WO2017026878A1 - Culture medium composition for inducing musculoskeletal progenitor cell, and pharmaceutical composition comprising musculoskeletal progenitor cell for preventing or treating musculoskeletal diseases - Google Patents

Culture medium composition for inducing musculoskeletal progenitor cell, and pharmaceutical composition comprising musculoskeletal progenitor cell for preventing or treating musculoskeletal diseases Download PDF

Info

Publication number
WO2017026878A1
WO2017026878A1 PCT/KR2016/008997 KR2016008997W WO2017026878A1 WO 2017026878 A1 WO2017026878 A1 WO 2017026878A1 KR 2016008997 W KR2016008997 W KR 2016008997W WO 2017026878 A1 WO2017026878 A1 WO 2017026878A1
Authority
WO
WIPO (PCT)
Prior art keywords
musculoskeletal
cell
hmspc
cells
bone
Prior art date
Application number
PCT/KR2016/008997
Other languages
French (fr)
Korean (ko)
Inventor
한명관
김정렬
허진주
송화령
서난희
이은혜
김승국
Original Assignee
전북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교 산학협력단 filed Critical 전북대학교 산학협력단
Publication of WO2017026878A1 publication Critical patent/WO2017026878A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells

Definitions

  • the present invention relates to a medium composition for inducing differentiation from stem cells to a musculoskeletal progenitor cell, a method for inducing differentiation from stem cells to musculoskeletal precursor cells using the medium composition, and a method for inducing differentiation into musculoskeletal progenitor cells, To a pharmaceutical composition and a cell treatment agent for preventing or treating musculoskeletal diseases.
  • Osteification is a process of bone formation, which is known to be due to two methods of intramedullary or intramedullary ossification.
  • Intramural ossification is a direct process that is converted into mesenchymal bone, which occurs within the skull bone.
  • ossification of cartilage occurs by the process of cartilage tissue being converted into bone after the process of cartilage tissue formation from agglomerated mesenchymal cells. This process of ossification is essential for most bone formation in vertebrate animals.
  • hESCs human embryonic stem cells
  • hESCs human embryonic stem cells
  • hiPSCs Human induced lpuripotent stem cells
  • pluripotent stem cells capable of differentiating into any cell type.
  • hiPSC is a cell that is useful for studying embryonic development at the cellular level and is attracting attention as a cell therapy agent. Since these cells can be differentiated into bone structures such as bone and cartilage by transplantation, they can be usefully used for repairing and repairing damaged skeletal tissues.
  • MSCs Mesenchymal stem cells
  • mice skeletal stem / progenitor cells are distinct from mesenchymal stem cells, and are highly likely to be specifically differentiated into bone and cartilage. Therefore, there is an increasing need for studies on cells capable of differentiating into bone and cartilage through osteoarthritis while overcoming the limitations of mesenchymal stem cells.
  • the present inventors have been able to induce musculoskeletal precursor cells from human embryonic stem cells or human induced pluripotent stem cells, and that the musculoskeletal precursor cells can be differentiated into bone through osteoarthritis and differentiated into cartilage,
  • the present invention has been completed.
  • the present invention provides a pharmaceutical composition comprising a FGF2 (Fibroblast Growth Factor 2) signaling activator, a TGF- ⁇ / activin / nodal signal transduction inhibitor, a Wnt signal activator, an extracellular signal-regulated kinase signaling inhibitor, and a leukemia inhibitory factor (LIF).
  • FGF2 Fibroblast Growth Factor 2
  • TGF- ⁇ / activin / nodal signal transduction inhibitor a Wnt signal activator
  • an extracellular signal-regulated kinase signaling inhibitor a leukemia inhibitory factor (LIF).
  • LIF leukemia inhibitory factor
  • the present invention provides a mucsloskeletal progenitor cell produced by the above method.
  • the present invention also provides a pharmaceutical composition for preventing or treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
  • the present invention also provides a cell therapy agent for treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
  • the culture medium composition of the present invention comprises LIF and is useful for stimulating stem cells by activating FGF2 signaling, inhibiting TGF-beta / activin / nodal signaling, activating Wnt signaling, and inhibiting ERK signaling
  • FGF2 signaling activating FGF2 signaling
  • TGF-beta / activin / nodal signaling activating Wnt signaling
  • ERK signaling Can induce the differentiation of musculoskeletal precursor cells efficiently, and the musculoskeletal progenitor cells obtained through this can differentiate into bone through ossification of cartilage and can be differentiated into cartilage, tendon, and muscle so that prevention of various musculoskeletal diseases Or may be useful for treatment.
  • Figure 1A shows the result of observing the morphology of hMSPC induced differentiation from hESC.
  • FIG. 1B is a graph showing the results of immunofluorescence detection of the expression of a fully differentiable marker in hMSPC.
  • FIG. 1C shows the results of RT-PCR analysis of the expression of the differentiation-ability marker in hMSPC.
  • FIG. 1D is a graph showing the results of immunofluorescence for expression of ectoderm, mesoderm, and endoderm markers in hMSPC.
  • FIG. 1E shows the results of RT-PCR for expression of ectoderm, mesoderm, and endoderm markers in hMSPC.
  • 2A shows the results of flow cytometry analysis of expression of mesenchymal stem cell markers in hMSC and hMSPC.
  • FIG. 2B is a graph showing the results of comparing bone formation, cartilage formation, and fat formation in hMSC and hMSPC.
  • FIG. 2C is a graph showing the change in bone cell marker expression during the bone formation process of hMSC and hMSPC for 9 days.
  • FIG. 2D shows the results of comparing changes in expression of cartilage markers before and after hESC-induced differentiation of hMSPC into chondrocytes.
  • Fig. 3A shows the results of immunohistochemical staining of expression of SM22a, a smooth muscle marker, in hMSPC.
  • FIG. 3B is a graph showing the expression of SM-MHC, a smooth muscle marker, in hMSPC by immunofluorescence.
  • FIG. 3C is a graph showing the results of immunofluorescence for the expression of CD31, an endothelial cell marker, in hMSPC.
  • FIG. 3E is a graph showing the expression of MAP2, a neuronal cell marker in hMSPC, by immunofluorescence.
  • FIG. 4A is a graph showing the results of immunofluorescence detection of the expression of the differentiation-ability markers in hMSPC derived from hiPSC.
  • FIG. 4B shows the results of RT-PCR analysis of the expression of the fully differentiable marker in hMSC derived from hiPSC.
  • 4C is a graph showing the results of immunofluorescence for expression of ectoderm, mesoderm, and endodermic markers in hMSC derived from hiPSC.
  • FIG. 4D shows the results of RT-PCR analysis of the expression of ectoderm, mesoderm, and endodermic markers in hMSC derived from hiPSC.
  • FIG. 4E shows the results of flow cytometry analysis of the expression of the mesenchymal stem cell marker in hMSC derived from hiPSC.
  • FIG. 4F shows the results of comparing bone formation, cartilage formation, and fat formation in hMSC derived from hiPSC.
  • FIG. 4G shows the expression of smooth muscle marker in hMSC derived from hiPSC by immunofluorescence.
  • FIG. 5A is a graph showing the result of transplanting hMSPC subcutaneously and confirming its differentiation.
  • FIG. 5B is a diagram showing the results of transplantation of hMSPC into the fascia and confirmation of its differentiation.
  • FIG. 5C is a diagram showing the results of transplantation of hMSPC under the fascia around the tendon and confirmation of its differentiation.
  • 6A shows the result of transplantation of hMSPCs under the kidney capsules of immunodeficient mice and histological examination by H & E staining 5 weeks later.
  • Figure 6B shows the results of transplantation of hMSPCs under the kidney capsules of immunodeficient mice and tissue validation by Movat ' s pentachrome staining 5 weeks later.
  • FIG. 6C is a graph showing the results of confirming the relationship between ossification of osteochondral and angiogenesis.
  • 7A is an experimental design diagram for a fracture study.
  • FIG. 7B is a photograph showing a fracture study.
  • FIG. 7C is a view showing results of fracture studies for hMSPC.
  • FIG. 7D is a view showing results of fracture studies on hMSPC.
  • FIG. 7E is a view showing a result of a fracture study on hMSPC.
  • FIG. 7F is a graph showing the result of confirming the bone formation effect of hMSPC.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an FGF2 (Fibroblast Growth Factor 2) signaling activator, a TGF-beta / activin / nodal signal transduction inhibitor, a Wnt signal activator, an extracellular signal- An inhibitor, and a leukemia inhibitory factor (LIF).
  • FGF2 Fibroblast Growth Factor 2
  • TGF-beta / activin / nodal signal transduction inhibitor e.g., a Wnt signal activator
  • LIF leukemia inhibitory factor
  • stem cell in the present invention is an undifferentiated cell having an ability to differentiate into various body tissues, including a totipotent stem cell, a pluripotent stem cell, a multipotent stem cell, cell.
  • the stem cells may be used in combination with terms such as precursor cells, progenitor cells, and the like.
  • the stem cell may be an embryonic stem cell (ESC) or an induced pluripotent stem cell (iPSC). That is, the culture medium composition of the present invention can induce the differentiation of musculoskeletal precursor cells from embryonic stem cells or induced pluripotent stem cells.
  • ESC embryonic stem cell
  • iPSC induced pluripotent stem cell
  • the embryonic stem cell refers to a cell having a starch-like ability, and it is a cell of embryonic stem cell including the ability to develop into any cell derived from transplant without proliferation, infinite proliferation, autoregulation and all three embryonic stages , But is not limited thereto.
  • mucosloskeletal progenitor cell in the present invention refers, without limitation, to cells that can differentiate into bone, cartilage, tendons, and muscles.
  • the term "differentiation” refers to a phenomenon in which the structure or function of a cell is specialized during the growth of a cell by the proliferation and proliferation, that is, the cell or tissue of the organism is changed in shape or function to perform a task given to each.
  • a relatively simple system is separated into two or more qualitatively different systems.
  • the state in which a difference occurs or as a result is divided into qualitatively distinguishable parts or partial systems is called eruption.
  • the embryonic stem cell or induced pluripotent stem cell used in the present invention is derived from human, bovine, horse, goat, sheep, dog, cat, mouse, rat or alga, preferably human.
  • the stem cells used in the method of the present invention may be autologous or allogenic to the subject to be derived.
  • the FGF2 signaling activator may include, but is not limited to, bFGF (basic FGF).
  • the inhibitor of TGF-beta / activin / nodal signal transduction is E-616452 (2- [3- (6-methyl-2-pyridinyl) Yl) -1,5-naphthyridine), A-83-01 (3- (6-methyl-2-pyridinyl) -1-carbothioamide) or SB431542 (4- [4- (1,3-benzodioxol-5-yl) -5- (2- pyridinyl) But is not limited thereto.
  • the Wnt signal activator is SB216763 (3- (2,4-dichlorophenyl) -4- (1 -methyl-1 H-indol- (3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -lH- pyrrole-2,5-dione), Kenpaullone Dihydro-pyrido [3,2-d] - [1] benzazepin-6 (5H) -one), CHIR99021 (9- , 2 ': 2,3] azepino [4,5-b] indol-6 (5H) -one), CP21R7 (3- Yl) -pyrrole-2,5-dione), SB203580 (4- (4-fluorophenyl) -2- (4-methylsulfinylphenyl) -5- ), H-89 (5-isoquinolinesulfonamide), Purmorphamine (2- (1-naphthoxy) -6- (4-morpholin
  • the ERK signal inhibitor is selected from the group consisting of AS703026 (N - [(2S) -2,3-dihydroxypropyl] -3 - [(2-fluoro-4-iodophenyl) amino ]- isonicotinamide) (4-bromo-2-chloroanilino) -7-fluoro-N- (2-hydroxyethoxy) -3-methylbenzimidazole-5-carboxamide, PD0325901 - [(2-fluoro-4-iodophenyl) amino] -benzamide), ARRY-438162 (2R) -2,3-dihydroxypropoxy] -3,4-difluoro-2- Fluoro-N- (2-hydroxyethoxy) -1-methyl-1H-benzimidazole-6-carboxamide ), RDEA119 ((S) -N- (3,4-difluoro-2 - ((2- fluoro-4-iodophenyl)
  • the culture medium composition of the present invention may preferably include N2B27 medium and KOSR medium.
  • the N2B27 medium contains neural basal medium (Neurobasal, Gibco), DMEM / F12 (Gibco), N2 (Gibco, catalog number: 17502048), and B27 (Gibco, catalog number: 12587010)
  • the cells were cultured in RPMI 1640 medium supplemented with 48% DMEM / F12, 1% N2, 2% B27, 1 mM glutamine, 1% nonessential amino acid, 0.1 mM? -Mercaptoethanol, 0.1% penicillin-streptomycin, Serum albumin.
  • the KOSR medium can be prepared by replacing DMEM / F12 with Knockout DMEM (Life Technologies) in complete medium and may be adjusted accordingly.
  • the complete medium consisted of 20% KnockOut Serum Replacement (Invitrogen), 1 mM glutamine (Invitrogen), 1% nonessential amino acid (Invitrogen), 0.1 mM? -Mercaptoethanol (Invitrogen), and 0.1% penicillin / streptomycin , And DMEM / F12 (Invitrogen) supplemented with 15 ng / ml bFGF (R & D Systems).
  • the present invention also provides a method for inducing differentiation of stem cells into musculoskeletal progenitor cells, comprising culturing stem cells in the culture medium.
  • the stem cells that can be induced into musculoskeletal precursor cells by culturing in the medium composition are preferably embryonic stem cells or inducible pluripotent stem cells.
  • the present invention provides a mucsloskeletal progenitor cell produced by the above method.
  • the musculoskeletal precursor cells of the present invention can differentiate into bone, cartilage, muscle, or tendon.
  • the musculoskeletal precursor cells of the present invention can be differentiated into ectoderm or mesoderm.
  • the musculoskeletal precursor cells of the present invention are negative for Oct4, Nanog, Sox2 or Gdf3 among the differentiation-inducing markers and positive for Lin28.
  • the present invention also provides a pharmaceutical composition for preventing or treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
  • the present invention also provides a cell therapy agent for treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
  • the pharmaceutical composition and the cell treatment agent can be applied to all diseases to which stem cells can be applied, but most preferably they can be used for prevention or treatment of musculoskeletal diseases.
  • the pharmaceutical composition or cell treatment agent comprising the musculoskeletal precursor cells of the present invention can be used for osteoporosis, osteogenesis, osteogenesis imperfecta, osteopetrosis, osteosclerosis, Paget's disease, , Osteoarthritis, rickets, fracture, periodontal disease, segmental bone defect, osteolytic bone disease, primary and secondary hyperparathyroidism, hyperostosis, degenerative arthritis, degenerative arthritis, deformity arthropathy, deformity ankle arthritis, deformed arthropathy, deformed dog Arthritis, arthrosis of the patella, osteoarthritis of the patella, osteoarthritis of the simple humerus, osteochondroma of the humerus, lateral humeral condylar hyperhidrosis, humeral medial rectal hyperplasia, Hevadyn's nodule, Bushard's nodule, deformed moyamoya CM arthropathy, meniscus injury, disc disc degeneration, B
  • the pharmaceutical composition of the present invention may comprise a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carriers to be contained in the composition include those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the pharmaceutical composition may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally.
  • parenteral administration it can be administered by intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, intrapulmonary administration and intrathecal administration.
  • the composition may be administered by any device capable of transferring the active agent to the target cell.
  • composition of the present invention may be prepared in unit dose form by incorporating into a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those skilled in the art, or may be prepared by inserting it into a multi-dose container .
  • the formulations may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of excipients, powders, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
  • the composition may be administered as an individual therapeutic agent or in combination with another therapeutic agent, and may be administered sequentially or simultaneously with a conventional therapeutic agent. It may also be administered once or, if necessary, further.
  • cell therapeutic agent used in the present invention refers to a medicament (US FDA regulation) used for the purpose of treatment, diagnosis and prevention of cells and tissues produced by separation, culture and special manipulation from human, refers to drugs used for therapeutic, diagnostic and prophylactic purposes through a series of actions, such as living, proliferating, screening, or otherwise altering the biological characteristics of a cell in vitro or in vitro.
  • " prevention " in the present invention means all the actions of inhibiting or delaying the progress of musculoskeletal diseases by administration of the composition or cell therapy of the present invention.
  • " treatment " used in the present invention means all the actions of improving or alleviating musculoskeletal diseases by administration of the composition or cell therapy of the present invention.
  • mice (20-24 g) in the background at 7-10 weeks of age were purchased from Orient bio (seongnam, Korea). All animal-related experiments were conducted in accordance with the Guidelines of the Animal Care and Use Committee of Chonbuk National University. The animals were maintained at a controlled temperature (21-24 ° C) and a 12:12 h light / dark cycle environment and allowed free access to water and food.
  • hESC human embryonic stem cells
  • hiPCS human induces lpuripotent stem cells
  • hMSPC human muscloskeletal progenitor cells
  • H9 hESCs were purchased from WiCell (Madison, MI, USA). hESC and hiPSC were transferred into a mitomycin C-treated CF1 monolayer on plates prepared 1 day before and cultured.
  • the culture medium (complete medium) contained 20% KnockOut Serum Replacement (Invitrogen), 1 mM glutamine (Invitrogen), 1% nonessential amino acid (Invitrogen), 0.1 mM? -Mercaptoethanol (Invitrogen), and 0.1% penicillin / streptomycin (Invitrogen) supplemented with 10 ng / ml bovine serum albumin (Invitrogen) and 15 ng / ml bFGF (R & D Systems).
  • the differentiation induction medium contained 20 ng / ml human LIF (Life Technologies), 15 ng / ml basic FGF, 3 ⁇ M CHIR99021 (Calbiochem), 1 ⁇ M PD0325901 (Calbiochem), 10 ⁇ M SB431542 (Sigma).
  • Differentiated cells were induced by culturing trypsinized hESCs or hiPSCs with TrypLE (Life technology) in induction medium on induction medium on bitronectin + gelatin (1 ng / ml, Sigma). Cells were transfected every 2-3 days with trypsinization without ROCK inhibitor and PKC inhibitor.
  • the digested samples were fixed overnight at 4 ° C in 2% paraformaldehyde (PFA) (Wako) and lime was removed with 0.4 M EDTA in PBS (pH 7.2) for 2 weeks at 4 ° C.
  • PFA paraformaldehyde
  • the samples were then dehydrated in alcohol or xylene, embedded in paraffin or embedded in OCT by cryoprotection in sucrose and cut. Representative sections were stained with H & E, and modified Movat pentachrome (Cosmobio).
  • the cells were then stained with secondary antibody Alexa Fluor 488-goat anti-mouse IgG, Alexa Fluor 594-donkey anti-rabbit IgG, Alexa Fluor 488-donkey anti-rabbit IgG, and Alexa Fluor 594-donkey anti-mouse IgG Invitrogen) .
  • the nuclei were stained with DAPI (4,6-diamidino-2-phenylindole). Images were acquired using an Olympus IX71 fluorescence microscope and MetaMorph software (Molecular Devices).
  • the primary antibodies treated at the cross-sections were: a mouse monoclonal antibody (Abcam) for HLA class I, a goat polyclonal antibody (Santacruz) for Collagen Type II, a rabbit polyclonal antibody (Santacruz) for osteocalcin, , Osterix (Abcam), p-myosin light chain (Abcam), Scleraxis (antibodies-online), Runx2 (Novus), and Sclerostin (Santacruz).
  • the secondary antibodies used are Alexa 555 (Invitrogen) and Alexa 488 (Invitrogen) IgG. Immunostained sections were stained with TO-PRO3 (Invitrogen) to stain nuclei. Fluorescence labeled tissue sections with a Leica DM 5000 microscope (Leica Microsystems) or a confocal microscope (LSM510; Carl Zeiss) were captured and validated with Zen software.
  • the cultured cells were treated with trypsin / EDTA to separate into a single cell suspension, blocked with 2% BSA in PBS, and then stained with CD73, CD90, and CD90 in buffer solution [1XPBS, 1% BSA, and 0.01% sodium azide] 0.0 > CD205, < / RTI > CD146, CD166 (BD Biosciences).
  • Cells were then incubated with Alexa Fluor 488 secondary mouse IgGs (Invitrogen, Carlsbad, Calif.) And analyzed using a flow cytometer (FACStar Plus Flow Cytometer, BD Biosciences). Normal mouse IgGs (BD Biosciences) were used as negative control.
  • MSC mesenchymal stem cells
  • hMSPC hMSPC into osteoblasts and adipocytes
  • cells were isolated with trypsin / EDTA, centrifuged at 100 x g for 5 min and seeded at 5 x 10 3 cells / cm 2 in a culture vessel Respectively.
  • Cells were cultured in induction medium at 37 ° C, 5% CO 2 for one day.
  • the medium was replaced with a pre-warmed complete osteogenesis differentiation kit (Life Technology) or a StemPro adipogenesis Differentiation Kit (Life Technology).
  • the cultures were re-fed every 3-4 days. After 14 days, the cells were stained with alkaline phosphatase staining (Roche) or alizarin red S (Sigma) for observation of osteogenesis, and oil red O) (Sigma).
  • the cells were separated with trypsin / EDTA, centrifuged at 100 ⁇ g for 5 minutes, and reconstituted with 1 ml of StemPro chondrogenesis differentiation kit (Life Technology) After cloudy, the cells were centrifuged again.
  • the pellet was resuspended in 1 x 105 viable cells / l in the differentiation medium and 5 ul of the cell solution was inoculated at the center of the unsubstantiated 96-well plate.
  • the cartilage formation medium heated in the culture vessel was added and cultured in a 5% CO 2 incubator at 37 ° C. The cultures were re-fed every 3-4 days. After 14 days, the cartilage-producing pellet was stained with Alcian blue, and gene expression analysis was performed.
  • hMSPC and HUVEC were differentiated into endothelial cells (ECs) or smooth muscle cells (SMCs).
  • the cells were treated with 50 ng / ml vascular endothelial growth factor (ProSpec, Rehovot, Israel) and 10 ng / ml bFGF (basic fibroblast growth factor) in EC differentiation medium (EGM) -2 (Lonza, Walkersville, MD) ml), 2.5 ng / ml TGF- ⁇ 1 (5 ⁇ g / ml) in SMC differentiation medium (SMCM: ScienCell Research Laboratories, Carlsbad, Calif. (transforming growth factor beta 1, ProSpec) for 6 days.
  • EMM EC differentiation medium
  • SMC differentiation medium SMC differentiation medium
  • hNSCs Human neural stem cells differentiated from ready-to-use H9 hESCs were purchased from GIBCO. hNSCs were maintained in knockout DMEM / F12 (GIBCO) containing 2 mM GlutaMAX, 20 ng / ml bFGF, 20 ng / ml EGF and 2% StemPro neural supplements. To differentiate into neurons, hMSPC and hNSC were plated in polyornithine and laminin-coated culture dishes. Two days later, the medium was replaced with neural differentiation medium (Neurobasal medium containing 2% B27, 2 mM GlutaMAX and antibiotics). On the 7th day of differentiation, 0.5 mM dibutyl cAMP (Sigma) was added daily for 3 days.
  • hMSPC (10 6 -10 7 cells in Matrigel) was transplanted into the subcutaneous and fascia of Balb / c nude mice to determine the differentiability of hMSPC.
  • hMSPC aggregates (4 x 10 5 ) were implanted under the kidney capsules of Balb / c nude mice. After 2-6 weeks of transplantation, the transplanted cells were removed and the tissue was analyzed.
  • Collagen cell carriers (CCC, 500042933, Viscofan-bioengineering, Weinheim, Germany) were placed in phosphate buffered saline (PBS) for 30 minutes to analyze the bone formation of hMSPCs in the long bone fracture model. After washing the PBS, the CCC was left overnight to dry to make it slightly opaque. SPC was inoculated into CCC and cultured. In one 6-week-old Balb / c-nude mouse, unilateral femoral osteotomy was pinned. The SPC supported by the CCC was then inserted into the fracture site of the mouse. The fractured bone was placed for 6 weeks. Images of the fracture site were obtained using an X-ray (Kodak DXS 4000 pro system, Rochester, USA).
  • hMSPC bone formation in a skull fracture model
  • a 7-week-old Balb / c-nude mouse was made with a 5-mm bony skull of the right parietal region.
  • SPC cells were primed for 7 days in StemPro Osteogenesis Differentiation Kit (Life technology). After priming SPC, 1x10 4 cells were inoculated into a scaffold made of hyaluronic acid-loaded poly (lactic-co-glycolic acid (HA-PLGA) for 24 hours and transplanted into empty areas.
  • HA-PLGA hyaluronic acid-loaded poly
  • CT computed tomography
  • hMSPCs The differentiation of hMSPCs was induced from hESCs as shown in Example 1.2 above, and the morphological changes of induced hMSPCs were observed, and the results are shown in Fig. 1A.
  • the expression of the differentiation marker was observed by immunofluorescence in the hMSPC after passage from the hESC to the passage of 10 or more passages, and the observation result is shown in Fig. 1B.
  • H9 hESC was positive for both OCT4, NANOG, SOX2, and LIN28, confirming the ability to differentiate.
  • hMSPC derived from H9 hESC showed negative for OCT4, NANOG and SOX2, but positive for LIN28.
  • 1C shows the results of RT-PCR of the expression of the differentiation-ability markers identified by immunofluorescence in the hMSPC of 5, 10, and 15 passages, respectively.
  • ectoderm, mesoderm, and endoderm markers in hMSPC derived from hESC of passage number 10 was confirmed by immunofluorescence, and the results are shown in Fig. 1D.
  • FIG. 1E shows the results.
  • Flow cytometry analysis was performed on the mesenchymal stem cell markers CD73, CD90, CD105, CD146 and CD166 in hMSC and the hMSPC of Example 2.1 above.
  • the results of flow cytometry analysis in which the mesenchymal stem cell markers are indicated by orange lines and the control group is indicated by blue lines are shown in Fig. 2A.
  • hMSPC has similar potential for differentiation to mesenchymal stem cells.
  • hMSCs were differentiated into bone, cartilage and fat, and hMSPC was differentiated into bone and cartilage but not into fat.
  • the bone cell markers ALP and RUNX2 were expressed in the bone formation process of hMSPC, and it was confirmed that the markers were expressed at a higher level in the bone formation process of hMSPC than hMSC. Therefore, it was confirmed that hMSPC could be differentiated into bone and cartilage.
  • FIG. 2D shows the results of comparing the expression of the cartilage markers AGC, SOX9, COL1A1, COL1A2 and catrigen2 before and after differentiation of hMSPC derived from hESC of 2.1 above into chondrocytes.
  • the cartilage markers AGC, catrigen2, COL1A1, and COL1A2 were expressed more in hMSPC than in hMSC, and the cartilage markers were expressed at a higher level after hMSPC was differentiated into cartilage cells.
  • hMSPC is more likely to differentiate into bone cells and cartilage cells than hMSC, and hMSPC is not differentiated into adipocytes.
  • SM22 ⁇ and SM-MHC smooth muscle myosin heavy chain
  • HASMC Human atrial smooth muscle cells
  • hMSPC had the potential to differentiate into smooth muscle.
  • FIGS. 3C and 3D The results of immunofluorescence for the endothelial cell markers CD31 and VE-cadherin are shown in FIGS. 3C and 3D.
  • HUVEC was used as a positive control for endothelial cell differentiation.
  • FIG. 3E shows the results of performing immunofluorescence on MAP2 as a neural cell differentiation marker.
  • NSC neurovascular stem cells
  • hMSPC is not capable of differentiating into endothelial cells.
  • hMSPC is likely to develop into ectoderm but not into neurons. Therefore, hMSPC can be differentiated into endoderm, more specifically bone, cartilage, and muscle.
  • hiPSC was prepared by reprogramming IMR90 fetal fibroblasts by overexpression of sendai virus-mediated OCT4, KLF4, SOX2, and MYC according to the protocol developed by Hasegawa et al. (Fusaki et al., 2009).
  • HMSPC was derived from hiPSC in the same manner as in Example 1.2 to obtain hMSPC.
  • the expression levels of Oct4, Nanog, Sox2, and Gdf3 as hmPSC-derived hMSPCs were confirmed by immunofluorescence and RT-PCR, respectively, and are shown in Figs. 4A and 4B, respectively.
  • iPS cells were positive for both OCT4, NANOG, SOX2, and LIN28, indicating that they were capable of differentiating.
  • hMSPC derived from hiPSC was negative for OCT4, NANOG and SOX2, but positive for LIN28.
  • Flow cytometric analysis of mesenchymal stem cell markers CD73, CD90, CD105, CD146 and CD166 was performed in hMSPC derived from hiPSC.
  • the results of flow cytometry analysis in which the mesenchymal stem cell markers are indicated by orange lines and the control group is indicated by blue lines are shown in Fig. 4E.
  • hMSCs derived from hiPSC had similar potential for differentiation to mesenchymal stem cells.
  • hMSC derived from hiPSC was differentiated into bone and cartilage but not into fat.
  • 4G shows the result of performing immunofluorescence on SM22 ⁇ , SM-MHC (smooth muscle myosin heavy chain) as markers of smooth muscle in hMSPC derived from hiPSC.
  • hMSPC derived from hiPSC had the potential to differentiate into smooth muscle.
  • hMSPC was transplanted into the subcutaneous and fascia of immunodeficient mice. Five weeks after transplantation of hMSPCs onto the site, the tissues were stained with H & E and Movat's pentachrome and stained for comparison with TO-PRO3. The results are shown in FIGS. 5A to 5C.
  • hMSPC formed mineralized cartilage tissue (green) and non-mineralized cartilage tissue (yellow) under the skin (FIGS. 5Aa and 5Ab).
  • a typical cartilage-like structure was formed by H & E staining, and thus it can be seen that hMSPC formed chondrocytes.
  • immunohistochemical analysis showed that collagen type II (Col2), a cartilage marker, and hLA (human leukocyte antigen), a human cell marker, were positive, indicating that the transplanted hMSPCs differentiated into chondrocytes. [Scale bar: 1 mm (a), 100 ⁇ m (b, c), 500 ⁇ m (i), 100 ⁇ m (ii, iii, iv)].
  • hMSPC was differentiated into a typical muscle form in the fascia as a result of Movat's Pentachrome staining (Fig. 5Ba and Fig. 5Bb) and H & E (Fig. 5Bc) staining.
  • p-MLC phosphorylated myosin light chain
  • hLA human leukocyte antigen
  • hMSPC was differentiated into a typical muscle form under the fascia around the tendon as a result of Movat's Pentachrome staining (Figs. 5Ca and 5Cb) and H & E (Fig. 5Cc) staining.
  • immunohistochemical analysis revealed that the transfected hMSPCs were differentiated into dry cells because it was confirmed that Scm (scleraxis), which is a key marker, and hLA (human leukocyte antigen), a human cell marker, were positive.
  • Scm scleraxis
  • hLA human leukocyte antigen
  • the hMSPC of the present invention can be differentiated into cartilage, muscle, tendon and endochondral bone depending on the transplantation site, and excellent in the differentiation ability.
  • Example 1.2 The same induction hMSPC (4 x 10 5 cells) and the rats are implanted under the kidney capsule of immunodeficient mice. After hMSPC was transplanted to the site, the transplanted cells were removed, and the tissues were stained with H & E and Movat's pentachrome, and stained with TO-PRO3. The results are shown in FIGS. 6A and 6B.
  • Fig. 6A it was confirmed that hard tissue, that is, bone was formed at the implantation site of hMSPC (Fig. 6Aa and Fig. 6Ab). It was confirmed that bone and cartilage were formed together with H & E staining and pentachrome staining. It was confirmed that the tissue was composed of mineralized cartilage tissue (green), non-mineralized cartilage tissue (yellow ) And mineralized bone tissue (red) (Fig. 6Ac and Fig. 6Ad). Therefore, it can be seen that the transplanted hMSPC is differentiated into cartilage and bone under the kidney capsule.
  • hLA human leukocyte antigen
  • Col II a cartilage marker
  • the bone marrow section was stained with anti-vWF (von Willebrand factor) antibody.
  • vWF von Willebrand factor
  • FIG. 6C vWF-positive cells were found at the junction of kidney and bone marrow. Since vWF-positive cells are derived from mice, it can be seen that angiogenesis is necessary for intra-cartilage differentiation.
  • the hMSPC When the hMSPC is implanted under the kidney capsule, the hMSPC is differentiated into bone and cartilage, and the process of forming the lecture is completed and the cartilage disappears. Thus, it can be understood that the hMSPC is differentiated into the bone through ossification of the cartilage.
  • Example 1.2 In order to confirm the effect of the hMSPC induced recovery in the same manner as in Example 1.2 on fracture healing, a fracture study was conducted as shown in Examples 1.11, 7A and 7B, and the results are shown in Figs. 7C to 7E .
  • hMSPC bone formation of hMSPC was confirmed in vivo by injecting HA-PLGA and cells into the infected skull of immunodeficient mice. After priming of hMSPC with osteogenic medium for 7 days, cells were inoculated into HA-PLGA graft. As shown in FIG. 7F, Runx2, a bone formation marker, was expressed in chondrocytes and osteocytes of tissues, and it was confirmed that transplantation of HA-PLGA-loaded hMSPC completely cures skull bone defects. Therefore, it was confirmed that hMSPC could be involved in intramural ossification.
  • the results of the above experiments show that the FGF2 (Fibroblast Growth Factor 2) signaling activator, TGF- ⁇ / activin / nodal signal transduction inhibitor, Wnt signal activator, ERK (extracellular such as embryonic stem cells or inducible pluripotent stem cells, by using a medium composition for inducing the differentiation of stem cells into mucosal bone marrow progenitor cells, which comprises a signal-regulated kinase signaling inhibitor and a leukemia inhibitory factor (LIF) It is possible to differentiate into hMSPC from cells, and since hMSPC having differentiation ability into bone, muscle, cartilage, and tendon in vivo can be used effectively for various musculoskeletal diseases.
  • FGF2 Fibroblast Growth Factor 2
  • TGF- ⁇ / activin / nodal signal transduction inhibitor Wnt signal activator
  • ERK extracellular such as embryonic stem cells or inducible pluripotent stem cells

Abstract

The present invention relates to: a culture medium composition for inducing differentiation of a musculoskeletal progenitor cell from a stem cell; a method for inducing differentiation of a musculoskeletal progenitor cell from a stem cell using the culture medium composition; a musculoskeletal progenitor cell produced by the method; and a pharmaceutical composition and a cell therapeutic agent containing the cell for preventing or treating musculoskeletal diseases. The culture medium composition according to the present invention contains an LIF, and is capable efficiently inducing differentiation of a musculoskeletal progenitor cell from a stem cell by activating FGF2 signal transfer, inhibiting TGF-β/activin/nodal signal transfer, activating a Wnt signal, and inhibiting an ERK signal. The musculoskeletal progenitor cell obtained thereby can be differentiated into a bone through endochondral ossification, and also into cartilage, tendon, and muscle, and therefore can be useful in preventing or treating a variety of musculoskeletal diseases.

Description

근골격계 전구세포 유도용 배지 조성물 및 근골격계 전구세포를 포함하는 근골격계 질환 예방 또는 치료용 약학적 조성물A pharmaceutical composition for preventing or treating musculoskeletal diseases, comprising a culture medium composition for inducing musculoskeletal precursor cells and musculoskeletal precursor cells
본 발명은 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도용 배지 조성물, 상기 배지 조성물을 이용한 줄기세포로부터 근골격계 전구세포로의 분화 유도방법 및 상기 방법에 의해서 제조된 근골격계 전구세포, 상기 세포를 포함하는 근골격계 질환의 예방 또는 치료용 약학적 조성물 및 세포치료제에 관한 것이다.The present invention relates to a medium composition for inducing differentiation from stem cells to a musculoskeletal progenitor cell, a method for inducing differentiation from stem cells to musculoskeletal precursor cells using the medium composition, and a method for inducing differentiation into musculoskeletal progenitor cells, To a pharmaceutical composition and a cell treatment agent for preventing or treating musculoskeletal diseases.
골화(ossification)는 골의 형성 과정으로, 막내골화 또는 연골내골화의 두 가지 방법에 의하는 것으로 알려져 있다. 막내골화는 간엽조직의 골로 전환되는 직접적인 과정으로, 두개골의 골 내에서 일어난다. 한편, 연골내골화는 응집된 간엽세포로부터 연골 조직이 형성되는 과정 이후 연골 조직이 골로 전환되는 과정에 의해 일어난다. 이러한 골화 과정은 척추동물에 있어 대부분의 골 형성에 필수적이다.Osteification is a process of bone formation, which is known to be due to two methods of intramedullary or intramedullary ossification. Intramural ossification is a direct process that is converted into mesenchymal bone, which occurs within the skull bone. On the other hand, ossification of cartilage occurs by the process of cartilage tissue being converted into bone after the process of cartilage tissue formation from agglomerated mesenchymal cells. This process of ossification is essential for most bone formation in vertebrate animals.
한편, 인간 배아 줄기세포(human embryonic stem cells; hESCs)는 전분화능 세포로, 제한없이 생장이 가능하며, 모든 세포 종류로 분화할 수 있다. hESC는 세포 단계에서의 배아발생 연구에 매우 유용한 도구이자, 세포 대체 치료에 대한 유용한 도구이다. hESCs는 예를 들어, 골 및 연골을 포함하는 골격조직을 포함하는 특이적 조직으로 분화할 수 있으며, 이에 골격조직 수복에 이용될 수 있다. On the other hand, human embryonic stem cells (hESCs) are totally differentiable cells, which can grow without limitation and can differentiate into all cell types. hESC is a very useful tool for studying embryonic development at the cellular level and is a useful tool for cell replacement therapy. hESCs can be differentiated into specific tissues including, for example, skeletal tissues including bone and cartilage, and can be used for skeletal tissue repair.
인간 유도만능줄기세포(human induces lpuripotent stem cells; hiPSCs)는 어떠한 세포 유형으로도 분화할 수 있는 능력을 갖는 만능줄기세포로 알려져 있다. hiPSC는 세포 수준에서 배아발생을 연구하는 데 유용하고 세포치료제로 주목받는 세포이다. 이들 세포를 이식함으로써 골격 조직, 예컨대 골 및 연골로 분화시킬 수 있으므로, 손상된 골격 조직 회복 및 치료에 있어 유용하게 사용될 수 있다. Human induced lpuripotent stem cells (hiPSCs) are known as pluripotent stem cells capable of differentiating into any cell type. hiPSC is a cell that is useful for studying embryonic development at the cellular level and is attracting attention as a cell therapy agent. Since these cells can be differentiated into bone structures such as bone and cartilage by transplantation, they can be usefully used for repairing and repairing damaged skeletal tissues.
중간엽줄기세포(Mesenchymal stem cells; MSCs)는 자가재생하며, 조골세포, 지방세포 및 연골세포와 같은 중간엽-유형의 세포로 분화 할수 있는 세포이다. MSC는 다양한 조건에서 임상시험에 적용되고 있으며, 이는 외상, 골격계 질환, 골수이식 부작용인 이식편대숙주병 (graft versus host disease), 심혈관 질환, 자가 면역 질환, 간 질환등에 시도되고 있다. 그러나, 치료적 적용에 필요한 MSC의 충분한 양을 얻는 것은 매우 어렵다는 한계점이 있다. Mesenchymal stem cells (MSCs) are self-renewing cells that can differentiate into mesenchymal-type cells such as osteoblasts, adipocytes and chondrocytes. MSC has been applied to clinical trials under various conditions, and it has been attempted in trauma, skeletal diseases, graft versus host disease, cardiovascular disease, autoimmune disease, liver disease and the like. However, there is a limitation in that it is very difficult to obtain a sufficient amount of MSC necessary for therapeutic application.
골 조직 엔지니어링 분야에 있어서, 막내골화의 발생학상 과정은 골 구조를 형성하는데 사용되어왔다. 그러나, 중간엽줄기세포를 이용한 골 치료의 확률은 동물 모델에서조차 5% 미만으로 매우 낮다. 따라서, 최근의 연구는 중간엽줄기세포를 이용해서 연골내골화를 모방함으로써 골 형성을 유도하는 방법을 주목하고 있으나, 연구가 부족한 실정이다.In bone tissue engineering, the developmental process of intramedullary ossification has been used to form bone structures. However, the probability of osteoprosthesis using mesenchymal stem cells is very low, less than 5% even in animal models. Thus, recent studies have focused on the method of inducing osteogenesis by mimicking osteochondral ossification using mesenchymal stem cells, but the research is insufficient.
이와 관련하여, 최근 마우스 골격 줄기/전구세포(skeletal stem/progenitor cells; SSCs)가 중간엽줄기세포와는 구별되는 것이며, 특히 골 및 연골로 분화될 수 있는 가능성이 높은 것으로 밝혀졌다. 따라서, 중간엽줄기세포의 한계점을 극복하면서도 연골내골화를 통해 골 및 연골로 모두 분화될 수 있는 세포에 대한 연구의 필요성이 증가하고 있다.In this regard, it has recently been found that mouse skeletal stem / progenitor cells (SSCs) are distinct from mesenchymal stem cells, and are highly likely to be specifically differentiated into bone and cartilage. Therefore, there is an increasing need for studies on cells capable of differentiating into bone and cartilage through osteoarthritis while overcoming the limitations of mesenchymal stem cells.
이에 본 발명자들은 인간배아줄기세포 또는 인간유도만능줄기세포로부터 근골격계 전구세포를 유도할 수 있으며, 상기 근골격계 전구세포가 연골내골화를 통해 골로 분화될 수 있고, 골 뿐만 아니라 연골, 건, 근육으로 분화될 수 있음을 확인함으로써 본 발명을 완성하였다. Thus, the present inventors have been able to induce musculoskeletal precursor cells from human embryonic stem cells or human induced pluripotent stem cells, and that the musculoskeletal precursor cells can be differentiated into bone through osteoarthritis and differentiated into cartilage, The present invention has been completed.
본 발명의 목적은 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도용 배지 조성물, 상기 배지 조성물을 이용한 줄기세포로부터 근골격계 전구세포로의 분화 유도방법을 제공하는 것이다.It is an object of the present invention to provide a medium composition for inducing differentiation from stem cells to a musculoskeletal progenitor cell, and a method for inducing differentiation from stem cells into musculoskeletal progenitor cells using the medium composition.
본 발명의 또다른 목적은 상기 방법에 의해서 제조된 근골격계 전구세포, 상기 세포를 포함하는 근골격계 질환의 예방 또는 치료용 약학적 조성물 및 세포치료제를 제공하는 것이다.It is still another object of the present invention to provide a musculoskeletal precursor cell produced by the above method, a pharmaceutical composition for preventing or treating musculoskeletal diseases including the cell, and a cell treatment agent.
상기 목적을 달성하기 위하여, 본 발명은 FGF2(Fibroblast Growth Factor 2) 신호전달 활성화제, TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달 억제제, Wnt 신호 활성화제, ERK (extracellular signal-regulated kinase) 신호 억제제, 및 LIF(leukemia inhibitory factor)를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도용 배지 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition comprising a FGF2 (Fibroblast Growth Factor 2) signaling activator, a TGF-β / activin / nodal signal transduction inhibitor, a Wnt signal activator, an extracellular signal-regulated kinase signaling inhibitor, and a leukemia inhibitory factor (LIF). The present invention also provides a medium composition for inducing differentiation of stem cells into musculoskeletal progenitor cells.
또한, 본 발명은 상기 배지 조성물에서 줄기세포를 배양하는 단계를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도방법을 제공한다.The present invention also provides a method for inducing differentiation of stem cells into musculoskeletal progenitor cells, comprising culturing stem cells in the culture medium.
또한, 본 발명은 상기 방법에 의해서 제조된, 근골격계 전구세포(mucsloskeletal progenitor cell)를 제공한다.In addition, the present invention provides a mucsloskeletal progenitor cell produced by the above method.
또한, 본 발명은 상기 근골격계 전구세포를 포함하는, 근골격계 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
또한, 본 발명은 상기 근골격계 전구세포를 포함하는, 근골격계 질환 치료용 세포치료제를 제공한다.The present invention also provides a cell therapy agent for treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
본 발명의 배지 조성물은 LIF를 포함하며 FGF2 신호전달의 활성화, TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달의 억제, Wnt 신호 활성화, 및 ERK 신호 억제에 의해 줄기세포로부터 근골격계 전구세포를의 분화를 효율적으로 유도할 수 있고, 이를 통해 수득한 근골격계 전구세포는 연골내골화를 통해 골로 분화할 수 있으며 연골, 건, 및 근육으로도 분화할 수 있으므로 다양한 근골격계 질환의 예방 또는 치료에 유용하게 사용할 수 있다.The culture medium composition of the present invention comprises LIF and is useful for stimulating stem cells by activating FGF2 signaling, inhibiting TGF-beta / activin / nodal signaling, activating Wnt signaling, and inhibiting ERK signaling Can induce the differentiation of musculoskeletal precursor cells efficiently, and the musculoskeletal progenitor cells obtained through this can differentiate into bone through ossification of cartilage and can be differentiated into cartilage, tendon, and muscle so that prevention of various musculoskeletal diseases Or may be useful for treatment.
도 1A는 hESC로부터 분화 유도된 hMSPC의 형태를 관찰한 결과를 나타낸 도이다.Figure 1A shows the result of observing the morphology of hMSPC induced differentiation from hESC.
도 1B는 hMSPC에서 전분화능 마커의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 1B is a graph showing the results of immunofluorescence detection of the expression of a fully differentiable marker in hMSPC.
도 1C는 hMSPC에서 전분화능 마커의 발현을 RT-PCR에 의해 확인한 결과를 나타낸 도이다.FIG. 1C shows the results of RT-PCR analysis of the expression of the differentiation-ability marker in hMSPC.
도 1D는 hMSPC에서 외배엽, 중배엽, 내배엽 마커의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 1D is a graph showing the results of immunofluorescence for expression of ectoderm, mesoderm, and endoderm markers in hMSPC.
도 1E는 hMSPC에서 외배엽, 중배엽, 내배엽 마커의 발현을 RT-PCR에 의해 확인한 결과를 나타낸 도이다.FIG. 1E shows the results of RT-PCR for expression of ectoderm, mesoderm, and endoderm markers in hMSPC.
도 2A는 hMSC 및 hMSPC에서 중간엽줄기세포 마커의 발현을 유세포분석에 의해 확인한 결과를 나타낸 도이다.2A shows the results of flow cytometry analysis of expression of mesenchymal stem cell markers in hMSC and hMSPC.
도 2B는 hMSC 및 hMSPC에서 골형성, 연골 형성, 지방 형성을 비교한 결과를 나타낸 도이다.FIG. 2B is a graph showing the results of comparing bone formation, cartilage formation, and fat formation in hMSC and hMSPC.
도 2C는 hMSC 및 hMSPC의 골형성 과정에서 골세포 마커의 발현 변화를 9일 동안 관찰한 결과를 나타낸 도이다.FIG. 2C is a graph showing the change in bone cell marker expression during the bone formation process of hMSC and hMSPC for 9 days. FIG.
도 2D는 hESC로부터 유도된 hMSPC의 연골 세포로의 분화 전후에 연골 마커의 발현 변화를 비교한 결과를 나타낸 도이다.FIG. 2D shows the results of comparing changes in expression of cartilage markers before and after hESC-induced differentiation of hMSPC into chondrocytes.
도 3A는 hMSPC에서 평활근 마커인 SM22α의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.Fig. 3A shows the results of immunohistochemical staining of expression of SM22a, a smooth muscle marker, in hMSPC.
도 3B는 hMSPC에서 평활근 마커인 SM-MHC의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 3B is a graph showing the expression of SM-MHC, a smooth muscle marker, in hMSPC by immunofluorescence.
도 3C는 hMSPC에서 내피 세포 마커인 CD31의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 3C is a graph showing the results of immunofluorescence for the expression of CD31, an endothelial cell marker, in hMSPC.
도 3D는 hMSPC에서 내피 세포 마커인 VE-cadherin의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 3D is a graph showing the results of immunofluorescence for the expression of VE-cadherin, an endothelial cell marker, in hMSPC.
도 3E는 hMSPC에서 신경 세포 마커인 MAP2의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 3E is a graph showing the expression of MAP2, a neuronal cell marker in hMSPC, by immunofluorescence.
도 4A는 hiPSC로부터 유도된 hMSPC에서 전분화능 마커의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.FIG. 4A is a graph showing the results of immunofluorescence detection of the expression of the differentiation-ability markers in hMSPC derived from hiPSC.
도 4B는 hiPSC로부터 유도된 hMSPC에서 전분화능 마커의 발현을 RT-PCR에 의해 확인한 결과를 나타낸 도이다.FIG. 4B shows the results of RT-PCR analysis of the expression of the fully differentiable marker in hMSC derived from hiPSC.
도 4C는 hiPSC로부터 유도된 hMSPC에서 외배엽, 중배엽, 내배엽 마커의 발현을 면역형광법에 의해 확인한 결과를 나타낸 도이다.4C is a graph showing the results of immunofluorescence for expression of ectoderm, mesoderm, and endodermic markers in hMSC derived from hiPSC.
도 4D는 hiPSC로부터 유도된 hMSPC에서 외배엽, 중배엽, 내배엽 마커의 발현을 RT-PCR에 의해 확인한 결과를 나타낸 도이다.FIG. 4D shows the results of RT-PCR analysis of the expression of ectoderm, mesoderm, and endodermic markers in hMSC derived from hiPSC.
도 4E는 hiPSC로부터 유도된 hMSPC에서 중간엽줄기세포 마커의 발현을 유세포분석에 의해 확인한 결과를 나타낸 도이다.FIG. 4E shows the results of flow cytometry analysis of the expression of the mesenchymal stem cell marker in hMSC derived from hiPSC.
도 4F는 hiPSC로부터 유도된 hMSPC에서 골형성, 연골 형성, 지방 형성을 비교한 결과를 나타낸 도이다.FIG. 4F shows the results of comparing bone formation, cartilage formation, and fat formation in hMSC derived from hiPSC.
도 4G는 hiPSC로부터 유도된 hMSPC에서 평활근 마커의 발현을 면역형광법으로 확인한 결과이다.FIG. 4G shows the expression of smooth muscle marker in hMSC derived from hiPSC by immunofluorescence.
도 5A는 hMSPC를 피하에 이식하고 이의 분화를 확인한 결과를 나타낸 도이다.FIG. 5A is a graph showing the result of transplanting hMSPC subcutaneously and confirming its differentiation. FIG.
도 5B는 hMSPC를 근막에 이식하고 이의 분화를 확인한 결과를 나타낸 도이다.FIG. 5B is a diagram showing the results of transplantation of hMSPC into the fascia and confirmation of its differentiation.
도 5C는 hMSPC를 건 주변의 근막 하에 이식하고 이의 분화를 확인한 결과를 나타낸 도이다.FIG. 5C is a diagram showing the results of transplantation of hMSPC under the fascia around the tendon and confirmation of its differentiation.
도 6A는 hMSPC를 면역결핍 마우스의 신장 캡슐 아래에 이식하고 5주 후 H&E 염색에 의해 조직을 확인한 결과를 나타낸 도이다.6A shows the result of transplantation of hMSPCs under the kidney capsules of immunodeficient mice and histological examination by H & E staining 5 weeks later.
도 6B는 hMSPC를 면역결핍 마우스의 신장 캡슐 아래에 이식하고 5주 후 Movat's 펜타크롬 염색에 의해 조직을 확인한 결과를 나타낸 도이다.Figure 6B shows the results of transplantation of hMSPCs under the kidney capsules of immunodeficient mice and tissue validation by Movat ' s pentachrome staining 5 weeks later.
도 6C는 연골내골화와 혈관신생의 연관관계를 확인한 결과를 나타낸 도이다.FIG. 6C is a graph showing the results of confirming the relationship between ossification of osteochondral and angiogenesis.
도 7A는 골절 연구에 대한 실험 설계도이다.7A is an experimental design diagram for a fracture study.
도 7B는 골절 연구를 수행한 사진이다.FIG. 7B is a photograph showing a fracture study.
도 7C는 hMSPC에 대한 골절 연구 결과를 나타낸 도이다. FIG. 7C is a view showing results of fracture studies for hMSPC. FIG.
도 7D는 hMSPC에 대한 골절 연구 결과를 나타낸 도이다. FIG. 7D is a view showing results of fracture studies on hMSPC. FIG.
도 7E는 hMSPC에 대한 골절 연구 결과를 나타낸 도이다. FIG. 7E is a view showing a result of a fracture study on hMSPC.
도 7F는 hMSPC의 골형성 효과를 확인한 결과를 나타낸 도이다.FIG. 7F is a graph showing the result of confirming the bone formation effect of hMSPC.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 FGF2(Fibroblast Growth Factor 2) 신호전달 활성화제, TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달 억제제, Wnt 신호 활성화제, ERK (extracellular signal-regulated kinase) 신호 억제제, 및 LIF(leukemia inhibitory factor)를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도용 배지 조성물을 제공한다. The present invention relates to a pharmaceutical composition comprising an FGF2 (Fibroblast Growth Factor 2) signaling activator, a TGF-beta / activin / nodal signal transduction inhibitor, a Wnt signal activator, an extracellular signal- An inhibitor, and a leukemia inhibitory factor (LIF). The present invention also provides a medium composition for inducing differentiation of a stem cell into a musculoskeletal progenitor cell.
본 발명에서 용어 "줄기세포"는 다양한 신체 조직으로 분화할수 있는 능력을 갖는 미분화 세포로서, 이는 만능 줄기 세포(totipotent stem cell), 전분화능 줄기세포 (pluripotent stem cell), 다분화능 줄기세포(multipotent stem cell)로 분류될 수 있다. 상기 줄기세포는 전구체 세포(precursor cell), 전구세포 (progenitor cells) 등의 용어와 혼용될 수 있다.The term " stem cell " in the present invention is an undifferentiated cell having an ability to differentiate into various body tissues, including a totipotent stem cell, a pluripotent stem cell, a multipotent stem cell, cell. The stem cells may be used in combination with terms such as precursor cells, progenitor cells, and the like.
본 발명에서 줄기세포는 배아줄기세포(embryonic stem cell, ESC) 또는 유도만능줄기세포(induced pluripotent stem cell, iPSC)일 수 있다. 즉, 본 발명의 배지 조성물은 배아줄기세포 또는 유도만능줄기세포로부터 근골격계 전구세포의 분화를 유도할 수 있다.In the present invention, the stem cell may be an embryonic stem cell (ESC) or an induced pluripotent stem cell (iPSC). That is, the culture medium composition of the present invention can induce the differentiation of musculoskeletal precursor cells from embryonic stem cells or induced pluripotent stem cells.
상기 배아줄기세포는 전분화성을 가지는 세포를 의미하며, 형질전환 없는 증식, 무한증식, 자가-재생산 및 3종류의 모든 배아 층으로부터 유래된 어떠한 세포로 발달할 수 있는 능력을 포함하는 배아줄기세포의 특성을 의미하나, 이에 제한되지는 않는다. The embryonic stem cell refers to a cell having a starch-like ability, and it is a cell of embryonic stem cell including the ability to develop into any cell derived from transplant without proliferation, infinite proliferation, autoregulation and all three embryonic stages , But is not limited thereto.
본 발명에서 용어 "근골격계 전구세포(mucsloskeletal progenitor cell)"는 골, 연골, 건, 및 근육으로 분화될 수 있는 세포를 제한없이 지칭한다.The term " mucosloskeletal progenitor cell " in the present invention refers, without limitation, to cells that can differentiate into bone, cartilage, tendons, and muscles.
상기 "분화(differentiation)"는 세포가 분열 증식하여 성장하는 동안에 서로 구조나 기능이 특수화되는 현상, 즉 생물의 세포, 조직 등이 각각에게 주어진 일을 수행하기 위하여 형태나 기능이 변해가는 것을 말한다. 일반적으로 비교적 단순한 계(系)가 둘 이상의 질적으로 다른 부분계(部分系)로 분리되는 현상이다. 예를 들면, 개체발생에서 처음에 동질적이었던 알 부분 사이에 머리나 몸통 등의 구별이 생기거나 세포에도 근세포라든가 신경세포 등의 구별이 생기는 것과 같이 처음에 거의 동질이었던 어떤 생물계의 부분 사이에 질적인 차이가 생기는 것, 또는 그 결과로서 질적으로 구별할 수 있는 부분 또는 부분계로 나누어져 있는 상태를 분화라고 한다.The term "differentiation" refers to a phenomenon in which the structure or function of a cell is specialized during the growth of a cell by the proliferation and proliferation, that is, the cell or tissue of the organism is changed in shape or function to perform a task given to each. In general, a relatively simple system is separated into two or more qualitatively different systems. For example, there may be qualitative or quantitative differences between parts of a biological system that were initially homogeneous, such as head or trunk distinction between eggs that were initially homogeneous in origin, or distinctions of cells such as muscle cells or neurons The state in which a difference occurs or as a result is divided into qualitatively distinguishable parts or partial systems is called eruption.
본 발명에서 이용되는 배아줄기세포 또는 유도만능줄기세포는 인간, 소, 말, 염소, 양, 개, 고양이, 마우스, 래트 또는 조류로부터 유래된 것이고, 바람직하게는 인간 유래이다.The embryonic stem cell or induced pluripotent stem cell used in the present invention is derived from human, bovine, horse, goat, sheep, dog, cat, mouse, rat or alga, preferably human.
본 발명의 방법에서 이용되는 줄기세포는 유래되는 대상에 대하여 자가(autologous)이거나 또는 타가 (allogenic)일 수 있다.The stem cells used in the method of the present invention may be autologous or allogenic to the subject to be derived.
본 발명에서 상기 FGF2 신호전달 활성화제는 bFGF(basic FGF)를 포함할 수 있으며, 이에 제한되지 않는다.In the present invention, the FGF2 signaling activator may include, but is not limited to, bFGF (basic FGF).
본 발명에서 상기 TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달 억제제는 E-616452(2-[3-(6-메틸-2-피리디닐)-1H-피라졸-4-일]-1,5-나프티리딘), A-83-01(3-(6-메틸-2-피리디닐)-N-페닐-4-(4-퀴놀리닐)-1H-피라졸-1-카보티오아미드) 또는 SB431542(4-[4-(1,3-벤조디옥솔-5-일)-5-(2-피리디닐)-1H-이미다졸-2-일]벤즈아미드)를 포함할 수 있으며, 이에 제한되지 않는다.In the present invention, the inhibitor of TGF-beta / activin / nodal signal transduction is E-616452 (2- [3- (6-methyl-2-pyridinyl) Yl) -1,5-naphthyridine), A-83-01 (3- (6-methyl-2-pyridinyl) -1-carbothioamide) or SB431542 (4- [4- (1,3-benzodioxol-5-yl) -5- (2- pyridinyl) But is not limited thereto.
본 발명에서 상기 Wnt 신호 활성화제는 SB216763(3-(2,4-디클로로페닐)-4-(1-메틸-1H-인돌-3-일)-1H-피롤-2,5-디온), SB415286(3-[(3-클로로-4-히드록시페닐)아미노]-4-(2-니트로페닐)-1H-피롤-2,5-디온), 켄파울론 (Kenpaullone; 9-브로모-7,12-디히드로-인돌로[3,2-d]-[1]벤즈아제핀-6(5H)-온), CHIR99021(9-브로모-7,12-디히드로-피리도[3',2':2,3]아제피노[4,5-b]인돌-6(5H)-온), CP21R7(3-(3-아미노-페닐)-4-(1-메틸-1H-인돌-3-일)-피롤-2,5-디온), SB203580(4-(4-플루오로페닐)-2-(4-메틸술피닐페닐)-5-(4-피리딜)-1H-이미다졸), H-89(5-이소퀴놀린술폰아미드), 퍼모프아민(Purmorphamine; 2-(1-나프톡시)-6-(4-모르폴리노아닐리노)-9-싸이클로헥실퓨린), 또는 IQ-1(2-(4-아세틸-페닐아조)-2-[3,3-디메틸-3,4-디히드로-2H-이소퀴놀린-(1E)-일리덴]-아세트아미드)을 포함할 수 있으며, 이에 제한되지 않는다.In the present invention, the Wnt signal activator is SB216763 (3- (2,4-dichlorophenyl) -4- (1 -methyl-1 H-indol- (3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -lH- pyrrole-2,5-dione), Kenpaullone Dihydro-pyrido [3,2-d] - [1] benzazepin-6 (5H) -one), CHIR99021 (9- , 2 ': 2,3] azepino [4,5-b] indol-6 (5H) -one), CP21R7 (3- Yl) -pyrrole-2,5-dione), SB203580 (4- (4-fluorophenyl) -2- (4-methylsulfinylphenyl) -5- ), H-89 (5-isoquinolinesulfonamide), Purmorphamine (2- (1-naphthoxy) -6- (4-morpholinoanilino) -9-cyclohexylpurine) -1 (2- (4-acetyl-phenylazo) -2- [3,3-dimethyl-3,4-dihydro- But are not limited thereto.
본 발명에서 상기 ERK 신호 억제제는 AS703026(N-[(2S)-2,3-디히드록시프로필]-3-[(2-플루오로-4-요오도페닐)아미노]-이소니코틴아미드), AZD6244(6-(4-브로모-2-클로로아닐리노)-7-플루오로-N-(2-하이드록시에톡시)-3-메틸벤즈이미다졸-5-카르복사미드), PD0325901(N-[(2R)-2,3-디히드록시프로폭시]-3,4-다이플루오로-2-[(2-플루오로-4-요오도페닐)아미노]-벤즈아미드), ARRY-438162(5-[(4-브로모-2-플루오로페닐)아미노]-4-플루오로-N-(2-히드록시에톡시)-1-메틸-1H-벤지이미다졸-6-카르복사미드), RDEA119((S)-N-(3,4-디플루오로-2-((2-플루오로-4-요오도페닐)아미노)-6-메톡시페닐)-1-(2,3-디히드록시프로필)시클로프로판-1-설폰아미드),GDC0973([3,4-다이플루오로-2-(2-플루오로-4-요오도아밀리노)페닐] 3-히드록시-3-[(2S)-피페리딘-2-일]-아제티딘-1-일-메타논), TAK-733((R)-3-(2,3-디히트록시프로필)-6-플루오로-5-(2- 플루오로 -4-요오도페닐아미노)-8-메틸피리도[2,3-d]피리미딘-4,7(3H,8H)-디온), RO5126766(3-[[3-플루오로-2-(메틸설파모일아미노)-4-피리딜]메틸]-4-메틸-7-피리미딘-2-일옥시크로멘-2-온), 또는 XL-518([3,4-디플루오로-2-[(2-플루오로-4-요오도페닐)아미노]페닐][3-하이드록시-3-[(2S)-2-피페리디닐]-1-아제티디닐]메타논)을 포함할 수 있으며, 이에 제한되지 않는다.In the present invention, the ERK signal inhibitor is selected from the group consisting of AS703026 (N - [(2S) -2,3-dihydroxypropyl] -3 - [(2-fluoro-4-iodophenyl) amino ]- isonicotinamide) (4-bromo-2-chloroanilino) -7-fluoro-N- (2-hydroxyethoxy) -3-methylbenzimidazole-5-carboxamide, PD0325901 - [(2-fluoro-4-iodophenyl) amino] -benzamide), ARRY-438162 (2R) -2,3-dihydroxypropoxy] -3,4-difluoro-2- Fluoro-N- (2-hydroxyethoxy) -1-methyl-1H-benzimidazole-6-carboxamide ), RDEA119 ((S) -N- (3,4-difluoro-2 - ((2- fluoro-4-iodophenyl) amino) -6-methoxyphenyl) -1- -Dihydroxypropyl) cyclopropane-1-sulfonamide), GDC0973 ([3,4-difluoro-2- (2- fluoro-4-iodoamylino) phenyl] TAK-733 ((R) -3- (2,3-dihydroxypropyl) -6-fluoro-pyridin- -5 (3H, 8H) -dione), RO5126766 (3 - [[3- (4-fluorophenyl) Methyl-7-pyrimidin-2-yloxychromen-2-one), or XL-518 ([3,4 (3-hydroxy-3 - [(2S) -2-piperidinyl] -1-azetidinyl] Methanone), but is not limited thereto.
본 발명의 배지 조성물은 바람직하게는 N2B27 배지 및 KOSR 배지를 포함할 수 있다.The culture medium composition of the present invention may preferably include N2B27 medium and KOSR medium.
상기 N2B27 배지는 신경세포 기본배지(Neurobasal, Gibco), DMEM/F12 (Gibco), N2(Gibco, 카탈로그 번호: 17502048), 및 B27(Gibco, 카탈로그 번호: 12587010)를 포함하며, 바람직하게는 48% 신경세포 기본배지, 48% DMEM/F12, 1% N2, 2% B27, 1 mM 글루타민, 1% 비필수 아미노산, 0.1 mM β-머캅토에탄올, 0.1% 페니실린-스트렙토마이신, 및 5 mg/ml 소혈청알부민을 포함할 수 있다.The N2B27 medium contains neural basal medium (Neurobasal, Gibco), DMEM / F12 (Gibco), N2 (Gibco, catalog number: 17502048), and B27 (Gibco, catalog number: 12587010) The cells were cultured in RPMI 1640 medium supplemented with 48% DMEM / F12, 1% N2, 2% B27, 1 mM glutamine, 1% nonessential amino acid, 0.1 mM? -Mercaptoethanol, 0.1% penicillin-streptomycin, Serum albumin.
상기 KOSR 배지는 완전 배지에서 DMEM/F12를 Knockout DMEM(Life Technologies)로 치환함으로써 준비할 수 있고, 이로 인해 조정된 것일 수 있다. 상기 완전 배지는 20% KnockOut Serum Replacement (Invitrogen), 1 mM 글루타민 (Invitrogen), 1% 비필수 아미노산 (Invitrogen), 0.1 mM β-머캅토에탄올 (Invitrogen), 및 0.1% 페니실린/스트렙토마이신 (Invitrogen), 및 15 ng/ml bFGF (R&D Systems)로 보충된 DMEM/F12(Invitrogen)로 구성된다. The KOSR medium can be prepared by replacing DMEM / F12 with Knockout DMEM (Life Technologies) in complete medium and may be adjusted accordingly. The complete medium consisted of 20% KnockOut Serum Replacement (Invitrogen), 1 mM glutamine (Invitrogen), 1% nonessential amino acid (Invitrogen), 0.1 mM? -Mercaptoethanol (Invitrogen), and 0.1% penicillin / streptomycin , And DMEM / F12 (Invitrogen) supplemented with 15 ng / ml bFGF (R & D Systems).
또한, 본 발명은 상기 배지 조성물에서 줄기세포를 배양하는 단계를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도방법을 제공한다.The present invention also provides a method for inducing differentiation of stem cells into musculoskeletal progenitor cells, comprising culturing stem cells in the culture medium.
상기 배지 조성물에서 배양함으로써 근골격계 전구세포로 유도될 수 있는 줄기세포는 바람직하게는 배아줄기세포 또는 유도만능줄기세포이나 이에 제한되지 않는다. The stem cells that can be induced into musculoskeletal precursor cells by culturing in the medium composition are preferably embryonic stem cells or inducible pluripotent stem cells.
또한, 본 발명은 상기 방법에 의해서 제조된, 근골격계 전구세포(mucsloskeletal progenitor cell)를 제공한다.In addition, the present invention provides a mucsloskeletal progenitor cell produced by the above method.
본 발명의 근골격계 전구세포는 골, 연골, 근육, 또는 건으로 분화할 수 있다.The musculoskeletal precursor cells of the present invention can differentiate into bone, cartilage, muscle, or tendon.
본 발명의 근골격계 전구세포는 외배엽 또는 중배엽으로 분화할 수 있다.The musculoskeletal precursor cells of the present invention can be differentiated into ectoderm or mesoderm.
본 발명의 근골격계 전구세포는 중간엽줄기세포 마커 중 CD73, CD105, CD146 또는 CD166에 대하여 양성이고 CD90에 대하여 음성인 특징이 있다.The musculoskeletal precursor cells of the present invention are positive for CD73, CD105, CD146 or CD166 among the mesenchymal stem cell markers and negative for CD90.
본 발명의 근골격계 전구세포는 전분화능 마커 중 Oct4, Nanog, Sox2 또는 Gdf3에 대하여 음성이고 Lin28에 대하여 양성인 특징이 있다.The musculoskeletal precursor cells of the present invention are negative for Oct4, Nanog, Sox2 or Gdf3 among the differentiation-inducing markers and positive for Lin28.
또한, 본 발명은 상기 근골격계 전구세포를 포함하는, 근골격계 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
또한, 본 발명은 상기 근골격계 전구세포를 포함하는, 근골격계 질환 치료용 세포치료제를 제공한다.The present invention also provides a cell therapy agent for treating musculoskeletal diseases, which comprises the above musculoskeletal precursor cells.
상기 약학적 조성물 및 세포치료제는 줄기세포가 적용될 수 있는 질환에 모두 적용이 가능하나, 가장 바람직하게는 근골격계 질환의 예방 또는 치료용일 수 있다.The pharmaceutical composition and the cell treatment agent can be applied to all diseases to which stem cells can be applied, but most preferably they can be used for prevention or treatment of musculoskeletal diseases.
본 발명의 근골격계 전구세포를 포함하는 약학적 조성물 또는 세포치료제는 골다공증, 골연화증, 골형성 부전증(osteogenesis imperfecta), 골화석증(osteopetrosis), 골경화증(osteosclerosis), 파제트병(Paget's disease), 골암, 관절염, 구루병, 골절, 치주 질환, 분절성 골 결손, 골용해성 골질환, 원발성 및 속발성 부갑상선기능항진증, 과골증, 퇴행성 관절염, 변형성슬관절증, 변형성고관절증, 변형성족관절증, 변형성수관절증, 변형성견관절증, 변형성주관절증, 슬개연골연화증, 단순성슬관절염, 이단성골연골염, 상완골외측상과염, 상완골내측상과염, 헤바딘 결절, 부샤르 결절, 변형성모지 CM관절증, 반월판 손상, 추간판 디스크 변성, 십자인대 상완 이두박근기시건, 인대손상, 건 손상 오십견, 회전근개 파열, 석회화 건염, 어깨 충동 증후군, 재발성 탈구, 및 습관성 탈구로 구성된 군으로부터 선택된 질환을 예방 또는 치료할 수 있는 효과가 있다.The pharmaceutical composition or cell treatment agent comprising the musculoskeletal precursor cells of the present invention can be used for osteoporosis, osteogenesis, osteogenesis imperfecta, osteopetrosis, osteosclerosis, Paget's disease, , Osteoarthritis, rickets, fracture, periodontal disease, segmental bone defect, osteolytic bone disease, primary and secondary hyperparathyroidism, hyperostosis, degenerative arthritis, degenerative arthritis, deformity arthropathy, deformity ankle arthritis, deformed arthropathy, deformed dog Arthritis, arthrosis of the patella, osteoarthritis of the patella, osteoarthritis of the simple humerus, osteochondroma of the humerus, lateral humeral condylar hyperhidrosis, humeral medial rectal hyperplasia, Hevadyn's nodule, Bushard's nodule, deformed moyamoya CM arthropathy, meniscus injury, disc disc degeneration, Biceps tendon tendon, ligament injuries, dry injured frozen shoulder, rotator cuff tear, calcific tendinitis, shoulder impulse syndrome, recurrent dislocation, There is an effect that can prevent or treat a disease selected from the group consisting of.
본 발명의 약학적 조성물은 약학적으로 허용되는 담체를 포함할 수 있다. 상기 조성물에 포함되는 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 상기 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.The pharmaceutical composition of the present invention may comprise a pharmaceutically acceptable carrier. The pharmaceutically acceptable carriers to be contained in the composition include those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, But are not limited to, cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. The pharmaceutical composition may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc. in addition to the above components.
본 발명의 약학적 조성물은 경구 또는 비경구로 투여할 수 있다. 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 내피 투여, 국소 투여, 비내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있다. 또한, 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally. In the case of parenteral administration, it can be administered by intravenous injection, subcutaneous injection, muscle injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, intrapulmonary administration and intrathecal administration. In addition, the composition may be administered by any device capable of transferring the active agent to the target cell.
본 발명의 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 상기 조성물의 바람직한 투여량은 성인 기준으로 102-108 세포/kg 범위 내이다. 용어 약학적 유효량은 근골격계 질환을 예방 또는 치료하는 데 충분한 양을 의미한다.The appropriate dosage of the pharmaceutical composition of the present invention may vary depending on such factors as formulation method, administration method, age, body weight, sex, pathological condition, food, administration time, route of administration, excretion rate, . The preferred dosage of the composition is within the adult reference 10 2 -10 8 cells / kg range. The term pharmaceutically effective amount refers to an amount sufficient to prevent or treat musculoskeletal disorders.
본 발명의 조성물은 당해 당업자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. 또한, 상기 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 또한 단회 또는 필요시 추가 투여될 수 있다.The composition of the present invention may be prepared in unit dose form by incorporating into a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those skilled in the art, or may be prepared by inserting it into a multi-dose container . The formulations may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of excipients, powders, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents. In addition, the composition may be administered as an individual therapeutic agent or in combination with another therapeutic agent, and may be administered sequentially or simultaneously with a conventional therapeutic agent. It may also be administered once or, if necessary, further.
본 발명에서 용어 세포치료제는 사람으로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA규정)이며, 세포 혹은 조직의 기능을 복원시키기 위하여 살아 있는 자가, 동종 또는 이종 세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 말한다. The term "cell therapeutic agent" used in the present invention refers to a medicament (US FDA regulation) used for the purpose of treatment, diagnosis and prevention of cells and tissues produced by separation, culture and special manipulation from human, Refers to drugs used for therapeutic, diagnostic and prophylactic purposes through a series of actions, such as living, proliferating, screening, or otherwise altering the biological characteristics of a cell in vitro or in vitro.
본 발명에서 용어 예방은 본 발명의 조성물 또는 세포치료제의 투여로 근골격계 질환을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.The term " prevention " in the present invention means all the actions of inhibiting or delaying the progress of musculoskeletal diseases by administration of the composition or cell therapy of the present invention.
본 발명에서 사용되는 용어 치료는 본 발명의 조성물 또는 세포치료제의 투여로 근골격계 질환이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.The term " treatment " used in the present invention means all the actions of improving or alleviating musculoskeletal diseases by administration of the composition or cell therapy of the present invention.
본 발명의 약학적 조성물 또는 세포치료제는 근골격 질환의 예방 및 치료를 위하여 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.The pharmaceutical composition or cell treatment agent of the present invention can be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy and biological response modifiers for the prevention and treatment of musculoskeletal diseases.
본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not otherwise defined herein have meanings as commonly used in the art to which the present invention belongs.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention and are not intended to limit the scope of the present invention.
실시예 1: 실험 재료 및 방법Example 1: Experimental Materials and Methods
1.1 마우스의 준비1.1 Preparation of mouse
Balb/c-nude 백그라운드의 7~10주령의 모든 마우스(20~24g)는 Orient bio (seongnam, Korea)에서 구매하였다. 모든 동물 관련 실험은 전북대학교 동물 관리 및 사용 위원회의 가이드라인에 따라서 실시하였다. 동물은 조정된 온도 (21~24 ℃) 및 12:12시간의 명암 사이클 환경에서 유지되며, 물과 음식에 자유롭게 접근하도록 하였다. Balb / c-nude All mice (20-24 g) in the background at 7-10 weeks of age were purchased from Orient bio (seongnam, Korea). All animal-related experiments were conducted in accordance with the Guidelines of the Animal Care and Use Committee of Chonbuk National University. The animals were maintained at a controlled temperature (21-24 ° C) and a 12:12 h light / dark cycle environment and allowed free access to water and food.
1.2 1.2 hESChESC (human embryonic stem cells) 및 (human embryonic stem cells) and hiPCShiPCS (human induces (human induces lpuripotentlpuripotent stem cells)의 hMSPC(human muscloskeletal progenitor cells)로의 분화 유도 stem cells) into hMSPC (human muscloskeletal progenitor cells)
H9 hESC를 WiCell (Madison, MI, USA)에서 구입하였다. hESC 및 hiPSC를 1일 전에 준비한 플레이트 상의 미토마이신 C-처리된 CF1 단일막(monolayer) 내로 이동시켜 배양하였다. 배양 배지(완전 배지)는 20% KnockOut Serum Replacement (Invitrogen), 1 mM 글루타민 (Invitrogen), 1% 비필수 아미노산 (Invitrogen), 0.1 mM β-머캅토에탄올 (Invitrogen), 및 0.1% 페니실린/스트렙토마이신 (Invitrogen), 및 15 ng/ml bFGF (R&D Systems)로 보충된 DMEM/F12(Invitrogen)로 구성된다.H9 hESCs were purchased from WiCell (Madison, MI, USA). hESC and hiPSC were transferred into a mitomycin C-treated CF1 monolayer on plates prepared 1 day before and cultured. The culture medium (complete medium) contained 20% KnockOut Serum Replacement (Invitrogen), 1 mM glutamine (Invitrogen), 1% nonessential amino acid (Invitrogen), 0.1 mM? -Mercaptoethanol (Invitrogen), and 0.1% penicillin / streptomycin (Invitrogen) supplemented with 10 ng / ml bovine serum albumin (Invitrogen) and 15 ng / ml bFGF (R & D Systems).
hESC 및 hiPSC(human induces pluripotent stem cells)를 hMSPC로 분화되도록 유도하기 위해서, 상기 배지를 분화 유도 배지(N2B27: 조정된 KOSR=1:1)로 교환하였으며, 상기 분화 유도 배지는 20 ng/ml 인간 LIF (Life Technologies), 15 ng/ml basic FGF, 3 μM CHIR99021 (Calbiochem), 1 μM PD0325901 (Calbiochem), 10 μM SB431542 (Sigma)를 포함한다. 이 때 N2B27 배지는 48% Neurobasal (Life Technologies), 48% DMEM/F12, 1% N2 (Life Technologies), 2% B27 (Life Technologies), 1 mM 글루타민, 1% 비필수 아미노산, 0.1 mM β-머캅토에탄올, 0.1% 페니실린-스트렙토마이신, 및 5 mg/ml 소혈청알부민 (Sigma)을 포함하여 준비하였다. KOSR 배지는 완전 배지에서 DMEM/F12를 Knockout DMEM(Life Technologies)으로 치환함으로써 준비하였다. 조정된 KOSR는 CF1 생쥐 배아섬유아세포를 KOSR에 24시간동안 배양하고, 배양 성청액을 수집함으로써 제조하였다. 단일세포 생존력을 높이기 위하여, hECS 및 hiPSC에 ROCK (Rho-associated coiled-coil kinase) 억제제 (Y-27632, 10 μM, Calbiochem) 및 PKC (protein kinase C) 억제제 (G, 2.5 μM, Sigma)를 24시간 동안 처리하였다.The medium was exchanged with differentiation induction medium (N2B27: adjusted KOSR = 1: 1) to induce hESC and human induced pluripotent stem cells (hiPSC) to differentiate into hMSPCs. The differentiation induction medium contained 20 ng / ml human LIF (Life Technologies), 15 ng / ml basic FGF, 3 μM CHIR99021 (Calbiochem), 1 μM PD0325901 (Calbiochem), 10 μM SB431542 (Sigma). At this time, the N2B27 medium contained 48% Neurobasal (Life Technologies), 48% DMEM / F12, 1% N2 (Life Technologies), 2% B27 (Life Technologies), 1 mM glutamine, 0.1% penicillin-streptomycin, and 5 mg / ml bovine serum albumin (Sigma). KOSR medium was prepared by replacing DMEM / F12 with Knockout DMEM (Life Technologies) in complete medium. The adjusted KOSR was prepared by culturing CF1 mouse embryonic fibroblasts in KOSR for 24 hours and collecting culture broth. In order to increase single cell viability, ROCK (Rho-associated coiled-coil kinase) inhibitor (Y-27632, 10 μM, Calbiochem) and PKC (protein kinase C) inhibitor (G, 2.5 μM, Sigma) were added to hECS and hiPSC Lt; / RTI >
TrypLE (Life technology)로 처리해 트립신화(trypsinized)된 hESC 또는 hiPSC를 비트로넥틴+젤라틴 (1 ng/ml, Sigma) 상의 유도 배지에서 4계대까지 배양함으로써 분화된 세포를 유도하였다. 세포는 매 2~3일에 ROCK 억제제 및 PKC 억제제 없이 트립신화함에 따라 계대하였다. Differentiated cells were induced by culturing trypsinized hESCs or hiPSCs with TrypLE (Life technology) in induction medium on induction medium on bitronectin + gelatin (1 ng / ml, Sigma). Cells were transfected every 2-3 days with trypsinization without ROCK inhibitor and PKC inhibitor.
1.3 조직학적 분석1.3 Histological analysis
절단된 시료를 2% 파라포름알데히드(PFA) (Wako)에 4℃에서 밤새도록 고정하고, 4℃에서 2주 동안 PBS(pH 7.2) 내 0.4 M EDTA로 석회를 제거하였다. 이후 시료를 알코올 또는 자일렌에서 탈수시킨 후, 파라핀에 임베딩하거나 또는 수크로오스 내에서 동결보호에 의해 OCT에 임베딩하고 절단하였다. 대표적인 절단면을 H&E, 및 변형된 Movat펜타크롬(Cosmobio)으로 염색하였다. The digested samples were fixed overnight at 4 ° C in 2% paraformaldehyde (PFA) (Wako) and lime was removed with 0.4 M EDTA in PBS (pH 7.2) for 2 weeks at 4 ° C. The samples were then dehydrated in alcohol or xylene, embedded in paraffin or embedded in OCT by cryoprotection in sucrose and cut. Representative sections were stained with H & E, and modified Movat pentachrome (Cosmobio).
1.4 면역형광법1.4 Immunofluorescence
세포를 면역형광으로 염색하기 위해서, 세포를 4% 파라포름알데히드에 고정하고, 0.5% Triton X-100으로 투과화한 후, 인산 완충액(PBS) 내의 10% normal goat, normal rabbit 또는 fetal bovine serum으로 차단하였다. 시료를 Tuj1(Covance), Nestin(Chemicon), Desmin(Chemicon), Foxa2(Millipore), Sox17(R&D), α-smooth muscle(α-SMA, Sigma), Nanog(Santa Cruz), Oct3/4(Santa Cruz), Sox2(Santa Cruz), SSEA-3(R&D), SSEA-4(R&D), CD31(DAKO), vascular endothelial-cadherin(R&D), MHC(R&D), HNK-1(Santa Cruz), MAP-2(Santa Cruz), 및 Gremlin-1(Santa Cruz)에 대한 일차 항체로 4℃에서 밤새 염색하였다. 이후 세포를 이차 항체 Alexa Fluor 488-goat anti-mouse IgG, Alexa Fluor 594-donkey anti-rabbit IgG, Alexa Fluor 488-donkey anti-rabbit IgG, 및 Alexa Fluor 594-donkey anti-mouse IgG Invitrogen)로 염색하였다. 핵을 DAPI(4,6-diamidino-2-phenylindole)로 염색하였다. Olympus IX71 형광 현미경과 MetaMorph 소프트웨어 (Molecular Devices)를 사용하여 이미지를 얻었다.Cells were fixed in 4% paraformaldehyde, permeabilized with 0.5% Triton X-100, and resuspended in 10% normal goat, normal rabbit or fetal bovine serum in phosphate buffer (PBS) Respectively. Samples were obtained from Tuj1 (Covance), Nestin (Chemicon), Desmin (Chemicon), Foxa2 (Millipore), Sox17 (R & D), α-SMA, Sigma, Nanog (Santa Cruz) (R & D), HNK-1 (Santa Cruz), MAP (R & D), CD31 (DAKO), vascular endothelial-cadherin -2 (Santa Cruz), and Gremlin-1 (Santa Cruz) overnight at 4 ° C. The cells were then stained with secondary antibody Alexa Fluor 488-goat anti-mouse IgG, Alexa Fluor 594-donkey anti-rabbit IgG, Alexa Fluor 488-donkey anti-rabbit IgG, and Alexa Fluor 594-donkey anti-mouse IgG Invitrogen) . The nuclei were stained with DAPI (4,6-diamidino-2-phenylindole). Images were acquired using an Olympus IX71 fluorescence microscope and MetaMorph software (Molecular Devices).
조직을 면역형광으로 염색하기 위해서, 외식편(explants) 및 절단된 대퇴골을 PBS 내 4 % PFA(Wako)로 4℃에서 밤새 고정하였다. Morse 용액으로 모든 시료에서 석회를 제거하였다. 파라핀 임베딩(Leica Biosystems) 후, 시료를 5 μm 두께로 절단하였다. 슬라이드를 H&E, 및 Movat펜타크롬으로 염색하였다. 조직 절단면을 3 % 과산화수소에서 15분 동안 차단한 후, 일차 항체와 함께 4℃에서 밤새 배양하였다. 절단면에 처리된 일차 항체는 다음과 같다: HLA class I에 대한 마우스 모노클로날 항체(Abcam), Collagen Type II에 대한 염소 폴리클로날 항체(Santacruz), Osteocalcin에 대한 토끼 폴리클로날 항체(Santacruz), Osterix(Abcam), p-미오신 경쇄(Abcam), Scleraxis(antibodies-online), Runx2(Novus), 및 Sclerostin(Santacruz). 사용된 이차 항체는 Alexa 555(Invitrogen) 및 Alexa 488(Invitrogen) IgG이다. 핵을 강조하기 위해 면역염색된 절단면을 TO-PRO3(Invitrogen)로 대조 염색하였다. Leica DM 5000 현미경(Leica Microsystems) 또는 공초점 현미경(LSM510; Carl Zeiss)으로 형광으로 표지된 조직 절단면을 포착하고 Zen 소프트웨어로 확인하였다. To stain tissue with immunofluorescence, explants and severed femurs were fixed with 4% PFA (Wako) in PBS overnight at 4 ° C. Lime was removed from all samples with Morse solution. After paraffin embedding (Leica Biosystems), the samples were cut to a thickness of 5 μm. The slides were stained with H & E and Movat pentachrome. Tissue sections were blocked with 3% hydrogen peroxide for 15 minutes and then incubated overnight at 4 ° C with the primary antibody. The primary antibodies treated at the cross-sections were: a mouse monoclonal antibody (Abcam) for HLA class I, a goat polyclonal antibody (Santacruz) for Collagen Type II, a rabbit polyclonal antibody (Santacruz) for osteocalcin, , Osterix (Abcam), p-myosin light chain (Abcam), Scleraxis (antibodies-online), Runx2 (Novus), and Sclerostin (Santacruz). The secondary antibodies used are Alexa 555 (Invitrogen) and Alexa 488 (Invitrogen) IgG. Immunostained sections were stained with TO-PRO3 (Invitrogen) to stain nuclei. Fluorescence labeled tissue sections with a Leica DM 5000 microscope (Leica Microsystems) or a confocal microscope (LSM510; Carl Zeiss) were captured and validated with Zen software.
1.5 RNA 분리 및 RT-PCR1.5 RNA isolation and RT-PCR
제조업자의 지시에 따라 전체 RNA를 RNeasy Plus mini kit(Qiagen)를 사용하여 추출하고 지노믹 DNA로 인한 오염 가능성을 제거하기 위해 15분 동안 DNase I (Promega)을 처리하였다. PrimeScript 1st strand cDNA Synthesis Kit(TaKaRa)를 이용하여 20 μl 부피 내 1 μg의 RNA로부터 cDNA를 합성하였다. 이후 PCR 기계(MyCycler, BIORAD) 내에서 general reaction mixture for PCR(TaKaRa) 키트 및 1 μM 프라이머 세트 및 cDNA(<500ng)를 포함하는 50μl 부피의 반응액을 이용하여 PCR 증폭을 수행하였다. GAPDH를 내적 대조군으로 사용하였다. 표 1에 사용한 프라이머 목록을 나타내었다. Total RNA was extracted using the RNeasy Plus mini kit (Qiagen) according to the manufacturer's instructions and treated with DNase I (Promega) for 15 minutes to eliminate the possibility of contamination by genomic DNA. CDNA was synthesized from 1 μg of RNA in 20 μl volume using PrimeScript 1st strand cDNA Synthesis Kit (TaKaRa). PCR amplification was then performed using a 50 μl volume of reaction solution containing a general reaction mixture for PCR (TaKaRa) kit and 1 μM primer set and cDNA (<500 ng) in a PCR machine (MyCycler, BIORAD). GAPDH was used as an internal control group. Table 1 lists the primers used.
Figure PCTKR2016008997-appb-T000001
Figure PCTKR2016008997-appb-T000001
1.6 유세포분석1.6 Flow cytometry
배양된 세포를 트립신/EDTA를 처리하여 단일 세포 현탁액으로 분리시킨 후, PBS 내 2% BSA에 의해 차단한 후 완충 용액[1XPBS, 1% BSA, 및 0.01% 소듐 아자이드] 내에서 CD73, CD90, CD105, CD146, CD166에 대한 모노클로날 항체(BD Biosciences)와 함께 배양하였다. 이후 세포를 Alexa Fluor 488 secondary mouse-IgGs(Invitrogen, Carlsbad, CA) 와 함께 배양하고 유세포분석기(FACStar Plus Flowcytometer, BD Biosciences)를 이용해서 분석하였다. 정상 마우스 IgGs(BD Biosciences)를 음성 대조군으로 사용하였다. The cultured cells were treated with trypsin / EDTA to separate into a single cell suspension, blocked with 2% BSA in PBS, and then stained with CD73, CD90, and CD90 in buffer solution [1XPBS, 1% BSA, and 0.01% sodium azide] 0.0 &gt; CD205, &lt; / RTI &gt; CD146, CD166 (BD Biosciences). Cells were then incubated with Alexa Fluor 488 secondary mouse IgGs (Invitrogen, Carlsbad, Calif.) And analyzed using a flow cytometer (FACStar Plus Flow Cytometer, BD Biosciences). Normal mouse IgGs (BD Biosciences) were used as negative control.
1.71.7 in vitro in vitro 에서 in 중간엽줄기세포Mesenchymal stem cells (( MSCMSC ) 및 ) And hMSPC의hMSPC 골아세포Osteoblast , 지방세포 및 연골세포로의 분화 , Adipocyte and chondrocyte differentiation
중간엽줄기세포(MSC) 및 hMSPC를 골아세포 및 지방세포로 분화시키기 위해서, 트립신/EDTA로 세포를 분리하고, 5분 동안 100 ×g로 원심분리하고 배양용기에 5x103 세포/cm2로 접종하였다. 세포를 유도 배지 내 37℃, 5% CO2의 조건에서 하루동안 배양하였다. 배지를 미리-데워놓은 완전 골형성 분화 배지(StemPro Osteogenesis Differentiation Kit, Life technology) 또는 지방 형성 분화 배지(StemPro adipogenesis Differentiation Kit, Life technology)로 교환하였다. 배양물은 매 3-4일 재-공급 (re-feeded)되었다. 배양하고 14일 후, 골생성 관찰을 위해 알칼리 포스페타아제 염색 (alkaline phosphatase staining) (Roche) 또는 알리자린 레드 S(alizarin red S) (Sigma) 염색을, 지방생성 관찰을 위해 오일 레드 O(oil red O) (Sigma) 염색을 하였다.To differentiate mesenchymal stem cells (MSC) and hMSPC into osteoblasts and adipocytes, cells were isolated with trypsin / EDTA, centrifuged at 100 x g for 5 min and seeded at 5 x 10 3 cells / cm 2 in a culture vessel Respectively. Cells were cultured in induction medium at 37 ° C, 5% CO 2 for one day. The medium was replaced with a pre-warmed complete osteogenesis differentiation kit (Life Technology) or a StemPro adipogenesis Differentiation Kit (Life Technology). The cultures were re-fed every 3-4 days. After 14 days, the cells were stained with alkaline phosphatase staining (Roche) or alizarin red S (Sigma) for observation of osteogenesis, and oil red O) (Sigma).
또한, 연골세포로 분화시키기 위해서, 트립신/EDTA로 세포를 분리하고, 5분 동안 100 ×g로 원심분리하고 1 ml의 미리-데워놓은 완전 연골형성 배지(StemPro chondrogenesis Differentiation Kit, Life technology)로 재현탁한 뒤, 다시 원심분리하였다. 마이크로매스(micromass)의 형성을 위하여, 펠렛을 분화 배지에 1 x105 생균/㎕로 재현탁하고, 비부탁된 96-웰 플레이트의 중앙에 세포 용액 5㎕를 점적하여 접종했다. 고습의 조건 하에서 2시간 동안 마이크로매스를 배양한 후, 배양용기에 데워진 연골형성 배지를 첨가하였으며, 5% CO2, 37 ℃ 조건의 배양기 내에서 배양하였다. 배양물은 매 3-4일마다 재-공급(re-feeded)되었다. 배양하고 14일 후, 연골생성 펠렛을 알시안 블루(Alcian blue)로 염색 하였으며, 유전자 발현 분석을 수행하였다.In order to differentiate into chondrocytes, the cells were separated with trypsin / EDTA, centrifuged at 100 × g for 5 minutes, and reconstituted with 1 ml of StemPro chondrogenesis differentiation kit (Life Technology) After cloudy, the cells were centrifuged again. For the formation of micromass, the pellet was resuspended in 1 x 105 viable cells / l in the differentiation medium and 5 ul of the cell solution was inoculated at the center of the unsubstantiated 96-well plate. After culturing the micromass for 2 hours under high humidity conditions, the cartilage formation medium heated in the culture vessel was added and cultured in a 5% CO 2 incubator at 37 ° C. The cultures were re-fed every 3-4 days. After 14 days, the cartilage-producing pellet was stained with Alcian blue, and gene expression analysis was performed.
1.8 1.8 in vitroin vitro 에서 hMSPC의 내피세포 및 평활근 세포로의 분화 유도Induction of hMSPC into endothelial cells and smooth muscle cells
hMSPC 및 HUVEC을 내피세포 (endothelial cells, ECs) 또는 평활근 세포 (smooth muscle cells, SMCs)로 분화하였다. 이는 각각, EC 분화 배지 (endothelial growth medium (EGM)-2 (Lonza, Walkersville, MD) 내의 50 ng/ml VEGF (vascular endothelial growth factor: ProSpec, Rehovot, Israel) 및 10 ng/ml bFGF(basic fibroblast growth factor; ProSpec) 또는 SMC 분화 배지(무혈청 SMC 배양 배지(SMCM: ScienCell Research Laboratories, Carlsbad, CA) 내의 5 ng/ml PDGF-BB(platelet-derived growth factor, ProSpec), 2.5 ng/ml TGF-β1(transforming growth factor beta 1, ProSpec)에서 6일 동안 배양함으로써 분화하였다. hMSPC and HUVEC were differentiated into endothelial cells (ECs) or smooth muscle cells (SMCs). The cells were treated with 50 ng / ml vascular endothelial growth factor (ProSpec, Rehovot, Israel) and 10 ng / ml bFGF (basic fibroblast growth factor) in EC differentiation medium (EGM) -2 (Lonza, Walkersville, MD) ml), 2.5 ng / ml TGF-β1 (5 μg / ml) in SMC differentiation medium (SMCM: ScienCell Research Laboratories, Carlsbad, Calif. (transforming growth factor beta 1, ProSpec) for 6 days.
1.9 1.9 in vitroin vitro 에서in hNSChNSC (human neuronal stem cells) 및 human neuronal stem cells &lt; RTI ID = 0.0 &gt; and hMSPC의hMSPC 신경 세포로의 분화 유도 Induction of differentiation into neurons
사용준비가 된 H9 hESC에서 분화된 인간 신경 줄기 세포(hNSC)를 GIBCO로부터 구입하였다. hNSC를 2 mM GlutaMAX, 20 ng/ml bFGF, 20 ng/ml EGF 및 2% StemPro neural 보충제를 포함하는 knockout DMEM/F12 (GIBCO)에서 유지하였다. 신경 세포로 분화시키기 위해서, hMSPC 및 hNSC를 폴리오르니틴 및 라미닌-코팅된 배양 디쉬에 플레이팅하였다. 2일 후, 배지를 신경 분화 배지 (2% B27, 2 mM GlutaMAX 및 항생제를 포함하는 Neurobasal medium)로 교환하였다. 분화 7일차에, 0.5 mM 디부틸 cAMP (Sigma)를 3일 동안 매일 첨가하였다.Human neural stem cells (hNSCs) differentiated from ready-to-use H9 hESCs were purchased from GIBCO. hNSCs were maintained in knockout DMEM / F12 (GIBCO) containing 2 mM GlutaMAX, 20 ng / ml bFGF, 20 ng / ml EGF and 2% StemPro neural supplements. To differentiate into neurons, hMSPC and hNSC were plated in polyornithine and laminin-coated culture dishes. Two days later, the medium was replaced with neural differentiation medium (Neurobasal medium containing 2% B27, 2 mM GlutaMAX and antibiotics). On the 7th day of differentiation, 0.5 mM dibutyl cAMP (Sigma) was added daily for 3 days.
1.10 1.10 in vivoin vivo 에서 hMSPC의 근육, 인대, 연골 및 골로의 분화 유도Induces differentiation of hMSPC into muscle, ligament, cartilage and bone
hMSPC의 분화 가능성을 측정하기 위해서, hMSPC(Matrigel 내 106-107 세포)를 Balb/c 누드 마우스의 피하 및 근막에 이식하였다. hMSPC 응집체(4 x 105)를 Balb/c 누드 마우스의 신장 캡슐 아래에 이식하였다. 이식 2-6주 후, 이식한 세포를 제거하고 조직을 분석하였다. hMSPC (10 6 -10 7 cells in Matrigel) was transplanted into the subcutaneous and fascia of Balb / c nude mice to determine the differentiability of hMSPC. hMSPC aggregates (4 x 10 5 ) were implanted under the kidney capsules of Balb / c nude mice. After 2-6 weeks of transplantation, the transplanted cells were removed and the tissue was analyzed.
1.11 골절 연구(fracture studies)1.11 fracture studies
장관골 골절 모델에서 hMSPC의 골형성을 분석하기 위해서, 콜라겐 세포 담체(CCC, 500042933, Viscofan-bioengineering, Weinheim, Germany)를 인산 완충액(PBS)에 30분 동안 두었다. PBS를 세척한 후, CCC가 마르도록 밤새 두어 약간 불투명하게 하였다. SPC를 CCC에 접종하고, 배양하였다. 6주령의 Balb/c-누드 마우스에서 한쪽의 대퇴부의 절골술(unilateral femoral osteotomy)을 핀으로 고정하였다. 그 후 CCC가 지지하고 있는 SPC를 마우스의 골절 부위에 삽입하였다. 골절된 골을 6주 동안 두었다. 골절 부위에 대해 X-ray (Kodak DXS 4000 pro system, Rochester, U.S.A)를 사용해서 이미지를 얻었다.Collagen cell carriers (CCC, 500042933, Viscofan-bioengineering, Weinheim, Germany) were placed in phosphate buffered saline (PBS) for 30 minutes to analyze the bone formation of hMSPCs in the long bone fracture model. After washing the PBS, the CCC was left overnight to dry to make it slightly opaque. SPC was inoculated into CCC and cultured. In one 6-week-old Balb / c-nude mouse, unilateral femoral osteotomy was pinned. The SPC supported by the CCC was then inserted into the fracture site of the mouse. The fractured bone was placed for 6 weeks. Images of the fracture site were obtained using an X-ray (Kodak DXS 4000 pro system, Rochester, USA).
두개골 골절 모델에서 hMSPC의 골형성을 분석하기 위해서, 7주령의 Balb/c-누드 마우스에서 오른쪽 정수리 부분의 5-mm 뼈가 없는 두개골을 만들었다. SPC 세포를 완전 골형성 분화 배지(StemPro Osteogenesis Differentiation Kit, Life technology)에서 7일 동안 프라이밍 하였다. SPC를 프라이밍한 후, 1x104 세포를 히알루론산이 로딩된 폴리(락틱-코-글리콜산(HA-PLGA) 으로 제조한 스캐폴드 내로 24시간 동안 접종하였고 빈 부분에 이식하였다. To analyze the bone formation of hMSPC in a skull fracture model, a 7-week-old Balb / c-nude mouse was made with a 5-mm bony skull of the right parietal region. SPC cells were primed for 7 days in StemPro Osteogenesis Differentiation Kit (Life technology). After priming SPC, 1x10 4 cells were inoculated into a scaffold made of hyaluronic acid-loaded poly (lactic-co-glycolic acid (HA-PLGA) for 24 hours and transplanted into empty areas.
1.12 마이크로CT(microCT)1.12 micro CT (microCT)
Micro-CT(Skyscan 1076, Antwerp, Belgium)를 사용해서, 석회가 제거된 hMSPC-생성된 골 부위를 스캐닝함으로써 3차원의 재구조화된 CT(computed tomography) 이미지를 얻었다. 이후 프레임 그래버를 이용해서 데이터를 디지털화 하였고, 그 결과로 얻은 이미지를 Comprehensive TeX Archive Network (CTAN) topographic reconstruction software를 이용해서 컴퓨터로 옮겼다.Using a Micro-CT (Skyscan 1076, Antwerp, Belgium), three-dimensional reconstructed computed tomography (CT) images were obtained by scanning the hMSPC-generated bone site with lime removed. The data were then digitized using a frame grabber, and the resulting images were transferred to a computer using the Comprehensive TeX Archive Network (CTAN) topographic reconstruction software.
실시예 2: 실험 결과Example 2: Experimental results
2.1 hESC로부터 유래한 hMSPC의 분화 유도 확인2.1 Identification of induction of differentiation of hMSPCs derived from hESCs
상기 실시예 1.2에 나타낸 바와 같이 hESC로부터 hMSPC의 분화를 유도하였고, 유도된 hMSPC의 형태적 변화를 관찰한 결과를 도 1A에 나타내었다.The differentiation of hMSPCs was induced from hESCs as shown in Example 1.2 above, and the morphological changes of induced hMSPCs were observed, and the results are shown in Fig. 1A.
도 1A에 나타낸 바와 같이, 단일 세포화한 미분화된 H9 hESC가 5계대 이내에 단일한 집단으로 변화함을 확인하였다. 5계대 이후에 상기 세포는 섬유아세포와 유사한 형태를 나타내었으며, 20계대 이후에도 세포의 형태적 변화는 관찰되지 않았다. As shown in FIG. 1A, it was confirmed that the single celled undifferentiated H9 hESCs changed into a single population within the 5th passage. After 5 passages, the cells showed a shape similar to that of fibroblasts, and morphological changes of the cells were not observed even after 20 passages.
또한, hESC로부터 유도된 후 10계대 이상이 지난 hMSPC에서 전분화능 마커의 발현을 면역형광법에 의해 관찰하고, 관찰 결과를 도 1B에 나타내었다. In addition, the expression of the differentiation marker was observed by immunofluorescence in the hMSPC after passage from the hESC to the passage of 10 or more passages, and the observation result is shown in Fig. 1B.
도 1B에 나타낸 바와 같이, H9 hESC는 OCT4, NANOG, SOX2, LIN28 모두에 대해 양성을 나타내어 전분화능이 있음을 확인하였다. 반면, H9 hESC로부터 유도된 hMSPC는 OCT4, NANOG, SOX2에 대해서는 음성을 나타낸 반면, LIN28에 대해서는 양성을 나타냄을 확인하였다. As shown in FIG. 1B, H9 hESC was positive for both OCT4, NANOG, SOX2, and LIN28, confirming the ability to differentiate. On the other hand, hMSPC derived from H9 hESC showed negative for OCT4, NANOG and SOX2, but positive for LIN28.
또한, 5, 10, 15계대의 hMSPC에서 도 1B에서 면역형광법에 의해 확인한 전분화능 마커들의 발현을 RT-PCR을 통해 확인한 결과를 도 1C에 나타내었다.1C shows the results of RT-PCR of the expression of the differentiation-ability markers identified by immunofluorescence in the hMSPC of 5, 10, and 15 passages, respectively.
도 1C에 나타낸 바와 같이, H9 hESC에서는 모든 전분화능 마커의 mRNA 발현이 확인된 반면, H9 hESC로부터 유도된 hMSPC에서는 전분화능 마커 중 oct4 , nanog, sox2 , gdf3 발현은 관찰되지 않았으나, lin28 발현은 관찰되었으며, lin28 발현이 H9 hESC에서보다 더 높은 수준임을 확인하였다. 이와 같은 결과는 도 1B의 결과와 일치한다. As shown in FIG. 1C, H9 while hESC the identified mRNA expression in all around the multipotential markers and hMSPC Prior multipotential marker of oct4, nanog, sox2, gdf3 expression derived from H9 hESC are Although not observed, lin28 expression was observed And lin28 expression was higher than that of H9 hESC. This result is consistent with the result of FIG. 1B.
또한, 10계대의 hESC로부터 유도된 hMSPC에서 외배엽, 중배엽, 내배엽 마커의 발현을 면역형광법에 의해 확인하고, 결과를 도 1D에 나타내었다. In addition, the expression of ectoderm, mesoderm, and endoderm markers in hMSPC derived from hESC of passage number 10 was confirmed by immunofluorescence, and the results are shown in Fig. 1D.
도 1D에 나타낸 바와 같이, hMSPC에서 외배엽 마커인 Tubulin 및 Nestin, 중배엽 마커인 Desmin 및 α-SMA는 양성을 나타내었으며, 내배엽 마커인 Foxa2 및 Sox17은 음성을 나타냄을 확인하였다. 따라서, H9 hESC로부터 유도된 hMSPC가 외배엽이나 중배엽으로 발달할 가능성이 있음을 알 수 있다.As shown in FIG. 1D, the ectoderm markers Tubulin and Nestin, the mesoderm markers Desmin and a-SMA were positive in hMSPC, and the endoderm markers Foxa2 and Sox17 were negative. Therefore, it can be seen that hMSPC derived from H9 hESC is likely to develop into ectoderm or mesodermal lobe.
또한, 5계대의 hMSPC에서 도 1D에서 면역형광법에 의해 확인한 외배엽, 중배엽, 내배엽 마커들의 발현을 RT-PCR을 통해 확인한 결과를 도 1E에 나타내었다.In addition, the expression of ectoderm, mesoderm, and endoderm markers identified by immunofluorescence in FIG. 1D in hMSPC of 5th passage was confirmed by RT-PCR. FIG. 1E shows the results.
도 1E에 나타낸 바와 같이, hMSPC에서 중배엽 마커인 α- SMA , desmin의 발현이 관찰되고, 외배엽 마커인 tubulin , nestin의 발현이 관찰된 반면, 내배엽 마커인 foxa2 , sox17의 발현이 관찰되지 않았다. 이와 같은 결과는 도 1D의 결과와 일치한다. As shown in FIG. 1E, the expression of mesodermal markers such as α- SMA and desmin was observed in hMSPC , while the expression of tubulin and nestin as ectoderm markers was observed, whereas the expression of foxa2 and sox17 as endoderm markers was not observed. These results are consistent with the results of FIG. 1D.
2.2 2.2 in vitroin vitro 에서 hMSPC와 중간엽줄기세포의 비교Of hMSPC and mesenchymal stem cells
hMSPC와 중간엽줄기세포의 특성을 비교하기 위해서, 표면 항원의 발현 비교를 하기와 같이 수행하였다.To compare the characteristics of hMSPC and mesenchymal stem cells, expression of surface antigens was compared as follows.
hMSC 및 상기 실시예 2.1의 hMSPC에서 중간엽줄기세포 마커인 CD73, CD90, CD105, CD146 및 CD166에 대한 유세포분석을 수행하였다. 중간엽줄기세포 마커를 주황색 선으로, 대조군을 파란색 선으로 한 유세포분석결과를 도 2A에 나타내었다.Flow cytometry analysis was performed on the mesenchymal stem cell markers CD73, CD90, CD105, CD146 and CD166 in hMSC and the hMSPC of Example 2.1 above. The results of flow cytometry analysis in which the mesenchymal stem cell markers are indicated by orange lines and the control group is indicated by blue lines are shown in Fig. 2A.
도 2A에 나타낸 바와 같이, 중간엽줄기세포 마커 중 CD73, CD105, CD146, CD166은 hMSC 및 hMSPC에서 모두 발견된 반면, 중간엽줄기세포 마커 중 CD90은 hMSC에서는 발견된 반면, hMSPC에서는 발견되지 않음을 확인하였다. 따라서 hMSPC는 중간엽줄기세포와 유사한 분화 잠재적 특성을 가짐을 확인하였다.As shown in Fig. 2A, CD73, CD105, CD146, and CD166 among mesenchymal stem cell markers were found in both hMSC and hMSPC, whereas CD90 of mesenchymal stem cell markers was found in hMSC, but not in hMSPC Respectively. Therefore, it was confirmed that hMSPC has similar potential for differentiation to mesenchymal stem cells.
또한, hMSC 및 상기 실시예 2.1의 hMSPC에서 골형성, 연골 형성, 지방 형성을 비교하고 그 결과를 도 2B에 나타내었다.In addition, bone formation, cartilage formation and fat formation were compared in hMSC and hMSPC of Example 2.1, and the results are shown in Fig. 2B.
도 2B에 나타낸 바와 같이, hMSC는 골, 연골, 지방으로 분화됨을 확인하였고, hMSPC는 골, 연골로는 분화되지만 지방으로는 분화되지 않음을 확인하였다.As shown in FIG. 2B, it was confirmed that hMSCs were differentiated into bone, cartilage and fat, and hMSPC was differentiated into bone and cartilage but not into fat.
또한, hMSC 및 상기 실시예 2.1의 hMSPC의 골형성 과정에서 골세포 마커인 osteocalcin, ALP 및 RUNX2의 발현 변화를 9일 동안 관찰한 결과를 도 2C에 나타내었다.In addition, the expression of bone cell markers osteocalcin, ALP and RUNX2 during 9 days of osteogenic process of hMSC and hMSPC of Example 2.1 is shown in Fig. 2C.
도 2C에 나타낸 바와 같이, hMSPC의 골형성 과정에서 골세포 마커인 ALP 및 RUNX2가 발현되며, 상기 마커가 hMSC보다 hMSPC의 골형성 과정에서 더 높은 수준으로 발현함을 확인하였다. 따라서, hMSPC는 골 및 연골로 분화될 수 있음을 확인하였다.As shown in FIG. 2C, the bone cell markers ALP and RUNX2 were expressed in the bone formation process of hMSPC, and it was confirmed that the markers were expressed at a higher level in the bone formation process of hMSPC than hMSC. Therefore, it was confirmed that hMSPC could be differentiated into bone and cartilage.
또한, 상기 2.1의 hESC로부터 유도된 hMSPC의 연골 세포로의 분화 전후에 연골 마커인 AGC, SOX9, COL1A1, COL1A2 및 catrigen2의 발현 변화를 비교한 결과를 도 2D에 나타내었다.FIG. 2D shows the results of comparing the expression of the cartilage markers AGC, SOX9, COL1A1, COL1A2 and catrigen2 before and after differentiation of hMSPC derived from hESC of 2.1 above into chondrocytes.
도 2D에 나타낸 바와 같이, 연골 마커인 AGC, catrigen2, COL1A1 및 COL1A2가 hMSC보다 hMSPC에서 더 높게 발현되며, hMSPC가 연골 세포로 분화된 후에 연골 마커가 더 높은 수준으로 발현됨을 확인하였다. As shown in FIG. 2D, the cartilage markers AGC, catrigen2, COL1A1, and COL1A2 were expressed more in hMSPC than in hMSC, and the cartilage markers were expressed at a higher level after hMSPC was differentiated into cartilage cells.
상기 결과를 종합하면, hMSPC가 hMSC에 비해 골세포 및 연골세포로 분화될 수 있는 가능성이 더 높으며, hMSPC는 지방세포로 분화되지 않음을 알 수 있다.These results indicate that hMSPC is more likely to differentiate into bone cells and cartilage cells than hMSC, and hMSPC is not differentiated into adipocytes.
2.3 2.3 in vitroin vitro 에서 hMSPC의 평활근 및 골격근으로의 분화에 대한 잠재력 평가Of potential hMSPCs for differentiation into smooth muscle and skeletal muscle
상기 2.1의 hMSPC가 두가지의 주요한 혈관 계통 세포인 평활근 및 내피세포로 분화될 수 있는 능력을 평가하기 위해서 하기와 같이 수행하였다.In order to evaluate the ability of the hMSPC of 2.1 above to differentiate into two major vascular system cells, smooth muscle and endothelial cells,
hMSPC에서 평활근의 마커인 SM22α, SM-MHC(smooth muscle myosin heavy chain)에 대하여 면역형광법을 수행한 결과를 도 3A 및 3B에 나타내었다. HASMC(Human atrial smooth muscle cells)를 SM22α, SM-MHC의 양성 대조군으로 사용하였다.Immunofluorescence was performed on SM22α and SM-MHC (smooth muscle myosin heavy chain) as markers of smooth muscle in hMSPC, and the results are shown in FIGS. 3A and 3B. Human atrial smooth muscle cells (HASMC) were used as a positive control for SM22α and SM-MHC.
도 3A 및 도 3B에 나타낸 바와 같이, hMSPC가 평활근으로 분화하는 잠재력이 있음을 확인하였다.As shown in Figs. 3A and 3B, it was confirmed that hMSPC had the potential to differentiate into smooth muscle.
또한, 내피세포 마커인 CD31, VE-cadherin에 대하여 면역형광법을 수행한 결과를 도 3C 및 도 3D에 나타내었다. HUVEC을 내피세포 분화의 양성 대조군으로 사용하였다.The results of immunofluorescence for the endothelial cell markers CD31 and VE-cadherin are shown in FIGS. 3C and 3D. HUVEC was used as a positive control for endothelial cell differentiation.
도 3C 및 도 3D에 나타낸 바와 같이, hMSPC에서 CD31, VE-cadherin의 발현이 관찰되지 않았으므로, hMSPC가 내피 세포로 분화하는 잠재력이 없음을 확인하였다. 반면, 대조군인 HUVEC은 상기 마커를 발현함을 확인하였다.As shown in FIGS. 3C and 3D, no expression of CD31 and VE-cadherin was observed in hMSPC, confirming that hMSPC had no potential to differentiate into endothelial cells. On the other hand, the control group HUVEC confirmed that the marker was expressed.
또한, 신경 세포로의 분화 마커인 MAP2에 대하여 면역형광법을 수행한 결과를 도 3E에 나타내었다. NSC(neuronal stem cells)를 신경세포 분화의 양성 대조군으로 사용하였다. FIG. 3E shows the results of performing immunofluorescence on MAP2 as a neural cell differentiation marker. NSC (neuronal stem cells) were used as a positive control for neuronal differentiation.
도 3E에 나타낸 바와 같이, hMSPC가 신경 세포로 분화하는 잠재력이 없음을 확인하였다.As shown in FIG. 3E, it was confirmed that hMSPC had no potential to differentiate into neurons.
상기 결과를 종합하면, hMSPC는 내피세포로 분화하는 능력이 없다. 또한, 상기 실시예 2.1에서 확인한 바와 같이 hMSPC가 외배엽으로 발달될 가능성이 있으나 신경 세포로는 분화되지 않음을 확인하였다. 따라서 hMSPC는 내배엽, 더욱 구체적으로는 골, 연골, 근육으로 분화할 수 있음을 알 수 있다.Taken together, the hMSPC is not capable of differentiating into endothelial cells. In addition, as confirmed in Example 2.1 above, it was confirmed that hMSPC is likely to develop into ectoderm but not into neurons. Therefore, hMSPC can be differentiated into endoderm, more specifically bone, cartilage, and muscle.
2.4 2.4 hiPSChiPSC (human induced human induced pluripotentpluripotent stem cells)로부터  stem cells) hMSPC의hMSPC 분화 유도 및 유도된 hiPSC의 특성 확인 Identification of induction of differentiation and induced hiPSC
hiPSC는 Hasegawa 등 (Fusaki et al., 2009)에 의해 개발된 프로토콜에 따라 sendai 바이러스-매개된 OCT4, KLF4, SOX2, 및 MYC의 과발현에 의해서 IMR90 태아 섬유아세포를 리프로그래밍함으로써 제조하였다.hiPSC was prepared by reprogramming IMR90 fetal fibroblasts by overexpression of sendai virus-mediated OCT4, KLF4, SOX2, and MYC according to the protocol developed by Hasegawa et al. (Fusaki et al., 2009).
실시예 1.2와 동일하게 hiPSC로부터 hMSPC를 유도하여 hMSPC를 얻었다. hiPSC로부터 유도된 hMSPC에서 전분화능 마커인 Oct4, Nanog, Sox2, 및 Gdf3의 발현 수준을 면역형광법 및 RT-PCR에 의해 확인한 결과를 각각 도 4A 및 도 4B에 나타내었다.HMSPC was derived from hiPSC in the same manner as in Example 1.2 to obtain hMSPC. The expression levels of Oct4, Nanog, Sox2, and Gdf3 as hmPSC-derived hMSPCs were confirmed by immunofluorescence and RT-PCR, respectively, and are shown in Figs. 4A and 4B, respectively.
도 4A에 나타낸 바와 같이, iPS 세포는 OCT4, NANOG, SOX2, LIN28 모두에 대해 양성을 나타내어 전분화능이 있음을 확인하였다. 반면, hiPSC로부터 유도된 hMSPC는 전분화능 마커인 OCT4, NANOG, SOX2에 대해서는 음성을 나타낸 반면, LIN28에 대해서는 양성을 나타냄을 확인하였다. As shown in FIG. 4A, iPS cells were positive for both OCT4, NANOG, SOX2, and LIN28, indicating that they were capable of differentiating. On the other hand, hMSPC derived from hiPSC was negative for OCT4, NANOG and SOX2, but positive for LIN28.
도 4B에 나타낸 바와 같이, iPS 세포에서는 모든 전분화능 마커의 mRNA 발현이 확인된 반면, hiPSC로부터 유도된 hMSPC에서는 전분화능 마커 중 oct4 , nanog , sox2, gdf3 발현은 관찰되지 않았으나, lin28 발현은 관찰되었으며, 이와 같은 결과는 도 4A의 결과와 일치한다. As shown in Figure 4B, whereas the identified mRNA expression in all around the multipotential markers in iPS cells, in the hMSPC derived from hiPSC former of multipotential marker oct4, nanog, sox2, gdf3 expression did not observed, lin28 expression was observed , And this result is consistent with the result of Fig. 4A.
또한, hiPSC로부터 유도된 hMSPC에서 외배엽, 중배엽, 내배엽에 대한 마커의 발현을 면역형광법에 의해 확인하고, 결과를 각각 도 4C에 나타내었다.In addition, the expression of markers for ectoderm, mesoderm, and endoderm in hMSPC derived from hiPSC was confirmed by immunofluorescence and the results are shown in Fig. 4C, respectively.
도 4C에 나타낸 바와 같이, hMSPC에서 외배엽 마커인 Tubulin 및 Nestin, 중배엽 마커인 Desmin 및 α-SMA는 양성을 나타내었으며, 내배엽 마커인 Foxa2 및 Sox17은 음성을 나타냄을 확인하였다. 따라서, hiPSC로부터 유도된 hMSPC가 외배엽이나 중배엽으로 발달할 가능성이 있음을 알 수 있다. As shown in FIG. 4C, the ectoderm markers Tubulin and Nestin, the mesoderm markers Desmin and a-SMA were positive in hMSPC, and the endoderm markers Foxa2 and Sox17 were negative. Therefore, it can be seen that the hMSC derived from hiPSC is likely to develop into ectoderm or mesodermal lobe.
또한, 5계대의 hMSPC에서 도 4C에서 면역형광법에 의해 확인한 외배엽, 중배엽, 내배엽 마커들의 발현을 RT-PCR을 통해 확인한 결과를 도 4D에 나타내었다.In addition, the expression of the ectoderm, mesoderm, and endoderm markers identified by immunofluorescence in FIG. 4C in hMSPC of the fifth passage was confirmed by RT-PCR, and is shown in FIG. 4D.
도 4D에 나타낸 바와 같이, hMSPC에서는 중배엽 마커인 α- SMA , desmin 및 외배엽 마커인 tubulin , nestin의 발현이 관찰된 반면, 내배엽 마커인 foxa2 , sox17의 발현이 관찰되지 않음을 확인하였다. 이와 같은 결과는 도 4C의 결과와 일치한다. As shown in Fig. 4D, in hMSPC, α- SMA , desmin And ectodermal markers tubulin and nestin , while the expression of endoderm markers foxa2 and sox17 was not observed. This result is consistent with the result of FIG. 4C.
또한, hiPSC로부터 유도된 hMSPC와 중간엽줄기세포의 특성을 비교하기 위해서 표면 항원의 발현 비교를 하기와 같이 수행하였다.In order to compare the characteristics of hMSC-derived hMSCs and mesenchymal stem cells, expression of surface antigens was compared as follows.
hiPSC로부터 유도된 hMSPC에서 중간엽줄기세포 마커인 CD73, CD90, CD105, CD146 및 CD166에 대한 유세포분석을 수행하였다. 중간엽줄기세포 마커를 주황색 선으로, 대조군을 파란색 선으로 한 유세포분석결과를 도 4E에 나타내었다. Flow cytometric analysis of mesenchymal stem cell markers CD73, CD90, CD105, CD146 and CD166 was performed in hMSPC derived from hiPSC. The results of flow cytometry analysis in which the mesenchymal stem cell markers are indicated by orange lines and the control group is indicated by blue lines are shown in Fig. 4E.
도 4E에 나타낸 바와 같이, 중간엽줄기세포 마커 중 CD73, CD105, CD146, CD166은 hMSPC에서 모두 발견된 반면, 중간엽줄기세포 마커 중 CD90은 hMSPC에서는 발견되지 않음을 확인하였다. 따라서 hiPSC로부터 유도된 hMSPC는 중간엽줄기세포와 유사한 분화 잠재적 특성을 가짐을 확인하였다.As shown in FIG. 4E, CD73, CD105, CD146, and CD166 among the mesenchymal stem cell markers were all found in hMSPC, whereas CD90 of mesenchymal stem cell markers was not found in hMSPC. Therefore, it was confirmed that hMSCs derived from hiPSC had similar potential for differentiation to mesenchymal stem cells.
또한, hiPSC로부터 유도된 hMSPC 골형성, 연골형성, 지방형성을 비교하고 그 결과를 도 4F에 나타내었다.In addition, hMSPC bone formation, cartilage formation, and fat formation induced by hiPSC were compared, and the results are shown in FIG. 4F.
도 4F에 나타낸 바와 같이, hiPSC로부터 유도된 hMSPC는 골, 연골로는 분화되지만 지방으로 분화되지 않음을 확인하였다.As shown in FIG. 4F, hMSC derived from hiPSC was differentiated into bone and cartilage but not into fat.
또한, hiPSC로부터 유도된 hMSPC에서 평활근의 마커인 SM22α, SM-MHC(smooth muscle myosin heavy chain)에 대하여 면역형광법을 수행한 결과를 도 4G에 나타내었다. 4G shows the result of performing immunofluorescence on SM22α, SM-MHC (smooth muscle myosin heavy chain) as markers of smooth muscle in hMSPC derived from hiPSC.
도 4G에 나타낸 바와 같이, hiPSC로부터 유도된 hMSPC가 평활근으로 분화하는 잠재력이 있음을 확인하였다.As shown in Fig. 4G, it was confirmed that the hMSPC derived from hiPSC had the potential to differentiate into smooth muscle.
상기 결과를 종합하면, hiPSC로부터 유도된 hMSPC가 hECS로부터 유도된 hMSPC와 동일한 특성을 가지는 것을 확인할 수 있으며, hECS의 대안으로 hiPSC를 사용하여 hMSPC를 수득할 수 있음을 확인하였다.Taken together, these results confirm that hMSPC derived from hiPSC has the same characteristics as hMSPC derived from hECS, and hMSC can be obtained using hiPSC as an alternative to hECS.
2.5 2.5 in vivoin vivo 에서 hMSPC의 연골, 근육 및 건으로의 분화 확인Of differentiation of hMSPC into cartilage, muscle and tendon
실시예 1.2와 동일하게 유도된 hMSPC의 분화 가능성을 in vivo에서 측정하기 위해서, hMSPC를 면역결핍 마우스의 피하, 근막에 이식하였다. 상기 부위에 hMSPC를 이식하고 5주 후, 조직을 H&E와 Movat's 펜타크롬(pentachrome) 염색하고 TO-PRO3으로 대조 염색한 결과를 도 5A 내지 도 5C에 나타내었다.In order to measure the differentiation potential of hMSPC derived in the same manner as in Example 1.2 in vivo , hMSPC was transplanted into the subcutaneous and fascia of immunodeficient mice. Five weeks after transplantation of hMSPCs onto the site, the tissues were stained with H & E and Movat's pentachrome and stained for comparison with TO-PRO3. The results are shown in FIGS. 5A to 5C.
도 5A에 나타낸 바와 같이, hMSPC가 피하에서 미네랄화된 연골 조직(녹색) 및 비-미네랄화된 연골 조직(노란색)을 형성하였음을 확인하였다(도 5Aa 및 도 5Ab). 또한, H&E 염색으로 전형적인 연골 모양의 조직이 형성되었음을 확인하였으므로, hMSPC가 연골 세포를 형성하였음을 알 수 있다. 또한, 면역조직화학적 분석 결과, 연골 마커인 Collagen Type Ⅱ(Col2), 인간 세포 마커인 hLA(human leukocyte antigen)가 양성임을 확인하였으므로, 이식한 hMSPC가 연골 세포로 분화하였음을 알 수 있다. [스케일 바: 1 mm (a), 100 μm (b, c), 500 μm (i), 100 μm (ii, iii, iv)].As shown in FIG. 5A, it was confirmed that hMSPC formed mineralized cartilage tissue (green) and non-mineralized cartilage tissue (yellow) under the skin (FIGS. 5Aa and 5Ab). In addition, it was confirmed that a typical cartilage-like structure was formed by H & E staining, and thus it can be seen that hMSPC formed chondrocytes. In addition, immunohistochemical analysis showed that collagen type II (Col2), a cartilage marker, and hLA (human leukocyte antigen), a human cell marker, were positive, indicating that the transplanted hMSPCs differentiated into chondrocytes. [Scale bar: 1 mm (a), 100 μm (b, c), 500 μm (i), 100 μm (ii, iii, iv)].
도 5B에 나타낸 바와 같이, Movat's 펜타크롬 염색(도 5Ba 및 도 5Bb) 및 H&E(도 5Bc) 염색 결과 hMSPC가 근막에서 전형적인 근육의 형태로 분화되었음을 확인하였으므로, hMSPC가 근육 세포를 형성하였음을 알 수 있다. 또한, 면역조직화학적 분석 결과, 근육 마커인 p-MLC(phosphorylated myosin light chain), 인간 세포 마커인 hLA(human leukocyte antigen)가 양성임을 확인하였으므로, 이식한 hMSPC가 근육 세포로 분화하였음을 알 수 있다. [스케일 바: 1mm (a), 100 μm (b, c), 500 μm (i), 100 μm (ii, iii, iv)].As shown in Fig. 5B, it was confirmed that hMSPC was differentiated into a typical muscle form in the fascia as a result of Movat's Pentachrome staining (Fig. 5Ba and Fig. 5Bb) and H & E (Fig. 5Bc) staining. Thus, have. Immunohistochemical analysis showed that the transfected hMSPCs were differentiated into muscle cells because it was confirmed that p-MLC (phosphorylated myosin light chain), which is a muscle marker, and hLA (human leukocyte antigen), a human cell marker were positive . [Scale bar: 1 mm (a), 100 μm (b, c), 500 μm (i), 100 μm (ii, iii, iv)].
도 5C에 나타낸 바와 같이, Movat's 펜타크롬 염색(도 5Ca 및 도 5Cb) 및 H&E(도 5Cc) 염색 결과 hMSPC가 건 주변의 근막 하에서 전형적인 근육의 형태로 분화되었음을 확인하였으므로, hMSPC가 건 세포를 형성하였음을 알 수 있다. 또한, 면역조직화학적 분석 결과, 건 마커인 Scx(scleraxis), 인간 세포 마커인 hLA(human leukocyte antigen)가 양성임을 확인하였으므로, 이식한 hMSPC가 건 세포로 분화하였음을 알 수 있다. [스케일 바: 1 mm (a), 100 μm (b, c), 500 μm (i), 100 μm (ii, iii, iv)].As shown in Fig. 5C, it was confirmed that hMSPC was differentiated into a typical muscle form under the fascia around the tendon as a result of Movat's Pentachrome staining (Figs. 5Ca and 5Cb) and H & E (Fig. 5Cc) staining. . In addition, immunohistochemical analysis revealed that the transfected hMSPCs were differentiated into dry cells because it was confirmed that Scm (scleraxis), which is a key marker, and hLA (human leukocyte antigen), a human cell marker, were positive. [Scale bar: 1 mm (a), 100 μm (b, c), 500 μm (i), 100 μm (ii, iii, iv)].
상기 결과를 통하여, 본 발명의 hMSPC는 이식 부위에 의존해서 연골, 근육, 건 및 연골내 골(endochondral bone)로 분화될 수 있으며 분화능이 우수함을 확인하였다.Based on the above results, it was confirmed that the hMSPC of the present invention can be differentiated into cartilage, muscle, tendon and endochondral bone depending on the transplantation site, and excellent in the differentiation ability.
2.6 연골내 골화를 통한 hMSPC의 연골내 골 형성 확인2.6 Confirmation of intra-cartilage osteogenesis of hMSPC by ossification in cartilage
실시예 1.2와 동일하게 유도된 hMSPC(4 x 105 세포)를 면역결핍 마우스의 신장 캡슐 아래에 이식하였다. 상기 부위에 hMSPC를 이식하고 5주 후, 이식한 세포를 제거하고 조직을 H&E와 Movat's 펜타크롬(pentachrome) 염색하고 TO-PRO3으로 대조 염색한 결과를 도 6A 및 도 6B에 나타내었다.Example 1.2 The same induction hMSPC (4 x 10 5 cells) and the rats are implanted under the kidney capsule of immunodeficient mice. After hMSPC was transplanted to the site, the transplanted cells were removed, and the tissues were stained with H & E and Movat's pentachrome, and stained with TO-PRO3. The results are shown in FIGS. 6A and 6B.
도 6A에 나타낸 바와 같이, hMSPC의 이식 부위에서 단단한 조직, 즉 골이 형성되었음을 확인하였다(도 6Aa 및 도 6Ab). H&E 염색 및 펜타크롬 염색을 통해 연골과 골이 혼합되어있으므로, 골과 연골이 함께 형성되었음을 확인하였고 펜타크롬 염색을 통해서 조직이 미네랄화된 연골 조직(녹색), 비-미네랄화된 연골 조직(노란색) 및 미네랄화된 골 조직(붉은색)을 확인하였다(도 6Ac 및 도 6Ad). 따라서 이식한 hMSPC가 신장 캡슐 아래에서 연골과 골로 모두 분화하였음을 알 수 있다. 또한, 면역조직화학적 분석 결과, 조직 내부의 세포에서 인간 세포 마커인 hLA(human leukocyte antigen), 연골 마커인 ColⅡ의 발현을 확인하였고, 조직 외부의 세포에서 인간 세포 마커인 hLA(human leukocyte antigen), 골 마커인 Osx(osterix), 골 마커인 OCN(osteocalin)이 양성임을 확인하였으므로, 이식한 hMSPC가 골 및 연골로 분화하였음을 알 수 있다. [스케일 바: 500 μm (b, c), 100 μm (i, ii, iii, iv)]. 추가적으로, 상기 확인한 연골내 골화와 혈관신생(angiogenesis)이 관되어 있는지 확인하기 위해서, 골수강 절단면을 항-vWF(Von Willebrand factor) 항체로 염색하였다. 염색 결과를 도 6C에 나타내었으며, 도 6C에 나타낸 바와 같이, 신장과 골수강의 접합 부위에서 vWF 양성 세포가 발견되었다. vWF 양성 세포는 마우스에서 유래한 것이므로, 혈관신생이 연골내 분화에 필요함을 알 수 있다.As shown in Fig. 6A, it was confirmed that hard tissue, that is, bone was formed at the implantation site of hMSPC (Fig. 6Aa and Fig. 6Ab). It was confirmed that bone and cartilage were formed together with H & E staining and pentachrome staining. It was confirmed that the tissue was composed of mineralized cartilage tissue (green), non-mineralized cartilage tissue (yellow ) And mineralized bone tissue (red) (Fig. 6Ac and Fig. 6Ad). Therefore, it can be seen that the transplanted hMSPC is differentiated into cartilage and bone under the kidney capsule. In addition, immunohistochemical analysis revealed the expression of hLA (human leukocyte antigen) and Col II, a cartilage marker, in the cells inside the tissue. In the cells outside the tissue, human leukocyte antigen (hLA) It was confirmed that OsM (osterix), a bone marker, and OCN (osteocalin), a bone marker, were differentiated into bone and cartilage because the transplanted hMSPC was positive. [Scale bar: 500 μm (b, c), 100 μm (i, ii, iii, iv)]. In addition, in order to confirm the presence of intra-ossicular ossification and angiogenesis, the bone marrow section was stained with anti-vWF (von Willebrand factor) antibody. The result of the staining is shown in FIG. 6C, and as shown in FIG. 6C, vWF-positive cells were found at the junction of kidney and bone marrow. Since vWF-positive cells are derived from mice, it can be seen that angiogenesis is necessary for intra-cartilage differentiation.
분화를 좀 더 진행시키는 경우, 도 6B에 나타낸 바와 같이, hMSPC의 이식 부위에서 연골이 없어지고 수강(medullary cavity)이 형성되는 것을 확인하였다(도 6Ba 및 도 6Bb). H&E 염색 및 펜타크롬 염색을 통해서도 마찬가지로 골수강(marrow cavity)가 형성된 것을 확인하였다(도 6Bc 및 도 6Bd). 또한, 면역조직화학적 분석 결과, 인간 세포 마커인 hLA(human leukocyte antigen), 골 마커인 Osx, 골 마커인 OCN, 골 마커인 Sclerostin이 양성임을 확인하였으므로, 이식한 hMSPC가 골로 분화하였음을 알 수 있다. [스케일 바: 1mm (b, c), 100 μm (i, ii, iii, iv)].When the differentiation was further promoted, it was confirmed that cartilage disappeared and a medullary cavity was formed at the transplantation site of hMSPC as shown in Fig. 6B (Fig. 6Ba and Fig. 6Bb). It was confirmed that a marrow cavity was formed similarly by H & E staining and pentachrome staining (Figs. 6Bc and 6Bd). As a result of immunohistochemical analysis, it was confirmed that hLA (human leukocyte antigen) as a human cell marker, Osx as a bone marker, OCN as a bone marker, and Sclerostin as a bone marker were positive, so that the transplanted hMSPC was differentiated into a bone . [Scale bar: 1 mm (b, c), 100 μm (i, ii, iii, iv)].
상기 결과를 종합해보면, hMSPC를 신장 캡슐 아래에 이식한 경우 골 및 연골로 함께 분화되었다가 수강이 형성되며 연골이 없어지는 과정이 진행되므로, 연골내 골화를 통해서 hMSPC가 골로 분화됨을 알 수 있다.When the hMSPC is implanted under the kidney capsule, the hMSPC is differentiated into bone and cartilage, and the process of forming the lecture is completed and the cartilage disappears. Thus, it can be understood that the hMSPC is differentiated into the bone through ossification of the cartilage.
2.7 hMSPC의 골절 회복에 대한 효과 확인2.7 Confirmation of the effect of hMSPC on fracture recovery
실시예 1.2와 동일하게 유도된 hMSPC의 골절 회복에 대한 효과를 확인하기 위해서, 상기 실시예 1.11, 도 7A 및 도 7B에 나타낸 바와 같이 골절 연구를 수행하고 그 결과를 도 7C 내지 도 7E에 나타내었다.In order to confirm the effect of the hMSPC induced recovery in the same manner as in Example 1.2 on fracture healing, a fracture study was conducted as shown in Examples 1.11, 7A and 7B, and the results are shown in Figs. 7C to 7E .
도 7C 내지 도 7E에 나타낸 바와 같이, hLA와 Runx2를 동시에 발현하는 세포가 골절 부위 내에서 발견되었으며, 이는 이식된 세포의 분화가 연골 세포와 골 세포로 분화되었음을 나타낸다.As shown in FIGS. 7C to 7E, cells expressing hLA and Runx2 simultaneously were found in the fracture site, indicating that the differentiation of the transplanted cells was differentiated into chondrocytes and bone cells.
또한, 면역결핍 마우스의 감염된 두개골에 HA-PLGA와 세포를 함께 주입함으로써 in vivo에서 hMSPC의 골형성을 확인하였다. 7일 동안의 골형성 배지를 이용한 hMSPC의 프라이밍 후에, 세포를 HA-PLGA 그래프트에 접종하였다. 도 7F에 나타낸 바와 같이, 조직의 연골 세포 및 골 세포에서 골형성 마커인 Runx2가 발현되었고, HA-PLGA가 로딩된 hMSPC의 이식은 두개골 뼈 결함을 완전히 치료하는 효과를 나타냄을 확인하였다. 따라서 hMSPC가 막내골화에도 관여할 수 있을 확인하였다. In addition, bone formation of hMSPC was confirmed in vivo by injecting HA-PLGA and cells into the infected skull of immunodeficient mice. After priming of hMSPC with osteogenic medium for 7 days, cells were inoculated into HA-PLGA graft. As shown in FIG. 7F, Runx2, a bone formation marker, was expressed in chondrocytes and osteocytes of tissues, and it was confirmed that transplantation of HA-PLGA-loaded hMSPC completely cures skull bone defects. Therefore, it was confirmed that hMSPC could be involved in intramural ossification.
이상의 실험 결과를 통해, 본 발명의 FGF2(Fibroblast Growth Factor 2) 신호전달 활성화제, TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달 억제제, Wnt 신호 활성화제, ERK (extracellular signal-regulated kinase) 신호 억제제, 및 LIF(leukemia inhibitory factor)를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도용 배지 조성물을 이용함으로써 줄기세포, 예컨대 배아줄기세포 또는 유도만능줄기세포로부터 hMSPC로의 분화가 가능하며, 분화된 hMSPC는 생체 내에서 골, 근육, 연골, 및 건으로의 분화능이 우수하므로 다양한 근골격계 질환의 치료에 유용하게 사용할 수 있음을 확인하였다.The results of the above experiments show that the FGF2 (Fibroblast Growth Factor 2) signaling activator, TGF-β / activin / nodal signal transduction inhibitor, Wnt signal activator, ERK (extracellular such as embryonic stem cells or inducible pluripotent stem cells, by using a medium composition for inducing the differentiation of stem cells into mucosal bone marrow progenitor cells, which comprises a signal-regulated kinase signaling inhibitor and a leukemia inhibitory factor (LIF) It is possible to differentiate into hMSPC from cells, and since hMSPC having differentiation ability into bone, muscle, cartilage, and tendon in vivo can be used effectively for various musculoskeletal diseases.
비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다.Although the present invention has been described in terms of the preferred embodiments mentioned above, it is possible to make various modifications and variations without departing from the spirit and scope of the invention. It is also to be understood that the appended claims are intended to cover such modifications and changes as fall within the scope of the invention.

Claims (14)

  1. FGF2(Fibroblast Growth Factor 2) 신호전달 활성화제, TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달 억제제, Wnt 신호 활성화제, ERK (extracellular signal-regulated kinase) 신호 억제제, 및 LIF(leukemia inhibitory factor)를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도용 배지 조성물.(TGF-beta / activin / nodal) signal transduction inhibitor, a Wnt signal activator, an extracellular signal-regulated kinase (ERK) signal inhibitor, and A medium composition for inducing differentiation from stem cells to a musculoskeletal progenitor cell, comprising a leukemia inhibitory factor (LIF).
  2. 제1항에 있어서, 상기 FGF2 신호전달 활성화제는 bFGF(basic FGF)인, 배지 조성물.2. The composition of claim 1, wherein the FGF2 signaling activator is bFGF (basic FGF).
  3. 제1항에 있어서, 상기 TGF-β/엑티빈/노달(TGF-β/activin/nodal) 신호전달 억제제는 E-616452(2-[3-(6-메틸-2-피리디닐)-1H-피라졸-4-일]-1,5-나프티리딘), A-83-01(3-(6-메틸-2-피리디닐)-N-페닐-4-(4-퀴놀리닐)-1H-피라졸-1-카보티오아미드) 또는 SB431542(4-[4-(1,3-벤조디옥솔-5-일)-5-(2-피리디닐)-1H-이미다졸-2-일]벤즈아미드)인, 배지 조성물.2. The method of claim 1, wherein the TGF- / activin / nodal signaling inhibitor is E-616452 (2- [3- (6-methyl-2-pyridinyl) Yl) -1,5-naphthyridine), A-83-01 (3- (6-methyl-2-pyridinyl) -N- phenyl-4- (4-quinolinyl) (3-benzodioxol-5-yl) -5- (2-pyridinyl) -lH-imidazol- Benzamide). &Lt; / RTI &gt;
  4. 제1항에 있어서, 상기 Wnt 신호 활성화제는 SB216763(3-(2,4-디클로로페닐)-4-(1-메틸-1H-인돌-3-일)-1H-피롤-2,5-디온), SB415286(3-[(3-클로로-4-히드록시페닐)아미노]-4-(2-니트로페닐)-1H-피롤-2,5-디온), 켄파울론 (Kenpaullone; 9-브로모-7,12-디히드로-인돌로[3,2-d]-[1]벤즈아제핀-6(5H)-온), CHIR99021(9-브로모-7,12-디히드로-피리도[3',2':2,3]아제피노[4,5-b]인돌-6(5H)-온), CP21R7(3-(3-아미노-페닐)-4-(1-메틸-1H-인돌-3-일)-피롤-2,5-디온), SB203580(4-(4-플루오로페닐)-2-(4-메틸술피닐페닐)-5-(4-피리딜)-1H-이미다졸), H-89(5-이소퀴놀린술폰아미드), 퍼모프아민(Purmorphamine; 2-(1-나프톡시)-6-(4-모르폴리노아닐리노)-9-싸이클로헥실퓨린), 또는 IQ-1(2-(4-아세틸-페닐아조)-2-[3,3-디메틸-3,4-디히드로-2H-이소퀴놀린-(1E)-일리덴]-아세트아미드)인, 배지 조성물.The method of claim 1, wherein the Wnt signal activator is selected from the group consisting of SB216763 (3- (2,4-dichlorophenyl) -4- (1 -methyl-1 H-indol-3-yl) ), SB415286 (3 - [(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H- pyrrole-2,5-dione), Kenpaullone 7,12-dihydro-indolo [3,2-d] - [l] benzazepin-6 (5H) -one), CHIR99021 (9-Bromo-7,12-dihydro- (3-amino-phenyl) -4- (1-methyl-1H) -quinolinone (4-fluorophenyl) -5- (4-pyridyl) -lH- -Imidazole), H-89 (5-isoquinolinesulfonamide), Purmorphamine (2- (1-naphthoxy) -6- (4-morpholinoanilino) -9-cyclohexylpurine) , Or IQ-1 (2- (4-acetyl-phenylazo) -2- [3,3-dimethyl-3,4-dihydro-2H-isoquinoline- (1E) -ylidene] -acetamide) , &Lt; / RTI &gt;
  5. 제1항에 있어서, 상기 ERK 신호 억제제는 AS703026(N-[(2S)-2,3-디히드록시프로필]-3-[(2-플루오로-4-요오도페닐)아미노]-이소니코틴아미드), AZD6244(6-(4-브로모-2-클로로아닐리노)-7-플루오로-N-(2-하이드록시에톡시)-3-메틸벤즈이미다졸-5-카르복사미드), PD0325901(N-[(2R)-2,3-디히드록시프로폭시]-3,4-다이플루오로-2-[(2-플루오로-4-요오도페닐)아미노]-벤즈아미드), ARRY-438162(5-[(4-브로모-2-플루오로페닐)아미노]-4-플루오로-N-(2-히드록시에톡시)-1-메틸-1H-벤지이미다졸-6-카르복사미드), RDEA119((S)-N-(3,4-디플루오로-2-((2-플루오로-4-요오도페닐)아미노)-6-메톡시페닐)-1-(2,3-디히드록시프로필)시클로프로판-1-설폰아미드),GDC0973([3,4-다이플루오로-2-(2-플루오로-4-요오도아밀리노)페닐] 3-히드록시-3-[(2S)-피페리딘-2-일]-아제티딘-1-일-메타논), TAK-733((R)-3-(2,3-디히트록시프로필)-6-플루오로-5-(2- 플루오로 -4-요오도페닐아미노)-8-메틸피리도[2,3-d]피리미딘-4,7(3H,8H)-디온), RO5126766(3-[[3-플루오로-2-(메틸설파모일아미노)-4-피리딜]메틸]-4-메틸-7-피리미딘-2-일옥시크로멘-2-온), 또는 XL-518([3,4-디플루오로-2-[(2-플루오로-4-요오도페닐)아미노]페닐][3-하이드록시-3-[(2S)-2-피페리디닐]-1-아제티디닐]메타논)인, 배지 조성물.2. The method of claim 1 wherein the ERK signal inhibitor is selected from the group consisting of AS703026 (N - [(2S) -2,3-dihydroxypropyl] -3- [(2-fluoro-4-iodophenyl) Amide), AZD6244 (6- (4-bromo-2-chloroanilino) -7-fluoro-N- (2- hydroxyethoxy) -3- methylbenzimidazole- PDO325901 (N - [(2R) -2,3-dihydroxypropoxy] -3,4-difluoro-2 - [(2- fluoro-4-iodophenyl) amino] ARRY-438162 (5 - [(4-bromo-2-fluorophenyl) amino] -4-fluoro-N- (2- hydroxyethoxy) Carboxamide), RDEA119 ((S) -N- (3,4-difluoro-2 - ((2- fluoro-4-iodophenyl) amino) -6-methoxyphenyl) -1- (2,3-dihydroxypropyl) cyclopropane-1-sulfonamide), GDC0973 ([3,4-difluoro-2- (2- fluoro-4-iodoamylino) phenyl] (R) -3- (2,3-dihydroxypropyl) -6- (2S) -piperidin-2-yl] -azetidin- - Fluorine (3H, 8H) -dione), RO5126766 (3- [2-fluoro-4-iodophenylamino] -8-methylpyrido [ Methyl-7-pyrimidin-2-yloxychromen-2-one) or XL-518 ([(3-fluoro-2- Amino] phenyl] [3-hydroxy-3 - [(2S) -2-piperidinyl] -1- Thienyl] methanone).
  6. 제1항 내지 제5항 중 어느 한 항의 배지 조성물에서 줄기세포를 배양하는 단계를 포함하는, 줄기세포로부터 근골격계 전구세포(mucsloskeletal progenitor cell)로의 분화 유도방법.A method for inducing differentiation of a stem cell into a musculoskeletal progenitor cell, comprising culturing the stem cell in the medium composition of any one of claims 1 to 5.
  7. 제6항의 방법에 의해서 제조된, 근골격계 전구세포(mucsloskeletal progenitor cell).A mucosloskeletal progenitor cell produced by the method of claim 6.
  8. 제7항에 있어서, 상기 세포는 골, 연골, 근육, 또는 건으로 분화할 수 있는 세포인, 근골격계 전구세포.8. The musculoskeletal precursor cell according to claim 7, wherein the cell is a cell capable of differentiating into bone, cartilage, muscle, or tendon.
  9. 제7항에 있어서, 상기 세포는 외배엽 또는 중배엽으로 분화할 수 있는 세포인, 근골격계 전구세포.8. The musculoskeletal precursor cell according to claim 7, wherein the cell is a cell capable of differentiating into an ectoderm or mesoderm.
  10. 제7항에 있어서, 상기 세포는 CD73, CD105, CD146 또는 CD166에 대하여 양성이고 CD90에 대하여 음성인, 근골격계 전구세포.8. The musculoskeletal precursor cell of claim 7, wherein the cell is positive for CD73, CD105, CD146 or CD166 and negative for CD90.
  11. 제7항에 있어서, 상기 세포는 Oct4, Nanog, Sox2 또는 Gdf3에 대하여 음성이고 Lin28에 대하여 양성인, 근골격계 전구세포.8. The musculoskeletal precursor cell according to claim 7, wherein said cell is negative for Oct4, Nanog, Sox2 or Gdf3 and positive for Lin28.
  12. 제7항의 근골격계 전구세포를 포함하는, 근골격계 질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating musculoskeletal diseases, comprising the musculoskeletal precursor cells of claim 7.
  13. 제12항에 있어서, 상기 근골격계 질환은 골다공증, 골연화증, 골형성 부전증(osteogenesis imperfecta), 골화석증(osteopetrosis), 골경화증(osteosclerosis), 파제트병(Paget's disease), 골암, 관절염, 구루병, 골절, 치주 질환, 분절성 골 결손, 골용해성 골질환, 원발성 및 속발성 부갑상선기능항진증, 과골증, 퇴행성 관절염, 변형성슬관절증, 변형성고관절증, 변형성족관절증, 변형성수관절증, 변형성견관절증, 변형성주관절증, 슬개연골연화증, 단순성슬관절염, 이단성골연골염, 상완골외측상과염, 상완골내측상과염, 헤바딘 결절, 부샤르 결절, 변형성모지 CM관절증, 반월판 손상, 추간판 디스크 변성, 십자인대 상완 이두박근기시건, 인대손상, 건 손상 오십견, 회전근개 파열, 석회화 건염, 어깨 충동 증후군, 재발성 탈구, 및 습관성 탈구로 구성된 군으로부터 선택된 1종 이상인, 근골격계 질환 예방 또는 치료용 약학적 조성물. 13. The method of claim 12, wherein the musculoskeletal disease is selected from the group consisting of osteoporosis, osteogenesis, osteogenesis imperfecta, osteopetrosis, osteosclerosis, Paget's disease, bone cancer, arthritis, rickets, , Periodontal disease, segmental bone defect, osteolytic bone disease, primary and secondary hyperparathyroidism, hyperostosis, degenerative arthritis, degenerative knee osteoarthritis, deformed arthropathy, ankle osteoarthritis, deformed arthropathy, deformed arthropathy, Bradycardia nodule, bushard's nodule, deformed moyamoya CM arthropathy, meniscus injury, intervertebral disk degeneration, cruciate ligament brachialis tendon tendon, ligament injuries, arthritis, osteoarthritis of the humerus, , Dry injury disorganized dog, rotator cuff tear, calcific tendinitis, shoulder impulse syndrome, recurrent dislocation, and habitual dislocation. A pharmaceutical composition for preventing or treating musculoskeletal diseases.
  14. 제7항의 근골격계 전구세포를 포함하는, 근골격계 질환 치료용 세포치료제.A cell therapy agent for treating musculoskeletal diseases, comprising the musculoskeletal precursor cell of claim 7.
PCT/KR2016/008997 2015-08-13 2016-08-16 Culture medium composition for inducing musculoskeletal progenitor cell, and pharmaceutical composition comprising musculoskeletal progenitor cell for preventing or treating musculoskeletal diseases WO2017026878A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150114820 2015-08-13
KR10-2015-0114820 2015-08-13
KR20160103714 2016-08-16
KR10-2016-0103714 2016-08-16

Publications (1)

Publication Number Publication Date
WO2017026878A1 true WO2017026878A1 (en) 2017-02-16

Family

ID=57983866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008997 WO2017026878A1 (en) 2015-08-13 2016-08-16 Culture medium composition for inducing musculoskeletal progenitor cell, and pharmaceutical composition comprising musculoskeletal progenitor cell for preventing or treating musculoskeletal diseases

Country Status (1)

Country Link
WO (1) WO2017026878A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046677A (en) * 2017-10-25 2019-05-07 (주)셀라토즈테라퓨틱스 A Novel Musculoskeletal Stem Cell
WO2020218845A1 (en) * 2019-04-23 2020-10-29 (주)셀라토즈테라퓨틱스 Method for regulation of selective differentiation of musculoskeletal stem cells
KR20200124177A (en) * 2019-04-23 2020-11-02 (주)셀라토즈테라퓨틱스 Method for Controlling Selective Differentiation of Musculoskeletal Stem Cell
CN114917232A (en) * 2022-06-27 2022-08-19 厦门骨本生物科技有限公司 Application of CH5126766 in preparation of medicine for relieving or treating animal osteoarthritis
CN115125209A (en) * 2022-08-31 2022-09-30 华科星河(北京)生物科技有限公司 Method for inducing cervical spinal cord neural stem cells from induced pluripotent stem cells
CN115125210A (en) * 2022-08-31 2022-09-30 华科星河(北京)生物科技有限公司 Culture medium and method for lumbosacral segment spinal cord neural stem cells induced from iPSC

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161075A1 (en) * 2013-04-05 2014-10-09 University Health Network Methods and compositions for generating chondrocyte lineage cells and/or cartilage like tissue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161075A1 (en) * 2013-04-05 2014-10-09 University Health Network Methods and compositions for generating chondrocyte lineage cells and/or cartilage like tissue

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENG, AIXIN ET AL.: "Generating Cartilage Repair from Pluripotent Stem Cells", TISSUE ENGINEERING. PART B, vol. 20, no. 4, 2014, pages 257 - 266, XP055364381 *
HUH, JIN JU: "Easily Conversion of Human Embryonic Stem Cells into Bone and Cartilage Precursors Cells by Optimizing Culture Conditions", GRADUATE SCHOOL OF CHONBUK NATIONAL UNIVERSITY, February 2015 (2015-02-01), pages 1 - 26 *
KANKE, KOSUKE ET AL.: "Stepwise Differentiation of Pluripotent Stem Cells into Osteoblasts Using Four Small Molecules under Serum-Free and Feeder-Free Conditions", STEM CELL REPORTS, vol. 2, 3 June 2014 (2014-06-03), pages 751 - 760, XP055364378 *
MAHMOOD, AMER ET AL.: "Enhanced Differentiation of Human Embryonic Stem Cells to Mesenchymal Progenitors by Inhibition of TGF-beta/activin/nodal Signaling Using SB-431542", JOURNAL OF BONE AND MINERAL RESEARCH, vol. 25, no. 6, June 2010 (2010-06-01), pages 1216 - 1233, XP008160765 *
WAESE, ELAINE Y. L. ET AL.: "One-step Generation of Murine Embryonic Stem Cell-derived Mesoderm Progenitors and Chondrocytes in a Serum-free Monolayer Differentiation System", STEM CELL RESEARCH, vol. 6, 2011, pages 34 - 49, XP027526384 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013045B2 (en) 2017-10-25 2022-02-15 セラトズ セラピュティクス インコーポレイテッド New musculoskeletal stem cells
CN111225974A (en) * 2017-10-25 2020-06-02 雪拉托兹治疗株式会社 Novel musculoskeletal system stem cells
KR20190046677A (en) * 2017-10-25 2019-05-07 (주)셀라토즈테라퓨틱스 A Novel Musculoskeletal Stem Cell
CN112980782A (en) * 2017-10-25 2021-06-18 雪拉托兹治疗株式会社 Novel musculoskeletal system stem cells
EP3702445A4 (en) * 2017-10-25 2021-06-02 Cellatoz Therapeutics, Inc. Novel musculoskeletal stem cell
KR102118522B1 (en) * 2017-10-25 2020-06-03 (주)셀라토즈테라퓨틱스 A Novel Musculoskeletal Stem Cell
JP2020519311A (en) * 2017-10-25 2020-07-02 セラトズ セラピュティクス インコーポレイテッド Novel musculoskeletal stem cells
US11135250B2 (en) 2017-10-25 2021-10-05 Cellatoz Therapeutics, Inc. Musculoskeletal stem cell
CN111225974B (en) * 2017-10-25 2021-09-17 雪拉托兹治疗株式会社 Novel musculoskeletal system stem cells
JP2021007413A (en) * 2017-10-25 2021-01-28 セラトズ セラピュティクス インコーポレイテッド Novel musculoskeletal stem cell
US10576106B2 (en) 2017-10-25 2020-03-03 Cellatoz Therapeutics, Inc. Musculoskeletal stem cell and medium for inducing differentiation of musculoskeletal stem cell
WO2019083281A3 (en) * 2017-10-25 2019-06-27 (주)셀라토즈테라퓨틱스 Novel musculoskeletal stem cell
EP3643777A1 (en) * 2017-10-25 2020-04-29 Cellatoz Therapeutics, Inc. Novel musculoskeletal stem cell and medium for inducing differentiation of musculoskeletal stem cell
KR20200124177A (en) * 2019-04-23 2020-11-02 (주)셀라토즈테라퓨틱스 Method for Controlling Selective Differentiation of Musculoskeletal Stem Cell
WO2020218845A1 (en) * 2019-04-23 2020-10-29 (주)셀라토즈테라퓨틱스 Method for regulation of selective differentiation of musculoskeletal stem cells
KR102241185B1 (en) 2019-04-23 2021-04-16 (주)셀라토즈테라퓨틱스 Method for Controlling Selective Differentiation of Musculoskeletal Stem Cell
CN114917232A (en) * 2022-06-27 2022-08-19 厦门骨本生物科技有限公司 Application of CH5126766 in preparation of medicine for relieving or treating animal osteoarthritis
CN115125209A (en) * 2022-08-31 2022-09-30 华科星河(北京)生物科技有限公司 Method for inducing cervical spinal cord neural stem cells from induced pluripotent stem cells
CN115125210A (en) * 2022-08-31 2022-09-30 华科星河(北京)生物科技有限公司 Culture medium and method for lumbosacral segment spinal cord neural stem cells induced from iPSC
CN115125210B (en) * 2022-08-31 2022-12-02 华科星河(北京)生物科技有限公司 Culture medium and method for lumbosacral segment spinal cord neural stem cells induced from iPSC
CN115125209B (en) * 2022-08-31 2022-12-06 华科星河(北京)生物科技有限公司 Method for inducing cervical spinal cord neural stem cells from induced pluripotent stem cells

Similar Documents

Publication Publication Date Title
WO2017026878A1 (en) Culture medium composition for inducing musculoskeletal progenitor cell, and pharmaceutical composition comprising musculoskeletal progenitor cell for preventing or treating musculoskeletal diseases
Yamashita et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs
WO2019083281A2 (en) Novel musculoskeletal stem cell
Carnevale et al. Human dental pulp stem cells expressing STRO‐1, c‐kit and CD34 markers in peripheral nerve regeneration
KR100973453B1 (en) Chondrocyte precursors derived from human embryonic stem cells
WO2018117573A1 (en) Multilayer neural crest stem cell sheet and method for manufacturing same
WO2020050673A1 (en) Medium for direct differentiation of pluripotent stem cell-derived mesenchymal stem cell, method for preparing mesenchymal stem cell by using same, and mesenchymal stem cell prepared thereby
WO2020004893A1 (en) Method for preparing pellets of chondrocytes from human induced pluripotent stem cells, and use thereof
Cancedda et al. Transit Amplifying Cells (TACs): a still not fully understood cell population
WO2011102680A2 (en) Cd49f promoting proliferation, multipotency and reprogramming of adult stem cells through pi3k/akt/gsk3 pathway
WO2021071289A2 (en) Composition for augmenting stemness and use thereof
WO2020067774A1 (en) Synovium-derived mesenchymal stem cells and use thereof
WO2013165120A1 (en) Method for culturing neural crest stem cells, and use thereof
KR102241185B1 (en) Method for Controlling Selective Differentiation of Musculoskeletal Stem Cell
WO2020218845A1 (en) Method for regulation of selective differentiation of musculoskeletal stem cells
WO2018155913A1 (en) Method for differentiation into skeletal muscle cell using low-molecular weight compound
WO2011037416A9 (en) Method of manufacturing cell spheroids which are mixed cellular complexes for cell transplantation and usage thereof
WO2013162330A1 (en) Chimeric mesenchymal stem cell population and preparation method therefor, and method for producing parathyroid hormone using tonsil-derived stem cells
WO2015199416A1 (en) Pharmaceutical composition for treating skin or vascular tissue damage and use thereof
WO2022075809A1 (en) Osteoblasts differentiated from mesenchymal stem cells and composition for treating bone disease comprising same
WO2019078587A1 (en) Composition containing, as active ingredient, culture of chicken bone marrow-derived osteochondral progenitor cells for promoting osteogenesis or inducing chondrogenic differentiation
WO2024053957A1 (en) Chemically-induced osteogenic cells and use thereof in disease modeling, and scaffold for bone grafting
WO2024076030A1 (en) Method for producing platelets
WO2024080661A1 (en) Novel angiogenic stem cell
WO2021020720A1 (en) Equine amniotic fluid-derived stem cells, and cell therapeutic agent for regenerating musculoskeletal system, comprising same

Legal Events

Date Code Title Description
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835518

Country of ref document: EP

Kind code of ref document: A1