WO2017028473A1 - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
WO2017028473A1
WO2017028473A1 PCT/CN2016/000463 CN2016000463W WO2017028473A1 WO 2017028473 A1 WO2017028473 A1 WO 2017028473A1 CN 2016000463 W CN2016000463 W CN 2016000463W WO 2017028473 A1 WO2017028473 A1 WO 2017028473A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
ray tube
anode
bearing
rotor shaft
Prior art date
Application number
PCT/CN2016/000463
Other languages
French (fr)
Inventor
Rubai CHENG
Jörg FREUDENBERGER
Anja Fritzler
Canbin LIU
Original Assignee
Siemens X-Ray Vacuum Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens X-Ray Vacuum Technology Ltd. filed Critical Siemens X-Ray Vacuum Technology Ltd.
Publication of WO2017028473A1 publication Critical patent/WO2017028473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1208Cooling of the bearing assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures

Definitions

  • the present invention relates to an X-ray tube.
  • X-ray tubes fall into three broad categories: rotating-anode X-ray tubes, fixed-anode X-ray tubes and rotating-housing X-ray tubes.
  • rotating-anode X-ray tubes are easy to scale down in size, they generally have a low power which cannot meet the demands of a high-powered X-ray machine.
  • Rotating-anode tubes are much larger, and have the advantage of operating at a high short-time pulse power.
  • the difficulty which is met when attempting to realize high continuous power lies in the temperature variation of the rotor and bearing.
  • an X-ray tube with a high continuous power has a relatively large anode.
  • the prior art also uses ceramic as a rotor seat, to cut off heat conduction between the anode and the bearing, but an additional metal plate is needed to establish an electrical connection between the rotor shaft, the bolt and the bearing.
  • the present invention proposes an X-ray tube.
  • an X-ray tube comprising: a rotor shaft; a rotor seat, which is an integral structure, electrically conductive and thermally insulating, and connected to the rotor shaft in a fixed manner; a bearing, which is connected in a fixed manner to the rotor seat.
  • the X-ray tube also comprises multiple bolts, which connect the bearing to the rotor seat in a fixed manner.
  • the X-ray tube also comprises a rotor sleeve to which the bolts are connected in a fixed manner.
  • the X-ray tube also comprises a nut, the rotor shaft passes through the rotor seat, and the nut is mated with the rotor shaft by screw-threads.
  • the X-ray tube of the present invention increases the radiative cooling capability of the anode, and reduces the thermal effect on the rotor and bearing.
  • the anode can be used at a high temperature, so that the entire anode can be made of TZM molybdenum alloy with no need for graphite brazing.
  • the X-ray tube of the present invention has a relatively high short-time pulse power and small size, and compared with large-size rotary tubes, has a relatively high continuous power.
  • Fig. 1 is a perspective view of an X-ray tube according to an embodiment of the present invention.
  • Fig. 2 is a sectional view of the X-ray tube of Fig. 1.
  • Fig. 1 is a perspective view of an X-ray tube 100 according to an embodiment of the present invention
  • Fig. 2 is a sectional view of the X-ray tube 100 of Fig. 1.
  • the figures only show those parts which are associated closely with the present invention.
  • the X-ray tube 100 comprises a target 102, a bearing 104, a rotor shaft 106 and a rotor seat 108
  • the rotor seat 108 is an integral structure, electrically conductive and thermally insulating, and the rotor seat 108 is connected to the rotor shaft 106 in a fixed manner.
  • the X-ray tube 100 also comprises a nut 110, the rotor shaft 106 passes through the rotor seat 108, and the nut 110 is mated with the rotor shaft 106 by screw-threads, thereby fixing the rotor shaft 106 to the rotor seat 108 in cooperation with a protrusion 118 located on another side.
  • the rotor seat 108 may be thermally insulating steel X15CrNiSi25-20 or X15CrNiSi25-21, etc.
  • the bearing 104 is connected in a fixed manner to the rotor seat 108.
  • the rotor shaft 106 is also connected in a fixed manner to the target 102.
  • the bearing 104 can drive the rotor seat 108, rotor shaft 106 and target 102 to rotate.
  • the X-ray tube 100 also comprises multiple bolts 112, which connect the bearing 104 to the rotor seat 108 in a fixed manner.
  • the X-ray tube 100 also comprises a rotor sheath 114, to which the bolts 112 are connected in a fixed manner.
  • the rotor sheath 114 may be made of copper, and is used for dissipating heat.
  • a number of holes 116 may be provided in a wall of the rotor sheath 114, in order to spot-weld the bolts 112 to the bearing 104 after installing the bolts 112, to prevent loosening of the bolts 112 under high-speed rotation.
  • the rotor seat 108 on the one hand transfers high pressure from the bearing 104 to the rotor shaft 106 and the target 102, and on the other hand blocks the transfer of heat from the target 102 and rotor shaft 106 to the bearing 104.
  • Such heat blocking is absolutely necessary, because the bearing 104 is in general a roller bearing having a plated layer made of aluminum or silver, which performs a lubricating function.
  • the plated layer is sensitive to temperature.
  • the X-ray tube of the present invention increases the radiative cooling capability of the anode, and reduces the thermal effect on the rotor and bearing.
  • the anode can be used at a high temperature, so that the entire anode can be made of TZM molybdenum alloy with no need for graphite brazing.
  • the X-ray tube of the present invention has a relatively high short-time pulse power and small size, and compared with large-size rotary tubes, has a relatively high continuous power.

Abstract

An X-ray tube (100) comprises a rotor shaft (106); a rotor seat (108), which is an integral structure, electrically conductive and thermally insulating, and connected to the rotor shaft in a fixed manner; a bearing (104), which is connected in a fixed manner to the rotor seat. The X-ray tube increases the radiative cooling capability of the anode, and reduces the thermal effect on the rotor and bearing. The anode can be used at a high temperature, so that the entire anode can be made of TZM molybdenum alloy with no need for graphite brazing. Compared with X-ray tubes having fixed-anode, the X-ray tube has a relatively high short-time pulse power and small size, and compared with large-size rotary tubes, has a relatively high continuous power.

Description

X-RAY TUBE Technical field
The present invention relates to an X-ray tube.
Background art
X-ray tubes fall into three broad categories: rotating-anode X-ray tubes, fixed-anode X-ray tubes and rotating-housing X-ray tubes. Although fixed-anode X-ray tubes are easy to scale down in size, they generally have a low power which cannot meet the demands of a high-powered X-ray machine. Rotating-anode tubes are much larger, and have the advantage of operating at a high short-time pulse power.
The difficulty which is met when attempting to realize high continuous power lies in the temperature variation of the rotor and bearing. In general, an X-ray tube with a high continuous power has a relatively large anode. In addition, increasing the distance between the anode and bearing -e.g. by lengthening the rotor shaft -will increase thermal resistance.
The prior art also uses ceramic as a rotor seat, to cut off heat conduction between the anode and the bearing, but an additional metal plate is needed to establish an electrical connection between the rotor shaft, the bolt and the bearing.
Content of the invention
In view of the above, the present invention proposes an X-ray tube.
According to an embodiment of the present invention, an X-ray tube is provided, comprising: a rotor shaft; a rotor seat, which is an integral structure, electrically conductive and thermally insulating, and connected to the rotor shaft in a fixed manner; a bearing, which is connected in a fixed manner to the rotor seat.
In one embodiment, the X-ray tube also comprises multiple bolts, which connect the bearing to the rotor seat in a fixed manner.
In one embodiment, the X-ray tube also comprises a rotor sleeve to which the bolts are connected in a fixed manner.
In one embodiment, the X-ray tube also comprises a nut, the rotor shaft passes through the rotor seat, and the nut is mated with the rotor shaft by screw-threads.
The X-ray tube of the present invention increases the radiative cooling capability of the anode, and reduces the thermal effect on the rotor and bearing. The anode can be used at a high temperature, so that the entire anode can be made of TZM molybdenum alloy with no need for graphite brazing. Compared with fixed-anode X-ray tubes, the X-ray tube of the present invention has a relatively high short-time pulse power and small size, and compared with large-size rotary tubes, has a relatively high continuous power.
Description of the accompanying drawings
Preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings, to give those skilled in the art a clearer understanding of the above and other features and advantages of the present invention. In the drawings:
Fig. 1 is a perspective view of an X-ray tube according to an embodiment of the present invention.
Fig. 2 is a sectional view of the X-ray tube of Fig. 1.
The labels used in the above drawings are as follows:
100 X-ray tube  110 nut
102 target  112 bolt
104 bearing  114 rotor sleeve
106 rotor shaft  116 hole
108 rotor seat  118 protrusion
Particular embodiments
The present invention is explained in further detail below by way of embodiments, to clarify the object, technical solution and advantages  thereof.
Fig. 1 is a perspective view of an X-ray tube 100 according to an embodiment of the present invention; Fig. 2 is a sectional view of the X-ray tube 100 of Fig. 1. The figures only show those parts which are associated closely with the present invention. The X-ray tube 100 comprises a target 102, a bearing 104, a rotor shaft 106 and a rotor seat 108, The rotor seat 108 is an integral structure, electrically conductive and thermally insulating, and the rotor seat 108 is connected to the rotor shaft 106 in a fixed manner. In this embodiment, the X-ray tube 100 also comprises a nut 110, the rotor shaft 106 passes through the rotor seat 108, and the nut 110 is mated with the rotor shaft 106 by screw-threads, thereby fixing the rotor shaft 106 to the rotor seat 108 in cooperation with a protrusion 118 located on another side. The rotor seat 108 may be thermally insulating steel X15CrNiSi25-20 or X15CrNiSi25-21, etc.
The bearing 104 is connected in a fixed manner to the rotor seat 108. In addition, the rotor shaft 106 is also connected in a fixed manner to the target 102. Thus the bearing 104 can drive the rotor seat 108, rotor shaft 106 and target 102 to rotate. In this embodiment, the X-ray tube 100 also comprises multiple bolts 112, which connect the bearing 104 to the rotor seat 108 in a fixed manner.
The X-ray tube 100 also comprises a rotor sheath 114, to which the bolts 112 are connected in a fixed manner. The rotor sheath 114 may be made of copper, and is used for dissipating heat.
A number of holes 116 may be provided in a wall of the rotor sheath 114, in order to spot-weld the bolts 112 to the bearing 104 after installing the bolts 112, to prevent loosening of the bolts 112 under high-speed rotation.
The rotor seat 108 on the one hand transfers high pressure from the bearing 104 to the rotor shaft 106 and the target 102, and on the other hand blocks the transfer of heat from the target 102 and rotor shaft 106 to the bearing 104. Such heat blocking is absolutely necessary, because the bearing 104 is in general a roller bearing having a plated layer made of  aluminum or silver, which performs a lubricating function. The plated layer is sensitive to temperature.
The X-ray tube of the present invention increases the radiative cooling capability of the anode, and reduces the thermal effect on the rotor and bearing. The anode can be used at a high temperature, so that the entire anode can be made of TZM molybdenum alloy with no need for graphite brazing. Compared with fixed-anode X-ray tubes, the X-ray tube of the present invention has a relatively high short-time pulse power and small size, and compared with large-size rotary tubes, has a relatively high continuous power.
The above embodiments are merely preferred embodiments of the present utility model, which are not intended to limit it. Any amendments, equivalent substitutions or improvements etc. made within the spirit and principles of the present invention should be included in the scope of protection thereof.

Claims (4)

  1. An X-ray tube, comprising:
    a rotor shaft (106) ;
    a rotor seat (108) 3 which is an integral structure, electrically conductive and thermally insulating, aud connected to the rotor shaft (106) in a fixed manner;
    a bearing (104) , which is connected in a fixed manner to the rotor seat (108) .
  2. The X-ray tube as claimed in claim 1, characterized by also comprising multiple bolts (112) , which connect the bearing (104) to the rotor seat (108) in a fixed manner.
  3. The X-ray tube as claimed in claim 2, characterized by also comprising a rotor sleeve (114) to which the bolts (112) are connected in a fixed manner.
  4. The X-ray tube as claimed in claim 1, characterized by also comprising a nut (110) , the rotor shaft (106) passing through the rotor seat (108) , and the nut (110) being mated with the rotor shaft (106) by screw-threads.
PCT/CN2016/000463 2015-08-18 2016-08-18 X-ray tube WO2017028473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520624486.6 2015-08-18
CN201520624486.6U CN204927229U (en) 2015-08-18 2015-08-18 X -ray tube

Publications (1)

Publication Number Publication Date
WO2017028473A1 true WO2017028473A1 (en) 2017-02-23

Family

ID=54976337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000463 WO2017028473A1 (en) 2015-08-18 2016-08-18 X-ray tube

Country Status (2)

Country Link
CN (1) CN204927229U (en)
WO (1) WO2017028473A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204927229U (en) * 2015-08-18 2015-12-30 西门子爱克斯射线真空技术(无锡)有限公司 X -ray tube
CN117174557B (en) * 2023-11-03 2024-01-09 上海超群检测科技股份有限公司 High-energy micro-focus X-ray tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203882950U (en) * 2014-04-23 2014-10-15 西门子爱克斯射线真空技术(无锡)有限公司 Anode module and ray tube device
CN203882951U (en) * 2014-04-23 2014-10-15 西门子爱克斯射线真空技术(无锡)有限公司 Anode module and ray tube device
CN204927229U (en) * 2015-08-18 2015-12-30 西门子爱克斯射线真空技术(无锡)有限公司 X -ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203882950U (en) * 2014-04-23 2014-10-15 西门子爱克斯射线真空技术(无锡)有限公司 Anode module and ray tube device
CN203882951U (en) * 2014-04-23 2014-10-15 西门子爱克斯射线真空技术(无锡)有限公司 Anode module and ray tube device
CN204927229U (en) * 2015-08-18 2015-12-30 西门子爱克斯射线真空技术(无锡)有限公司 X -ray tube

Also Published As

Publication number Publication date
CN204927229U (en) 2015-12-30

Similar Documents

Publication Publication Date Title
EP2311062B1 (en) X-ray tube anodes
US7197119B2 (en) High-performance anode plate for a directly cooled rotary piston x-ray tube
JP4672597B2 (en) Substrate processing equipment
US7443957B2 (en) X-ray apparatus with a cooling device through which cooling fluid flows
US20110240279A1 (en) Hybrid liquid metal-solder thermal interface
WO2017028473A1 (en) X-ray tube
CN208548335U (en) A kind of high heat dissipation medical X-ray tube of internal cooling ball bearing
US11266000B2 (en) X-ray tube device and spring pin
EP2548224B1 (en) Cooling assembly for cooling heat generating component
US20170338076A1 (en) X-ray radiation generator
DE202014011302U1 (en) X-ray generator
EP1500123B1 (en) A device for generating x-rays having a heat absorbing member
US20080094800A1 (en) Heat-dissipating device and method for producing the same
JP4285231B2 (en) Vacuum variable capacitor
CN104911441A (en) Low-melting metal, preparation method thereof and appliance
JP4749615B2 (en) Fixed anode type X-ray tube device
CN105338794A (en) Phased array radar T/R module and heat dissipation assembly thereof
CN109124548A (en) Has the fujinon electronic video endoscope being well heat-treated
CN201115201Y (en) Novel power cabinet based on thermal tube heat radiation system
CN103595173B (en) For the transpiration-cooled metallic shield of turbo-generator end
CN107818903B (en) Anode
CN109192644B (en) Medical X-ray tube with internal cooling ball bearing
CN208548334U (en) A kind of hollow target disc Formula X ray tube of anode corrugations ceramic structure
CN215676042U (en) Graphite negative electrode material graphitization heat sink
CN210512304U (en) Radiator of electronic refrigerator or wine cabinet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836342

Country of ref document: EP

Kind code of ref document: A1