WO2024053957A1 - Chemically-induced osteogenic cells and use thereof in disease modeling, and scaffold for bone grafting - Google Patents
Chemically-induced osteogenic cells and use thereof in disease modeling, and scaffold for bone grafting Download PDFInfo
- Publication number
- WO2024053957A1 WO2024053957A1 PCT/KR2023/013146 KR2023013146W WO2024053957A1 WO 2024053957 A1 WO2024053957 A1 WO 2024053957A1 KR 2023013146 W KR2023013146 W KR 2023013146W WO 2024053957 A1 WO2024053957 A1 WO 2024053957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- ciog
- osteogenic
- bone
- medium composition
- Prior art date
Links
- 210000005009 osteogenic cell Anatomy 0.000 title claims abstract description 57
- 210000000988 bone and bone Anatomy 0.000 title description 56
- 201000010099 disease Diseases 0.000 title description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title description 10
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000000126 substance Substances 0.000 claims abstract description 33
- 208000020084 Bone disease Diseases 0.000 claims abstract description 26
- 239000003112 inhibitor Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000004480 active ingredient Substances 0.000 claims abstract description 21
- 210000001082 somatic cell Anatomy 0.000 claims abstract description 21
- 239000013028 medium composition Substances 0.000 claims abstract description 20
- 208000007531 Proteus syndrome Diseases 0.000 claims abstract description 17
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 claims abstract description 14
- NIOHELZQFBGCEO-UHFFFAOYSA-N Phenylamil Chemical compound N=1C(Cl)=C(N)N=C(N)C=1C(=O)N=C(N)NC1=CC=CC=C1 NIOHELZQFBGCEO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 108091005735 TGF-beta receptors Proteins 0.000 claims abstract description 14
- 102000016715 Transforming Growth Factor beta Receptors Human genes 0.000 claims abstract description 14
- 239000012190 activator Substances 0.000 claims abstract description 14
- 230000004069 differentiation Effects 0.000 claims abstract description 14
- 206010031243 Osteogenesis imperfecta Diseases 0.000 claims abstract description 12
- 230000011496 cAMP-mediated signaling Effects 0.000 claims abstract description 12
- 229940125400 channel inhibitor Drugs 0.000 claims abstract description 12
- LBPKYPYHDKKRFS-UHFFFAOYSA-N 1,5-naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1h-pyrazol-4-yl]- Chemical compound CC1=CC=CC(C2=C(C=NN2)C=2N=C3C=CC=NC3=CC=2)=N1 LBPKYPYHDKKRFS-UHFFFAOYSA-N 0.000 claims abstract description 7
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 claims abstract description 7
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 210000004027 cell Anatomy 0.000 claims description 116
- 108090000623 proteins and genes Proteins 0.000 claims description 77
- 230000002188 osteogenic effect Effects 0.000 claims description 59
- 210000002950 fibroblast Anatomy 0.000 claims description 56
- 102100025368 Runt-related transcription factor 2 Human genes 0.000 claims description 52
- 230000014509 gene expression Effects 0.000 claims description 50
- 108010024682 Core Binding Factor Alpha 1 Subunit Proteins 0.000 claims description 49
- 210000001519 tissue Anatomy 0.000 claims description 34
- 102000004067 Osteocalcin Human genes 0.000 claims description 31
- 108090000573 Osteocalcin Proteins 0.000 claims description 31
- 101000844802 Lacticaseibacillus rhamnosus Teichoic acid D-alanyltransferase Proteins 0.000 claims description 29
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims description 28
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims description 27
- 230000011664 signaling Effects 0.000 claims description 26
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 22
- 239000012091 fetal bovine serum Substances 0.000 claims description 21
- 230000005937 nuclear translocation Effects 0.000 claims description 14
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 claims description 13
- 102100037852 Insulin-like growth factor I Human genes 0.000 claims description 13
- 108010028750 Integrin-Binding Sialoprotein Proteins 0.000 claims description 12
- 102000016921 Integrin-Binding Sialoprotein Human genes 0.000 claims description 12
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 claims description 10
- 235000013305 food Nutrition 0.000 claims description 8
- -1 isopreterenol Chemical compound 0.000 claims description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 239000005557 antagonist Substances 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 6
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 5
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 5
- 239000000556 agonist Substances 0.000 claims description 5
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 5
- 230000005764 inhibitory process Effects 0.000 claims description 4
- VMLKTERJLVWEJJ-UHFFFAOYSA-N 1,5-naphthyridine Chemical compound C1=CC=NC2=CC=CN=C21 VMLKTERJLVWEJJ-UHFFFAOYSA-N 0.000 claims description 3
- 208000010392 Bone Fractures Diseases 0.000 claims description 3
- 206010068975 Bone atrophy Diseases 0.000 claims description 3
- 102100037182 Cation-independent mannose-6-phosphate receptor Human genes 0.000 claims description 3
- 206010017076 Fracture Diseases 0.000 claims description 3
- 101001028831 Homo sapiens Cation-independent mannose-6-phosphate receptor Proteins 0.000 claims description 3
- 101001032872 Homo sapiens Gremlin-1 Proteins 0.000 claims description 3
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 claims description 3
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 claims description 3
- 208000029725 Metabolic bone disease Diseases 0.000 claims description 3
- 208000010191 Osteitis Deformans Diseases 0.000 claims description 3
- 206010049088 Osteopenia Diseases 0.000 claims description 3
- 208000001132 Osteoporosis Diseases 0.000 claims description 3
- 208000027868 Paget disease Diseases 0.000 claims description 3
- 101710102802 Runt-related transcription factor 2 Proteins 0.000 claims description 3
- FHYUGAJXYORMHI-UHFFFAOYSA-N SB 431542 Chemical compound C1=CC(C(=O)N)=CC=C1C1=NC(C=2C=C3OCOC3=CC=2)=C(C=2N=CC=CC=2)N1 FHYUGAJXYORMHI-UHFFFAOYSA-N 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 208000027202 mammary Paget disease Diseases 0.000 claims description 3
- 201000008482 osteoarthritis Diseases 0.000 claims description 3
- 208000005368 osteomalacia Diseases 0.000 claims description 3
- 201000001245 periodontitis Diseases 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 230000003827 upregulation Effects 0.000 claims description 3
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 claims description 2
- 102100034134 Activin receptor type-1B Human genes 0.000 claims description 2
- 102100034135 Activin receptor type-1C Human genes 0.000 claims description 2
- 102100038367 Gremlin-1 Human genes 0.000 claims description 2
- 102100038353 Gremlin-2 Human genes 0.000 claims description 2
- 101000799189 Homo sapiens Activin receptor type-1B Proteins 0.000 claims description 2
- 101000799193 Homo sapiens Activin receptor type-1C Proteins 0.000 claims description 2
- 101001032861 Homo sapiens Gremlin-2 Proteins 0.000 claims description 2
- 101001076292 Homo sapiens Insulin-like growth factor II Proteins 0.000 claims description 2
- 102100025947 Insulin-like growth factor II Human genes 0.000 claims description 2
- 206010031264 Osteonecrosis Diseases 0.000 claims description 2
- 102000002808 Pituitary adenylate cyclase-activating polypeptide Human genes 0.000 claims description 2
- 108010004684 Pituitary adenylate cyclase-activating polypeptide Proteins 0.000 claims description 2
- VIRRLEDAYYYTOD-YHEOSNBFSA-N colforsin daropate hydrochloride Chemical compound Cl.O[C@H]([C@@]12C)CCC(C)(C)[C@@H]1[C@H](OC(=O)CCN(C)C)[C@H](OC(C)=O)[C@]1(C)[C@]2(O)C(=O)C[C@](C)(C=C)O1 VIRRLEDAYYYTOD-YHEOSNBFSA-N 0.000 claims description 2
- 210000002919 epithelial cell Anatomy 0.000 claims description 2
- 229940039009 isoproterenol Drugs 0.000 claims description 2
- RZGBUJXSKLDAFE-QYHUGZLJSA-N pacap 1-27 Chemical compound C([C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(N)=O)C1=CN=CN1 RZGBUJXSKLDAFE-QYHUGZLJSA-N 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 230000033228 biological regulation Effects 0.000 claims 1
- 239000002121 nanofiber Substances 0.000 description 55
- 238000010586 diagram Methods 0.000 description 50
- 230000006698 induction Effects 0.000 description 34
- 229920001610 polycaprolactone Polymers 0.000 description 31
- 239000004632 polycaprolactone Substances 0.000 description 31
- 210000000963 osteoblast Anatomy 0.000 description 29
- 230000035800 maturation Effects 0.000 description 27
- 239000002609 medium Substances 0.000 description 23
- 238000010186 staining Methods 0.000 description 22
- 230000033558 biomineral tissue development Effects 0.000 description 21
- 230000008672 reprogramming Effects 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 18
- 230000011164 ossification Effects 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 13
- 238000002054 transplantation Methods 0.000 description 12
- JKYKXTRKURYNGW-UHFFFAOYSA-N 3,4-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(O)=C(O)C(S(O)(=O)=O)=C2 JKYKXTRKURYNGW-UHFFFAOYSA-N 0.000 description 11
- 102000008143 Bone Morphogenetic Protein 2 Human genes 0.000 description 11
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 101150086605 Runx2 gene Proteins 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- HNFMVVHMKGFCMB-UHFFFAOYSA-N 3-[3-[4-(1-aminocyclobutyl)phenyl]-5-phenylimidazo[4,5-b]pyridin-2-yl]pyridin-2-amine Chemical compound NC1=NC=CC=C1C1=NC2=CC=C(C=3C=CC=CC=3)N=C2N1C1=CC=C(C2(N)CCC2)C=C1 HNFMVVHMKGFCMB-UHFFFAOYSA-N 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 239000003102 growth factor Substances 0.000 description 8
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 8
- 230000019491 signal transduction Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 108010085238 Actins Proteins 0.000 description 7
- 102000007469 Actins Human genes 0.000 description 7
- 108010043137 Actomyosin Proteins 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 230000008602 contraction Effects 0.000 description 7
- 230000001605 fetal effect Effects 0.000 description 7
- 108010082117 matrigel Proteins 0.000 description 7
- 210000000130 stem cell Anatomy 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 101001086210 Homo sapiens Osteocalcin Proteins 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 102000055149 human BGLAP Human genes 0.000 description 6
- 238000011532 immunohistochemical staining Methods 0.000 description 6
- 238000012744 immunostaining Methods 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 230000001172 regenerating effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 230000007730 Akt signaling Effects 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- LZAXPYOBKSJSEX-UHFFFAOYSA-N blebbistatin Chemical compound C1CC2(O)C(=O)C3=CC(C)=CC=C3N=C2N1C1=CC=CC=C1 LZAXPYOBKSJSEX-UHFFFAOYSA-N 0.000 description 5
- 210000002805 bone matrix Anatomy 0.000 description 5
- 230000010478 bone regeneration Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000002500 effect on skin Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 238000012174 single-cell RNA sequencing Methods 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 4
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 4
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 4
- 238000011579 SCID mouse model Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000003255 drug test Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 4
- 238000010603 microCT Methods 0.000 description 4
- 210000002997 osteoclast Anatomy 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 210000003625 skull Anatomy 0.000 description 4
- 230000017423 tissue regeneration Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- QAPSNMNOIOSXSQ-YNEHKIRRSA-N 1-[(2r,4s,5r)-4-[tert-butyl(dimethyl)silyl]oxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O[Si](C)(C)C(C)(C)C)C1 QAPSNMNOIOSXSQ-YNEHKIRRSA-N 0.000 description 3
- CDOVNWNANFFLFJ-UHFFFAOYSA-N 4-[6-[4-(1-piperazinyl)phenyl]-3-pyrazolo[1,5-a]pyrimidinyl]quinoline Chemical compound C1CNCCN1C1=CC=C(C2=CN3N=CC(=C3N=C2)C=2C3=CC=CC=C3N=CC=2)C=C1 CDOVNWNANFFLFJ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 208000004434 Calcinosis Diseases 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 3
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108060003393 Granulin Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000958041 Homo sapiens Musculin Proteins 0.000 description 3
- 108060008487 Myosin Proteins 0.000 description 3
- 102000003505 Myosin Human genes 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000003559 RNA-seq method Methods 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 108010044426 integrins Proteins 0.000 description 3
- 102000006495 integrins Human genes 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000009818 osteogenic differentiation Effects 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 description 2
- 102100029630 Actin-related protein 3C Human genes 0.000 description 2
- AQGNHMOJWBZFQQ-UHFFFAOYSA-N CT 99021 Chemical compound CC1=CNC(C=2C(=NC(NCCNC=3N=CC(=CC=3)C#N)=NC=2)C=2C(=CC(Cl)=CC=2)Cl)=N1 AQGNHMOJWBZFQQ-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 101000728747 Homo sapiens Actin-related protein 3C Proteins 0.000 description 2
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 2
- 101000958751 Homo sapiens Myosin-3 Proteins 0.000 description 2
- 101000779418 Homo sapiens RAC-alpha serine/threonine-protein kinase Proteins 0.000 description 2
- 101000856696 Homo sapiens Rho GDP-dissociation inhibitor 2 Proteins 0.000 description 2
- 101001075531 Homo sapiens Rho GTPase-activating protein 27 Proteins 0.000 description 2
- 101000886114 Homo sapiens Rho guanine nucleotide exchange factor 38 Proteins 0.000 description 2
- 101001000119 Homo sapiens Unconventional myosin-If Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100029228 Insulin-like growth factor-binding protein 7 Human genes 0.000 description 2
- 102100025390 Integrin beta-2 Human genes 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102100038317 Myosin-3 Human genes 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 2
- 108010009711 Phalloidine Proteins 0.000 description 2
- 108091008611 Protein Kinase B Proteins 0.000 description 2
- 102100025622 Rho GDP-dissociation inhibitor 2 Human genes 0.000 description 2
- 102100020894 Rho GTPase-activating protein 27 Human genes 0.000 description 2
- 102100039707 Rho guanine nucleotide exchange factor 38 Human genes 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102100035825 Unconventional myosin-If Human genes 0.000 description 2
- 102000013814 Wnt Human genes 0.000 description 2
- 108050003627 Wnt Proteins 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 230000002308 calcification Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 210000004413 cardiac myocyte Anatomy 0.000 description 2
- 230000022159 cartilage development Effects 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- ZWVZORIKUNOTCS-OAQYLSRUSA-N chembl401930 Chemical compound C1([C@H](O)CNC2=C(C(NC=C2)=O)C=2NC=3C=C(C=C(C=3N=2)C)N2CCOCC2)=CC=CC(Cl)=C1 ZWVZORIKUNOTCS-OAQYLSRUSA-N 0.000 description 2
- 239000013000 chemical inhibitor Substances 0.000 description 2
- 230000002648 chondrogenic effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 2
- 235000013376 functional food Nutrition 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 238000007417 hierarchical cluster analysis Methods 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 108010008598 insulin-like growth factor binding protein-related protein 1 Proteins 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 239000007927 intramuscular injection Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 210000001178 neural stem cell Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000017111 nuclear migration Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000278 osteoconductive effect Effects 0.000 description 2
- 230000004819 osteoinduction Effects 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 239000003590 rho kinase inhibitor Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 108091006108 transcriptional coactivators Proteins 0.000 description 2
- 229960003741 tranylcypromine Drugs 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- 230000029663 wound healing Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- 102100037663 40S ribosomal protein S8 Human genes 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100024155 Cadherin-11 Human genes 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 101100477839 Drosophila melanogaster Smurf gene Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 101150096607 Fosl2 gene Proteins 0.000 description 1
- 102000001267 GSK3 Human genes 0.000 description 1
- 108060006662 GSK3 Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 101001097439 Homo sapiens 40S ribosomal protein S8 Proteins 0.000 description 1
- 101000762236 Homo sapiens Cadherin-11 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 101000978541 Homo sapiens Noelin-2 Proteins 0.000 description 1
- 101000690268 Homo sapiens Proline-rich AKT1 substrate 1 Proteins 0.000 description 1
- 101001028353 Homo sapiens Protein KIAA0100 Proteins 0.000 description 1
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 1
- 101000598051 Homo sapiens Transmembrane protein 119 Proteins 0.000 description 1
- 101000798130 Homo sapiens Tumor necrosis factor receptor superfamily member 11B Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 102000005640 Myosin Type II Human genes 0.000 description 1
- 108010045128 Myosin Type II Proteins 0.000 description 1
- 238000011789 NOD SCID mouse Methods 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 102100023729 Noelin-2 Human genes 0.000 description 1
- 102100034404 Nuclear factor of activated T-cells, cytoplasmic 1 Human genes 0.000 description 1
- 101710151542 Nuclear factor of activated T-cells, cytoplasmic 1 Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004792 Prolene Substances 0.000 description 1
- 102100024091 Proline-rich AKT1 substrate 1 Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- 108010043267 Sp7 Transcription Factor Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 1
- 102100032317 Transcription factor Sp7 Human genes 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 102000056172 Transforming growth factor beta-3 Human genes 0.000 description 1
- 108090000097 Transforming growth factor beta-3 Proteins 0.000 description 1
- 102100037029 Transmembrane protein 119 Human genes 0.000 description 1
- 102100032236 Tumor necrosis factor receptor superfamily member 11B Human genes 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 230000004156 Wnt signaling pathway Effects 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 230000002293 adipogenic effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012122 aqueous mounting media Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- KXDAEFPNCMNJSK-UHFFFAOYSA-N benzene carboxamide Natural products NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 1
- DHCLVCXQIBBOPH-UHFFFAOYSA-N beta-glycerol phosphate Natural products OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 1
- GHRQXJHBXKYCLZ-UHFFFAOYSA-L beta-glycerolphosphate Chemical compound [Na+].[Na+].CC(CO)OOP([O-])([O-])=O GHRQXJHBXKYCLZ-UHFFFAOYSA-L 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 230000014461 bone development Effects 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 229940112869 bone morphogenetic protein Drugs 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 230000008619 cell matrix interaction Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008668 cellular reprogramming Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- NEUSVAOJNUQRTM-UHFFFAOYSA-N cetylpyridinium Chemical compound CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 NEUSVAOJNUQRTM-UHFFFAOYSA-N 0.000 description 1
- 229960004830 cetylpyridinium Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000002247 constant time method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 229940126513 cyclase activator Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000010217 densitometric analysis Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 206010013663 drug dependence Diseases 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000046949 human MSC Human genes 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000004132 lipogenesis Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 230000001785 maturational effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- NFVJNJQRWPQVOA-UHFFFAOYSA-N n-[2-chloro-5-(trifluoromethyl)phenyl]-2-[3-(4-ethyl-5-ethylsulfanyl-1,2,4-triazol-3-yl)piperidin-1-yl]acetamide Chemical compound CCN1C(SCC)=NN=C1C1CN(CC(=O)NC=2C(=CC=C(C=2)C(F)(F)F)Cl)CCC1 NFVJNJQRWPQVOA-UHFFFAOYSA-N 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000007959 normoxia Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000004072 osteoblast differentiation Effects 0.000 description 1
- 230000001582 osteoblastic effect Effects 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 210000003455 parietal bone Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000020347 spindle assembly Effects 0.000 description 1
- 230000024477 spindle organization Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000007838 tissue remodeling Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 230000032895 transmembrane transport Effects 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/32—Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
Definitions
- the present invention relates to chemically induced osteogenic cells, a composition for preventing or treating bone diseases containing the osteogenic cells, and a scaffold for bone transplantation with a PCL-based nanofiber structure.
- Bone repair following injury or disease requires bone regenerative factors such as osteogenic molecules and progenitor/stem cells.
- Osteogenic progenitor cells include bone marrow-derived mesenchymal stem cells (MSCs), which are mainly recruited to the site of injury. These cells have an innate regenerative capacity and secrete osteoinductive molecules such as growth factors and hormones to generate bone extracellular matrix (ECM) and promote matrix mineralization.
- MSCs bone marrow-derived mesenchymal stem cells
- ECM extracellular matrix
- bone regeneration may be difficult due to severe inflammation and damaged vasculature.
- MSCs aspirated from patients are a promising source of osteogenic progenitor cells that play excellent roles in osteogenic differentiation, immunomodulation, and angiogenesis activation.
- MSCs for bone treatment has limitations such as tissue morbidity at the cell collection site and limited number of cells. To solve these problems, improvements in cell separation technology and cell reprogramming are needed.
- fibroblasts reprogrammed from widely available tissues are promising candidates for obtaining large quantities of osteogenic progenitor cells.
- the use of fibroblasts in cell reprogramming allows fibroblasts to acquire pluripotency through forced expression of transcription factors (becoming induced pluripotent stem cells (iPSCs)) and to further differentiate into a variety of lineage-specific cells, including osteoblasts. It started with the technological discovery that it was possible.
- fibroblasts can also be directly converted into specific target cell types, such as cardiomyocytes, neurons or neural stem cells, chondrocytes, hepatocytes, hematopoietic cells, etc., without going through the pluripotency stage, by introducing a series of transcription factors.
- Small molecule compounds approved for clinical use have been used to induce the formation of a variety of cell types, such as iPSCs, neurons, neural stem cells, hepatocytes, cardiomyocytes, and myogenic stem cells.
- Osteoblasts were derived from mouse and human fibroblasts using viral vectors. However, due to safety concerns regarding the use of viral vectors, recently, chemicals such as TGF- ⁇ receptor and vitamin D3 inhibitors have been used, or the DNA methylation inhibitor 5-aza-2'-deoxycytidine has been used to treat bone morphogenetic proteins. ; BMP) activation or a virus-free medium to generate osteoblasts, such as using the protein insulin-like growth factor binding protein 7 (IGFBP7) combined with osteoblast conditioned medium. approach was used. Osteoblasts generated by this method express an osteoblastic phenotype, mineralize in vitro and promote bone formation in vivo.
- IGFBP7 protein insulin-like growth factor binding protein 7
- tissue engineering for the purpose of replacing and regenerating lost body tissue has been developed.
- Tissue engineering is a fusion of life science, engineering, and medicine to understand the correlation between the structure and function of biological tissues and, based on this, to replace or regenerate damaged tissues or organs with normal tissues. The purpose is to maintain, improve or restore body functions through tissue.
- bone tissue engineering is to induce bone formation and develop actual bone tissue by transplanting engineered cultured osteogenic cells to areas where bone is needed.
- osteogenic cells For such tissue engineering, osteogenic cells, a scaffold on which these cells can attach and survive, and growth factors that promote induced differentiation for bone regeneration are required. If each component affects at the same time and maintains the appropriate time and environment, bone tissue can be formed.
- osteoconductive materials such as scaffolds are important for osteogenic cells to live and form bone.
- the osteoconductive materials must be similar to the mineralization stage of bone, be biocompatible, and have surface activity and physical support that are closely linked to the surrounding bone. will be provided.
- These bone conductive materials are diverse, including ceramics, collagen, and biodegradable polymers.
- the scaffold After the scaffold is implanted in a subject, it induces the engraftment of cells necessary for tissue regeneration and initiates the formation of new tissue. It disappears over time and the newly formed tissue must fill the space. Accordingly, the scaffold is preferably biodegradable, does not require surgical removal, does not cause immune rejection, inflammatory response, or long-term fibrous encapsulation, does not undergo shrinkage of the graft volume, and is free from serious complications like prosthetic implants. do.
- the scaffold in order to efficiently induce tissue remodeling while naturally disappearing after serving as a physical support for an appropriate period of time, the scaffold must have a certain level of mechanical strength and elasticity along with biodegradability.
- the most suitable natural or synthetic polymer and Selecting the most appropriate structure is very important.
- the ciOG platform can be an effective model of bone disease for testing candidate drugs using patient-derived fibroblasts, and fabricated a scaffold for bone transplantation using the osteogenic cells and PCL-based nanofiber structure to achieve tissue regeneration.
- the present invention was completed by confirming that it provides improved physical properties while maintaining the original functions such as wound healing and providing in vivo binding force.
- the purpose of the present invention is to provide a medium composition for direct differentiation of osteogenic cells that induces osteogenic cells from somatic cells, comprising a TGF ⁇ receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
- Another object of the present invention is to provide a direct differentiation method for inducing osteogenic cells from somatic cells by culturing them in a medium containing a TGF ⁇ receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
- Another object of the present invention is to provide a pharmaceutical composition for preventing or treating bone diseases containing osteogenic cells produced by the above method as an active ingredient.
- Another object of the present invention is to provide a food composition for preventing or improving bone disease containing osteogenic cells produced by the above method as an active ingredient.
- Another object of the present invention is to use osteogenic cells derived from somatic cells and PCL-based nanofiber structure for bone transplantation by culturing them in a medium containing a TGF ß receptor inhibitor, cAMP signaling activator, and epithelial Na + channel inhibitor as active ingredients. It provides a scaffold.
- the present invention provides a medium composition for direct differentiation of osteogenic cells that induces osteogenic cells from somatic cells, comprising a TGF ⁇ receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
- the TGF ⁇ receptor inhibitor of the present invention is RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), SB431542 (4-[4-(1) ,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide), an inhibitor of TGF- ⁇ RI, may be selected from the group consisting of ALK4 and ALK7, preferably may be RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), but is not limited thereto.
- the cAMP signaling activator of the present invention may be selected from the group consisting of Forskolin, isoproterenol, isopreterenol, NKH 477, isoprotereno (Chemical based), PACAP 1-27, and PACAP 1-38 (peptide based). Not limited.
- the epithelial Na + channel inhibitor of the present invention may be Phenamil.
- the type of somatic cell of the present invention is not particularly limited, and any somatic cell can be used.
- the cells may be cells constituting an adult with limited differentiation and self-renewal abilities.
- the somatic cells may be somatic cells constituting the skin, hair, blood, etc. of an individual.
- the somatic cells are fibroblasts, and in the present invention, fibroblasts may include all fibroblasts derived from animals such as humans, mice, horses, sheep, pigs, goats, camels, dogs, and rabbits.
- Osteogenic cells of the present invention can be induced under conditions in which FBS (fetal bovine serum) is not added.
- FBS fetal bovine serum
- the osteogenic gene may be one or more selected from the group consisting of RUNX2 (Runt-related transcription factor 2), BSP (bone sialoprotein), ALP (alkaline phosphatase), and OCN (osteocalcin), but is not limited thereto.
- Osteogenic cells of the present invention can exhibit nuclear translocation of RUNX2.
- the nuclear intensity of RUNX2 and the ratio of nuclear translocation cells in the osteogenic cells were higher than those in fibroblasts.
- BMP signaling genes may be upregulated in the osteogenic cells of the present invention. Upregulation of the BMP signaling gene means that the BMP agonist gene is activated and the BMP antagonist gene is suppressed and regulated.
- the BMP agonist gene may be BMP1-11 or ID1, and the BMP antagonist gene may be GREM1 or GREM2, but is not limited thereto.
- IGF signaling genes may be upregulated in the osteogenic cells.
- the IGF signaling gene may be IGF1, IGF2, IGF1R, IGF2R, or IGFBP2-7, but is not limited thereto.
- the present invention provides a direct differentiation method for inducing osteogenic cells from somatic cells by culturing them in a medium containing a TGF ⁇ receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
- culture may be performed for 4 to 12 days, preferably 5 to 10 days, but is not limited thereto.
- the somatic cells may be, but are not limited to, fibroblasts.
- the present invention provides a pharmaceutical composition for preventing or treating bone diseases containing osteogenic cells prepared by the above method as an active ingredient.
- the bone disease of the present invention may be one or more selected from the group consisting of fracture, osteoporosis, rheumatoid arthritis, periodontitis, Paget's disease, osteomalacia, osteopenia, bone atrophy, osteoarthritis, osteogenesis imperfecta, Proteus syndrome, and avascular femoral necrosis. It is not limited to this.
- Prevention in the present invention refers to all actions that suppress or delay bone disease.
- Treatment of the present invention means suppressing the occurrence or recurrence of a disease, alleviating symptoms, reducing direct or indirect pathological consequences of the disease, reducing the rate of disease progression, improving, alleviating, or improving the prognosis of the disease state.
- the content of the composition is not greatly limited depending on the purpose or aspect of use, for example, 0.01 to 99% by weight, preferably 0.5 to 50% by weight, more preferably 1 to 30% by weight, based on the total weight of the composition. It may be %.
- the pharmaceutical composition according to the present invention may further include additives such as pharmaceutically acceptable carriers, excipients, or diluents in addition to the active ingredients.
- the pharmaceutically acceptable carrier is commonly used in preparation and includes, but is limited to, saline solution, sterile water, Ringer's solution, buffered saline solution, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposome, etc. If necessary, other common additives such as antioxidants and buffers may be added. In addition, diluents, dispersants, surfactants, binders, lubricants, etc. can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets.
- the pharmaceutical composition of the present invention is not particularly limited in formulation, but can be formulated as an injection, inhalation agent, topical skin agent, or oral ingestion agent.
- the pharmaceutical composition of the present invention may be formulated with a suitable parenteral carrier according to methods known in the art.
- Preparations for parenteral administration may include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories.
- Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate.
- the pharmaceutical composition of the present invention can be administered orally or parenterally (e.g., intravenously, subcutaneously, through the skin, nasal cavity, respiratory tract, intramuscular injection, or intrathoracic injection) according to the desired method.
- the dosage varies depending on the patient's condition and weight, degree of disease, drug type, administration route and time, but can be appropriately selected by a person skilled in the art.
- composition according to the present invention is administered in a pharmaceutically effective amount.
- a pharmaceutically effective amount refers to an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type, severity, drug activity, and drug dependence of the patient's disease. It can be determined based on factors including sensitivity, time of administration, route of administration and excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the medical field.
- the composition according to the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
- the present invention provides a food composition for preventing or improving bone disease containing osteogenic cells produced by the above method as an active ingredient.
- Improvement in the present invention means any action that results in at least a reduction in the severity of the parameters associated with the condition being treated, such as symptoms.
- the food composition of the present invention may include a health functional food composition.
- the active ingredients can be added directly to food or used together with other foods or food ingredients, and can be used appropriately according to conventional methods.
- the mixing amount of the active ingredient can be appropriately determined depending on the purpose of use (prevention or improvement).
- the composition of the present invention is added in an amount of 15% by weight or less, preferably 10% by weight or less, based on the raw materials.
- the amount may be below the above range.
- the present invention provides a method for preventing or treating bone disease, comprising treating damaged hard tissue of a subject other than humans with a composition containing osteogenic cells produced by the above method as an active ingredient.
- a subject of the present invention refers to a subject in need of treatment of a disease to which the composition of the present invention can be administered, and more specifically, a human or non-human primate, mouse, dog, cat, horse, and mammals such as cows, and may be mammals other than humans.
- Bone diseases that can be prevented or treated by the composition may be caused by an imbalance in the activity of osteoblasts and osteoclasts. Because bone is a living tissue, old bone is constantly destroyed and goes through a remodeling process to create new bone. During this process, osteoclasts destroy old and unnecessary bone tissue to release calcium into the bloodstream to help maintain body functions, and osteoblasts play a role in regenerating destroyed bones. This process continues 24 hours a day, and approximately 10 to 30% of an adult's bones are rebuilt in this way each year. Therefore, the balance between osteoclasts and osteoblasts is very important, and this balance is regulated by various hormones and other body chemical components.
- the bone disease may be one or more selected from the group consisting of fracture, osteoporosis, rheumatoid arthritis, periodontitis, Paget's disease, osteomalacia, osteopenia, bone atrophy, osteoarthritis, osteogenesis imperfecta, Proteus syndrome, and avascular femoral osteonecrosis, but is limited thereto. It doesn't work.
- the present invention provides a scaffold for bone transplantation made of osteogenic cells derived from somatic cells and a PCL-based nanofiber structure by culturing in a medium containing a TGF ß receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
- PCL (polycaprolactone) of the present invention is a biodegradable polymer and is a useful fibrous matrix due to its relatively low toxicity, controllable degradability, and ease of fabrication into engineering scaffolds due to its porous form.
- Rho signaling genes In the PCL nanofibers of the present invention, Rho signaling genes, actin formation genes, myosin-related genes, and integrin-related genes can be upregulated.
- the Rho signaling gene may be one or more selected from the group consisting of ARHGDIB, CIT, ARHGAP27, and ARHGEF38, but is not limited thereto.
- the actin-forming gene may be ACTR3C
- the myosin-related gene may be MYO1F or MYH3
- the integrin-related gene may be ITGB2, but are not limited thereto.
- the PCL nanofiber topology of the present invention increases the induction of actomyosin contraction, and the actomyosin contraction increases RUNX2 and TAZ nuclear migration, and the RUNX2 and TAZ complex can increase reprogramming and maturation of osteogenic cells.
- the mechanism by which nanofibers accelerate ciOG reprogramming is as shown in FIG. 6J. That is, i) the nanofiber topology induces more actomyosin contraction due to its unique and longer structure, ii) actomyosin contraction causes more RUNX2 and TAZ nuclear translocation, and iii) the RUNX2/TAZ complex leads to ciOG reprogramming. It was confirmed that it improves efficiency and further maturation.
- the scaffold for bone transplantation containing osteogenic cells and PCL nanofibers of the present invention can increase bone induction in vivo .
- the scaffold of the present invention is an artificial scaffold or cell carrier, and is one of the important basic elements in the field of tissue regeneration engineering. It may be a structure that serves to provide an environment suitable for cell adhesion, differentiation, and proliferation and differentiation of cells moving from the tissue periphery.
- the culture of the present invention can be performed for 5 to 30 days, preferably 7 to 28 days, but is not limited thereto.
- the present invention directly induces osteogenic cells from somatic cells containing chemicals, that is, TGF- ⁇ receptor inhibitor (Repsox), cAMP signaling activator (Forskolin), and epithelial cell Na + channel inhibitor (Phenamil) as active ingredients.
- a differentiation medium composition and a method for direct differentiation of osteogenic cells are provided, and it is confirmed that a composition containing osteogenic cells produced by the above method is effective in treating or preventing osteogenesis imperfecta and Proteus syndrome, which are representative bone diseases, It can be usefully used as a composition for preventing or treating bone diseases, and a scaffold for bone transplantation with a PCL-based nanofiber structure can provide excellent bone tissue regeneration, bone induction, wound healing, and in vivo cohesion.
- Figure 1 is a diagram showing the chemical induction of fetal-derived human fibroblasts into osteogenic cells and maturation into osteoblasts
- Figure 1a shows the chemical induction of fetal-derived human dermal fibroblasts (fHDF) into osteogenic cells (ciOG).
- Figure 1b shows the culture timetable and conditions for 7 after treatment with RepSox (R), CHIR99021 (C), forskolin (F), and tranylcypromine (T) individually or in combination with a total of 16 chemical sets.
- Figure 1c shows the expression level of RUNX2 on day 7 using RF but replacing the protein BMP2 with other osteogenic chemicals individually or in combination
- Figure 1d shows the expression level of RUNX2 on day 7 during chemical induction.
- Figure 1e is a schematic diagram showing the optimized chemical combination and culture conditions used to produce ciOG
- Figure 1f shows the expression of osteogenic genes in ciOG at day 7 under optimized culture conditions.
- Figure 1g is a diagram showing an immunostaining image showing the RUNX2 signal in cells
- Figure 1h is a diagram showing that induction conditions inhibit cell proliferation in cell numbers on day 7,
- Figure 1i shows the culture schedule and conditions.
- Figure 1j is a diagram showing an image of mature ciOG stained with ALP on day 14
- Figure 1k is a diagram showing an image of mature ciOG stained with ARS.
- Figure 2 is a diagram showing the production of ciOG from adult-derived human fibroblasts
- Figure 2a is a schematic diagram showing culture schedule and conditions
- Figure 2b is an optical image showing changes in cell morphology during chemical induction for up to 7 days
- Figure 2c is A diagram showing the activation of the RUNX2 gene by chemical induction for 7 days
- Figure 2D is a diagram showing an immunostaining image of RUNX2 on day 7
- Figure 2E is a diagram showing the expression of osteogenic genes on day 7
- Figure 2F is a diagram showing Western blot analysis of RUNX2 and OCN in cells that were induced (ciOG) for 7 days and then matured (ciOG(M7p))
- Figure 2g is a diagram showing OCN immunostaining images during 7 days of maturation
- Figure 2h is a diagram showing ALP and ARS staining images of ciOG (M7p and M14p, respectively)
- Figures 2i and 2j are images from different
- Figure 3 is a diagram showing bulk RNA and single cell RNA sequencing to confirm ciOG characteristics during reprogramming
- Figure 3a is a global sequence of cell samples (aHDF, ciOG, ciOG (M7p) and human osteoblast (hOB)).
- Figure 3b is a diagram showing expression heat maps of fibroblast, osteogenesis, osteoblast/cell, and anti-osteogenesis-specific genes in the global transcriptome profile
- Figure 3c is a diagram showing the expression of ciOG
- Figure 3D is a diagram showing single cell RNA sequencing
- Figure 3D is a diagram showing the distribution of cells in each cluster of representative markers of cell identification (ID) related to metabolism (Jun), osteogenesis (ALP), and mesenchyme (VIM).
- ID cell identification
- Jun osteogenesis
- ALP mesenchyme
- Figure 3e shows that only active cells were taken and ALP(+) and VIM(High+) ( ⁇ 29%) were confirmed to be osteogenic, while ALP(-) and VIM(Low+)( ⁇ 13%) were confirmed to be fibroblasts. It's a degree.
- Figure 4 is a diagram showing that the production of ciOG depends on BMP signals
- Figure 4a compares the global transcriptome (24,426 genes) of ciOG and adult human dermal fibroblasts (aHDF), showing that ciOG is differentially expressed by more than 2-fold.
- It is a diagram showing 1,089 genes
- Figure 4b is a diagram showing genes setting expression related to BMP and IGF signaling
- Figure 4c is a diagram showing chemical inhibitors of BMP and IGF signaling (LDN-193189 and BMS-536924, respectively). is a diagram showing the use across various capacities with RFP during ciOG creation.
- Figure 5 is a diagram showing that ciOG implanted in vivo promotes bone repair and ectopic mineralization
- Figure 5A is a schematic diagram showing ciOG implantation into critical-sized bone defects in immunosuppressed NOD/SCID mice
- Figure 5B is a diagram showing 12 A diagram showing micro-CT analysis of a tissue sample at week 5
- Figure 5C is a diagram showing H&E and MT staining images showing new bone formation
- Figure 5D is a diagram showing an immunohistochemical staining image for human OCN
- Figure 5E is a schematic diagram showing transplantation of mature ciOG (M7p) into subcutaneous tissue to test ectopic mineralization
- Figure 5f is a diagram showing Micro-CT images and quantitative analysis results
- Figure 5g is a diagram showing H&E and MT staining of bone and It showed the same mineralized tissue ('B' area), and immunohistochemical staining for human OCN confirmed that it showed high OCN+ cells mainly at the front of bone
- Figure 6 is a diagram showing that culture matrix nanotopography regulates the production and osteogenic ability of ciOG
- Figure 6a is a schematic diagram showing induction and maturation of ciOG in a biomaterial matrix
- Figure 6b is a diagram showing ciOG on day 7 of culture.
- Figure 6c shows RUNX2 gene expression
- Figure 6c shows RUNX2 staining of cells
- Figure 6d shows a strong increase in the expression of osteogenic genes (BSP, ALP and OCN) in ciOG when cells were cultured on nanofiber substrates.
- Figure 6e is a diagram showing biomineralization of mature ciOG (M14p) in a nanofiber matrix by ARS staining
- Figure 6f is a diagram showing cell morphology on various matrices analyzed by F-actin staining.
- Figure 6g shows the inhibition test to determine whether actin-related mechanotransduction is involved in ciOG generation in nanofibers
- Figure 6h shows that inhibitor treatment reduces the biomineralization ability of ciOG(M14p) as revealed by ARS staining.
- Figure 6i is a diagram showing the expression of the main mechanotransduction markers (pMLC and TAZ) of aHDF in nanofibers with and without mechanotransduction inhibitors (Blebbistatin and Y-27632), and Figure 6j shows the nanofibers containing ciOG material. This diagram summarizes the mechanisms that accelerate programming.
- Figure 7 is a diagram showing in vivo bone tissue engineering using a PCL nanofiber-ciOG construct
- Figure 7a shows the timeline used for induction and maturation of ciOG in the engineered nanofiber matrix and for repairing critical size defects in the mouse calvarium.
- Schematic diagram showing the bone tissue engineering approach Figure 7b shows a histological image (H&E and MT staining) of a sample 12 weeks after implantation
- Figure 7c shows a high magnification image showing new bone formation
- Figure 7d Immunohistochemical staining of human OCN, a key late-stage bone matrix protein, showed an intense OCN signal in the newly formed matrix, indicating osteoinduction by nanofiber-supported ciOG.
- Figure 8 is a diagram showing the feasibility of the ciOG platform for bone disease modeling and drug testing
- Figure 8A is a schematic diagram showing the use of ciOG produced from patient-derived fibroblasts for bone disease modeling and drug discovery
- Figure 8B is A diagram showing the expression of osteogenic genes (RUXN2, OCN, and BSP) and mineralization of mature cells (ciOG(M28p)) by ciOG
- Figures 8C and 8D are diagrams showing the results of drug testing using the ciOG platform.
- Figure 8e is a diagram confirming the inhibitory role of ARQ092 in AKT signaling confirmed by Western blot analysis.
- fibroblasts All types of fibroblasts [fHDF (foetal human dermal fibroblasts; PH1060F, Genlantis), aHDFs (adult human fibroblasts; PH10605A, Genlantis) (GM00726, Corielle institute for medical research), HGF (human gingival fibroblasts; PCS-201-018, ATCC) and aHDFs derived from patients with Proteus syndrome (GM12260, Corielle) and osteogenesis imperfecta (GM17602, Corielle)] were grown in growth medium [GM: DMEM-HG, 10% FBS (Corning), 1% Penicillin-Streptomycin (Gibco). ), 1% MEM non-essential amino acids solution (Gibco), 2 mM Glutamax (Gibco), and 0.1 mM 2-mercaptoethanol (Gibco)], and the medium was changed every 2-3 days.
- GM DMEM-HG, 10% FBS (Corning), 1% Penicillin-
- iPSC (WiCell) was maintained without a feeder. That is, DMEM/F-12 (Invitrogen) was mixed with Matrigel (reduced growth factor; corning) at a ratio of 11:1 on ice, applied to a 35 mm dish, and incubated at room temperature for 1 hour. After washing twice with PBS, iPSCs were seeded and cultured.
- DMEM/F-12 Invitrogen
- Matrigel reduced growth factor; corning
- hMSC human mesenchymal stem cells; PCS-500-012, ATCC
- hOB human osteoblasts; C-12720, PromoCell
- MSC basal medium ATCC®PCS-500-030TM
- HDFs were seeded on day -1 in 24-well plates at a density of 60,000 cells/well and cultured in GM.
- the medium was incubated with the four chemicals (R, F, C, T) individually or in different combinations in the presence of BMP2 on days 0, 2, and 4.
- Osteogenic medium containing a low concentration of FBS (DMEM-HG, 2% FBS) , 1% P/S, 50 ⁇ g/ml ascorbic acid, 10 mM ⁇ -glycerolphosphate, and 10 nM dexamethasone).
- RUNX2 gene expression was assessed by qRT-PCR, and the RF combination showing the highest level was selected.
- various small molecules known as osteogenic activators were evaluated to replace BMP2 by determining RUNX2 gene levels in the presence of RF and BMP2.
- Four chemical (P, Sim, FK, CSA) treatment groups expressed higher RUNX2 gene levels than BMP2, and different combinations of these were RF tested in the absence of BMP2.
- the RFP combination was selected, and the full names and working concentrations of the chemicals used are listed in Table 1.
- ciOG was matured in conventional osteogenic medium (with 10% FBS) with or without 10 ⁇ M Phenamil. The medium was changed every 3 days.
- cultured cells at each time point were washed with PBS and fixed with 4% PFA for 10 minutes at room temperature.
- the fixed cells were washed with deionized water and then stained with 40 mM Alizarin red S (A5533, Sigma Aldrich) solution at pH 4.2 for 30 minutes. Afterwards, the samples were washed three times with deionized water and stained images were obtained using an Epson Perfection V300 photo scanner.
- FAST BCIP/NBT B5655, Sigma
- 10 ml deionized water was applied to fixed cells and incubated at 37°C for 1 hour. Stained images were obtained using a fluorescence microscope (IX71, Olympus Australia, Mt. Waverley, Australia).
- CFU assay Colony forming unit assay
- the medium was replaced with chondrogenic medium and renewed every 3 days. After 14 days, the 2D monolayer and micromass pellet were washed with PBS, fixed with 4% PFA for 10 minutes, and then washed with DIW. A 1% alcian blue solution prepared in 3% acetic acid at pH 2.5 was applied for 30 minutes. After rinsing with DIW, the plate was scanned and images were taken under a microscope.
- aHDF and ciOG were seeded at a density of 2.1 were exposed to 10% StemXVivo Adipogenic Supplement (CCM011, R&D Systems Inc.) and 1% PS), and the medium was changed once every 3 days. On day 14, cells were fixed with 4% PFA for 10 min, rinsed with DIW, and maintained with 60% isopropanol for 5 min.
- Oil Red O working solution was newly prepared by diluting the stock solution (0.3% oil red O in isopropanol) with DIW at a ratio of 3:2 and then filtering. Plates were incubated with Oil Red O working solution for 10 min and rinsed with DW. Images of lipid droplets were taken under a microscope. For quantification, the stained plate was desalted by shaking with isopropanol, and then the supernatant was measured for absorbance at 500 nm.
- ICC was performed 7 days after treatment of Y-27632 and Blebbistatin in ciOG on nanofibers, respectively, when the medium was changed (every 2-3 days).
- the primary antibody was removed, washed three times with PBS, and secondary antibody [Fluorescein (FITC) AffiniPure Donkey Anti-Mouse IgG (H+L) (715-095-150, Jackson ImmunoResearch Laboratories) or Anti-Rabbit IgG was added. (H+L) (711-095-152, Jackson)] was applied, washed with PBS, and incubated at room temperature for 1 hour.
- FITC Fluorescein AffiniPure Donkey Anti-Mouse IgG
- H+L 715-095-150, Jackson ImmunoResearch Laboratories
- Anti-Rabbit IgG was added.
- H+L 711-095-152, Jackson
- nuclei and actin filaments were visualized with 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI, D1306, ThermoFisher Scientific) and Alexa FluorTM 546 Phalloidin (A22283, Invitrogen), respectively. Images were obtained by digital microscopy (CLS-01-00026, Logos Biosystems, Inc., Gyeonggi-do, Korea) or fluorescence microscopy. Quantification was performed using Image J.
- ARQ 092 (21388, Cayman chemical, Ann Arbor, MI, USA) was treated at a concentration of 125 or 250 nM after medium replacement during induction or post-induction maturation.
- Cells were fixed at day 14 (M7p) for ARS staining and harvested at days 7 (ciOG) and 14 (M7p) for Western blot analysis.
- Total protein concentration of cell lysates was measured by PierceTM BCA Protein Assay Kit (23225, Thermo). 10 ⁇ g of each sample was mixed with 5X SDS loading buffer and denatured at 95°C for 5 minutes. The reduced samples were loaded and run on 10% or 20% SDS-PAGE, separated, and transferred to NC membrane (Bio Rad).
- the membrane was blocked with 5% BSA in TBS-T (blocking buffer) for 1 hour at room temperature, and 1:2000 diluted pan-AKT (#2920, Signaling Technologies), pAKT (S473) (# 4060, Signaling Technologies), pPRAS40 (#2997, Signaling Technologies) diluted 1:1000, RUNX2 (ab-76956) diluted 1:250, OCN (PA5-11849, Invitrogen) diluted 1:2000 and diluted 1:1000.
- the cells were incubated in blocking buffer overnight at 4°C with an antibody specific for beta-actin (SC-47778, Santa Cruz Biotechnology, Santa Cruz, CA).
- the membrane was then rinsed with TBS-T, and then the secondary antibody in TBS-T was applied for 1 hour.
- the secondary antibody mouse-HRP (Santa Cruz Biotech.) was used at a dilution of 1:10,000 and incubated at room temperature for 1 hour.
- protein signals were visualized using SuperSignalTM West Pico PLUS Chemiluminescent Substrate (34579, Thermo Fisher scientific) and captured by the iBright 1500 imaging system (Thermo Fisher Scientific). Densitometric analysis of Western blots was performed using Image J.
- Total mRNA sequencing was commissioned commercially (E-biogen. Inc., Seoul, South Korea). The obtained raw data were analyzed using ExDEGA software (v1.6.7, Ebiogen), and significantly expressed genes with fold change greater than 2 were selected.
- RNA profiling was analyzed from the limited amount of RNA available from matrix cultured cells (i.e. RNA from ciOG and ciOG(M7p) cultured with PCL films and nanofibers). Library construction was performed using the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria), and QuantSeq 3' mRNA-Seq reads were aligned using Bowtie2.
- RNA sequencing was performed with ciOG (5 ⁇ 10 5 /mL), 10x Loupe Browser (10X Genomics, Pleasanton, CA, USA) and ExSCEA (Ebiogen Inc. , Korea) was used to perform clustering analysis with UMAP for data mining and graphic visualization. That is, library construction was performed using 10X Chromium Single Cell 3' Reagent Kits v3.1 (10X Genomics), and samples were sequenced by Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA) according to the protocol. (sequencing) was done.
- mice Male, 8 weeks old were obtained from KOATECH (Daegu, Korea). Animal care and experimental protocols were approved by the Animal Care and Use Committee of Dankook University, Korea (Approval #17-011). Animals were acclimatized for 5–8 days before surgery, and each mouse was housed in a cage in a temperature- and humidity-controlled environment and exposed to a 12-h light/dark cycle with ad libitum access to water and food. General anesthesia was performed by intramuscular injection of a mixture of xylazine (10 mg/kg) and ketamine (80 mg/kg) before transplantation.
- ciOG(M7p) or aHDF were trypsinized and resuspended in growth factor-reduced Matrigel (354230, Corning) at a density of 2 x 10 6 /100 ⁇ l.
- samples with surrounding tissue were collected under CO 2 inhalation euthanasia conditions.
- mouse bone marrow model 1-17.
- the periosteum was sutured with absorbable sutures (4-0 Vicryl®Ethicon, Germany), and the external wound was fixed with non-absorbable sutures (4-0 Prolene, Ethicon, Germany). Animals were monitored daily for possible clinical signs related to infection, inflammation and any adverse events. At 12 weeks after surgery, the animals were euthanized by CO 2 inhalation, and tissue sections of the skull bone surrounding the defect were collected and fixed in 10% neutral buffered formalin for 24 hours at room temperature.
- tissue was dehydrated and embedded in paraffin.
- the paraffin-embedded sample was cut into 5 ⁇ m pieces, deparaffinized with xylene, and then rehydrated.
- PCL nanofibers were almost completely degraded during the xylene process.
- tissue slides were stained with hematoxylin and eosin (H&E) and Masson's trichrome (MT) and visualized under a light microscope.
- H&E hematoxylin and eosin
- MT Masson's trichrome
- fHDF fetal human dermal fibroblasts
- RUNX2 Runt-related transcription factor 2
- hMSCs human mesenchymal stem cells
- osteogenic chemical candidates were selected to chemically replace the protein BMP2 (Table 1). Each of these 18 chemicals was used in combination with R and F to treat fHDF, and RUNX2 expression was measured. Phenamil, simvastatin, FK 506, and cyclosporin A, which have been shown to promote osteogenesis through BMP/Smad and NFATc1/Fra-2 signaling, induced much higher levels of RUNX2 gene expression than BMP2 with R and F ( Figure 1c). These four osteogenic chemicals were then tested individually and in combination with R and F in a total of 15 sets, and phenamil in combination with R and F (RFP) was identified as the most effective treatment.
- RRP phenamil in combination with R and F
- ‘RF’ has been identified as a chemical substitute for SOX2 and OCT4 and consequently enhances stemness in the early stages of reprogramming, whereas ‘P’ downregulates Smurf1, an antagonist of SMAD, thereby activating BMPs, enhancing BMP signaling. Jada. As a result, the SMAD signal, which is an upstream type of BMP signal, is increased.
- this set of three chemicals was selected as an optimized chemical cocktail to induce fHDFs to become osteogenic cells that highly express RUNX2.
- dramatic morphological changes including reduced cell size (a well-known phenomenon in cell reprogramming) and a change in cell shape to cuboids or polygons, a phenomenon observed when fibroblasts differentiate from MSCs to osteoblasts, are observed in optical fibers. was observed as an image ( Figure 1d). After phalloidin and DAPI staining, the cell morphology of ciOG maintained a fibroblast morphology, but actin was less developed (Figure 1g).
- Osteogenic cells were induced from human fetal fibroblasts by treating the fibroblasts with a combination of RepSox, forskolin, and phenamil in osteogenic medium containing 2% FBS under normoxic conditions (Figure 1e).
- ciOG was further analyzed in terms of the expression of other osteogenic genes, including osterix, bone sialoprotein (BSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Significantly greater expression of these genes was observed in ciOG than in uninduced fibroblasts ( Figure 1f).
- RUNX2 + cells were immunostained and its location was analyzed. Nuclear translocation of RUNX2 is an osteogenic function.
- hOB human osteoblast
- hMSC human mesenchymal stem cells
- control fHDF showed very weak ALP expression even in osteogenic culture using phenamil ('fHDF(M14p)'). Therefore, phenmamil appears to promote osteogenic differentiation of ciOG during maturation.
- the initial induction phase for 7 days with RFP in 2% FBS-OM is important to activate fibroblasts to acquire stemness and osteogenic potential, whereas the subsequent maturation phase for 7–28 days with P (without RF) only 10 % FBS-OM is required to obtain osteoblast lineage.
- Continuous induction with RFP for 28 days did not result in ciOG mineralization, suggesting that overinduction of cells may inhibit their maturational conversion into lineage-specific cells.
- Western blot analysis showed a clear band indicating OCN expression in mature cells (ciOG(M7p)) ( Figure 2f).
- Increased OCN expression decreased RUNX2 expression.
- OCN immunostaining showed mostly OCN + cells at day 7 of maturation; However, the fraction of OCN + cells decreased at longer maturation periods (14 days) when mineralization became prominent (Figure 2g). Mature cells (ciOG(14Mp)) secreted significant levels of ALP and minerals (Figure 2h).
- PCA principal component analysis
- RNA sequencing Chromium single-cell RNA-seq, 10x Genomics
- UMAP Uniform Manifold Approximation and Projection
- osteogenic and mesenchymal genes Based on the expression levels of osteogenic and mesenchymal genes (Figure 3D), osteogenic and fibroblasts were distinctly clustered in clusters 1 ( ⁇ 49%) and 2 ( ⁇ 12%), respectively. Both clusters were negative for the hematopoietic stem cell marker CD34, suggesting that the induction conditions adopted (RFP in OM with 2% FBS) may not allow aHDFs to cross the mesenchymal barrier.
- ciOGs did not express the pluripotency marker Oct4, showing that aHDFs were partially converted to ciOGs, resolving the tumorigenicity associated with the presence of Oct4 + pluripotent cells.
- Single cell analysis of ciOG further revealed a set of highly expressed genes in cluster 1 (OLFM2, TMEM119, TNFRSF11B, TGF- ⁇ 1, CDH11, SPARC, COL1A1) involved in osteogenic processes or osteoblast signaling and function.
- ciOG(M7p) is as shown in Figure 1g.
- intermediately mature (not completely calcified) osteoblast-like cells were transplanted into mice.
- micro-CT imaging showed the formation of mineralized tissue in the ciOG(M7p) group: hard tissue was formed in 4 out of 5 ciOG(M7p) transplant samples.
- the samples showed significant bone density, bone volume, surface area, and surface density in contrast to the aHDF graft group where no mineralization was observed (Figure 5f).
- H&E and MT staining revealed bone-like tissue with mineralization ('B' region), while immunohistochemical staining of human OCN showed predominantly in the osteogenic front, i.e. in the area bordering fibrous tissue (collagenous early bone matrix). showed high OCN + cells.
- Titanium milled “Ti” or sandblasted and acid-etched “Ti(SLA)” aligned nanofibers of polycaprolactone (flat film “PCL film” or “PCL nanofibers” with an average diameter of 700 nm) and calcium phosphate
- Ti(SLA) milled “Ti” or sandblasted and acid-etched “Ti(SLA)” aligned nanofibers of polycaprolactone (flat film “PCL film” or “PCL nanofibers” with an average diameter of 700 nm) and calcium phosphate
- Ti-based materials have been widely used as bone implants (dental and orthopedic), and SLA with micro/submicron structure improves roughness, is most widely used in titanium implants with unique hydrophobic properties and excellent osteogenic effects.
- PCL nanofibers have great potential for bone formation due to their collagen-mimicking nanofiber structure.
- the osteoassay plate provided a calcium phosphate microcrystalline support (scaffold) for investigation of osteoclast and osteoblast function.
- the expression pattern of osteogenic-, osteoblast/cell-, and distal stage-specific genes in ciOG (not mature) cultured on nanofibrous substrates was consistent with upregulated osteogenic and osteoblast/osteocyte genes and downregulated distal stage genes.
- the stage genes resembled the expression pattern of mature ciOG (M7p) on planar PCL films, suggesting that the nanofibrous matrix provided a topographic signal for activation of osteogenic maturation.
- nanofiber matrices can provide nanotopographic signals that alter adhesion-dependent mechanotransduction cell signaling during cell reprogramming, and demonstrated the global potential of ciOG cultured on PCL nanofiber substrates and planar PCL films.
- 1,706 genes were differentially expressed more than 4-fold. That is, 836 genes were confirmed to be up-regulated in ciOG, and 870 genes were down-regulated in nanofibers compared to film substrates.
- the top 20 hits from the GO term analysis involved involvement in mechanotransduction, intracellular signal transduction, spindle assembly and organization, calcium ion transmembrane transport, hemophilia cell adhesion, and transmembrane receptor protein tyrosine kinase signaling, all of which depend on cell-matrix interactions. indicated.
- Rho protein signal transduction phosphatidylinositol-3-kinase signaling
- cytosolic calcium ion concentration Genes related to Rho signaling (ARHGDIB, CIT, ARHGAP27, ARHGEF38), actin formation (ACTR3C), myosin (MYO1F, MYH3), and integrin (ITGB2) were upregulated 5- to 24-fold. Because gene sets from different osteogenic pathways, such as BMP, WNT and TGF- ⁇ signaling, were inconsistently regulated, these mechanotransduction signals represent a unique mechanism that may explain the altered cell behavior in ciOG produced on nanofibers. .
- Inhibitors of mechanosensitive molecules such as Y27632 (Rho-kinase inhibitor) and blebbistatin (nonmuscle myosin II inhibitor) were used during the induction of ciOG on nanofiber substrates.
- Y27632 Rho-kinase inhibitor
- blebbistatin nonmuscle myosin II inhibitor
- the mechanism by which nanofibers accelerate ciOG reprogramming is summarized as follows (Figure 6j). i) the nanofiber topology induces more actomyosin contraction due to its unique and longer structure, ii) actomyosin contraction causes more RUNX2 and TAZ nuclear migration, iii) the RUNX2/TAZ complex induces ciOG reprogramming efficiency and Further improved maturation.
- nanofiber-generated ciOG is more effective than Matrigel-generated ciOG in promoting the regeneration of bone defects in vivo.
- ciOG-nanofibers and ciOG-Matrigel structures were implanted into critical-sized calvarium defects of NOD/SCID mice ( Figure 7a).
- Tissue samples were analyzed 12 weeks after surgery.
- H&E and MT staining showed that the ciOG(M7p)-nanofiber group exhibited greater collagenous bone matrix formation and newly calcified bone ( Figures 7b and 7c).
- OI and PS are caused by mutations in the collagen type-1 alpha 1 chain (COL1A1) and AKT serine/threonine kinase 1 (AKT1) genes, respectively, and are characterized by low and overgrowth of connective tissues such as bone.
- PS-derived fibroblasts during the maturation stage were treated with the chemical ARQ092, which inhibits AKT signaling, an important signaling pathway in PS.
- OCN synthesis and mineralization were reduced in an ARQ092-dose dependent manner ( Figures 8C and 8D).
- ARQ092 treatment significantly reduced the phosphorylation of AKT signaling molecules ( Figure 8e), suggesting that ARQ092 inhibits osteogenic differentiation through the AKT signaling pathway.
- ARQ092 was used to treat fibroblasts for 7 days during the induction phase.
- AKT signaling molecules p AKT and p PRAS40
- RUNX2 expression was also confirmed to be decreased.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Dispersion Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Rheumatology (AREA)
- Developmental Biology & Embryology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention provides a medium composition for direct differentiation of osteogenic cells and a method for direct differentiation of osteogenic cells, which induce osteogenic cells from somatic cells, the composition comprising, as active ingredients, chemicals, that is, a TGF-β receptor inhibitor (RepSox), a cAMP signaling activator (Forskolin) and an epithelial Na+ channel inhibitor (Phenamil). It has been identified that a composition comprising osteogenic cells prepared through the method is effective in treating or preventing osteogenesis imperfecta, which is a prototypical bone disease, and Proteus syndrome, and thus can be effectively used as a composition for preventing or treating bone diseases.
Description
본 발명은 케미컬로 유도된 골형성세포와 상기 골형성세포를 포함하는 골 질환 예방 또는 치료용 조성물, 및 PCL 기반 나노섬유 구조의 골 이식용 스캐폴드에 관한 것이다.The present invention relates to chemically induced osteogenic cells, a composition for preventing or treating bone diseases containing the osteogenic cells, and a scaffold for bone transplantation with a PCL-based nanofiber structure.
부상이나 질병에 따른 골 수복에는 골형성 분자 및 전구/줄기세포와 같은 골 재생 인자가 필요하다. 골형성 전구세포에는 주로 손상 부위로 동원되는 골수 유래 중간엽 줄기세포 (mesenchymal stem cells (MSCs))가 있다. 이 세포는 타고난 재생 능력을 가지고 있으며, 성장 인자 및 호르몬과 같은 골유도 분자를 분비하여 골 세포외기질 (extracellular matrix (ECM))을 생성하고 기질 광물화를 촉진시킨다. 그러나 임계 크기를 초과하고 감염을 동반하는 심각한 골 손상의 경우, 심각한 염증 및 손상된 혈관 구조로 인해 골 재생이 어려울 수 있다.Bone repair following injury or disease requires bone regenerative factors such as osteogenic molecules and progenitor/stem cells. Osteogenic progenitor cells include bone marrow-derived mesenchymal stem cells (MSCs), which are mainly recruited to the site of injury. These cells have an innate regenerative capacity and secrete osteoinductive molecules such as growth factors and hormones to generate bone extracellular matrix (ECM) and promote matrix mineralization. However, in cases of severe bone damage that exceeds a critical size and is accompanied by infection, bone regeneration may be difficult due to severe inflammation and damaged vasculature.
이러한 경우, 외인성 골 전구세포의 이식이 골 재생을 개선시킬 수 있다. 환자로부터 흡입된 MSC는 골형성 분화, 면역조절 및 혈관신생 활성화에 우수한 역할을 하는 골형성 전구세포의 유망한 공급원이다. 그러나, 골 치료에 MSC를 사용하는 데에는 세포 채취 부위의 조직 이환율 및 세포의 수가 제한되는 한계점이 존재한다. 이러한 문제점을 해결하기 위해서, 세포 분리 기술 및 세포 재프로그래밍의 개선이 필요하다.In these cases, transplantation of exogenous bone progenitor cells may improve bone regeneration. MSCs aspirated from patients are a promising source of osteogenic progenitor cells that play excellent roles in osteogenic differentiation, immunomodulation, and angiogenesis activation. However, the use of MSCs for bone treatment has limitations such as tissue morbidity at the cell collection site and limited number of cells. To solve these problems, improvements in cell separation technology and cell reprogramming are needed.
널리 이용가능한 조직에서 재프로그래밍된 섬유아세포와 같은 세포는 다량의 골형성 전구세포를 얻기 위해 유망한 후보이다. 세포 재프로그래밍에서 섬유아세포의 사용은 섬유아세포가 전사인자의 강제 발현을 통해 만능을 획득할 수 있고 (유도 만능 줄기세포 (iPSC)가 됨), 골아세포를 비롯한 다양한 계통 특이적 세포로 추가 분화될 수 있다는 획기적인 발견에서 시작되었다. 동시에, 섬유아세포는 일련의 전사인자를 도입함으로써 만능 단계를 거치지 않고, 심근세포, 뉴런 또는 신경줄기세포, 연골세포, 간세포, 조혈세포 등과 같은 특정 표적 세포 유형으로 직접 전환될 수도 있다. 임상 용도로 승인된 소분자 화합물이 iPSC, 뉴런, 신경줄기세포, 간세포, 심근세포 및 근원줄기세포와 같은 다양한 종류의 세포 형성을 유도하는데 사용되었다.Cells such as fibroblasts reprogrammed from widely available tissues are promising candidates for obtaining large quantities of osteogenic progenitor cells. The use of fibroblasts in cell reprogramming allows fibroblasts to acquire pluripotency through forced expression of transcription factors (becoming induced pluripotent stem cells (iPSCs)) and to further differentiate into a variety of lineage-specific cells, including osteoblasts. It started with the groundbreaking discovery that it was possible. At the same time, fibroblasts can also be directly converted into specific target cell types, such as cardiomyocytes, neurons or neural stem cells, chondrocytes, hepatocytes, hematopoietic cells, etc., without going through the pluripotency stage, by introducing a series of transcription factors. Small molecule compounds approved for clinical use have been used to induce the formation of a variety of cell types, such as iPSCs, neurons, neural stem cells, hepatocytes, cardiomyocytes, and myogenic stem cells.
골아세포는 바이러스 벡터를 사용하여 마우스 및 인간 섬유아세포로부터 유도되었다. 그러나, 바이러스 벡터의 사용에 관한 안전문제로 인해 최근에는 TGF-β 수용체, 비타민 D3 억제제와 같은 화학물질을 사용하거나, DNA 메틸화 억제제 5-aza-2'-deoxycytidine을 골형태 형성 단백질 (bone morphogenetic protein; BMP) 활성화와 함께 사용하거나, 조골세포 조건배지와 결합된 단백질 인슐린 유사 성장인자 결합 단백질 7 (insulin-like growth factor binding protein 7; IGFBP7)을 사용하는 것과 같이 조골세포를 생성하기 위해 바이러스가 없는 접근법을 사용하였다. 이러한 방법에 의해 생성된 조골세포는 조골세포 표현형을 발현하고, 시험관 내에서 광물화되며 생체 내에서 골 형성을 촉진시킨다. Osteoblasts were derived from mouse and human fibroblasts using viral vectors. However, due to safety concerns regarding the use of viral vectors, recently, chemicals such as TGF-β receptor and vitamin D3 inhibitors have been used, or the DNA methylation inhibitor 5-aza-2'-deoxycytidine has been used to treat bone morphogenetic proteins. ; BMP) activation or a virus-free medium to generate osteoblasts, such as using the protein insulin-like growth factor binding protein 7 (IGFBP7) combined with osteoblast conditioned medium. approach was used. Osteoblasts generated by this method express an osteoblastic phenotype, mineralize in vitro and promote bone formation in vivo.
최근 생체공학, 재료공학 및 외과적 수술 분야가 크게 발전하면서 소실된 신체 조직의 대체 및 재생을 목적으로 하는 조직공학이 발전을 이루고 있다. 조직공학 (tissue engineering)은 생명과학과 공학, 의학이 융합되어 생체조직의 구조와 기능 사이의 상관관계를 이해하고 이를 기반으로 손상된 조직이나 장기를 정상적인 조직으로 대체하거나 재생시키기 위해 체내에 이식이 가능한 인공조직을 통해 신체 기능을 유지, 향상 또는 복원하는 것을 목적으로 한다.Recently, as the fields of biomedical engineering, materials engineering, and surgery have developed greatly, tissue engineering for the purpose of replacing and regenerating lost body tissue has been developed. Tissue engineering is a fusion of life science, engineering, and medicine to understand the correlation between the structure and function of biological tissues and, based on this, to replace or regenerate damaged tissues or organs with normal tissues. The purpose is to maintain, improve or restore body functions through tissue.
골조직 공학의 목적은 골이 필요한 부위에 공학적으로 배양된 골형성 세포를 이식하여 골형성을 유도하고 실제 골조직을 개발하는데 있다. 이러한 조직공학을 위해서는 골형성 세포와 이 세포가 부착하여 생존할 수 있는 스캐폴드, 뼈 재생을 위한 유도분화를 촉진하는 성장인자가 필요하다. 각각의 성분은 동시에 영향을 주고 적절한 시간과 환경을 유지해주면, 골조직을 형성할 수 있게 된다.The purpose of bone tissue engineering is to induce bone formation and develop actual bone tissue by transplanting engineered cultured osteogenic cells to areas where bone is needed. For such tissue engineering, osteogenic cells, a scaffold on which these cells can attach and survive, and growth factors that promote induced differentiation for bone regeneration are required. If each component affects at the same time and maintains the appropriate time and environment, bone tissue can be formed.
특히, 골형성 세포들이 살아가면서 골을 형성하기 위한 스캐폴드와 같은 골전도 물질이 중요한데 골전도 물질은 골의 무기화 단계와 유사하고 생체 적합성이 있어야 하며 주위 골과 밀접하게 연계되는 표면 활성도와 물리적 지지를 제공하게 된다. 이러한 골전도 물질로는 세라믹, 콜라겐, 생분해성 고분자 등 다양하다.In particular, osteoconductive materials such as scaffolds are important for osteogenic cells to live and form bone. The osteoconductive materials must be similar to the mineralization stage of bone, be biocompatible, and have surface activity and physical support that are closely linked to the surrounding bone. will be provided. These bone conductive materials are diverse, including ceramics, collagen, and biodegradable polymers.
스캐폴드가 대상체에 이식된 후 조직 재생에 필요한 세포의 생착을 유도하고 신생 조직의 형성을 개시하면, 시간이 지남에 따라 소멸되어 새롭게 형성된 조직이 그 공간을 메꾸어야 한다. 이에, 스캐폴드는 외과적 제거가 필요하지 않은 생분해성인 것이 바람직하며, 면역거부, 염증반응 또는 장기적인 섬유성 캡슐화를 유발하지 않으면서 이식편 부피의 수축을 겪지 않고, 보형 이식물처럼 심각한 합병증으로부터 자유로워야 한다.After the scaffold is implanted in a subject, it induces the engraftment of cells necessary for tissue regeneration and initiates the formation of new tissue. It disappears over time and the newly formed tissue must fill the space. Accordingly, the scaffold is preferably biodegradable, does not require surgical removal, does not cause immune rejection, inflammatory response, or long-term fibrous encapsulation, does not undergo shrinkage of the graft volume, and is free from serious complications like prosthetic implants. do.
따라서, 적절한 기간 동안 물리적 지지체 역할을 다한 뒤 자연적으로 사라지면서 효율적으로 조직 재형성을 유도하기 위해 스캐폴드는 생분해성과 함께 일정 수준의 기계적 강도 및 탄성력을 갖추어야 하므로, 이를 위해 가장 적합한 천연 또는 합성 고분자와 가장 적합한 구조를 선정하는 것은 매우 중요하다.Therefore, in order to efficiently induce tissue remodeling while naturally disappearing after serving as a physical support for an appropriate period of time, the scaffold must have a certain level of mechanical strength and elasticity along with biodegradability. For this purpose, the most suitable natural or synthetic polymer and Selecting the most appropriate structure is very important.
이러한 배경 하에, 본 발명자들은 골아세포로 더 분화될 수 있는 골형성세포를 생성하기 위해 섬유아세포를 재프로그래밍하기 위해 바이러스 없는 접근법을 사용하였다. 첫번째 단계에서 섬유아세포를 골형성세포 상태로 활성화하고, 두번째 단계에서 더 분화된 골아세포를 생성하는 유도 및 성숙의 2단계 배양 과정을 도입하였다. 본 발명자들은 각 단계에서 혈청 농도 및 산소 농도와 같은 잠재적인 화학 유도제 및 배양 조건을 스크리닝하여 이 프로세스를 개발하였다. 또한, 골형성 표현형의 발현과 생체 내 골형성 측면에서 화학적으로 유도된 골형성세포 (chemically-induced osteogenic cell; ciOG)를 특성화하였고, 세포의 생체 내 재생 능력을 활용하기 위해 ciOG의 생성을 조절 (modulate)하기 위한 조작된 (engineered) 기질을 사용하였다. 마지막으로, ciOG 플랫폼이 환자 유래 섬유아세포를 이용한 후보약물 시험을 위한 골질환의 효과적인 모델이 될 수 있는지 확인하고, 상기 골형성세포 및 PCL 기반 나노섬유 구조의 골 이식용 스캐폴드를 제조하여 조직 재생, 상처 치유 및 생체 내 결합력 제공 등의 고유 기능을 유지하면서 개선된 물성을 제공한다는 것을 확인함으로써 본 발명을 완성하였다.Against this background, we used a virus-free approach to reprogram fibroblasts to generate osteogenic cells that can further differentiate into osteoblasts. A two-step culture process of induction and maturation was introduced to activate fibroblasts to the osteogenic cell state in the first step and generate more differentiated osteoblasts in the second step. We developed this process by screening potential chemical inducers and culture conditions, such as serum concentration and oxygen concentration, at each step. Additionally, we characterized chemically-induced osteogenic cells (ciOG) in terms of the expression of osteogenic phenotypes and in vivo osteogenesis, and regulated the production of ciOG to take advantage of the cells' in vivo regenerative capacity ( An engineered substrate was used to modulate. Finally, we confirmed whether the ciOG platform can be an effective model of bone disease for testing candidate drugs using patient-derived fibroblasts, and fabricated a scaffold for bone transplantation using the osteogenic cells and PCL-based nanofiber structure to achieve tissue regeneration. , the present invention was completed by confirming that it provides improved physical properties while maintaining the original functions such as wound healing and providing in vivo binding force.
본 발명의 목적은 TGF β 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는, 체세포로부터 골형성세포를 유도하는 골형성세포 직접 분화용 배지 조성물을 제공하는 것이다.The purpose of the present invention is to provide a medium composition for direct differentiation of osteogenic cells that induces osteogenic cells from somatic cells, comprising a TGF β receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
본 발명의 다른 목적은 TGF β 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는 배지에서 배양하여, 체세포로부터 골형성세포를 유도하는 직접분화 방법을 제공하는 것이다.Another object of the present invention is to provide a direct differentiation method for inducing osteogenic cells from somatic cells by culturing them in a medium containing a TGF β receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
본 발명의 또 다른 목적은 상기 방법으로 생성된 골형성세포를 유효성분으로 포함하는 골질환 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for preventing or treating bone diseases containing osteogenic cells produced by the above method as an active ingredient.
본 발명의 또 다른 목적은 상기 방법으로 생성된 골형성세포를 유효성분으로 포함하는 골질환 예방 또는 개선용 식품 조성물을 제공하는 것이다.Another object of the present invention is to provide a food composition for preventing or improving bone disease containing osteogenic cells produced by the above method as an active ingredient.
본 발명의 또 다른 목적은 TGF ß 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는 배지에서 배양하여, 체세포로부터 유도된 골형성세포 및 PCL 기반 나노섬유 구조의 골 이식용 스캐폴드를 제공하는 것이다.Another object of the present invention is to use osteogenic cells derived from somatic cells and PCL-based nanofiber structure for bone transplantation by culturing them in a medium containing a TGF ß receptor inhibitor, cAMP signaling activator, and epithelial Na + channel inhibitor as active ingredients. It provides a scaffold.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the disclosure of the present invention is complete and to provide a general understanding of the technical field to which the present invention pertains. It is provided to fully inform the skilled person of the scope of the present invention, and the present invention is only defined by the scope of the claims.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다 (comprises)" 및/또는 "포함하는 (comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.The terminology used herein is for describing embodiments and is not intended to limit the invention. As used herein, singular forms also include plural forms, unless specifically stated otherwise in the context. As used in the specification, “comprises” and/or “comprising” does not exclude the presence or addition of one or more other elements in addition to the mentioned elements. Like reference numerals refer to like elements throughout the specification, and “and/or” includes each and every combination of one or more of the referenced elements. Although “first”, “second”, etc. are used to describe various components, these components are of course not limited by these terms. These terms are merely used to distinguish one component from another. Therefore, it goes without saying that the first component mentioned below may also be a second component within the technical spirit of the present invention.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with meanings commonly understood by those skilled in the art to which the present invention pertains. Additionally, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless clearly specifically defined.
본 발명은 TGF β 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는, 체세포로부터 골형성세포를 유도하는 골형성세포 직접 분화용 배지 조성물을 제공한다.The present invention provides a medium composition for direct differentiation of osteogenic cells that induces osteogenic cells from somatic cells, comprising a TGF β receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
본 발명의 TGF β 수용체 억제제는 RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), SB431542 (4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide), TGF-β RI의 억제제, ALK4 및 ALK7로 이루어진 군에서 선택된 것일 수 있으며, 바람직하게는 RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl])일 수 있으나, 이에 제한되지 않는다.The TGF β receptor inhibitor of the present invention is RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), SB431542 (4-[4-(1) ,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide), an inhibitor of TGF-β RI, may be selected from the group consisting of ALK4 and ALK7, preferably may be RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), but is not limited thereto.
본 발명의 cAMP 시그널링 액티베이터는 포스콜린(Forskolin), isoproterenol, isopreterenol, NKH 477, isoprotereno(Chemical based), PACAP 1-27, 및 PACAP 1-38(peptide based)로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되지 않는다.The cAMP signaling activator of the present invention may be selected from the group consisting of Forskolin, isoproterenol, isopreterenol, NKH 477, isoprotereno (Chemical based), PACAP 1-27, and PACAP 1-38 (peptide based). Not limited.
본 발명의 상피세포 Na+ 채널 억제제는 페나밀 (Phenamil)일 수 있다.The epithelial Na + channel inhibitor of the present invention may be Phenamil.
본 발명의 체세포의 종류는 특별히 제한되지 않으며, 임의의 체세포를 사용할 수 있다. 상기 분화능 및 자기재생능이 제한된 성체를 구성하는 세포일 수 있으며, 구체적으로 상기 체세포는 개체의 피부, 모발, 혈액 등을 구성하는 체세포일 수 있다. 예를 들어, 태아기의 체세포 이외에 성숙한 체세포, 성인의 체세포를 이용해도 된다. 바람직하게는 상기 체세포는 섬유아세포이며, 본 발명에서 섬유아세포는 인간과 마우스, 말, 양, 돼지, 염소, 낙타, 개, 토끼 등의 동물 유래의 모든 섬유아세포를 포함할 수 있다.The type of somatic cell of the present invention is not particularly limited, and any somatic cell can be used. The cells may be cells constituting an adult with limited differentiation and self-renewal abilities. Specifically, the somatic cells may be somatic cells constituting the skin, hair, blood, etc. of an individual. For example, in addition to fetal somatic cells, mature somatic cells or adult somatic cells may be used. Preferably, the somatic cells are fibroblasts, and in the present invention, fibroblasts may include all fibroblasts derived from animals such as humans, mice, horses, sheep, pigs, goats, camels, dogs, and rabbits.
본 발명의 골형성세포는 FBS(fetal bovine serum)가 첨가되지 않는 조건에서 유도될 수 있다.Osteogenic cells of the present invention can be induced under conditions in which FBS (fetal bovine serum) is not added.
본 발명의 구체적인 일 실시예에서, 상기 골형성세포는 유도되지 않은 섬유아세포보다 골형성 유전자의 발현이 현저히 높다는 것을 확인하였다. 상기 골형성 유전자는 RUNX2 (Runt-related transcription factor 2), BSP (bone sialoprotein), ALP (alkaline phosphatase) 및 OCN (osteocalcin)으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.In a specific example of the present invention, it was confirmed that the osteogenic cells had significantly higher expression of osteogenic genes than non-induced fibroblasts. The osteogenic gene may be one or more selected from the group consisting of RUNX2 (Runt-related transcription factor 2), BSP (bone sialoprotein), ALP (alkaline phosphatase), and OCN (osteocalcin), but is not limited thereto.
본 발명의 골형성세포는 RUNX2의 핵 전위를 나타낼 수 있다. 본 발명의 구체적인 일 실시예에서, 상기 골형성세포의 RUNX2의 핵 강도 및 핵 전위 세포의 비율은 섬유아세포보다 더 높다는 것을 확인하였다.Osteogenic cells of the present invention can exhibit nuclear translocation of RUNX2. In a specific example of the present invention, it was confirmed that the nuclear intensity of RUNX2 and the ratio of nuclear translocation cells in the osteogenic cells were higher than those in fibroblasts.
본 발명의 골형성세포에서 BMP 신호전달 유전자가 상향 조절될 수 있다. 상기 BMP 신호전달 유전자가 상향 조절되는 것은 BMP 효능제 유전자가 활성화되고, BMP 길항제 유전자가 억제 조절되는 것을 의미한다. 상기 BMP 효능제 유전자는 BMP1-11 또는 ID1이고, 상기 BMP 길항제 유전자는 GREM1 또는 GREM2일 수 있으나, 이에 제한되지 않는다.BMP signaling genes may be upregulated in the osteogenic cells of the present invention. Upregulation of the BMP signaling gene means that the BMP agonist gene is activated and the BMP antagonist gene is suppressed and regulated. The BMP agonist gene may be BMP1-11 or ID1, and the BMP antagonist gene may be GREM1 or GREM2, but is not limited thereto.
상기 골형성세포에서 IGF 신호전달 유전자가 상향 조절될 수 있다. 상기 IGF 신호전달 유전자는 IGF1, IGF2, IGF1R, IGF2R 또는 IGFBP2-7일 수 있으나, 이에 제한되지 않는다.IGF signaling genes may be upregulated in the osteogenic cells. The IGF signaling gene may be IGF1, IGF2, IGF1R, IGF2R, or IGFBP2-7, but is not limited thereto.
또한, 본 발명은 TGF β 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는 배지에서 배양하여, 체세포로부터 골형성세포를 유도하는 직접분화 방법을 제공한다.Additionally, the present invention provides a direct differentiation method for inducing osteogenic cells from somatic cells by culturing them in a medium containing a TGF β receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
본 발명에서, 배양은 4 내지 12일 동안 수행될 수 있으며, 바람직하게는 5 내지 10일일 수 있으나, 이에 제한되지 않는다.In the present invention, culture may be performed for 4 to 12 days, preferably 5 to 10 days, but is not limited thereto.
상기 체세포는 섬유아세포일 수 있으나, 이에 제한되지 않는다.The somatic cells may be, but are not limited to, fibroblasts.
또한, 본 발명은 상기 방법으로 제조된 골형성세포를 유효성분으로 포함하는 골질환 예방 또는 치료용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating bone diseases containing osteogenic cells prepared by the above method as an active ingredient.
본 발명의 골질환은 골절, 골다공증, 류마티스성 관절염, 치주염, 파제트병, 골연화증, 골감소증, 골위축, 골관절염, 골형성부전증, 프로테우스증후군 및 무혈성대퇴골괴사로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.The bone disease of the present invention may be one or more selected from the group consisting of fracture, osteoporosis, rheumatoid arthritis, periodontitis, Paget's disease, osteomalacia, osteopenia, bone atrophy, osteoarthritis, osteogenesis imperfecta, Proteus syndrome, and avascular femoral necrosis. It is not limited to this.
본 발명의 예방은 골질환을 억제시키거나 또는 지연시키는 모든 행위를 의미한다.Prevention in the present invention refers to all actions that suppress or delay bone disease.
본 발명의 치료는 질환의 발생 또는 재발 억제, 증상의 완화, 질병의 직접 또는 간접적인 병리학적 결과의 감소, 질병 진행 속도의 감소, 질병 상태의 개선, 호전, 완화 또는 개선된 예후를 의미한다.Treatment of the present invention means suppressing the occurrence or recurrence of a disease, alleviating symptoms, reducing direct or indirect pathological consequences of the disease, reducing the rate of disease progression, improving, alleviating, or improving the prognosis of the disease state.
본 발명에서 조성물은 사용목적 내지 양상에 따라 함량은 크게 제한되지 않으며, 예를 들면 조성물 총 중량을 기준으로 0.01~99 중량%, 바람직하게는 0.5~50 중량%, 더 바람직하게는 1~30 중량%일 수 있다. 또한, 본 발명에 따른 약학적 조성물은 유효성분 외에 약학적으로 허용가능한 담체, 부형제 또는 희석제와 같은 첨가제를 더 포함할 수 있다.In the present invention, the content of the composition is not greatly limited depending on the purpose or aspect of use, for example, 0.01 to 99% by weight, preferably 0.5 to 50% by weight, more preferably 1 to 30% by weight, based on the total weight of the composition. It may be %. In addition, the pharmaceutical composition according to the present invention may further include additives such as pharmaceutically acceptable carriers, excipients, or diluents in addition to the active ingredients.
상기 약학적으로 허용 가능한 담체는 제제시에 통상적으로 이용되는 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 사이클로덱스트린, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀 등을 포함하지만 이에 한정되지 않으며, 필요에 따라 항산화제, 완충액 등 다른 통상의 첨가제를 더 포함할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립, 또는 정제로 제제화할 수 있다. 본 발명의 약학적 조성물은 제형에 특별한 제한은 없으나 주사제, 흡입제, 피부 외용제, 또는 경구 섭취제 등으로 제제화 할 수 있다.The pharmaceutically acceptable carrier is commonly used in preparation and includes, but is limited to, saline solution, sterile water, Ringer's solution, buffered saline solution, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposome, etc. If necessary, other common additives such as antioxidants and buffers may be added. In addition, diluents, dispersants, surfactants, binders, lubricants, etc. can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets. The pharmaceutical composition of the present invention is not particularly limited in formulation, but can be formulated as an injection, inhalation agent, topical skin agent, or oral ingestion agent.
비경구적으로 투여하는 경우 본 발명의 약학적 조성물은 적합한 비경구용 담체와 함께 당업계에 공지된 방법에 따라 제형화될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결 건조제제, 좌제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.When administered parenterally, the pharmaceutical composition of the present invention may be formulated with a suitable parenteral carrier according to methods known in the art. Preparations for parenteral administration may include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate.
본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구투여(예를 들어, 정맥 내, 피하, 피부, 비강, 기도, 근육내 주사 또는 흉부내 주사 주입 방식 등에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally (e.g., intravenously, subcutaneously, through the skin, nasal cavity, respiratory tract, intramuscular injection, or intrathoracic injection) according to the desired method. The dosage varies depending on the patient's condition and weight, degree of disease, drug type, administration route and time, but can be appropriately selected by a person skilled in the art.
본 발명에 따른 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서, 약학적으로 유효한 양은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명에 따른 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The composition according to the present invention is administered in a pharmaceutically effective amount. In the present invention, a pharmaceutically effective amount refers to an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type, severity, drug activity, and drug dependence of the patient's disease. It can be determined based on factors including sensitivity, time of administration, route of administration and excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the medical field. The composition according to the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
또한, 본 발명은 상기 방법으로 생성된 골형성세포를 유효성분으로 포함하는 골질환 예방 또는 개선용 식품 조성물을 제공한다.Additionally, the present invention provides a food composition for preventing or improving bone disease containing osteogenic cells produced by the above method as an active ingredient.
본 발명의 개선은 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.Improvement in the present invention means any action that results in at least a reduction in the severity of the parameters associated with the condition being treated, such as symptoms.
본 발명의 식품 조성물은 건강기능성 식품 조성물을 포함할 수 있다.The food composition of the present invention may include a health functional food composition.
본 발명의 건강기능성 식품 조성물에서 유효성분을 식품에 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 혼합량은 그의 사용 목적(예방 또는 개선용)에 따라 적합하게 결정될 수 있다. 일반적으로, 식품 또는 음료의 제조 시에 본 발명의 조성물은 원료에 대하여 15 중량% 이하, 바람직하게는 10 중량% 이하의 양으로 첨가된다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있다.In the health functional food composition of the present invention, the active ingredients can be added directly to food or used together with other foods or food ingredients, and can be used appropriately according to conventional methods. The mixing amount of the active ingredient can be appropriately determined depending on the purpose of use (prevention or improvement). Generally, when producing food or beverages, the composition of the present invention is added in an amount of 15% by weight or less, preferably 10% by weight or less, based on the raw materials. However, in the case of long-term intake for the purpose of health and hygiene or health control, the amount may be below the above range.
또한, 본 발명은 상기 방법으로 생성된 골형성세포를 유효성분으로 포함하는 조성물을 인간을 제외한 대상체의 손상 경조직에 처리하는 단계를 포함하는 골질환 예방 또는 치료방법을 제공한다.Additionally, the present invention provides a method for preventing or treating bone disease, comprising treating damaged hard tissue of a subject other than humans with a composition containing osteogenic cells produced by the above method as an active ingredient.
본 발명의 대상체는 질병의 치료를 필요로 하여 본 발명의 조성물이 투여될 수 있는 대상을 의미하고, 보다 구체적으로는, 인간 또는 비-인간인 영장류, 생쥐(mouse), 개, 고양이, 말, 및 소 등의 포유동물을 의미하며, 인간을 제외한 포유동물일 수 있다.A subject of the present invention refers to a subject in need of treatment of a disease to which the composition of the present invention can be administered, and more specifically, a human or non-human primate, mouse, dog, cat, horse, and mammals such as cows, and may be mammals other than humans.
상기 조성물에 의해 예방 또는 치료될 수 있는 골질환은 조골세포와 파골세포의 활성 불균형에 의해 유발되는 것일 수 있다. 뼈는 살아 있는 조직이기 때문에 오래된 뼈는 일정하게 파괴되고 다시 새로운 뼈를 만들어내는 재형성 과정을 거친다. 이러한 과정 중에서 파골세포는 오래되어 불필요하게 된 뼈 조직을 파괴하여 칼슘이 혈류로 방출되어 신체기능을 유지할 수 있도록 도와주고, 조골세포는 파괴된 뼈를 다시 재생시키는 역할을 한다. 이 작용은 하루 24시간 계속 일어나며 1년에 성인의 뼈의 약 10 - 30%가 이런 방식으로 다시 만들어진다. 그러므로 파골세포와 조골세포 간의 균형은 매우 중요하며, 이 균형은 여러 호르몬과 기타 몸의 화학 성분 등에 의해 조절된다.Bone diseases that can be prevented or treated by the composition may be caused by an imbalance in the activity of osteoblasts and osteoclasts. Because bone is a living tissue, old bone is constantly destroyed and goes through a remodeling process to create new bone. During this process, osteoclasts destroy old and unnecessary bone tissue to release calcium into the bloodstream to help maintain body functions, and osteoblasts play a role in regenerating destroyed bones. This process continues 24 hours a day, and approximately 10 to 30% of an adult's bones are rebuilt in this way each year. Therefore, the balance between osteoclasts and osteoblasts is very important, and this balance is regulated by various hormones and other body chemical components.
상기 골질환은 골절, 골다공증, 류마티스성 관절염, 치주염, 파제트병, 골연화증, 골감소증, 골위축, 골관절염, 골형성부전증, 프로테우스증후군 및 무혈성대퇴골괴사로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.The bone disease may be one or more selected from the group consisting of fracture, osteoporosis, rheumatoid arthritis, periodontitis, Paget's disease, osteomalacia, osteopenia, bone atrophy, osteoarthritis, osteogenesis imperfecta, Proteus syndrome, and avascular femoral osteonecrosis, but is limited thereto. It doesn't work.
또한, 본 발명은 TGF ß 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는 배지에서 배양하여, 체세포로부터 유도된 골형성세포 및 PCL 기반 나노섬유 구조의 골 이식용 스캐폴드를 제공한다.In addition, the present invention provides a scaffold for bone transplantation made of osteogenic cells derived from somatic cells and a PCL-based nanofiber structure by culturing in a medium containing a TGF ß receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients. provides.
본 발명의 PCL (폴리카프로락톤)은 생분해성 고분자로, 상대적으로 낮은 독성, 조절가능한 분해도 및 다공성 형태에 의한 공학 스캐폴드로의 제작의 용이성으로 인해 유용하게 이용되는 섬유형 매트릭스이다.PCL (polycaprolactone) of the present invention is a biodegradable polymer and is a useful fibrous matrix due to its relatively low toxicity, controllable degradability, and ease of fabrication into engineering scaffolds due to its porous form.
본 발명의 PCL 나노섬유에서는, Rho 신호전달 유전자, 액틴 형성 유전자, 미오신 관련 유전자 및 인테그린 관련 유전자가 상향 조절될 수 있다. 상기 Rho 신호전달 유전자는 ARHGDIB, CIT, ARHGAP27 및 ARHGEF38로 이루어진 군에서 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않는다. 상기 액틴 형성 유전자는 ACTR3C일 수 있고, 상기 미오신 관련 유전자는 MYO1F 또는 MYH3일 수 있으며, 상기 인테그린 관련 유전자는 ITGB2일 수 있으나, 이에 제한되지 않는다.In the PCL nanofibers of the present invention, Rho signaling genes, actin formation genes, myosin-related genes, and integrin-related genes can be upregulated. The Rho signaling gene may be one or more selected from the group consisting of ARHGDIB, CIT, ARHGAP27, and ARHGEF38, but is not limited thereto. The actin-forming gene may be ACTR3C, the myosin-related gene may be MYO1F or MYH3, and the integrin-related gene may be ITGB2, but are not limited thereto.
본 발명의 PCL 나노섬유 토폴로지는 액토미오신 수축 유도를 증가시키고, 상기 액토미오신 수축은 RUNX2와 TAZ 핵 이동을 증가시키며, 상기 RUNX2 및 TAZ 복합체는 골형성 세포의 재프로그래밍 및 성숙을 증가시킬 수 있다.The PCL nanofiber topology of the present invention increases the induction of actomyosin contraction, and the actomyosin contraction increases RUNX2 and TAZ nuclear migration, and the RUNX2 and TAZ complex can increase reprogramming and maturation of osteogenic cells.
본 발명의 구체적인 일 실시예에서, 나노섬유가 ciOG 재프로그래밍을 가속화하는 메커니즘은 도 6j에 나타낸 바와 같다. 즉, i) 나노섬유 토폴로지는 독특하고 더 긴 구조로 인해 더 많은 액토미오신 수축을 유도하고, ii) 액토미오신 수축은 더 많은 RUNX2와 TAZ 핵 이동을 일으키고, iii) RUNX2/TAZ 복합체는 ciOG 재프로그래밍 효율 및 추가 성숙을 향상시킴을 확인하였다.In one specific embodiment of the present invention, the mechanism by which nanofibers accelerate ciOG reprogramming is as shown in FIG. 6J. That is, i) the nanofiber topology induces more actomyosin contraction due to its unique and longer structure, ii) actomyosin contraction causes more RUNX2 and TAZ nuclear translocation, and iii) the RUNX2/TAZ complex leads to ciOG reprogramming. It was confirmed that it improves efficiency and further maturation.
본 발명의 골형성 세포 및 PCL 나노섬유를 포함하는 골 이식용 스캐폴드는 생체 내 (in vivo) 골 유도를 증가시킬 수 있다.The scaffold for bone transplantation containing osteogenic cells and PCL nanofibers of the present invention can increase bone induction in vivo .
본 발명의 스캐폴드는 인공지지체 또는 세포담체로서, 조직 재생 공학 분야에서 중요한 기본 요소 중의 하나이다. 세포의 부착, 분화 및 조직 주변으로부터 이동되는 세포의 증식과 분화에 적합한 환경을 제공하는 역할을 하는 구조물일 수 있다.The scaffold of the present invention is an artificial scaffold or cell carrier, and is one of the important basic elements in the field of tissue regeneration engineering. It may be a structure that serves to provide an environment suitable for cell adhesion, differentiation, and proliferation and differentiation of cells moving from the tissue periphery.
본 발명의 배양은 5 내지 30일 동안 수행될 수 있으며, 바람직하게는 7 내지 28일 동안 수행될 수 있으나, 이에 제한되지 않는다.The culture of the present invention can be performed for 5 to 30 days, preferably 7 to 28 days, but is not limited thereto.
본 발명은 케미컬, 즉 TGF-β 수용체 억제제 (Repsox), cAMP 시그널링 액티베이터 (Forskolin) 및 상피세포 Na+ 채널 억제제 (Phenamil)를 유효성분으로 포함하는 체세포로부터 골형성세포를 유도하는, 골형성세포 직접 분화용 배지 조성물 및 골형성세포 직접 분화방법을 제공하며, 상기 방법으로 생성된 골형성세포를 포함하는 조성물은 대표적인 골 질환인 골형성부전증 및 프로테우스증후군의 치료 또는 예방에 효과가 있음을 확인함으로써, 골질환 예방 또는 치료용 조성물로 유용하게 사용될 수 있고, PCL 기반 나노섬유 구조의 골 이식용 스캐폴드는 우수한 골조직 재생, 골 유도, 상처 치유 및 생체 내 결합력을 제공할 수 있다.The present invention directly induces osteogenic cells from somatic cells containing chemicals, that is, TGF-β receptor inhibitor (Repsox), cAMP signaling activator (Forskolin), and epithelial cell Na + channel inhibitor (Phenamil) as active ingredients. A differentiation medium composition and a method for direct differentiation of osteogenic cells are provided, and it is confirmed that a composition containing osteogenic cells produced by the above method is effective in treating or preventing osteogenesis imperfecta and Proteus syndrome, which are representative bone diseases, It can be usefully used as a composition for preventing or treating bone diseases, and a scaffold for bone transplantation with a PCL-based nanofiber structure can provide excellent bone tissue regeneration, bone induction, wound healing, and in vivo cohesion.
도 1은 태아 유래 인간 섬유아세포의 골형성세포로의 화학적 유도 및 골아세포로의 성숙을 나타내는 도이고, 도 1a는 골형성세포 (ciOG)에 대한 태아 유래 인간 진피 섬유아세포(fHDF)의 화학적 유도를 위한 배양 시간표 및 조건을 나타내는 도이고, 도 1b는 RepSox(R), CHIR99021(C), forskolin(F), 및 tranylcypromine(T)을 개별적으로 또는 조합하여 총 16개의 화학 세트로 처리한 후 7일째의 RUNX2 발현 수준을 나타내는 도이고, 도 1c는 RF를 사용하지만 단백질 BMP2를 개별적으로 또는 조합하여 다른 골형성 화학물질로 대체하는 7일째의 RUNX2 발현 수준을 나타내는 도이고, 도 1d는 화학 유도동안 세포 형태의 변화를 보여주는 광학 이미지이고, 도 1e는 ciOG 생성에 사용되는 최적화된 화학 조합 및 배양 조건을 보여주는 개략도이고, 도 1f는 최적화된 배양 조건하에서 7일째에 ciOG에서 골형성 유전자의 발현을 나타내는 도이고, 도 1g는 세포에서 RUNX2 신호를 보여주는 면역 염색 이미지를 나타내는 도이고, 도 1h는 7일째 세포수에서 유도 조건이 세포 증식을 억제함을 나타내는 도이고, 도 1i는 배양 일정 및 조건을 보여주는 개략도이고, 도 1j는 14일째 ALP로 염색된 성숙한 ciOG의 이미지를 나타내는 도이고, 도 1k는 ARS로 염색된 성숙한 ciOG의 이미지를 나타내는 도이다.Figure 1 is a diagram showing the chemical induction of fetal-derived human fibroblasts into osteogenic cells and maturation into osteoblasts, and Figure 1a shows the chemical induction of fetal-derived human dermal fibroblasts (fHDF) into osteogenic cells (ciOG). Figure 1b shows the culture timetable and conditions for 7 after treatment with RepSox (R), CHIR99021 (C), forskolin (F), and tranylcypromine (T) individually or in combination with a total of 16 chemical sets. Figure 1c shows the expression level of RUNX2 on day 7 using RF but replacing the protein BMP2 with other osteogenic chemicals individually or in combination, Figure 1d shows the expression level of RUNX2 on day 7 during chemical induction. Optical images showing changes in cell morphology, Figure 1e is a schematic diagram showing the optimized chemical combination and culture conditions used to produce ciOG, and Figure 1f shows the expression of osteogenic genes in ciOG at day 7 under optimized culture conditions. Figure 1g is a diagram showing an immunostaining image showing the RUNX2 signal in cells, Figure 1h is a diagram showing that induction conditions inhibit cell proliferation in cell numbers on day 7, and Figure 1i shows the culture schedule and conditions. It is a schematic diagram, and Figure 1j is a diagram showing an image of mature ciOG stained with ALP on day 14, and Figure 1k is a diagram showing an image of mature ciOG stained with ARS.
도 2는 성인 유래 인간 섬유아세포로부터 ciOG의 생성을 나타내는 도이고, 도 2a는 배양 일정 및 조건을 보여주는 개략도이고, 도 2b는 최대 7일간 화학 유도동안 세포 형태 변화를 보여주는 광학 이미지이고, 도 2c는 7일 동안 화학 유도에 의한 RUNX2 유전자의 활성화를 나타내는 도이고, 도 2d는 7일째의 RUNX2의 면역염색 이미지를 나타내는 도이고, 도 2e는 7일째의 골형성 유전자의 발현을 나타내는 도이고, 도 2f는 7일동안 유도(ciOG)한 후 성숙(ciOG(M7p))한 세포에서 RUNX2 및 OCN의 웨스턴 블롯 분석을 나타내는 도이고, 도 2g는 성숙 7일 동안 OCN 면역염색 이미지를 나타내는 도이고, 도 2h는 ciOG(각각 M7p 및 M14p)의 ALP 및 ARS 염색 이미지를 나타내는 도이고, 도 2i 및 도 2j는 각각 다른 성인 인간 섬유아세포 공급원(28세 백인의 구강치은 조직 및 26세 동아시아인의 팔 피부조직)을 사용한 ciOG 생성을 나타내는 도이다.Figure 2 is a diagram showing the production of ciOG from adult-derived human fibroblasts, Figure 2a is a schematic diagram showing culture schedule and conditions, Figure 2b is an optical image showing changes in cell morphology during chemical induction for up to 7 days, and Figure 2c is A diagram showing the activation of the RUNX2 gene by chemical induction for 7 days, Figure 2D is a diagram showing an immunostaining image of RUNX2 on day 7, Figure 2E is a diagram showing the expression of osteogenic genes on day 7, and Figure 2F is a diagram showing Western blot analysis of RUNX2 and OCN in cells that were induced (ciOG) for 7 days and then matured (ciOG(M7p)), Figure 2g is a diagram showing OCN immunostaining images during 7 days of maturation, Figure 2h is a diagram showing ALP and ARS staining images of ciOG (M7p and M14p, respectively), and Figures 2i and 2j are images from different adult human fibroblast sources (oral gingival tissue from a 28-year-old Caucasian and arm skin tissue from a 26-year-old East Asian), respectively. This is a diagram showing the creation of ciOG using .
도 3은 재프로그래밍 중 ciOG 특성을 확인하기 위한 벌크 RNA 및 단일세포 RNA 염기서열 분석을 나타내는 도이고, 도 3a는 세포 샘플(aHDF, ciOG, ciOG(M7p) 및 인간 조골세포(hOB))의 전역 전사 변화에서 거리 기반 클러스터링 분석을 나타내는 도이고, 도 3b는 전역 전사체 프로파일에서 섬유아세포, 골형성, 골아세포/세포, 항골형성 특이적 유전자의 발현 열 지도를 나타내는 도이고, 도 3c는 ciOG의 단일 세포 RNA 염기서열 분석을 나타내는 도이고, 도 3d는 대사(Jun), 골형성(ALP) 및 중간엽(VIM)과 관련된 세포 식별(ID)의 대표적인 마커의 각 클러스터 세포 분포를 나타내는 도이고, 도 3e는 활성세포만 취하여 ALP(+) 및 VIM(High+)(~29%)이 골형성인 것으로 확인된 반면 ALP(-) 및 VIM(Low+)(~13%)은 섬유아세포인 것으로 확인된 도이다.Figure 3 is a diagram showing bulk RNA and single cell RNA sequencing to confirm ciOG characteristics during reprogramming, and Figure 3a is a global sequence of cell samples (aHDF, ciOG, ciOG (M7p) and human osteoblast (hOB)). A diagram showing distance-based clustering analysis in transcriptional changes, Figure 3b is a diagram showing expression heat maps of fibroblast, osteogenesis, osteoblast/cell, and anti-osteogenesis-specific genes in the global transcriptome profile, and Figure 3c is a diagram showing the expression of ciOG Figure 3D is a diagram showing single cell RNA sequencing, and Figure 3D is a diagram showing the distribution of cells in each cluster of representative markers of cell identification (ID) related to metabolism (Jun), osteogenesis (ALP), and mesenchyme (VIM). Figure 3e shows that only active cells were taken and ALP(+) and VIM(High+) (~29%) were confirmed to be osteogenic, while ALP(-) and VIM(Low+)(~13%) were confirmed to be fibroblasts. It's a degree.
도 4는 ciOG의 생성은 BMP 신호에 따라 다름을 나타내는 도이고, 도 4a는 ciOG와 성인 인간 진피 섬유아세포 (aHDF)의 전역 전사체(24,426개 유전자)를 비교하여 2배 이상 차등적으로 발현된 1,089개의 유전자를 나타낸 도이고, 도 4b는 유전자는 BMP 및 IGF 신호전달과 관련된 발현을 설정하는 것을 나타낸 도이고, 도 4c는 BMP 및 IGF 신호 전달의 화학적 억제제(각각 LDN-193189 및 BMS-536924)는 ciOG 생성동안 RFP와 함께 다양한 용량에 걸쳐 사용된 것을 나타낸 도이다.Figure 4 is a diagram showing that the production of ciOG depends on BMP signals, and Figure 4a compares the global transcriptome (24,426 genes) of ciOG and adult human dermal fibroblasts (aHDF), showing that ciOG is differentially expressed by more than 2-fold. It is a diagram showing 1,089 genes, Figure 4b is a diagram showing genes setting expression related to BMP and IGF signaling, and Figure 4c is a diagram showing chemical inhibitors of BMP and IGF signaling (LDN-193189 and BMS-536924, respectively). is a diagram showing the use across various capacities with RFP during ciOG creation.
도 5는 생체 내 이식된 ciOG는 뼈 복구 및 이소성 광물화를 촉진함을 나타내는 도이고, 도 5a는 면역 억제 NOD/SCID 마우스에서 임계 크기의 골 결함에 ciOG 이식을 나타내는 개략도이고, 도 5b는 12주째 조직 샘플의 마이크로 CT 분석을 나타내는 도이고, 도 5c는 새로운 뼈가 형성됨을 보여주는 H&E 및 MT 염색 이미지를 나타내는 도이고, 도 5d는 인간 OCN에 대한 면역조직화학적 염색 이미지를 나타내는 도이고, 도 5e는 이소성 광물화를 테스트하기 위해 성숙한 ciOG(M7p)를 피하 조직으로 이식하는 것을 보여주는 개략도이고, 도 5f는 Micro-CT 이미지 및 정량 분석 결과를 나타내는 도이고, 도 5g는 H&E 및 MT 염색은 뼈와 같은 광물화된 조직('B' 영역)을 나타냈고, 인간 OCN에 대한 면역조직화학 염색은 주로 뼈 형성 전면(섬유 조직과 접하는 영역)에서 높은 OCN+ 세포를 나타냄을 확인한 도이다.Figure 5 is a diagram showing that ciOG implanted in vivo promotes bone repair and ectopic mineralization, Figure 5A is a schematic diagram showing ciOG implantation into critical-sized bone defects in immunosuppressed NOD/SCID mice, and Figure 5B is a diagram showing 12 A diagram showing micro-CT analysis of a tissue sample at week 5, Figure 5C is a diagram showing H&E and MT staining images showing new bone formation, Figure 5D is a diagram showing an immunohistochemical staining image for human OCN, and Figure 5E is a schematic diagram showing transplantation of mature ciOG (M7p) into subcutaneous tissue to test ectopic mineralization, Figure 5f is a diagram showing Micro-CT images and quantitative analysis results, and Figure 5g is a diagram showing H&E and MT staining of bone and It showed the same mineralized tissue ('B' area), and immunohistochemical staining for human OCN confirmed that it showed high OCN+ cells mainly at the front of bone formation (area in contact with fibrous tissue).
도 6은 배양 매트릭스 나노토포그래피는 ciOG의 생성 및 골형성 능력을 조절함을 나타내는 도이고, 도 6a는 생체 물질 매트릭스에서 ciOG의 유도 및 성숙을 나타내는 개략도이고, 도 6b는 배양 7일째에 ciOG에서 RUNX2 유전자 발현을 나타내는 도이고, 도 6c는 세포의 RUNX2 염색을 나타내는 도이고, 도 6d는 ciOG에서 골형성 유전자(BSP, ALP 및 OCN) 발현의 강력한 증가는 세포가 나노섬유 기질에서 배양되었을 때 발생함을 나타내는 도이고, 도 6e는 ARS 염색으로 나노섬유 매트릭스에서 성숙한 ciOG(M14p)의 생물광화를 나타내는 도이고, 도 6f는 다양한 매트릭스에 대한 세포 형태를 F-액틴 염색으로 분석한 도이고, 도 6g는 액틴 관련 기계적 변환이 나노섬유의 ciOG 생성에 관여하는지 여부를 결정하기 위한 억제 테스트를 나타내는 도이고, 도 6h는 억제제 처리는 ARS 염색에 의해 밝혀진 ciOG(M14p)의 생체 광물화 능력을 감소시킴을 나타낸 도이고, 도 6i는 기계적 변환 억제제(Blebbistatin 및 Y-27632)가 있거나 없는 나노섬유에서 aHDF의 주요 기계적 변환 마커(pMLC 및 TAZ)의 발현을 나타내는 도이고, 도 6j는 나노섬유가 ciOG 재프로그래밍을 가속화하는 메커니즘을 요약한 도이다.Figure 6 is a diagram showing that culture matrix nanotopography regulates the production and osteogenic ability of ciOG, Figure 6a is a schematic diagram showing induction and maturation of ciOG in a biomaterial matrix, and Figure 6b is a diagram showing ciOG on day 7 of culture. Figure 6c shows RUNX2 gene expression, Figure 6c shows RUNX2 staining of cells, and Figure 6d shows a strong increase in the expression of osteogenic genes (BSP, ALP and OCN) in ciOG when cells were cultured on nanofiber substrates. Figure 6e is a diagram showing biomineralization of mature ciOG (M14p) in a nanofiber matrix by ARS staining, and Figure 6f is a diagram showing cell morphology on various matrices analyzed by F-actin staining. Figure 6g shows the inhibition test to determine whether actin-related mechanotransduction is involved in ciOG generation in nanofibers, and Figure 6h shows that inhibitor treatment reduces the biomineralization ability of ciOG(M14p) as revealed by ARS staining. Figure 6i is a diagram showing the expression of the main mechanotransduction markers (pMLC and TAZ) of aHDF in nanofibers with and without mechanotransduction inhibitors (Blebbistatin and Y-27632), and Figure 6j shows the nanofibers containing ciOG material. This diagram summarizes the mechanisms that accelerate programming.
도 7은 PCL 나노섬유-ciOG 구성을 사용한 생체내 뼈 조직 공학을 나타내는 도이고, 도 7a는 엔지니어링된 나노섬유 기질에서 ciOG의 유도 및 성숙에 사용되는 시간표와 마우스 calvarium의 임계 크기 결함을 복구하기 위한 뼈 조직 공학 접근 방식을 보여주는 개략도이고, 도 7b는 이식 12주 후 샘플의 조직학적 이미지(H&E 및 MT 염색)를 나타내는 도이고, 도 7c는 새로운 뼈 형성을 보여주는 고배율 이미지를 나타내는 도이고, 도 7d는 핵심 후기 단계 뼈 기질 단백질인 인간 OCN의 면역조직화학 염색은 새로 형성된 기질에서 강렬한 OCN 신호를 보여 나노섬유 지원 ciOG에 의한 골유도를 나타내는 도이다.Figure 7 is a diagram showing in vivo bone tissue engineering using a PCL nanofiber-ciOG construct, and Figure 7a shows the timeline used for induction and maturation of ciOG in the engineered nanofiber matrix and for repairing critical size defects in the mouse calvarium. Schematic diagram showing the bone tissue engineering approach, Figure 7b shows a histological image (H&E and MT staining) of a sample 12 weeks after implantation, Figure 7c shows a high magnification image showing new bone formation, and Figure 7d Immunohistochemical staining of human OCN, a key late-stage bone matrix protein, showed an intense OCN signal in the newly formed matrix, indicating osteoinduction by nanofiber-supported ciOG.
도 8은 뼈 질환 모델링 및 약물 테스트를 위한 ciOG 플랫폼의 실현 가능성을 나타내는 도이고, 도 8a는 골 질환 모델링 및 약물 발견을 위한 환자 유래 섬유아세포에서 생성된 ciOG의 사용을 보여주는 개략도이고, 도 8b는 ciOG에 의한 골형성 유전자(RUXN2, OCN 및 BSP)의 발현 및 성숙한 세포의 광물화(ciOG(M28p))를 나타내는 도이고, 도 8c 및 도 8d는 ciOG 플랫폼을 사용한 약물 테스트 결과를 나타내는 도이고, 도 8e는 웨스턴 블롯 분석에 의해 확인된 AKT 신호전달에서 ARQ092의 억제 역할을 확인한 도이다.Figure 8 is a diagram showing the feasibility of the ciOG platform for bone disease modeling and drug testing, Figure 8A is a schematic diagram showing the use of ciOG produced from patient-derived fibroblasts for bone disease modeling and drug discovery, and Figure 8B is A diagram showing the expression of osteogenic genes (RUXN2, OCN, and BSP) and mineralization of mature cells (ciOG(M28p)) by ciOG, and Figures 8C and 8D are diagrams showing the results of drug testing using the ciOG platform. Figure 8e is a diagram confirming the inhibitory role of ARQ092 in AKT signaling confirmed by Western blot analysis.
이하, 본 발명의 내용을 하기의 실시예 및 실험예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예 및 실험예에만 한정되는 것은 아니고, 이와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the contents of the present invention will be described in more detail through the following examples and experimental examples. However, the scope of the present invention is not limited to the following examples and experimental examples, and includes modifications of the technical idea equivalent thereto.
실시예 1. 실험 재료 및 방법Example 1. Experimental materials and methods
1-1. 일반 세포 배양1-1. General cell culture
모든 종류의 섬유아세포 [fHDF (foetal human dermal fibroblasts; PH1060F, Genlantis), aHDFs (adult human fibroblasts; PH10605A, Genlantis) (GM00726, Corielle institute for medical research), HGF (human gingival fibroblasts; PCS-201-018, ATCC) 및 프로테우스증후군(GM12260, Corielle)과 골형성부전증 (GM17602, Corielle)의 환자로부터 유래한 aHDFs]는 성장배지 [GM: DMEM-HG, 10% FBS (Corning), 1% Penicillin-Streptomycin (Gibco), 1% MEM non-essential amino acids solution (Gibco), 2 mM Glutamax (Gibco) 및 0.1 mM 2-mercaptoethanol (Gibco)]에서 배양되었고, 배지는 2-3일마다 교체되었다.All types of fibroblasts [fHDF (foetal human dermal fibroblasts; PH1060F, Genlantis), aHDFs (adult human fibroblasts; PH10605A, Genlantis) (GM00726, Corielle institute for medical research), HGF (human gingival fibroblasts; PCS-201-018, ATCC) and aHDFs derived from patients with Proteus syndrome (GM12260, Corielle) and osteogenesis imperfecta (GM17602, Corielle)] were grown in growth medium [GM: DMEM-HG, 10% FBS (Corning), 1% Penicillin-Streptomycin (Gibco). ), 1% MEM non-essential amino acids solution (Gibco), 2 mM Glutamax (Gibco), and 0.1 mM 2-mercaptoethanol (Gibco)], and the medium was changed every 2-3 days.
iPSC (WiCell)는 피더 (feeder)가 없는 상태로 유지되었다. 즉, DMEM/F-12 (Invitrogen)을 Matrigel (성장인자 감소; corning)과 얼음 위에서 11:1의 비율로 혼합하고, 35mm 접시에 도포한 후 상온에서 1시간 동안 배양하였다. PBS로 2회 세척한 후, iPSC를 시딩하고 배양하였다.iPSC (WiCell) was maintained without a feeder. That is, DMEM/F-12 (Invitrogen) was mixed with Matrigel (reduced growth factor; corning) at a ratio of 11:1 on ice, applied to a 35 mm dish, and incubated at room temperature for 1 hour. After washing twice with PBS, iPSCs were seeded and cultured.
hMSC (인간 중간엽 줄기세포; PCS-500-012, ATCC) 및 hOB (인간 조골세포; C-12720, PromoCell)는 MSC 성장키트가 보충된 MSC 기본배지 (ATCC®PCS-500-030™와 성장배지 SupplementMix (C-39615)가 보충된 조골세포 성장배지 (C-27001)에서 각각 배양되었다. 모든 세포는 5% CO2의 가습 조건의 37℃에서 배양되었다.hMSC (human mesenchymal stem cells; PCS-500-012, ATCC) and hOB (human osteoblasts; C-12720, PromoCell) were grown in MSC basal medium (ATCC®PCS-500-030™) supplemented with MSC growth kit. Each was cultured in osteoblast growth medium (C-27001) supplemented with medium SupplementMix (C-39615).All cells were cultured at 37°C under humidified conditions with 5% CO 2 .
1-2. ciOG의 화학적 결합 스크리닝 및 유도1-2. Chemical bond screening and derivation of ciOG
HDF를 60,000 cells/well의 밀도로 24웰 플레이트에 -1일에 시딩하고, GM에서 배양하였다. 배지는 0, 2 및 4일에 4개의 화학물질 (R, F, C, T)을 개별적으로 또는 BMP2의 존재 하에 다른 조합으로 저농도의 FBS를 함유하는 골원성 배지 (DMEM-HG, 2% FBS, 1% P/S, 50 μg/ml 아스코르브산, 10 mM β-글리세롤포스페이트 및 10 nM 덱사메타손)로 교체하였다.HDFs were seeded on day -1 in 24-well plates at a density of 60,000 cells/well and cultured in GM. The medium was incubated with the four chemicals (R, F, C, T) individually or in different combinations in the presence of BMP2 on days 0, 2, and 4. Osteogenic medium containing a low concentration of FBS (DMEM-HG, 2% FBS) , 1% P/S, 50 μg/ml ascorbic acid, 10 mM β-glycerolphosphate, and 10 nM dexamethasone).
7일째에 RUNX2 유전자 발현을 qRT-PCR로 평가하여, 가장 높은 수준을 나타내는 RF 조합을 선택하였다. 다음으로, 골혈성 활성제로 알려진 다양한 저분자들은 BMP2를 대체하기 위해 RF 및 BMP2 존재하에서 RUNX2 유전자 수준을 확인함으로써 평가되었다. 4개의 화학물질 (P, Sim, FK, CSA) 처리 그룹은 BMP2보다 더 높은 RUNX2 유전자 수준을 발현하였으며, 이들의 다른 조합은 BMP2가 없는 상태로 RF 테스트되었다. 결론적으로, RFP 조합이 선택되었으며, 사용된 화학물질의 전체 이름과 작업 농도는 표 1에 기재되어 있다.On day 7, RUNX2 gene expression was assessed by qRT-PCR, and the RF combination showing the highest level was selected. Next, various small molecules known as osteogenic activators were evaluated to replace BMP2 by determining RUNX2 gene levels in the presence of RF and BMP2. Four chemical (P, Sim, FK, CSA) treatment groups expressed higher RUNX2 gene levels than BMP2, and different combinations of these were RF tested in the absence of BMP2. In conclusion, the RFP combination was selected, and the full names and working concentrations of the chemicals used are listed in Table 1.
[표 1][Table 1]
1-3. 유도 배지 성분 및 주기 최적화1-3. Induction medium composition and cycle optimization
혈청 농도, 산소 농도(2/10% FBS, 2/10% 혈청 대체제, 저산소 조건-(2%) 하에서 10% FBS)및 유도 기간 (0, 2, 4, 7, 14 및 21일)과 같은 배양 조건을 최적화하기 위해 정의된 화학 인자 (RFP)로 스크리닝하였다.such as serum concentration, oxygen concentration (2/10% FBS, 2/10% serum replacer, 10% FBS under hypoxic conditions - (2%)) and induction period (0, 2, 4, 7, 14 and 21 days). Culture conditions were screened with defined chemical factors (RFP) to optimize them.
1-4. 정량적 (quantitative) RT-PCR1-4. Quantitative RT-PCR
총 RNA는 RibospinTM (304-150, Geneall)을 이용하여 분리하였고, cDNA는 제조사의 프로토콜에 따라 Accupower RT premix (K-2043, Bioneer) 또는 iScript cDNA Synthesis Kit (1708891, Bio-Rad)를 이용하여 합성하였다. qRT-PCR은 StepOnePlus 실시간 PCR 시스템 (Applied Biosystems)에 의해 2X SensiMix SYBR Hi-ROX Mastermix (QT-605-05, Bioline)와 혼합된 cDNA로 수행되었다.Total RNA was isolated using Ribospin TM (304-150, Geneall), and cDNA was isolated using Accupower RT premix (K-2043, Bioneer) or iScript cDNA Synthesis Kit (1708891, Bio-Rad) according to the manufacturer's protocol. synthesized. qRT-PCR was performed with cDNA mixed with 2X SensiMix SYBR Hi-ROX Mastermix (QT-605-05, Bioline) by the StepOnePlus real-time PCR system (Applied Biosystems).
유전자 발현 수준을 분석하고, 각 샘플에 대해 GADPH로 정규화하였다. 2-△△CT 방법을 사용하여 유전자 발현의 배수 변화를 계산하였다. 프라이머는 Bioneer 또는 Integrated DNA Technologies, Inc.에서 구입하였으며, 각 프라이머 서열은 표 2에 기재되었다.Gene expression levels were analyzed and normalized to GADPH for each sample. 2- The fold change in gene expression was calculated using the △△ CT method. Primers were purchased from Bioneer or Integrated DNA Technologies, Inc., and each primer sequence is listed in Table 2.
[표 2][Table 2]
1-5. ciOG의 골형성 성숙1-5. Osteogenic maturation of ciOG
ciOG는 10 μM Phenamil을 포함하거나 포함하지 않는 기존의 골형성 배지 (10% FBS 포함)에서 성숙되었다. 배지는 3일마다 교체되었다.ciOG was matured in conventional osteogenic medium (with 10% FBS) with or without 10 μM Phenamil. The medium was changed every 3 days.
1-6.1-6.
Alizarin red S 및 알칼리성 인산 가수분해 효소 염색Alizarin red S and alkaline phosphatase staining.
생광물화를 확인하기 위해 각 시점의 배양된 세포를 PBS로 세척한 후, 4% PFA로 상온에서 10분간 고정하였다. 고정된 세포를 탈이온수로 세척한 후, pH 4.2에서 40 mM Alizarin red S (A5533, Sigma Aldrich) 용액으로 30분 동안 염색하였다. 이후, 샘플을 탈이온수로 3회 세척하고 Epson Perfection V300 포토 스캐너를 사용하여 염색된 이미지를 얻었다.To confirm biomineralization, cultured cells at each time point were washed with PBS and fixed with 4% PFA for 10 minutes at room temperature. The fixed cells were washed with deionized water and then stained with 40 mM Alizarin red S (A5533, Sigma Aldrich) solution at pH 4.2 for 30 minutes. Afterwards, the samples were washed three times with deionized water and stained images were obtained using an Epson Perfection V300 photo scanner.
정량을 위해 염료를 10% cetylpyridinium chlofide (Sigma-Aldrich)에 용해하였으며, 분광 광도계 (Varioskan LUX, Thermo Fisher Scientific, MA, USA)를 사용하여 562 nm에서 흡광도를 측정하였다 (n=3). 알칼리성 인산염 염색을 위해 10 ml 탈이온수에 용해된 FAST BCIP/NBT (B5655, Sigma)를 고정된 세포에 도포하고 37℃에서 1시간 동안 배양하였다. 형광 현미경 (IX71, Olympus Australia, Mt. Waverley, Australia)을 사용하여 염색된 이미지를 얻었다.For quantification, the dye was dissolved in 10% cetylpyridinium chlofide (Sigma-Aldrich), and the absorbance was measured at 562 nm using a spectrophotometer (Varioskan LUX, Thermo Fisher Scientific, MA, USA) (n=3). For alkaline phosphatase staining, FAST BCIP/NBT (B5655, Sigma) dissolved in 10 ml deionized water was applied to fixed cells and incubated at 37°C for 1 hour. Stained images were obtained using a fluorescence microscope (IX71, Olympus Australia, Mt. Waverley, Australia).
1-7. 콜로니 형성 단위 분석 (CFU 분석)1-7. Colony forming unit assay (CFU assay)
aHDF 및 ciOG의 1,000개의 세포를 각각 100 mm 배양 접시에 시딩하고, 10% FBS가 보충된 DMEM에서 2주 동안 배양하였다. 14일째 배지를 3일마다 교체하고 세포를 1:1 아세톤/메탄올 고정액으로 고정하고, 메탄올에 0.5% 크리스탈 바이올렛 용액으로 30분 동안 염색한 후 DIW로 세척하였다. 플레이트를 Epson Perfection V300 포토 스캐너로 스캔하고, 콜로니 수를 계수하였다 (n=3).1,000 cells of aHDF and ciOG were each seeded in a 100 mm culture dish and cultured in DMEM supplemented with 10% FBS for 2 weeks. On day 14, the medium was changed every 3 days, and the cells were fixed with a 1:1 acetone/methanol fixative, stained with 0.5% crystal violet solution in methanol for 30 minutes, and then washed with DIW. Plates were scanned with an Epson Perfection V300 photo scanner and colonies were counted (n=3).
1-8. 연골 형성 및 알시안 블루 염색 (alcian blue staining)1-8. Cartilage formation and alcian blue staining
연골 형성, aHDF 및 ciOG를 위한 정상적인 2D 단층 배양물을 24웰 플레이트에 3.16 x 104/cm2의 밀도로 시딩하였다. 다음 날, 배지를 연골형성 배지 (1% ITS, 1% PS, 50 μg/ml ascorbic acid, 10 ng/ml TGF-β3가 함유된 DMEM-HG)로 교체하고, 14일 동안 배양한 후 3일마다 재충전하였다. 3차원 배양에는 마이크로매스 배양법을 사용하였다. 즉, 10 μl의 ciOG를 8x106 cells/ml의 밀도로 시딩하고, 24웰 플레이트에서 GM (10% FBS 및 1% PS가 함유된 DMEM-LG)에서 배양하였다.Normal 2D monolayer cultures for chondrogenesis, aHDF and ciOG were seeded at a density of 3.16 x 10 4 /cm 2 in 24-well plates. The next day, the medium was replaced with chondrogenic medium (DMEM-HG containing 1% ITS, 1% PS, 50 μg/ml ascorbic acid, and 10 ng/ml TGF-β3), and cultured for 14 days, followed by 3 days. Recharged every time. Micromass culture method was used for 3D culture. That is, 10 μl of ciOG was seeded at a density of 8x10 6 cells/ml and cultured in GM (DMEM-LG containing 10% FBS and 1% PS) in a 24-well plate.
GM에서 4일 동안 배양한 후, 배지를 연골 형성 배지로 교체하고, 3일 마다 새로 교체하였다. 14일 후, 2D 단층 및 마이크로매스 펠렛을 PBS로 세척하고, 4% PFA로 10분간 고정한 후 DIW로 세척하였다. pH 2.5의 3% 아세트산에서 제조된 1% 알시안 블루 용액을 30분 동안 도포하였다. DIW로 린싱(rinsing)한 후, 플레이트를 스캔하고 현미경으로 이미지를 촬영하였다.After culturing in GM for 4 days, the medium was replaced with chondrogenic medium and renewed every 3 days. After 14 days, the 2D monolayer and micromass pellet were washed with PBS, fixed with 4% PFA for 10 minutes, and then washed with DIW. A 1% alcian blue solution prepared in 3% acetic acid at pH 2.5 was applied for 30 minutes. After rinsing with DIW, the plate was scanned and images were taken under a microscope.
1-9. 지방 생성 및 오일 레드 O 염색 (oil red O staining)1-9. Lipogenesis and oil red O staining
aHDF 및 ciOG를 4웰 플레이트에서 2.1 x 104 cells/cm2의 밀도로 시딩하고, 골생성/지방생성 분화 배지 (Osteogenic/Adipogenic Base Media (CCM007, R&D Systems Inc., Minneapolis, MN, USA), 10% StemXVivo Adipogenic Supplement (CCM011, R&D Systems Inc.) 및 1%의 PS)에 노출시켰으며, 배지는 3일에 한번 교체하였다. 14일째에, 세포를 4% PFA로 10분 동안 고정하고 DIW로 린싱하고 60% 이소프로판올로 5분 동안 유지시켰다.aHDF and ciOG were seeded at a density of 2.1 were exposed to 10% StemXVivo Adipogenic Supplement (CCM011, R&D Systems Inc.) and 1% PS), and the medium was changed once every 3 days. On day 14, cells were fixed with 4% PFA for 10 min, rinsed with DIW, and maintained with 60% isopropanol for 5 min.
이어서, 오일 레드 O (Oil Red O) 작동 용액은 DIW로 스톡 용액 (이소프로판올 중 0.3% oil red O)을 3:2 비율로 희석한 후 여과하여 새로 제조하였다. 플레이트를 오일 레드 O 작동 용액과 함께 10분 동안 배양하고, DW로 린싱하였다. 지질 방울의 이미지는 현미경으로 촬영하였다. 정량을 위해 염색된 플레이트를 이소프로판올로 흔들면서 탈염시킨 후, 상등액을 500 nm에서 흡광도 측정하였다.Subsequently, the Oil Red O working solution was newly prepared by diluting the stock solution (0.3% oil red O in isopropanol) with DIW at a ratio of 3:2 and then filtering. Plates were incubated with Oil Red O working solution for 10 min and rinsed with DW. Images of lipid droplets were taken under a microscope. For quantification, the stained plate was desalted by shaking with isopropanol, and then the supernatant was measured for absorbance at 500 nm.
1-10. 억제 분석 (Inhibition assay)1-10. Inhibition assay
RUNX2의 경우, Y-27632 및 Blebbistatin은 배지를 (2-3일 마다) 교체할 때 나노섬유 상의 ciOG에서 각각 처리한 후 7일째에 ICC를 수행하였다.For RUNX2, ICC was performed 7 days after treatment of Y-27632 and Blebbistatin in ciOG on nanofibers, respectively, when the medium was changed (every 2-3 days).
1-11. 면역 염색 (Immunostaining)1-11. Immunostaining
배양된 세포를 PBS로 세척하고, 4% PFA로 10분간 고정하였다. PBS로 3회 세척하여 PFA를 제거하였다. PBS에 녹인 0.5% 트리톤 X-100을 상온에서 10분 동안 투과성을 위해 처리한 후 PBS로 3회 세척하였다. PBS 중 1% 소 혈청 알부민 (BSA, Solmate)을 첨가하여 비특이적 결합을 차단하고, 1시간 후에 제거하였다. 1% BSA로 희석한 1차 항체 [RUNX2 (1: 50, ab76956, abcam), OCT4 (1 μg/ml, ab19857, abcam) 및 OCN (osteocalcin; 20 μg/ml, MAB1419, R&D systems)]를 도포하고, 4℃에서 밤새 유지하였다. Cultured cells were washed with PBS and fixed with 4% PFA for 10 minutes. PFA was removed by washing three times with PBS. Permeability was treated with 0.5% Triton Non-specific binding was blocked by adding 1% bovine serum albumin (BSA, Solmate) in PBS and removed after 1 hour. Primary antibodies [RUNX2 (1: 50, ab76956, abcam), OCT4 (1 μg/ml, ab19857, abcam), and OCN (osteocalcin; 20 μg/ml, MAB1419, R&D systems)] diluted with 1% BSA were applied. and maintained at 4°C overnight.
다음 날, 1차 항체를 제거하고 PBS로 3회 세척 후 2차 항체 [Fluorescein (FITC) AffiniPure Donkey Anti-Mouse IgG (H+L) (715-095-150, Jackson ImmunoResearch Laboratories) 또는 Anti-Rabbit IgG (H+L) (711-095-152, Jackson)]를 도포하고, PBS 세척 후 상온에서 1시간 동안 배양하였다.The next day, the primary antibody was removed, washed three times with PBS, and secondary antibody [Fluorescein (FITC) AffiniPure Donkey Anti-Mouse IgG (H+L) (715-095-150, Jackson ImmunoResearch Laboratories) or Anti-Rabbit IgG was added. (H+L) (711-095-152, Jackson)] was applied, washed with PBS, and incubated at room temperature for 1 hour.
3회 세척 후, 핵과 액틴 필라멘트는 각각 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI, D1306, Thermo Fisher Scientific) 및 Alexa Fluor™ 546 Phalloidin (A22283, Invitrogen)으로 시각화되었다. 이미지는 디지털 현미경 (CLS-01-00026, Logos Biosystems, Inc., Gyeonggi-do, Korea) 또는 형광 현미경으로 얻었다. 정량은 Image J를 사용하여 수행하였다.After three washes, nuclei and actin filaments were visualized with 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI, D1306, ThermoFisher Scientific) and Alexa Fluor™ 546 Phalloidin (A22283, Invitrogen), respectively. Images were obtained by digital microscopy (CLS-01-00026, Logos Biosystems, Inc., Gyeonggi-do, Korea) or fluorescence microscopy. Quantification was performed using Image J.
프레임당 세포 수, 세포 원형도, RUNX2 핵 강도 및 RUNX2 핵 전위 세포의 분석은 Image J를 사용하여 수행하였다. 세포의 수는 DAPI 염색 이미지로 계수되었다. 세포 원형도는 F-액틴 염색 이미지에서 확인된 세포 경계로 분석되었다. RUNX2 핵 강도는 RUNX2로 염색된 이미지를 누적하여 측정하였으며, 이를 대조군 수준으로 정규화하였다. 프레임당 RUNX2 핵 전위를 갖는 세포의 수도 프레임의 총 세포 수로 정규화되었다.Analysis of cell number per frame, cell circularity, RUNX2 nuclear intensity, and RUNX2 nuclear translocation cells were performed using Image J. The number of cells was counted in DAPI-stained images. Cell circularity was analyzed by cell boundaries identified in F-actin staining images. RUNX2 nuclear intensity was measured by accumulating RUNX2-stained images, which were normalized to the control level. The number of cells with RUNX2 nuclear translocation per frame was also normalized to the total number of cells in the frame.
1-12. 골질환의 약물 테스트를 위한 ciOG 플랫폼 사용1-12. Using the ciOG platform for drug testing in bone diseases
ARQ 092 (21388, Cayman chemical, Ann Arbor, MI, USA)는 유도 중 또는 유도 후 성숙 과정에서 배지 교체 후 125 또는 250 nM의 농도로 처리하였다. 세포는 ARS 염색을 위해 14일 (M7p)에 고정하고, 웨스턴 블롯 분석을 위해 7일 (ciOG) 및 14일 (M7p)에 채취하였다.ARQ 092 (21388, Cayman chemical, Ann Arbor, MI, USA) was treated at a concentration of 125 or 250 nM after medium replacement during induction or post-induction maturation. Cells were fixed at day 14 (M7p) for ARS staining and harvested at days 7 (ciOG) and 14 (M7p) for Western blot analysis.
1-13. 웨스턴 블롯 (Western blot)1-13. Western blot
세포는 포스파타아제 및 프로테아제 억제제 (78441, Thermo)를 함유하는 RIPA 완충액 (EBA-1149, ElpisBio)으로 얼음 위에서 30분 동안 용해시키고, 4℃에서 30분 동안 12,000 g의 속도로 원심분리하여 제거하였다.Cells were lysed for 30 min on ice with RIPA buffer (EBA-1149, ElpisBio) containing phosphatase and protease inhibitors (78441, Thermo) and removed by centrifugation at 12,000 g for 30 min at 4°C. .
세포 용해물의 총 단백질 농도는 Pierce™ BCA Protein Assay Kit (23225, Thermo)에 의해 측정되었다. 각 샘플의 10 μg을 5X SDS 로딩 버퍼와 혼합하고, 95℃에서 5분 동안 변성시켰다. 환원된 샘플을 10% 또는 20% SDS-PAGE로 로딩하여 실행하고 분리한 후 NC 멤브레인 (Bio Rad)으로 옮겼다.Total protein concentration of cell lysates was measured by Pierce™ BCA Protein Assay Kit (23225, Thermo). 10 μg of each sample was mixed with 5X SDS loading buffer and denatured at 95°C for 5 minutes. The reduced samples were loaded and run on 10% or 20% SDS-PAGE, separated, and transferred to NC membrane (Bio Rad).
이후, 멤브레인은 상온에서 1시간 동안 TBS-T (차단 완충액 (blocking buffer))에서 5% BSA로 차단하고, 1:2000 희석된 pan-AKT (#2920, Signaling Technologies), pAKT (S473) (#4060, Signaling Technologies), 1:1000 희석된 pPRAS40 (#2997, Signaling Technologies), 1:250 희석된 RUNX2 (ab-76956), 1:2000 희석된 OCN (PA5-11849, Invitrogen) 및 1:1000 희석된 베타 액틴 (SC-47778, Santa Cruz Biotechnology, Santa Cruz, CA)에 특이적인 항체와 함께 4℃에서 밤새 차단 완충액에서 배양하였다.Afterwards, the membrane was blocked with 5% BSA in TBS-T (blocking buffer) for 1 hour at room temperature, and 1:2000 diluted pan-AKT (#2920, Signaling Technologies), pAKT (S473) (# 4060, Signaling Technologies), pPRAS40 (#2997, Signaling Technologies) diluted 1:1000, RUNX2 (ab-76956) diluted 1:250, OCN (PA5-11849, Invitrogen) diluted 1:2000 and diluted 1:1000. The cells were incubated in blocking buffer overnight at 4°C with an antibody specific for beta-actin (SC-47778, Santa Cruz Biotechnology, Santa Cruz, CA).
이어서 막을 TBS-T로 린싱한 (헹군) 후, TBS-T의 2차 항체를 1시간 동안 도포하였다. 2차 항체 마우스-HRP (Santa Cruz Biotech.)를 1:10,000 희석하여 사용하였고, 상온에서 1시간 동안 배양하였다. TBST로 세척한 후, 단백질 신호는 SuperSignal쪠 West Pico PLUS Chemiluminescent Substrate (34579, Thermo Fisher scientific)를 사용하여 시각화되고 iBright 1500 imaging system (Thermo Fisher Scientific)에 의해 캡처되었다. 웨스턴 블롯의 밀도 분석은 Image J를 사용하여 수행되었다.The membrane was then rinsed with TBS-T, and then the secondary antibody in TBS-T was applied for 1 hour. The secondary antibody mouse-HRP (Santa Cruz Biotech.) was used at a dilution of 1:10,000 and incubated at room temperature for 1 hour. After washing with TBST, protein signals were visualized using SuperSignal™ West Pico PLUS Chemiluminescent Substrate (34579, Thermo Fisher scientific) and captured by the iBright 1500 imaging system (Thermo Fisher Scientific). Densitometric analysis of Western blots was performed using Image J.
1-14. RNA 염기서열 분석 (sequencing)1-14. RNA sequencing
총 mRNA 벌크 염기서열 분석을 위해, 제조사의 지시에 따라 RibospinTM을 사용하여 3개의 그룹[aHDF, ciOG, ciOG(M7p) 및 hOB]의 세포에서 총 RNA를 분리하였다. 총 mRNA 염기서열 분석은 상업적으로 의뢰하였다 (E-biogen. Inc., Seoul, South Korea). 얻은 raw data는 ExDEGA software (v1.6.7, Ebiogen)를 사용하여 분석하였고, 배수 변화가 2보다 큰 유의하게 발현된 유전자를 선택하였다.For total mRNA bulk sequencing, total RNA was isolated from cells of three groups [aHDF, ciOG, ciOG(M7p), and hOB] using Ribospin ™ according to the manufacturer's instructions. Total mRNA sequencing was commissioned commercially (E-biogen. Inc., Seoul, South Korea). The obtained raw data were analyzed using ExDEGA software (v1.6.7, Ebiogen), and significantly expressed genes with fold change greater than 2 were selected.
ExDEGA GraphicPlus (v2.0, E-biogen, Seoul, Korea)를 사용하여 62개의 유전자는 선택되고, 히트맵에서 플롯팅되었다. 유전자 분류는 DAVID (david.abcc.ncifcrf.gov (2020년 12월 16일 접속))에서 수행한 검색을 기반으로 하였다. 라이브러리 준비, 염기서열 분석 및 품질 관리 분석을 진행하였다.62 genes were selected and plotted in a heatmap using ExDEGA GraphicPlus (v2.0, E-biogen, Seoul, Korea). Gene classification was based on a search performed in DAVID (david.abcc.ncifcrf.gov (accessed December 16, 2020)). Library preparation, sequencing, and quality control analysis were performed.
매트릭스 배양 세포에서 얻을 수 있는 제한된 양의 RNA (즉, PCL 필름 및 나노섬유로 배양된 ciOG 및 ciOG(M7p)의 RNA)로부터 유전자 프로파일링을 분석하였다. 라이브러리 구성은 QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria)를 사용하여 수행되었으며, QuantSeq 3' mRNA-Seq reads는 Bowtie2를 사용하여 정렬되었다.Gene profiling was analyzed from the limited amount of RNA available from matrix cultured cells (i.e. RNA from ciOG and ciOG(M7p) cultured with PCL films and nanofibers). Library construction was performed using the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria), and QuantSeq 3' mRNA-Seq reads were aligned using Bowtie2.
단일 세포 수준의 전사체 변화를 결정하기 위해 단일세포 RNA 염기서열 분석을 ciOG (5 x 105/mL)로 수행하였고, 10x Loupe Browser (10X Genomics, Pleasanton, CA, USA) 및 ExSCEA (Ebiogen Inc., Korea)를 사용하여 UMAP으로 클러스터링 분석을 데이터 마이닝 및 그래픽 시각화를 위해 수행하였다. 즉, 라이브러리 구성은 10X Chromium Single Cell 3' Reagent Kits v3.1 (10X Genomics)을 사용하여 수행되었고, 샘플은 프로토콜에 따라 Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA)에 의해 염기서열 분석 (시퀀싱)되었다.To determine transcriptome changes at the single-cell level, single-cell RNA sequencing was performed with ciOG (5 × 10 5 /mL), 10x Loupe Browser (10X Genomics, Pleasanton, CA, USA) and ExSCEA (Ebiogen Inc. , Korea) was used to perform clustering analysis with UMAP for data mining and graphic visualization. That is, library construction was performed using 10X Chromium Single Cell 3' Reagent Kits v3.1 (10X Genomics), and samples were sequenced by Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA) according to the protocol. (sequencing) was done.
1-15. 실험 동물1-15. laboratory animals
면역결핍 마우스 (NOD-SCID 마우스, 수컷, 8주령)는 KOATECH (Daegu, Korea)에서 입수하였다. 동물관리 및 실험 프로토콜은 대한민국 단국대학교 동물관리 및 사용 위원회의 승인을 받았다 (승인 #17-011). 동물은 수술 전 5-8일 동안 적응시켰고, 각 마우스는 온도 및 습도가 조절된 환경에서 케이지에 수용하였고, 물과 음식에 자유롭게 접근할 수 있는 12시간의 명암 주기에 노출시켰다. 전신마취는 이식 전 자일라진 (10 mg/kg)과 케타민 (80 mg/kg) 혼합물을 근육내 주입하는 방식으로 수행하였다.Immunodeficient mice (NOD-SCID mice, male, 8 weeks old) were obtained from KOATECH (Daegu, Korea). Animal care and experimental protocols were approved by the Animal Care and Use Committee of Dankook University, Korea (Approval #17-011). Animals were acclimatized for 5–8 days before surgery, and each mouse was housed in a cage in a temperature- and humidity-controlled environment and exposed to a 12-h light/dark cycle with ad libitum access to water and food. General anesthesia was performed by intramuscular injection of a mixture of xylazine (10 mg/kg) and ketamine (80 mg/kg) before transplantation.
1-16. 이소성 골 형성 연구1-16. Ectopic bone formation study
미네랄 형성에 대한 ciOG의 능력을 평가하기 위해, 이소성 골 형성 분석을 수행하였다. ciOG(M7p) 또는 aHDF를 트립신 처리하고, 성장인자 감소 Matrigel (354230, Corning)에서 2 x 106/100 μl의 밀도로 재현탁하였다.To evaluate the ability of ciOG on mineral formation, an ectopic bone formation assay was performed. ciOG(M7p) or aHDF were trypsinized and resuspended in growth factor-reduced Matrigel (354230, Corning) at a density of 2 x 10 6 /100 μl.
겔화를 위해 1시간 동안 배양한 후, 캡슐화된 세포를 마취된 마우스의 등에 있는 피하 주머니에 이식하였다(n=5). 이식하고 9주 후, 주변 조직이 있는 샘플은 CO2 흡입 안락사 조건에서 채취되었다.After incubation for 1 hour for gelation, the encapsulated cells were transplanted into a subcutaneous pocket on the back of anesthetized mice (n=5). Nine weeks after transplantation, samples with surrounding tissue were collected under CO 2 inhalation euthanasia conditions.
1-17. 마우스 골수 모델1-17. mouse bone marrow model
다음의 두 세트의 실험이 수행되었다. 먼저, ciOG를 DMEM에서 제조하고, 성장인자 감소 Matrigel과 1:2의 비율로 혼합하였으며, 밀도는 1 x 106/6 μl (n=5)이었다. 둘째, aHDF 및 ciOG(M7p)를 직경 4mm의 PCL 나노섬유에서 배양하였다 (따라서, 나노섬유 샘플 당 약 2.2 x 104 세포였다.) (n=5). 비교 연구를 위해, 1:2 (2.2 x 104/6 μl)의 비율로 성장인자가 감소된 Matrigel의 DMEM의 ciOG(M7p)를 사용하였다 (n=5).The following two sets of experiments were performed. First, ciOG was prepared in DMEM and mixed with growth factor-reduced Matrigel at a ratio of 1:2, and the density was 1 x 10 6 /6 μl (n=5). Second, aHDF and ciOG(M7p) were cultured on PCL nanofibers with a diameter of 4 mm (thus, approximately 2.2 x 10 4 cells per nanofiber sample) (n=5). For comparative study, ciOG (M7p) in DMEM of Matrigel with reduced growth factors was used at a ratio of 1:2 (2.2 x 10 4 /6 μl) (n=5).
마취된 마우스의 두개골 병변을 면도한 후 요오드와 에탄올로 수술 부위를 문지르고, 선형 피부 절개를 하였다. 전체 두께의 플랩을 집어넣고, 두개골 뼈 (calvarial bone)를 노출시켰다. 두 개의 4mm 직경 두개골 뼈 결함은 치과용 핸드피스와 4mm 직경의 트레핀 드릴 (South Korea)을 사용하여 멸균 식염수로 냉각 조건에서 정수리 뼈의 각 측면에 발생시켰다.After shaving the skull lesion of an anesthetized mouse, the surgical area was rubbed with iodine and ethanol, and a linear skin incision was made. A full-thickness flap was retracted, and the calvarial bone was exposed. Two 4 mm diameter cranial bone defects were created on each side of the parietal bone under cooled conditions with sterile saline using a dental handpiece and a 4 mm diameter trephine drill (South Korea).
샘플을 이식한 후, 골막을 흡수성 봉합사 (4-0 Vicryl®Ethicon, Germany)로 봉합하였고, 외부 상처를 비흡수성 봉합사 (4-0 Prolene, Ethicon, Germany)로 고정하였다. 동물은 감염, 염증 및 임의의 부작용과 관련된 가능한 임상 징후에 대해 매일 모니터링되었다. 수술 후 12주째에 CO2 흡입으로 동물을 안락사시켰고, 결함된 부위를 둘러싼 두개골 뼈의 조직 부분을 채취하여 상온에서 24시간 동안 10% 중성 완충 포르말린으로 고정시켰다.After implanting the sample, the periosteum was sutured with absorbable sutures (4-0 Vicryl®Ethicon, Germany), and the external wound was fixed with non-absorbable sutures (4-0 Prolene, Ethicon, Germany). Animals were monitored daily for possible clinical signs related to infection, inflammation and any adverse events. At 12 weeks after surgery, the animals were euthanized by CO 2 inhalation, and tissue sections of the skull bone surrounding the defect were collected and fixed in 10% neutral buffered formalin for 24 hours at room temperature.
1-18. 조직학 및 면역조직화학1-18. Histology and immunohistochemistry
모든 샘플은 10% 중성 완충 포르말린으로 고정시키고, 파라핀 임베딩 전에 석회질 제거를 수행하였다. 석회질 제거 후 일반적인 파라핀 임베딩은 일반 염료 염색과 함께 면역조직화학에 의해 골형성 단백질을 확인하기 위해 선택되었다. All samples were fixed in 10% neutral buffered formalin and decalcified before paraffin embedding. After decalcification, routine paraffin embedding was selected to identify osteogenic proteins by immunohistochemistry with routine dye staining.
조직은 탈수 후 파라핀으로 임베딩하였다. 파라핀이 임베딩된 시료를 5 μm 크기로 절단하여 자일렌으로 탈파라핀화한 후 재수화하였다. PCL 나노섬유는 자일렌 공정에서 거의 열화되었다. 조직학적 분석을 위해 조직 슬라이드를 헤마톡실린 및 에오신 (H&E) 및 Masson's trichrome (MT)으로 염색하고 광학 현미경으로 시각화하였다.The tissue was dehydrated and embedded in paraffin. The paraffin-embedded sample was cut into 5 μm pieces, deparaffinized with xylene, and then rehydrated. PCL nanofibers were almost completely degraded during the xylene process. For histological analysis, tissue slides were stained with hematoxylin and eosin (H&E) and Masson's trichrome (MT) and visualized under a light microscope.
이식된 ciOG 또는 ciOG(M7p)가 골재생에 관여하는지 확인하기 위해 면역조직화학 검사를 수행하였다. 슬라이드에 차단 용액 (5% BSA, 5% normal donkey serum, 0.2% Triton X-100 in PBS)을 1시간 동안 도포한 다음, 1차 항체인 Human/Rat osteocalcin (OCN, 10 μg/ml in blocking solution, MAB1419, R&D Systems)과 함께 4℃에서 밤새 배양하였다.Immunohistochemical tests were performed to confirm whether transplanted ciOG or ciOG(M7p) is involved in bone regeneration. Blocking solution (5% BSA, 5% normal donkey serum, 0.2% Triton , MAB1419, R&D Systems) and cultured overnight at 4°C.
PBS 세척 후 2차 항체 (goat anti-mouse, 1:200, Jackson)를 상온에서 1시간 동안 도포한 후 DAPI 용액을 첨가하였다. 조직 슬라이드를 Fluoromount쪠 Aqueous Mounting Medium (F4680, Sigma Aldrich)으로 덮고, 디지털 현미경 (CELENA®Logos Biosystems, Inc.)으로 시각화하였다.After washing with PBS, secondary antibody (goat anti-mouse, 1:200, Jackson) was applied at room temperature for 1 hour, and then DAPI solution was added. Tissue slides were covered with Aqueous Mounting Medium (F4680, Sigma Aldrich) containing Fluoromount and visualized under a digital microscope (CELENA® Logos Biosystems, Inc.).
1-19. 통계 분석1-19. statistical analysis
그림 캡션에 설명된 테스트 (Student t-test, one-way ANOVA 또는 two-way ANOVA)를 사용하여 GraphPad Prism 8.0 software로 통계적 비교를 수행하였다. 각 테스트의 샘플 번호도 그림 캡션에 기재되어 있다. 0.05, 0.01, 0.001, 또는 0.0001 미만의 P 값은 통계적으로 유의한 것으로 간주되었다.Statistical comparisons were performed with GraphPad Prism 8.0 software using the tests (Student t-test, one-way ANOVA, or two-way ANOVA) described in the figure captions. The sample number for each test is also listed in the figure caption. P values of less than 0.05, 0.01, 0.001, or 0.0001 were considered statistically significant.
실험예 1. 골형성세포로의 인간 섬유아세포의 화학적 유도 및 골아세포로의 성숙Experimental Example 1. Chemical induction of human fibroblasts into osteogenic cells and maturation into osteoblasts
ciOG를 생성하기 위해 태아 인간 진피 섬유아세포 (fHDF)로부터 시작하였다. 섬유아세포를 만능 세포 또는 다른 세포 유형으로 재프로그래밍하는 것으로 일련의 화합물을 사용하여 ciOG의 형성을 유도하는 화학적 칵테일을 결정하기 위해 일련의 화학물질을 스크리닝하였다: TGF-β receptor inhibitor RepSox (R), GSK3 inhibitor CHIR99021 (C), adenylyl cyclase activator forskolin (F), 및 lysine-specific demethylase 1 inhibitor tranylcypromine (T).To generate ciOG, we started from fetal human dermal fibroblasts (fHDF). A series of compounds were screened to determine which chemical cocktail induces the formation of ciOG by reprogramming fibroblasts into pluripotent cells or other cell types: TGF-β receptor inhibitor RepSox (R); GSK3 inhibitor CHIR99021 (C), adenylyl cyclase activator forskolin (F), and lysine-specific demethylase 1 inhibitor tranylcypromine (T).
이러한 화학물질은 2% fetal bovine serum (FBS)과 뼈 발달에 중요한 역할을 하는 osteogenic growth factor bone morphogenetic protein 2 (BMP2)가 첨가된 50 μg/mL 아스코르브산, 10-8 M dexamethasone 및 0.01 M β-glycerophosphate를 함유하는 기존의 골형성 배지(osteogenic medium; OM)에서 7일 동안 0, 2, 4일째 fHDF를 처리하기 위해 개별적으로 그리고 다른 조합으로 사용되었다 (도 1a).These chemicals are 50 μg/mL ascorbic acid, 10 -8 M dexamethasone, and 0.01 M β-, supplemented with 2% fetal bovine serum (FBS) and the osteogenic growth factor bone morphogenetic protein 2 (BMP2), which plays an important role in bone development. Conventional osteogenic medium (OM) containing glycerophosphate was used individually and in different combinations to treat fHDFs on days 0, 2, and 4 for 7 days (Figure 1a).
FBS는 화학 유도 동안 섬유아세포의 증식을 억제하기 위해 2%만 사용되었다. 7일 후, qPCR을 수행하여 골아세포 분화에 필요한 유전자를 활성화하는 역할에 필수적인 골형성 계통 특이적 마커인 Runt-related transcription factor 2 (RUNX2)의 발현을 평가하였다. R, C, F 및 T와 BMP2의 15개 조합 중에서, R + F 및 R + F + T에서 인간 중간엽 줄기세포 (hMSC)의 발현에 필적하는 RUNX2의 가장 높은 발현을 나타내었다 (도 1b). Only 2% FBS was used to inhibit proliferation of fibroblasts during chemical induction. After 7 days, qPCR was performed to evaluate the expression of Runt-related transcription factor 2 (RUNX2), an osteogenic lineage-specific marker essential for activating genes required for osteoblast differentiation. Among 15 combinations of R, C, F and T with BMP2, R + F and R + F + T showed the highest expression of RUNX2, comparable to the expression of human mesenchymal stem cells (hMSCs) (Figure 1b) .
단백질 BMP2를 화학물질로 대체하기 위해 18개의 골형성 화학 후보물질이 선택되었다 (표 1). 이 18개의 화학물질 각각은 R 및 F와 결합되어 fHDF를 처리하는데 사용되었으며, RUNX2 발현이 측정되었다. BMP/Smad 및 NFATc1/Fra-2 신호전달을 통해 골형성을 촉진하는 것으로 밝혀진 Phenamil, simvastatin, FK 506 및 cyclosporin A는 R 및 F가 있는 BMP2 보다 훨씬 더 높은 수준의 RUNX2 유전자 발현을 유도하였다 (도 1c). 그런 다음, 이 4가지 골형성 화학물질을 개별적으로 그리고 R 및 F와 함께 총 15세트로 조합하여 테스트하였으며, phenamil과 R 및 F의 조합 (RFP)이 가장 효과적인 치료법으로 확인되었다. 'RF'는 SOX2 및 OCT4의 화학적 대체물로 확인되어 결과적으로 재프로그래밍의 초기 단계에서 줄기를 향상시키는 반면, 'P'는 SMAD의 길항제인 Smurf1을 하향(negatively) 조절하여 BMP 신호를 강화하는 BMP 활성화제이다. 결과적으로, BMP 신호의 업스트림 유형인 SMAD 신호가 증가된다.Eighteen osteogenic chemical candidates were selected to chemically replace the protein BMP2 (Table 1). Each of these 18 chemicals was used in combination with R and F to treat fHDF, and RUNX2 expression was measured. Phenamil, simvastatin, FK 506, and cyclosporin A, which have been shown to promote osteogenesis through BMP/Smad and NFATc1/Fra-2 signaling, induced much higher levels of RUNX2 gene expression than BMP2 with R and F (Figure 1c). These four osteogenic chemicals were then tested individually and in combination with R and F in a total of 15 sets, and phenamil in combination with R and F (RFP) was identified as the most effective treatment. ‘RF’ has been identified as a chemical substitute for SOX2 and OCT4 and consequently enhances stemness in the early stages of reprogramming, whereas ‘P’ downregulates Smurf1, an antagonist of SMAD, thereby activating BMPs, enhancing BMP signaling. Jada. As a result, the SMAD signal, which is an upstream type of BMP signal, is increased.
따라서, fHDF가 RUNX2를 고도로 발현하는 골형성세포가 되도록 유도하기 위해 최적화된 화학적 칵테일로 이 3가지 화학물질 세트를 선택하였다. 골형성 재프로그래밍 동안 감소된 세포 크기 (세포 재프로그래밍에서 잘 알려진 현상)와 섬유아세포에서 MSC에서 조골세포로 분화될 때 관찰되는 현상인 직육면체 또는 다각형으로의 세포 형태 변화를 포함한 극적인 형태학적 변화가 광학 이미지로 관찰되었다 (도 1d). 팔로이딘 및 DAPI 염색 후 ciOG의 세포 형태는 섬유아세포 형태를 유지했지만 액틴은 덜 발달하였다(도 1g).Therefore, this set of three chemicals was selected as an optimized chemical cocktail to induce fHDFs to become osteogenic cells that highly express RUNX2. During osteogenic reprogramming, dramatic morphological changes, including reduced cell size (a well-known phenomenon in cell reprogramming) and a change in cell shape to cuboids or polygons, a phenomenon observed when fibroblasts differentiate from MSCs to osteoblasts, are observed in optical fibers. was observed as an image (Figure 1d). After phalloidin and DAPI staining, the cell morphology of ciOG maintained a fibroblast morphology, but actin was less developed (Figure 1g).
다음으로 유도 단계에서 배양 조건을 최적화하였다. 원래 조건인 정상 산소 (21% 산소)에서 2% FBS와 2% 및 10% FBS 및 2% 및 21% 산소의 다른 조합과 비교한 결과 원래 조건이 가장 높은 RUNX2 발현을 초래함을 확인하였다. RUNX2와 오스테오칼신(osteocalcin; OCN) 유전자 발현에 기초하여 7일의 RFP 처리 기간도 최대 21일까지의 다른 기간보다 우수한 것으로 나타났다. 초기 계대 세포(계대 #3)를 사용하여 얻은 ciOG는 후기 계대 세포(계대 #8)의 ciOG보다 더 높은 골형성 유전자 발현을 나타냈으며, 이는 RFP 매개 세포 재프로그래밍의 효율성이 세포 계대 수에 의존적임을 시사한다.Next, culture conditions were optimized in the induction phase. As a result of comparing 2% FBS under the original conditions of normoxia (21% oxygen) with other combinations of 2% and 10% FBS and 2% and 21% oxygen, it was confirmed that the original conditions resulted in the highest RUNX2 expression. Based on RUNX2 and osteocalcin (OCN) gene expression, a 7-day RFP treatment period was also shown to be superior to other periods up to 21 days. ciOG obtained using early passage cells (passage #3) showed higher osteogenic gene expression than ciOG from late passage cells (passage #8), indicating that the efficiency of RFP-mediated cell reprogramming is dependent on cell passage number. suggests.
정상산소 조건에서 2% FBS를 함유하는 골형성 배지에서 RepSox, forskolin 및 phenamil의 조합으로 섬유아세포를 처리하여 인간 태아 섬유아세포로부터 골형성세포를 유도하였다(도 1e). ciOG는 osterix, bone sialoprotein (BSP), alkaline phosphatase (ALP) 및 osteocalcin (OCN)을 포함한 다른 골형성 유전자의 발현 측면에서 추가로 분석되었다. 이 유전자들은 유도되지 않은 섬유아세포보다 ciOG에서 현저하게 더 큰 발현이 관찰되었다 (도 1f). RUNX2+ 세포가 골형성 기능을 가지고 있는지 확인하기 위해 RUNX2를 면역염색하고 그 위치를 분석하였다. RUNX2의 핵 전위는 골형성 기능이다. ciOG의 100%는 RUNX2의 핵 전위를 보인 반면, fHDF는 5-10%에 불과하였으며, ciOG의 핵에서 RUNX2의 강도는 fHDF의 약 3배였다(도 1g). 기능적 골형성세포를 나타내는 RUNX2의 핵 전위를 고려하면 유도 효율은 거의 100%였다(도 1h). 7일 동안 세포 수의 변화에서 관찰된 바와 같이, 2% 수준의 FBS는 유도되지 않은 섬유아세포의 증식을 효과적으로 억제하였다.Osteogenic cells were induced from human fetal fibroblasts by treating the fibroblasts with a combination of RepSox, forskolin, and phenamil in osteogenic medium containing 2% FBS under normoxic conditions (Figure 1e). ciOG was further analyzed in terms of the expression of other osteogenic genes, including osterix, bone sialoprotein (BSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Significantly greater expression of these genes was observed in ciOG than in uninduced fibroblasts (Figure 1f). To confirm whether RUNX2 + cells have osteogenic function, RUNX2 was immunostained and its location was analyzed. Nuclear translocation of RUNX2 is an osteogenic function. While 100% of ciOGs showed nuclear translocation of RUNX2, only 5–10% of fHDFs showed that the intensity of RUNX2 in the nucleus of ciOGs was approximately three times that of fHDFs (Figure 1g). Considering the nuclear translocation of RUNX2, which represents functional osteogenic cells, the induction efficiency was almost 100% ( Fig. 1H ). As observed in the change in cell number over 7 days, FBS at a level of 2% effectively inhibited the proliferation of uninduced fibroblasts.
그런 다음, ciOG는 phenamil의 존재 또는 부재 하에 10% FBS가 포함된 골형성 배지에서 조골세포로 성숙되었다(도 1i). 성숙 14일 및 28일 후, 알칼리성 포스파타제 (ALP) 활성 및 생체 광물화 (칼슘 침전물 형성)를 각각 ALP 및 Alizarin Red S (ARS) 염색으로 평가하였다(도 1j 및 도 1k). 14일 및 28일 동안 phenamil을 사용한 ciOG의 성숙 (각각 'ciOG(M14p)' 및 'ciOG(M28p)'로 코딩됨)은 phenamil이 없는 골형성 배지에서 14일 및 28일 동안 성숙된 인간 조골세포 (human osteoblast; hOB) ('hOB(M14)' 및 'hOB(M28)') 및 인간 중간엽 줄기세포 (human mesenchymal stem cells; hMSC) ('hMSC(M14)' 및 'hMSC(M28)')에서 관찰된 것보다 훨씬 더 높은 상당한 수준의 ALP 활성 및 칼슘 침착을 보여주었다.Then, ciOGs were matured into osteoblasts in osteogenic medium containing 10% FBS in the presence or absence of phenamil (Figure 1i). After 14 and 28 days of maturation, alkaline phosphatase (ALP) activity and biomineralization (calcium deposit formation) were assessed by ALP and Alizarin Red S (ARS) staining, respectively (Figures 1j and 1k). Maturation of ciOG with phenamil for 14 and 28 days (coded as ‘ciOG(M14p)’ and ‘ciOG(M28p)’, respectively) human osteoblasts matured for 14 and 28 days in osteogenic medium without phenamil. (human osteoblast; hOB) ('hOB(M14)' and 'hOB(M28)') and human mesenchymal stem cells (hMSC) ('hMSC(M14)' and 'hMSC(M28)') showed significant levels of ALP activity and calcium deposition, much higher than those observed in .
그러나 대조군 fHDF는 phenamil을 사용한 골형성 배양 ('fHDF(M14p)')에서도 매우 약한 ALP 발현을 보였다. 따라서, phenmamil은 성숙 동안 ciOG의 골 형성 분화를 촉진하는 것으로 보인다. 2% FBS-OM에서 RFP를 사용한 7일 동안의 초기 유도 단계는 섬유아세포를 활성화하여 줄기 및 골형성 잠재력을 획득하는데 중요하지만, P(RF 없음)만 있는 7-28일 동안의 후속 성숙 단계 10% FBS-OM은 조골세포 계통을 얻기 위해 필요하다. 28일 동안 RFP를 사용한 연속 유도는 ciOG 광물화를 초래하지 않았으며, 이는 세포의 과잉 유도가 계통 특이적 세포로의 성숙 전환을 억제할 수 있음을 시사한다.However, control fHDF showed very weak ALP expression even in osteogenic culture using phenamil ('fHDF(M14p)'). Therefore, phenmamil appears to promote osteogenic differentiation of ciOG during maturation. The initial induction phase for 7 days with RFP in 2% FBS-OM is important to activate fibroblasts to acquire stemness and osteogenic potential, whereas the subsequent maturation phase for 7–28 days with P (without RF) only 10 % FBS-OM is required to obtain osteoblast lineage. Continuous induction with RFP for 28 days did not result in ciOG mineralization, suggesting that overinduction of cells may inhibit their maturational conversion into lineage-specific cells.
다음으로, 성인 인간 섬유아세포 (adult human fibroblast)에서 ciOG를 생성하고자 하였다. 태아 인간 섬유아세포에 최적화된 배양 플랫폼을 성체 세포에 적용하였다 (도 2a). 성인 인간 진피 섬유아세포 (adult human dermal fibroblast; aHDF)는 58세 백인의 얼굴 피부 조직에서 유래하였다. 최대 7일 동안의 화학적 유도 동안, 태아 세포와 마찬가지로 세포 형태가 상당히 변경되었다 (도 2b). RUNX2 유전자의 발현은 원래의 섬유아세포에서보다 생성된 ciOG에서 유의하게 더 높았다 (도 2c).Next, we attempted to generate ciOG from adult human fibroblasts. A culture platform optimized for fetal human fibroblasts was applied to adult cells (Figure 2A). Adult human dermal fibroblasts (aHDF) were derived from facial skin tissue of a 58-year-old Caucasian person. During chemical induction for up to 7 days, cell morphology was significantly altered, similar to fetal cells (Figure 2b). Expression of the RUNX2 gene was significantly higher in the generated ciOG than in the original fibroblasts (Figure 2c).
RUNX2 면역 염색 및 반정량화는 aHDF에서보다 ciOG에서 훨씬 더 높은 핵 신호를 나타냈으며, ciOG의 RUNX2 핵 강도 및 핵 전위 세포의 비율은 원래 섬유아세포의 거의 2배였다 (도 2d). ALP, BSP 및 OCN을 포함하는 다른 골형성 유전자의 발현도 7일째에 aHDF 보다 ciOG에서 더 컸다 (도 2e).RUNX2 immunostaining and semiquantification revealed a much higher nuclear signal in ciOG than in aHDF, and the RUNX2 nuclear intensity and proportion of nuclear translocation cells in ciOG were almost twice that of native fibroblasts (Figure 2D). Expression of other osteogenic genes, including ALP, BSP, and OCN, was also greater in ciOG than aHDF at day 7 (Figure 2e).
또한, 단백질 수준에서 마커 발현을 추가로 조사하였다. OCN은 성숙한 골형성/골아세포의 마커이기 때문에 선택되었다. 웨스턴 블롯 분석은 성숙한 세포 (ciOG(M7p))에서 OCN 발현을 나타내는 명확한 밴드를 보여주었다(도 2f). OCN 발현의 증가는 RUNX2 발현을 감소시켰다. OCN 면역 염색은 성숙 7일째에 대부분 OCN+ 세포를 나타냈다; 그러나, OCN+ 세포의 분율은 광물화가 두드러지게 된 더 긴 성숙 기간(14일)에서 감소하였다(도 2g). 성숙한 세포 (ciOG(14Mp))는 상당한 수준의 ALP와 미네랄을 분비하였다(도 2h). 28세 백인의 구강 치은 조직과 26세 동아시아인의 팔 피부 조직에서의 다른 성인 인간 섬유아세포 공급원으로부터 ciOG의 생성은 RUNX2 및 골형성 유전자 ALP, BSP 및 OCN의 유의한 상향 조절 및 광물화 수준에 의해 확인되었다(도 2i 및 도 2j).Additionally, marker expression was further investigated at the protein level. OCN was chosen because it is a marker of mature osteogenesis/osteoblasts. Western blot analysis showed a clear band indicating OCN expression in mature cells (ciOG(M7p)) (Figure 2f). Increased OCN expression decreased RUNX2 expression. OCN immunostaining showed mostly OCN + cells at day 7 of maturation; However, the fraction of OCN + cells decreased at longer maturation periods (14 days) when mineralization became prominent (Figure 2g). Mature cells (ciOG(14Mp)) secreted significant levels of ALP and minerals (Figure 2h). Production of ciOG from different adult human fibroblast sources in oral gingival tissue of a 28-year-old Caucasian and arm skin tissue of a 26-year-old East Asian was driven by significant upregulation of RUNX2 and osteogenic genes ALP, BSP, and OCN and levels of mineralization. confirmed (Figures 2i and 2j).
실험예 2. 재프로그래밍 중 ciOG 특성 및 신호 전달 경로를 식별하기 위한 대량 및 단일 세포 RNA 염기서열 분석Experimental Example 2. Bulk and single cell RNA sequencing to identify ciOG characteristics and signaling pathways during reprogramming
ciOG의 생성 및 성숙 동안 전체 전사의 변화를 확인하였다. 계층적 클러스터링 분석은 ciOG의 전사체 프로파일이 골형성 성숙 동안 인간 조골세포 (hOB)와 유사함을 보여주었다 (도 3a). 섬유아세포, 골형성, 골아세포/세포 및 항골형성 관련 유전자의 발현 정도를 분류하였다. 특히, 성숙 (ciOG(M7p)) 후 ciOG의 발현 패턴은 hOB의 발현 패턴과 유사하였다(도 3b). 성숙한 ciOG(M7p)는 aHDF (-0.49)보다 hOB (-0.04)와 더 높은 상관관계를 보였다. 차등적으로 발현되는 유전자에 따른 세포 유형의 2차원 주성분 분석(PCA)은 원래의 섬유아세포 (aHDF, 'no.1'), 화학적으로 유도된 중간체 (ciOG, 'no.2') 및 hOB ('no.3')을 구별하였다. 이에, 성숙하는 동안 ciOG(M7p)는 hOB와 유사하였다.Changes in overall transcription were confirmed during the generation and maturation of ciOG. Hierarchical clustering analysis showed that the transcriptome profile of ciOG was similar to that of human osteoblasts (hOB) during osteogenic maturation (Figure 3A). The expression levels of fibroblast, osteogenesis, osteoblast/cell, and anti-osteogenesis-related genes were classified. In particular, the expression pattern of ciOG after maturation (ciOG(M7p)) was similar to that of hOB (Figure 3b). Mature ciOG(M7p) showed a higher correlation with hOB (-0.04) than with aHDF (-0.49). Two-dimensional principal component analysis (PCA) of cell types according to differentially expressed genes showed that native fibroblasts (aHDF, ‘no.1’), chemically induced intermediates (ciOG, ‘no.2’) and hOBs ( 'no.3') was distinguished. Accordingly, ciOG(M7p) was similar to hOB during maturation.
이후, 단일 세포 RNA 염기서열 분석 (Chromium single-cell RNA-seq, 10x Genomics)을 수행하였다. 엄격한 품질 관리 및 정규화 분석을 거쳐 5,901개의 단일 세포를 분리 및 분석하였다. 클러스터링 분석과 Uniform Manifold Approximation and Projection (UMAP) 방법을 사용하여, 전역 거리를 보존하면서 ciOG에서 3개의 분리된 세포 클러스터를 식별하였다 (도 3c). 각 클러스터의 세포 정체성을 분석하기 위해 대사 및 세포 유형 마커를 사용하여 세포 활성 및 유형 (조골세포, 섬유아세포 및 조혈줄기세포)을 분류하였다.Afterwards, single-cell RNA sequencing (Chromium single-cell RNA-seq, 10x Genomics) was performed. After rigorous quality control and normalization analysis, 5,901 single cells were isolated and analyzed. Using clustering analysis and the Uniform Manifold Approximation and Projection (UMAP) method, we identified three separate cell clusters in the ciOG while preserving global distances (Fig. 3c). To analyze the cell identity of each cluster, metabolic and cell type markers were used to classify cell activity and type (osteoblasts, fibroblasts, and hematopoietic stem cells).
세포 재프로그래밍은 종종 감소된 대사 활성으로 인해 고유한 분자 식별자 수가 낮은, 낮은 유전자 발현 클러스터를 유도한다. Jun, GAPDH 및 RPS8과 같은 일반적인 세포 대사 마커 및 기타 세포 유형 특이적 마커는 클러스터 3에서 덜 풍부하여 ciOG 재프로그래밍 동안 비활성 세포 클러스터 (세포의 ~39%)를 나타낸다(도 3c).Cellular reprogramming often leads to low gene expression clusters with a low number of unique molecular identifiers due to reduced metabolic activity. General cellular metabolic markers such as Jun, GAPDH and RPS8 and other cell type specific markers were less abundant in cluster 3, representing an inactive cell cluster (~39% of cells) during ciOG reprogramming (Figure 3C).
골형성 및 중간엽 유전자의 발현 수준에 기초하여 (도 3d), 골형성 및 섬유아세포는 각각 클러스터 1 (~49%) 및 2 (~12%)에 뚜렷하게 클러스터링 되었다. 두 클러스터 모두 조혈 줄기세포 마커 CD34에 대해 음성이었고, 이는 채택된 유도 조건 (2% FBS를 포함하는 OM의 RFP)이 aHDF가 중간엽 장벽을 통과하지 않을 수 있음을 시사한다.Based on the expression levels of osteogenic and mesenchymal genes (Figure 3D), osteogenic and fibroblasts were distinctly clustered in clusters 1 (~49%) and 2 (~12%), respectively. Both clusters were negative for the hematopoietic stem cell marker CD34, suggesting that the induction conditions adopted (RFP in OM with 2% FBS) may not allow aHDFs to cross the mesenchymal barrier.
ciOG는 인간 MSC와 유사하게 다능성 마커인 Oct4를 발현하지 않았으며, 이는 aHDF가 부분적으로 ciOG로 전환되어 Oct4+ 만능성 세포의 존재와 관련된 종양원성의 해소를 보여준다. ciOG의 단일 세포 분석은 골형성 과정 또는 조골세포 신호전달 및 기능에 관여하는 클러스터 1 (OLFM2, TMEM119, TNFRSF11B, TGF-β1, CDH11, SPARC, COL1A1)에서 고도로 발현되는 유전자 세트를 추가로 밝혀냈다. 활성 세포 (n=3,583)만을 고려할 때, 세포의 ~29%는 ALP+ (골형성 마커) 및 VIMhigh+ (중간엽 기원의 다능성 세포에서 풍부한 마커인 반면, 세포의 ~13%는 ALP- 및 VIMlow+)였다 (도 3e). 단일 세포 RNA 발현을 t-SNE 공간으로 투영하고 궤적 분석을 통해 골형성 유도 동안 세포 운명 전환을 시각화할 수 있으며, 이는 세포가 클러스터 2 (ALP-/VIMlow+)에서 클러스터 1 (ALP+/VIMhigh+) 또는 클러스터 3 (비활성)으로 별개의 단계를 통과하였음을 나타낸다.Similar to human MSCs, ciOGs did not express the pluripotency marker Oct4, showing that aHDFs were partially converted to ciOGs, resolving the tumorigenicity associated with the presence of Oct4 + pluripotent cells. Single cell analysis of ciOG further revealed a set of highly expressed genes in cluster 1 (OLFM2, TMEM119, TNFRSF11B, TGF-β1, CDH11, SPARC, COL1A1) involved in osteogenic processes or osteoblast signaling and function. Considering only active cells (n=3,583), ~29% of cells were ALP + (an osteogenic marker) and VIM high+ (a marker abundant in pluripotent cells of mesenchymal origin), whereas ~13% of cells were ALP - and VIM low+ ) was (Figure 3e). Projecting single cell RNA expression into t-SNE space and trajectory analysis allows us to visualize cell fate transitions during osteogenic induction, with cells moving from cluster 2 (ALP - /VIM low+ ) to cluster 1 (ALP + /VIM high+). ) or Cluster 3 (inactive), indicating that it has passed a separate step.
다음으로, ciOG 생성과 관련된 신호 전달 경로를 확인하고자 하였다. 이를 위해, ciOG와 aHDF의 전역 전사체를 비교하였다. 분석된 24,426개의 유전자 중에서, 1,089개의 유전자가 ciOG와 aHDF 사이에서 2배 이상 차등적으로 발현되었으며, 501개의 유전자는 ciOG에서 상향 조절되고 588개의 유전자는 하향 조절되었다(도 4a).Next, we sought to identify the signal transduction pathway involved in ciOG production. For this purpose, the global transcriptomes of ciOG and aHDF were compared. Among the 24,426 genes analyzed, 1,089 genes were differentially expressed more than two-fold between ciOG and aHDF, with 501 genes upregulated and 588 genes downregulated in ciOG (Figure 4A).
ciOG의 차등 발현이 유전자 온톨로지 (GO)로 기능적으로 주석 처리된 경우, 상위 20개 GO 범주(category)는 섬유아세포 성장 행동의 손실과 함께 골형성세포 기능을 나타낸다. ciOG에서 상향 조절된 유전자의 GO 분석에서 골격계의 발달은 P-값이 가장 낮은 범주였다. 이 범주에서 신호 단백질은 BMP, IGF 및 TGF-β가 포함되었다.When differential expression of ciOG was functionally annotated with Gene Ontology (GO), the top 20 GO categories indicated osteogenic function with loss of fibroblast growth behavior. In GO analysis of genes upregulated in ciOG, development of the skeletal system was the category with the lowest P -value. Signaling proteins in this category included BMP, IGF, and TGF-β.
따라서, 이러한 신호 전달 경로와 또 다른 골형성 경로인 WNT 신호 전달 경로를 분석하였다. BMP 및 IGF 신호전달과 관련된 대부분의 유전자는 ciOG에서 고도로 상향 조절되었다 (도 4b). BMP 효능제 유전자 (BMP1-11 및 ID1)는 전체적으로 활성화된 반면 BMP 길항제 유전자 GREM1 및 2는 ciOG에서 억제되었다. IGF 신호전달에서, IGF1 및 2, 이들의 수용체 (IGF1R and IGF2R) 및 이들의 안정화 단백질 (IGFBP2-7)이 높게 발현되었다. 대조적으로, TGF-β 및 WNT 신호전달 유전자의 변화는 가변적이었다. Therefore, this signaling pathway and the WNT signaling pathway, another osteogenic pathway, were analyzed. Most genes related to BMP and IGF signaling were highly upregulated in ciOG (Figure 4b). BMP agonist genes (BMP1-11 and ID1) were globally activated, whereas BMP antagonist genes GREM1 and 2 were repressed in ciOG. In IGF signaling, IGF1 and 2, their receptors (IGF1R and IGF2R) and their stabilizing proteins (IGFBP2-7) were highly expressed. In contrast, changes in TGF-β and WNT signaling genes were variable.
BMP 및 IGF 신호전달 경로의 역할을 확인하기 위해 각 신호 경로의 화학적 억제제 (각각 LDN-193189 및 BMS-536924)를 RFP와 함께 사용하였다. RUNX2, ALP 및 OCN 유전자 발현의 완화는 RFP와 함께 LDN193189를 사용할 때만 검출되었으며, 이러한 골형성 유전자의 발현은 용량 의존적으로 점차 감소하여 ciOG 생성에서 BMP 신호 전달 경로에 관여함을 나타낸다 (도 4c). BMP 활성화제인 phenamil의 사용은 ciOG 재프로그래밍 과정에서 BMP 신호 전달과 관련이 있음을 시사한다.To confirm the role of BMP and IGF signaling pathways, chemical inhibitors of each signaling pathway (LDN-193189 and BMS-536924, respectively) were used together with RFP. Alleviation of RUNX2, ALP and OCN gene expression was detected only when LDN193189 was used in combination with RFP, and the expression of these osteogenic genes gradually decreased in a dose-dependent manner, indicating the involvement of the BMP signaling pathway in ciOG generation (Figure 4c). The use of the BMP activator phenamil suggests that BMP signaling is involved in the ciOG reprogramming process.
실험예 3. 뼈 복구 및 이소성 광물화를 위한 생체 내 이식된 ciOGExperimental Example 3. In vivo implanted ciOG for bone repair and ectopic mineralization
이방성 뼈 복구 모델과 이소성 광물화에서 생성된 ciOG의 생체 내 반응을 테스트하였다. 먼저, 성장인자가 감소된 Matrigel이 있는 ciOG를 면역 억제 NOD/SCID 마우스 (8주령, 수컷)의 임계 크기의 뼈 결함된 부위 (4mm 직경)에 이식하였다 (도 5a). 이식 후 12주에 마이크로 CT 3D 구성 이미지를 분석하여 골 부피, 표면적 및 표면 밀도를 측정하였다 (도 5b). 이러한 골형성 지수는 Matrigel 단독 그룹보다 ciOG 이식 그룹에서 유의하게 더 높았다.The in vivo response of ciOG generated in an anisotropic bone repair model and ectopic mineralization was tested. First, ciOG with growth factor-reduced Matrigel was implanted into a critical-sized bone defect area (4 mm diameter) in immunosuppressed NOD/SCID mice (8 weeks old, male) (Figure 5a). At 12 weeks after transplantation, micro-CT 3D structural images were analyzed to measure bone volume, surface area, and surface density (Figure 5b). This osteogenic index was significantly higher in the ciOG implant group than in the Matrigel alone group.
헤마톡실린 및 에오신(Hematoxylin and eosin; H&E)과 마손의 트리크롬(Masson's trichrome; MT) 염색에 의한 조직학적 분석 결과, ciOG 이식군의 결함된 부위 (검은색 화살표)에서 새로운 뼈가 형성되었으며, 이는 뼈 형성이 관찰되지 않은 Matrigel 전용 그룹과 현저한 대조를 보였다 (도 5c). 인간 OCN의 면역조직화학적 염색 (적색)은 ciOG 이식군에서 골기질 단백질이 골형성 표면에 침착되었음을 보여주었다 (도 5d).Histological analysis using hematoxylin and eosin (H&E) and Masson's trichrome (MT) staining showed that new bone was formed in the defective area (black arrow) in the ciOG transplant group. This was in striking contrast to the Matrigel-only group, in which no bone formation was observed (Figure 5c). Immunohistochemical staining (red) of human OCN showed that bone matrix proteins were deposited on the osteogenic surface in the ciOG graft group (Figure 5D).
ciOG 이식이 이방성 모델에서 뼈 성장에 도움이 되었음을 확인한 후, 골형성에 대해 상대적으로 손상된 미세 환경에서 세포의 생체 내 골형성 가능성을 평가할 수 있는 이소성 광물화 가능성을 조사하였다. 손상된 골형성 미세 환경을 보상하기 위해 석회화 없이 가장 높은 OCN 발현을 나타내는 성숙한 ciOG(M7p)를 면역 억제 NOD/SCID 마우스의 등쪽 피부 피하 조직에 이식하였다 (도 2g 및 도 5e).After confirming that ciOG implantation benefited bone growth in an orthotopic model, we investigated the potential for ectopic mineralization to evaluate the in vivo osteogenic potential of cells in a microenvironment relatively impaired for osteogenesis. To compensate for the impaired osteogenic microenvironment, mature ciOG(M7p), which showed the highest OCN expression without calcification, was transplanted into the dorsal skin subcutaneous tissue of immunosuppressed NOD/SCID mice (Figures 2g and 5e).
ciOG(M7p)는 도 1g와 같다. 이식된 세포의 골재생 가능성을 평가하기 위해 중간 성숙 (완전히 석회화되지 않은) 조골세포 유사세포를 마우스에 이식하였다. 이식 후 8주째에 마이크로 CT 영상에서 ciOG(M7p) 그룹에서 광물화된 조직이 생성된 것으로 나타났다: 5개의 ciOG(M7p) 이식 샘플 중 4개에서 경조직이 형성되었다. 샘플은 광물화가 관찰되지 않은 aHDF 이식군과 대조적으로 상당한 골 밀도, 골 부피, 표면적 및 표면 밀도를 나타냈다 (도 5f). H&E 및 MT 염색은 광물화와 함께 뼈와 유사한 조직 ('B' 영역)을 나타냈고, 인간 OCN의 면역조직화학적 염색은 주로 골형성 전면, 즉 섬유 조직과 접하는 영역(콜라겐성 조기 골 매트릭스)에서 높은 OCN+ 세포를 나타냈다.ciOG(M7p) is as shown in Figure 1g. To evaluate the bone regeneration potential of the transplanted cells, intermediately mature (not completely calcified) osteoblast-like cells were transplanted into mice. At 8 weeks after transplantation, micro-CT imaging showed the formation of mineralized tissue in the ciOG(M7p) group: hard tissue was formed in 4 out of 5 ciOG(M7p) transplant samples. The samples showed significant bone density, bone volume, surface area, and surface density in contrast to the aHDF graft group where no mineralization was observed (Figure 5f). H&E and MT staining revealed bone-like tissue with mineralization ('B' region), while immunohistochemical staining of human OCN showed predominantly in the osteogenic front, i.e. in the area bordering fibrous tissue (collagenous early bone matrix). showed high OCN + cells.
실험예 4. 매트릭스-자극 ciOG 생성 및 골조직 공학Experimental Example 4. Matrix-stimulated ciOG generation and bone tissue engineering
잠재적으로 ciOG의 유도와 성숙을 조절하고, 골 ECM 형성과 같은 골형성 기능을 향상시키기 위해 ciOG 생성에서 조작된 기질을 사용하고자 하였다 (도 6a). 티타늄 (가공된 “Ti”또는 샌드블라스팅 및 산 에칭된 “Ti(SLA)”폴리카프로락톤 (평면 필름 “PCL 필름” 또는 700 nm 평균 직경의 “PCL 나노섬유”의 정렬된 나노섬유) 및 인산칼슘 (“골분석 플레이트”) 기반 기질을 포함하여 골 수복 또는 골 세포 배양에 사용되는 다양한 상업용 배양 기질을 테스트하였다.We sought to use engineered substrates in ciOG production to potentially regulate the induction and maturation of ciOG and enhance osteogenic functions such as bone ECM formation (Figure 6a). Titanium (milled “Ti” or sandblasted and acid-etched “Ti(SLA)” aligned nanofibers of polycaprolactone (flat film “PCL film” or “PCL nanofibers” with an average diameter of 700 nm) and calcium phosphate A variety of commercial culture substrates used for bone repair or bone cell culture were tested, including substrates based on (“bone assay plates”).
Ti 계 재료는 뼈 임플란트 (치과 및 정형외과)로 널리 사용되어 왔으며, 마이크로/서브마이크론 구조를 가진 SLA는 조도를 향상시키고, 독특한 소수성 특성 및 뛰어난 골 형성 효과를 가진 티타늄 임플란트에 가장 널리 사용된다. PCL 나노섬유는 콜라겐 모방 나노섬유 구조로 인해 골 형성의 잠재력이 크다. 골검정 플레이트 (osteoassay plate)는 파골세포와 조골세포 기능의 조사를 위한 인산칼슘 미세 결정성 지지체 (스캐폴드)를 제공하였다.Ti-based materials have been widely used as bone implants (dental and orthopedic), and SLA with micro/submicron structure improves roughness, is most widely used in titanium implants with unique hydrophobic properties and excellent osteogenic effects. PCL nanofibers have great potential for bone formation due to their collagen-mimicking nanofiber structure. The osteoassay plate provided a calcium phosphate microcrystalline support (scaffold) for investigation of osteoclast and osteoblast function.
먼저 최적화된 유도 조건 (2% FBS-OM의 RFP)에서 다양한 기질에서 7일 동안 유도된 세포 (ciOG)의 RUNX2 유전자 발현을 측정하였다. 유도 후 RUNX2 발현은 TCP 보다 Ti (SLA), PCL 나노섬유 및 골분석 플레이트에서 유의하게 더 높았다 (도 6b). 특히, PCL 나노섬유는 베어 PCL 대응물 (PCL 필름)보다 더 높은 RUNX2 유전자 수준을 유도하는데, 이는 나노섬유 구조가 다른 생물 물리학적 요인과 함께 ciOG로의 재프로그래밍 효율을 높이는 역할을 할 수 있음을 시사한다. 이에, 먼저 ciOG 재프로그래밍 과정에서 석회화를 위한 기질 (매트릭스)을 재생하는 콜라겐의 나노섬유 토폴로지를 모방하면서 나노섬유 구조의 효과에 초점을 맞추고, 다른 기질 매개변수 (거칠기, 조성, 친수성 등)가 임상 적용을 위해 최적화될 것이다. 7일간의 유도 후 세포의 RUNX2 염색은 PCL 나노섬유 기질에서 RUNX2의 상당한 핵 전위를 나타냈다 (도 6c). 다른 주요 골 형성 유전자 (BSP, ALP 및 OCN)도 나노섬유 매트릭스의 ciOG에서 유의하게 상향 조절되었다 (도 6d). 나노섬유 기질에서 14일 동안 ciOG의 성숙은 ARS 염색에 의해 밝혀진 바와 같이 생광물화를 더욱 향상시켰다 (도 6e).First, we measured RUNX2 gene expression in cells (ciOG) induced for 7 days on various substrates under optimized induction conditions (RFP in 2% FBS-OM). After induction, RUNX2 expression was significantly higher in Ti (SLA), PCL nanofibers, and bone analysis plates than in TCP (Figure 6b). In particular, PCL nanofibers induce higher RUNX2 gene levels than their bare PCL counterparts (PCL films), suggesting that the nanofiber structure, along with other biophysical factors, may play a role in increasing the efficiency of reprogramming to ciOG. do. Therefore, we first focus on the effect of the nanofiber structure while mimicking the nanofiber topology of collagen in regenerating the matrix (matrix) for calcification during the ciOG reprogramming process, and other matrix parameters (roughness, composition, hydrophilicity, etc.) It will be optimized for application. RUNX2 staining of cells after 7 days of induction revealed significant nuclear translocation of RUNX2 on PCL nanofiber substrates (Figure 6c). Other key osteogenic genes (BSP, ALP, and OCN) were also significantly upregulated in ciOG on the nanofiber matrix (Figure 6d). Maturation of ciOG for 14 days on nanofiber substrates further enhanced biomineralization as revealed by ARS staining (Figure 6e).
다음으로, PCL의 평면 필름 대 PCL 나노섬유에서 유도된 ciOG와 ciOG(M7p) 사이의 전역 전사 변화를 분석하였다. QuantSeq 분석은 배양된 세포에서 얻은 제한된 양의 RNA로부터 유전자 프로파일링을 가능하게 하였다. 계층적 클러스터링 분석은 PCL 나노섬유의 ciOG (성숙하지 않음)와 평면 필름 사이의 전사에서 상당한 차이를 나타냈다. PCL 나노섬유에서 생성된 ciOG의 전체적인 전사 변화는 평면 PCL 필름의 성숙한 ciOG(M7p)의 전사 변화와 유사하였다. 또한, 나노섬유 기질에서 배양된 ciOG (성숙하지 않음)에서 골형성-, 골아세포/세포- 및 말단 단계 특이 유전자의 발현 패턴은 상향 조절된 골형성 및 골아세포/골세포 유전자와 하향 조절된 말단 단계 유전자가 함께 평면 PCL 필름의 성숙한 ciOG(M7p)의 발현 패턴과 유사하였고, 나노섬유 기질이 골형성 성숙의 활성화를 위한 지형학적 신호를 제공했음을 시사한다.Next, we analyzed global transcriptional changes between ciOG and ciOG(M7p) derived from planar films of PCL versus PCL nanofibers. QuantSeq analysis enabled genetic profiling from limited amounts of RNA obtained from cultured cells. Hierarchical clustering analysis revealed significant differences in transfer between ciOG (unmatured) and planar films of PCL nanofibers. The overall transcriptional changes of ciOG produced on PCL nanofibers were similar to those of mature ciOG (M7p) on planar PCL films. Additionally, the expression pattern of osteogenic-, osteoblast/cell-, and distal stage-specific genes in ciOG (not mature) cultured on nanofibrous substrates was consistent with upregulated osteogenic and osteoblast/osteocyte genes and downregulated distal stage genes. Together, the stage genes resembled the expression pattern of mature ciOG (M7p) on planar PCL films, suggesting that the nanofibrous matrix provided a topographic signal for activation of osteogenic maturation.
이러한 결과를 바탕으로, 나노섬유 기질이 세포 재프로그래밍 동안 접착 의존적 기계 변환 세포 신호를 변경하는 나노 지형학적 신호를 제공할 수 있다고 판단하고, PCL 나노섬유 기질과 평면 PCL 필름에서 배양된 ciOG의 전역 전사체 (25,7376개의 유전자)를 분석한 결과, 1,706개의 유전자가 4배 이상 차등적으로 발현되는 것을 확인하였다. 즉, 836개의 유전자는 ciOG에서 상향 조절되고, 870개의 유전자는 필름 기질에 비해 나노섬유에서 하향 조절됨을 확인하였다. GO 용어 분석의 상위 20개 히트는 세포-기질 상호작용에 의존하는 기계적 변환, 세포 내 신호변환, 방추 조립 및 구성, 칼슘 이온 막 횡단 수송, 혈우병 세포 접착 및 막 횡단 수용체 단백질 티로신 키나제 신호의 관여를 나타냈다.Based on these results, we determined that nanofiber matrices can provide nanotopographic signals that alter adhesion-dependent mechanotransduction cell signaling during cell reprogramming, and demonstrated the global potential of ciOG cultured on PCL nanofiber substrates and planar PCL films. As a result of analyzing carcasses (25,7376 genes), it was confirmed that 1,706 genes were differentially expressed more than 4-fold. That is, 836 genes were confirmed to be up-regulated in ciOG, and 870 genes were down-regulated in nanofibers compared to film substrates. The top 20 hits from the GO term analysis involved involvement in mechanotransduction, intracellular signal transduction, spindle assembly and organization, calcium ion transmembrane transport, hemophilia cell adhesion, and transmembrane receptor protein tyrosine kinase signaling, all of which depend on cell-matrix interactions. indicated.
상향 조절된 유전자의 상위 30개 GO 범주 중에서, 기계적 변환과 관련된 것들은 Rho 단백질 신호 변환, 포스파티딜이노시톨-3-키나제 신호전달 및 세포질 칼슘 이온 농도를 포함한다. Rho 신호전달 (ARHGDIB, CIT, ARHGAP27, ARHGEF38), 액틴 형성 (ACTR3C), 미오신 (MYO1F, MYH3), 및 인테그린 (ITGB2)과 관련된 유전자는 5 내지 24배 상향 조절되었다. BMP, WNT 및 TGF-β신호 전달과 같은 상이한 골 형성 경로의 유전자 세트가 일관되지 않게 조절되었기 때문에, 이러한 기계적 전달 신호는 나노섬유에서 생성된 ciOG에서 변경된 세포 행동을 설명할 수 있는 독특한 메커니즘을 나타낸다.Among the top 30 GO categories of upregulated genes, those related to mechanotransduction include Rho protein signal transduction, phosphatidylinositol-3-kinase signaling, and cytosolic calcium ion concentration. Genes related to Rho signaling (ARHGDIB, CIT, ARHGAP27, ARHGEF38), actin formation (ACTR3C), myosin (MYO1F, MYH3), and integrin (ITGB2) were upregulated 5- to 24-fold. Because gene sets from different osteogenic pathways, such as BMP, WNT and TGF-β signaling, were inconsistently regulated, these mechanotransduction signals represent a unique mechanism that may explain the altered cell behavior in ciOG produced on nanofibers. .
세포 형태를 분석한 결과, 나노섬유와 평평한 필름 기질에서 유도된 세포 사이에 분명한 차이가 있음을 확인하였다. 나노섬유 기질의 세포는 시딩 후 4시간 이내에 700 nm 직경의 섬유 방향으로 길게 늘어나 나노섬유에 의한 세포 확산 억제를 나타내었다 (도 6f). 매트릭스 유형에 관계없이 7일간 유도하는 동안 세포 원형도에서 이러한 세포 신장 또는 감소는 섬유아세포에서 골형성세포로 변화한 결과이다. 나노섬유 매트릭스의 세포 형태 변화는 세포 내 기계적 변환 신호와 관련이 있다. 이에, 기계적 변환과 기계적 민감성 기기가 ciOG 생성에 관여하는지 여부를 확인하였다.As a result of analyzing cell morphology, it was confirmed that there was a clear difference between cells derived from nanofibers and flat film substrates. Cells on the nanofiber substrate elongated in the direction of the 700 nm diameter fiber within 4 hours after seeding, indicating inhibition of cell proliferation by the nanofiber (Figure 6f). Regardless of matrix type, this cell elongation or decrease in cell circularity during 7 days of induction is a result of the change from fibroblasts to osteogenic cells. Cell shape changes in nanofiber matrices are related to intracellular mechanotransduction signals. Accordingly, we examined whether mechanotransduction and mechanosensitive machinery are involved in ciOG production.
나노섬유 기질에 ciOG를 유도하는 동안 Y27632 (Rho-kinase inhibitor)와 블레비스타틴 (blebbistatin) (비근육 미오신 II 억제제 (nonmuscle myosin II inhibitor))과 같은 기계적 민감성 분자의 억제제를 사용하였다. 7일차에 RUNX2 핵 전위 및 그 양성 세포 수는 억제제 처리, 특히 블레비스타틴 처리에 의해 감소되었다 (도 6g). 더욱이, 억제제는 감소된 ARS 염색에 의해 나타낸 바와 같이 성숙한 ciOG(M14p)의 생체 광물화를 감소시켜 나노섬유 매트릭스 신호의 효과를 무효화하였다 (도 6h).Inhibitors of mechanosensitive molecules such as Y27632 (Rho-kinase inhibitor) and blebbistatin (nonmuscle myosin II inhibitor) were used during the induction of ciOG on nanofiber substrates. At day 7, RUNX2 nuclear translocation and its positive cell number were reduced by inhibitor treatment, especially blebbistatin treatment (Figure 6g). Moreover, the inhibitor reduced biomineralization of mature ciOG(M14p) as shown by reduced ARS staining, thereby nullifying the effect of nanofiber matrix signal (Figure 6h).
나노섬유가 필름보다 ciOG 재프로그래밍을 가속화하는 기본 메커니즘을 확인하기 위해 대표적인 세포수축 마커 (pMLC) 및 기계적 변환 전사 보조 활성화제 (TAZ, PDZ 결합 모티프가 있는 전사 보조 활성화제)를 조사하였고, 나노섬유에서 pMLC 강도의 증가와 TAZ가 핵 전위된 세포의 비율이 증가됨을 확인하였고, Y-27632 (rho 카이나제 억제제)를 처리한 그룹은 필름과 유사한 기저 수준으로 회복됨을 확인하였다. 반면에 액토미오신 수축 인히비터(억제제)인 Blebbistatin 처리 후에는 pMLC 관계없이 Taz 핵 전위를 직접 완화하는 것을 확인하였다 (도 6i). 즉, 나노섬유가 ciOG 재프로그래밍을 가속화하는 메커니즘을 요약하면 다음과 같다 (도 6j). i) 나노섬유 토폴로지는 독특하고 더 긴 구조로 인해 더 많은 액토미오신 수축을 유도하고, ii) 액토미오신 수축은 더 많은 RUNX2와 TAZ 핵 이동을 일으키고, iii) RUNX2/TAZ 복합체는 ciOG 재프로그래밍 효율 및 추가 성숙을 향상시켰다.To determine the underlying mechanism by which nanofibers accelerate ciOG reprogramming more than films, we investigated representative cell contractility markers (pMLC) and mechanotransduction transcriptional coactivators (TAZ, transcriptional coactivators with PDZ binding motifs), and nanofibers It was confirmed that the pMLC intensity increased and the proportion of cells in which TAZ was translocated to the nucleus increased, and the group treated with Y-27632 (rho kinase inhibitor) was confirmed to recover to a baseline level similar to the film. On the other hand, after treatment with Blebbistatin, an actomyosin contraction inhibitor, it was confirmed that Taz nuclear translocation was directly alleviated regardless of pMLC (Figure 6i). In other words, the mechanism by which nanofibers accelerate ciOG reprogramming is summarized as follows (Figure 6j). i) the nanofiber topology induces more actomyosin contraction due to its unique and longer structure, ii) actomyosin contraction causes more RUNX2 and TAZ nuclear migration, iii) the RUNX2/TAZ complex induces ciOG reprogramming efficiency and Further improved maturation.
ciOG 유도 및 성숙에서 나노섬유 매트릭스의 역할을 고려할 때, 생체 내에서 골 결함의 재생을 촉진시키는데 나노섬유 생성 ciOG가 Matrigel 생성 ciOG 보다 더 효과적인지를 테스트하였다. 7일 동안 성숙시킨 후, ciOG-나노섬유 및 ciOG-Matrigel 구조를 NOD/SCID 마우스의 임계 크기의 calvarium 결함에 이식하였다 (도 7a). 수술 후 12주차에 조직 샘플을 분석하였다. H&E 및 MT 염색은 ciOG(M7p)-나노섬유 그룹이 더 큰 콜라겐성 골 매트릭스 형성과 새롭게 석회화된 뼈를 나타냄을 보여주었다 (도 7b 및 도 7c). 후기 뼈 매트릭스 단백질인 인간 OCN에 대한 면역조직화학적 염색은 새로 형성된 매트릭스에서 강한 신호를 보여 나노섬유로 지지된 ciOG에 의한 골유도가 더 큰 것으로 확인하였다 (도 7d). 이러한 결과는 나노섬유 기질에서 ciOG를 생성하는 것이 생체 내 골 유도를 촉진하여야 하며, ciOG(M7p)-나노섬유 구조의 이식이 효과적인 골조직 공학 접근법이 될 수 있음을 시사한다.Considering the role of the nanofiber matrix in ciOG induction and maturation, we tested whether nanofiber-generated ciOG is more effective than Matrigel-generated ciOG in promoting the regeneration of bone defects in vivo. After maturation for 7 days, ciOG-nanofibers and ciOG-Matrigel structures were implanted into critical-sized calvarium defects of NOD/SCID mice (Figure 7a). Tissue samples were analyzed 12 weeks after surgery. H&E and MT staining showed that the ciOG(M7p)-nanofiber group exhibited greater collagenous bone matrix formation and newly calcified bone (Figures 7b and 7c). Immunohistochemical staining for human OCN, a late bone matrix protein, showed a strong signal in the newly formed matrix, confirming greater osteoinduction by nanofiber-supported ciOG (Figure 7d). These results suggest that generating ciOG on nanofiber matrices should promote bone induction in vivo and that implantation of ciOG(M7p)-nanofiber structures could be an effective bone tissue engineering approach.
실험예 5. 뼈 질환 모델링 및 약물 테스트를 위한 ciOG 플랫폼의 타당성Experimental Example 5. Feasibility of the ciOG platform for bone disease modeling and drug testing
생체 내 결함있는 골조직을 복구하는데 ciOG의 효능을 확인한 후, ciOG가 골 질환 모델링 및 약물 스크리닝에 유용할지 여부를 테스트하였다. 2개의 유전적 골 질환인 골형성부전증 (osteogenesis imperfecta; OI)과 프로테우스증후군 (Proteus syndrome; PS)이 선택되었다 (도 8a). OI와 PS는 각각 collagen type-1 alpha 1 chain (COL1A1) 유전자와 AKT serine/threonine kinase 1 (AKT1) 유전자의 돌연변이에 의해 발생하며, 뼈와 같은 결합 조직의 저성장과 과잉성장을 특징으로 한다.After confirming the efficacy of ciOG in repairing defective bone tissue in vivo, we tested whether ciOG would be useful in bone disease modeling and drug screening. Two genetic bone diseases, osteogenesis imperfecta (OI) and Proteus syndrome (PS), were selected (Figure 8a). OI and PS are caused by mutations in the collagen type-1 alpha 1 chain (COL1A1) and AKT serine/threonine kinase 1 (AKT1) genes, respectively, and are characterized by low and overgrowth of connective tissues such as bone.
OI 및 PS 환자 유래 섬유아세포를 사용하여, ciOG 생성 플랫폼을 적용하고 ciOG가 이러한 질병의 병리학적 특징을 재구성할 수 있는지 여부를 확인하였다. ciOG에 의한 골형성 유전자 (RUNX2, OCN 및 BSP)의 발현과 성숙한 세포 (ciOG(M28p))에 의한 광물화는 유전적 조건 사이에 상당한 차이를 나타냈다: PS > 정상 > OI (도 8b). 이는 환자 유래 세포에서 생성된 ciOG는 골결손 (OI) 및 과성장 (PS)의 유전적 표현형 특성을 재현하였음을 나타낸다.Using OI and PS patient-derived fibroblasts, we applied the ciOG generation platform and determined whether ciOG could reconstruct the pathological features of these diseases. Expression of osteogenic genes (RUNX2, OCN and BSP) by ciOG and mineralization by mature cells (ciOG(M28p)) showed significant differences between genetic conditions: PS > Normal > OI (Figure 8b). This indicates that ciOG generated from patient-derived cells reproduced the genetic and phenotypic characteristics of bone defect (OI) and overgrowth (PS).
다음으로, 성숙 단계 동안 PS에서 유래된 섬유아세포를 PS의 중요한 신호전달 경로인 AKT 신호전달을 억제하는 화학 ARQ092로 처리하였다. OCN 합성 및 광물화는 ARQ092-용량 의존적 방식으로 감소되었다 (도 8c 및 도 8d). 더욱이, ARQ092 처리는 AKT 신호전달 분자의 인산화를 유의하게 감소시켰으며 (도 8e), 이는 ARQ092가 AKT 신호전달 경로를 통한 골형성 분화를 억제함을 시사한다. ciOG 유도 동안 AKT 억제가 효과가 있는지 여부를 확인하기 위해, ARQ092는 유도 단계 동안 섬유아세포를 7일 동안 치료하기 위해 사용되었다. ARQ092-용량 의존적 방식으로 AKT 신호전달 분자 (pAKT 및 pPRAS40)는 유의미하게 하향 조절되었고, RUNX2 발현도 감소함을 확인하였다.Next, PS-derived fibroblasts during the maturation stage were treated with the chemical ARQ092, which inhibits AKT signaling, an important signaling pathway in PS. OCN synthesis and mineralization were reduced in an ARQ092-dose dependent manner (Figures 8C and 8D). Moreover, ARQ092 treatment significantly reduced the phosphorylation of AKT signaling molecules (Figure 8e), suggesting that ARQ092 inhibits osteogenic differentiation through the AKT signaling pathway. To determine whether AKT inhibition is effective during ciOG induction, ARQ092 was used to treat fibroblasts for 7 days during the induction phase. In an ARQ092-dose dependent manner, AKT signaling molecules ( p AKT and p PRAS40) were significantly downregulated, and RUNX2 expression was also confirmed to be decreased.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.Above, embodiments of the present invention have been described with reference to the attached drawings, but those skilled in the art will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. You will be able to understand it. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.
Claims (22)
- TGF β 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는, 체세포로부터 골형성세포를 유도하는 골형성세포 직접 분화용 배지 조성물.A medium composition for direct differentiation of osteogenic cells that induces osteogenic cells from somatic cells, comprising a TGF β receptor inhibitor, a cAMP signaling activator, and an epithelial Na + channel inhibitor as active ingredients.
- 제1항에 있어서,According to paragraph 1,상기 TGF β 수용체 억제제는 RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), SB431542 (4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide), TGF-β RI의 억제제, ALK4 및 ALK7로 이루어진 군에서 선택된 것을 특징으로 하는, 배지 조성물.The TGF β receptor inhibitors include RepSox (1,5-Naphthyridine, 2-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]), SB431542 (4-[4-(1,3 -benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide), an inhibitor of TGF-β RI, ALK4, and ALK7. A medium composition.
- 제1항에 있어서,According to paragraph 1,상기 cAMP 시그널링 액티베이터는 포스콜린(Forskolin), isoproterenol, isopreterenol, NKH 477, isoprotereno(Chemical based), PACAP 1-27, 및 PACAP 1-38(peptide based)로 이루어진 군에서 선택된 것을 특징으로 하는, 배지 조성물.The cAMP signaling activator is a medium composition characterized in that it is selected from the group consisting of Forskolin, isoproterenol, isopreterenol, NKH 477, isoprotereno (Chemical based), PACAP 1-27, and PACAP 1-38 (peptide based) .
- 제1항에 있어서,According to paragraph 1,상기 상피세포 Na+ 채널 억제제는 페나밀 (Phenamil; 3,5-diamino-6-chloro-N-(N'-phenylcarbamimidoyl)pyrazine-2-carboxamide)인 것을 특징으로 하는, 배지 조성물.A medium composition, wherein the epithelial cell Na + channel inhibitor is Phenamil (3,5-diamino-6-chloro- N -( N '-phenylcarbamimidoyl)pyrazine-2-carboxamide).
- 제1항에 있어서,According to paragraph 1,상기 체세포는 섬유아세포인 것을 특징으로 하는, 배지 조성물.A medium composition, wherein the somatic cells are fibroblasts.
- 제1항에 있어서,According to paragraph 1,상기 골형성세포는 FBS(fetal bovine serum)가 첨가되지 않는 조건에서 유도되는 것을 특징으로 하는, 배지 조성물.A medium composition, characterized in that the osteogenic cells are induced under conditions in which FBS (fetal bovine serum) is not added.
- 제1항에 있어서,According to paragraph 1,상기 골형성세포는 유도되지 않은 섬유아세포보다 골형성 유전자의 발현이 현저하게 높은 것을 특징으로 하는, 배지 조성물.A medium composition, wherein the osteogenic cells have significantly higher expression of osteogenic genes than non-induced fibroblasts.
- 제7항에 있어서,In clause 7,상기 골형성 유전자는 RUNX2 (Runt-related transcription factor 2), BSP (bone sialoprotein), ALP (alkaline phosphatase) 및 OCN (osteocalcin)으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는, 배지 조성물.A medium composition, wherein the osteogenic gene is at least one selected from the group consisting of RUNX2 (Runt-related transcription factor 2), BSP (bone sialoprotein), ALP (alkaline phosphatase), and OCN (osteocalcin).
- 제1항에 있어서,According to paragraph 1,상기 골형성세포는 RUNX2의 핵 전위를 나타내는 것을 특징으로 하는, 배지 조성물.A medium composition, characterized in that the osteogenic cells exhibit nuclear translocation of RUNX2.
- 제9항에 있어서,According to clause 9,상기 골형성세포의 RUNX2의 핵 강도 및 핵 전위 세포의 비율은 섬유아세포보다 더 높은 것을 특징으로 하는, 배지 조성물.A medium composition, characterized in that the nuclear intensity of RUNX2 and the ratio of nuclear translocation cells of the osteogenic cells are higher than those of fibroblasts.
- 제1항에 있어서,According to paragraph 1,상기 골형성세포에서 BMP 신호전달 유전자가 상향 조절되는 것을 특징으로 하는, 배지 조성물.A medium composition, characterized in that the BMP signaling gene is up-regulated in the osteogenic cells.
- 제11항에 있어서,According to clause 11,상기 BMP 신호전달 유전자가 상향 조절되는 것은 BMP 효능제 유전자가 활성화되고, BMP 길항제 유전자가 억제 조절되는 것을 특징으로 하는, 배지 조성물.A medium composition, wherein the up-regulation of the BMP signaling gene results in the activation of the BMP agonist gene and the inhibition and regulation of the BMP antagonist gene.
- 제12항에 있어서,According to clause 12,상기 BMP 효능제 유전자는 BMP1-11 또는 ID1이고, 상기 BMP 길항제 유전자는 GREM1 또는 GREM2인 것을 특징으로 하는, 배지 조성물.The medium composition, characterized in that the BMP agonist gene is BMP1-11 or ID1, and the BMP antagonist gene is GREM1 or GREM2.
- 제1항에 있어서,According to paragraph 1,상기 골형성세포에서 IGF 신호전달 유전자가 상향 조절되는 것을 특징으로 하는, 배지 조성물.A medium composition, characterized in that the IGF signaling gene is up-regulated in the osteogenic cells.
- 제14항에 있어서,According to clause 14,상기 IGF 신호전달 유전자는 IGF1, IGF2, IGF1R, IGF2R 또는 IGFBP2-7인 것을 특징으로 하는, 배지 조성물.A medium composition, wherein the IGF signaling gene is IGF1, IGF2, IGF1R, IGF2R, or IGFBP2-7.
- TGF β 수용체 억제제, cAMP 시그널링 액티베이터 및 상피세포 Na+ 채널 억제제를 유효성분으로 포함하는 배지에서 배양하여, 체세포로부터 골형성세포를 유도하는 직접분화 방법.A direct differentiation method for inducing osteogenic cells from somatic cells by culturing them in a medium containing a TGF β receptor inhibitor, cAMP signaling activator, and epithelial Na + channel inhibitor as active ingredients.
- 제16항에 있어서,According to clause 16,상기 배양은 4 내지 12일 동안 수행되는 것을 특징으로 하는, 직접분화 방법.Direct differentiation method, characterized in that the culture is performed for 4 to 12 days.
- 제16항에 있어서,According to clause 16,상기 체세포는 섬유아세포인 것을 특징으로 하는, 직접분화 방법.Direct differentiation method, wherein the somatic cells are fibroblasts.
- 제16항의 방법으로 생성된 골형성세포를 유효성분으로 포함하는 골질환 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating bone disease, comprising osteogenic cells produced by the method of claim 16 as an active ingredient.
- 제19항에 있어서,According to clause 19,상기 골질환은 골절, 골다공증, 류마티스성 관절염, 치주염, 파제트병, 골연화증, 골감소증, 골위축, 골관절염, 골형성부전증, 프로테우스증후군 및 무혈성대퇴골괴사로 이루어진 군으로부터 선택되는 하나 이상인 골질환 예방 또는 치료용 약학적 조성물.The bone disease is one or more bone diseases selected from the group consisting of fracture, osteoporosis, rheumatoid arthritis, periodontitis, Paget's disease, osteomalacia, osteopenia, bone atrophy, osteoarthritis, osteogenesis imperfecta, Proteus syndrome, and avascular femoral osteonecrosis. Pharmaceutical composition.
- 제16항의 방법으로 생성된 골형성세포를 유효성분으로 포함하는 골질환 예방 또는 개선용 식품 조성물.A food composition for preventing or improving bone disease, comprising osteogenic cells produced by the method of claim 16 as an active ingredient.
- 제16항의 방법으로 생성된 골형성세포를 유효성분으로 포함하는 조성물을 인간을 제외한 대상체의 손상 경조직에 처리하는 단계를 포함하는 골질환 예방 또는 치료방법.A method for preventing or treating bone disease comprising treating damaged hard tissue of a subject other than humans with a composition containing osteogenic cells produced by the method of claim 16 as an active ingredient.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220113429A KR20240034927A (en) | 2022-09-07 | 2022-09-07 | Chemically-induced osteogenic cells and their application in disease modeling |
KR10-2022-0113429 | 2022-09-07 | ||
KR10-2022-0113430 | 2022-09-07 | ||
KR1020220113430A KR20240035647A (en) | 2022-09-07 | 2022-09-07 | Scaffold for bone graft of chemically-induced osteogenic cells and PCL-based nanofiber structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024053957A1 true WO2024053957A1 (en) | 2024-03-14 |
Family
ID=90191463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/013146 WO2024053957A1 (en) | 2022-09-07 | 2023-09-04 | Chemically-induced osteogenic cells and use thereof in disease modeling, and scaffold for bone grafting |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024053957A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130085752A (en) * | 2012-01-20 | 2013-07-30 | 고려대학교 산학협력단 | Method for induction cardiac myocyte from somatic cells using direct reprogramming strategy by small molecule treatment without genetic modification |
KR20160145174A (en) * | 2014-04-18 | 2016-12-19 | 교토후고리츠다이가쿠호진 | Method for preparing osteoblasts and osteoblast inducer |
KR20180073631A (en) * | 2015-10-21 | 2018-07-02 | 교토후고리츠다이가쿠호진 | Cell preparation method |
KR20180096538A (en) * | 2017-02-21 | 2018-08-29 | 성균관대학교산학협력단 | Process for the chemically induced skeletal muscle differentiation |
KR20200129274A (en) * | 2019-05-08 | 2020-11-18 | 성균관대학교산학협력단 | Methods and compositions for the direct conversion to brown adipocyte-like cells using low molecular weight compounds |
-
2023
- 2023-09-04 WO PCT/KR2023/013146 patent/WO2024053957A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130085752A (en) * | 2012-01-20 | 2013-07-30 | 고려대학교 산학협력단 | Method for induction cardiac myocyte from somatic cells using direct reprogramming strategy by small molecule treatment without genetic modification |
KR20160145174A (en) * | 2014-04-18 | 2016-12-19 | 교토후고리츠다이가쿠호진 | Method for preparing osteoblasts and osteoblast inducer |
KR20180073631A (en) * | 2015-10-21 | 2018-07-02 | 교토후고리츠다이가쿠호진 | Cell preparation method |
KR20180096538A (en) * | 2017-02-21 | 2018-08-29 | 성균관대학교산학협력단 | Process for the chemically induced skeletal muscle differentiation |
KR20200129274A (en) * | 2019-05-08 | 2020-11-18 | 성균관대학교산학협력단 | Methods and compositions for the direct conversion to brown adipocyte-like cells using low molecular weight compounds |
Non-Patent Citations (3)
Title |
---|
BAR-NUR ORI, GERLI MATTIA F.M., DI STEFANO BRUNO, ALMADA ALBERT E., GALVIN AMY, COFFEY AMY, HUEBNER AARON J., FEIGE PETER, VERHEUL: "Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors", STEM CELL REPORTS, CELL PRESS, UNITED STATES, vol. 10, no. 5, 1 May 2018 (2018-05-01), United States , pages 1505 - 1521, XP093147876, ISSN: 2213-6711, DOI: 10.1016/j.stemcr.2018.04.009 * |
K. W. PARK, H. WAKI, W.-K. KIM, B. S. J. DAVIES, S. G. YOUNG, F. PARHAMI, P. TONTONOZ: "The Small Molecule Phenamil Induces Osteoblast Differentiation and Mineralization", MOLECULAR AND CELLULAR BIOLOGY, AMERICAN SOCIETY FOR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, US, vol. 29, no. 14, 15 July 2009 (2009-07-15), US , pages 3905 - 3914, XP055452467, ISSN: 0270-7306, DOI: 10.1128/MCB.00002-09 * |
YOON JI-YOUNG, MANDAKHBAYAR NANDIN, HYUN JEONGEUN, YOON DONG SUK, PATEL KAPIL D., KANG KEUNSOO, SHIM HO-SHUP, LEE HAE-HYOUNG, LEE : "Chemically-induced osteogenic cells for bone tissue engineering and disease modeling", BIOMATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 289, 1 October 2022 (2022-10-01), AMSTERDAM, NL , pages 121792, XP093147880, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2022.121792 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cancedda et al. | Developmental control of chondrogenesis and osteogenesis | |
Xue et al. | Cartilage progenitor cells combined with PHBV in cartilage tissue engineering | |
Tao et al. | Fibronectin enhances cartilage repair by activating progenitor cells through integrin α5β1 receptor | |
EP3303556B1 (en) | Compositions for treatment of osteochondral disorders | |
US20070178074A1 (en) | Chondrocyte Culture Formulations | |
US20050118228A1 (en) | Compositions and methods for augmentation or repair of intervertebral discs | |
Frauchiger et al. | Differentiation of MSC and annulus fibrosus cells on genetically engineered silk fleece‐membrane‐composites enriched for GDF‐6 or TGF‐β3 | |
WO2020004893A1 (en) | Method for preparing pellets of chondrocytes from human induced pluripotent stem cells, and use thereof | |
Teng et al. | Extracellular matrix powder from cultured cartilage-like tissue as cell carrier for cartilage repair | |
Kim et al. | Atelocollagen promotes chondrogenic differentiation of human adipose-derived mesenchymal stem cells | |
WO2015012582A1 (en) | Preparation method for therapeutic agent of bead-type chondrocyte | |
Bhardwaj et al. | Silk fibroin scaffold-based 3D co-culture model for modulation of chondrogenesis without hypertrophy via reciprocal cross-talk and paracrine signaling | |
Casanova et al. | Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source | |
Hagmeijer et al. | Meniscus regeneration combining meniscus and mesenchymal stromal cells in a degradable meniscus implant: An in vitro study | |
Yoon et al. | Chemically-induced osteogenic cells for bone tissue engineering and disease modeling | |
US20110111030A1 (en) | Method of Producing Progenitor Cells from Differentiated Cells | |
WO2014088205A1 (en) | Cartilage scaffold prepared using benign cartilaginous tumor cells, and preparation method therefor | |
WO2015186906A1 (en) | Autologous and allogeneic adipose-derived mesenchymal stem cell composition for healing tendon or ligament injury, and preparation method therefor | |
EP3967335A1 (en) | Engineered devitalized cartilaginous tissue for bone regeneration | |
WO2024053957A1 (en) | Chemically-induced osteogenic cells and use thereof in disease modeling, and scaffold for bone grafting | |
WO2011037416A9 (en) | Method of manufacturing cell spheroids which are mixed cellular complexes for cell transplantation and usage thereof | |
EP2949747B1 (en) | Creation of three-dimensional synthetic tissue from pluripotent stem cell-derived cells, and osteochondral regeneration treatment using said snthetic tissue | |
WO2022075809A1 (en) | Osteoblasts differentiated from mesenchymal stem cells and composition for treating bone disease comprising same | |
KR20240034927A (en) | Chemically-induced osteogenic cells and their application in disease modeling | |
Jansen et al. | Human periosteum‐derived cells from elderly patients as a source for cartilage tissue engineering? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23863431 Country of ref document: EP Kind code of ref document: A1 |