WO2017028641A1 - 信息反馈方法、信息反馈装置及终端 - Google Patents

信息反馈方法、信息反馈装置及终端 Download PDF

Info

Publication number
WO2017028641A1
WO2017028641A1 PCT/CN2016/089416 CN2016089416W WO2017028641A1 WO 2017028641 A1 WO2017028641 A1 WO 2017028641A1 CN 2016089416 W CN2016089416 W CN 2016089416W WO 2017028641 A1 WO2017028641 A1 WO 2017028641A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
feedback
pmi1
base station
indication information
Prior art date
Application number
PCT/CN2016/089416
Other languages
English (en)
French (fr)
Inventor
李辉
高秋彬
陈润华
陈文洪
塔玛拉卡拉盖施
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to KR1020187006006A priority Critical patent/KR102204146B1/ko
Priority to EP16836505.4A priority patent/EP3327951A4/en
Priority to JP2018507608A priority patent/JP6723345B2/ja
Priority to US15/752,576 priority patent/US20180262245A1/en
Publication of WO2017028641A1 publication Critical patent/WO2017028641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information feedback method, an information feedback device, and a terminal.
  • 3D MIMO is based on traditional 2D MIMO, adding one dimension to the vertical dimension.
  • the interference of the same frequency users between cells can be effectively suppressed, thereby improving the average throughput of the edge users and even the entire cell.
  • the acquisition of the downlink CSI requires the UE (User Equipment, User Equipment or Terminal) to use the downlink reference signal, such as The CSI-RS (Channel State Information-Reference Signal) and CRS (Cell-specific reference signals) estimate the downlink channel and feed back RI (rank indication) and PMI. (Precoding Matrix Indicator) and CQI (Channel Quality Indicator) to the eNB (Evolved Node B, ie, base station) side.
  • the UE may perform two methods based on periodic reporting or non-periodic reporting. When the periodic report is performed, the CSI cannot exceed 11 bits. Therefore, the fineness of the CSI report is coarse.
  • the periodic feedback mode of the LTE system is designed to only consider the codebook of 8 antennas.
  • 3D The number of MIMO codebooks is significantly increased relative to the current 8-antenna codebook. Therefore, when the UE performs channel state information (CSI) reporting, the feedback overhead increases. Thus, the existing feedback mode is difficult to support a larger number of codebook feedback.
  • CSI channel state information
  • the technical problem to be solved by the present disclosure is to provide a feedback method, apparatus and terminal that can support information of a higher codebook feedback load.
  • an embodiment of the present disclosure provides an information feedback method, including:
  • the precoding matrix indication information of each level precoding matrix in the multi-stage precoding matrix is respectively fed back to the base station or jointly encoded and fed back to the base station.
  • the step of acquiring precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix for downlink data transmission includes:
  • precoding matrix indication information of the second level precoding matrix to the Nth precoding matrix of the precoding matrix wherein the second level precoding matrix to the Nth precoding matrix are respectively according to a previous level thereof
  • the precoding matrix is obtained, and N is an integer greater than 2.
  • the step of acquiring the precoding matrix indication information of the first level precoding matrix according to the dimension of the first level precoding matrix comprises:
  • the step of jointly encoding the precoding matrix indication information of each level precoding matrix of the multi-stage precoding matrix and feeding back to the base station includes:
  • At least one of the horizontal dimension precoding matrix indication information and the vertical dimension precoding matrix indication information of each level precoding matrix is jointly encoded with other precoding matrix indication information and then fed back to the base station.
  • the step of separately feeding back precoding matrix indication information of each level precoding matrix of the multi-stage precoding matrix to the base station or jointly coding and then feeding back to the base station includes:
  • the indication information H-PMI1 of the horizontal dimension precoding matrix of the first level precoding matrix, the indication information V-PMI1 of the vertical dimension precoding matrix, and the precoding matrix indication of the second level precoding matrix to the Nth stage precoding matrix Information PMI2 to PMIN are respectively fed back to the base station;
  • the indication information H-PMI1 of the horizontal dimension precoding matrix of the first level precoding matrix, the indication information V-PMI1 of the vertical dimension precoding matrix, and the precoding matrix indication of the second level precoding matrix to the Nth stage precoding matrix At least two of the information PMI2 to PMIN are jointly encoded and fed back to the base station.
  • the above feedback method further includes:
  • the rank information RI used to determine the precoding matrix is independently fed back to the base station;
  • Channel quality information CQI for determining the precoding matrix is independently fed back to the base station; or precoding matrix indication information PMI1 or V- of the rank information RI for determining the precoding matrix and the first level precoding matrix PMI1 is jointly encoded and fed back to the base station; or
  • the channel quality information CQI used to determine the precoding matrix is jointly encoded with at least one of H-PMI1, PMI2 to PMIN, and fed back to the base station.
  • the feedback period of the RI is substantially greater than or equal to the feedback period of the PMI1, the H-PMI1, and the V-PMI1;
  • the feedback period of PMI1 is substantially greater than or equal to the feedback period of PMI2 to PMIN;
  • the feedback period of PMI2 is substantially the same as the feedback period of CQI;
  • the feedback period of V-PMI1 is substantially greater than or equal to the feedback period of H-PMI1.
  • T-RI MRI x H x Np
  • T-PMI1 is a feedback period of PMI1 or a feedback period after PMI1 is jointly encoded with other feedback quantities, and other feedback quantities are feedback quantities whose feedback periods are substantially smaller than feedback periods of PMI1 independent feedback;
  • T-PMI2 is the feedback period of PMI2 or CQI;
  • the T-RI is the feedback period of the RI or the feedback period after the RI is combined with other feedback quantities.
  • the other feedback quantity is the feedback quantity of the feedback period whose feedback period is less than RI, and MRI and H are positive integers.
  • the feedback priority of the RI is greater than the feedback priority of the PMI1;
  • the feedback priority of PMI1 is greater than the feedback priority of PMI2 to PMIN;
  • the feedback priority of PMI1 is greater than the feedback priority of CQI;
  • the feedback priority of V-PMI1 is greater than the feedback priority of H-PMI1 and PMI2 to PMIN.
  • the feedback priority of the first RI fed back to the first base station is greater than the feedback priority of the second RI fed back to the second base station;
  • the feedback priority of the second RI is greater than the feedback priority of the PMI1 fed back to the first base station;
  • the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the PMI1 fed back to the second base station;
  • the feedback priority of the PMI1 fed back to the second base station is greater than the feedback priority of the PMI2 fed back to the first base station and the first CQI fed back to the first base station;
  • the priority of the V-PMI1 fed back to the second base station is greater than the feedback priority of the PMI1 fed back to the first base station;
  • the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the H-PMI1 fed back to the second base station and the PMI2 fed back to the second base station,
  • the first base station is a base station having a horizontal input controllable multiple input multiple output antenna
  • the second base station is a base station having multiple input multiple output antennas respectively controllable in horizontal and vertical dimensions.
  • an embodiment of the present disclosure further provides a feedback device for information, including:
  • An obtaining module configured to acquire precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix used for downlink data transmission;
  • the feedback module is configured to feed back precoding matrix indication information of each level precoding matrix of the multi-stage precoding matrix to the base station or jointly encode and feed back to the base station.
  • the obtaining module includes:
  • a first acquiring unit configured to acquire a dimension of a first-level precoding matrix of a precoding matrix used for downlink data transmission
  • a second acquiring unit configured to acquire precoding matrix indication information of the first level precoding matrix according to a dimension of the first level precoding matrix
  • a third acquiring unit configured to acquire precoding matrix indication information of the second level precoding matrix to the Nth precoding matrix of the precoding matrix, where the second level precoding matrix to the Nth stage precoding
  • the matrix is obtained from its pre-level precoding matrix, respectively, and N is an integer greater than two.
  • the second obtaining unit is configured to: acquire first precoding matrix indication information PMI1 of the first level precoding matrix; or obtain a horizontal dimension pre-preparation of the first level precoding matrix The indication information H-PMI1 of the coding matrix and the indication information V-PMI1 of the vertical dimension precoding matrix.
  • the feedback module when jointly encoding the feedback, instructs at least one of the horizontal dimension precoding matrix indication information, the vertical dimension precoding matrix indication information of each level of the precoding matrix, and other precoding matrix indications.
  • the information is jointly encoded and fed back to the base station.
  • the feedback module includes:
  • a first independent feedback unit configured to: first precoding matrix indication information PMI1 of the first level precoding matrix and precoding matrix indication information PMI2 to PMIN of the second level precoding matrix to the Nth precoding matrix respectively Feedback to the base station; or the indication information H-PMI1 of the horizontal-dimensional precoding matrix of the first-stage precoding matrix, the indication information V-PMI1 of the vertical-dimensional pre-coding matrix, and the second-level pre-coding matrix to the N-th pre-
  • the precoding matrix indication information PMI2 to PMIN of the coding matrix are respectively fed back to the base station; or
  • a first joint feedback unit configured to: first precoding matrix indication information PMI1 of the first level precoding matrix, precoding matrix indication information of a second level precoding matrix to an Nth precoding matrix At least two of the information PMI2 to PMIN are jointly encoded and fed back to the base station; or the indication information H-PMI1 of the horizontal dimension precoding matrix of the first level precoding matrix, and the indication information V-PMI1 of the vertical dimension precoding matrix And at least two of the precoding matrix indication information PMI2 to PMIN of the second precoding matrix to the Nth precoding matrix are jointly encoded and fed back to the base station.
  • the feedback module further includes:
  • a second independent feedback unit configured to independently feed back the rank information RI for determining the precoding matrix to the base station; or independently feed back the channel quality information CQI used for determining the precoding matrix to the base station; or
  • a second joint feedback unit configured to jointly encode the rank information RI used to determine the precoding matrix with the precoding matrix indication information PMI1 or V-PMI1 of the first level precoding matrix, and then feed back to the base station; or
  • the channel quality information CQI when the precoding matrix is determined is jointly encoded with at least one of H-PMI1, PMI2 to PMIN, and then fed back to the base station.
  • the feedback period of the RI is substantially greater than or equal to the feedback period of the PMI1, the H-PMI1, and the V-PMI1;
  • the feedback period of PMI1 is substantially greater than or equal to the feedback period of PMI2 to PMIN;
  • the feedback period of PMI2 is substantially the same as the feedback period of CQI;
  • the feedback period of V-PMI1 is substantially greater than or equal to the feedback period of H-PMI1.
  • T-RI MRI x H x Np
  • T-PMI1 is a feedback period of PMI1 or a feedback period after PMI1 is jointly encoded with other feedback quantities, and other feedback quantities are feedback quantities whose feedback periods are substantially smaller than feedback periods of PMI1 independent feedback;
  • T-PMI2 is the feedback period of PMI2 or CQI;
  • the T-RI is the feedback period of the RI or the feedback period after the RI is combined with other feedback quantities.
  • the other feedback quantity is the feedback quantity of the feedback period whose feedback period is less than RI, and MRI and H are positive integers.
  • the feedback priority of the RI is greater than the feedback priority of the PMI1;
  • the feedback priority of PMI1 is greater than the feedback priority of PMI2 to PMIN;
  • the feedback priority of PMI1 is greater than the feedback priority of CQI;
  • the feedback priority of V-PMI1 is greater than the feedback priority of H-PMI1 and PMI2 to PMIN.
  • the feedback priority of the first RI fed back by the feedback module to the first base station is greater than the second RI fed back to the second base station.
  • Feedback priority; the feedback priority of the second RI is greater than the feedback priority of the PMI1 fed back to the first base station; the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the PMI1 fed back to the second base station;
  • the feedback priority of the PMI1 fed back by the second base station is greater than the feedback priority of the PMI2 fed back to the first base station and the first CQI fed back to the first base station; the priority of the V-PMI1 fed back to the second base station is greater than the feedback to the first base station.
  • the feedback priority of the PMI1 is greater than the feedback priority of the H-PMI1 fed back to the second base station and the PMI2 fed back to the second base station; wherein the first base station has A base station of a multi-input multi-output antenna with controllable horizontal dimensions, and a second base station is a base station having multiple input multiple output antennas respectively controllable in horizontal and vertical dimensions.
  • an embodiment of the present disclosure further provides a terminal, including:
  • the terminal performing the steps of: acquiring precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix for downlink data transmission; and each of the multi-level precoding matrices
  • the precoding matrix indication information of the precoding matrix is respectively fed back to the base station or jointly encoded and fed back to the base station.
  • the foregoing solution obtains precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix used for downlink data transmission, and respectively, and precoding matrix indication information of each precoding matrix in the multi-stage precoding matrix Feedback to the base station or joint coding and feedback to the base station, so as to support a higher codebook feedback load and satisfy the codebook feedback load of the 3D MIMO antenna array.
  • 1 is a schematic diagram of a 2D MIMO dual polarized antenna array
  • FIG. 2 is a schematic diagram of a 2D MIMO single-polarized antenna array
  • 3 is a schematic diagram of a 3D MIMO dual-polarized antenna array
  • FIG. 4 is a schematic diagram of a 3D MIMO single-polarized antenna array
  • FIG. 5 is a schematic flowchart diagram of an information feedback method according to a first embodiment of the present disclosure
  • FIG. 6 and FIG. 7 are schematic flowcharts of an information feedback method provided by a second embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of an information feedback method according to a third embodiment of the present disclosure.
  • FIG. 9 is a first schematic diagram of feedback regarding feedback in a third embodiment of the present disclosure.
  • Figure 10 is a second schematic diagram of feedback regarding feedback in a third embodiment of the present disclosure.
  • Figure 11 is a schematic diagram of a third situation regarding feedback in a third embodiment of the present disclosure.
  • Figure 12 is a fourth schematic diagram of feedback in a third embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an information feedback apparatus according to a fourth embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a terminal according to a fifth embodiment of the present disclosure.
  • the current 2D MIMO (Multiple Input Multiple-Output) smart antenna with horizontal dimension control uses multiple transmit antennas and receive antennas at the transmitting end and the receiving end respectively.
  • the spatial freedom of the horizontal direction is mainly used to obtain the gain of multiple antennas.
  • 1 is a horizontally arranged dual-polarized antenna
  • FIG. 2 is a horizontally arranged single-polarized antenna.
  • 3D MIMO with horizontal dimension controllable and vertical dimension control has received more and more attention.
  • the 3D MIMO technology can divide each vertical antenna element into multiple layers without changing the existing antenna size, thereby developing another vertical direction spatial dimension of MIMO.
  • 3 is a horizontally and vertically arranged dual-polarized antenna
  • FIG. 4 is a horizontally and vertically arranged single-polarized antenna.
  • 3D MIMO pushes MIMO technology to a higher stage of development, which opens up a broader space for the performance improvement of LTE transmission technology, making it possible to further reduce inter-cell interference, improve system throughput and spectrum efficiency.
  • the base station transmit beam can only be adjusted in the horizontal dimension, while the vertical dimension is a fixed downtilt for each user. Therefore, various beamforming/precoding techniques and the like are based on horizontal dimension channel information. In fact, since the channel is 3D, the method of fixing the downtilt angle often does not optimize the throughput of the system. As the number of cell users increases, users are distributed in different areas within the cell, including cell centers and cell edges. The traditional 2D beamforming can only be distinguished horizontally according to the channel information of the horizontal dimension, but not by the vertical dimension. The user distinguishes and causes serious interference to system performance.
  • 3D MIMO is based on traditional 2D MIMO, adding one dimension to the vertical dimension.
  • the interference of the same frequency users between cells can be effectively suppressed, thereby improving the average throughput of the edge users and even the entire cell.
  • the acquisition of the downlink CSI requires the UE (User Equipment, User Equipment or Terminal) to use the downlink reference signal, such as The CSI-RS (Channel State Information-Reference Signal) and CRS (Cell-specific reference signals) estimate the downlink channel and feed back RI (rank indication) and PMI. (Precoding Matrix Indicator) and CQI (Channel Quality Indicator) to the eNB (Evolved Node B, ie, base station) side.
  • the UE may perform two methods based on periodic reporting or non-periodic reporting. When the CSI is reported periodically, the CSI cannot exceed 11 bits. The fineness of the CSI report is coarse.
  • the periodic feedback mode of the LTE system is designed to only consider the codebook of 8 antennas.
  • the number of 3D MIMO codebooks is significantly increased.
  • the UE performs channel state information (CSI) reporting, the feedback overhead increases, and the existing feedback mode is difficult to support a larger number of codebooks. Feedback.
  • CSI channel state information
  • Embodiments of the present disclosure provide an information feedback method, an information feedback device, and a terminal, thereby supporting A higher codebook feedback load that satisfies the codebook feedback load of the 3D MIMO antenna array.
  • an embodiment of the present disclosure provides a method for feeding back information, including:
  • Step 51 Acquire precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix used for downlink data transmission;
  • Step 52 Precoding matrix of each level precoding matrix in the multi-stage precoding matrix The indication information is respectively fed back to the base station or jointly encoded and fed back to the base station.
  • the joint coding of the indication information means that different bit regions of the jointly encoded information correspond to different indication information.
  • the first N1 bits in the jointly encoded indication information correspond to the first indication information
  • the N1+1 to N2 bits correspond to the second indication information, and so on.
  • the jointly encoded indication information may also be used to indicate the joint state of all the indication information, that is, all the states of each indication information are combined, and then the coding is unified.
  • the precoding matrix W for downlink data transmission is computed by a multi-stage precoding matrix W1, W2, ..., WN.
  • W1 ⁇ W2 W is a precoding matrix
  • W1 is a first-level precoding matrix
  • W2 is The second level precoding matrix.
  • the first-dimensional precoding matrix representing the vertical dimension.
  • the precoding matrix of each dimension is composed of a set of column vectors, and each column vector is generated by a discrete Fourier transform DFT vector.
  • W1 is generated by two precoding matrices, horizontal and vertical
  • two PMI feedbacks can be used for it, one PMI feedback indicating a vertical dimension precoding matrix and the other PMI feedback indicating a horizontal dimension precoding matrix.
  • W2 implements column selection by selecting r vectors from the W1 vector group. This r is determined by RI.
  • ⁇ i represents a phase adjustment factor and Y i represents a beam selection vector.
  • the UE can calculate a corresponding CQI for each codeword (precoding matrix) according to the channel estimation result. After the RI and the PMI are determined, the CQI corresponding to the codeword is also fed back to the eNB.
  • precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix for downlink data transmission precoding matrix indication information of each precoding matrix in the multi-stage precoding matrix is respectively Feedback to the base station or joint coding and feedback to the base station, which can support higher The codebook feedback load satisfies the codebook feedback load of the 3D MIMO antenna array.
  • an information feedback method includes:
  • Step 61 Acquire a dimension of a first-level precoding matrix of a precoding matrix used for downlink data transmission;
  • Step 62 Obtain precoding matrix indication information of the first level precoding matrix according to a dimension of the first level precoding matrix.
  • Step 63 Obtain precoding matrix indication information of the second level precoding matrix to the Nth precoding matrix of the precoding matrix, where the second level precoding matrix to the Nth precoding matrix are respectively according to the The first level precoding matrix is obtained, N is an integer greater than 2;
  • Step 64 The precoding matrix indication information of each level of the precoding matrix is respectively fed back to the base station or jointly encoded and fed back to the base station.
  • the step 62 may be performed in a specific implementation, where the method may include: Step 621: Acquire a first pre-preparation of the first-level precoding matrix according to a dimension of the first-level precoding matrix.
  • the coding matrix indicates information PMI1; when the first-stage precoding matrix W1 satisfies or does not satisfy the Kronecker product of the horizontal dimension and the vertical dimension (the Kronecker product is an operation between two arbitrarily sized matrices), the W1 corresponds to The information is indicated by a precoding matrix, that is, PMI1.
  • the method may include: step 622, acquiring indication information H-PMI1 of the horizontal dimension precoding matrix of the first level precoding matrix and indication information V-PMI1 of the vertical dimension precoding matrix; When the precoding matrix W1 satisfies the Kronecker product of the horizontal dimension and the vertical dimension, the W1 corresponds to the indication information H-PMI1 of one horizontal dimension precoding matrix and the indication information V-PMI1 of the vertical dimension precoding matrix.
  • step 64 when performing independent feedback, includes:
  • Step 641 The first precoding matrix indication information PMI1 of the first level precoding matrix and the precoding matrix indication information PMI2 to PMIN of the second level precoding matrix to the Nth precoding matrix are respectively fed back to the base station; or
  • Step 642 The indication information H-PMI1 of the horizontal dimension precoding matrix of the first level precoding matrix, the indication information V-PMI1 of the vertical dimension precoding matrix, and the second level precoding matrix to the Nth precoding matrix.
  • the precoding matrix indication information PMI2 to PMIN are respectively fed back to the base station.
  • step 64 when performing joint feedback, step 64 includes:
  • Step 643 combining at least two of the first precoding matrix indication information PMI1 of the first precoding matrix, the second level precoding matrix, and the precoding matrix indication information PMI2 to PMIN of the Nth precoding matrix. Coding back to the base station after encoding; or
  • Step 644 When the precoding matrix indication information of each level of the precoding matrix is jointly encoded and fed back to the base station, at least one of the horizontal dimension precoding matrix indication information and the vertical dimension precoding matrix indication information of each level of the precoding matrix. Coordinated with other precoding matrix indication information and fed back to the base station.
  • the indication information H-PMI1 of the horizontal precoding matrix of the first level precoding matrix, the indication information V-PMI1 of the vertical dimension precoding matrix, and the second level precoding matrix are The precoding matrix of the Nth precoding matrix indicates that at least two of the information PMI2 to PMIN are jointly encoded and fed back to the base station.
  • an information feedback method includes:
  • Step 811 Acquire first precoding matrix indication information PMI1 of the first level precoding matrix; or step 812, obtain indication information H-PMI1 and vertical dimension of the horizontal dimension precoding matrix of the first level precoding matrix The indication information of the precoding matrix V-PMI1;
  • Step 82 Obtain precoding matrix indication information of the second level precoding matrix to the Nth precoding matrix of the precoding matrix, where the second level precoding matrix to the Nth precoding matrix are respectively according to the The first level precoding matrix is obtained, and N is an integer greater than 2;
  • Step 831 independently feeding back the rank information RI for determining the precoding matrix to the base station;
  • Step 832 independently feeding back channel quality information CQI for determining the precoding matrix to the base station;
  • Step 833 jointly encoding the rank information RI for determining the precoding matrix with the precoding matrix indication information PMI1 or V-PMI1 of the first level precoding matrix, and then feeding back to the base station; or
  • Step 834 jointly coding channel quality information CQI for determining the precoding matrix with at least one of H-PMI1, PMI2 to PMIN, and then feeding back to the base station.
  • the feedback period of each feedback amount has the following relationship: the feedback period of the RI is substantially greater than or equal to the feedback period of PMI1, H-PMI1, V-PMI1;
  • the feedback period of PMI1 is substantially greater than or equal to the feedback period of PMI2 to PMIN;
  • the feedback period of PMI2 is substantially the same as the feedback period of CQI;
  • the feedback period of V-PMI1 is substantially greater than or equal to the feedback period of H-PMI1.
  • T-RI MRI ⁇ H ⁇ Np
  • T-PMI1 is the feedback period of PMI1 or the feedback period after PMI1 and other feedback quantities are jointly coded, and the other feedback quantity is the feedback quantity of the feedback period when the feedback period is smaller than PMI1 independent feedback;
  • T-PMI2 is PMI2 or CQI Feedback cycle
  • the T-RI is the feedback period of the RI or the feedback period after the RI is combined with other feedback quantities.
  • the other feedback quantity is the feedback quantity of the feedback period whose feedback period is less than RI, and MRI and H are positive integers.
  • the precoding matrix indication information PMI1, PMI2 of each precoding matrix is used, and the rank information RI for determining the precoding matrix is used.
  • the channel quality information CQI when determining the precoding matrix is separately fed back to the base station, wherein the feedback period of the RI is substantially greater than or equal to the feedback period of the PMI1; the feedback period of the PMI1 is substantially greater than or equal to the feedback period of the PMI2; The feedback period is substantially the same as the feedback period of the CQI.
  • the RI and CQI independent feedback are shown, and the PMI1 and PMI2 are jointly encoded and fed back: wherein the feedback period of the RI is substantially greater than or equal to the feedback period after the PMI1 and the PMI2 are jointly encoded; and the PMI1 and the PMI2 are jointly encoded.
  • the feedback period is substantially the same as the feedback period of the CQI.
  • T-RI MRI ⁇ Np; wherein, T-RI is a feedback period of RI, and Np is a feedback period after PMI1 and PMI2 are jointly encoded, and MRI is a positive integer.
  • FIG. 12 shows a case where V-PMI1 independent feedback, H-PMI1 and PMI2 are jointly encoded for feedback; wherein the feedback period of RI is substantially greater than or equal to the feedback period of V-PMI1; V-PMI1 The feedback period is substantially greater than or equal to the feedback period of the joint coding of H-PMI1 and PMI2; the feedback period of the joint coding of H-PMI1 and PMI2 is substantially the same as the feedback period of CQI.
  • the precoding matrix W is obtained by the two-stage precoding matrix (W1 and W2)
  • the rank information RI for determining the precoding matrix and the precoding matrix indication information of the first level precoding matrix are used.
  • PMI1 or V-PMI1 is jointly encoded, it is fed back to the base station.
  • Figure 11 shows the RI and V-PMI1 joint coding for feedback, and the rest of the feedback quantities H-PMI2, PMI2 and CQI are independently fed back; wherein the feedback period after RI is combined with PMI1 or V-PMI1 is substantially The feedback period is greater than or equal to H-PMI1; the feedback period of H-PMI1 is substantially greater than or equal to the feedback period of PMI2; the feedback period of PMI2 is substantially the same as the feedback period of CQI.
  • T-PMI2/2 Np, T-PMI2 is the feedback period of PMI2.
  • the low priority feedback may be discarded by retaining the highest priority feedback with the feedback priority described below. specific:
  • the feedback priority of the RI is greater than the feedback priority of the PMI1;
  • the feedback priority of PMI1 is greater than the feedback priority of PMI2 to PMIN;
  • the feedback priority of PMI1 is greater than the feedback priority of CQI;
  • the feedback priority of V-PMI1 is greater than the feedback priority of H-PMI1 and PMI2 to PMIN.
  • the feedback priority of the RI here includes: the priority of the RI independent feedback or the feedback priority of the RI combined with other channel state information.
  • the feedback priority of PMI1 includes: the priority of PMI1 independent feedback or the feedback priority of PMI1 combined with other channel state information.
  • the feedback priority of V-PMI1 includes: the priority of V-PMI1 independent feedback or the feedback priority of V-PMI1 combined with other channel state information.
  • the feedback priority of the first RI fed back to the first base station is greater than the feedback priority of the second RI fed back to the second base station;
  • the feedback priority of the second RI is greater than the feedback priority of the PMI1 fed back to the first base station;
  • the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the PMI1 fed back to the second base station;
  • the feedback priority of the PMI1 fed back to the second base station is greater than the feedback priority of the PMI2 fed back to the first base station and the first CQI fed back to the first base station;
  • the priority of the V-PMI1 fed back to the second base station is greater than the feedback priority of the PMI1 fed back to the first base station;
  • the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the H-PMI1 fed back to the second base station and the PMI2 fed back to the second base station.
  • the first base station is a base station (ie, a base station having an antenna with 2D MIMO) having a horizontal dimension controllable multiple input multiple output antenna
  • the second base station is a multiple input multiple output with controllable horizontal and vertical dimensions respectively.
  • a base station of an antenna ie, a base station having an antenna of 3D MIMO.
  • precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix for downlink data transmission precoding matrix of each level in the multi-stage precoding matrix
  • the precoding matrix indication information is respectively fed back to the base station or jointly encoded and fed back to the base station, so that a higher codebook feedback load can be supported, and the codebook feedback load of the 3D MIMO antenna array can be satisfied.
  • an information feedback device 130 includes:
  • the obtaining module 131 is configured to acquire precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix used for downlink data transmission;
  • the feedback module 132 is configured to feed back precoding matrix indication information in the multi-stage precoding matrix of each level precoding matrix to the base station or jointly encode and feed back to the base station.
  • the obtaining module 131 includes:
  • a first acquiring unit configured to acquire a dimension of a first-level precoding matrix of a precoding matrix used for downlink data transmission
  • a second acquiring unit configured to acquire the first according to a dimension of the first level precoding matrix Precoding matrix indication information of the precoding matrix
  • a third acquiring unit configured to acquire precoding matrix indication information of the second level precoding matrix to the Nth precoding matrix of the precoding matrix, where the second level precoding matrix to the Nth stage precoding
  • the matrix is obtained from its pre-level precoding matrix, respectively, and N is an integer greater than two.
  • the second acquiring unit is configured to: acquire first precoding matrix indication information PMI1 of the first level precoding matrix; or obtain indication information H- of a horizontal dimension precoding matrix of the first level precoding matrix PMI1 and indication information V-PMI1 of the vertical dimension precoding matrix.
  • the feedback module 132 includes:
  • a first independent feedback unit configured to: first precoding matrix indication information PMI1 of the first level precoding matrix and precoding matrix indication information PMI2 to PMIN of the second level precoding matrix to the Nth precoding matrix respectively Feedback to the base station; or the indication information H-PMI1 of the horizontal-dimensional precoding matrix of the first-stage precoding matrix, the indication information V-PMI1 of the vertical-dimensional pre-coding matrix, and the second-level pre-coding matrix to the N-th pre-
  • the precoding matrix indication information PMI2 to PMIN of the coding matrix are respectively fed back to the base station; or
  • a first joint feedback unit configured to use the first precoding matrix indication information PMI1 of the first level precoding matrix, the second level precoding matrix to the precoding matrix indication information PMI2 to PMIN of the Nth precoding matrix At least two jointly encoded and fed back to the base station; or the feedback module, when jointly encoding the feedback, at least one of the horizontal dimension precoding matrix indication information and the vertical dimension precoding matrix indication information of each level of the precoding matrix
  • the precoding matrix indication information is jointly encoded and fed back to the base station; specifically, the indication information H-PMI1 of the horizontal precoding matrix of the first level precoding matrix, the indication information V-PMI1 of the vertical dimension precoding matrix, and the second At least two of the precoding matrix indication information PMI2 to PMIN of the precoding matrix to the Nth precoding matrix are jointly encoded and fed back to the base station.
  • the feedback module 132 further includes:
  • a second independent feedback unit configured to independently feed back the rank information RI for determining the precoding matrix to the base station; or independently feed back the channel quality information CQI used for determining the precoding matrix to the base station; or
  • a second joint feedback unit configured to jointly encode the rank information RI for determining the precoding matrix and the precoding matrix indication information PMI1 or V-PMI1 of the first precoding matrix, and then feed back to the base station;
  • the channel quality information CQI used to determine the precoding matrix is jointly encoded with at least one of H-PMI1, PMI2 to PMIN, and then fed back to the base station.
  • the feedback period of the RI is substantially greater than or equal to the feedback period of PMI1, H-PMI1, and V-PMI1; the feedback period of PMI1 is substantially greater than or equal to the feedback period of PMI2 to PMIN; the feedback period of PMI2 and the feedback period of CQI are substantially The same is true; the feedback period of V-PMI1 is substantially greater than or equal to the feedback period of H-PMI1.
  • T-RI MRI ⁇ H ⁇ Np
  • T-PMI1 is a feedback period of PMI1 or a feedback period after PMI1 is jointly encoded with other feedback quantities, and other feedback quantities are feedback quantities whose feedback periods are substantially smaller than feedback periods of PMI1 independent feedback;
  • T-PMI2 is the feedback period of PMI2 or CQI;
  • the T-RI is the feedback period of the RI or the feedback period after the RI is combined with other feedback quantities.
  • the other feedback quantity is the feedback quantity of the feedback period whose feedback period is less than RI, and MRI and H are positive integers.
  • the feedback priority of the RI is greater than the feedback priority of the PMI1;
  • the feedback priority of PMI1 is greater than the feedback priority of PMI2 to PMIN;
  • the feedback priority of PMI1 is greater than the feedback priority of CQI;
  • the feedback priority of V-PMI1 is greater than the feedback priority of H-PMI1 and PMI2 to PMIN.
  • the feedback priority of the first RI fed back to the first base station is greater than the feedback priority of the second RI fed back to the second base station when the same terminal needs to perform feedback to the two base stations simultaneously;
  • the feedback priority of the RI is greater than the feedback priority of the PMI1 fed back to the first base station;
  • the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the PMI1 fed back to the second base station;
  • the PMI1 fed back to the second base station The feedback priority is greater than the PMI2 fed back to the first base station and the feedback priority of the first CQI fed back to the first base station;
  • the priority of the V-PMI1 fed back to the second base station is greater than the feedback priority of the PMI1 fed back to the first base station
  • the feedback priority of the PMI1 fed back to the first base station is greater than the feedback priority of the H-PMI1 fed back to the second base station and the PMI2 fed back to the second base station; wherein the first base station is more
  • the embodiment of the device is a device corresponding to the foregoing method embodiment. All the implementation manners in the foregoing method embodiments are applicable to the embodiment of the device, and substantially the same technical effects can be achieved.
  • a terminal includes:
  • the terminal performs the following steps: acquiring precoding matrix indication information of a multi-stage precoding matrix of a precoding matrix for downlink data transmission; and precoding the multi-stage The precoding matrix indication information of each level precoding matrix in the matrix is respectively fed back to the base station or jointly encoded and fed back to the base station.
  • the processor is also used to implement the functions of any other module of the above information feedback device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开文本提供一种信息的反馈方法、装置及终端,涉及通信领域。本公开文本的反馈方法包括:获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;将每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。本公开文本的方案可以满足更高的码本反馈负载的要求。

Description

信息反馈方法、信息反馈装置及终端
相关申请的交叉参考
本申请主张在2015年8月14日在中国提交的中国专利申请号No.201510501769.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,特别是指一种信息反馈方法、信息反馈装置及终端。
背景技术
随着移动互联网的快速发展,业务数据流量急剧增长,给现有无线网络带来了极大的调整压力。对于当前主流通信系统(LTE,Long Term Evolution,长期演进)而言,增加系统容量、降低干扰依然是最重要的发展目标。
与传统的2D MIMO相比,3D MIMO是在传统2D MIMO的基础上,在竖直维度上增加了一维可供利用的维度。对这一维度的信道信息加以有效利用,可以有效地抑制小区间同频用户的干扰,从而提升边缘用户乃至整个小区的平均吞吐量。
在目前的FDD(Frequency Division Dual,频分双工)LTE系统中,下行CSI(Channel State Information,信道状态信息)的获取,需要UE(User Equipment,用户设备或者终端)利用下行参考信号,如利用CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)、CRS(Cell-specific reference signals,小区特定的参考信号)对下行信道进行估计,并反馈RI(rank indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)及CQI(Channel Quality Indicator,信道质量指示)至eNB(演进的节点B,即基站)侧。UE在进行CSI上报时,可以基于周期上报或者基于非周期上报两种方式。周期性上报时,CSI不能超过11比特(bit),因此CSI上报的精细度较粗。
目前LTE系统的周期反馈方式,其设计只考虑到8天线的码本。而3D  MIMO的码本相对于目前的8天线码本,其数量显著增加。因此,UE在进行信道状态信息(CSI)上报时,反馈开销增大。由此可见,现有的反馈模式难以支持更大数量的码本反馈。针对3D MIMO码本的反馈方式设计,在业界中目前尚未提出相关方案。
发明内容
(一)要解决的技术问题
本公开文本要解决的技术问题是提供一种可以支持更高的码本反馈负载的信息的反馈方法、装置及终端。
(二)技术方案
为解决上述技术问题,在第一方面中,本公开文本的实施例提供一种信息反馈方法,包括:
获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及
将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
在一个可行的实施例中,所述获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息的步骤包括:
获取用于下行数据传输的预编码矩阵的第一级预编码矩阵的维度;
根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息;以及
获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数。
在一个可行的实施例中,所述根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息的步骤包括:
获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;或者
获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1。
在一个可行的实施例中,所述将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息联合编码后反馈给基站的步骤包括:
将每一级预编码矩阵的水平维预编码矩阵指示信息、垂直维预编码矩阵指示信息的至少一个与其它预编码矩阵指示信息联合编码后反馈给基站。
在一个可行的实施例中,所述将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站的步骤包括:
将第一级预编码矩阵的第一预编码矩阵指示信息PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
将第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
将第一级预编码矩阵的第一预编码矩阵指示信息PMI1、第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站;或者
将第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站。
在一个可行的实施例中,上述反馈方法还包括:
将用于确定预编码矩阵时的秩信息RI独立反馈给基站;或者
将用于确定所述预编码矩阵时的信道质量信息CQI独立反馈给基站;或者将用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站;或者
将用于确定所述预编码矩阵时的信道质量信息CQI与H-PMI1、PMI2至PMIN中的至少一个联合编码后,反馈给基站。
在一个可行的实施例中,RI的反馈周期实质上大于或者等于PMI1、H-PMI1、V-PMI1的反馈周期;
PMI1的反馈周期实质上大于或者等于PMI2至PMIN的反馈周期;
PMI2的反馈周期与CQI的反馈周期实质上相同;
V-PMI1的反馈周期实质上大于或者等于H-PMI1的反馈周期。
在一个可行的实施例中,T-RI=MRI×H×Np;
T-PMI1=H×Np;
其中,T-PMI1为PMI1的反馈周期或者为PMI1与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期实质上小于PMI1独立反馈时的反馈周期的反馈量;
T-PMI2为PMI2或者CQI的反馈周期;
Np=T-PMI2/2;
T-RI为RI的反馈周期或者为RI与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于RI的反馈周期的反馈量,MRI和H为正整数。
在一个可行的实施例中,RI的反馈优先级大于PMI1的反馈优先级;
PMI1的反馈优先级大于PMI2至PMIN的反馈优先级;
PMI1的反馈优先级大于CQI的反馈优先级;以及
V-PMI1的反馈优先级大于H-PMI1和PMI2至PMIN的反馈优先级。
在一个可行的实施例中,当同一个终端需要向两个基站同时进行反馈时,
向第一基站反馈的第一RI的反馈优先级大于向第二基站反馈的第二RI的反馈优先级;
第二RI的反馈优先级大于向第一基站反馈的PMI1的反馈优先级;
向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的PMI1的反馈优先级;
向第二基站反馈的PMI1的反馈优先级大于向第一基站反馈的PMI2以及向第一基站反馈的第一CQI的反馈优先级;
向第二基站反馈的V-PMI1的优先级大于向第一基站反馈的PMI1的反馈优先级;以及
向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的H-PMI1和向第二基站反馈的PMI2的反馈优先级,
其中,所述第一基站为具有水平维度可控的多输入多输出天线的基站,第二基站为具有水平维度和垂直维度分别可控的多输入多输出天线的基站。
在第二方面中,本公开文本的实施例还提供一种信息的反馈装置,包括:
获取模块,用于获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及
反馈模块,用于将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
在一个可行的实施例中,所述获取模块包括:
第一获取单元,用于获取用于下行数据传输的预编码矩阵的第一级预编码矩阵的维度;
第二获取单元,用于根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息;以及
第三获取单元,用于获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数。
在一个可行的实施例中,所述第二获取单元用于:获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;或者获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1。
在一个可行的实施例中,所述反馈模块在联合编码反馈时,将每一级预编码矩阵的水平维预编码矩阵指示信息、垂直维预编码矩阵指示信息的至少一个与其它预编码矩阵指示信息联合编码后反馈给基站。
在一个可行的实施例中,所述反馈模块包括:
第一独立反馈单元,用于将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
第一联合反馈单元,用于将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1、第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信 息PMI2至PMIN中的至少两个联合编码后反馈给基站;或者将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站。
在一个可行的实施例中,所述反馈模块还包括:
第二独立反馈单元,用于将用于确定预编码矩阵时的秩信息RI独立反馈给基站;或者将用于确定所述预编码矩阵时的信道质量信息CQI独立反馈给基站;或者
第二联合反馈单元,用于将用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站;或者将用于确定所述预编码矩阵时的信道质量信息CQI与H-PMI1、PMI2至PMIN中的至少一个联合编码后,反馈给基站。
在一个可行的实施例中,RI的反馈周期实质上大于或者等于PMI1、H-PMI1、V-PMI1的反馈周期;
PMI1的反馈周期实质上大于或者等于PMI2至PMIN的反馈周期;
PMI2的反馈周期与CQI的反馈周期实质上相同;
V-PMI1的反馈周期实质上大于或者等于H-PMI1的反馈周期。
在一个可行的实施例中,T-RI=MRI×H×Np;
T-PMI1=H×Np;
其中,T-PMI1为PMI1的反馈周期或者为PMI1与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期实质上小于PMI1独立反馈时的反馈周期的反馈量;
T-PMI2为PMI2或者CQI的反馈周期;
Np=T-PMI2/2;
T-RI为RI的反馈周期或者为RI与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于RI的反馈周期的反馈量,MRI和H为正整数。
在一个可行的实施例中,RI的反馈优先级大于PMI1的反馈优先级;
PMI1的反馈优先级大于PMI2至PMIN的反馈优先级;
PMI1的反馈优先级大于CQI的反馈优先级;以及
V-PMI1的反馈优先级大于H-PMI1和PMI2至PMIN的反馈优先级。
在一个可行的实施例中,当同一个终端需要向两个基站同时进行反馈时,所述反馈模块向第一基站反馈的第一RI的反馈优先级大于向第二基站反馈的第二RI的反馈优先级;第二RI的反馈优先级大于向第一基站反馈的PMI1的反馈优先级;向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的PMI1的反馈优先级;向第二基站反馈的PMI1的反馈优先级大于向第一基站反馈的PMI2以及向第一基站反馈的第一CQI的反馈优先级;向第二基站反馈的V-PMI1的优先级大于向第一基站反馈的PMI1的反馈优先级;向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的H-PMI1和向第二基站反馈的PMI2的反馈优先级;其中,所述第一基站为具有水平维度可控的多输入多输出天线的基站,第二基站为具有水平维度和垂直维度分别可控的多输入多输出天线的基站。
在第三方面中,本公开文本的实施例还提供一种终端,包括:
处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下的步骤:获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
(三)有益效果
本公开文本的有益效果如下:
上述方案通过获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息,并将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站,从而可以支持更高的码本反馈负载,满足3D MIMO天线阵列的码本反馈负载。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中 的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为2D MIMO双极化天线阵列的示意图;
图2为2D MIMO单极化天线阵列的示意图;
图3为3D MIMO双极化天线阵列的示意图;
图4为3D MIMO单极化天线阵列的示意图;
图5为本公开文本的第一实施例所提供的信息反馈方法的流程示意图;
图6和图7为本公开文本的第二实施例所提供的信息反馈方法的流程示意图;
图8为本公开文本的第三实施例所提供的信息反馈方法的流程示意图;
图9为在本公开文本的第三实施例中关于反馈的第一种情况示意图;
图10为在本公开文本的第三实施例中关于反馈的第二种情况示意图;
图11为在本公开文本的第三实施例中关于反馈的第三种情况示意图;
图12为在本公开文本的第三实施例中关于反馈的第四种情况示意图;
图13为本公开文本的第四实施例所提供的信息反馈装置的结构示意图;以及
图14为本公开文本的第五实施例所提供的终端的结构示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何 顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
下面将结合本公开文本实施例中的附图,对本公开文本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
为使本公开文本要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1和图2所示,当前的具有水平维度可控的2D MIMO(Multiple-Input Multiple-Output,多输入多输出)智能天线在发射端和接收端分别使用多个发射天线和接收天线,主要利用水平方向的空间自由度来获得多天线的增益。其中,图1为水平排列的双极化天线,而图2为水平排列的单极化天线。
作为无线新技术的具有水平维度可控和垂直维度可控的3D MIMO,得到了越来越多的关注。如图3和图4所示,3D MIMO技术在不改变现有天线尺寸的条件下,可以将每个垂直的天线阵子分割成多个阵子,从而开发出MIMO的另一个垂直方向的空间维度。其中,图3为水平和竖直排列的双极化天线,图4为水平和竖直排列的单极化天线。3D MIMO将MIMO技术推向一个更高的发展阶段,为LTE传输技术性能提升开拓出了更广阔的空间,使得进一步降低小区间干扰、提高系统吞吐量和频谱效率成为可能。
在现有的蜂窝系统当中,基站发射端波束仅能在水平维度上进行调整,而垂直维度对每个用户都是固定的下倾角。因此各种波束赋形/预编码技术等均是基于水平维度信道信息的。事实上,由于信道是3D的,固定下倾角的方法往往不能使系统的吞吐量达到最优。随着小区用户数的增多,用户分布在小区内的不同区域,包括小区中心和小区边缘。使用传统的2D波束赋形只能根据水平维度的信道信息进行水平方向上的区分,而不能在竖直维度对 用户进行区分,对系统性能造成了严重的干扰。
与传统的2D MIMO相比,3D MIMO是在传统2D MIMO的基础上,在竖直维度上增加了一维可供利用的维度。对这一维度的信道信息加以有效利用,可以有效地抑制小区间同频用户的干扰,从而提升边缘用户乃至整个小区的平均吞吐量。
在目前的FDD(Frequency Division Dual,频分双工)LTE系统中,下行CSI(Channel State Information,信道状态信息)的获取,需要UE(User Equipment,用户设备或者终端)利用下行参考信号,如利用CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)、CRS(Cell-specific reference signals,小区特定的参考信号)对下行信道进行估计,并反馈RI(rank indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)及CQI(Channel Quality Indicator,信道质量指示)至eNB(演进的节点B,即基站)侧。UE在进行CSI上报时,可以基于周期上报或者基于非周期上报两种方式。周期性上报时,CSI不能超过11bit,CSI上报的精细度较粗。
目前LTE系统的周期反馈方式,其设计只考虑到8天线的码本。而3D MIMO的码本相对于目前的8天线码本,其数量显著增加,UE在进行信道状态信息(CSI)上报时,反馈开销增大,现有的反馈模式难以支持更大数量的码本反馈。针对3D MIMO码本的反馈方式设计,在业界中目前尚未提出相关方案。
本公开文本针对现有技术中没有关于支持更高的码本反馈负载的信道状态信息的反馈方案的问题,本公开文本的实施例提供一种信息反馈方法、信息反馈装置及终端,从而可以支持更高的码本反馈负载,满足3D MIMO天线阵列的码本反馈负载。
第一实施例
如图5所示,本公开文本的实施例提供一种信息的反馈方法,包括:
步骤51,获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;
步骤52,将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵 指示信息分别反馈给基站或者联合编码后反馈给基站。
这里,指示信息的联合编码是指联合编码后的信息的不同比特区域对应不同的指示信息。例如,联合编码后的指示信息中的前N1个比特对应第一指示信息,N1+1至N2个比特对应第二指示信息,依次类推。
或者,联合编码后的指示信息还可以用于指示所有指示信息的联合状态,即将每个指示信息的所有状态组合后,再统一进行编码。
在该实施例中,用于下行数据传输的预编码矩阵W由多级预编码矩阵W1、W2、...、WN运算得到。对于3D MIMO天线阵列的码本的设计,具有多种方案,如由两级预编码矩阵运算得到时,W=W1×W2,W为预编码矩阵,W1为第一级预编码矩阵、W2为第二级预编码矩阵。
其中,
Figure PCTCN2016089416-appb-000001
Figure PCTCN2016089416-appb-000002
:表示水平维度的第K维预编码矩阵;
Figure PCTCN2016089416-appb-000003
:表示垂直维度的第l维预编码矩阵。
其中,每个维度的预编码矩阵由一组列向量构成,而每个列向量由一个离散傅里叶变换DFT向量生成。
由于W1是水平与垂直两个预编码矩阵生成的,因此可以对其使用两个PMI反馈,其中一个PMI反馈指示垂直维预编码矩阵,而另一个PMI反馈指示水平维预编码矩阵。
W2实现列选择,是从W1的向量组中选出r个向量,这个r就是RI确定的,
Figure PCTCN2016089416-appb-000004
其中,φi表示相位调整因子,Yi表示波束选择向量。
UE根据信道估计结果,对每个码字(预编码矩阵)都可以计算出相应的CQI。当确定了RI与PMI之后,此码字对应的CQI也一并反馈给eNB。该实施例通过获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息,将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站,从而可以支持更高 的码本反馈负载,满足3D MIMO天线阵列的码本反馈负载。
第二实施例
如图6所示,一种信息反馈方法,包括:
步骤61,获取用于下行数据传输的预编码矩阵的第一级预编码矩阵的维度;
步骤62,根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息;
步骤63,获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数;以及
步骤64,将每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
如图7所示,在该实施例中,步骤62在具体实现时,可以包括:步骤621,根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;当第一级预编码矩阵W1满足或者不满足水平维度和垂直维度的Kronecker积(克罗内克积是两个任意大小的矩阵间的运算)的情况时,该W1对应于一个预编码矩阵指示信息,即PMI1。
步骤62在具体实现时,可以包括:步骤622,获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1;当第一级预编码矩阵W1满足水平维度和垂直维度的Kronecker积的情况时,该W1对应于一个水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1。
相应的,该实施例中,在进行独立反馈时,步骤64包括:
步骤641,将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
步骤642,将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站。
另一方面,在进行联合反馈时,步骤64包括:
步骤643,将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1、第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站;或者
步骤644,将每一级预编码矩阵的预编码矩阵指示信息联合编码后反馈给基站时,将每一级预编码矩阵的水平维预编码矩阵指示信息、垂直维预编码矩阵指示信息的至少一个与其它预编码矩阵指示信息联合编码后反馈给基站。
在进行具体的联合编码反馈时,将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站。
第三实施例
如图8所示,一种信息反馈方法,包括:
步骤811,获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;或者步骤812,获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1;
步骤82,获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数;
步骤831,将用于确定预编码矩阵时的秩信息RI独立反馈给基站;或者
步骤832,将用于确定所述预编码矩阵时的信道质量信息CQI独立反馈给基站;或者
步骤833,将用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站;或者
步骤834,将用于确定所述预编码矩阵时的信道质量信息CQI与H-PMI1、PMI2至PMIN中的至少一个联合编码后,反馈给基站。
上述步骤831、832、833以及834中,各反馈量的反馈周期具有如下关系:RI的反馈周期实质上大于或者等于PMI1、H-PMI1、V-PMI1的反馈周期;
PMI1的反馈周期实质上大于或者等于PMI2至PMIN的反馈周期;
PMI2的反馈周期与CQI的反馈周期实质上相同;以及
V-PMI1的反馈周期实质上大于或者等于H-PMI1的反馈周期。
具体的,T-RI=MRI×H×Np;
T-PMI1=H×Np;
其中,T-PMI1为PMI1的反馈周期或者为PMI1与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于PMI1独立反馈时的反馈周期的反馈量;T-PMI2为PMI2或者CQI的反馈周期;
Np=T-PMI2/2;
T-RI为RI的反馈周期或者为RI与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于RI的反馈周期的反馈量,MRI和H为正整数。
如图9所示,具体反馈情况如下:
当预编码矩阵W由两级预编码矩阵(W1和W2)运算得到时,将每一级预编码矩阵的预编码矩阵指示信息PMI1、PMI2、用于确定预编码矩阵时的秩信息RI、用于确定所述预编码矩阵时的信道质量信息CQI分别独立反馈给基站;其中,RI的反馈周期实质上大于或者等于PMI1的反馈周期;PMI1的反馈周期实质上大于或者等于PMI2的反馈周期;PMI2的反馈周期与CQI的反馈周期实质上相同。
具体的,T-PMI1=H×Np;T-RI=MRI×H×Np;其中,T-PMI1为PMI1的反馈周期,T-PMI2为PMI2或者CQI的反馈周期,T-RI为RI的反馈周期,MRI和H为正整数,T-PMI2/2=Np。
如图10,示出了RI与CQI独立反馈,PMI1与PMI2联合编码后反馈的情况:其中,RI的反馈周期实质上大于或者等于PMI1与PMI2联合编码后的反馈周期;PMI1与PMI2联合编码后的反馈周期与CQI的反馈周期实质上相同。
具体的,T-RI=MRI×Np;其中,T-RI为RI的反馈周期,Np为PMI1与PMI2联合编码后的反馈周期,MRI为正整数。
图12示出了V-PMI1独立反馈,H-PMI1与PMI2联合编码进行反馈的情况;其中,RI的反馈周期实质上大于或者等于V-PMI1的反馈周期;V-PMI1 的反馈周期实质上大于或者等于H-PMI1与PMI2联合编码的反馈周期;H-PMI1与PMI2联合编码的反馈周期与CQI的反馈周期实质上相同。
具体的,T1=H×Np;T2=MRI×H×Np;其中,T2为RI的反馈周期,T1为V-PMI1的反馈周期,Np为H-PMI1与PMI2联合编码的反馈周期,MRI和H为正整数。
如图11所示,当预编码矩阵W由两级预编码矩阵(W1和W2)运算得到时,用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站。
图11中示出了RI与V-PMI1联合编码进行反馈,而其余的反馈量H-PMI2、PMI2以及CQI独立反馈的情况;其中,RI与PMI1或者V-PMI1联合编码后的反馈周期实质上大于或者等于H-PMI1的反馈周期;H-PMI1的反馈周期实质上大于或者等于PMI2的反馈周期;PMI2的反馈周期与CQI的反馈周期实质上相同。
具体的,T3=H×Np;T4=MRI×H×Np;其中,T3为H-PMI1的反馈周期,T4为RI与PMI1或者V-PMI1联合编码后的反馈周期,MRI和H为正整数,T-PMI2/2=Np,T-PMI2为PMI2的反馈周期。
当反馈时序上在某一子帧出现反馈冲突时,可以按照以下述反馈优先级保留最高优先级的反馈,丢弃低优先级反馈。具体的:
RI的反馈优先级大于PMI1的反馈优先级;
PMI1的反馈优先级大于PMI2至PMIN的反馈优先级;
PMI1的反馈优先级大于CQI的反馈优先级;以及
V-PMI1的反馈优先级大于H-PMI1和PMI2至PMIN的反馈优先级。
这里的RI的反馈优先级包括:RI独立反馈的优先级或者RI与其它信道状态信息联合编码的反馈优先级。
同样的,PMI1的反馈优先级包括:PMI1独立反馈的优先级或者PMI1与其它信道状态信息联合编码的反馈优先级。
同样的,V-PMI1的反馈优先级包括:V-PMI1独立反馈的优先级或者V-PMI1与其它信道状态信息联合编码的反馈优先级。
上述所有实施例,当同一个终端需要向两个基站同时进行反馈时,
向第一基站反馈的第一RI的反馈优先级大于向第二基站反馈的第二RI的反馈优先级;
第二RI的反馈优先级大于向第一基站反馈的PMI1的反馈优先级;
向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的PMI1的反馈优先级;
向第二基站反馈的PMI1的反馈优先级大于向第一基站反馈的PMI2以及向第一基站反馈的第一CQI的反馈优先级;
向第二基站反馈的V-PMI1的优先级大于向第一基站反馈的PMI1的反馈优先级;以及
向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的H-PMI1和向第二基站反馈的PMI2的反馈优先级。
其中,所述第一基站为具有水平维度可控的多输入多输出天线的基站(即具有2D MIMO的天线的基站),第二基站为具有水平维度和垂直维度分别可控的多输入多输出天线的基站(即具有3D MIMO的天线的基站)。
本公开文本的上述所有实施例,通过获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息,将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站,从而可以支持更高的码本反馈负载,满足3D MIMO天线阵列的码本反馈负载。
第四实施例
如图13所示,一种信息的反馈装置130,包括:
获取模块131,用于获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;
反馈模块132,用于将每一级预编码矩阵的所述多级预编码矩阵当中的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
所述获取模块131包括:
第一获取单元,用于获取用于下行数据传输的预编码矩阵的第一级预编码矩阵的维度;
第二获取单元,用于根据所述第一级预编码矩阵的维度,获取所述第一 级预编码矩阵的预编码矩阵指示信息;以及
第三获取单元,用于获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数。
所述第二获取单元具体用于:获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;或者获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1。
所述反馈模块132包括:
第一独立反馈单元,用于将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
第一联合反馈单元,用于将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1、第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站;或者所述反馈模块在联合编码反馈时,将每一级预编码矩阵的水平维预编码矩阵指示信息、垂直维预编码矩阵指示信息的至少一个与其它预编码矩阵指示信息联合编码后反馈给基站;具体的将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站。
其中,所述反馈模块132还包括:
第二独立反馈单元,用于将用于确定预编码矩阵时的秩信息RI独立反馈给基站;或者将用于确定所述预编码矩阵时的信道质量信息CQI独立反馈给基站;或者
第二联合反馈单元,用于将用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站; 或者将用于确定所述预编码矩阵时的信道质量信息CQI与H-PMI1、PMI2至PMIN中的至少一个联合编码后,反馈给基站。
其中,RI的反馈周期实质上大于或者等于PMI1、H-PMI1、V-PMI1的反馈周期;PMI1的反馈周期实质上大于或者等于PMI2至PMIN的反馈周期;PMI2的反馈周期与CQI的反馈周期实质上相同;V-PMI1的反馈周期实质上大于或者等于H-PMI1的反馈周期。
具体的,T-RI=MRI×H×Np;
T-PMI1=H×Np;
其中,T-PMI1为PMI1的反馈周期或者为PMI1与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期实质上小于PMI1独立反馈时的反馈周期的反馈量;
T-PMI2为PMI2或者CQI的反馈周期;
Np=T-PMI2/2;
T-RI为RI的反馈周期或者为RI与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于RI的反馈周期的反馈量,MRI和H为正整数。
其中,RI的反馈优先级大于PMI1的反馈优先级;
PMI1的反馈优先级大于PMI2至PMIN的反馈优先级;
PMI1的反馈优先级大于CQI的反馈优先级;以及
V-PMI1的反馈优先级大于H-PMI1和PMI2至PMIN的反馈优先级。
其中,当同一个终端需要向两个基站同时进行反馈时,所述反馈模块向第一基站反馈的第一RI的反馈优先级大于向第二基站反馈的第二RI的反馈优先级;第二RI的反馈优先级大于向第一基站反馈的PMI1的反馈优先级;向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的PMI1的反馈优先级;向第二基站反馈的PMI1的反馈优先级大于向第一基站反馈的PMI2以及向第一基站反馈的第一CQI的反馈优先级;向第二基站反馈的V-PMI1的优先级大于向第一基站反馈的PMI1的反馈优先级;向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的H-PMI1和向第二基站反馈的PMI2的反馈优先级;其中,所述第一基站为具有水平维度可控的多输入多输出天线的基站,第二基站为具有水平维度和垂直维度分别可控的多输入多输出天线的 基站。
需要说明的是,该装置的实施例是与上述方法实施例一一对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到基本上相同的技术效果。
第五实施例
如图14所示,一种终端,包括:
处理器141;以及通过总线接口142与所述处理器相连接的存储器143,所述存储器143用于存储所述处理器142在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下的步骤:获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
该处理器还用于实现上述信息反馈装置的其它任意一个模块的功能。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
以上所述是本公开文本的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开文本的保护范围。

Claims (21)

  1. 一种信息反馈方法,包括:
    获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及
    将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
  2. 根据权利要求1所述的反馈方法,其中,所述获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息的步骤包括:
    获取用于下行数据传输的预编码矩阵的第一级预编码矩阵的维度;
    根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息;以及
    获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数。
  3. 根据权利要求2所述的反馈方法,其中,所述根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息的步骤包括:
    获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;或者
    获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1。
  4. 根据权利要求1至3中任一项所述的反馈方法,其中,所述将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息联合编码后反馈给基站的步骤包括:
    将每一级预编码矩阵的水平维预编码矩阵指示信息、垂直维预编码矩阵指示信息的至少一个与其它预编码矩阵指示信息联合编码后反馈给基站。
  5. 根据权利要求1至3中任一项所述的反馈方法,其中,所述将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站的步骤包括:
    将第一级预编码矩阵的第一预编码矩阵指示信息PMI1以及第二级预编 码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
    将第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
    将第一级预编码矩阵的第一预编码矩阵指示信息PMI1、第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站;或者
    将第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站。
  6. 根据权利要求5所述的反馈方法,还包括:
    将用于确定预编码矩阵时的秩信息RI独立反馈给基站;或者
    将用于确定所述预编码矩阵时的信道质量信息CQI独立反馈给基站;或者
    将用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站;或者
    将用于确定所述预编码矩阵时的信道质量信息CQI与H-PMI1、PMI2至PMIN中的至少一个联合编码后,反馈给基站。
  7. 根据权利要求6所述的反馈方法,其中,
    RI的反馈周期实质上大于或者等于PMI1、H-PMI1、V-PMI1的反馈周期;
    PMI1的反馈周期实质上大于或者等于PMI2至PMIN的反馈周期;
    PMI2的反馈周期与CQI的反馈周期实质上相同;以及
    V-PMI1的反馈周期实质上大于或者等于H-PMI1的反馈周期。
  8. 根据权利要求7所述的反馈方法,其中,
    T-RI=MRI×H×Np;
    T-PMI1=H×Np;
    其中,T-PMI1为PMI1的反馈周期或者为PMI1与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期实质上小于PMI1独立反馈时的反馈 周期的反馈量;
    T-PMI2为PMI2或者CQI的反馈周期;
    Np=T-PMI2/2;
    T-RI为RI的反馈周期或者为RI与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于RI的反馈周期的反馈量,MRI和H为正整数。
  9. 根据权利要求6所述的反馈方法,其中,
    RI的反馈优先级大于PMI1的反馈优先级;
    PMI1的反馈优先级大于PMI2至PMIN的反馈优先级;
    PMI1的反馈优先级大于CQI的反馈优先级;以及
    V-PMI1的反馈优先级大于H-PMI1和PMI2至PMIN的反馈优先级。
  10. 根据权利要求6所述的反馈方法,其中,当同一个终端需要向两个基站同时进行反馈时,
    向第一基站反馈的第一RI的反馈优先级大于向第二基站反馈的第二RI的反馈优先级;
    所述第二RI的反馈优先级大于向第一基站反馈的PMI1的反馈优先级;
    向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的PMI1的反馈优先级;
    向第二基站反馈的PMI1的反馈优先级大于向第一基站反馈的PMI2以及向第一基站反馈的第一CQI的反馈优先级;
    向第二基站反馈的V-PMI1的优先级大于向第一基站反馈的PMI1的反馈优先级;以及
    向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的H-PMI1和向第二基站反馈的PMI2的反馈优先级,
    其中,所述第一基站为具有水平维度可控的多输入多输出天线的基站,第二基站为具有水平维度和垂直维度分别可控的多输入多输出天线的基站。
  11. 一种信息反馈装置,包括:
    获取模块,用于获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及
    反馈模块,用于将所述多级预编码矩阵当中的每一级预编码矩阵的预编 码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
  12. 根据权利要求11所述的反馈装置,其中,所述获取模块包括:
    第一获取单元,用于获取用于下行数据传输的预编码矩阵的第一级预编码矩阵的维度;
    第二获取单元,用于根据所述第一级预编码矩阵的维度,获取所述第一级预编码矩阵的预编码矩阵指示信息;以及
    第三获取单元,用于获取所述预编码矩阵的第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息;其中,所述第二级预编码矩阵至第N级预编码矩阵分别根据其前一级预编码矩阵得到,N为大于2的整数。
  13. 根据权利要求12所述的反馈装置,其中,所述第二获取单元用于:
    获取所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1;或者
    获取所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1以及垂直维预编码矩阵的指示信息V-PMI1。
  14. 根据权利要求11至13中任一项所述的反馈装置,其中,所述反馈模块在联合编码反馈时,将每一级预编码矩阵的水平维预编码矩阵指示信息、垂直维预编码矩阵指示信息的至少一个与其它预编码矩阵指示信息联合编码后反馈给基站。
  15. 根据权利要求11至13中任一项所述的反馈装置,其中,所述反馈模块包括:
    第一独立反馈单元,用于将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN分别反馈给基站;或者
    第一联合反馈单元,用于将所述第一级预编码矩阵的第一预编码矩阵指示信息PMI1、第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站;或者将所述第一级预编码矩阵的水平维预编码矩阵的指示信息H-PMI1、垂直维预编码矩阵的指 示信息V-PMI1以及第二级预编码矩阵至第N级预编码矩阵的预编码矩阵指示信息PMI2至PMIN中的至少两个联合编码后反馈给基站。
  16. 根据权利要求15所述的反馈装置,其中,所述反馈模块还包括:
    第二独立反馈单元,用于将用于确定预编码矩阵时的秩信息RI独立反馈给基站;或者将用于确定所述预编码矩阵时的信道质量信息CQI独立反馈给基站;或者
    第二联合反馈单元,用于将用于确定预编码矩阵时的秩信息RI与第一级预编码矩阵的预编码矩阵指示信息PMI1或V-PMI1联合编码后,反馈给基站;或者将用于确定所述预编码矩阵时的信道质量信息CQI与H-PMI1、PMI2至PMIN中的至少一个联合编码后,反馈给基站。
  17. 根据权利要求16所述的反馈装置,其中,
    RI的反馈周期实质上大于或者等于PMI1、H-PMI1、V-PMI1的反馈周期;
    PMI1的反馈周期实质上大于或者等于PMI2至PMIN的反馈周期;
    PMI2的反馈周期与CQI的反馈周期实质上相同;以及
    V-PMI1的反馈周期实质上大于或者等于H-PMI1的反馈周期。
  18. 根据权利要求17所述的反馈装置,其中,
    T-RI=MRI×H×Np;
    T-PMI1=H×Np;
    其中,T-PMI1为PMI1的反馈周期或者为PMI1与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期实质上小于PMI1独立反馈时的反馈周期的反馈量;
    T-PMI2为PMI2或者CQI的反馈周期;
    Np=T-PMI2/2;
    T-RI为RI的反馈周期或者为RI与其它反馈量联合编码后的反馈周期,其它反馈量为反馈周期小于RI的反馈周期的反馈量,MRI和H为正整数。
  19. 根据权利要求16所述的反馈装置,其中,
    RI的反馈优先级大于PMI1的反馈优先级;
    PMI1的反馈优先级大于PMI2至PMIN的反馈优先级;
    PMI1的反馈优先级大于CQI的反馈优先级;以及
    V-PMI1的反馈优先级大于H-PMI1和PMI2至PMIN的反馈优先级。
  20. 根据权利要求16所述的反馈装置,其中,当同一个终端需要向两个基站同时进行反馈时,所述反馈模块向第一基站反馈的第一RI的反馈优先级大于向第二基站反馈的第二RI的反馈优先级;所述第二RI的反馈优先级大于向第一基站反馈的PMI1的反馈优先级;向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的PMI1的反馈优先级;向第二基站反馈的PMI1的反馈优先级大于向第一基站反馈的PMI2以及向第一基站反馈的第一CQI的反馈优先级;向第二基站反馈的V-PMI1的优先级大于向第一基站反馈的PMI1的反馈优先级;向第一基站反馈的PMI1的反馈优先级大于向第二基站反馈的H-PMI1和向第二基站反馈的PMI2的反馈优先级;其中,所述第一基站为具有水平维度可控的多输入多输出天线的基站,第二基站为具有水平维度和垂直维度分别可控的多输入多输出天线的基站。
  21. 一种终端,包括:
    处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下的步骤:
    获取用于下行数据传输的预编码矩阵的多级预编码矩阵的预编码矩阵指示信息;以及
    将所述多级预编码矩阵当中的每一级预编码矩阵的预编码矩阵指示信息分别反馈给基站或者联合编码后反馈给基站。
PCT/CN2016/089416 2015-08-14 2016-07-08 信息反馈方法、信息反馈装置及终端 WO2017028641A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187006006A KR102204146B1 (ko) 2015-08-14 2016-07-08 정보 피드백 방법, 정보 피드백 장치 및 단말기
EP16836505.4A EP3327951A4 (en) 2015-08-14 2016-07-08 Information feedback method, information feedback device and terminal
JP2018507608A JP6723345B2 (ja) 2015-08-14 2016-07-08 情報フィードバック方法、情報フィードバック装置および端末
US15/752,576 US20180262245A1 (en) 2015-08-14 2016-07-08 Information feedback method, information feedback device and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510501769.6A CN106470061B (zh) 2015-08-14 2015-08-14 信息的反馈方法、装置及终端
CN201510501769.6 2015-08-14

Publications (1)

Publication Number Publication Date
WO2017028641A1 true WO2017028641A1 (zh) 2017-02-23

Family

ID=58051958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089416 WO2017028641A1 (zh) 2015-08-14 2016-07-08 信息反馈方法、信息反馈装置及终端

Country Status (6)

Country Link
US (1) US20180262245A1 (zh)
EP (1) EP3327951A4 (zh)
JP (1) JP6723345B2 (zh)
KR (1) KR102204146B1 (zh)
CN (1) CN106470061B (zh)
WO (1) WO2017028641A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112671505B (zh) 2019-10-16 2023-04-11 维沃移动通信有限公司 编码方法、译码方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387006A (zh) * 2010-09-01 2012-03-21 夏普株式会社 信道状态信息反馈资源分配方法和信道状态信息反馈方法
CN103873197A (zh) * 2014-03-11 2014-06-18 重庆邮电大学 空间相关性与分簇相结合的3d mimo有限反馈开销降低方法
WO2014129858A1 (ko) * 2013-02-24 2014-08-28 엘지전자 주식회사 무선 통신 시스템에서 3-차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
CN104184560A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 信道状态信息反馈方法和终端
WO2015020373A1 (ko) * 2013-08-05 2015-02-12 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867447B (zh) * 2010-04-30 2015-09-16 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
CN102468929B (zh) * 2010-11-15 2014-10-08 中国移动通信集团公司 下行mimo宽带信道状态信息的反馈方法、装置及设备
CN102368698B (zh) * 2011-11-10 2014-04-16 电信科学技术研究院 一种预编码矩阵指示pmi信息的传输方法及装置
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
US9769677B2 (en) * 2012-07-02 2017-09-19 Industrial Technology Research Institute Method and apparatus for bit-adaptive precoding matrix indicator feedback
US20150036610A1 (en) * 2012-08-28 2015-02-05 Lg Electronics Inc. Method for providing feedback of channel state information in wireless communication system and apparatus for same
WO2014065564A1 (en) * 2012-10-23 2014-05-01 Lg Electronics Inc. Method for feeding back channel state information in wireless communication system and apparatus therefor
JP5993518B2 (ja) * 2012-11-09 2016-09-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報をフィードバックする方法及びそのための装置
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
WO2014113992A1 (zh) * 2013-01-28 2014-07-31 富士通株式会社 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站
JP6264451B2 (ja) * 2013-09-30 2018-01-24 富士通株式会社 情報フィードバック方法、コードブック確定方法、ユーザ装置及び基地局
US9667328B2 (en) * 2014-03-31 2017-05-30 Samsung Electronics Co., Ltd. Precoding matrix codebook design and periodic channel state information feedback for advanced wireless communication systems
US10158414B2 (en) * 2015-06-18 2018-12-18 Samsung Electronics Co., Ltd. Advanced beamforming and feedback methods for MIMO wireless communication systems
WO2017014486A1 (ko) * 2015-07-21 2017-01-26 엘지전자 주식회사 무선 통신 시스템에서 csi를 보고하는 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387006A (zh) * 2010-09-01 2012-03-21 夏普株式会社 信道状态信息反馈资源分配方法和信道状态信息反馈方法
WO2014129858A1 (ko) * 2013-02-24 2014-08-28 엘지전자 주식회사 무선 통신 시스템에서 3-차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
CN104184560A (zh) * 2013-05-24 2014-12-03 中兴通讯股份有限公司 信道状态信息反馈方法和终端
WO2015020373A1 (ko) * 2013-08-05 2015-02-12 엘지전자 주식회사 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
CN103873197A (zh) * 2014-03-11 2014-06-18 重庆邮电大学 空间相关性与分簇相结合的3d mimo有限反馈开销降低方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327951A4 *
TEXAS INSTRUMENTS.: "Progressing on CSI Feedback for Rel.10 Downlink MIMO", 3GPPTSG RAN WG1 62 RL-104475, 27 August 2010 (2010-08-27), pages 1 - 4, XP050449798 *

Also Published As

Publication number Publication date
EP3327951A4 (en) 2018-08-08
CN106470061B (zh) 2019-09-17
KR102204146B1 (ko) 2021-01-18
JP6723345B2 (ja) 2020-07-15
KR20180034642A (ko) 2018-04-04
CN106470061A (zh) 2017-03-01
JP2018529268A (ja) 2018-10-04
EP3327951A1 (en) 2018-05-30
US20180262245A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP7336489B2 (ja) 更に最適化されたオーバーヘッドを有するマルチビームコードブック
CN107733493B (zh) 用于确定预编码矩阵的方法和装置
CN109004964B (zh) 用于确定无线通信网络中的预编码器参数的方法和设备
CN106165314B (zh) 用于在无线通信系统中报告信道状态信息的方法和装置
CN104396153B (zh) 用于蜂窝无线通信系统的信道状态信息码字构造的方法和装置
CN107888323B (zh) 一种信道状态信息的传输方法和设备
RU2537273C2 (ru) Разработка и структура кодовой книги для многогранулярной обратной связи
CN105210405B (zh) 报告信道状态信息的方法、用户设备和基站
CN106797242B (zh) 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
EP3800798B1 (en) Information feedback method, user equipment, and network device
JP6235704B2 (ja) 4アンテナプリコーディングマトリックスを送信するための方法、ユーザ機器、および基地局
US20160204842A1 (en) Information Feedback Method, Codebook Determination Method, UE and Base Station
EP3345307B1 (en) Precoding a transmission from a one-dimensional antenna array that includes co polarized antenna elements aligned in the array's only spatial dimension
US10582479B2 (en) Resource selection method and apparatus, and electronic device
AU2015406856B2 (en) Precoding information sending and feedback method and apparatus
CN113228527A (zh) 用于无线通信网络中的反馈报告的方法和装置
JP2013502111A (ja) プリコーディング方法、システム及びプリコーディングコードブックの構造方法
WO2017167156A1 (zh) Dmrs的发送方法及装置
CN104321983A (zh) 传输预编码矩阵的方法、用户设备和基站
WO2014169873A1 (zh) 一种预编码矩阵反馈方法和终端
KR20160003201A (ko) 정보 피드백 방법, ue 및 기지국
CN107707285B (zh) 信道状态信息的发送方法、接收方法以及装置
WO2017054192A1 (zh) 一种基于码本反馈的通信方法和装置
CN109428636B (zh) 波束指示和上报方法、网络设备、终端
WO2017028641A1 (zh) 信息反馈方法、信息反馈装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018507608

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15752576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006006

Country of ref document: KR

Kind code of ref document: A