WO2017028489A1 - 一种分束器、激光发生器及准分子激光退火设备 - Google Patents
一种分束器、激光发生器及准分子激光退火设备 Download PDFInfo
- Publication number
- WO2017028489A1 WO2017028489A1 PCT/CN2016/071037 CN2016071037W WO2017028489A1 WO 2017028489 A1 WO2017028489 A1 WO 2017028489A1 CN 2016071037 W CN2016071037 W CN 2016071037W WO 2017028489 A1 WO2017028489 A1 WO 2017028489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser beam
- laser
- beam splitter
- energy
- hole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/144—Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/067—Dividing the beam into multiple beams, e.g. multifocusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0905—Dividing and/or superposing multiple light beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0988—Diaphragms, spatial filters, masks for removing or filtering a part of the beam
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/106—Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/143—Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/005—Diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0071—Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
- H01S3/223—Gases the active gas being polyatomic, i.e. containing two or more atoms
- H01S3/225—Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
Definitions
- the present invention relates to the field of display technologies, and in particular, to a beam splitter, a laser generator, and an excimer laser annealing apparatus.
- the laser generator may specifically include a laser tube 01, a beam splitter 02 (Beam Splitter), a reflection sheet 03, and an energy monitoring unit 04.
- a mixed gas composed of a gas such as helium, neon or xenon is discharged under high pressure to generate photons, and a laser beam is formed.
- the laser beam passes through the laser tube 01 and reaches the beam splitter 02, and is split. Two lasers are formed after the 02.
- the beam splitter 02 is a high transmittance lens, for example, having a transmittance of 98% and a reflectance of 2%, so that 98% of the laser beam passes through the beam splitter 02.
- a linear light source is formed, which can scan and anneal amorphous silicon; and 2% of the laser beam is reflected to the reflective sheet 03, and finally reaches the energy monitoring unit 04, and the energy monitoring unit 04 can 2%
- the laser beam generates a feedback control signal as a feedback amount, so that the operator can adjust the energy of the laser beam emitted from the laser tube 01 in time according to the feedback control signal.
- the beam splitter 02 may be contaminated, thereby causing the transmittance of the beam splitter 02 to decrease, so that the transmitted laser beam energy is lowered, and the laser beam formed by the laser tube 01 forms an internal and external energy difference; The uniformity of the transmitted laser beam is deteriorated due to the contaminated beam splitter 02.
- Embodiments of the present invention provide a beam splitter, a laser generator, and an excimer laser annealing apparatus, which can reduce the probability of contamination of the beam splitter to a certain extent, and improve the uniformity of the laser beam after passing through the beam splitter.
- an embodiment of the present invention provides a beam splitter including a transmissive region and a reflective region, wherein the transmissive region is a through hole, and the reflective region is disposed at a periphery of the through hole, wherein
- the through hole is configured to transmit the received first laser beam
- the reflective area is configured to reflect the received first laser beam.
- the first laser beam includes a first region in which energy is concentrated and a second region in which energy is diverged;
- a projection of the through hole in a direction of the first laser beam is located within a projection of the first region along a direction of the first laser beam.
- the projection of the through hole in the direction of the first laser beam completely overlaps the projection of the first region in the direction of the first laser beam.
- a transverse cross section of the through hole in a direction transmitting the first laser beam is a rectangle.
- the reflective area is provided with a highly reflective lens.
- the high reflection lens includes a reflective substrate, and a reflective film covering the reflective substrate.
- an embodiment of the present invention provides a laser generator comprising the beam splitter of any of the above.
- the laser generator further includes: a laser tube, a reflection sheet, and an energy monitoring unit, wherein
- the laser tube is configured to generate a first laser beam emitted to the beam splitter
- the beam splitter for receiving the first laser beam, and the first laser beam is transmitted through a through hole of the beam splitter to form a second laser beam; and, by reflection of the beam splitter a region, the first laser beam is reflected and received to form a third laser beam;
- the reflective sheet is configured to change a transmission direction of the third laser beam to cause the third laser beam to be emitted to the energy monitoring unit;
- the energy monitoring unit is configured to detect energy of the third laser beam and generate a feedback control signal according to the energy of the third laser beam.
- an embodiment of the present invention provides an excimer laser annealing apparatus comprising the laser generator of any of the above.
- Embodiments of the present invention provide a beam splitter, a laser generator, and an excimer laser annealing
- the device further includes a transmissive area and a reflective area.
- the transmissive area is a through hole
- the reflective area is disposed at a periphery of the through hole, wherein the through hole is used for transmitting the received a laser beam; the reflective area for reflecting the received first laser beam.
- the laser light passing through the through hole of the beam splitter can be directly transmitted through the beam splitter to form the second laser beam, without the need for the first laser beam to pass through a high transmittance as in the prior art.
- Forming a second laser beam behind the lens avoiding the attenuation caused by the first laser beam passing through the high transmittance lens, and the uniformity of the transmitted second laser beam due to contamination of the high transmittance lens
- the problem is that the probability of contamination of the beam splitter can be reduced to some extent, and the uniformity of the laser beam after passing through the beam splitter can be improved.
- FIG. 1 is a schematic structural view of a laser generator in the prior art
- FIG. 2 is a schematic structural view of a beam splitter in the prior art
- FIG. 3 is a schematic structural view 1 of a beam splitter according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram 1 of a principle of a beam splitter according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a first laser beam according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram 2 of a principle of a beam splitter according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a laser generator according to an embodiment of the present invention.
- first and second are used for descriptive purposes only and are not to be understood as Indicates or implies relative importance or implicitly indicates the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, “a plurality” means two or more unless otherwise stated.
- the beam splitter 100 includes a transmissive area and a reflective area 11. Specifically, the transmissive area is a through hole 12, and the reflective area 11 is disposed. On the periphery of the through hole 12.
- the transmission region is configured to transmit the received first laser beam 101 to form a second laser beam 102; the reflective region 11 is configured to reflect the received first laser beam 101, It is caused to form a third laser beam 103.
- the laser light passing through the through hole 12 of the beam splitter 100 can be directly transmitted through the beam splitter 100 to form the second laser beam 102 without the need for high transmission as in the prior art.
- the lens transmits the laser beam generated by the laser tube, thereby avoiding the attenuation of the laser beam energy after passing through the high transmittance lens, and the uniformity of the laser beam formed after the transmission due to contamination of the high transmittance lens.
- the problem of poor performance, and the second laser beam 102 transmitted through the beam splitter 100 can be used as a linear light source after a series of optical transformations, and the amorphous silicon is annealed and scanned, because the uniformity of the second laser beam 102 is good. Therefore, the process effect in the subsequent annealing scanning process can be improved.
- the subsequent laser generator since the reflective region 11 disposed at the periphery of the through hole 12 can reflect a portion of the first laser beam 101 to form the third laser beam 103, the subsequent laser generator generates the feedback control signal by using the third laser beam 103 as the feedback amount. In order for the operator to adjust the energy of the first laser beam 101 emitted in the laser generator in time according to the feedback control signal.
- the first laser beam 101 generated by the laser tube in the laser generator specifically includes a first region 21 of concentrated energy and a second region 22 of energy divergence, and is generally located at a center of the first laser beam 101.
- the laser energy is concentrated, the uniformity of the laser is good, and the laser energy located around the first laser beam 101 gradually diverge.
- a projection of the through hole 12 in the direction of the first laser beam 101 may be provided, in the direction of the first region 21 along the first laser beam 101. Inside the projection. Thus, the uniformity of the second laser beam 102 transmitted from the through hole 12 is good.
- the projection of the through hole 12 in the direction of the first laser beam 101 can be set to completely overlap with the projection of the first region 21 in the direction of the first laser beam 101.
- the cross section of the first laser beam 101 generated by the laser tube in the laser generator is generally rectangular, for example, the cross-sectional size of the first laser beam 101 is 12 mm * 36 mm. Therefore, the through hole 12 may be provided to have a rectangular cross section, and at the same time, the projection of the rectangular through hole 12 in the direction of the first laser beam 101 completely overlaps with the projection of the first region 21 in the direction of the first laser beam 101.
- the second laser beam 102 transmitted from the rectangular through hole 12 is a laser having a relatively concentrated energy and maximum energy in the first laser beam 101, and therefore, the uniformity of the transmitted second laser beam 102 is good.
- the energy is higher.
- the formed second laser beam 102 is not contaminated, thereby avoiding high
- the amount of attenuation of the second laser beam 102 formed by the transmittance lens increases, and the uniformity deteriorates.
- the reflective area 11 disposed at the periphery of the through hole 12 may specifically be a highly reflective lens.
- the high reflection lens may specifically include a reflective substrate and a reflective film covering the reflective substrate, and the reflective film may increase the reflectivity of the high reflective lens, thereby reducing the amount of attenuation when the third laser beam 103 is formed.
- embodiments of the present invention provide a laser generator 200 comprising any of the beam splitters 100 described above.
- the laser generator 200 may specifically include a laser tube 31, a beam splitter 100, a reflection sheet 32, and an energy monitoring unit 33.
- the laser tube 31 is used to generate the first laser beam 101, and the first laser beam 101 is emitted to the beam splitter 100; specifically, in the laser tube 31, a mixture of helium, neon, xenon, and the like is composed.
- the gas is discharged under high pressure to generate photons, and a first laser beam 101 is formed.
- the first laser beam 101 passes through the laser tube 31 and reaches the beam splitter 100.
- the beam splitter 100 is configured to receive the first laser beam 101 formed by the laser tube 31, and referring to the structural schematic diagram of the beam splitter 100 shown in FIG. 3, the first laser beam 101 passes through the through hole 12 of the beam splitter 100. Transmitted to form a second laser beam 102; through the beam splitter 100 The reflected area 11 reflects the received first laser beam 101 to form a third laser beam 103.
- the reflection sheet 32 is for changing the transmission direction of the third laser beam 103 formed by the beam splitter 100 so that the third laser beam 103 is emitted to the energy monitoring unit 33.
- the energy monitoring unit 33 is configured to detect the energy of the third laser beam 103 and generate a feedback control signal according to the energy of the third laser beam 103, so that the operator adjusts the first laser light emitted from the laser tube 31 according to the feedback control signal.
- the energy of the beam 101 is configured to detect the energy of the third laser beam 103 and generate a feedback control signal according to the energy of the third laser beam 103, so that the operator adjusts the first laser light emitted from the laser tube 31 according to the feedback control signal. The energy of the beam 101.
- the beam splitter 100 provided by the embodiment of the present invention and the high transmittance lens are used in place of the beam splitter 100 as an example to illustrate the beneficial effects of the beam splitter 100 provided by the embodiment of the present invention. .
- the energy of the first laser beam 101 formed by the laser tube 31 is W1.
- the energy of the second laser beam 102 formed is W2, and the energy of the third laser beam 103 formed is W3.
- W3 reflectivity of the W1* beam splitter 100.
- the transmittance of the high transmittance lens is 98% and the reflectance is 2%, then after the laser generator is used for a period of time, the high transmittance lens is contaminated, resulting in the penetration of the high transmittance lens.
- the overshoot and reflectance are lowered, that is, the W2 and W3 are lowered, since the energy monitoring unit 33 can monitor the energy W3 of the third laser beam 103 and generate a feedback control signal, therefore, when the energy monitoring unit 33 detects that the W3 is lowered, the operation
- the person can calibrate the laser generator to increase the energy W2 of the second laser beam 102 to be equal to the value before contamination, and to ensure that the second laser beam 102 outputs a stable energy in a subsequent process.
- the high transmittance lens absorbs too much energy and bursts, and when the lens is contaminated by high transmittance lens More and more serious, the uniformity of the second laser beam 102 formed by the high transmittance lens is getting worse and worse, seriously affecting the process quality of the subsequent process.
- the beam splitter 100 is composed of a through hole 12 and a reflective region 11 disposed at the periphery of the through hole 12.
- the through hole 12 may directly transmit the first laser beam 101 corresponding to the size of the through hole 12 to form the second laser beam 102, in the above process, Since the change in the energy W2 of the second laser beam 102 is no longer caused by the contamination of the beam splitter 100, the probability of energy change between the energy W2 of the second laser beam 102 and the energy W1 of the first laser beam 101 can be reduced, At the same time, the uniformity of the second laser beam 102 is not deteriorated by the contamination of the beam splitter 100.
- the cross section of the first laser beam 101 generated by the laser tube 31 in the laser generator 200 is generally rectangular, and the first laser beam 101 further includes a first region 21 in which energy is concentrated and a second region in which energy is diverged. 22.
- the laser energy at the center of the first laser beam 101 is concentrated, the uniformity of the laser is good, and the laser energy located around the first laser beam 101 gradually diverge.
- the through hole 12 may be disposed in a rectangular shape, and the through hole 12 is projected along the direction of the first laser beam 101, along the first region 21 along the first laser. The projection of the direction of the beam 101 completely overlaps.
- the parameter setting is required, and the recipe can be set to W set .
- the technician will The energy W2 of the second laser beam 102 is input into the calibration window as the energy W1' (ie, the internal display energy) of the first laser beam 101 that has not passed through the beam splitter 100, and is calibrated, and the internal display energy and the third after calibration
- the second laser beam formed after passing through the through hole is not attenuated due to contamination, and therefore, the energy W2 of the second laser beam is relatively stable, and the second laser beam is relatively stable.
- the probability of change of the difference between the energy W2 of 102 and the energy W1 of the first laser beam 101 is reduced, and further, the technician according to the energy W3 of the third laser beam 103
- the number of calibrations as feedback control signals is reduced. At the same time, contamination can be avoided to obtain a second laser beam with a relatively uniform energy.
- an embodiment of the present invention further provides an excimer laser annealing device (ELA), which includes the laser generator 200 described above.
- ELA excimer laser annealing device
- the second laser beam 102 formed by the laser generator 200 in the excimer laser annealing apparatus can be used as a linear light source after a series of optical transformations, and the amorphous silicon is annealed and scanned by the beam splitter.
- the laser light of the through hole 12 of 100 can be directly transmitted through the beam splitter 100 to form the second laser beam 102, without the need for a laser beam generated by a high transmittance lens transmission laser tube as in the prior art, thus forming a second
- the uniformity of the laser beam 102 is good, and the process effect in the subsequent annealing scanning process can be improved.
- Embodiments of the present invention provide a beam splitter, a laser generator, and an excimer laser annealing apparatus.
- the beam splitter specifically includes a transmission area and a reflection area.
- the transmission area is a through hole, and the reflection area is set.
- the through hole is for transmitting the received first laser beam; and the reflective area is for reflecting the received first laser beam.
- the laser light passing through the through hole of the beam splitter can be directly transmitted through the beam splitter to form the second laser beam, and the laser beam generated by the laser tube needs to be highly transparent as in the prior art.
- the over-exposure lens is transparent, avoiding the attenuation caused by the high-transmittance lens, and the problem that the uniformity of the transmitted laser beam is deteriorated due to the contamination of the high-transmittance lens, and the beam splitting can be reduced to some extent.
- the probability of contamination of the device increases the uniformity of the laser beam after passing through the beam splitter.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Lasers (AREA)
- Recrystallisation Techniques (AREA)
Abstract
一种分束器、激光发生器及准分子激光退火设备,该分束器包括透过区域和反射区域(11),透过区域为通孔(12),反射区域设置于通孔的外围,其中,通孔用于透射接收到的第一激光束(101);反射区域用于反射接收到的第一激光束(101)。该分束器可应用于激光发生器中,实现退火扫描工艺。可一定程度减少分束器受到污染的几率,提高经过分束器后激光束的均一性。
Description
本发明涉及显示技术领域,尤其涉及一种分束器、激光发生器及准分子激光退火设备。
目前,如图1所示,激光发生器可以具体包括激光管01(laser tube)、分束器02(Beam Splitter)、反射片03以及能量监测单元04。具体的,在激光管01内,氙气、氖气、氦气等气体组成的混合气体在高压下放电产生光子,形成激光束,激光束从激光管01透过后到达分束器02,经过分束器02后形成两束激光。
一般,如图2所示,分束器02为一个高透过率镜片,例如,其透过率为98%,反射率为2%,这样,98%的激光束透过分束器02后,经过一系列光学变换后形成线性光源,该线性光源可以对非晶硅进行扫描退火;而2%的激光束反射至反射片03,最终到达能量监测单元04,能量监测单元04可以将该2%的激光束作为反馈量生成反馈控制信号,以便操作人员根据反馈控制信号及时调整激光管01内发出的激光束的能量。
在使用一段时间后,分束器02可能会受到污染,进而导致分束器02的透过率降低,使得透过的激光束能量降低,与激光管01形成的激光束形成内外能量差;同时,由于经过受污染的分束器02,使得透过的激光束的均一性变差。
发明内容
本发明的实施例提供一种分束器、激光发生器及准分子激光退火设备,可一定程度减少分束器受到污染的几率,提高经过分束器后激光束的均一性。
为达到上述目的,本发明的实施例采用如下技术方案:
一方面,本发明的实施例提供一种分束器,包括透过区域和反射区域,所述透过区域为通孔,所述反射区域设置于所述通孔的外围,其中,
所述通孔,用于透射接收到的第一激光束;
所述反射区域,用于反射接收到的第一激光束。
进一步地,所述第一激光束包括能量集中的第一区域和能量发散的第二区域;其中,
所述通孔沿所述第一激光束的方向的投影,位于所述第一区域沿所述第一激光束的方向的投影内。
进一步地,所述通孔沿所述第一激光束的方向的投影,与所述第一区域沿所述第一激光束的方向的投影完全重叠。
进一步地,所述通孔的沿透射所述第一激光束方向的横向截面为矩形。
进一步地,所述反射区域设置有高反射镜片。
进一步地,所述高反射镜片包括反射基板,以及覆盖于所述反射基板上的反射膜。
另一方面,本发明的实施例提供一种激光发生器,包括上述任一所述的分束器。
进一步地,所述激光发生器还包括:激光管、反射片以及能量监测单元,其中,
所述激光管,用于生成发射至所述分束器的第一激光束;
所述分束器,用于接收所述第一激光束,并且,第一激光束通过所述分束器的通孔被透射以形成第二激光束;以及,通过所述分束器的反射区域,第一激光束被反射接收以形成第三激光束;
所述反射片,用于改变所述第三激光束的传输方向,以使得所述第三激光束发射至所述能量监测单元;
所述能量监测单元,用于检测所述第三激光束的能量,并根据所述第三激光束的能量生成反馈控制信号。
另一方面,本发明的实施例提供一种准分子激光退火设备,包括上述任一所述的激光发生器。
本发明的实施例提供一种分束器、激光发生器及准分子激光退火
设备,该分束器具体包括透过区域和反射区域,具体的,该透过区域为通孔,该反射区域设置于该通孔的外围,其中,该通孔,用于透射接收到的第一激光束;该反射区域,用于反射接收到的第一激光束。这样一来,在第一激光束中,经过分束器的通孔的激光直接可以透射过分束器,形成第二激光束,无需像现有技术中,第一激光束需要经过高透过率镜片后形成第二激光束,避免了第一激光束经过高透过率镜片所带来的衰减,以及由于高透过率镜片受到污染而导致透过的第二激光束的均一性变差的问题,可一定程度减少分束器受到污染的几率,提高经过分束器后激光束的均一性。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中激光发生器的结构示意图;
图2为现有技术中分束器的结构示意图;
图3为本发明的实施例提供的一种分束器的结构示意图一;
图4为本发明的实施例提供的一种分束器的原理示意图一;
图5为本发明的实施例提供的第一激光束的结构示意图;
图6为本发明的实施例提供的一种分束器的原理示意图二;
图7为本发明的实施例提供的一种激光发生器的结构示意图。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本发明。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
另外,术语“第一”、“第二”仅用于描述目的,而不能理解为
指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明的实施例提供一种分束器100,如图3所示,该分束器100包括透过区域和反射区域11,具体的,该透过区域为通孔12,该反射区域11设置于该通孔12的外围。
具体的,如图4所示,该透过区域,用于透射接收到的第一激光束101,形成第二激光束102;该反射区域11,用于反射接收到的第一激光束101,使其形成第三激光束103。
这样一来,在第一激光束101中,经过分束器100的通孔12的激光直接可以透射过分束器100,形成第二激光束102,无需像现有技术中,需要经过高透过率镜片透射激光管生成的激光束,因此,可以避免经过高透过率镜片后对激光束能量带来的衰减,以及由于高透过率镜片受到污染而导致透射后的形成的激光束的均一性变差的问题,而透射过分束器100的第二激光束102经过后续一系列光学变换后可作为线性光源,对非晶硅进行退火扫描工艺,由于第二激光束102的均一性较好,因此可提高后续退火扫描工艺中的工艺效果。
同时,由于设置在通孔12外围的反射区域11可反射一部分第一激光束101,使其形成第三激光束103,以保证后续激光发生器将第三激光束103作为反馈量生成反馈控制信号,以便操作人员根据反馈控制信号及时调整激光发生器内发出的第一激光束101的能量。
具体的,如图5所示,激光发生器内激光管生成的第一激光束101具体包括能量集中的第一区域21和能量发散的第二区域22,通常,位于第一激光束101中心位置的激光能量较为集中,激光的均一性较好,位于第一激光束101四周位置的激光能量逐渐发散。
因此,为了提高第二激光束102的均一性,如图6所示,可以设置该通孔12沿第一激光束101的方向的投影,位于该第一区域21沿第一激光束101的方向的投影内。这样,从通孔12透射出的第二激光束102的均一性较好。
进一步地,为了最大程度的获取均一性较好的第二激光束102,
仍如图6所示,可以设置该通孔12沿第一激光束101的方向的投影,与该第一区域21沿第一激光束101的方向的投影完全重叠。
进一步地,激光发生器内激光管生成的第一激光束101的截面通常为矩形,例如,该第一激光束101的截面大小为12mm*36mm。因此,该通孔12可以设置为具有矩形截面,同时,该矩形通孔12沿第一激光束101的方向的投影,与该第一区域21沿第一激光束101的方向的投影完全重叠。
这样一来,从该矩形通孔12透射出的第二激光束102为第一激光束101中能量较为集中且能量最大化的激光,因此,透射出的第二激光束102的均一性较好,能量较高。
并且,由于第一激光束101可以直接透过该矩形通孔12,不需经过可能受到污染的高透过率镜片,因此,形成的第二激光束102不会受到污染,避免了由于经过高透过率镜片而导致形成的第二激光束102的衰减量增加,以及均一性变差等问题。
另外,设置在该通孔12外围的反射区域11可以具体可以为高反射镜片。
其中,该高反射镜片具体可以包括反射基板,以及覆盖于反射基板上的反射膜,该反射膜可以增加高反射镜片的反射率,进而减小形成第三激光束103时的衰减量。
进一步地,本发明的实施例提供一种激光发生器200,包括上述任一种分束器100。
示例性的,如图7所示,该激光发生器200具体可以包括:激光管31、分束器100、反射片32以及能量监测单元33。
其中,激光管31,用于生成第一激光束101,并且第一激光束101被发射至分束器100;具体的,在激光管31内,氙气、氖气、氦气等气体组成的混合气体在高压下放电产生光子,形成第一激光束101,第一激光束101从激光管31透过后到达分束器100。
分束器100,用于接收激光管31形成的第一激光束101,并且,参见图3所示的该分束器100的结构示意图,第一激光束101通过分束器100的通孔12被透射,形成第二激光束102;通过分束器100
的反射区域11,反射接收到的第一激光束101,使其形成第三激光束103。
反射片32,用于改变分束器100形成的第三激光束103的传输方向,以使得第三激光束103发射至能量监测单元33。反射片32的个数可以有多个。
能量监测单元33,用于检测该第三激光束103的能量,并根据第三激光束103的能量生成反馈控制信号,以便操作人员根据该反馈控制信号及时调整激光管31内发出的第一激光束101的能量。
具体的,下面分别以本发明实施例提供的分束器100,和将设置高透过率镜片代替分束器100为例,阐述本发明实施例提供的分束器100所带来的有益效果。
设激光管31形成的第一激光束101的能量为W1,经过分束器100后,形成的第二激光束102的能量为W2,形成的第三激光束103的能量为W3。
那么,W2=W1*分束器100的透过率;
W3=W1*分束器100的反射率。
其中,若高透过率镜片透过率为98%,反射率为2%,那么,在激光发生器使用一段时间后,该高透过率镜片会受到污染,导致高透过率镜片的透过率和反射率降低,即引起W2和W3降低,由于能量监测单元33可以监测第三激光束103的能量W3,并生成反馈控制信号,因此,当能量监测单元33监测到W3降低后,操作人员可以对激光发生器进行校准,以提高第二激光束102的能量W2与污染前的数值相等,保证第二激光束102在后续工艺中输出稳定的能量。
通过上式可以看出,提高第二激光束102的能量W2与污染前的数值相等,需要提高激光管31形成的第一激光束101的能量W1,随着高透过率镜片的污染越来越严重,需要进行多次校准以提高第二激光束102的能量W2与污染前的数值相等,最终使得第一激光束101的能量W1越来越高。
这样一来,不仅由于高透过率镜片内外的能量差越来越大,会使得高透过率镜片吸收能量太多而爆裂,而且,当高透过率镜片的污染
越来越严重,经过高透过率镜片形成的第二激光束102的均一性越来越差,严重影响后续工艺的工艺质量。
而在本发明实施例提供的激光发生器200中,分束器100由通孔12以及设置于通孔12外围的反射区域11组成。当激光管31形成的第一激光束101照射到通孔12时,通孔12可以直接透射与通孔12大小相适应的第一激光束101,形成第二激光束102,在上述过程中,由于第二激光束102的能量W2的改变不再因为分束器100的污染导致,因此,可以降低第二激光束102的能量W2与第一激光束101的能量W1之间能量改变的几率,同时,第二激光束102的均一性也不会因为分束器100的污染而变差。
可选的,由于激光发生器200内激光管31生成的第一激光束101的截面通常为长方形,并且,第一激光束101内又包括能量集中的第一区域21和能量发散的第二区域22,通常,位于第一激光束101中心位置的激光能量较为集中,激光的均一性较好,位于第一激光束101四周位置的激光能量逐渐发散。
因此,为了进一步提高第二激光束102的均一性,可以设置该通孔12为矩形,并且,该通孔12沿第一激光束101的方向的投影,与该第一区域21沿第一激光束101的方向的投影完全重叠。
示例性的,工艺人员在实际进行校准操作时,需要进行参数设定,可设置参数(recipe)为Wset,当第二激光束102的能量W2随时间减小到一定数值时,工艺人员将第二激光束102的能量W2输入到校准窗口内,作为未经过分束器100的第一激光束101的能量W1’(即内部显示能量),并进行校准,校准后内部显示能量与第三激光束103的能量的比值n=W1’/W3,此时,参数(recipe)Wset=W1’=n*W3,并且,W3=W1*分束器100的反射率,由于在校准后n的取值暂时不变,因此,参数(recipe)Wset的调整必然引起W3的变化,而W3的变换又必然引起激光管31形成的第一激光束101的能量W1变化。
而在本发明实施例提供的分束器100中,透过通孔后形成的第二激光束不会因受到污染导致能量衰减,因此,第二激光束的能量W2相对稳定,第二激光束102的能量W2与第一激光束101的能量W1差的变化几率减小,进而,工艺人员根据第三激光束103的能量W3
作为反馈控制信号进行校准的次数减少。同时,可避免污染获得能量较为均一的第二激光束。
进一步地,本发明的实施例还提供一种准分子激光退火设备(ELA,excimer laser annealer),该准分子激光退火设备包括上述激光发生器200。
具体的,参见图7,准分子激光退火设备中激光发生器200形成的第二激光束102经过后续一系列光学变换后可作为线性光源,对非晶硅进行退火扫描工艺,由于经过分束器100的通孔12的激光直接可以透射过分束器100,形成第二激光束102,无需像现有技术中,需要经过高透过率镜片透射激光管生成的激光束,因此,形成的第二激光束102的均一性较好,可提高后续退火扫描工艺中的工艺效果。
本发明的实施例提供一种分束器、激光发生器及准分子激光退火设备,该分束器具体包括透过区域和反射区域,具体的,该透过区域为通孔,该反射区域设置于该通孔的外围,其中,该通孔,用于透射接收到的第一激光束;该反射区域,用于反射接收到的第一激光束。这样一来,在第一激光束中,经过分束器的通孔的激光直接可以透射过分束器,形成第二激光束,无需像现有技术中,激光管生成的激光束需要经过高透过率镜片透出,避免了经过高透过率镜片所带来的衰减,以及由于高透过率镜片受到污染而导致透过的激光束的均一性变差的问题,可一定程度减少分束器受到污染的几率,提高经过分束器后激光束的均一性。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (9)
- 一种分束器,其中,包括透过区域和反射区域,所述透过区域为通孔,所述反射区域设置于所述通孔的外围,其中,所述通孔,用于透射接收到的第一激光束;所述反射区域,用于反射接收到的第一激光束。
- 根据权利要求1所述的分束器,其中,所述第一激光束包括能量集中的第一区域和能量发散的第二区域;其中,所述通孔沿所述第一激光束的方向的投影位于所述第一区域沿所述第一激光束的方向的投影内。
- 根据权利要求2所述的分束器,其中,所述通孔沿所述第一激光束的方向的投影与所述第一区域沿所述第一激光束的方向的投影完全重叠。
- 根据权利要求1-3中任一项所述的分束器,其中,所述通孔的沿透射所述第一激光束方向的横向截面为矩形。
- 根据权利要求1-3中任一项所述的分束器,其中,所述反射区域设置有高反射镜片。
- 根据权利要求5所述的分束器,其中,所述高反射镜片包括反射基板,以及覆盖于所述反射基板上的反射膜。
- 一种激光发生器,其中,包括如权利要求1-6中任一项所述的分束器。
- 根据权利要求7所述的激光发生器,其中,所述激光发生器还包括:激光管、反射片以及能量监测单元,其中,所述激光管,用于生成发射至所述分束器的第一激光束;所述分束器,用于接收所述第一激光束,并且,第一激光束通过所述分束器的通孔被透射以形成第二激光束;以及,通过所述分束器的反射区域,第一激光束被反射接收以形成第三激光束;所述反射片,用于改变所述第三激光束的传输方向,以使得所述第三激光束发射至所述能量监测单元;所述能量监测单元,用于检测所述第三激光束的能量,并根据所述第三激光束的能量生成反馈控制信号。
- 一种准分子激光退火设备,其中,包括如权利要求7或8所述的激光发生器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16784373.9A EP3156167B1 (en) | 2015-08-20 | 2016-01-15 | Laser generator with a beam splitter, and excimer laser annealing device with such laser generator |
US15/308,091 US10133081B2 (en) | 2015-08-20 | 2016-01-15 | Beam splitter, laser generator and excimer laser annealing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510514826.4 | 2015-08-20 | ||
CN201510514826.4A CN105108330A (zh) | 2015-08-20 | 2015-08-20 | 一种分束器、激光发生器及准分子激光退火设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017028489A1 true WO2017028489A1 (zh) | 2017-02-23 |
Family
ID=54656558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/071037 WO2017028489A1 (zh) | 2015-08-20 | 2016-01-15 | 一种分束器、激光发生器及准分子激光退火设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10133081B2 (zh) |
EP (1) | EP3156167B1 (zh) |
CN (1) | CN105108330A (zh) |
WO (1) | WO2017028489A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116184681A (zh) * | 2023-04-27 | 2023-05-30 | 成都莱普科技股份有限公司 | 二氧化碳激光的光束整形设备以及光束整形方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105108330A (zh) * | 2015-08-20 | 2015-12-02 | 京东方科技集团股份有限公司 | 一种分束器、激光发生器及准分子激光退火设备 |
CN110007473A (zh) * | 2018-06-26 | 2019-07-12 | 上海微电子装备(集团)股份有限公司 | 一种多波长光学系统和一种激光退火装置 |
DE102022122963A1 (de) * | 2022-09-09 | 2024-03-14 | Trumpf Lasersystems For Semiconductor Manufacturing Gmbh | Strahlblende, EUV-Lichtquelle und Verfahren zum Betreiben einer EUV-Lichtquelle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155315A (ja) * | 1987-12-14 | 1989-06-19 | Nec Corp | レーザ分割ミラー装置及びこれを使用したレーザ分割装置 |
CN102262074A (zh) * | 2011-06-02 | 2011-11-30 | 安徽师范大学 | 一种入射功率连续可调的辐照样品倍频实验装置 |
WO2013009550A2 (en) * | 2011-07-13 | 2013-01-17 | Bae Systems Integration And Electronic Systems Integration Inc. | Beam shaping and control apparatus |
CN103557847A (zh) * | 2013-11-09 | 2014-02-05 | 苏州福田激光精密仪器有限公司 | 一种激光投点仪及其分束装置 |
CN104684457A (zh) * | 2012-12-21 | 2015-06-03 | 卡尔蔡司医疗技术股份公司 | 使用oct光源和扫描光学器件的二维共焦成像 |
CN104766813A (zh) * | 2015-03-31 | 2015-07-08 | 京东方科技集团股份有限公司 | 准分子激光退火装置 |
CN105108330A (zh) * | 2015-08-20 | 2015-12-02 | 京东方科技集团股份有限公司 | 一种分束器、激光发生器及准分子激光退火设备 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1592556A (zh) * | 1968-07-23 | 1970-05-19 | ||
JPS6384789A (ja) * | 1986-09-26 | 1988-04-15 | Semiconductor Energy Lab Co Ltd | 光加工方法 |
DE3818129C2 (de) * | 1988-05-27 | 2003-04-10 | Lambda Physik Ag | Vorrichtung zum Begrenzen von Laserstrahlen |
US5450240A (en) * | 1993-07-22 | 1995-09-12 | Elsag International N.V. | Device and method for light beam splitting for dual sensor flame detector |
US5674414A (en) * | 1994-11-11 | 1997-10-07 | Carl-Zeiss Stiftung | Method and apparatus of irradiating a surface of a workpiece with a plurality of beams |
JP5135650B2 (ja) * | 2001-04-11 | 2013-02-06 | 三菱電機株式会社 | レーザ装置 |
CN1546273A (zh) * | 2003-11-28 | 2004-11-17 | 中国科学院上海光学精密机械研究所 | 激光消蚀硬质合金表面涂覆超硬涂层金属钴粘结相的方法 |
KR100767932B1 (ko) * | 2006-04-06 | 2007-10-18 | 주식회사 대우일렉트로닉스 | 광 정보 재생 장치, 트랙킹 서보 제어 장치 및 트랙킹 제어방법 |
CN100527000C (zh) * | 2007-08-31 | 2009-08-12 | 上海微电子装备有限公司 | 对准系统和对准标记 |
CN102486406A (zh) * | 2010-12-27 | 2012-06-06 | 北京国科世纪激光技术有限公司 | 激光能量检测系统及检测方法 |
CN102095688B (zh) * | 2011-03-08 | 2012-07-18 | 中国人民解放军总装备部工程兵科研一所 | 一种用于材料激光性能的测量设备 |
CN103557941B (zh) * | 2013-10-31 | 2015-06-10 | 上海理工大学 | 宽带太赫兹波时域探测与光斑成像一体化装置及调整方法 |
CN203572488U (zh) * | 2013-11-09 | 2014-04-30 | 苏州福田激光精密仪器有限公司 | 一种激光投点仪及其分束装置 |
CN104330843A (zh) * | 2014-07-22 | 2015-02-04 | 凯迈(洛阳)环测有限公司 | 一种激光测云仪光学系统及其分光反射镜 |
-
2015
- 2015-08-20 CN CN201510514826.4A patent/CN105108330A/zh active Pending
-
2016
- 2016-01-15 WO PCT/CN2016/071037 patent/WO2017028489A1/zh active Application Filing
- 2016-01-15 EP EP16784373.9A patent/EP3156167B1/en active Active
- 2016-01-15 US US15/308,091 patent/US10133081B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155315A (ja) * | 1987-12-14 | 1989-06-19 | Nec Corp | レーザ分割ミラー装置及びこれを使用したレーザ分割装置 |
CN102262074A (zh) * | 2011-06-02 | 2011-11-30 | 安徽师范大学 | 一种入射功率连续可调的辐照样品倍频实验装置 |
WO2013009550A2 (en) * | 2011-07-13 | 2013-01-17 | Bae Systems Integration And Electronic Systems Integration Inc. | Beam shaping and control apparatus |
CN104684457A (zh) * | 2012-12-21 | 2015-06-03 | 卡尔蔡司医疗技术股份公司 | 使用oct光源和扫描光学器件的二维共焦成像 |
CN103557847A (zh) * | 2013-11-09 | 2014-02-05 | 苏州福田激光精密仪器有限公司 | 一种激光投点仪及其分束装置 |
CN104766813A (zh) * | 2015-03-31 | 2015-07-08 | 京东方科技集团股份有限公司 | 准分子激光退火装置 |
CN105108330A (zh) * | 2015-08-20 | 2015-12-02 | 京东方科技集团股份有限公司 | 一种分束器、激光发生器及准分子激光退火设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3156167A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116184681A (zh) * | 2023-04-27 | 2023-05-30 | 成都莱普科技股份有限公司 | 二氧化碳激光的光束整形设备以及光束整形方法 |
CN116184681B (zh) * | 2023-04-27 | 2023-08-04 | 成都莱普科技股份有限公司 | 二氧化碳激光的光束整形设备以及光束整形方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3156167B1 (en) | 2021-08-18 |
EP3156167A1 (en) | 2017-04-19 |
CN105108330A (zh) | 2015-12-02 |
US20170184866A1 (en) | 2017-06-29 |
EP3156167A4 (en) | 2018-05-09 |
US10133081B2 (en) | 2018-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017028489A1 (zh) | 一种分束器、激光发生器及准分子激光退火设备 | |
US10276388B2 (en) | Laser machining device and laser machining method | |
US8106341B2 (en) | Laser annealing apparatus and method | |
US9343307B2 (en) | Laser spike annealing using fiber lasers | |
JP2018514916A (ja) | 光案内手段及び光源装置 | |
TWI573650B (zh) | 輻射源及用於結合同調光束的光束組合器 | |
US8937770B2 (en) | Excimer laser apparatus projecting a beam with a selectively variable short-axis beam profile | |
SG195515A1 (en) | Laser annealing systems and methods with ultra-short dwell times | |
US20200378826A1 (en) | Optoelectronic measuring device | |
WO2016095719A1 (zh) | 一种光控型可调太赫兹波衰减器及其使用方法 | |
EP3335825A1 (en) | Invisible laser system and light path visualization method therefor | |
WO2017009945A1 (ja) | エキシマレーザ装置 | |
TWI639821B (zh) | 寬頻光譜光學測量裝置及電漿處理裝置 | |
US7489871B2 (en) | Light detection apparatus and free space optics communication apparatus | |
WO2014119779A1 (ja) | レーザリペア装置 | |
KR20100079582A (ko) | 레이저 빔 출력 보정시스템 및 보정방법 | |
KR20130077415A (ko) | 레이저 어닐링 장치 및 레이저 어닐링 방법 | |
CN103001109A (zh) | 一种准分子激光器环形腔调节装置和方法 | |
US20150131157A1 (en) | Laser frequency adjustment method and laser frequency adjustment system | |
US20220378505A1 (en) | Systems and methods for laser pulse monitoring and calibration | |
CN103972780A (zh) | 一种通过可调光阑快速找到激光脉冲时域重合位置的方法 | |
CN105742951A (zh) | 一种用于准分子激光器的可见光导向装置 | |
KR101290104B1 (ko) | 레이저빔 분기 및 파워 보정장치 | |
US7851724B2 (en) | Laser exposure apparatus and laser annealing apparatus | |
US20220334460A1 (en) | Light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2016784373 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15308091 Country of ref document: US Ref document number: 2016784373 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16784373 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |