを通知する通知信号が通信制御部12によって生成され、無線部14によって送信される。 In step S109, the base station 10 notifies the communication terminal 20 of the transmission bandwidth and the allocated bandwidth. A notification signal for notifying the transmission bandwidth and the allocated bandwidth is generated by the communication control unit 12 and transmitted by the wireless unit 14.
 ステップS111では、基地局10は、ステップS109で通信端末20へ通知した送信帯域幅と割当帯域とに従って、下り信号を通信端末20へ送信する。通信端末20は、ステップS109で基地局10から通知された送信帯域幅と割当帯域とに従って、下り信号を受信する。 In step S111, the base station 10 transmits a downlink signal to the communication terminal 20 according to the transmission bandwidth and the allocated bandwidth notified to the communication terminal 20 in step S109. The communication terminal 20 receives the downlink signal according to the transmission bandwidth and the allocated bandwidth notified from the base station 10 in step S109.
 <数値計算結果例>
 図4及び図5は、実施例1の数値計算結果例である。図4には、基地局10と通信端末20との間の距離が10mの場合を示し、図5には、基地局10と通信端末20との間の距離が100mの場合を示す。
<Example of numerical calculation results>
4 and 5 are examples of numerical calculation results of the first embodiment. 4 shows a case where the distance between the base station 10 and the communication terminal 20 is 10 m, and FIG. 5 shows a case where the distance between the base station 10 and the communication terminal 20 is 100 m.
 この数値計算では、以下の式(12)に表す消費電力モデルを用いた。式(12)において、Nは基地局10の送信アンテナ素子数である。
Figure JPOXMLDOC01-appb-M000012
In this numerical calculation, a power consumption model represented by the following equation (12) was used. In Expression (12), N t is the number of transmitting antenna elements of the base station 10.
Figure JPOXMLDOC01-appb-M000012
 また、この数値計算には以下のパラメータを用いた。
  α=1[W/GHz]
  送信アンテナ素子1本あたりのPRF=0.1[W]
  送信アンテナ素子1本あたりの送信電力=10[dBm]
  N=64
  通信端末20の受信アンテナ素子数(N)=4
  割当帯域の中心周波数=60[GHz]
  熱雑音密度(P)=-174[dBm/Hz]
  パスロス(L)=20log(4πr/λ)[dB]
  通信端末20の受信SNR(γ)=P-L-10log(B)
                   -P+10log(N)[dB]
The following parameters were used for this numerical calculation.
α = 1 [W / GHz]
P RF per transmitting antenna element = 0.1 [W]
Transmission power per transmission antenna element = 10 [dBm]
N t = 64
Number of reception antenna elements of communication terminal 20 (N r ) = 4
Center frequency of allocated band = 60 [GHz]
Thermal noise density (P N ) = − 174 [dBm / Hz]
Path loss (L) = 20 log (4πr / λ) [dB]
Received SNR (γ) of communication terminal 20 = P T −L−10 log (B)
-P N +10 log (N t N r ) [dB]
 送信帯域幅の最大値を20GHzとすると、基地局10と通信端末20との間の距離が10mの場合は、図4に示すように、20GHzの送信帯域幅で通信を行うと、エネルギー効率及びスループットが最大になる。 Assuming that the maximum value of the transmission bandwidth is 20 GHz, when the distance between the base station 10 and the communication terminal 20 is 10 m, as shown in FIG. 4, when communication is performed with a transmission bandwidth of 20 GHz, energy efficiency and Throughput is maximized.
 一方で、基地局10と通信端末20との間の距離が100mの場合は、図5に示すように、5GHzの送信帯域幅で通信を行うと、エネルギー効率は最大になるが、スループットには改善の余地があることが分かる。すなわち、図5では、送信帯域幅が5GHzのときのスループットは8Gbpsであるのに対し、送信帯域幅が20GHzのときのスループットは12Gbpsに増加する。また、図5では、送信帯域幅が5GHzのときの消費電力Ptotalは11.4Wであるのに対し、送信帯域幅が20GHzのときの消費電力Ptotalは26.4Wである。これらの消費電力Ptotalは、式(12)に表される消費電力モデルに従って算出されたものである。 On the other hand, when the distance between the base station 10 and the communication terminal 20 is 100 m, as shown in FIG. 5, when communication is performed with a transmission bandwidth of 5 GHz, the energy efficiency is maximized, but the throughput is It can be seen that there is room for improvement. That is, in FIG. 5, the throughput when the transmission bandwidth is 5 GHz is 8 Gbps, whereas the throughput when the transmission bandwidth is 20 GHz increases to 12 Gbps. In FIG. 5, the power consumption P total when the transmission bandwidth is 5 GHz is 11.4 W, whereas the power consumption P total when the transmission bandwidth is 20 GHz is 26.4 W. These power consumptions P total are calculated according to the power consumption model represented by the equation (12).
 よって、図6に示すように、送信帯域幅が5GHzであるときは、送信帯域幅が20GHzのときの送信時間(例えば2秒)の1.5倍の送信時間(例えば3秒)で信号送信すれば、52.8Jの消費電力量に対して34.2Jの消費電力量で、送信帯域幅が20GHzのときと同等の12Gbitのデータ量を送信することができる。つまり、基地局10と通信端末20との間の距離が100mの場合は、通信に用いる送信帯域幅を、エネルギー効率が最大になる送信帯域幅である5GHzに設定することで、送信帯域幅を20GHzに設定したときに比べて、同一データ量を送信するための消費電力量を約35%低減することができる。 Therefore, as shown in FIG. 6, when the transmission bandwidth is 5 GHz, signal transmission is performed with a transmission time (for example, 3 seconds) that is 1.5 times the transmission time (for example, 2 seconds) when the transmission bandwidth is 20 GHz. By doing so, it is possible to transmit a 12 Gbit data amount equivalent to that when the transmission bandwidth is 20 GHz with a power consumption amount of 34.2 J with respect to a power consumption amount of 52.8 J. That is, when the distance between the base station 10 and the communication terminal 20 is 100 m, the transmission bandwidth is set to 5 GHz, which is the transmission bandwidth that maximizes the energy efficiency, by setting the transmission bandwidth used for communication to the maximum. Compared to the case of 20 GHz, the power consumption for transmitting the same amount of data can be reduced by about 35%.
 以上のように、実施例1では、送信帯域幅に依存するベースバンド部13の消費電力と、送信電力に依存する無線部14の消費電力とを含む消費電力モデルに基づいて、エネルギー効率が最大になる送信帯域幅を決定する。 As described above, in the first embodiment, the energy efficiency is maximized based on the power consumption model including the power consumption of the baseband unit 13 that depends on the transmission bandwidth and the power consumption of the wireless unit 14 that depends on the transmission power. Determine the transmission bandwidth to be
 こうすることで、基地局10の消費電力を低減することができる。 By doing so, the power consumption of the base station 10 can be reduced.
 [実施例2]
 エネルギー効率が最大になる送信帯域幅(つまり、最適な送信帯域幅)がシステム帯域幅より小さいときは、空き帯域が生じる。
[Example 2]
When the transmission bandwidth that maximizes energy efficiency (that is, the optimal transmission bandwidth) is smaller than the system bandwidth, a free bandwidth occurs.
 そこで、通信制御部12は、決定した送信帯域幅を通知する通知信号(以下では「送信帯域幅通知信号」と呼ぶことがある)を生成し、生成した送信帯域幅通知信号を有線通信部11へ出力する。有線通信部11は、送信帯域幅通知信号を集中制御局30へ送信する。 Therefore, the communication control unit 12 generates a notification signal for notifying the determined transmission bandwidth (hereinafter also referred to as “transmission bandwidth notification signal”), and the generated transmission bandwidth notification signal is transmitted to the wired communication unit 11. Output to. The wired communication unit 11 transmits a transmission bandwidth notification signal to the central control station 30.
 基地局10から送信帯域幅通知信号を受信した集中制御局30は、基地局10が決定した送信帯域幅に基づいて、各基地局10に対する周波数帯域の割当を行う。 The centralized control station 30 that has received the transmission bandwidth notification signal from the base station 10 assigns a frequency band to each base station 10 based on the transmission bandwidth determined by the base station 10.
 図7は、実施例2の無線通信システムの動作例の説明に供する図である。図7に示す基地局10-1~10-3及び通信端末20-1~20-3は、図1に示す基地局10-1~10-3及び通信端末20-1~20-3に相当する。基地局10-1と基地局10-2とは互いに隣接し、基地局10-2と基地局10-3とは互いに隣接する一方で、基地局10-1と基地局10-3とは隣接しない。 FIG. 7 is a diagram for explaining an operation example of the wireless communication system according to the second embodiment. The base stations 10-1 to 10-3 and the communication terminals 20-1 to 20-3 shown in FIG. 7 correspond to the base stations 10-1 to 10-3 and the communication terminals 20-1 to 20-3 shown in FIG. To do. Base station 10-1 and base station 10-2 are adjacent to each other, base station 10-2 and base station 10-3 are adjacent to each other, while base station 10-1 and base station 10-3 are adjacent to each other do not do.
 また、図7では、例えば、システム帯域幅は20GHzであり、単位帯域幅は5GHzである。また、図7では、基地局10-1は送信帯域幅を15GHzに決定し、基地局10-2は送信帯域幅を5GHzに決定し、基地局10-3は送信帯域幅を10GHzに決定したものとする。 In FIG. 7, for example, the system bandwidth is 20 GHz and the unit bandwidth is 5 GHz. In FIG. 7, the base station 10-1 determines the transmission bandwidth to 15 GHz, the base station 10-2 determines the transmission bandwidth to 5 GHz, and the base station 10-3 determines the transmission bandwidth to 10 GHz. Shall.
 そこで、集中制御局30は、基地局10-1に対する割当帯域を中心周波数f1,f2,f4の3つの周波数帯域に決定する一方で、基地局10-2に対する割当帯域を中心周波数f3の1つの周波数帯域に決定する。よって、基地局10-1では、通信制御部12は送信帯域幅15GHzと割当帯域f1,f2,f4とを無線部14へ指示し、無線部14は、割当帯域f1,f2,f4を用いて送信帯域幅15GHzの下り信号を送信する。また、基地局10-2では、通信制御部12は送信帯域幅5GHzと割当帯域f3とを無線部14へ指示し、無線部14は、割当帯域f3を用いて送信帯域幅5GHzの下り信号を送信する。これにより、互いに隣接する基地局10-1と基地局10-2との間では、下り信号の送信に用いる周波数帯域がオーバラップしないため、基地局10-1と基地局10-2との間での信号干渉を低減できる。 Therefore, the centralized control station 30 determines the allocation bands for the base station 10-1 to be three frequency bands of the center frequencies f1, f2, and f4, while the allocation band for the base station 10-2 is one of the center frequencies f3. Determine the frequency band. Therefore, in the base station 10-1, the communication control unit 12 instructs the radio unit 14 to transmit the bandwidth 15 GHz and the allocated bands f1, f2, and f4, and the radio unit 14 uses the allocated bands f1, f2, and f4. A downlink signal having a transmission bandwidth of 15 GHz is transmitted. Further, in the base station 10-2, the communication control unit 12 instructs the radio unit 14 about the transmission bandwidth 5 GHz and the allocated band f3, and the radio unit 14 uses the allocated band f3 to send a downlink signal with the transmission bandwidth 5 GHz. Send. As a result, the frequency bands used for downlink signal transmission do not overlap between the base stations 10-1 and 10-2 adjacent to each other. Can reduce signal interference.
 また、集中制御局30は、基地局10-2に対する割当帯域を中心周波数f3の1つの周波数帯域に決定したため、基地局10-3に対する割当帯域を中心周波数f1,f2の2つの周波数帯域に決定する。よって、基地局10-3では、通信制御部12は送信帯域幅10GHzと割当帯域f1,f2とを無線部14へ指示し、無線部14は、割当帯域f1,f2を用いて送信帯域幅10GHzの下り信号を送信する。これにより、互いに隣接する基地局10-2と基地局10-3との間では、下り信号の送信に用いる周波数帯域がオーバラップしないため、基地局10-2と基地局10-3との間での信号干渉を低減できる。 Further, since the centralized control station 30 determines the allocated band for the base station 10-2 as one frequency band of the center frequency f3, the allocated band for the base station 10-3 is determined as two frequency bands of the center frequencies f1 and f2. To do. Therefore, in the base station 10-3, the communication control unit 12 instructs the radio unit 14 about the transmission bandwidth 10 GHz and the allocation bands f1 and f2, and the radio unit 14 uses the allocation bands f1 and f2 to transmit the transmission bandwidth 10 GHz. The downstream signal is transmitted. As a result, the frequency bands used for downlink signal transmission do not overlap between the base stations 10-2 and 10-3 adjacent to each other, and therefore, between the base stations 10-2 and 10-3. Can reduce signal interference.
 以上のように、実施例2では、下り信号の送信に用いる周波数帯域が互いに隣接する基地局間でオーバラップしないため、基地局間での信号干渉を低減できる。このため、無線通信システム全体での下り信号のスループットを向上することができる。 As described above, in Example 2, since the frequency bands used for downlink signal transmission do not overlap between adjacent base stations, signal interference between base stations can be reduced. For this reason, the throughput of the downlink signal in the entire wireless communication system can be improved.
 [実施例3]
 実施例1では、下り信号の送信帯域幅を決定した。これに対し、実施例3では、上り信号の送信帯域幅を決定する場合について説明する。
[Example 3]
In the first embodiment, the downlink signal transmission bandwidth is determined. In contrast, in the third embodiment, a case where the transmission bandwidth of the uplink signal is determined will be described.
 <通信端末の構成例>
 図8は、実施例3の通信端末の一例を示す機能ブロック図である。図8に示す通信端末20は、通信制御部21と、ベースバンド部22と、無線部23と、アンテナ24と、消費電力モデル記憶部25とを有する。アンテナ24は、例えば、複数のアンテナ素子を有するアレイアンテナである。
<Configuration example of communication terminal>
FIG. 8 is a functional block diagram illustrating an example of a communication terminal according to the third embodiment. The communication terminal 20 illustrated in FIG. 8 includes a communication control unit 21, a baseband unit 22, a radio unit 23, an antenna 24, and a power consumption model storage unit 25. The antenna 24 is, for example, an array antenna having a plurality of antenna elements.
 通信制御部21は、無線通信の制御を行う。例えば、通信制御部21は、実施例1と同様に、消費電力モデル記憶部25に記憶されている消費電力モデルに基づいて、上り信号の送信帯域幅と送信電力とを決定する。通信制御部21は、決定した送信帯域幅をベースバンド部22へ指示し、決定した送信電力を無線部23へ指示する。また、通信制御部21は、基地局10から通知される割当帯域を無線部23へ指示する。 The communication control unit 21 controls wireless communication. For example, the communication control unit 21 determines the uplink signal transmission bandwidth and transmission power based on the power consumption model stored in the power consumption model storage unit 25, as in the first embodiment. The communication control unit 21 instructs the determined transmission bandwidth to the baseband unit 22 and instructs the wireless unit 23 about the determined transmission power. In addition, the communication control unit 21 instructs the radio unit 23 about the allocated bandwidth notified from the base station 10.
 ベースバンド部22は、ユーザデータ等の送信データに対して符号化処理及び変調処理等のデジタル信号処理を行ってベースバンドの送信信号を生成する。この際、ベースバンド部22は、実施例1と同様に、通信制御部21から指示された送信帯域幅に応じてデジタル信号処理を行う。 The baseband unit 22 performs digital signal processing such as encoding processing and modulation processing on transmission data such as user data to generate a baseband transmission signal. At this time, the baseband unit 22 performs digital signal processing according to the transmission bandwidth instructed from the communication control unit 21 as in the first embodiment.
 また、ベースバンド部22は、生成したベースバンドの送信信号をD/A変換によってアナログ信号に変換し、アナログ信号に変換後のベースバンド信号を無線部23へ出力する。また、ベースバンド部22は、無線部23から入力されるベースバンドの受信信号をA/D変換によってデジタル信号に変換する。ベースバンド部22は、デジタル信号に変換後のベースバンド信号に対して復調処理及び復号処理等のデジタル信号処理を行って基地局10からのユーザデータ等の受信データを得る。 Also, the baseband unit 22 converts the generated baseband transmission signal into an analog signal by D / A conversion, and outputs the baseband signal after conversion to an analog signal to the radio unit 23. The baseband unit 22 converts the baseband received signal input from the wireless unit 23 into a digital signal by A / D conversion. The baseband unit 22 performs digital signal processing such as demodulation processing and decoding processing on the baseband signal converted into a digital signal to obtain received data such as user data from the base station 10.
 無線部23は、ベースバンド部22から入力されるベースバンドの送信信号に対してアップコンバート処理及び電力増幅処理等のアナログ信号処理を行い、電力増幅後の送信信号をアンテナ24を介して基地局10へ送信する。この際、無線部23は、通信制御部21から指示された送信電力に従って送信信号の電力を増幅する。また、無線部23は、アンテナ24を介して受信した受信信号に対してダウンコンバート処理等のアナログ信号処理を行ってベースバンドの受信信号を得てベースバンド部22へ出力する。 The radio unit 23 performs analog signal processing such as up-conversion processing and power amplification processing on the baseband transmission signal input from the baseband unit 22, and transmits the transmission signal after power amplification via the antenna 24 to the base station. 10 to send. At this time, the radio unit 23 amplifies the power of the transmission signal in accordance with the transmission power instructed from the communication control unit 21. In addition, the radio unit 23 performs analog signal processing such as down-conversion processing on the reception signal received via the antenna 24 to obtain a baseband reception signal and outputs the baseband reception signal to the baseband unit 22.
 なお、上記説明では、ベースバンド部22がD/A変換及びA/D変換を行ったが、ベースバンド部22に代えて、無線部23がD/A変換及びA/D変換を行っても良い。また、ベースバンド部22及び無線部23がD/A変換及びA/D変換を行わずに、D/A変換及びA/D変換を行う変換部をベースバンド部22と無線部23との間に設けても良い。 In the above description, the baseband unit 22 performs D / A conversion and A / D conversion. However, the radio unit 23 may perform D / A conversion and A / D conversion instead of the baseband unit 22. good. Further, the baseband unit 22 and the radio unit 23 do not perform D / A conversion and A / D conversion, and a conversion unit that performs D / A conversion and A / D conversion is provided between the baseband unit 22 and the radio unit 23. May be provided.
 消費電力モデル記憶部25は、実施例1と同様に、消費電力モデルを記憶する。 The power consumption model storage unit 25 stores a power consumption model, as in the first embodiment.
 なお、実施例3の通信端末20における送信帯域幅の決定に係る処理は、実施例1の基地局10における送信帯域幅の決定に係る処理と同様であるため、説明を省略する。 Note that the processing related to the determination of the transmission bandwidth in the communication terminal 20 of the third embodiment is the same as the processing related to the determination of the transmission bandwidth in the base station 10 of the first embodiment, and thus the description thereof is omitted.
 <無線通信システムの処理>
 図9は、実施例3の無線通信システムの処理シーケンスの一例を示す図である。図9において、ステップS101,S103の処理は実施例1と同様である。但し、図9のステップS103では、通信端末20の通信制御部21が、基地局10と通信端末20との間のパスロスを推定する。
<Processing of wireless communication system>
FIG. 9 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the third embodiment. In FIG. 9, the processing in steps S101 and S103 is the same as that in the first embodiment. However, in step S <b> 103 of FIG. 9, the communication control unit 21 of the communication terminal 20 estimates a path loss between the base station 10 and the communication terminal 20.
 ステップS201では、通信制御部21は、推定したパスロスを用いて、例えば、式(4),(6),(7)に示す消費電力モデルに基づいて、式(5),(8)に従って、ηEEが最大になるBoptとPToptとの組合せを決定する。通信制御部21は、決定したBoptをベースバンド部22へ指示し、決定したPToptを無線部23へ指示する。 In step S201, the communication control unit 21 uses the estimated path loss, for example, based on the power consumption models shown in the equations (4), (6), and (7), according to the equations (5) and (8). The combination of B opt and P Topt that maximizes η EE is determined. The communication control unit 21 instructs the determined B opt to the baseband unit 22, and instructs the determined P Topt to the radio unit 23.
 ステップS203では、通信端末20は、送信帯域幅を基地局10へ通知する。送信帯域幅通知信号が通信制御部21によって生成され、無線部23によって送信される。 In step S203, the communication terminal 20 notifies the base station 10 of the transmission bandwidth. A transmission bandwidth notification signal is generated by the communication control unit 21 and transmitted by the wireless unit 23.
 ステップS205では、基地局10の通信制御部12は、通信端末20から通知された送信帯域幅に基づいて、通信端末20に対する割当帯域を決定する。 In step S205, the communication control unit 12 of the base station 10 determines the allocated bandwidth for the communication terminal 20 based on the transmission bandwidth notified from the communication terminal 20.
 ステップS207では、通信制御部12は、ステップS205で決定した割当帯域を通知する割当帯域通知信号を生成し、無線部14は、割当帯域通知信号を通信端末20へ送信する。割当帯域通知信号を受信した通信端末20では、通信制御部21が、割当帯域通知信号に示された割当帯域を無線部23へ指示する。 In step S207, the communication control unit 12 generates an allocated band notification signal that notifies the allocated band determined in step S205, and the wireless unit 14 transmits the allocated band notification signal to the communication terminal 20. In the communication terminal 20 that has received the allocated band notification signal, the communication control unit 21 instructs the radio unit 23 about the allocated band indicated in the allocated band notification signal.
 ステップS209では、通信端末20は、ステップS201で決定した送信帯域幅と、ステップS207で基地局10から通知された割当帯域とに従って、上り信号を基地局10へ送信する。基地局10は、ステップS203で通信端末20から通知された送信帯域幅と、ステップS205で決定した割当帯域とに従って、上り信号を受信する。 In step S209, the communication terminal 20 transmits an uplink signal to the base station 10 according to the transmission bandwidth determined in step S201 and the allocated bandwidth notified from the base station 10 in step S207. The base station 10 receives the uplink signal according to the transmission bandwidth notified from the communication terminal 20 in step S203 and the allocated bandwidth determined in step S205.
 なお、通信端末20が、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)方式に従って、上り信号を送信しても良い。 The communication terminal 20 may transmit an uplink signal according to a CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) method.
 以上のように、実施例3では、通信端末20は、上り信号の送信帯域幅を、エネルギー効率が最大になる送信帯域幅に決定するため、通信端末20の消費電力を低減することができる。 As described above, in the third embodiment, the communication terminal 20 determines the transmission bandwidth of the uplink signal as the transmission bandwidth that maximizes the energy efficiency, so that the power consumption of the communication terminal 20 can be reduced.
 [実施例4]
 実施例2と同様に、上り信号についても、エネルギー効率が最大になる送信帯域幅(つまり、最適な送信帯域幅)がシステム帯域幅より小さいときは、空き帯域が生じる。
[Example 4]
Similar to the second embodiment, the upstream signal also has a vacant bandwidth when the transmission bandwidth that maximizes the energy efficiency (that is, the optimum transmission bandwidth) is smaller than the system bandwidth.
 そこで、通信端末20から送信帯域幅通知信号を受信した基地局10は、通信端末20が決定した送信帯域幅に基づいて、各通信端末20に対する周波数帯域の割当を行う。 Therefore, the base station 10 that has received the transmission bandwidth notification signal from the communication terminal 20 assigns a frequency band to each communication terminal 20 based on the transmission bandwidth determined by the communication terminal 20.
 図10は、実施例4の無線通信システムの動作例の説明に供する図である。図10に示す基地局10-1及び通信端末20-1~20-3は、図1に示す基地局10-1及び通信端末20-1~20-3に相当する。但し、図10においては、基地局10-1は、通信端末20-1~20-3の3つの通信端末と同時に通信する。 FIG. 10 is a diagram for explaining an operation example of the wireless communication system according to the fourth embodiment. The base station 10-1 and communication terminals 20-1 to 20-3 shown in FIG. 10 correspond to the base station 10-1 and communication terminals 20-1 to 20-3 shown in FIG. However, in FIG. 10, base station 10-1 communicates simultaneously with three communication terminals, communication terminals 20-1 to 20-3.
 また、図10では、例えば、システム帯域幅は20GHzであり、単位帯域幅は5GHzである。また、図10では、エネルギー効率を最大にする送信帯域幅として、通信端末20-1は送信帯域幅を15GHzに決定し、通信端末20-2は送信帯域幅を5GHzに決定し、通信端末20-3は送信帯域幅を10GHzに決定したものとする。 In FIG. 10, for example, the system bandwidth is 20 GHz, and the unit bandwidth is 5 GHz. In FIG. 10, as the transmission bandwidth that maximizes the energy efficiency, the communication terminal 20-1 determines the transmission bandwidth to 15 GHz, the communication terminal 20-2 determines the transmission bandwidth to 5 GHz, and the communication terminal 20 -3 assumes that the transmission bandwidth is determined to be 10 GHz.
 基地局10-1は、通信端末20-1~20-3から送信帯域幅通知信号を受信する。ここで、システム帯域幅が20GHzであるため、通信端末20-1の送信帯域幅15GHzと、通信端末20-2の送信帯域幅5GHzと、通信端末20-3の送信帯域幅10GHzとが、システム帯域内で互いにオーバラップしてしまう。そこで、基地局10の通信制御部12は、図10に示すように、まず、通信端末20-1の送信帯域幅を15GHzから10GHzに変更し、通信端末20-3の送信帯域幅を10GHzから5GHzに変更する。そして、通信制御部12は、通信端末20-1に対する割当帯域を中心周波数f1,f4の2つの周波数帯域に決定し、通信端末20-2に対する割当帯域を中心周波数f3の1つの周波数帯域に決定し、通信端末20-3に対する割当帯域を中心周波数f2の1つの周波数帯域に決定する。通信制御部12は、このようにして決定した割当帯域を示す割当帯域通知信号を生成し、無線部14は、割当帯域通知信号を通信端末20-1~20-3へ送信する。 The base station 10-1 receives the transmission bandwidth notification signal from the communication terminals 20-1 to 20-3. Here, since the system bandwidth is 20 GHz, the transmission bandwidth 15 GHz of the communication terminal 20-1, the transmission bandwidth 5 GHz of the communication terminal 20-2, and the transmission bandwidth 10 GHz of the communication terminal 20-3 are They overlap each other in the band. Therefore, as shown in FIG. 10, the communication control unit 12 of the base station 10 first changes the transmission bandwidth of the communication terminal 20-1 from 15 GHz to 10 GHz, and changes the transmission bandwidth of the communication terminal 20-3 from 10 GHz. Change to 5GHz. Then, the communication control unit 12 determines the allocation band for the communication terminal 20-1 as two frequency bands of the center frequencies f1 and f4, and determines the allocation band for the communication terminal 20-2 as one frequency band of the center frequency f3. Then, the allocated band for the communication terminal 20-3 is determined as one frequency band of the center frequency f2. The communication control unit 12 generates an allocated band notification signal indicating the allocated band determined in this way, and the radio unit 14 transmits the allocated band notification signal to the communication terminals 20-1 to 20-3.
 割当帯域通知信号を受信した通信端末20-1では、通信制御部21が、10GHzの送信帯域幅をベースバンド部22へ指示し、中心周波数f1,f4の割当帯域を無線部23へ指示する。よって、通信端末20-1の無線部23は、割当帯域f1,f4を用いて送信帯域幅10GHzの上り信号を送信する。 In the communication terminal 20-1 that has received the allocation band notification signal, the communication control unit 21 instructs the baseband unit 22 to transmit a bandwidth of 10 GHz, and instructs the radio unit 23 to allocate bands of the center frequencies f1 and f4. Therefore, the radio unit 23 of the communication terminal 20-1 transmits an uplink signal having a transmission bandwidth of 10 GHz using the allocated bands f1 and f4.
 また、割当帯域通知信号を受信した通信端末20-2では、通信制御部21が、5GHzの送信帯域幅をベースバンド部22へ指示し、中心周波数f3の割当帯域を無線部23へ指示する。よって、通信端末20-2の無線部23は、割当帯域f3を用いて送信帯域幅5GHzの上り信号を送信する。 Further, in the communication terminal 20-2 that has received the allocation band notification signal, the communication control unit 21 instructs the baseband unit 22 to transmit a bandwidth of 5 GHz, and instructs the radio unit 23 to allocate the center frequency f3. Therefore, the radio unit 23 of the communication terminal 20-2 transmits an uplink signal having a transmission bandwidth of 5 GHz using the allocated band f3.
 また、割当帯域通知信号を受信した通信端末20-3では、通信制御部21が、5GHzの送信帯域幅をベースバンド部22へ指示し、中心周波数f2の割当帯域を無線部23へ指示する。よって、通信端末20-3の無線部23は、割当帯域f2を用いて送信帯域幅5GHzの上り信号を送信する。 Also, in the communication terminal 20-3 that has received the allocation band notification signal, the communication control unit 21 instructs the baseband unit 22 to transmit a 5 GHz transmission bandwidth and instructs the radio unit 23 to allocate the center frequency f2. Therefore, the radio unit 23 of the communication terminal 20-3 transmits an uplink signal having a transmission bandwidth of 5 GHz using the allocated band f2.
 以上のように、実施例4では、上り信号の送信に用いる周波数帯域が複数の通信端末間で互いにオーバラップしないため、通信端末間での信号干渉を低減できる。このため、無線通信システム全体での上り信号のスループットを向上することができる。 As described above, in the fourth embodiment, since the frequency bands used for uplink signal transmission do not overlap each other between a plurality of communication terminals, signal interference between communication terminals can be reduced. Therefore, it is possible to improve the uplink signal throughput in the entire wireless communication system.
 [実施例5]
 実施例3では、通信端末が上り信号の送信帯域幅を決定した。これに対し、実施例5では、基地局が上り信号の送信帯域幅を決定する場合について説明する。
[Example 5]
In the third embodiment, the communication terminal determines the transmission bandwidth of the uplink signal. In contrast, in the fifth embodiment, a case where the base station determines the transmission bandwidth of the uplink signal will be described.
 図11は、実施例5の無線通信システムの処理シーケンスの一例を示す図である。図11において、ステップS101の処理は実施例1と同様である。 FIG. 11 is a diagram illustrating an example of a processing sequence of the wireless communication system according to the fifth embodiment. In FIG. 11, the processing in step S101 is the same as that in the first embodiment.
 ステップS301では、通信端末20の通信制御部21は、消費電力モデルのパラメータを通知する通知信号(以下では「パラメータ通知信号」と呼ぶことがある)を生成し、無線部23がパラメータ通知信号を基地局10へ送信する。消費電力モデルのパラメータとして、例えば、参照信号の受信電力値、無線部23の送信電力値P、比例定数α、無線部23の消費電力値PRF、熱雑音値Nが挙げられる。通信制御部21は、参照信号の受信電力値を測定し、無線部23の送信電力値Pを決定する。また、比例定数α、無線部23の消費電力値PRF及び熱雑音値Nが消費電力モデル記憶部25に記憶されており、通信制御部21は、これらの値を消費電力モデル記憶部25から取得する。 In step S301, the communication control unit 21 of the communication terminal 20 generates a notification signal for notifying parameters of the power consumption model (hereinafter sometimes referred to as “parameter notification signal”), and the wireless unit 23 transmits the parameter notification signal. Transmit to the base station 10. The parameters of the power consumption model include, for example, the received power value of the reference signal, the transmission power value P T of the radio unit 23, the proportionality constant α, the power consumption value P RF of the radio unit 23, and the thermal noise value N 0 . The communication control unit 21 measures the reception power value of the reference signal and determines the transmission power value PT of the radio unit 23. Further, the proportionality constant α, the power consumption value P RF of the wireless unit 23 and the thermal noise value N 0 are stored in the power consumption model storage unit 25, and the communication control unit 21 stores these values in the power consumption model storage unit 25. Get from.
 パラメータ通知信号を受信した基地局10では、ステップS303において、通信制御部12が、以下の式(13)に表すエネルギー効率ηEEを最大にする送信帯域幅Bを決定する。なお、通信制御部12は、例えば、参照信号の既知の送信電力値を参照信号の受信電力値で除算することによりパスロスLを推定する。
Figure JPOXMLDOC01-appb-M000013
In the base station 10 that has received the parameter notification signal, in step S303, the communication control unit 12 determines the transmission bandwidth B that maximizes the energy efficiency η EE expressed by the following equation (13). For example, the communication control unit 12 estimates the path loss L by dividing the known transmission power value of the reference signal by the reception power value of the reference signal.
Figure JPOXMLDOC01-appb-M000013
 ステップS305では、基地局10は、送信帯域幅と割当帯域とを通信端末20へ通知する。送信帯域幅と割当帯域とを通知する通知信号が通信制御部12によって生成され、無線部14によって送信される。 In step S305, the base station 10 notifies the communication terminal 20 of the transmission bandwidth and the allocated bandwidth. A notification signal for notifying the transmission bandwidth and the allocated bandwidth is generated by the communication control unit 12 and transmitted by the wireless unit 14.
 ステップS307では、通信端末20は、ステップS305で基地局10から通知された送信帯域幅と割当帯域とに従って、上り信号を基地局10へ送信する。基地局10は、ステップS303で決定した送信帯域幅と割当帯域とに従って、上り信号を受信する。 In step S307, the communication terminal 20 transmits an uplink signal to the base station 10 according to the transmission bandwidth and the allocated bandwidth notified from the base station 10 in step S305. The base station 10 receives the uplink signal according to the transmission bandwidth and the assigned bandwidth determined in step S303.
 このように、基地局が上り信号の送信帯域幅を決定することにより、通信端末では、送信帯域幅の決定に係る処理を省くことができるため、通信端末の構成を簡易にできるとともに、通信端末の電力消費を抑制することができる。 In this way, since the base station determines the transmission bandwidth of the uplink signal, the communication terminal can omit the processing related to the determination of the transmission bandwidth, so that the configuration of the communication terminal can be simplified and the communication terminal Power consumption can be suppressed.
 [実施例6]
 システム帯域内ではシステム帯域を複数に分割した周波数帯域ごとに、パスロスや、他セルまたは他の無線通信システムからの干渉が個々に変動することがある。例えば、システム帯域をK個のサブ帯域B(k=0,1,…,K-1)に分割した場合、複数のサブ帯域間でパスロスが互いに異なることがある。そこで、実施例6では、基地局10の通信制御部12は、以下の式(14)に表すエネルギー効率ηEEを最大にする送信帯域幅Bsubの集合κを決定する。式(14)において、Nsubは割り当てるサブ帯域の個数(つまり、集合κのサイズ)、Lはサブ帯域Bにおけるパスロス、Iはサブ帯域Bにおける干渉である。
Figure JPOXMLDOC01-appb-M000014
[Example 6]
Within the system band, path loss and interference from other cells or other wireless communication systems may vary individually for each frequency band obtained by dividing the system band into a plurality of parts. For example, when the system band is divided into K sub-bands B k (k = 0, 1,..., K−1), path loss may be different between the plurality of sub-bands. Therefore, in the sixth embodiment, the communication control unit 12 of the base station 10 determines a set κ of transmission bandwidths B sub that maximizes the energy efficiency η EE expressed by the following equation (14). In the formula (14), the number of subbands N sub to allocate (i.e., the size of the set kappa), L k is the path loss in the sub-band B k, is I k is the interference in the sub-band B k.
Figure JPOXMLDOC01-appb-M000014
 図12は、実施例6の無線通信システムの動作例の説明に供する図である。図12では、一例として、システム帯域が、同一の帯域幅Bを有する2つのサブ帯域SB1,SB2に分割されている。よって、サブ帯域の割当パターンは、図12に示すように、割当候補#1~#3の3通りになる。すなわち、割当候補#1ではサブ帯域SB1のみが使用され、割当候補#2ではサブ帯域SB2のみが使用され、割当候補#3ではサブ帯域SB1,SB2の両方が使用される。よって、トータルの送信電力が同一である場合、割当候補#3の送信電力密度は、割当候補#1,#2の送信電力密度に比べて、2分の1になる。よって、割当候補#1でのエネルギー効率は以下の式(15)によって表され、割当候補#2でのエネルギー効率は以下の式(16)によって表され、割当候補#3でのエネルギー効率は以下の式(17)によって表される。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
FIG. 12 is a diagram for explaining an operation example of the wireless communication system according to the sixth embodiment. In Figure 12, as an example, the system band is divided into two sub-bands SB1, SB2 having the same bandwidth B 0. Therefore, there are three subband allocation patterns, allocation candidates # 1 to # 3, as shown in FIG. That is, only subband SB1 is used in allocation candidate # 1, only subband SB2 is used in allocation candidate # 2, and both subbands SB1 and SB2 are used in allocation candidate # 3. Therefore, when the total transmission power is the same, the transmission power density of allocation candidate # 3 is halved compared to the transmission power densities of allocation candidates # 1 and # 2. Therefore, the energy efficiency of allocation candidate # 1 is represented by the following equation (15), the energy efficiency of allocation candidate # 2 is represented by the following equation (16), and the energy efficiency of allocation candidate # 3 is (17)
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 そこで、まず、基地局10の通信制御部12は、エネルギー効率ηEEを最大にする送信帯域幅Bを、ηEE(κ),ηEE(κ),ηEE(κ)のそれぞれについて求める。そして、通信制御部12は、ηEE(κ),ηEE(κ),ηEE(κ)の中で最大のエネルギー効率に対応する送信帯域幅Bを最終的な送信帯域幅として決定する。つまり、通信制御部12は、システム帯域に含まれるサブ帯域SB1,SB2の各々に対して互いに異なる消費電力モデルを適用して送信帯域幅を決定する。 Therefore, first, the communication control unit 12 of the base station 10 sets the transmission bandwidth B that maximizes the energy efficiency η EE to η EE1 ), η EE2 ), and η EE3 ). Ask for. Then, the communication control unit 12 sets the transmission bandwidth B corresponding to the maximum energy efficiency among η EE1 ), η EE2 ), and η EE3 ) as the final transmission bandwidth. decide. That is, the communication control unit 12 determines a transmission bandwidth by applying different power consumption models to each of the sub-bands SB1 and SB2 included in the system band.
 こうすることで、システム帯域内において複数のサブ帯域ごとにパスロスや干渉が異なる場合でも、最適な送信帯域幅を決定することができるため、基地局10の消費電力を低減することができる。 In this way, even when path loss and interference differ for each of a plurality of sub-bands in the system band, the optimal transmission bandwidth can be determined, and thus the power consumption of the base station 10 can be reduced.
 [他の実施例]
 [1]上記実施例の基地局10は、次のようなハードウェア構成により実現することができる。図13は、基地局のハードウェア構成例を示す図である。図13に示すように、基地局10は、ハードウェアの構成要素として、プロセッサ10aと、メモリ10bと、無線通信モジュール10cと、有線通信モジュール10dとを有する。プロセッサ10aの一例として、CPU(Central Processing Unit),DSP(Digital Signal Processor),FPGA(Field Programmable Gate Array)等が挙げられる。また、基地局10は、プロセッサ10aと周辺回路とを含むLSI(Large Scale Integrated circuit)を有しても良い。メモリ10bの一例として、SDRAM等のRAM,ROM,フラッシュメモリ等が挙げられる。無線部14と、アンテナ15とは、無線通信モジュール10cにより実現される。有線通信部11は、有線通信モジュール10dにより実現される。通信制御部12と、ベースバンド部13とは、プロセッサ10aにより実現される。消費電力モデル記憶部16は、メモリ10bにより実現される。
[Other examples]
[1] The base station 10 of the above embodiment can be realized by the following hardware configuration. FIG. 13 is a diagram illustrating a hardware configuration example of the base station. As illustrated in FIG. 13, the base station 10 includes a processor 10a, a memory 10b, a wireless communication module 10c, and a wired communication module 10d as hardware components. Examples of the processor 10a include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array). Further, the base station 10 may include an LSI (Large Scale Integrated circuit) including a processor 10a and peripheral circuits. Examples of the memory 10b include RAM such as SDRAM, ROM, flash memory, and the like. The wireless unit 14 and the antenna 15 are realized by the wireless communication module 10c. The wired communication unit 11 is realized by the wired communication module 10d. The communication control unit 12 and the baseband unit 13 are realized by the processor 10a. The power consumption model storage unit 16 is realized by the memory 10b.
 [2]上記実施例の通信端末20は、次のようなハードウェア構成により実現することができる。図14は、通信端末のハードウェア構成例を示す図である。図14に示すように、通信端末20は、ハードウェアの構成要素として、プロセッサ20aと、メモリ20bと、無線通信モジュール20cとを有する。プロセッサ20aの一例として、CPU,DSP,FPGA等が挙げられる。また、通信端末20は、プロセッサ20aと周辺回路とを含むLSIを有しても良い。メモリ20bの一例として、SDRAM等のRAM,ROM,フラッシュメモリ等が挙げられる。無線部23と、アンテナ24とは、無線通信モジュール20cにより実現される。通信制御部21と、ベースバンド部22とは、プロセッサ20aにより実現される。消費電力モデル記憶部25は、メモリ20bにより実現される。 [2] The communication terminal 20 of the above embodiment can be realized by the following hardware configuration. FIG. 14 is a diagram illustrating a hardware configuration example of the communication terminal. As illustrated in FIG. 14, the communication terminal 20 includes a processor 20a, a memory 20b, and a wireless communication module 20c as hardware components. Examples of the processor 20a include a CPU, DSP, FPGA, and the like. The communication terminal 20 may include an LSI including a processor 20a and peripheral circuits. Examples of the memory 20b include RAM such as SDRAM, ROM, flash memory, and the like. The wireless unit 23 and the antenna 24 are realized by the wireless communication module 20c. The communication control unit 21 and the baseband unit 22 are realized by the processor 20a. The power consumption model storage unit 25 is realized by the memory 20b.
10 基地局
20 通信端末
30 集中制御局
11 有線通信部
12,21 通信制御部
13,22 ベースバンド部
14,23 無線部
15,24 アンテナ
16,25 消費電力モデル記憶部
DESCRIPTION OF SYMBOLS 10 Base station 20 Communication terminal 30 Centralized control station 11 Wired communication part 12, 21 Communication control part 13, 22 Baseband part 14, 23 Radio part 15, 24 Antenna 16, 25 Power consumption model memory | storage part

Claims (8)

  1.  送信データに対してデジタル信号処理を行ってベースバンド信号を生成するベースバンド部と、
     デジタルアナログ変換によって前記ベースバンド信号から変換されたアナログ信号を無線送信する無線部と、
     前記ベースバンド部の消費電力である第一消費電力であって、前記アナログ信号の送信帯域幅に依存する前記第一消費電力と、前記無線部の消費電力である第二消費電力であって、前記アナログ信号の送信電力に依存する前記第二消費電力とを含む消費電力モデルに基づいて、エネルギー効率が最大になる前記送信帯域幅を決定する制御部と、
     を具備する無線通信装置。
    A baseband unit that performs digital signal processing on transmission data to generate a baseband signal;
    A wireless unit that wirelessly transmits an analog signal converted from the baseband signal by digital-analog conversion;
    The first power consumption that is the power consumption of the baseband unit, the first power consumption that depends on the transmission bandwidth of the analog signal, and the second power consumption that is the power consumption of the radio unit, Based on a power consumption model including the second power consumption that depends on the transmission power of the analog signal, a control unit that determines the transmission bandwidth that maximizes energy efficiency;
    A wireless communication apparatus comprising:
  2.  前記制御部は、前記送信電力を一定値に固定して前記送信帯域幅を決定する、
     請求項1に記載の無線通信装置。
    The control unit determines the transmission bandwidth by fixing the transmission power to a constant value.
    The wireless communication apparatus according to claim 1.
  3.  前記制御部は、閾値以上のスループットを得る前記送信帯域幅を決定する、
     請求項1に記載の無線通信装置。
    The control unit determines the transmission bandwidth to obtain a throughput equal to or greater than a threshold;
    The wireless communication apparatus according to claim 1.
  4.  前記無線部は、前記制御部が決定した前記送信帯域幅がシステム帯域幅より小さいときに、他の無線通信装置が使用する周波数帯域とオーバラップしない周波数帯域を用いて前記アナログ信号を無線送信する、
     請求項1に記載の無線通信装置。
    The wireless unit wirelessly transmits the analog signal using a frequency band that does not overlap with a frequency band used by another wireless communication device when the transmission bandwidth determined by the control unit is smaller than a system bandwidth. ,
    The wireless communication apparatus according to claim 1.
  5.  前記制御部は、他の無線通信装置から通知される、前記消費電力モデルのパラメータを用いて、前記送信帯域幅を決定する、
     請求項1に記載の無線通信装置。
    The control unit determines the transmission bandwidth using a parameter of the power consumption model notified from another wireless communication device.
    The wireless communication apparatus according to claim 1.
  6.  前記制御部は、システム帯域に含まれる複数のサブ帯域の各々に対して互いに異なる前記消費電力モデルを適用することにより、前記送信帯域幅を決定する、
     請求項1に記載の無線通信装置。
    The control unit determines the transmission bandwidth by applying different power consumption models to each of a plurality of sub-bands included in a system band.
    The wireless communication apparatus according to claim 1.
  7.  第一無線通信装置と第二無線通信装置とを有する無線通信システムであって、
     前記第一無線通信装置は、
     送信データに対してデジタル信号処理を行ってベースバンド信号を生成するベースバンド部と、
     デジタルアナログ変換によって前記ベースバンド信号から変換されたアナログ信号を前記第二無線通信装置へ無線送信する無線部と、
     前記ベースバンド部の消費電力である第一消費電力であって、前記アナログ信号の送信帯域幅に依存する前記第一消費電力と、前記無線部の消費電力である第二消費電力であって、前記アナログ信号の送信電力に依存する前記第二消費電力とを含む消費電力モデルに基づいて、エネルギー効率が最大になる前記送信帯域幅を決定する制御部と、を具備する、
     無線通信システム。
    A wireless communication system having a first wireless communication device and a second wireless communication device,
    The first wireless communication device is:
    A baseband unit that performs digital signal processing on transmission data to generate a baseband signal;
    A wireless unit that wirelessly transmits an analog signal converted from the baseband signal by digital-analog conversion to the second wireless communication device;
    The first power consumption that is the power consumption of the baseband unit, the first power consumption that depends on the transmission bandwidth of the analog signal, and the second power consumption that is the power consumption of the radio unit, A controller that determines the transmission bandwidth that maximizes energy efficiency, based on a power consumption model that includes the second power consumption that depends on the transmission power of the analog signal.
    Wireless communication system.
  8.  送信データに対してデジタル信号処理を行ってベースバンド信号を生成するベースバンド部と、
     デジタルアナログ変換によって前記ベースバンド信号から変換されたアナログ信号を無線送信する無線部と、を有する無線通信装置における送信帯域幅制御方法であって、
     前記ベースバンド部の消費電力である第一消費電力であって、前記アナログ信号の送信帯域幅に依存する前記第一消費電力と、前記無線部の消費電力である第二消費電力であって、前記アナログ信号の送信電力に依存する前記第二消費電力とを含む消費電力モデルに基づいて、エネルギー効率が最大になる前記送信帯域幅を決定する、
     送信帯域幅制御方法。
    A baseband unit that performs digital signal processing on transmission data to generate a baseband signal;
    A wireless unit that wirelessly transmits an analog signal converted from the baseband signal by digital-analog conversion, and a transmission bandwidth control method in a wireless communication device,
    The first power consumption that is the power consumption of the baseband unit, the first power consumption that depends on the transmission bandwidth of the analog signal, and the second power consumption that is the power consumption of the radio unit, Based on a power consumption model including the second power consumption that depends on the transmission power of the analog signal, the transmission bandwidth that maximizes energy efficiency is determined.
    Transmission bandwidth control method.
PCT/JP2015/073279 2015-08-19 2015-08-19 Wireless communication apparatus, wireless communication system, and transmission bandwidth control method WO2017029738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073279 WO2017029738A1 (en) 2015-08-19 2015-08-19 Wireless communication apparatus, wireless communication system, and transmission bandwidth control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073279 WO2017029738A1 (en) 2015-08-19 2015-08-19 Wireless communication apparatus, wireless communication system, and transmission bandwidth control method

Publications (1)

Publication Number Publication Date
WO2017029738A1 true WO2017029738A1 (en) 2017-02-23

Family

ID=58051527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073279 WO2017029738A1 (en) 2015-08-19 2015-08-19 Wireless communication apparatus, wireless communication system, and transmission bandwidth control method

Country Status (1)

Country Link
WO (1) WO2017029738A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196043A (en) * 2017-05-19 2018-12-06 日本電信電話株式会社 Radio communication system and radio communication method
WO2022231734A1 (en) * 2021-04-29 2022-11-03 Google Llc Managing energy usage of a user equipment device for wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049875A (en) * 2007-08-22 2009-03-05 Kyocera Corp Portable communication terminal, network selection method, and network selection program
JP2011055124A (en) * 2009-08-31 2011-03-17 Kddi Corp Wireless communication terminal, and method for selecting communication method
JP2014522210A (en) * 2011-08-17 2014-08-28 アップル インコーポレイテッド A method for optimizing the power consumption of wireless devices using data rate efficiency factors
JP2014179861A (en) * 2013-03-15 2014-09-25 Nec Commun Syst Ltd Radio communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049875A (en) * 2007-08-22 2009-03-05 Kyocera Corp Portable communication terminal, network selection method, and network selection program
JP2011055124A (en) * 2009-08-31 2011-03-17 Kddi Corp Wireless communication terminal, and method for selecting communication method
JP2014522210A (en) * 2011-08-17 2014-08-28 アップル インコーポレイテッド A method for optimizing the power consumption of wireless devices using data rate efficiency factors
JP2014179861A (en) * 2013-03-15 2014-09-25 Nec Commun Syst Ltd Radio communication device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018196043A (en) * 2017-05-19 2018-12-06 日本電信電話株式会社 Radio communication system and radio communication method
WO2022231734A1 (en) * 2021-04-29 2022-11-03 Google Llc Managing energy usage of a user equipment device for wireless communications

Similar Documents

Publication Publication Date Title
USRE47720E1 (en) Spectrum-adaptive networking
Ali et al. Full duplex device-to-device communication in cellular networks
JP5855271B2 (en) Method and apparatus for performing D2D communication
US10624128B2 (en) Methods for random access in radio nodes and user equipment
US10880906B2 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme
US10349384B2 (en) Spectrum controller for cellular and WiFi networks
EP2638676A1 (en) Allocation of resources in a communication system
KR20160014594A (en) Method for allocating resource for device for wireless communication and base station for same
CN114521345A (en) Apparatus and method for allocating guard band in wireless communication system
JP7218290B2 (en) Systems and methods for mitigating interference within actively used spectrum
US20160134397A1 (en) Base station and control method
Musavian et al. Cross-layer analysis of cognitive radio relay networks under quality of service constraints
Li et al. Performance analysis of device-to-device underlay communication in Rician fading channels
WO2017029738A1 (en) Wireless communication apparatus, wireless communication system, and transmission bandwidth control method
JP2010220031A (en) Transmission power control on which plurality of base stations cooperate, and antenna beam selective control method and device
Panic et al. Performance analysis of NOMA-based cooperative relay systems over Hoyt fading channels
Lagunas et al. Power allocation for in-band full-duplex self-backhauling
CN111771338B (en) Method and apparatus for physical uplink shared channel frequency hopping allocation
KR100999202B1 (en) Spectrum coexistence method using orthogonal beamforming in cognitive radio systems
JP2008236675A (en) Communication control method and radio communication equipment
CN109391997B (en) Method, equipment and system for coordinating interference among cells and reporting measurement
Zhou et al. Interference canceling power optimization for device to device communication
Taghizadeh et al. Minimum-cost wireless backhaul network planning with Full-Duplex links
CN111279736B (en) Method and device for generating extension symbol
US11259254B2 (en) Variable-length coding in a NOMA-based communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP