JP2010220031A - Transmission power control on which plurality of base stations cooperate, and antenna beam selective control method and device - Google Patents

Transmission power control on which plurality of base stations cooperate, and antenna beam selective control method and device Download PDF

Info

Publication number
JP2010220031A
JP2010220031A JP2009066275A JP2009066275A JP2010220031A JP 2010220031 A JP2010220031 A JP 2010220031A JP 2009066275 A JP2009066275 A JP 2009066275A JP 2009066275 A JP2009066275 A JP 2009066275A JP 2010220031 A JP2010220031 A JP 2010220031A
Authority
JP
Japan
Prior art keywords
base station
base stations
transmission power
antenna
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009066275A
Other languages
Japanese (ja)
Other versions
JP5290013B2 (en
Inventor
Kenji Hoshino
兼次 星野
Atsushi Nagate
厚史 長手
Manabu Mikami
学 三上
Teruya Fujii
輝也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
SoftBank Mobile Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SoftBank Mobile Corp filed Critical SoftBank Mobile Corp
Priority to JP2009066275A priority Critical patent/JP5290013B2/en
Publication of JP2010220031A publication Critical patent/JP2010220031A/en
Application granted granted Critical
Publication of JP5290013B2 publication Critical patent/JP5290013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maximize the number of users simultaneously connected in a cellular system. <P>SOLUTION: Assuming that each terminal has an SINR equivalent to a required transmission quality for all combinations of antenna beams of base stations, simultaneous equations having variables of antenna beam and transmission power selected for each base station are established to find a transmission power for each base station. When the solutions of the equations fail to meet restriction requirements of the base station power, the above operation is repeated by sequentially reducing the number of terminals to determine an antenna beam combination and a base station transmission power for the largest number of users simultaneously connected. In order to reduce the quantity of calculation, multiple antenna beams having strong signal intensities at the terminals may be extracted and the other antenna beams having weak signal intensities may be excluded from the search targets. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の基地局によって形成される複数の無線ゾーン(セル)を組み合わせてサービスエリアを形成するセルラ通信システムに関する。   The present invention relates to a cellular communication system that forms a service area by combining a plurality of radio zones (cells) formed by a plurality of base stations.

セルラ通信システムでは、各セルが利用する周波数はセル間で再利用されており、他セルからの同一の周波数をもつ信号は干渉となる。
図7は、下りリンクにおける他セルからの干渉の様子を説明するための図である。
この図において、BSは基地局、MSは端末である。ここで、隣接するセルが同一の周波数を利用しているものとする(1セル周波数繰り返し)。図示するように、基地局BSに属する端末MSには、基地局BSからの希望信号とともに基地局BSなどの他セルの基地局BSからの干渉信号が受信されることとなる。
In the cellular communication system, the frequency used by each cell is reused between cells, and signals having the same frequency from other cells become interference.
FIG. 7 is a diagram for explaining a situation of interference from other cells in the downlink.
In this figure, BS is a base station and MS is a terminal. Here, it is assumed that adjacent cells use the same frequency (one-cell frequency repetition). As illustrated, the terminal MS i belonging to the base station BS i, so that the interference signal from the base station BS of another cell, such as a base station BS k with the desired signal from the base station BS i is received.

伝送品質を表す指標としてSINR(信号対干渉雑音比)が用いられる。SINRが高ければ伝送品質が良く、低ければ悪い。
SINRは、次式で表される。

Figure 2010220031
周辺からの干渉が大きくなればなるほど式(1)の分母が大きくなるため、SINRが低くなり、伝送品質が悪くなってしまう。
このように、セルラ通信システムでは、端末が基地局と通信を行う際、周辺基地局で送信される同一周波数の電波が干渉となり、端末において十分な伝送品質を得ることができず、システム容量(スループットやユーザの同時接続数)が制限されてしまうという問題がある。 SINR (signal to interference noise ratio) is used as an index representing transmission quality. If the SINR is high, the transmission quality is good, and if the SINR is low, it is bad.
SINR is expressed by the following equation.
Figure 2010220031
The greater the interference from the periphery, the larger the denominator of equation (1), so the SINR is lowered and the transmission quality is degraded.
Thus, in a cellular communication system, when a terminal communicates with a base station, radio waves of the same frequency transmitted from neighboring base stations interfere with each other, and sufficient transmission quality cannot be obtained at the terminal. There is a problem that the throughput and the number of simultaneous connections of users) are limited.

そこで本発明者は、予め各基地局が周辺基地局の端末に与える干渉を計算し、各端末が所要伝送品質を得られるように基地局の電力制御を協調して行う複数基地局協調送信電力制御方法を提案している(特願2008−223841号、特願2008−223842号、特願2008−223843号、非特許文献1)。
この提案している複数基地局協調送信電力制御方法について説明する。
図7に示したような周波数の1セル繰り返しを想定する。各セルには、その周波数を利用する1台の端末のみが通信可能な端末として存在することができる。
基地局BSの送信電力をpi、基地局BSの送信電力をpk、基地局BSから基地局BSに属する端末MSまでの規格化受信電力をzii、基地局BSから端末MSまでの伝搬損失をzikとすると、希望信号電力はpiii、基地局BSからの干渉信号電力はpkikとなる。
基地局数をN(Nは2以上の整数)、端末MSでの雑音電力をniとすると、端末MSにおける受信SINRiが所要伝送品質γreq,iを満足するためには、以下の条件を満たす必要がある。

Figure 2010220031
Therefore, the present inventor calculates the interference that each base station gives to the terminals of the neighboring base stations in advance, and multi-base station cooperative transmission power that cooperates with the power control of the base station so that each terminal can obtain the required transmission quality. A control method is proposed (Japanese Patent Application Nos. 2008-223841, 2008-223842, 2008-223843, Non-Patent Document 1).
The proposed multiple base station cooperative transmission power control method will be described.
Assume 1-cell repetition at a frequency as shown in FIG. In each cell, only one terminal using the frequency can exist as a terminal capable of communication.
The transmission power of the base station BS i p i, the transmission power of the base station BS k p k, normalized received power of z ii from the base station BS i to the terminal MS i belonging to the base station BS i, the base station BS k If the propagation loss from the terminal MS i to the terminal MS i is z ik , the desired signal power is p i z ii and the interference signal power from the base station BS k is p k z ik .
When the number of base stations is N (N is an integer of 2 or more) and the noise power at the terminal MS i is n i , the received SINR i at the terminal MS i satisfies the required transmission quality γ req, i as follows: It is necessary to satisfy the conditions.
Figure 2010220031

全ての基地局に存在する全ての端末について、上の式(2)における不等号を等号に変換した条件式、すなわち、各端末の伝送品質がそれらの所要伝送品質に等しいものとした式を作成して展開すると、各基地局の電力を変数とする連立方程式が得られる。ただし、立式にあたっては、各端末での各基地局からの規格化受信電力及び雑音レベルの推定が必要である。
この連立方程式を解くことで、全ての端末における伝送品質が所要伝送品質γreq,iとなる場合の各基地局の送信電力を求めることができる。ただし、各基地局の送信電力pi(i=1〜N)は、基地局の最大送信電力をPlimitとして、0≦pi≦Plimitを満たす必要がある(基地局電力の制約条件)。しかし、電力の解が基地局の出力可能な範囲を外れる場合がある。例えば、解が負の値となる場合がある。
For all terminals that exist in all base stations, create a conditional expression that converts the inequality sign in equation (2) above to an equal sign, that is, the transmission quality of each terminal is equal to the required transmission quality. Then, simultaneous equations with the power of each base station as a variable are obtained. However, in the ceremony, it is necessary to estimate the standardized received power and noise level from each base station at each terminal.
By solving this simultaneous equation, it is possible to obtain the transmission power of each base station when the transmission quality at all terminals becomes the required transmission quality γ req, i . However, the transmission power p i (i = 1 to N) of each base station needs to satisfy 0 ≦ p i ≦ P limit where the maximum transmission power of the base station is P limit (constraint conditions for base station power) . However, the power solution may be out of the range that the base station can output. For example, the solution may be a negative value.

連立方程式の解が前記制約条件を満たさない場合は、全端末が所要品質を満たして通信を行うことが不可能である。そこで、前記制約条件を満たすように通信を許可する端末の数を削減する。幾つかの端末の通信を一時的に遮断、すなわち、その端末が所属する基地局の送信出力を遮断することにより変数を減らし、解が前記制約条件を満たすように、再度連立方程式を立式し、その解を求める。ここで、端末数を削減する際は、同時接続できる端末数を可能な限り増やすことを評価規定とする。
最も有効な方法として、通信を許可する端末の全ての組み合わせについて連立方程式を解き、前記基地局電力の制約条件を満たす端末の組み合わせのうち、同時接続端末数が最大となるものを見つける方法(総当り法)がある。
また、総当り法は、N端末からi個の端末を取り除く組み合わせの全てについて順次連立方程式を立式し、解を求めているため、正確な結果を得ることができるが、協調制御を行う基地局の数が増加すると計算量が指数関数的に増大するという問題がある。
そこで、本発明者は、少ない計算量でシステム容量を大幅に改善することができるセルラ通信システムにおける基地局送信電力制御方法及び装置を上記特許出願において提案している。
If the solution of the simultaneous equations does not satisfy the constraint conditions, it is impossible for all terminals to communicate with the required quality. Therefore, the number of terminals that allow communication is reduced so as to satisfy the constraint conditions. Temporarily cut off the communication of several terminals, that is, cut off the transmission power of the base station to which the terminal belongs, thereby reducing the variables and formulating the simultaneous equations again so that the solution satisfies the constraints. Find the solution. Here, when reducing the number of terminals, an evaluation rule is to increase the number of terminals that can be connected simultaneously as much as possible.
The most effective method is to solve simultaneous equations for all combinations of terminals that allow communication, and to find a combination of terminals that satisfy the base station power constraint condition that maximizes the number of simultaneously connected terminals (total Hit method).
In addition, the round robin method can obtain accurate results by sequentially formulating simultaneous equations for all combinations that remove i terminals from N terminals, and can obtain accurate results. There is a problem that the amount of calculation increases exponentially as the number of stations increases.
Therefore, the present inventor has proposed in the above patent application a base station transmission power control method and apparatus in a cellular communication system that can greatly improve the system capacity with a small amount of calculation.

なお、従来から行われている基地局電力調整方法として、次の二つの方法がある。
一つは、全ての基地局に対して同一の電力を設定して送信する方法、もう一つは各基地局内の端末に対して所要SNR(信号対雑音電力比)が達成されるように基地局ごとに電力制御を行う方法である。しかしながら、どちらの方法も、周辺基地局からの干渉電力については考慮されていないため、干渉によりSINRが劣化し、所要伝送品質を満たせない可能性がある。
一方、アンテナに指向性を導入することにより、目的とする端末へ向けて集中的に電波を送信することが可能であるため、他セルに属する端末への干渉を軽減することが可能である。アンテナビームの従来技術として、主ビームの方向が異なる複数のビームを形成することができるマルチビームアンテナを基地局送信アンテナとして用い、端末における受信電力が最も高くなるビームを選択する方法が知られている。この方法も同様に、他端末への干渉は考慮されず高いユーザ接続率は得られないものであった。
In addition, there are the following two methods as conventional base station power adjustment methods.
One is a method in which the same power is set and transmitted to all base stations, and the other is a base so that a required SNR (signal to noise power ratio) is achieved for terminals in each base station. This is a method of performing power control for each station. However, neither method considers the interference power from the neighboring base stations. Therefore, there is a possibility that SINR deteriorates due to the interference and the required transmission quality cannot be satisfied.
On the other hand, by introducing directivity to the antenna, it is possible to transmit radio waves in a concentrated manner toward a target terminal, and thus it is possible to reduce interference with terminals belonging to other cells. As a conventional technique of antenna beams, there is known a method of selecting a beam having the highest received power at a terminal using a multi-beam antenna capable of forming a plurality of beams having different main beam directions as a base station transmission antenna. Yes. Similarly, in this method, interference with other terminals is not considered and a high user connection rate cannot be obtained.

星野兼次、長手厚史、藤井輝也、「移動通信における複数基地局協調送信電力制御法に関する一検討」、2008年電子情報通信学会ソサイエティ大会、B-5-51、p.364、September 2008Hoshino Kenji, Nagashi Atsushi, Fujii Teruya, "A Study on Cooperative Transmission Power Control Method for Multiple Base Stations in Mobile Communications", 2008 IEICE Society Conference, B-5-51, p.364, September 2008

上記提案されている複数基地局協調送信電力制御方法によれば、基地局電力の制約条件を満たすとともに、同時接続する端末数を可能な限り多くすることができるように各基地局の送信電力を決定することができるが、各基地局が送信アンテナとして主ビームの方向が異なる複数のビームを形成することができるマルチビームアンテナを使用する場合についてのものではなかった。
また、アンテナビームを様々な方向に向ける技術そのものは従来から存在し、基地局が複数有しているアンテナビームのうち、適切なビームを一つ選択するアンテナビーム選択を行うことも知られているが、通常は端末に対して最も信号電力の高いビームが選択されるようになされており、他の基地局に所属する端末への影響を考慮してアンテナビームを選択する方法は、これまでに提案されていない。
According to the proposed multiple base station cooperative transmission power control method, the transmission power of each base station is set so that the number of simultaneously connected terminals can be increased as much as possible while satisfying the constraints of the base station power. However, this is not the case when each base station uses a multi-beam antenna capable of forming a plurality of beams having different main beam directions as a transmission antenna.
In addition, there is a conventional technique for directing an antenna beam in various directions, and it is also known to perform antenna beam selection that selects one appropriate beam from among a plurality of antenna beams that a base station has. However, the beam with the highest signal power is usually selected for the terminal, and the method of selecting the antenna beam considering the influence on the terminal belonging to another base station has been Not proposed.

そこで本発明は、複数基地局で送信電力協調制御及びアンテナビーム選択制御を行うことにより、ユーザ同時接続率を最大化又は改善することができる複数基地局協調送信電力制御及びアンテナビーム選択制御方法並びに装置を提供することを目的としている。   Therefore, the present invention provides a multiple base station cooperative transmission power control and antenna beam selection control method capable of maximizing or improving a user simultaneous connection rate by performing transmission power cooperative control and antenna beam selection control in a plurality of base stations, and The object is to provide a device.

上記目的を達成するために、本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法は、複数の基地局と複数の端末とを有するセルラ通信システムにおいて前記複数の基地局における送信電力及び送信アンテナのビーム方向を制御する複数基地局協調送信電力制御及びアンテナビーム選択制御方法であって、前記複数の基地局にそれぞれ属する端末の伝送品質が所要の伝送品質になるように前記複数の基地局における送信アンテナのビーム方向及び送信電力を変数とする連立方程式を立式し、該連立方程式の解を求める第1の工程と、前記連立方程式の解が基地局電力の制約条件を満たしている場合に、その解を前記複数の基地局における送信アンテナのビーム方向及び送信電力として決定する第2の工程と、前記連立方程式の解が前記基地局電力の制約条件を満たしていない場合に、前記複数の基地局のうちの選択された基地局に属する端末を削減して、前記第1の工程に移行する第3の工程とを有するものである。
また、前記複数の基地局のそれぞれの基地局が有する送信アンテナのビーム方向の全ての組み合わせについて前記第1の工程ないし第3の工程を実行するもの、前記複数の基地局のそれぞれの基地局において、その基地局に属する端末で受ける信号強度が最も強いビーム方向をその基地局の送信アンテナのビーム方向として選択し、前記第1の工程ないし第3の工程を実行するもの、あるいは、前記複数の基地局のそれぞれの基地局において、その基地局に属する端末で受ける信号強度が強い順に選択された複数のビーム方向の全ての組み合わせについて前記第1の工程ないし第3の工程を実行するものである。
さらに、本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御装置は、複数の基地局と複数の端末とを有するセルラ通信システムにおける前記複数の基地局における送信電力及び送信アンテナのビーム方向を制御する複数基地局協調送信電力制御及びアンテナビーム選択制御装置であって、前記複数の基地局にそれぞれ属する端末の伝送品質が所要の伝送品質になるように前記複数の基地局における送信アンテナのビーム方向及び送信電力を変数とする連立方程式を立式し、該連立方程式の解を求める第1の手段と、前記連立方程式の解が基地局電力の制約条件を満たしている場合に、その解を前記複数の基地局における送信アンテナのビーム方向及び送信電力として決定する第2の手段と、前記連立方程式の解が前記基地局電力の制約条件を満たしていない場合に、前記複数の基地局のうちの選択された基地局に属する端末を削減して、前記第1の手段の処理を実行させる第3の手段とを有するものである。
In order to achieve the above object, the multiple base station cooperative transmission power control and antenna beam selection control method of the present invention includes a transmission power in the plurality of base stations in a cellular communication system having a plurality of base stations and a plurality of terminals. A multiple base station cooperative transmission power control and antenna beam selection control method for controlling a beam direction of a transmission antenna, wherein the plurality of base stations are configured such that transmission quality of a terminal belonging to each of the plurality of base stations becomes a required transmission quality. A first step of formulating simultaneous equations with the beam direction and transmission power of the transmitting antenna in the station as variables, and a solution of the simultaneous equations, and the solution of the simultaneous equations satisfy the base station power constraints A second step of determining the solution as a beam direction and transmission power of a transmission antenna in the plurality of base stations, and the simultaneous equations A third step of moving to the first step by reducing terminals belonging to the selected base station of the plurality of base stations when the solution does not satisfy the base station power constraint condition; It is what has.
Further, in each base station of the plurality of base stations, the first step to the third step are executed for all combinations of the beam directions of the transmission antennas of the base stations of the plurality of base stations. Selecting the beam direction having the strongest signal strength received by a terminal belonging to the base station as the beam direction of the transmitting antenna of the base station, and performing the first to third steps, or In each base station of the base station, the first to third steps are executed for all combinations of a plurality of beam directions selected in descending order of the signal strength received by the terminals belonging to the base station. .
Further, the multiple base station cooperative transmission power control and antenna beam selection control apparatus according to the present invention provides the transmission power and the beam direction of the transmission antenna in the plurality of base stations in a cellular communication system having a plurality of base stations and a plurality of terminals. A multiple base station cooperative transmission power control and antenna beam selection control apparatus for controlling, wherein the transmission antenna beams in the plurality of base stations are set such that transmission quality of terminals belonging to the plurality of base stations becomes a required transmission quality. First, a simultaneous equation having a direction and a transmission power as a variable is formed, a first means for obtaining a solution of the simultaneous equation, and when the solution of the simultaneous equation satisfies a base station power constraint condition, A second means for determining a beam direction and transmission power of a transmission antenna in the plurality of base stations; And the third means for reducing the number of terminals belonging to the selected base station among the plurality of base stations and executing the processing of the first means when the constraint condition is not satisfied. is there.

このような本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法並びに装置によれば、予め各基地局間で周辺基地局の端末に与える干渉を考慮し、端末の方向に適切なアンテナビームを選択し、かつ所要受信電力を得られるように基地局の電力制御を行い、また、全ての端末が所要電力を満たして基地局電力を決定することが不可能な場合、通信を許可する端末数を削減して残りの基地局に対して電力を決定することにより、セルラ移動通信において、基地局からの電波が周辺基地局からの電波により干渉を受け、端末で十分な受信品質が得られず、ユーザの同時接続数が制限されてしまうという問題を解決し、ユーザ同時接続率を最大化または改善することが可能となる。   According to the multiple base station cooperative transmission power control and antenna beam selection control method and apparatus of the present invention as described above, an antenna suitable for the direction of the terminal in consideration of interference given to the terminals of the neighboring base stations between the base stations in advance. Select the beam and control the power of the base station so that the required received power can be obtained, and allow communication if all terminals cannot meet the required power and determine the base station power By reducing the number of terminals and determining the power for the remaining base stations, in cellular mobile communications, radio waves from the base stations are interfered by radio waves from neighboring base stations, and sufficient reception quality is obtained at the terminals. Therefore, it is possible to solve the problem that the number of simultaneous connections of users is limited, and to maximize or improve the simultaneous user connection rate.

本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法が適用されるセルラ通信システムの構成を示す図である。It is a figure which shows the structure of the cellular communication system to which the multiple base station cooperation transmission power control and antenna beam selection control method of this invention are applied. 基地局送信アンテナの指向性を考慮した場合の下りリンクにおける他セルからの干渉の様子を説明するための図である。It is a figure for demonstrating the mode of the interference from the other cell in a downlink when the directivity of a base station transmission antenna is considered. マルチビームアンテナの指向性パターンの一例を示す図である。It is a figure which shows an example of the directivity pattern of a multi-beam antenna. 本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of multiple base station cooperation transmission power control and antenna beam selection control of this invention. 端末の受信強度が強い上位k個のビームのみを対象とすることにより計算量の削減を図るようにした実施の形態について説明するための図である。It is a figure for demonstrating embodiment which tried to reduce the amount of calculations by considering only the top k beam with strong receiving intensity of a terminal. 計算機シミュレーションにより、本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法におけるユーザ同時接続率の評価を行った結果を示す図である。It is a figure which shows the result of having evaluated the user simultaneous connection rate in the multiple base station cooperation transmission power control and antenna beam selection control method of this invention by computer simulation. 下りリンクにおける他セルからの干渉の様子を説明するための図である。It is a figure for demonstrating the mode of the interference from the other cell in a downlink.

図1は、本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法が適用されるセルラ通信システムの構成を示す図である。この図において、11〜1Nは基地局(BS)(Nは2以上の整数)、21〜2Nは端末(MS)、3は前記複数の基地局を統括する制御局である。各基地局11〜1Nによりそれぞれセルが形成されており、各基地局は同一の周波数を利用するものとする。各基地局11〜1Nは、主ビームの方向が異なる複数のビームを形成することができるマルチビームアンテナを備え、前記複数のビームのうちの本発明の方法により決定されたビームを用いて自セル内に位置する端末21〜2Nと通信を行う。なお、この図には、すべてのセル内に端末21〜2Nが存在するように記載しているが、セル内に端末2が存在していない場合や1セル内に複数の端末2が存在する場合もある。ただし、同一の周波数を利用するものとしているため、1セル内において基地局とその周波数を用いて通信できる端末2は1台だけである。
制御局3は、前記複数の基地局11〜1Nと接続し、各基地局11〜1Nを介して得られる情報などに基づいて各基地局11〜1Nの送信アンテナのビーム方向と送信電力を決定し、各基地局11〜1Nに該決定した送信アンテナのビーム方向及び送信電力を通知する。基地局11〜1Nは、送信アンテナのビームとして通知された方向に対応するビームを選択し、自己の送信電力を制御局3から通知された送信電力となるように制御する。本発明においては、このようにして複数基地局が協調して送信電力制御及びアンテナビーム選択制御を行う。
FIG. 1 is a diagram illustrating a configuration of a cellular communication system to which a multi-base station cooperative transmission power control and antenna beam selection control method of the present invention is applied. In this figure, 1 1 to 1 N are base stations (BS) (N is an integer of 2 or more), 2 1 to 2 N are terminals (MS), and 3 is a control station that controls the plurality of base stations. Each base station 1 1 to 1 N forms a cell, and each base station uses the same frequency. Each of the base stations 1 1 to 1 N includes a multi-beam antenna capable of forming a plurality of beams having different main beam directions, and uses the beam determined by the method of the present invention among the plurality of beams. It communicates with the terminals 2 1 to 2 N located in its own cell. In this figure, it is described that the terminals 2 1 to 2 N exist in all the cells. However, when the terminal 2 does not exist in the cell, a plurality of terminals 2 exist in one cell. May be present. However, since the same frequency is used, only one terminal 2 can communicate with the base station using that frequency within one cell.
Control station 3, the connected to a plurality of base stations 1 1 to 1 N, the beam of the transmitting antenna of each base station 1 1 to 1 on the basis of such on information obtained through the N base stations 1 1 to 1 N The direction and transmission power are determined, and the determined beam direction and transmission power of the transmission antenna are notified to each of the base stations 1 1 to 1 N. The base stations 1 1 to 1 N select a beam corresponding to the direction notified as the beam of the transmission antenna, and control the transmission power of the base station 1 1 to 1 N to be the transmission power notified from the control station 3. In the present invention, a plurality of base stations cooperate in this way to perform transmission power control and antenna beam selection control.

図2は、基地局送信アンテナの指向性を考慮した場合の下りリンクにおける他セルからの干渉の様子を説明するための図である。
この図に示すように、各基地局が複数のアンテナビームを有するマルチビームアンテナを使用する場合には、アンテナの指向性が絞られるので、オムニアンテナを使用する場合に比べて他の基地局に属する端末に与える影響を軽減することができる。さらに、他の基地局に属する端末への影響を考慮しつつ自局に属する端末に対して所望の信号強度の得られるビームを選択することにより、他局に属する端末に対する干渉をより少なくすることができ、システム全体において同時接続することができる端末数をより多くすることが可能となる。
FIG. 2 is a diagram for explaining the state of interference from other cells in the downlink when the directivity of the base station transmission antenna is taken into consideration.
As shown in this figure, when each base station uses a multi-beam antenna having a plurality of antenna beams, the directivity of the antenna is reduced. Therefore, compared to the case where an omni antenna is used, The influence on the terminal to which it belongs can be reduced. Furthermore, interference with terminals belonging to other stations can be reduced by selecting a beam having a desired signal strength for the terminals belonging to the own station while taking into consideration the influence on the terminals belonging to other base stations. It is possible to increase the number of terminals that can be connected simultaneously in the entire system.

以下、前記制御局3において実行される各基地局11〜1Nの送信アンテナのビーム方向及び送信電力を決定する複数基地局協調送信電力制御及びアンテナビーム選択制御処理について説明する。
本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法においては、ユーザ同時接続率を最大化する最適な基地局送信アンテナのビームの組み合わせ及び基地局送信電力を決定するために、基地局送信アンテナのビーム方向及び基地局送信電力を変数とする連立方程式を立式し、端末における受信SINRが所要伝送品質を満たすように各基地局の送信電力を決定する。
Hereinafter, the multi-base station cooperative transmission power control and antenna beam selection control processing for determining the beam direction and transmission power of the transmission antennas of the base stations 1 1 to 1 N executed in the control station 3 will be described.
In the multiple base station cooperative transmission power control and antenna beam selection control method of the present invention, in order to determine the optimal base station transmission antenna beam combination and base station transmission power that maximizes the simultaneous user connection rate, Simultaneous equations using the beam direction of the transmission antenna and the base station transmission power as variables are established, and the transmission power of each base station is determined so that the received SINR at the terminal satisfies the required transmission quality.

基地局BSの送信電力をpk、基地局BSがmk番目のアンテナビームを選択した場合の基地局BSから基地局BSに属する端末MSまでのアンテナ利得をGik(mk)、伝搬路利得をzik、基地局数をN、端末MSでの雑音電力をniとすると、端末MSにおける受信SINR(γi)が所要伝送品質(γreq,i)を満たすための条件は次式の通りである。

Figure 2010220031
図3に、アンテナ素子の指向性パターン(G)の一例を示す。この図に示すマルチビームアンテナは3通りのアンテナビームを有し、各ビームの指向方向が120度ずつ異なっている。 The transmission power of the base station BS k p k, the base station BS k is m k-th antenna gain of the antenna beams from the base station BS k in the case of selecting to terminal MS i belonging to the base station BS i G ik (m k ), where the channel gain is z ik , the number of base stations is N, and the noise power at the terminal MS i is n i , the received SINR (γ i ) at the terminal MS i is the required transmission quality (γ req, i ). The conditions for satisfying are as follows.
Figure 2010220031
FIG. 3 shows an example of the directivity pattern (G) of the antenna element. The multi-beam antenna shown in this figure has three types of antenna beams, and the directivity directions of the beams are different by 120 degrees.

全ての端末について、上の式(3)における不等号を等号に変換した式、すなわち、各端末の伝送品質がそれらの所要伝送品質に等しいものとした式を作成して展開すると、各基地局の送信アンテナの指向性(各基地局で選択したアンテナビーム)及び送信電力を変数とする連立方程式が得られる。ただし、協調の対象となる全ての基地局11〜1Nに繋がっている制御局3が各基地局11〜1Nから全端末21〜2Nまでの伝搬路(伝搬損)及び各端末における雑音電力niを全て情報として把握しているものとする。例えば、各基地局がビームを切り換えながらパイロット信号を順次送信し、各端末は受信したパイロット信号の信号強度及び雑音を測定して、それを各基地局を介して前記制御局3に通知するようになされている。 For all the terminals, when the equation in which the inequality sign in the above equation (3) is converted to the equal sign, that is, the equation in which the transmission quality of each terminal is equal to the required transmission quality is created and expanded, Simultaneous equations with the directivity (antenna beam selected at each base station) and the transmission power of the transmission antennas as variables are obtained. However, the control station 3 connected to all the base stations 11 1 to 1 N to be coordinated has a propagation path (propagation loss) from each base station 1 1 to 1 N to all the terminals 2 1 to 2 N and each It is assumed that all the noise power n i at the terminal is grasped as information. For example, each base station sequentially transmits a pilot signal while switching the beam, and each terminal measures the signal strength and noise of the received pilot signal and notifies the control station 3 via each base station. Has been made.

図4に、複数基地局協調送信電力制御及びアンテナビーム選択制御処理の流れを示すフローチャートを示す。
まず、上記式(3)に基づく連立方程式を立式するために、各基地局から全端末までの伝搬路の情報と各端末における雑音の情報を取得する(ステップS1)。
次に、各基地局で用いるアンテナビームmkの組合せを一つ選択する(ステップS2,S3)。
次に、ステップS4に進み、式(3)の不等号を等号に置き換えた連立方程式を解くことにより、全ての端末MSに対して、γi=γreq,iとなる場合の各基地局の送信電力を求める。但し、基地局の最大送信電力をPlimit として、0≦pi≦Plimitが制約条件となる。解がこの制約条件を満たさない場合、全端末が同時に所要品質を満たして通信を行うことが不可能であるので、条件を満たすように、通信を許可する端末の数を削減する。端末が削減されると、その端末が属する基地局からの送信電力が0となり、他の基地局に属する端末への干渉量が減少する。端末数を削減する際は、同時に接続できる端末数を最大化することを評価基準として、条件を満たすまで通信を許可する端末数を順に削減する。
FIG. 4 is a flowchart showing the flow of multi-base station cooperative transmission power control and antenna beam selection control processing.
First, in order to formulate simultaneous equations based on the above equation (3), information on the propagation path from each base station to all terminals and information on noise in each terminal are acquired (step S1).
Next, one combination of antenna beams m k used at each base station is selected (steps S2 and S3).
Next, proceeding to step S4, each base station when γ i = γ req, i is obtained for all terminals MS i by solving simultaneous equations in which the inequality sign in equation (3) is replaced with an equal sign. Obtain the transmission power of. However, the maximum transmission power of the base station is P limit , and 0 ≦ p i ≦ P limit is a limiting condition. If the solution does not satisfy this constraint condition, it is impossible for all terminals to perform communication with the required quality at the same time. Therefore, the number of terminals that permit communication is reduced so as to satisfy the condition. When the number of terminals is reduced, the transmission power from the base station to which the terminal belongs becomes 0, and the amount of interference with terminals belonging to other base stations decreases. When reducing the number of terminals, maximizing the number of terminals that can be connected simultaneously is used as an evaluation criterion, and the number of terminals that allow communication until the condition is satisfied is sequentially reduced.

なお、端末削減の方法は問わない。接続率を最大にする方法として、通信を許可する端末の全ての組み合わせについて連立方程式を解き、電力の制約条件を満たす端末の組み合わせのうち、同時接続端末数が最大となるものを見つける方法(Full search)がある。しかし、この方法は、協調制御する基地局数が増加すると計算量が指数関数的に増大することとなる。そこで、取り除く端末を一意に選択し、一つの端末を取り除くたびに連立方程式を解き、その解が電力の制約条件を満たすかどうかを判別し、満たさなければ再び取り除く端末を選択する処理を繰り返すことにより計算量を削減する方法がある。この方法については、前述した本発明者による特許出願に記載されているが、例えば、全基地局が最大の電力で送信しているものと仮定して各端末における受信SINRを計算し、その値が最も低い端末から順に取り除く方法(Lowest-SINR removal)、全端末への干渉が最も大きい基地局に属する端末から順に取り除く方法(Largest-IF removal)などがある。 本発明においては、どの方法を採用して端末を削減してもよい。   In addition, the method of terminal reduction is not asked. As a method of maximizing the connection rate, solve the simultaneous equations for all combinations of terminals that allow communication, and find the combination of terminals that satisfy the power constraint condition that maximizes the number of simultaneously connected terminals (Full search). However, in this method, the amount of calculation increases exponentially as the number of base stations to be cooperatively controlled increases. Therefore, select the terminal to be removed uniquely, solve the simultaneous equations each time one terminal is removed, determine whether the solution satisfies the power constraint condition, and if not, repeat the process of selecting the terminal to be removed again There is a method to reduce the amount of calculation. This method is described in the above-mentioned patent application by the present inventor. For example, assuming that all base stations are transmitting at the maximum power, the received SINR at each terminal is calculated and the value is calculated. There are a method of removing terminals in order from the lowest terminal (Lowest-SINR removal), a method of removing from terminals belonging to the base station having the largest interference to all terminals (Largest-IF removal), and the like. In the present invention, any method may be adopted to reduce the number of terminals.

全てのアンテナビームの組み合わせに対して以上の送信電力割当制御を行う(ステップS5、S6)。各基地局のもつアンテナビーム数をMとし、基地局数をNとした場合、全てのアンテナビームの組み合わせは全部でMN通りとなる。
各基地局の持つアンテナビームの全ての組み合わせについて送信電力割当制御を行った後、最もユーザ同時接続数の多いビームを最終的な選択ビームとして設定する(ステップS7)。
このようにして、全てのビームの組み合わせについて連立方程式を解き、それぞれの連立方程式に端末削減方式を適用して、最もユーザ接続数が多くなる場合を探すことにより、ユーザ同時接続率を最大化する最適なビームの組み合わせ及び基地局送信電力を決定することができる。この方式をアンテナビーム選択の総当り法とよぶ。
The above transmission power allocation control is performed for all antenna beam combinations (steps S5 and S6). When the number of antenna beams of each base station is M and the number of base stations is N, there are a total of MN combinations of all antenna beams.
After performing transmission power allocation control for all combinations of antenna beams of each base station, a beam having the largest number of simultaneous user connections is set as a final selected beam (step S7).
In this way, the simultaneous equations are solved for all beam combinations, and the terminal reduction method is applied to each simultaneous equation to find the case where the number of user connections is the largest, thereby maximizing the simultaneous user connection rate. An optimal beam combination and base station transmit power can be determined. This method is called the brute force method of antenna beam selection.

上記アンテナビーム選択の総当り法によれば、最も正確にユーザ同時接続率を最大化する最適なビームの組み合わせ及び基地局送信電力を決定することができるが、全探索を行うため膨大な計算量となる。そこで、信号処理量の削減を図るようにした本発明の他の実施の形態について説明する。この実施の形態のビーム選択法では、端末における受信信号強度が、強いビームを複数、例えば、k(1≦k<M)個抽出し、受信信号強度の弱いビームに対しては最適なビームである可能性が低いので探索の対象から外すことにより、上述した総当り法よりも信号処理量を削減するものである。   According to the brute force method of antenna beam selection, it is possible to determine the optimum beam combination and base station transmission power that maximizes the user simultaneous connection rate most accurately. It becomes. Therefore, another embodiment of the present invention in which the amount of signal processing is reduced will be described. In the beam selection method of this embodiment, a plurality of, for example, k (1 ≦ k <M) beams with a strong received signal strength at the terminal are extracted, and an optimum beam is used for a beam with a weak received signal strength. Since there is a low possibility, the signal processing amount is reduced as compared with the round-robin method described above by removing it from the search target.

図5は、端末の受信強度が強い上位k個のビームのみを対象とする場合について説明するための図である。
図中(a)に示すように、各基地局は指向性の方向が異なるM個のビームを有しているものとする。このとき、基地局数をNとすると、全基地局におけるビームの組み合わせはMN通りとなる。そこで、(b)に示すように、その基地局に属する端末が受ける信号強度が強い順にk(1≦k<M)個のビームを選択し、該選択されたk個のビームの組み合わせを対象に前述した計算を行うようにする。図示する例では、ビーム3、ビーム4及びビーム2の順に端末が受ける信号強度が強い場合を示しており、これらのビームのみを計算の対象として選択する。これにより、(c)に示すように、計算の対象となる全基地局におけるビームの組み合わせの数はkN通りとなり、計算量を大幅に削減することが可能となる。例えば、k=1、すなわち、端末において基地局からの受信電力が最も高くなるビームを選択する場合には、最も計算量を少なくすることができる。
なお、ここでは、各基地局において選択するビーム数をk個としたが、基地局ごとに異なる数のアンテナビームを対象として選択するようにしてもよい。
FIG. 5 is a diagram for explaining a case where only the top k beams with strong terminal reception strength are targeted.
Assume that each base station has M beams having different directivity directions as shown in FIG. In this case, when the number of base stations is N, a combination of the beam in all base station becomes as M N. Therefore, as shown in (b), k (1 ≦ k <M) beams are selected in descending order of the signal strength received by the terminals belonging to the base station, and a combination of the selected k beams is targeted. The above-described calculation is performed. In the example shown in the figure, the case where the signal strength received by the terminal is strong in the order of beam 3, beam 4 and beam 2 is shown, and only these beams are selected as the calculation target. Thereby, as shown in (c), the number of beam combinations in all base stations to be calculated becomes k N ways, and the calculation amount can be greatly reduced. For example, when k = 1, that is, when a beam with the highest received power from the base station is selected in the terminal, the amount of calculation can be reduced most.
Here, the number of beams to be selected in each base station is k, but a different number of antenna beams may be selected for each base station.

計算機シミュレーションにより、本発明の複数基地局協調送信電力制御及びアンテナビーム選択制御方法の特性を評価した結果について説明する。図6は、システム内の端末が所要伝送品質γreq,iを満たす確率であるユーザ同時接続率の評価を行った結果を示す図である。ここで、六角格子状に19個のオムニセルを正則配置し、伝搬路利得は距離の3.5に反比例するものとした。セル半径、基地局の最大送信電力、雑音電力は、オムニアンテナの場合、セル端での受信SNRが最大で10dBとなるように設定した。マルチビームアンテナの場合は、全方向の送信電力の総和がオムニアンテナと等しくなるように正規化を行った。マルチビームアンテナの基地局当たりのビーム数をM=3とし、各ビームの指向方向を360度/M=120度ずつシフトさせるものとした。また、各ビームの半値幅は120度、サイドローブレベルが−15dBで一定となるものを用いるものとした。伝搬路利得及び雑音電力は理想的に求まるものとし、全てのユーザiについて所要受信SINR(γreq,i)は等しいものとした。 The results of evaluating the characteristics of the multi-base station cooperative transmission power control and antenna beam selection control method of the present invention by computer simulation will be described. FIG. 6 is a diagram illustrating a result of evaluating a user simultaneous connection rate, which is a probability that a terminal in the system satisfies the required transmission quality γ req, i . Here, 19 omnicells are regularly arranged in a hexagonal lattice shape, and the propagation path gain is inversely proportional to the distance of 3.5. In the case of an omni antenna, the cell radius, the maximum transmission power of the base station, and the noise power are set so that the reception SNR at the cell edge is 10 dB at the maximum. In the case of a multi-beam antenna, normalization was performed so that the sum of transmission power in all directions was equal to that of the omni antenna. The number of beams per base station of the multi-beam antenna is M = 3, and the directing direction of each beam is shifted by 360 degrees / M = 120 degrees. In addition, the half width of each beam is 120 degrees, and the side lobe level is constant at -15 dB. The propagation path gain and noise power are ideally determined, and the required received SINR (γ req, i ) is assumed to be equal for all users i.

図中、aは、複数基地局協調送信電力制御を行う場合で、端末削減方法として上述したLowest-SINR removalを採用し、k=2のアンテナビーム選択制御を行なった場合、bは、同様にLowest-SINR removalを採用した複数基地局送信電力制御を行い、k=1のアンテナビーム選択制御を行なった場合、cは、複数基地局電力制御を行わず、基地局ごとに送信電力制御を行い、アンテナビーム選択制御も行なわない場合、dは複数基地局電力制御、各基地局ごとの送信電力制御のいずれも行わず、アンテナビーム選択制御も行わない場合の、横軸を所要受信SINR(γreq,i)とした場合のユーザ同時接続率をそれぞれ示す。
この図より、基地局協調電力制御及びマルチビーム選択制御を行うことにより、大幅なユーザ同時接続率の向上が図れることが分かる。また、90%のユーザ同時接続率でシステム設計を行う場合、k=2のアンテナビーム選択制御を適用することにより、k=1のアンテナビーム選択制御の場合と比べて、ユーザのSINRを約1.5dB改善できることが分かる。
In the figure, a is a case where multiple base station cooperative transmission power control is performed, the above-described Lowest-SINR removal is adopted as a terminal reduction method, and an antenna beam selection control of k = 2 is performed. When multiple base station transmission power control employing Lowest-SINR removal is performed and antenna beam selection control of k = 1 is performed, c performs transmission power control for each base station without performing multiple base station power control. When no antenna beam selection control is performed, d indicates the required reception SINR (γ) when neither the multiple base station power control nor the transmission power control for each base station is performed and the antenna beam selection control is not performed. req, i ) indicates the simultaneous user connection rate.
From this figure, it can be seen that by performing base station cooperative power control and multi-beam selection control, the user simultaneous connection rate can be significantly improved. In addition, when designing a system with a 90% user simultaneous connection rate, by applying antenna beam selection control with k = 2, the SINR of the user is about 1 compared with the antenna beam selection control with k = 1. It can be seen that it can be improved by 5 dB.

1〜1N:基地局、21〜2N:端末、3:制御局 1 1 to 1 N : base station, 2 1 to 2 N : terminal, 3: control station

Claims (5)

複数の基地局と複数の端末とを有するセルラ通信システムにおいて前記複数の基地局における送信電力及び送信アンテナのビーム方向を制御する複数基地局協調送信電力制御及びアンテナビーム選択制御方法であって、
前記複数の基地局にそれぞれ属する端末の伝送品質が所要の伝送品質になるように前記複数の基地局における送信アンテナのビーム方向及び送信電力を変数とする連立方程式を立式し、該連立方程式の解を求める第1の工程と、
前記連立方程式の解が基地局電力の制約条件を満たしている場合に、その解を前記複数の基地局における送信アンテナのビーム方向及び送信電力として決定する第2の工程と、
前記連立方程式の解が前記基地局電力の制約条件を満たしていない場合に、前記複数の基地局のうちの選択された基地局に属する端末を削減して、前記第1の工程に移行する第3の工程と
を有することを特徴とする複数基地局協調送信電力制御及びアンテナビーム選択制御方法。
A multi-base station cooperative transmission power control and antenna beam selection control method for controlling transmission power and beam directions of transmission antennas in the plurality of base stations in a cellular communication system having a plurality of base stations and a plurality of terminals,
Formulating simultaneous equations with the beam direction and transmission power of the transmitting antennas at the plurality of base stations as variables so that the transmission quality of the terminals belonging to the plurality of base stations becomes the required transmission quality, A first step of finding a solution;
A second step of determining, when a solution of the simultaneous equations satisfies a constraint condition of base station power, as a beam direction and a transmission power of a transmission antenna in the plurality of base stations;
When the solution of the simultaneous equations does not satisfy the constraint condition of the base station power, the number of terminals belonging to the selected base station among the plurality of base stations is reduced, and the process proceeds to the first step. A plurality of base station cooperative transmission power control and antenna beam selection control methods.
前記複数の基地局のそれぞれの基地局が有する送信アンテナのビーム方向の全ての組み合わせについて前記第1の工程ないし第3の工程を実行することを特徴とする請求項1記載の複数基地局協調送信電力制御及びアンテナビーム選択制御方法。   The multiple base station cooperative transmission according to claim 1, wherein the first to third steps are executed for all combinations of beam directions of transmission antennas possessed by each of the plurality of base stations. Power control and antenna beam selection control method. 前記複数の基地局のそれぞれの基地局において、その基地局に属する端末で受ける信号強度が最も強いビーム方向をその基地局の送信アンテナのビーム方向として選択し、前記第1の工程ないし第3の工程を実行することを特徴とする請求項1記載の複数基地局協調送信電力制御及びアンテナビーム選択制御方法。   In each of the plurality of base stations, a beam direction having the strongest signal strength received by a terminal belonging to the base station is selected as the beam direction of the transmitting antenna of the base station, and the first to third steps The method according to claim 1, wherein the steps are executed. 前記複数の基地局のそれぞれの基地局において、その基地局に属する端末で受ける信号強度が強い順に選択された複数のビーム方向の全ての組み合わせについて前記第1の工程ないし第3の工程を実行することを特徴とする請求項1記載の複数基地局協調送信電力制御及びアンテナビーム選択制御方法。   In each base station of the plurality of base stations, the first to third steps are executed for all combinations of a plurality of beam directions selected in descending order of signal strength received by terminals belonging to the base station. The multi-base station cooperative transmission power control and antenna beam selection control method according to claim 1. 複数の基地局と複数の端末とを有するセルラ通信システムにおける前記複数の基地局における送信電力及び送信アンテナのビーム方向を制御する複数基地局協調送信電力制御及びアンテナビーム選択制御装置であって、
前記複数の基地局にそれぞれ属する端末の伝送品質が所要の伝送品質になるように前記複数の基地局における送信アンテナのビーム方向及び送信電力を変数とする連立方程式を立式し、該連立方程式の解を求める第1の手段と、
前記連立方程式の解が基地局電力の制約条件を満たしている場合に、その解を前記複数の基地局における送信アンテナのビーム方向及び送信電力として決定する第2の手段と、
前記連立方程式の解が前記基地局電力の制約条件を満たしていない場合に、前記複数の基地局のうちの選択された基地局に属する端末を削減して、前記第1の手段の処理を実行させる第3の手段と
を有することを特徴とする複数基地局協調送信電力制御及びアンテナビーム選択制御装置。
A multi-base station cooperative transmission power control and antenna beam selection control device for controlling transmission power and beam direction of a transmission antenna in the plurality of base stations in a cellular communication system having a plurality of base stations and a plurality of terminals,
Formulating simultaneous equations with the beam direction and transmission power of the transmitting antennas at the plurality of base stations as variables so that the transmission quality of the terminals belonging to the plurality of base stations becomes the required transmission quality, A first means for finding a solution;
A second means for determining, when a solution of the simultaneous equations satisfies a constraint condition of base station power, as a beam direction and a transmission power of a transmission antenna in the plurality of base stations;
If the solution of the simultaneous equations does not satisfy the base station power constraint condition, the number of terminals belonging to the selected base station among the plurality of base stations is reduced, and the processing of the first means is executed. A plurality of base station cooperative transmission power control and antenna beam selection control devices.
JP2009066275A 2009-03-18 2009-03-18 Multiple base station cooperative transmission power control and antenna beam selection control method and apparatus Expired - Fee Related JP5290013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066275A JP5290013B2 (en) 2009-03-18 2009-03-18 Multiple base station cooperative transmission power control and antenna beam selection control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066275A JP5290013B2 (en) 2009-03-18 2009-03-18 Multiple base station cooperative transmission power control and antenna beam selection control method and apparatus

Publications (2)

Publication Number Publication Date
JP2010220031A true JP2010220031A (en) 2010-09-30
JP5290013B2 JP5290013B2 (en) 2013-09-18

Family

ID=42978355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066275A Expired - Fee Related JP5290013B2 (en) 2009-03-18 2009-03-18 Multiple base station cooperative transmission power control and antenna beam selection control method and apparatus

Country Status (1)

Country Link
JP (1) JP5290013B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108230A (en) * 2015-12-08 2017-06-15 富士通株式会社 Radio communication system, radio communication method, transmission device and transmission method
US9692492B2 (en) 2014-09-12 2017-06-27 Electronics And Telecommunications Research Institute Method and apparatus for modulating baseband signal in beam space multi-input multi-output, and method for receiving therein
JP2018525877A (en) * 2015-06-26 2018-09-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Methods and associated devices used in control and radio nodes
JP2019075695A (en) * 2017-10-16 2019-05-16 株式会社Nttドコモ Evaluation device of radio communication system
US10499251B2 (en) 2015-06-26 2019-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control nodes, and associated control nodes
JP7394198B1 (en) 2022-11-17 2023-12-07 ソフトバンク株式会社 Distribution server, distribution server control method, and distribution server control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072663A (en) * 2002-08-09 2004-03-04 Fujitsu Ltd Antenna controller
JP2006115491A (en) * 2001-11-29 2006-04-27 Interdigital Technology Corp Method to utilize dynamic beam forming for wireless communication signals
WO2006106862A1 (en) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. Wireless communication method, wireless communication system, and wireless communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115491A (en) * 2001-11-29 2006-04-27 Interdigital Technology Corp Method to utilize dynamic beam forming for wireless communication signals
JP2004072663A (en) * 2002-08-09 2004-03-04 Fujitsu Ltd Antenna controller
WO2006106862A1 (en) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. Wireless communication method, wireless communication system, and wireless communication device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692492B2 (en) 2014-09-12 2017-06-27 Electronics And Telecommunications Research Institute Method and apparatus for modulating baseband signal in beam space multi-input multi-output, and method for receiving therein
JP2018525877A (en) * 2015-06-26 2018-09-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Methods and associated devices used in control and radio nodes
US10499251B2 (en) 2015-06-26 2019-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control nodes, and associated control nodes
US10652751B2 (en) 2015-06-26 2020-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods used in control nodes, and associated control nodes
JP2017108230A (en) * 2015-12-08 2017-06-15 富士通株式会社 Radio communication system, radio communication method, transmission device and transmission method
JP2019075695A (en) * 2017-10-16 2019-05-16 株式会社Nttドコモ Evaluation device of radio communication system
JP6998723B2 (en) 2017-10-16 2022-01-18 株式会社Nttドコモ Evaluation device for wireless communication system
JP7394198B1 (en) 2022-11-17 2023-12-07 ソフトバンク株式会社 Distribution server, distribution server control method, and distribution server control program

Also Published As

Publication number Publication date
JP5290013B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4559270B2 (en) Wireless communication system
JP5319840B2 (en) Radio base station and associated method for communication between radio base station and user equipment
JP5768812B2 (en) Radio control apparatus, second transmission station transmission power determination method and program
US20150249929A1 (en) Wireless communication method and wireless communication system
KR101727016B1 (en) System and method for aligning interference in uplink
Ding et al. On the performance of practical ultra-dense networks: The major and minor factors
JP5290013B2 (en) Multiple base station cooperative transmission power control and antenna beam selection control method and apparatus
EP2591561B1 (en) Method and arrangement for reducing interference and enhancing coverage
US20080280634A1 (en) Adaptive antenna control method and adaptive antenna transmission/reception characteristic control method
JP2011511600A (en) Method and apparatus for making handoff decisions as a function of service level indicative of metrics
KR102362888B1 (en) System and method for beam transmission power adjustment for inter-cell interference control
Naqvi et al. Self-adaptive power control mechanism in D2D enabled hybrid cellular network with mmWave small cells: An optimization approach
US10205568B2 (en) Method and device for generating inter-cell information for cancelling inter-cell interference
Shen et al. Design and analysis of multi-user association and beam training schemes for millimeter wave based WLANs
Feng et al. Dealing with link blockage in mmWave networks: D2D relaying or multi-beam reflection?
EP2662927B1 (en) Active antenna control
Shibata et al. Two-step dynamic cell optimization algorithm for HAPS mobile communications
Kim et al. Power controlled concurrent transmissions in mmWave WPANs
Liu et al. Coverage and meta distribution analysis in ultra-dense cellular networks with directional antennas
JP4675405B2 (en) Base station transmission power control method and apparatus
US10111253B2 (en) Method and apparatus for interference alignment and multi-antenna signal process in wireless network
JP2010068519A (en) Method for communication on wireless network, and wireless network
Uekumasu et al. An access strategy for downlink and uplink decoupling in multi-channel wireless networks
KR101549035B1 (en) Communication terminal apparatus and handover method thereof
EP4117192A1 (en) Communication device performing beam-forming and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5290013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees