WO2017026771A1 - Adjustable intraocular lens - Google Patents

Adjustable intraocular lens Download PDF

Info

Publication number
WO2017026771A1
WO2017026771A1 PCT/KR2016/008747 KR2016008747W WO2017026771A1 WO 2017026771 A1 WO2017026771 A1 WO 2017026771A1 KR 2016008747 W KR2016008747 W KR 2016008747W WO 2017026771 A1 WO2017026771 A1 WO 2017026771A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
unit
optical
intraocular lens
disposed
Prior art date
Application number
PCT/KR2016/008747
Other languages
French (fr)
Korean (ko)
Inventor
현동원
Original Assignee
현동원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현동원 filed Critical 현동원
Priority to CN201680047445.2A priority Critical patent/CN107920917B/en
Priority to EP16835411.6A priority patent/EP3335678B1/en
Priority to US15/751,898 priority patent/US10368978B2/en
Priority to JP2018513271A priority patent/JP6648263B2/en
Priority claimed from KR1020160101224A external-priority patent/KR101816887B1/en
Publication of WO2017026771A1 publication Critical patent/WO2017026771A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea

Definitions

  • the present invention relates to an intraocular lens, and more particularly to an adjustable intraocular lens implanted in the human eye.
  • intraocular lens refers to an intraocular lens implanted into the eye in place of the clouded lens of a cataract patient.
  • Such intraocular lens implantation is a method of removing a cataract from a cataract patient and inserting an intraocular lens (artificial intraocular lens) made of artificial material as a substitute to replace the role of eyeglasses or contact lenses after surgery.
  • an intraocular lens artificial intraocular lens
  • cataract is a disease in which the lens of the eye becomes cloudy and external light cannot be clearly formed in the retina, and the vision is poor. It is common practice to insert an intraocular lens (artificial lens) made of various materials that do not cause complications.
  • US Patent Publication No. 2009-0088840 (name of the invention: ZONAL DIFFRACTIVE MULTIFOCAL INTRAOCULAR LENSES) discloses a technique for forming a refractive region on the surface of a lens to provide a multifocal guide lens.
  • Embodiments of the present invention are to provide an adjustable intraocular lens with improved visibility by aligning the light incident on the intraocular lens.
  • a lens body having a front surface and a rear surface, and having a central optical portion formed convexly in a first direction, a plurality of support portions and at least a portion extending radially from an edge of the lens body.
  • An adjustable intraocular lens is disposed to be included inside the unit and includes an optical fiber unit disposed to circumscribe the central optical unit outside the central optical unit.
  • the adjustable intraocular lens transmits light incident on the central optical unit, but selectively transmits light incident on the optical fiber unit to clearly form an image.
  • the depth of focus may be improved by aligning the light incident on the optical fiber part.
  • the adjustable intraocular lens adjusts the amount of light passing through the central optical unit, thereby controlling the brightness of the image formed on the retina.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a perspective view showing an adjustable intraocular lens according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating the adjustable intraocular lens of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1.
  • FIG. 4 is a cross-sectional view illustrating a modified example of the adjustable intraocular lens of FIG. 1.
  • 5A to 5F are cross-sectional views illustrating another modified example of the adjustable intraocular lens of FIG. 1.
  • FIG. 6 is a perspective view showing an adjustable intraocular lens according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 6.
  • 8A to 8G are cross-sectional views illustrating a modified example of the adjustable intraocular lens of FIG. 6.
  • FIG. 9 is a perspective view showing an adjustable intraocular lens according to another embodiment of the present invention.
  • 10A is a cross-sectional view of the human eye showing a natural lens.
  • 10B is a cross-sectional view of the human eye with the adjustable intraocular lens of FIG. 1 inserted.
  • FIG. 11 is a conceptual diagram illustrating that external light is incident on the adjustable intraocular lens of FIG. 1.
  • a lens body having a front surface and a rear surface, and having a central optical portion formed convexly in a first direction, a plurality of support portions and at least a portion extending radially from an edge of the lens body.
  • An adjustable intraocular lens is disposed to be included inside the unit and includes an optical fiber unit disposed to circumscribe the central optical unit outside the central optical unit.
  • the refractive index of the optical fiber part may be different from the refractive index of the central optical part.
  • optical fiber unit may be disposed such that the longitudinal direction and the first direction of the optical fiber unit forms a predetermined angle.
  • the lens body may include a transition part surrounding the central optical part, the optical fiber part is disposed, and an edge part surrounding the transition part and to which the plurality of support parts are connected.
  • the thickness of the transition part in the first direction may become thinner from the central optical part toward the edge part.
  • the optical fiber unit may include a first fiber unit disposed adjacent to the central optical unit and a second fiber unit disposed radially adjacent to the first fiber unit.
  • the length of the first fiber portion and the angle formed by the first direction may be smaller than the angle formed by the length direction of the second fiber portion and the second direction.
  • the optical fiber portion may be disposed in a plurality in the radial direction of the central optical portion, the diameter of the optical fiber portion may be reduced in the radial direction.
  • optical fiber unit may extend from the front surface of the lens body to the rear surface.
  • optical fiber unit may be inserted into the front or rear of the lens body.
  • optical fiber unit may be disposed inside the lens body.
  • the optical fiber unit may be disposed closer to the front surface than the rear surface of the lens body or adjacent to the rear surface than the front surface of the body.
  • optical fiber unit may be formed so that the outer wall tapered in the first direction.
  • optical fiber portion may be selected from any one of glass fiber and optical fiber.
  • the external light incident on the optical fiber part may be totally reflected at the inner wall of the optical fiber part.
  • the external light toward the central optical part passes through the central optical part and the external light toward the optical fiber part. May selectively pass depending on the angle of incidence.
  • a light absorbing paint may be applied to the outer wall of the optical fiber unit.
  • FIG. 1 is a perspective view illustrating an adjustable intraocular lens 100 according to an embodiment of the present invention
  • FIG. 2 is a plan view of the adjustable intraocular lens 100 of FIG. 1
  • FIG. 3 is III of FIG. 1. Sectional view taken along line -III.
  • the adjustable intraocular lens 100 may include a lens body 150, an optical fiber unit 160, and a support unit 170.
  • the adjustable intraocular lens 100 may remove some or all of the natural lens of the human eye 17 (see FIG. 10A) and may be implanted in the removed portion.
  • the angle of incidence of light incident on the adjustable intraocular lens 100 is defined as an angle between the direction of the center line CL in the thickness direction of the adjustable intraocular lens 100 and the direction of incident light. Therefore, the small angle of incidence means that light is incident almost perpendicularly to the adjustable intraocular lens 100, and the large incidence angle means that the adjustable intraocular lens 100 is positioned at the side of the adjustable intraocular lens 100. It means to be incident toward.
  • the lens body 150 may have a front surface 150a and a rear surface 150b.
  • the front surface 150a corresponds to a region where external light is incident.
  • the rear face 150b corresponds to the front face 150a and corresponds to an area in contact with the capsular bag of the person or facing toward the retina. External light may enter the front surface 150a and move the lens body 150 to pass through the rear surface 150b.
  • the lens body 150 may include a central optical unit 110, a transition unit 120 on which the optical fiber unit 160 is disposed, and an edge unit 130.
  • the lens body 150 is an area through which external light is transmitted, and is typically used as an optic.
  • the lens body 150 may be made of a relatively hard material, a relatively soft flexible semi-rigid material, or a combination of these hard materials and soft materials.
  • the lens body 150 may be polymethyl methacrylate (PMMA), polysulfone (PSF), or other relatively hard biologically inert optical material.
  • PMMA polymethyl methacrylate
  • PSF polysulfone
  • the lens body 150 may also be a silicone inert, hydrogel, thermolabile materials, and other flexible, inert, biologically inert optical materials.
  • the central optic zone 110 may be convex in the first direction, which is the thickness direction of the lens body 150.
  • the central optical unit 110 may have the front surface 150a convex in the first direction or the rear surface 150b may be convex in the first direction.
  • the front surface 150a and the rear surface 150b may be convex.
  • the front surface 150a and the rear surface 150b will be described in a convex manner for convenience of description.
  • the central optical unit 110 may be disposed at the center of the lens body 150.
  • the central optical unit 110 may receive most of the external light incident on the adjustable intraocular lens 100.
  • the central optics 110 may be aligned to the macula when the adjustable intraocular lens 100 is implanted in the human eye.
  • the transition part 120 may surround the central optical part 110, and the optical fiber part 160 may be disposed.
  • the transition part 120 may be formed such that the thickness in the first direction decreases from the central optical part 110 to the edge part 130.
  • the transition part 120 may have a predetermined groove to distinguish the central optical part 110 and the edge part 130.
  • the edge part 130 may surround the transition part 120 and a plurality of support parts 170 may be connected.
  • the edge portion 130 may be formed in a circular shape as shown in FIG. 2. However, the shape of the edge portion 130 is not limited thereto, and the portion to which the support portion 170 is connected may be formed flat.
  • the optical fiber unit 160 may be disposed around the outer portion of the central optical unit 110.
  • the optical fiber unit 160 may be disposed such that at least a portion thereof is included in the central optical unit 110.
  • the optical fiber unit 160 may be formed to extend in the first direction.
  • the cross section of the optical fiber unit 160 may be polygonal or circular.
  • the optical fiber unit 160 may be formed in a substantially polygonal pillar shape or a substantially circular pillar shape.
  • the optical fiber unit 160 may be disposed in plural along the central optical unit 110 to form an annular shape.
  • the optical fiber unit 160 may be disposed in plural in the radial direction of the central optical unit 110.
  • the optical fiber unit 160 may be partially overlapped and disposed continuously.
  • the optical fiber parts 160 may be disposed to have a predetermined distance from each other. However, hereinafter, it will be described mainly for the case where the three fibers are arranged regularly with a predetermined interval for convenience of description.
  • the optical fiber part 160 is adjacent to the central optical part 110 and disposed in a circular direction along the central optical part 110 and in the radial direction of the first fiber part 161.
  • positioned at the outer side in the radial direction of the 2nd fiber part 162 may be provided.
  • the first fiber portion 161, the second fiber portion 162, and the third fiber portion 163 may be formed to extend from the front surface 150a to the rear surface 150b, respectively.
  • the optical fiber unit 160 may form a predetermined angle with each of the longitudinal direction and the first direction.
  • the optical fiber unit 160 may form a predetermined angle with the center line CL of the central optical unit 110.
  • the angle may increase in the radial direction of the central optical unit 110.
  • the optical fiber unit 160 is disposed to have a predetermined angle, and when light having a large incident angle is incident, the light may be reflected by the sidewall of the optical fiber unit 160. In this case, the optical fiber unit 160 may have an inclined bar, thereby widening an incident area, and thus may effectively align light.
  • the longitudinal direction of the first fiber part 161 and the center line CL of the central optical part 110 form a first angle ⁇
  • the center line CL of 110 forms a second angle ⁇
  • the longitudinal direction of the third fiber portion 163 and the center line of the central optical portion 110 form a third angle ⁇ .
  • the third angle is greater than the second angle and greater than the first angle.
  • the third angle is larger than the second angle. Therefore, the optical fiber unit 160 may be disposed such that the arrangement angle becomes smaller in the radial direction from the center line CL.
  • FIG. 4 is a cross-sectional view illustrating a modified example of the adjustable intraocular lens 100 of FIG. 1.
  • the optical fiber part 160 ′ may have a center in the longitudinal direction in one region P. As shown in FIG. The extension lines in the longitudinal direction of the first fiber portion 161 ′, the second fiber portion 162 ′, and the third fiber portion 163 ′ may be arranged to gather in one region P, the optical fiber portion 160 ′. ) Can secure the field of view by converging the external light to one area.
  • the distance b of the region where the optical fiber part 160 is disposed may be smaller than the diameter a of the central optical part 110.
  • Most of the light incident from the outside passes through the central optical unit 110, and only a portion of the light having a large incident angle is reflected by the optical fiber unit 160 to align the light.
  • the incident angle is an angle between the first direction and the moving direction of the light. Detailed description thereof will be described later.
  • the refractive index of the optical fiber unit 160 may be formed to be different from the refractive index of the central optical unit 110.
  • the refractive index of the optical fiber unit 160 may be greater than the refractive index of the central optical unit 110, or the refractive index of the optical fiber unit 160 may be smaller than the refractive index of the central optical unit 110.
  • light incident on the optical fiber unit 160 may be selectively transmitted according to the incident angle.
  • the optical fiber unit 160 may be selected from any of materials of optical fiber or glass fiber.
  • the support unit 170 may extend in a radial direction from the edge portion 130 of the lens body 150.
  • the support unit 170 may be provided in plurality, and typically, the support unit 170 is used as a haptic.
  • the support unit 170 may prevent the lens body 150 from moving or rotating within the eyeball. That is, the support unit 170 is supported on the inner surface of the eye, such as intracapsular or sulcus, so that the lens body 150 may be disposed on the optical path of the eye.
  • the support 170 may have various shapes and sizes depending on the position where the adjustable intraocular lens 100 is implanted.
  • the support 170 can be C-shaped, J-shaped, U-shaped, flat design or other design.
  • FIGS. 5A to 5F illustrate the adjustable intraocular lens 100 of FIG. 1. It is sectional drawing which shows the modification of. Modifications of the adjustable intraocular lens 100 are characteristically different in structure and arrangement of the optical fiber portion, which will be described below.
  • the optical fiber unit 160a may be inserted to connect the rear surface 150b from the front surface 150a.
  • the first fiber portion 161a and the second fiber portion 162a may extend in the first direction from the front surface 150a toward the rear surface 150b.
  • the optical fiber unit 160a may selectively pass external light incident to the transition unit 120 of the front surface 150a.
  • the optical fiber part 160a may reflect and pass a part of the incident light according to the refractive index of the optical fiber part 160a.
  • the optical fiber unit 160a may reflect all incident light.
  • the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light.
  • the optical fiber unit 160a may pass through only a part of the external light incident to the adjustable intraocular lens 100 to generate a clear image on the retina.
  • the optical fiber portion 160a forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased as compared to the pinhole effect, which is brighter in the retina. Allows sharp images to be created.
  • the optical fiber unit 160b may be formed to be inserted into the front surface 150a.
  • the optical fiber portion 160b has a predetermined length inserted in the first direction from the front surface 150a, and the optical fiber portion 160 does not extend to the rear surface 150b.
  • the optical fiber part 160b may include a first fiber part 161b and a second fiber part 162b, and each of the optical fiber parts 160b may be inserted into the front surface 150a along a first direction with a predetermined length. have.
  • the optical fiber unit 160b may selectively pass external light incident to the transition unit 120 of the front surface 150a.
  • the optical fiber part 160b may reflect and pass a part of the incident light according to the refractive index of the optical fiber part 160b.
  • the optical fiber unit 160b may reflect all the incident light.
  • the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light.
  • the optical fiber unit 160b may pass through only a part of the external light incident to the adjustable intraocular lens 100 to clearly generate an image on the retina.
  • the optical fiber unit 160b forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which the light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
  • the optical fiber unit 160c may be formed to be inserted into the rear surface 150b.
  • the optical fiber unit 160c has a predetermined length inserted in the first direction from the rear surface 150b, and the optical fiber unit 160c does not extend to the front surface 150a.
  • the optical fiber part 160c may include a first fiber part 161c and a second fiber part 162c, and each of the optical fiber parts 160c may be inserted into the rear surface 150b along a first direction with a predetermined length. have.
  • the optical fiber unit 160c may selectively pass external light incident to the transition unit 120 of the front surface 150a.
  • the external light is incident on the transition part 120 and moves toward the optical fiber part 160c.
  • the optical fiber unit 160c may selectively pass external light incident to the transition unit 120 of the front surface 150a.
  • the optical fiber unit 160c may reflect and pass a part of the incident light according to the refractive index of the optical fiber unit 160c.
  • the optical fiber unit 160c may reflect all incident light.
  • the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light.
  • the optical fiber unit 160c may pass through only a part of the external light incident to the adjustable intraocular lens 100 to clearly generate an image on the retina.
  • the optical fiber unit 160c forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
  • the optical fiber unit 160d may be disposed inside the lens body 150.
  • the optical fiber unit 160d may be disposed adjacent to the front surface of the lens body 150.
  • the optical fiber part 160d may include a first fiber part 161d and a second fiber part 162d, and may be disposed inside the transition part 120 along the first direction, respectively.
  • the first fiber portion 161d and the second fiber portion 162d may be disposed closer to the front surface than the rear surface 150b.
  • the optical fiber unit 160d may selectively pass external light incident to the transition unit 120 of the front surface 150a.
  • the optical fiber unit 160d may reflect and pass a part of the incident light according to the refractive index of the optical fiber unit 160d.
  • the optical fiber unit 160d may reflect all the incident light.
  • the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light.
  • the optical fiber unit 160d may pass a portion of the external light incident to the adjustable intraocular lens 100 so that an image may be clearly generated on the retina.
  • the optical fiber unit 160d forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
  • the optical fiber unit 160e may be disposed in the lens body 150.
  • the optical fiber unit 160e may be disposed adjacent to the rear surface of the lens body 150.
  • the optical fiber part 160e may include a first fiber part 161e and a second fiber part 162e, and may be disposed inside the transition part 120 along the first direction, respectively.
  • the first fiber portion 161e and the second fiber portion 162e may be disposed closer to the rear surface 150b than to the front surface 150a.
  • the optical fiber unit 160e may selectively pass external light incident to the transition unit 120 of the front surface 150a.
  • the optical fiber part 160e may reflect and pass a part of the incident light according to the refractive index of the optical fiber part 160e.
  • the optical fiber unit 160e may reflect all incident light.
  • the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light.
  • the optical fiber unit 160e may pass through only a part of the external light incident to the adjustable intraocular lens 100 to clearly generate an image on the retina.
  • the optical fiber portion 160e has an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
  • the optical fiber unit 160f may be disposed inside the lens body 150.
  • the optical fiber unit 160f may be disposed at the center of the thickness of the lens body 150.
  • the optical fiber part 160f may include a first fiber part 161f and a second fiber part 162f, and may be disposed inside the transition part 120 along the first direction.
  • the first fiber portion 161e and the second fiber portion 162e may be disposed between the front surface 150a and the rear surface 150b.
  • FIG. 6 is a perspective view illustrating the adjustable intraocular lens 200 according to another embodiment of the present invention
  • FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 6.
  • the adjustable intraocular lens 200 may include a lens body 250, a support 270, and an optical fiber unit 260.
  • the lens body 250 may include a central optical unit 210, a transition unit 220, and an edge unit 230.
  • another embodiment of the present invention is different in that the other parts are the same as the original embodiment, and the shape and arrangement of the optical fiber portion 260 is characterized in that differently formed. Therefore, in the description of the present embodiment, the part without description thereof will be used the description of the embodiment described above, and detailed description thereof will be omitted.
  • the optical fiber part 260 may be disposed in plural in the radial direction of the central optical part 210, and the diameter of the optical fiber part 260 may be formed to decrease in the radial direction.
  • a description will be given mainly for the case of forming three fiber parts for convenience of description.
  • the optical fiber part 260 is adjacent to the central optical part 210 and is disposed in a circular direction along the central optical part 210 in the radial direction of the first fiber part 261 and the first fiber part 261. It may have a second fiber portion 262 disposed outside. In addition, the second fiber portion 262 may be provided with a third fiber portion 263 disposed on the outer side in the radial direction. The diameter of the first fiber portion 261 disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263 disposed at the outermost portion of the central optical portion 210 is the smallest. Can be.
  • the optical fiber unit 260 may form a predetermined angle with each of the longitudinal direction and the first direction.
  • the optical fiber unit 260 may form a predetermined angle with the center line CL of the central optical unit 210.
  • the angle may increase in the radial direction of the central optical unit 210.
  • External light incident on the central optical unit 210 may pass through the central optical unit to form an image on the retina.
  • the light passing through the central optical unit 210 may brighten the formed image.
  • the optical fiber portion may be arranged in plural in the radial direction of the central optical portion, and the diameter of the optical fiber portion may be formed to decrease in the radial direction.
  • the diameter of the first fiber portion 261 is designed to be large, a larger amount of aligned light toward the macula, which is a structure in the retina forming the center of the visual axis, can be ensured.
  • the adjustable intraocular lens 200 with improved brightness may be provided.
  • the diameter of the third fiber portion 263 is reduced, the density of the optical fibers included in the same area is increased, and the light is incident at a large angle of incidence toward the outside of the adjustable guide lens 200, thereby improving the depth of focus. Can block the obstructing light effectively.
  • the area of the first fiber part 261 in the transition part 220 is reduced. Therefore, the light incident on the transition part 220 relatively increases. Since the first fiber portion 261 is disposed adjacent to the central optical portion 210, the first fiber portion 261 increases the transmission amount of light incident to the region near the central optical portion 210 and transmits the light incident to the region far from the central optical portion 210. Can be lowered. Therefore, it is possible to provide the adjustable intraocular lens 200 with improved brightness.
  • FIG. 8A to 8G are cross-sectional views illustrating a modified example of the adjustable intraocular lens 200 of FIG. 6. Modifications of the adjustable intraocular lens 200 are characteristically different in the structure and arrangement of the optical fiber portion, which will be described below.
  • the optical fiber unit 260a may be inserted to connect the rear surface 250b at the front surface 250a.
  • the optical fiber part 260a may include a first fiber part 261a, a second fiber part 262a, and a third fiber part 263a, each of which has a front surface 250a along the first direction. May extend to the rear surface 250b.
  • the diameter of the first fiber portion 261a disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263c disposed outermost to the central optical portion 210 is formed the smallest. Can be.
  • the optical fiber part 260b may be formed to be inserted into the front surface 250a.
  • the optical fiber portion 260b has a predetermined length inserted in the first direction from the front surface 250a, and the optical fiber portion 260b does not extend to the rear surface 250b.
  • the optical fiber part 260b may include a first fiber part 261b, a second fiber part 262b, and a third fiber part 263b, and each of the front surface 250a along the first direction. Can be inserted into a predetermined length. The diameter of the first fiber portion 261b disposed closest to the central optical portion 210 is largest, and the diameter of the third fiber portion 263b disposed outermost to the central optical portion 210 is formed the smallest. Can be.
  • the optical fiber part 260c may be formed to be inserted into the rear surface 250b.
  • the optical fiber portion 260c has a predetermined length inserted in the first direction from the rear surface 250b, and the optical fiber portion 260c does not extend to the front surface 250a.
  • the optical fiber part 260c may include a first fiber part 261c, a second fiber part 262c, and a third fiber part 263c, and each of the rear surface 250b along the first direction. Can be inserted into a predetermined length. The diameter of the first fiber portion 261c disposed closest to the central optical portion 210 is largest, and the diameter of the third fiber portion 263c disposed outermost to the central optical portion 210 is formed the smallest. Can be.
  • the optical fiber unit 260d may be disposed inside the lens body 250.
  • the optical fiber part 260d may be disposed adjacent to the front surface of the lens body 250.
  • the optical fiber part 260d may include a first fiber part 261d, a second fiber part 262d, and a third fiber part 263d, and each of the transition parts 220 along the first direction. It may be disposed inside. In this case, the first fiber portion 261d, the second fiber portion 262d, and the third fiber portion 263d may be disposed closer to the front surface than the rear surface 250b.
  • the diameter of the first fiber portion 261d disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263d disposed at the outermost portion of the central optical portion 210 is the largest. It can be formed small.
  • the optical fiber unit 260e may be disposed in the lens body 250.
  • the optical fiber unit 260e may be disposed adjacent to the rear surface of the lens body 250.
  • the optical fiber part 260e may include a first fiber part 261e, a second fiber part 262e, and a third fiber part 263e, and each of the transition parts 220 along the first direction. It may be disposed inside.
  • the first fiber portion 261e, the second fiber portion 262e, and the third fiber portion 263e may be disposed closer to the rear surface 250b than to the front surface 250a.
  • the diameter of the first fiber portion 261e disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263de disposed at the outermost portion of the central optical portion 210 is the largest. Can be formed small
  • the optical fiber unit 260f may be disposed in the lens body 250.
  • the optical fiber part 260f may be disposed at the center of the thickness of the lens body 250.
  • the optical fiber part 260f may include a first fiber part 261f, a second fiber part 262f, and a third fiber part 263f, and each of the transition parts 120 along the first direction. It may be disposed inside. In this case, the first fiber portion 261f and the second fiber portion 162f may be disposed between the front surface 250a and the rear surface 250b.
  • 8G is a cross-sectional view illustrating another modified example of the adjustable intraocular lens 200 of FIG. 6.
  • the modified example of the adjustable intraocular lens 200 is characteristically different in structure and arrangement of the optical fiber part, which will be described below.
  • the optical fiber part 260g may be formed such that the outer wall 261g is tapered.
  • the optical fiber part 260g may include an outer wall 261g tapered in the first direction.
  • the optical fiber portion 260g has a large cross section formed on the front surface 250a, and the cross section may be reduced toward the rear surface 250b.
  • Some of the light incident on the optical fiber portion 260g may hit the tapered outer wall 261g. That is, some of the light passing through the optical fiber portion 260g may hit the outer wall 261g again to reduce the amount of light passing through the optical fiber portion 260g.
  • the optical fiber part 260g can align the light by effectively reflecting the incident light even if the volume of the optical fiber part 260g is reduced by the tapered outer wall 261g.
  • FIG. 9 is a perspective view of the adjustable intraocular lens 300 according to another embodiment of the present invention.
  • the adjustable intraocular lens 300 may include a lens body 350, a support 370, and an optical fiber unit 360.
  • the lens body 350 may include a central optical unit 310, a transition unit 320, and an edge unit 330.
  • another embodiment of the present invention is different in that the other parts are the same as the original embodiment, characterized in that the shape and arrangement of the optical fiber portion 360 is differently formed. Therefore, in the description of the present embodiment, the part without description thereof will be used the description of the embodiment described above, and detailed description thereof will be omitted.
  • the optical fiber unit 360 may form a plurality of bands.
  • the optical fiber part 360 may be disposed on the transition part 320 and may be disposed to have a predetermined interval in the radial direction.
  • the plurality of bands including the optical fiber part 360 is not limited to a specific number. However, hereinafter, a description will be given mainly for the case of having three bands for convenience of description.
  • the optical fiber part 360 includes a first fiber band 361 disposed outside the central optical part 310, a second fiber band 362 disposed outside the first fiber band 361, and The third fiber band 363 may be provided outside the second fiber band 362.
  • the first fiber band 361 and the second fiber band 362 may have a predetermined interval
  • the second fiber band 362 and the third fiber band 363 may be disposed to have a predetermined interval.
  • Each of the fiber bands may be formed to have a predetermined angle with the center line CL of the lens body 350 or may be disposed to be in contact with one surface thereof.
  • it may be disposed adjacent to one surface of the lens body 350 to form a gap, or may be disposed in the center of the lens body 350. The description thereof will use the description of the original embodiment described above.
  • the adjustable intraocular lens 300 may increase the amount of light incident at intervals between the fiber bands, thereby securing a field of view. That is, the field of view may be widened due to light incident from the outside passing through the gaps between the fiber bands.
  • FIG. 10A is a cross-sectional view of the human eye 10 showing the natural lens 17, and FIG. 10B is a cross-sectional view of the human eye 10 into which the adjustable intraocular lens 100 of FIG. 1 is inserted.
  • FIG. 10A a cross-sectional view of a human eye 10 having an anterior chamber 12 and an posterior chamber 14 separated by an iris 30 is shown.
  • a capsular bag 16 which holds the natural lens 17 of the eye.
  • Light entering the eye passes through the cornea 18 to the lens 17, and the cornea 18 and the lens 17 direct light to the image of the retina 20 located behind the eye and adjust focus. Play a role together.
  • the retina 20 is connected to the optic nerve 22, which transmits the image received by the retina 20 to the brain for interpretation.
  • the natural lens 17 can no longer properly focus or direct incident light to the retina, and the image is blurred.
  • Well known surgical techniques for treating this situation include removing the damaged lens and replacing it with an artificial lens such as an intraocular lens.
  • the surgeon may ablate some or all of the natural lens 17 and then implant the adjustable intraocular lens 100.
  • the central optical unit 110 may be aligned to be located in the macular.
  • the support unit 170 may be fixed at an appropriate position in the capsular bag so that the lens body 150 does not move.
  • FIG. 11 is a conceptual diagram illustrating that external light is incident on the adjustable intraocular lens 100 of FIG. 1.
  • the adjustable intraocular lens 100 is implanted in the eye so that an image is clearly generated in the retina.
  • the adjustable intraocular lens 100 may form a clear image on the retina by aligning the light incident at a short or intermediate distance.
  • D1 represents light incident from a long distance
  • D2 and D3 represent light incident from a short or medium distance
  • D2 indicates passing through the optical fiber unit 160
  • D3 indicates that the incident angle is large and is reflected on the sidewall of the optical fiber unit 160.
  • Light incident from a distance such as D1 enters and passes perpendicular to the cornea 18, the central optical unit 110, or the optical fiber unit 160. In other words, the light coming in from far may pass through the adjustable intraocular lens 100.
  • the light When light having a small angle of incidence is incident at near or intermediate distances such as D2, that is, when the light is incident almost perpendicularly to the adjustable intraocular lens, the light may pass through the optical fiber unit 160.
  • the light having a small incident angle passes through both the central optical unit 110 and the optical fiber unit 160 to improve the depth of focus.
  • the light when light having a large incident angle is incident at a short distance or a medium distance, such as D3, the light may be reflected to the optical fiber unit 160. That is, when the angle of incidence of the adjustable intraocular lens 100 is large, the light passing through the central optical unit 110 passes, but the light directed toward the optical fiber unit 160 has a refractive index different from that of the central optical unit 110. Reflect.
  • light may be reflected at the side of the optical fiber portion 160. Since the refractive index of the optical fiber part 160 is different from the transition part 120, light having a large incident angle passes through the transition part 120 and is reflected by the difference in refractive index on the side of the optical fiber part 160.
  • a light absorbing paint or the like can be applied to the side surface of the optical fiber unit 160.
  • Light having a large incident angle may pass through the transition part 120 or may be absorbed through the paint on the side of the optical fiber part 160.
  • the adjustable intraocular lens 100 selectively passes only a portion of the incident light, thereby aligning the light in the optical fiber unit 160 to improve the depth of focus. That is, the optical fiber unit 160 may form an effect similar to the pinhole effect, so that an image may be clearly formed on the retina.
  • the adjustable intraocular lens 100 transmits light incident on the central optical unit 110, but selectively transmits light incident on the optical fiber unit 160 to clearly form an image.
  • the adjustable guide lens 100 may improve the depth of focus by the optical fiber unit 160 to align the light, to minimize the mutual interference of the light.
  • the adjustable intraocular lenses 200 and 300 may adjust the amount of light passing through the central optics 210 and 310 to adjust the brightness of the image formed on the retina.
  • an attempt to focus can be improved by providing an adjustable intraocular lens, and embodiments of the present invention can be applied to lenses, glasses, glasses, etc. to which the adjustable intraocular lens used in industry is applied. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

The present invention relates to an adjustable intraocular lens which allows external light to be selectively transmitted therethrough. The present invention comprises: a lens body having a front surface, a rear surface, and a central optical part convexly formed in a first direction; a plurality of support parts extending in a radial direction at the edge of the lens body; and an optical fiber part which is disposed on the outside of the central optical part and surrounds the central optical part.

Description

조절성 안내 렌즈 Adjustable intraocular lens
본 발명은 안내 렌즈에 관한 것으로, 보다 상세하게는 사람의 눈에 이식되는 조절성 안내 렌즈에 관한 것이다.The present invention relates to an intraocular lens, and more particularly to an adjustable intraocular lens implanted in the human eye.
일반적으로, 안내 렌즈(Intraocular Lens; IOL)는 백내장 환자의 혼탁해진 수정체를 대신하여 눈 안에 이식되는 인공수정체를 말한다. In general, intraocular lens (IOL) refers to an intraocular lens implanted into the eye in place of the clouded lens of a cataract patient.
이러한 안내 렌즈(인공수정체) 삽입술이란, 백내장 환자에서 백내장을 제거한 후 그 대용으로 인공물질로 만든 안내 렌즈(인공수정체)를 눈 안에 삽입하여 수술 후 안경이나 콘텍트 렌즈의 역할을 대신하게 하는 방법으로서, 현재 전세계적으로 많이 시행하고 있다.Such intraocular lens implantation is a method of removing a cataract from a cataract patient and inserting an intraocular lens (artificial intraocular lens) made of artificial material as a substitute to replace the role of eyeglasses or contact lenses after surgery. Currently, many are implemented worldwide.
이때, 백내장은 눈의 수정체가 혼탁해져 외부의 빛이 망막에 명확하게 맺히지 못하게 되어 시력이 떨어지는 질환으로, 이를 치료하기 위해서는 수정체낭 내부에 있는 혼탁해진 수정체를 제거하고 그 곳에 사람에게 삽입하여도 염증 등의 합병증을 일으키지 않는 여러 가지 물질로 만들어진 안내 렌즈(인공수정체)를 삽입하는 수술을 하는 것이 일반적이다.In this case, cataract is a disease in which the lens of the eye becomes cloudy and external light cannot be clearly formed in the retina, and the vision is poor. It is common practice to insert an intraocular lens (artificial lens) made of various materials that do not cause complications.
안내 렌즈를 이식하여 환자가 가깝거나 멀리 있는 물체를 선명하게 보이게 하기 위해서, 안내 렌즈의 형상이나 재질에 대한 연구가 지속되고 있다. 예를들어, 안내 렌즈 내부에 물과 같은 액체를 주입하여 다 초점의 기능을 수행하게 하거나, 안내 렌즈의 형상이 변화하여 초점을 조절하게 하는 방안이 있다. In order to implant an intraocular lens so that a patient can see a near or far object clearly, research on the shape and the material of the intraocular lens is continued. For example, there is a method of injecting a liquid such as water into the intraocular lens to perform a multifocal function, or changing the shape of the intraocular lens to adjust the focus.
미국공개특허 제2009-0088840호 (발명의 명칭: ZONAL DIFFRACTIVE MULTIFOCAL INTRAOCULAR LENSES)에는 다 초점 안내 렌즈를 제공하기 위해서 렌즈의 표면에 굴절영역을 형성하는 기술을 개시하고 있다.US Patent Publication No. 2009-0088840 (name of the invention: ZONAL DIFFRACTIVE MULTIFOCAL INTRAOCULAR LENSES) discloses a technique for forming a refractive region on the surface of a lens to provide a multifocal guide lens.
본 발명의 실시예들은 안내 렌즈에 입사되는 광을 정렬하여 시인성이 향상된 조절성 안내 렌즈를 제공하고자 한다.Embodiments of the present invention are to provide an adjustable intraocular lens with improved visibility by aligning the light incident on the intraocular lens.
본 발명의 일 측면은, 전면과 후면을 가지고, 제1 방향으로 볼록하게 형성된 중앙 광학부를 구비한 렌즈 본체와, 상기 렌즈 본체의 가장자리에서 반경방향으로 연장되는 복수개의 지지부 및 적어도 일부가 상기 중앙 광학부의 내부에 포함되도록 배치되고, 상기 중앙 광학부의 외측에 상기 중앙 광학부를 일주하도록 배치되는 광학 섬유부를 포함하는 조절성 안내 렌즈를 제공한다.According to an aspect of the present invention, there is provided a lens body having a front surface and a rear surface, and having a central optical portion formed convexly in a first direction, a plurality of support portions and at least a portion extending radially from an edge of the lens body. An adjustable intraocular lens is disposed to be included inside the unit and includes an optical fiber unit disposed to circumscribe the central optical unit outside the central optical unit.
본 발명의 일 실시예에 따른 조절성 안내 렌즈는 중앙 광학부에 입사되는 광은 투과하나, 광학 섬유부에 입사되는 광은 선택적으로 투과하여 이미지를 선명하게 형성할 수 있다. 광학 섬유부가 입사되는 광을 정렬하여 초점심도를 향상시킬 수 있다. 또한 조절성 안내 렌즈는 중앙 광학부를 통과하는 광의 양을 조절하여, 망막에 형성되는 이미지의 밝기를 조절할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.The adjustable intraocular lens according to an embodiment of the present invention transmits light incident on the central optical unit, but selectively transmits light incident on the optical fiber unit to clearly form an image. The depth of focus may be improved by aligning the light incident on the optical fiber part. In addition, the adjustable intraocular lens adjusts the amount of light passing through the central optical unit, thereby controlling the brightness of the image formed on the retina. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 조절성 안내 렌즈를 도시한 사시도이다. 1 is a perspective view showing an adjustable intraocular lens according to an embodiment of the present invention.
도 2는 도 1의 조절성 안내 렌즈를 도시한 평면도이다.FIG. 2 is a plan view illustrating the adjustable intraocular lens of FIG. 1.
도 3은 도 1의 Ⅲ-Ⅲ선을 따라 취한 단면도이다.3 is a cross-sectional view taken along line III-III of FIG. 1.
도 4는 도1의 조절성 안내 렌즈의 변형예를 도시한 단면도이다.4 is a cross-sectional view illustrating a modified example of the adjustable intraocular lens of FIG. 1.
도 5a 내지 도 5f는 도 1의 조절성 안내 렌즈의 다른 변형예를 도시한 단면도이다.5A to 5F are cross-sectional views illustrating another modified example of the adjustable intraocular lens of FIG. 1.
도 6은 본 발명의 다른 실시예에 따른 조절성 안내 렌즈를 도시한 사시도이다. 6 is a perspective view showing an adjustable intraocular lens according to another embodiment of the present invention.
도 7 은 도 6의 Ⅶ-Ⅶ을 따라 취한 단면도이다.FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 6.
도8a 내지 도 8g는 도 6의 조절성 안내 렌즈의 변형예를 도시한 단면도이다.8A to 8G are cross-sectional views illustrating a modified example of the adjustable intraocular lens of FIG. 6.
도 9는 본 발명의 또 다른 실시예에 따른 조절성 안내 렌즈를 도시한 사시도이다.9 is a perspective view showing an adjustable intraocular lens according to another embodiment of the present invention.
도 10a는 자연 수정체를 도시한 인간의 눈의 단면도이다.10A is a cross-sectional view of the human eye showing a natural lens.
도10b는 도1의 조절성 안내 렌즈가 삽입된 인간의 눈의 단면도이다.10B is a cross-sectional view of the human eye with the adjustable intraocular lens of FIG. 1 inserted.
도 11은 도1의 조절성 안내 렌즈로 외부 광이 입사하는 것을 도시한 개념도이다.11 is a conceptual diagram illustrating that external light is incident on the adjustable intraocular lens of FIG. 1.
본 발명의 일 측면은, 전면과 후면을 가지고, 제1 방향으로 볼록하게 형성된 중앙 광학부를 구비한 렌즈 본체와, 상기 렌즈 본체의 가장자리에서 반경방향으로 연장되는 복수개의 지지부 및 적어도 일부가 상기 중앙 광학부의 내부에 포함되도록 배치되고, 상기 중앙 광학부의 외측에 상기 중앙 광학부를 일주하도록 배치되는 광학 섬유부를 포함하는 조절성 안내 렌즈를 제공한다.According to an aspect of the present invention, there is provided a lens body having a front surface and a rear surface, and having a central optical portion formed convexly in a first direction, a plurality of support portions and at least a portion extending radially from an edge of the lens body. An adjustable intraocular lens is disposed to be included inside the unit and includes an optical fiber unit disposed to circumscribe the central optical unit outside the central optical unit.
또한, 상기 광학 섬유부의 굴절률은 상기 중앙 광학부의 굴절률과 다를 수 있다.In addition, the refractive index of the optical fiber part may be different from the refractive index of the central optical part.
또한, 상기 광학 섬유부는 상기 광학 섬유부의 길이방향과 상기 제1 방향이 소정의 각을 형성하게 배치될 수 있다.In addition, the optical fiber unit may be disposed such that the longitudinal direction and the first direction of the optical fiber unit forms a predetermined angle.
또한, 상기 렌즈 본체는 상기 중앙 광학부를 둘러싸며, 상기 광학 섬유부가 배치되는 전이부 및 상기 전이부를 둘러싸며 상기 복수개의 지지부가 연결되는 가장자리부를 구비할 수 있다.In addition, the lens body may include a transition part surrounding the central optical part, the optical fiber part is disposed, and an edge part surrounding the transition part and to which the plurality of support parts are connected.
또한, 상기 전이부는 상기 제1 방향으로의 두께는 상기 중앙 광학부에서 상기 가장자리부로 갈수록 얇아질 수 있다.In addition, the thickness of the transition part in the first direction may become thinner from the central optical part toward the edge part.
또한, 상기 광학 섬유부는 상기 중앙 광학부에 인접하게 배치되는 제1 섬유부 및 상기 제1 섬유부에 반경방향으로 이웃하게 배치되는 제2 섬유부를 구비할 수 있다.The optical fiber unit may include a first fiber unit disposed adjacent to the central optical unit and a second fiber unit disposed radially adjacent to the first fiber unit.
또한, 상기 제1 섬유부의 길이 방항과 상기 제1 방향이 형성하는 각도의 크기는 상기 제2 섬유부의 길이 방향과 상기 제2 방향이 형성하는 각도의 크기보다 작을 수 있다.The length of the first fiber portion and the angle formed by the first direction may be smaller than the angle formed by the length direction of the second fiber portion and the second direction.
또한, 상기 광학 섬유부는 상기 중앙 광학부의 반경방향으로 복수개 배치되고, 상기 광학 섬유부의 직경은 반경방향으로 감소할 수 있다.In addition, the optical fiber portion may be disposed in a plurality in the radial direction of the central optical portion, the diameter of the optical fiber portion may be reduced in the radial direction.
또한, 상기 광학 섬유부는 상기 렌즈 본체의 상기 전면에서 상기 후면으로 연장될 수 있다.In addition, the optical fiber unit may extend from the front surface of the lens body to the rear surface.
또한, 상기 광학 섬유부는 상기 렌즈 본체의 상기 전면 또는 후면에 삽입될 수 있다.In addition, the optical fiber unit may be inserted into the front or rear of the lens body.
또한, 상기 광학 섬유부는 상기 렌즈 본체의 내부에 배치될 수 있다.In addition, the optical fiber unit may be disposed inside the lens body.
또한, 상기 광학 섬유부는 상기 렌즈 본체의 상기 후면보다 상기 전면에 인접하거나, 상기 본체의 상기 전면보다 상기 후면에 인접하게 배치될 수 있다.The optical fiber unit may be disposed closer to the front surface than the rear surface of the lens body or adjacent to the rear surface than the front surface of the body.
또한, 상기 광학 섬유부는 상기 제1 방향으로 외벽이 테이퍼지도록 형성될 수 있다.In addition, the optical fiber unit may be formed so that the outer wall tapered in the first direction.
또한, 상기 광학 섬유부는 유리 섬유 또는 광 섬유 중 어느 하나의 재료로 선택될 수 있다.In addition, the optical fiber portion may be selected from any one of glass fiber and optical fiber.
또한, 상기 광학 섬유부로 입사되는 외부 광 중 적어도 일부는 상기 광학 섬유부의 내벽에서 전반사될 수 있다.또한, 상기 중앙 광학부를 향하는 외부 광은 상기 중앙 광학부를 통과하고, 상기 광학 섬유부를 향하는 상기 외부 광은 입사각도에 따라 선택적으로 통과할 수 있다.In addition, at least some of the external light incident on the optical fiber part may be totally reflected at the inner wall of the optical fiber part. Further, the external light toward the central optical part passes through the central optical part and the external light toward the optical fiber part. May selectively pass depending on the angle of incidence.
또한, 상기 광학 섬유부의 외벽에는 광흡수 도료가 도포될 수 있다.In addition, a light absorbing paint may be applied to the outer wall of the optical fiber unit.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The invention will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to the presence of one or more other components, steps, operations and / or elements. Or does not exclude additions. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
도 1은 본 발명의 일 실시예에 따른 조절성 안내 렌즈(100)를 도시한 사시도이고, 도 2는 도 1의 조절성 안내 렌즈(100)를 도시한 평면도이며, 도 3은 도 1의 Ⅲ-Ⅲ선을 따라 취한 단면도이다.1 is a perspective view illustrating an adjustable intraocular lens 100 according to an embodiment of the present invention, FIG. 2 is a plan view of the adjustable intraocular lens 100 of FIG. 1, and FIG. 3 is III of FIG. 1. Sectional view taken along line -III.
도 1 내지 도 3를 참조하면, 조절성 안내 렌즈(100)는 렌즈 본체(150), 광학 섬유부(160) 및 지지부(170)를 구비할 수 있다. 조절성 안내 렌즈(100)는 사람의 눈의 자연 수정체(17, 도 10a 참조)의 일부 또는 전부를 제거하고, 제거된 부분에 이식될 수 있다.1 to 3, the adjustable intraocular lens 100 may include a lens body 150, an optical fiber unit 160, and a support unit 170. The adjustable intraocular lens 100 may remove some or all of the natural lens of the human eye 17 (see FIG. 10A) and may be implanted in the removed portion.
이하에서, 조절성 안내 렌즈(100)으로 입사되는 빛의 입사각은 조절성 안내 렌즈(100)의 두께 방향의 중심 라인(CL)의 방향과 입사되는 빛의 방향 사이 각도로 정의한다. 따라서, 입사각이 작다는 의미는 조절성 안내 렌즈(100)에 거의 수직으로 빛이 입사되는 것을 의미하고, 입사각이 크다는 의미는 조절성 안내 렌즈(100)의 측면에서 조절성 안내 렌즈(100)를 향하여 입사하는 것을 의미 한다.Hereinafter, the angle of incidence of light incident on the adjustable intraocular lens 100 is defined as an angle between the direction of the center line CL in the thickness direction of the adjustable intraocular lens 100 and the direction of incident light. Therefore, the small angle of incidence means that light is incident almost perpendicularly to the adjustable intraocular lens 100, and the large incidence angle means that the adjustable intraocular lens 100 is positioned at the side of the adjustable intraocular lens 100. It means to be incident toward.
렌즈 본체(150)는 전면(150a)과 후면(150b)을 가질 수 있다. 전면(150a)은 외부 광이 입사되는 영역에 해당한다. 후면(150b)은 전면(150a)에 대응하며 사람의 수정체 낭과 접촉하거나 망막 쪽 방향을 향하는 영역에 해당한다. 외부의 광은 전면(150a)으로 입사하고 렌즈 본체(150)를 이동하여 후면(150b)을 통과할 수 있다. The lens body 150 may have a front surface 150a and a rear surface 150b. The front surface 150a corresponds to a region where external light is incident. The rear face 150b corresponds to the front face 150a and corresponds to an area in contact with the capsular bag of the person or facing toward the retina. External light may enter the front surface 150a and move the lens body 150 to pass through the rear surface 150b.
렌즈 본체(150)는 중앙 광학부(110), 광학 섬유부(160)가 배치되는 전이부(120) 및 가장자리부(130)를 구비할 수 있다. 렌즈 본체(150)는 외부의 광이 투과되는 영역으로 통상적으로 옵틱(optic)으로 사용된다.The lens body 150 may include a central optical unit 110, a transition unit 120 on which the optical fiber unit 160 is disposed, and an edge unit 130. The lens body 150 is an area through which external light is transmitted, and is typically used as an optic.
렌즈 본체(150)는 비교적 경질 재료, 비교적 연질 굴곡성의 반강성 재료, 또는 이들 경질 재료와 연질 재료의 조합으로 이루어질 수 있다. 예를들어, 렌즈 본체(150)는 폴리메틸 메타크릴레이트(polymethyl methacrylate, PMMA), 폴리술폰(polysulfone, PSF), 기타 비교적 경질의 생물학적 불활성 광학 재료일 수 있다. 또한 렌즈 본체(150)는 실리콘 수지(silicone), 하이드로겔(hydrogel), 열불안정성 재료(thermolabile materials), 및 기타 굴곡성을 가지면서 반강성인 생물학적 불활성 광학 재료일 수 있다.The lens body 150 may be made of a relatively hard material, a relatively soft flexible semi-rigid material, or a combination of these hard materials and soft materials. For example, the lens body 150 may be polymethyl methacrylate (PMMA), polysulfone (PSF), or other relatively hard biologically inert optical material. The lens body 150 may also be a silicone inert, hydrogel, thermolabile materials, and other flexible, inert, biologically inert optical materials.
중앙 광학부(central optic zone, 110)는 렌즈 본체(150)의 두께 방향인 제1 방향으로 볼록하게 형성될 수 있다. 중앙 광학부(110)는 전면(150a)이 제1 방향으로 볼록하게 형성되거나, 후면(150b)이 제1 방향으로 볼록하게 형성될 수 있다. 또한, 도 3에서와 같이 전면(150a) 및 후면(150b)이 볼록하게 형성될 수 있다. 다만, 이하에서는 설명의 편의를 위해서 전면(150a) 및 후면(150b)이 볼록하게 형성되는 경우를 중심으로 설명하기로 한다.The central optic zone 110 may be convex in the first direction, which is the thickness direction of the lens body 150. The central optical unit 110 may have the front surface 150a convex in the first direction or the rear surface 150b may be convex in the first direction. In addition, as shown in FIG. 3, the front surface 150a and the rear surface 150b may be convex. However, hereinafter, the front surface 150a and the rear surface 150b will be described in a convex manner for convenience of description.
중앙 광학부(110)는 렌즈 본체(150)의 중앙에 배치될 수 있다. 중앙 광학부(110)는 조절성 안내 렌즈(100)로 입사하는 외부 광의 대부분을 수용할 수 있다. 중앙 광학부(110)는 조절성 안내 렌즈(100)가 사람의 눈에 이식될 때 황반부에 정렬될 수 있다. The central optical unit 110 may be disposed at the center of the lens body 150. The central optical unit 110 may receive most of the external light incident on the adjustable intraocular lens 100. The central optics 110 may be aligned to the macula when the adjustable intraocular lens 100 is implanted in the human eye.
전이부(120)는 중앙 광학부(110)를 둘러싸며, 광학 섬유부(160)가 배치될 수 있다. 전이부(120)는 중앙 광학부(110)에서 가장자리부(130) 갈수록 상기 제1 방향으로의 두께는 감소하도록 형성될 수 있다. 또한, 전이부(120)는 소정의 홈(Groove)이 형성되어 중앙 광학부(110)와 가장자리부(130)를 구별할 수 있다.The transition part 120 may surround the central optical part 110, and the optical fiber part 160 may be disposed. The transition part 120 may be formed such that the thickness in the first direction decreases from the central optical part 110 to the edge part 130. In addition, the transition part 120 may have a predetermined groove to distinguish the central optical part 110 and the edge part 130.
가장자리부(130)는 전이부(120)를 둘러싸며 복수개의 지지부(170)가 연결될 수 있다. 가장자리부(130)는 도2와 같이 원형으로 형성될 수 있다. 다만, 가장자리부(130)의 형상은 이에 한정되지 않으며 지지부(170)가 연결되는 부분이 플랫하게 형성될 수 있다.The edge part 130 may surround the transition part 120 and a plurality of support parts 170 may be connected. The edge portion 130 may be formed in a circular shape as shown in FIG. 2. However, the shape of the edge portion 130 is not limited thereto, and the portion to which the support portion 170 is connected may be formed flat.
광학 섬유부(160)는 중앙 광학부(110)의 외곽부분에 일주하도록 배치될 수 있다. 광학 섬유부(160)는 적어도 일부가 중앙 광학부(110)의 내부에 포함되도록 배치될 수 있다. 광학 섬유부(160)는 상기 제1 방향으로 연장되도록 형성될 수 있다. 또한, 광학 섬유부(160)의 단면은 다각형이거나 원형으로 형성될 수 있다. 예를 들어, 광학 섬유부(160)는 대략 다각기둥 형상이거나, 대략 원형기둥 형상으로 형성될 수 있다. The optical fiber unit 160 may be disposed around the outer portion of the central optical unit 110. The optical fiber unit 160 may be disposed such that at least a portion thereof is included in the central optical unit 110. The optical fiber unit 160 may be formed to extend in the first direction. In addition, the cross section of the optical fiber unit 160 may be polygonal or circular. For example, the optical fiber unit 160 may be formed in a substantially polygonal pillar shape or a substantially circular pillar shape.
광학 섬유부(160)는 중앙 광학부(110)를 따라 복수개로 배치되어 고리 형상을 형성할 수 있다. 또한, 광학 섬유부(160)는 중앙 광학부(110)의 반경방향으로 복수개 배치될 수 있다. 광학 섬유부(160)는 일부가 중첩되어 서로 연속적으로 배치될 수 있다. 또한, 광학 섬유부(160)는 서로 소정의 간격을 가지도록 배치될 수 있다. 다만, 이하에서는 설명의 편의를 위해서 3개의 섬유부가 소정의 간격을 가지면서 규칙적으로 배열되는 경우를 중심으로 설명하기로 한다.The optical fiber unit 160 may be disposed in plural along the central optical unit 110 to form an annular shape. In addition, the optical fiber unit 160 may be disposed in plural in the radial direction of the central optical unit 110. The optical fiber unit 160 may be partially overlapped and disposed continuously. In addition, the optical fiber parts 160 may be disposed to have a predetermined distance from each other. However, hereinafter, it will be described mainly for the case where the three fibers are arranged regularly with a predetermined interval for convenience of description.
상세히, 광학 섬유부(160)는 중앙 광학부(110)에 인접하고 중앙 광학부(110)를 따라 원형으로 배치되는 제1 섬유부(161)와, 제1 섬유부(161)의 반경방향으로 외측에 배치되는 제2 섬유부(162)와, 제2 섬유부(162)의 반경방향으로 외측에 배치되는 제3 섬유부(163)를 구비할 수 있다.In detail, the optical fiber part 160 is adjacent to the central optical part 110 and disposed in a circular direction along the central optical part 110 and in the radial direction of the first fiber part 161. The 2nd fiber part 162 arrange | positioned at the outer side and the 3rd fiber part 163 arrange | positioned at the outer side in the radial direction of the 2nd fiber part 162 may be provided.
제1 섬유부(161), 제2 섬유부(162) 및 제3 섬유부(163)는 각각 전면(150a)에서 후면(150b)으로 연장되도록 형성될 수 있다. The first fiber portion 161, the second fiber portion 162, and the third fiber portion 163 may be formed to extend from the front surface 150a to the rear surface 150b, respectively.
광학 섬유부(160)는 각각의 길이방향과 제1 방향과 소정의 각을 형성할 수 있다. 광학 섬유부(160)는 중앙 광학부(110)의 중심라인(CL)과 소정의 각을 형성할 수 있다. 또한, 상기 각은 중앙 광학부(110)의 반경방향으로 증가할 수 있다. 광학 섬유부(160)가 소정의 각도를 가지도록 배치되어, 입사각이 큰 빛이 입사하면, 상기 빛이 광학 섬유부(160)의 측벽에 의해서 반사될 수 있다. 이때, 광학 섬유부(160)는 경사를 가지는바 입사면적을 넓게 할 수 있어 효과적으로 빛을 정렬할 수 있다.The optical fiber unit 160 may form a predetermined angle with each of the longitudinal direction and the first direction. The optical fiber unit 160 may form a predetermined angle with the center line CL of the central optical unit 110. In addition, the angle may increase in the radial direction of the central optical unit 110. The optical fiber unit 160 is disposed to have a predetermined angle, and when light having a large incident angle is incident, the light may be reflected by the sidewall of the optical fiber unit 160. In this case, the optical fiber unit 160 may have an inclined bar, thereby widening an incident area, and thus may effectively align light.
상세히, 제1 섬유부(161)의 길이방향과 중앙 광학부(110)의 중심라인(CL)은 제1 각(α)을 형성하고, 제2 섬유부(162)의 길이방향과 중앙 광학부(110)의 중심라인(CL)은 제2 각(β)을 형성하며, 제3 섬유부(163)의 길이방향과 중앙 광학부(110)의 중심라인은 제3 각(γ)을 형성할 수 있다. 제3 각은 제2각 보다 크고, 제1 각 보다 크다. 또한, 제3 각은 제2 각보다 크다. 따라서, 광학 섬유부(160)는 중심라인(CL)에서 반경방향으로 갈수록 배치 각도가 작아지도록 배치될 수 있다. In detail, the longitudinal direction of the first fiber part 161 and the center line CL of the central optical part 110 form a first angle α, and the longitudinal direction and the central optical part of the second fiber part 162. The center line CL of 110 forms a second angle β, and the longitudinal direction of the third fiber portion 163 and the center line of the central optical portion 110 form a third angle γ. Can be. The third angle is greater than the second angle and greater than the first angle. Also, the third angle is larger than the second angle. Therefore, the optical fiber unit 160 may be disposed such that the arrangement angle becomes smaller in the radial direction from the center line CL.
도 4는 도1의 조절성 안내 렌즈(100)의 변형예를 도시한 단면도이다.4 is a cross-sectional view illustrating a modified example of the adjustable intraocular lens 100 of FIG. 1.
도4를 보면, 광학 섬유부(160’)는 길이방향의 중심이 일 영역(P)에 형성될 수 있다. 제1 섬유부(161’), 제2 섬유부(162’) 및 제3 섬유부(163’)의 길이방향의 연장선은 일 영역(P)에 모이게 배치될 수 있다, 광학 섬유부(160’)는 외부의 광을 일 영역으로 수렴하여 시야를 확보 할 수 있다.Referring to FIG. 4, the optical fiber part 160 ′ may have a center in the longitudinal direction in one region P. As shown in FIG. The extension lines in the longitudinal direction of the first fiber portion 161 ′, the second fiber portion 162 ′, and the third fiber portion 163 ′ may be arranged to gather in one region P, the optical fiber portion 160 ′. ) Can secure the field of view by converging the external light to one area.
다시, 도3을 참조하면, 광학 섬유부(160)가 배치되는 영역의 거리(b)는 중앙 광학부(110)의 직경(a)보다 작게 형성될 수 있다. 외부에서 입사되는 빛은 대부분 중앙 광학부(110)를 통과하고, 입사각이 큰 일부의 빛만 광학 섬유부(160)에서 반사시켜 광을 정렬하기 위함이다. 이하에서 입사각은 상기 제1 방향과 광의 이동방향 사이의 각도이다. 이에 대한 상세한 설명은 후술하기로 한다. Again, referring to FIG. 3, the distance b of the region where the optical fiber part 160 is disposed may be smaller than the diameter a of the central optical part 110. Most of the light incident from the outside passes through the central optical unit 110, and only a portion of the light having a large incident angle is reflected by the optical fiber unit 160 to align the light. Hereinafter, the incident angle is an angle between the first direction and the moving direction of the light. Detailed description thereof will be described later.
광학 섬유부(160)의 굴절률은 중앙 광학부(110)의 굴절률과 상이하도록 형성될 수 있다. 예를 들어, 광학 섬유부(160)의 굴절률이 중앙 광학부(110)의 굴절률 보다 크거나, 광학 섬유부(160)의 굴절률이 중앙 광학부(110)의 굴절률 보다 작게 형성될 수 있다. 그리하여, 광학 섬유부(160)로 입사하는 광을 입사각도에 따라 선택적으로 투과 시킬 수 있다. 예를 들어, 광학 섬유부(160)는 광 섬유 또는 유리 섬유의 재료 중 어느 하나로 선택될 수 있다.The refractive index of the optical fiber unit 160 may be formed to be different from the refractive index of the central optical unit 110. For example, the refractive index of the optical fiber unit 160 may be greater than the refractive index of the central optical unit 110, or the refractive index of the optical fiber unit 160 may be smaller than the refractive index of the central optical unit 110. Thus, light incident on the optical fiber unit 160 may be selectively transmitted according to the incident angle. For example, the optical fiber unit 160 may be selected from any of materials of optical fiber or glass fiber.
지지부(170)는 렌즈 본체(150)의 가장자리부(130)에서 반경방향으로 연장될 수 있다. 지지부(170)는 복수개로 구비될 수 있으며, 통상적으로 지지부(170)는 햅틱(haptic)으로 사용된다.The support unit 170 may extend in a radial direction from the edge portion 130 of the lens body 150. The support unit 170 may be provided in plurality, and typically, the support unit 170 is used as a haptic.
지지부(170)는 안구 내에서 렌즈 본체(150)가 이동하거나 회전하는 것을 방지 할 수 있다. 즉, 지지부(170)는 수정체 낭내(intracapsular) 또는 설커스(sulcus) 등, 눈의 내측 면에 지지되어, 눈의 광학경로에 렌즈 본체(150)가 배치될 수 있다. 지지부(170)는 조절성 안내 렌즈(100)가 이식되는 위치에 따라서 다양한 형태와 크기일 수 있다. 예를 들면, 지지부(170)는 C-형상, J-형상, U-형상, 평면 디자인 또는 다른 디자인일 수 있다. 다만, 이하에서는 설명의 편의를 위해서 2개의 지지부(170)가 가장자리부(130)에서 연장되도록 형성된 경우를 중심으로 설명하기로 한다.도 5a 내지 도 5f는 도 1의 조절성 안내 렌즈(100)의 변형예를 도시한 단면도이다. 조절성 안내 렌즈(100)의 변형예들은 광학 섬유부의 구조 및 배치에 있어 특징적으로 차이가 있는바, 이하에서는 이를 중심으로 설명하기로 한다.The support unit 170 may prevent the lens body 150 from moving or rotating within the eyeball. That is, the support unit 170 is supported on the inner surface of the eye, such as intracapsular or sulcus, so that the lens body 150 may be disposed on the optical path of the eye. The support 170 may have various shapes and sizes depending on the position where the adjustable intraocular lens 100 is implanted. For example, the support 170 can be C-shaped, J-shaped, U-shaped, flat design or other design. However, the following description will be given with reference to a case where two support portions 170 are formed to extend from the edge portion 130 for convenience of description. FIGS. 5A to 5F illustrate the adjustable intraocular lens 100 of FIG. 1. It is sectional drawing which shows the modification of. Modifications of the adjustable intraocular lens 100 are characteristically different in structure and arrangement of the optical fiber portion, which will be described below.
도5a를 참조하면, 광학 섬유부(160a)는 전면(150a)에서 후면(150b)을 연결하도록 삽입될 수 있다. 제1 섬유부(161a) 및 제2 섬유부(162a)는 전면(150a)에서 후면(150b)을 향해서 제1 방향으로 연장될 수 있다.Referring to FIG. 5A, the optical fiber unit 160a may be inserted to connect the rear surface 150b from the front surface 150a. The first fiber portion 161a and the second fiber portion 162a may extend in the first direction from the front surface 150a toward the rear surface 150b.
광학 섬유부(160a)는 전면(150a)의 전이부(120)로 입사되는 외부 광을 일부 선택적으로 통과 시킬 수 있다. 광학 섬유부(160a)는 광학 섬유부(160a)의 굴절률에 따라 입사되는 광의 일부를 반사하고 일부를 통과할 수 있다. 또한 외부 광의 입사각이 광학 섬유부(160a)의 임계각 이상이면, 광학 섬유부(160a)는 입사 광을 전부를 반사 시킬 수 있다. 또한, 외부 광의 입사각이 소정의 범위에 해당하면 입사되는 광의 전부를 통과 할 수 있다. 광학 섬유부(160a)는 조절성 안내 렌즈(100)로 입사되는 외부 광 중에서 일부 만을 통과 시켜서 망막에 상이 선명하게 생성될 수 있다. 광학 섬유부(160a)는 핀홀 효과(pinhole effect)와 유사한 효과를 형성하나, 핀홀 효과(pinhole effect)와 비교하여 통과하는 전체 광량과 빛이 통과 가능한 총 면적이 크게 증가하게 되어, 망막에 보다 밝고 선명한 상이 생성될 수 있도록 한다.The optical fiber unit 160a may selectively pass external light incident to the transition unit 120 of the front surface 150a. The optical fiber part 160a may reflect and pass a part of the incident light according to the refractive index of the optical fiber part 160a. In addition, when the incident angle of the external light is greater than or equal to the critical angle of the optical fiber unit 160a, the optical fiber unit 160a may reflect all incident light. In addition, when the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light. The optical fiber unit 160a may pass through only a part of the external light incident to the adjustable intraocular lens 100 to generate a clear image on the retina. The optical fiber portion 160a forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased as compared to the pinhole effect, which is brighter in the retina. Allows sharp images to be created.
도 5b를 참조하면, 광학 섬유부(160b)는 전면(150a)에 삽입되도록 형성될 수 있다. 광학 섬유부(160b)는 전면(150a)에서 제1 방향으로 소정의 길이가 삽입되고, 후면(150b)으로는 광학 섬유부(160)가 연장되지 않는다. Referring to FIG. 5B, the optical fiber unit 160b may be formed to be inserted into the front surface 150a. The optical fiber portion 160b has a predetermined length inserted in the first direction from the front surface 150a, and the optical fiber portion 160 does not extend to the rear surface 150b.
예를 들어, 광학 섬유부(160b)는 제1 섬유부(161b)와 제2 섬유부(162b)를 구비할 수 있으며, 각각 제1 방향을 따라 전면(150a)에 소정의 길이로 삽입될 수 있다. For example, the optical fiber part 160b may include a first fiber part 161b and a second fiber part 162b, and each of the optical fiber parts 160b may be inserted into the front surface 150a along a first direction with a predetermined length. have.
광학 섬유부(160b)는 전면(150a)의 전이부(120)로 입사되는 외부 광을 일부 선택적으로 통과 시킬 수 있다. 광학 섬유부(160b)는 광학 섬유부(160b)의 굴절률에 따라 입사되는 광의 일부를 반사하고 일부를 통과할 수 있다. 또한 외부 광의 입사각이 광학 섬유부(160b)의 임계각 이상이면, 광학 섬유부(160b)는 입사 광을 전부를 반사 시킬 수 있다. 또한, 외부 광의 입사각이 소정의 범위에 해당하면 입사되는 광의 전부를 통과 할 수 있다. 광학 섬유부(160b)는 조절성 안내 렌즈(100)로 입사되는 외부 광 중에서 일부 만을 통과 시켜서 망막에 상이 선명하게 생성될 수 있다. 광학 섬유부(160b)는 핀홀 효과(pinhole effect)과 유사한 효과를 형성하나, 핀홀 효과(pinhole effect)와 비교하여 통과하는 전체 광량과 빛이 통과 가능한 총 면적이 크게 증가하게 되어 망막에 보다 밝고 선명한 상이 생성될 수 있도록 한다.The optical fiber unit 160b may selectively pass external light incident to the transition unit 120 of the front surface 150a. The optical fiber part 160b may reflect and pass a part of the incident light according to the refractive index of the optical fiber part 160b. In addition, when the incident angle of the external light is greater than or equal to the critical angle of the optical fiber unit 160b, the optical fiber unit 160b may reflect all the incident light. In addition, when the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light. The optical fiber unit 160b may pass through only a part of the external light incident to the adjustable intraocular lens 100 to clearly generate an image on the retina. The optical fiber unit 160b forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which the light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
도5c를 참조하면, 광학 섬유부(160c)는 후면(150b)에 삽입되도록 형성될 수 있다. 광학 섬유부(160c)는 후면(150b)에서 제1 방향으로 소정의 길이가 삽입되고, 전면(150a)으로는 광학 섬유부(160c)가 연장되지 않는다. Referring to FIG. 5C, the optical fiber unit 160c may be formed to be inserted into the rear surface 150b. The optical fiber unit 160c has a predetermined length inserted in the first direction from the rear surface 150b, and the optical fiber unit 160c does not extend to the front surface 150a.
예를 들어, 광학 섬유부(160c)는 제1 섬유부(161c)와 제2 섬유부(162c)를 구비할 수 있으며, 각각 제1 방향을 따라 후면(150b)에 소정의 길이로 삽입될 수 있다. For example, the optical fiber part 160c may include a first fiber part 161c and a second fiber part 162c, and each of the optical fiber parts 160c may be inserted into the rear surface 150b along a first direction with a predetermined length. have.
광학 섬유부(160c)는 전면(150a)의 전이부(120)로 입사되는 외부 광을 일부 선택적으로 통과 시킬 수 있다. 외부 광은 전이부(120)에 입사되어 광학 섬유부(160c)를 향하여 이동한다. The optical fiber unit 160c may selectively pass external light incident to the transition unit 120 of the front surface 150a. The external light is incident on the transition part 120 and moves toward the optical fiber part 160c.
광학 섬유부(160c)는 전면(150a)의 전이부(120)로 입사되는 외부 광을 일부 선택적으로 통과 시킬 수 있다. 광학 섬유부(160c)는 광학 섬유부(160c)의 굴절률에 따라 입사되는 광의 일부를 반사하고 일부를 통과할 수 있다. 또한 외부 광의 입사각이 광학 섬유부(160c)의 임계각 이상이면, 광학 섬유부(160c)는 입사 광을 전부를 반사 시킬 수 있다. 또한, 외부 광의 입사각이 소정의 범위에 해당하면 입사되는 광의 전부를 통과 할 수 있다. 광학 섬유부(160c)는 조절성 안내 렌즈(100)로 입사되는 외부 광 중에서 일부 만을 통과 시켜서 망막에 상이 선명하게 생성될 수 있다. 광학 섬유부(160c)는 핀홀 효과(pinhole effect)과 유사한 효과를 형성하나, 핀홀 효과(pinhole effect)와 비교하여 통과하는 전체 광량과 빛이 통과 가능한 총 면적이 크게 증가하게 되어 망막에 보다 밝고 선명한 상이 생성될 수 있도록 한다.The optical fiber unit 160c may selectively pass external light incident to the transition unit 120 of the front surface 150a. The optical fiber unit 160c may reflect and pass a part of the incident light according to the refractive index of the optical fiber unit 160c. In addition, when the incident angle of the external light is greater than or equal to the critical angle of the optical fiber unit 160c, the optical fiber unit 160c may reflect all incident light. In addition, when the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light. The optical fiber unit 160c may pass through only a part of the external light incident to the adjustable intraocular lens 100 to clearly generate an image on the retina. The optical fiber unit 160c forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
도 5d를 참조하면, 광학 섬유부(160d)는 렌즈 본체(150)의 내부에 배치될 수 있다. 광학 섬유부(160d)는 렌즈 본체(150)의 전면에 인접하게 배치될 수 있다.Referring to FIG. 5D, the optical fiber unit 160d may be disposed inside the lens body 150. The optical fiber unit 160d may be disposed adjacent to the front surface of the lens body 150.
예를 들어, 광학 섬유부(160d)는 제1 섬유부(161d)와 제2 섬유부(162d)를 구비할 수 있으며, 각각 제1 방향을 따라 전이부(120)의 내부에 배치될 수 있다. 이때, 제1 섬유부(161d)와 제2 섬유부(162d)는 후면(150b)보다 전면에 인접하게 배치될 수 있다.For example, the optical fiber part 160d may include a first fiber part 161d and a second fiber part 162d, and may be disposed inside the transition part 120 along the first direction, respectively. . In this case, the first fiber portion 161d and the second fiber portion 162d may be disposed closer to the front surface than the rear surface 150b.
광학 섬유부(160d)는 전면(150a)의 전이부(120)로 입사되는 외부 광을 일부 선택적으로 통과 시킬 수 있다. 광학 섬유부(160d)는 광학 섬유부(160d)의 굴절률에 따라 입사되는 광의 일부를 반사하고 일부를 통과할 수 있다. 또한 외부 광의 입사각이 광학 섬유부(160d)의 임계각 이상이면, 광학 섬유부(160d)는 입사 광을 전부를 반사 시킬 수 있다. 또한, 외부 광의 입사각이 소정의 범위에 해당하면 입사되는 광의 전부를 통과 할 수 있다. The optical fiber unit 160d may selectively pass external light incident to the transition unit 120 of the front surface 150a. The optical fiber unit 160d may reflect and pass a part of the incident light according to the refractive index of the optical fiber unit 160d. In addition, when the incident angle of the external light is greater than or equal to the critical angle of the optical fiber unit 160d, the optical fiber unit 160d may reflect all the incident light. In addition, when the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light.
광학 섬유부(160d)는 조절성 안내 렌즈(100)로 입사되는 외부 광 중에서 일부 만을 통과 시켜서 망막에 상이 선명하게 생성될 수 있다. 광학 섬유부(160d)는 핀홀 효과(pinhole effect)과 유사한 효과를 형성하나, 핀홀 효과(pinhole effect)와 비교하여 통과하는 전체 광량과 빛이 통과 가능한 총 면적이 크게 증가하게 되어 망막에 보다 밝고 선명한 상이 생성될 수 있도록 한다.The optical fiber unit 160d may pass a portion of the external light incident to the adjustable intraocular lens 100 so that an image may be clearly generated on the retina. The optical fiber unit 160d forms an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
도 5e를 참조하면, 광학 섬유부(160e)는 렌즈 본체(150)의 내부에 배치될 수 있다. 광학 섬유부(160e)는 렌즈 본체(150)의 후면에 인접하게 배치될 수 있다.Referring to FIG. 5E, the optical fiber unit 160e may be disposed in the lens body 150. The optical fiber unit 160e may be disposed adjacent to the rear surface of the lens body 150.
예를 들어, 광학 섬유부(160e)는 제1 섬유부(161e)와 제2 섬유부(162e)를 구비할 수 있으며, 각각 제1 방향을 따라 전이부(120)의 내부에 배치될 수 있다. 이때, 제1 섬유부(161e)와 제2 섬유부(162e)는 전면(150a)보다 후면(150b)에 인접하게 배치될 수 있다.For example, the optical fiber part 160e may include a first fiber part 161e and a second fiber part 162e, and may be disposed inside the transition part 120 along the first direction, respectively. . In this case, the first fiber portion 161e and the second fiber portion 162e may be disposed closer to the rear surface 150b than to the front surface 150a.
광학 섬유부(160e)는 전면(150a)의 전이부(120)로 입사되는 외부 광을 일부 선택적으로 통과 시킬 수 있다. 광학 섬유부(160e)는 광학 섬유부(160e)의 굴절률에 따라 입사되는 광의 일부를 반사하고 일부를 통과할 수 있다. 또한 외부 광의 입사각이 광학 섬유부(160e)의 임계각 이상이면, 광학 섬유부(160e)는 입사 광을 전부를 반사 시킬 수 있다. 또한, 외부 광의 입사각이 소정의 범위에 해당하면 입사되는 광의 전부를 통과 할 수 있다. 광학 섬유부(160e)는 조절성 안내 렌즈(100)로 입사되는 외부 광 중에서 일부 만을 통과 시켜서 망막에 상이 선명하게 생성될 수 있다. 광학 섬유부(160e)는 핀홀 효과(pinhole effect)과 유사한 효과를 형성하나, 핀홀 효과(pinhole effect)와 비교하여 통과하는 전체 광량과 빛이 통과 가능한 총 면적이 크게 증가하게 되어 망막에 보다 밝고 선명한 상이 생성될 수 있도록 한다.The optical fiber unit 160e may selectively pass external light incident to the transition unit 120 of the front surface 150a. The optical fiber part 160e may reflect and pass a part of the incident light according to the refractive index of the optical fiber part 160e. In addition, when the incident angle of the external light is greater than or equal to the critical angle of the optical fiber unit 160e, the optical fiber unit 160e may reflect all incident light. In addition, when the incident angle of the external light falls within a predetermined range, it may pass through all of the incident light. The optical fiber unit 160e may pass through only a part of the external light incident to the adjustable intraocular lens 100 to clearly generate an image on the retina. The optical fiber portion 160e has an effect similar to the pinhole effect, but the total amount of light passing through and the total area through which light passes can be greatly increased compared to the pinhole effect, thereby making the retina brighter and clearer. Allow phases to be created.
도 5f를 참조하면, 광학 섬유부(160f)는 렌즈 본체(150)의 내부에 배치될 수 있다. 광학 섬유부(160f)는 렌즈 본체(150)의 두께의 중심에 배치될 수 있다.Referring to FIG. 5F, the optical fiber unit 160f may be disposed inside the lens body 150. The optical fiber unit 160f may be disposed at the center of the thickness of the lens body 150.
예를 들어, 광학 섬유부(160f)는 제1 섬유부(161f)와 제2 섬유부(162f)를 구비할 수 있으며, 각각 제1 방향을 따라 전이부(120)의 내부에 배치될 수 있다. 이때, 제1 섬유부(161e)와 제2 섬유부(162e)는 전면(150a)과 후면(150b)의 사이에 배치될 수 있다.For example, the optical fiber part 160f may include a first fiber part 161f and a second fiber part 162f, and may be disposed inside the transition part 120 along the first direction. . In this case, the first fiber portion 161e and the second fiber portion 162e may be disposed between the front surface 150a and the rear surface 150b.
도 6은 본 발명의 다른 실시예에 따른 조절성 안내 렌즈(200)를 도시한 사시도이고, 도 7 은 도 6의 Ⅶ-Ⅶ을 따라 취한 단면도이다.6 is a perspective view illustrating the adjustable intraocular lens 200 according to another embodiment of the present invention, and FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 6.
도6 및 도7을 참조하면, 조절성 안내 렌즈(200)는 렌즈 본체(250), 지지부(270) 및 광학 섬유부(260)를 구비할 수 있다. 렌즈 본체(250)는 중앙 광학부(210), 전이부(220) 및 가장자리부(230)를 구비할 수 있다. 다만, 본 발명의 다른 실시예는 다른 부분은 원 실시예와 동일하고, 광학 섬유부(260)의 형상 및 배치가 상이하게 형성된다는 점이 특징적으로 달라진다. 그러므로, 본 실시예의 설명에 있어서 그 설명이 없는 부분은 상시 서술한 실시예의 설명을 원용하도록 하고 자세한 설명은 생략하기로 한다.6 and 7, the adjustable intraocular lens 200 may include a lens body 250, a support 270, and an optical fiber unit 260. The lens body 250 may include a central optical unit 210, a transition unit 220, and an edge unit 230. However, another embodiment of the present invention is different in that the other parts are the same as the original embodiment, and the shape and arrangement of the optical fiber portion 260 is characterized in that differently formed. Therefore, in the description of the present embodiment, the part without description thereof will be used the description of the embodiment described above, and detailed description thereof will be omitted.
광학 섬유부(260)는 중앙 광학부(210)의 반경방향으로 복수개 배치되고, 광학 섬유부(260)의 직경은 반경방향으로 감소하도록 형성될 수 있다. 다만, 이하에서는 설명의 편의를 위해서 3개의 섬유부를 형성하는 경우를 중심으로 설명하기로 한다.The optical fiber part 260 may be disposed in plural in the radial direction of the central optical part 210, and the diameter of the optical fiber part 260 may be formed to decrease in the radial direction. However, hereinafter, a description will be given mainly for the case of forming three fiber parts for convenience of description.
상세히, 광학 섬유부(260)는 중앙 광학부(210)에 인접하고 중앙 광학부(210)를 따라 원형으로 배치되는 제1 섬유부(261)와, 제1 섬유부(261)의 반경방향으로 외측에 배치되는 제2 섬유부(262)를 구비할 수 있다. 또한, 제2 섬유부(262)의 반경방향으로 외측에 배치되는 제3 섬유부(263)를 구비할 수 있다. 중앙 광학부(210)에 가장 인접하게 배치되는 제1 섬유부(261)의 직경은 가장 크며, 중앙 광학부(210)에 가장 외곽에 배치되는 제3 섬유부(263)의 직경은 가장 작게 형성될 수 있다.In detail, the optical fiber part 260 is adjacent to the central optical part 210 and is disposed in a circular direction along the central optical part 210 in the radial direction of the first fiber part 261 and the first fiber part 261. It may have a second fiber portion 262 disposed outside. In addition, the second fiber portion 262 may be provided with a third fiber portion 263 disposed on the outer side in the radial direction. The diameter of the first fiber portion 261 disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263 disposed at the outermost portion of the central optical portion 210 is the smallest. Can be.
광학 섬유부(260)는 각각의 길이방향과 제1 방향과 소정의 각을 형성할 수 있다. 광학 섬유부(260)는 중앙 광학부(210)의 중심라인(CL)과 소정의 각을 형성할 수 있다. 또한, 상기 각은 중앙 광학부(210)의 반경방향으로 증가할 수 있다. 중앙 광학부(210)로 입사되는 외부 광은 중앙 광학부를 통과하여 망막에 상(image)을 형성할 수 있다. 또한, 중앙 광학부(210)를 통과하는 광은 형성된 상(image)을 밝게 조절할 수 있다. The optical fiber unit 260 may form a predetermined angle with each of the longitudinal direction and the first direction. The optical fiber unit 260 may form a predetermined angle with the center line CL of the central optical unit 210. In addition, the angle may increase in the radial direction of the central optical unit 210. External light incident on the central optical unit 210 may pass through the central optical unit to form an image on the retina. In addition, the light passing through the central optical unit 210 may brighten the formed image.
광학 섬유부는 중앙 광학부의 반경 방향으로 복수개 배치되고, 광학 섬유부의 직경은 반경 방향으로 감소하도록 형성될 수 있다. 제 1 섬유부(261)의 직경을 크게 설계 하면 시축의 중심을 형성하는 망막내의 구조인 황반을 향하는, 정렬된 빛의 양을 보다 많이 확보할 수 있다. 정열되어 초점 심도가 향상된 빛을 최대한 많이 확보함으로써, 명도가 개선된 조절성 안내렌즈(200)을 제공할 수 있다. 이와 함께 제 3 섬유부(263)의 직경을 작게 한다면, 같은 면적 안에 포함된 광학 섬유의 밀도를 증가시켜, 조절성 안내렌즈(200)의 외측을 향하여 큰 입사각으로 입사하여, 초점심도의 향상을 방해하는 빛을 효과적으로 차단한 수 있다. The optical fiber portion may be arranged in plural in the radial direction of the central optical portion, and the diameter of the optical fiber portion may be formed to decrease in the radial direction. When the diameter of the first fiber portion 261 is designed to be large, a larger amount of aligned light toward the macula, which is a structure in the retina forming the center of the visual axis, can be ensured. By arranging as much light as the focus depth is improved, the adjustable intraocular lens 200 with improved brightness may be provided. In addition, if the diameter of the third fiber portion 263 is reduced, the density of the optical fibers included in the same area is increased, and the light is incident at a large angle of incidence toward the outside of the adjustable guide lens 200, thereby improving the depth of focus. Can block the obstructing light effectively.
다른 실시예로써 제1 섬유부(261)의 직경을 작게 형성하면, 전이부(220)에서 제1 섬유부(261)가 차지하는 면적이 줄어든다. 따라서, 상대적으로 전이부(220)에 입사되는 광이 많아진다. 제1 섬유부(261)는 중앙 광학부(210)에 인접하게 배치되므로, 중앙 광학부(210) 가까운 영역으로 입사되는 광의 투과량을 높이고, 중앙 광학부(210)에서 먼 영역으로 입사되는 광의 투과량을 낮출 수 있다. 따라서 명도가 개선된 조절성 안내 렌즈(200)를 제공할 수 있다.In another embodiment, when the diameter of the first fiber part 261 is made small, the area of the first fiber part 261 in the transition part 220 is reduced. Therefore, the light incident on the transition part 220 relatively increases. Since the first fiber portion 261 is disposed adjacent to the central optical portion 210, the first fiber portion 261 increases the transmission amount of light incident to the region near the central optical portion 210 and transmits the light incident to the region far from the central optical portion 210. Can be lowered. Therefore, it is possible to provide the adjustable intraocular lens 200 with improved brightness.
도8a 내지 도 8g는 도 6의 조절성 안내 렌즈(200)의 변형예를 도시한 단면도이다. 조절성 안내 렌즈(200)의 변형예들은 광학 섬유부의 구조 및 배치에 있어 특징적으로 차이가 있는바, 이하에서는 이를 중심으로 설명하기로 한다.8A to 8G are cross-sectional views illustrating a modified example of the adjustable intraocular lens 200 of FIG. 6. Modifications of the adjustable intraocular lens 200 are characteristically different in the structure and arrangement of the optical fiber portion, which will be described below.
도 8a를 참조하면, 광학 섬유부(260a)는 전면(250a)에서 후면(250b)을 연결하도록 삽입될 수 있다. 예를 들어, 광학 섬유부(260a)는 제1 섬유부(261a), 제2 섬유부(262a) 및 제3 섬유부(263a)를 구비할 수 있으며, 각각 제1 방향을 따라 전면(250a)에서 후면(250b)로 연장될 수 있다. 중앙 광학부(210)에 가장 인접하게 배치되는 제1 섬유부(261a)의 직경은 가장 크며, 중앙 광학부(210)에 가장 외곽에 배치되는 제3 섬유부(263c)의 직경은 가장 작게 형성될 수 있다.Referring to FIG. 8A, the optical fiber unit 260a may be inserted to connect the rear surface 250b at the front surface 250a. For example, the optical fiber part 260a may include a first fiber part 261a, a second fiber part 262a, and a third fiber part 263a, each of which has a front surface 250a along the first direction. May extend to the rear surface 250b. The diameter of the first fiber portion 261a disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263c disposed outermost to the central optical portion 210 is formed the smallest. Can be.
도 8b를 참조하면, 광학 섬유부(260b)는 전면(250a)에 삽입되도록 형성될 수 있다. 광학 섬유부(260b)는 전면(250a)에서 제1 방향으로 소정의 길이가 삽입되고, 후면(250b)으로는 광학 섬유부(260b)가 연장되지 않는다. Referring to FIG. 8B, the optical fiber part 260b may be formed to be inserted into the front surface 250a. The optical fiber portion 260b has a predetermined length inserted in the first direction from the front surface 250a, and the optical fiber portion 260b does not extend to the rear surface 250b.
예를 들어, 광학 섬유부(260b)는 제1 섬유부(261b), 제2 섬유부(262b) 및 제3 섬유부(263b)를 구비할 수 있으며, 각각 제1 방향을 따라 전면(250a)에 소정의 길이로 삽입될 수 있다. 중앙 광학부(210)에 가장 인접하게 배치되는 제1 섬유부(261b)의 직경은 가장 크며, 중앙 광학부(210)에 가장 외곽에 배치되는 제3 섬유부(263b)의 직경은 가장 작게 형성될 수 있다.For example, the optical fiber part 260b may include a first fiber part 261b, a second fiber part 262b, and a third fiber part 263b, and each of the front surface 250a along the first direction. Can be inserted into a predetermined length. The diameter of the first fiber portion 261b disposed closest to the central optical portion 210 is largest, and the diameter of the third fiber portion 263b disposed outermost to the central optical portion 210 is formed the smallest. Can be.
도8c를 참조하면, 광학 섬유부(260c)는 후면(250b)에 삽입되도록 형성될 수 있다. 광학 섬유부(260c)는 후면(250b)에서 제1 방향으로 소정의 길이가 삽입되고, 전면(250a)으로는 광학 섬유부(260c)가 연장되지 않는다. Referring to FIG. 8C, the optical fiber part 260c may be formed to be inserted into the rear surface 250b. The optical fiber portion 260c has a predetermined length inserted in the first direction from the rear surface 250b, and the optical fiber portion 260c does not extend to the front surface 250a.
예를 들어, 광학 섬유부(260c)는 제1 섬유부(261c), 제2 섬유부(262c) 및 제3 섬유부(263c)를 구비할 수 있으며, 각각 제1 방향을 따라 후면(250b)에 소정의 길이로 삽입될 수 있다. 중앙 광학부(210)에 가장 인접하게 배치되는 제1 섬유부(261c)의 직경은 가장 크며, 중앙 광학부(210)에 가장 외곽에 배치되는 제3 섬유부(263c)의 직경은 가장 작게 형성될 수 있다.For example, the optical fiber part 260c may include a first fiber part 261c, a second fiber part 262c, and a third fiber part 263c, and each of the rear surface 250b along the first direction. Can be inserted into a predetermined length. The diameter of the first fiber portion 261c disposed closest to the central optical portion 210 is largest, and the diameter of the third fiber portion 263c disposed outermost to the central optical portion 210 is formed the smallest. Can be.
도 8d를 참조하면, 광학 섬유부(260d)는 렌즈 본체(250)의 내부에 배치될 수 있다. 광학 섬유부(260d)는 렌즈 본체(250)의 전면에 인접하게 배치될 수 있다.Referring to FIG. 8D, the optical fiber unit 260d may be disposed inside the lens body 250. The optical fiber part 260d may be disposed adjacent to the front surface of the lens body 250.
예를 들어, 광학 섬유부(260d)는 제1 섬유부(261d), 제2 섬유부(262d) 및 제3 섬유부(263d)를 구비할 수 있으며, 각각 제1 방향을 따라 전이부(220)의 내부에 배치될 수 있다. 이때, 제1 섬유부(261d), 제2 섬유부(262d) 및 제3 섬유부(263d)는 후면(250b)보다 전면에 인접하게 배치될 수 있다.For example, the optical fiber part 260d may include a first fiber part 261d, a second fiber part 262d, and a third fiber part 263d, and each of the transition parts 220 along the first direction. It may be disposed inside. In this case, the first fiber portion 261d, the second fiber portion 262d, and the third fiber portion 263d may be disposed closer to the front surface than the rear surface 250b.
또한, 중앙 광학부(210)에 가장 인접하게 배치되는 제1 섬유부(261d)의 직경은 가장 크며, 중앙 광학부(210)에 가장 외곽에 배치되는 제3 섬유부(263d)의 직경은 가장 작게 형성될 수 있다.In addition, the diameter of the first fiber portion 261d disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263d disposed at the outermost portion of the central optical portion 210 is the largest. It can be formed small.
도 8e를 참조하면, 광학 섬유부(260e)는 렌즈 본체(250)의 내부에 배치될 수 있다. 광학 섬유부(260e)는 렌즈 본체(250)의 후면에 인접하게 배치될 수 있다.Referring to FIG. 8E, the optical fiber unit 260e may be disposed in the lens body 250. The optical fiber unit 260e may be disposed adjacent to the rear surface of the lens body 250.
예를 들어, 광학 섬유부(260e)는 제1 섬유부(261e), 제2 섬유부(262e) 및 제3 섬유부(263e)를 구비할 수 있으며, 각각 제1 방향을 따라 전이부(220)의 내부에 배치될 수 있다. 이때, 제1 섬유부(261e), 제2 섬유부(262e) 및 제3 섬유부(263e)는 전면(250a)보다 후면(250b)에 인접하게 배치될 수 있다.For example, the optical fiber part 260e may include a first fiber part 261e, a second fiber part 262e, and a third fiber part 263e, and each of the transition parts 220 along the first direction. It may be disposed inside. In this case, the first fiber portion 261e, the second fiber portion 262e, and the third fiber portion 263e may be disposed closer to the rear surface 250b than to the front surface 250a.
또한, 중앙 광학부(210)에 가장 인접하게 배치되는 제1 섬유부(261e)의 직경은 가장 크며, 중앙 광학부(210)에 가장 외곽에 배치되는 제3 섬유부(263de)의 직경은 가장 작게 형성될 수 있다In addition, the diameter of the first fiber portion 261e disposed closest to the central optical portion 210 is the largest, and the diameter of the third fiber portion 263de disposed at the outermost portion of the central optical portion 210 is the largest. Can be formed small
도 8f를 참조하면, 광학 섬유부(260f)는 렌즈 본체(250)의 내부에 배치될 수 있다. 광학 섬유부(260f)는 렌즈 본체(250)의 두께의 중심에 배치될 수 있다.Referring to FIG. 8F, the optical fiber unit 260f may be disposed in the lens body 250. The optical fiber part 260f may be disposed at the center of the thickness of the lens body 250.
예를 들어, 광학 섬유부(260f)는 제1 섬유부(261f), 제2 섬유부(262f) 및 제3 섬유부(263f)를 구비할 수 있으며, 각각 제1 방향을 따라 전이부(120)의 내부에 배치될 수 있다. 이때, 제1 섬유부(261f)와 제2 섬유부(162f)는 전면(250a)과 후면(250b)의 사이에 배치될 수 있다.For example, the optical fiber part 260f may include a first fiber part 261f, a second fiber part 262f, and a third fiber part 263f, and each of the transition parts 120 along the first direction. It may be disposed inside. In this case, the first fiber portion 261f and the second fiber portion 162f may be disposed between the front surface 250a and the rear surface 250b.
도 8g는 도 6의 조절성 안내 렌즈(200)의 다른 변형예를 도시한 단면도이다. 조절성 안내 렌즈(200)의 변형예는 광학 섬유부의 구조 및 배치에 있어 특징적으로 차이가 있는바, 이하에서는 이를 중심으로 설명하기로 한다.8G is a cross-sectional view illustrating another modified example of the adjustable intraocular lens 200 of FIG. 6. The modified example of the adjustable intraocular lens 200 is characteristically different in structure and arrangement of the optical fiber part, which will be described below.
광학 섬유부(260g)는 외벽(261g)이 테이퍼지도록 형성될 수 있다. 광학 섬유부(260g)는 제1 방향으로 테이퍼진 외벽(261g)을 구비할 수 있다. 상세히, 광학 섬유부(260g)는 전면(250a)에 형성되는 단면은 크고, 후면(250b)으로 갈수록 단면이 줄어들 수 있다. 광학 섬유부(260g)를 입사한 광 중 일부는 테이퍼진 외벽(261g)에 부딪칠 수 있다. 즉, 광학 섬유부(260g)에 통과하는 광 중 일부를 다시 외벽(261g)에 부딪혀서 광학 섬유부(260g)를 투과하는 광의 양을 줄 일수 있다. 광학 섬유부(260g)는 테이퍼진 외벽(261g)에 의해 광학 섬유부(260g)의 부피를 감소하더라도 효과적으로 입사된 빛을 재 반사하여 광을 정렬할 수 있다.The optical fiber part 260g may be formed such that the outer wall 261g is tapered. The optical fiber part 260g may include an outer wall 261g tapered in the first direction. In detail, the optical fiber portion 260g has a large cross section formed on the front surface 250a, and the cross section may be reduced toward the rear surface 250b. Some of the light incident on the optical fiber portion 260g may hit the tapered outer wall 261g. That is, some of the light passing through the optical fiber portion 260g may hit the outer wall 261g again to reduce the amount of light passing through the optical fiber portion 260g. The optical fiber part 260g can align the light by effectively reflecting the incident light even if the volume of the optical fiber part 260g is reduced by the tapered outer wall 261g.
도 9는 본 발명의 또 다른 실시예에 따른 조절성 안내 렌즈(300)를 도시한 사시도이다.9 is a perspective view of the adjustable intraocular lens 300 according to another embodiment of the present invention.
도 9를 참조하면, 조절성 안내 렌즈(300)는 렌즈 본체(350), 지지부(370) 및 광학 섬유부(360)를 구비할 수 있다. 렌즈 본체(350)는 중앙 광학부(310), 전이부(320) 및 가장자리부(330)를 구비할 수 있다. 다만, 본 발명의 다른 실시예는 다른 부분은 원 실시예와 동일하고, 광학 섬유부(360)의 형상 및 배치가 상이하게 형성된다는 점이 특징적으로 달라진다. 그러므로, 본 실시예의 설명에 있어서 그 설명이 없는 부분은 상시 서술한 실시예의 설명을 원용하도록 하고 자세한 설명은 생략하기로 한다.Referring to FIG. 9, the adjustable intraocular lens 300 may include a lens body 350, a support 370, and an optical fiber unit 360. The lens body 350 may include a central optical unit 310, a transition unit 320, and an edge unit 330. However, another embodiment of the present invention is different in that the other parts are the same as the original embodiment, characterized in that the shape and arrangement of the optical fiber portion 360 is differently formed. Therefore, in the description of the present embodiment, the part without description thereof will be used the description of the embodiment described above, and detailed description thereof will be omitted.
광학 섬유부(360)는 복수개의 밴드를 형성할 수 있다. 광학 섬유부(360)는 전이부(320)에 배치되고, 반경방향으로 소정의 간격을 가지도록 배치될 수 있다. 광학 섬유부(360)를 구비하는 복수개의 밴드는 특정 개수에 한정되지 않는다. 다만, 이하에서는 설명의 편의를 위해서 3개의 밴드를 가지는 경우를 중심으로 설명하기로 한다.The optical fiber unit 360 may form a plurality of bands. The optical fiber part 360 may be disposed on the transition part 320 and may be disposed to have a predetermined interval in the radial direction. The plurality of bands including the optical fiber part 360 is not limited to a specific number. However, hereinafter, a description will be given mainly for the case of having three bands for convenience of description.
상세히, 광학 섬유부(360)는 중앙 광학부(310)의 외측에 배치되는 제1 섬유밴드(361)와, 제1 섬유밴드(361)의 외측에 배치되는 제2 섬유밴드(362)와, 제2 섬유밴드(362)의 외측에 설치되는 제3 섬유밴드(363)를 구비할 수 있다. 제1 섬유밴드(361)와 제2 섬유밴드(362)는 소정의 간격을 가지고, 제2 섬유밴드(362)와 제3 섬유밴드(363)는 소정의 간격을 가지도록 배치할 수 있다. 각 섬유밴드들은 렌즈 본체(350)의 중심라인(CL)과 소정의 각도를 가지도록 형성되거나, 어느 일면에 접하도록 배치될 수 있다. 또한, 렌즈 본체(350)의 어느 일면과 간극을 형성하면서 인접하게 배치되고나, 렌즈 본체(350)의 중앙에 배치될 수 있다. 이에 대한 설명은 상기 서술한 원 실시예의 기재를 원용하기로 한다.In detail, the optical fiber part 360 includes a first fiber band 361 disposed outside the central optical part 310, a second fiber band 362 disposed outside the first fiber band 361, and The third fiber band 363 may be provided outside the second fiber band 362. The first fiber band 361 and the second fiber band 362 may have a predetermined interval, and the second fiber band 362 and the third fiber band 363 may be disposed to have a predetermined interval. Each of the fiber bands may be formed to have a predetermined angle with the center line CL of the lens body 350 or may be disposed to be in contact with one surface thereof. In addition, it may be disposed adjacent to one surface of the lens body 350 to form a gap, or may be disposed in the center of the lens body 350. The description thereof will use the description of the original embodiment described above.
조절성 안내 렌즈(300)는 섬유밴드들 사이의 간격으로 입사되는 광량을 증가시켜, 시야를 확보할 수 있다. 즉, 섬유 밴드들 사이의 간격을 통과하는 외부에서 입사된 광으로 인해서 시야가 넓어질 수 있다.The adjustable intraocular lens 300 may increase the amount of light incident at intervals between the fiber bands, thereby securing a field of view. That is, the field of view may be widened due to light incident from the outside passing through the gaps between the fiber bands.
도 10a는 자연 수정체(17)를 도시한 인간의 눈(10)의 단면도이고, 도10b는 도1의 조절성 안내 렌즈(100)가 삽입된 인간의 눈(10)의 단면도이다.FIG. 10A is a cross-sectional view of the human eye 10 showing the natural lens 17, and FIG. 10B is a cross-sectional view of the human eye 10 into which the adjustable intraocular lens 100 of FIG. 1 is inserted.
도 10a를 참조하면, 홍채(30)에 의해 분리된 전방 챔버(12)와 후방 챔버(14)를 갖는 인간의 눈(10)의 단면도가 도시되어 있다. 후방 챔버(14) 내에는 눈의 자연 수정체(17)를 붙들고 있는 수정체낭(16)이 존재한다. 눈에 들어온 빛은 각막(18)을 통과하여 수정체(17)까지 진행하며, 각막(18)과 수정체(17)는 눈의 뒤쪽에 위치한 망막(20) 상(image)에 빛을 지향시키고 초점 조절하는 역할을 함께 한다. 망막(20)은 시신경(22)에 연결되며, 시신경(22)은 망막(20)에 의해 받아들여진 이미지를 해석을 위해 뇌로 전달한다. Referring to FIG. 10A, a cross-sectional view of a human eye 10 having an anterior chamber 12 and an posterior chamber 14 separated by an iris 30 is shown. Within the posterior chamber 14 is a capsular bag 16 which holds the natural lens 17 of the eye. Light entering the eye passes through the cornea 18 to the lens 17, and the cornea 18 and the lens 17 direct light to the image of the retina 20 located behind the eye and adjust focus. Play a role together. The retina 20 is connected to the optic nerve 22, which transmits the image received by the retina 20 to the brain for interpretation.
자연 수정체(17)가 손상된 눈(10)에서는(예를 들어, 백내장에 의해 흐려짐), 자연 수정체(17)가 입사광을 망막으로 더 이상 적절히 초점 조절하거나 지향시킬 수 없고, 이미지가 흐려진다. 이러한 상황을 치료하기 위해 잘 알려진 외과적 기술은 손상된 수정체를 제거하고, 안내 렌즈 등의 인공 수정체로 교체하는 것을 포함한다. In the eye 10 where the natural lens 17 is damaged (eg, blurred by cataracts), the natural lens 17 can no longer properly focus or direct incident light to the retina, and the image is blurred. Well known surgical techniques for treating this situation include removing the damaged lens and replacing it with an artificial lens such as an intraocular lens.
도 10b를 참조하면, 외과 의사는 자연 수정체(17)의 일부 또는 전부를 절제한 뒤, 조절성 안내 렌즈(100)를 이식 할 수 있다. 이때, 중앙 광학부(110)는 황반부에 위치하도록 정렬될 수 있다. 지지부(170)는 렌즈 본체(150)가 이동하지 않도록 수정체낭 내의 적절한 위치에 고정될 수 있다. Referring to FIG. 10B, the surgeon may ablate some or all of the natural lens 17 and then implant the adjustable intraocular lens 100. At this time, the central optical unit 110 may be aligned to be located in the macular. The support unit 170 may be fixed at an appropriate position in the capsular bag so that the lens body 150 does not move.
도 11는 도1의 조절성 안내 렌즈(100)로 외부 광이 입사하는 것을 도시한 개념도이다.FIG. 11 is a conceptual diagram illustrating that external light is incident on the adjustable intraocular lens 100 of FIG. 1.
도 9를 참조하면, 조절성 안내 렌즈(100)가 눈에 이식되어 망막에 이미지가 명확하게 생성되는 것을 설명할 수 있다.Referring to FIG. 9, it can be explained that the adjustable intraocular lens 100 is implanted in the eye so that an image is clearly generated in the retina.
종래의 다초점 안내 렌즈는 중간거리나 가까운 거리의 물체를 볼 때, 섬광이나 헤일로(halos)와 같이 초점이 맞지 않는 빛이 발생하여 시력 장애를 유발하였다. 이는 광이 직진하는 특성과 관련된다. 먼 거리에서 입사되는 광은 대부분 망막(20)에 수직으로 입사하나, 근 거리에서 입사되는 광은 입사각이 다양하게 형성되어 망막(20)에 일부만 수직으로 입사된다. 즉, 중간거리나 근거리에 있는 물체를 볼 때에는 입사각이 다른 광들로 인해서 망막에는 복수의 상이 형성되어 시력 장애가 발생한다. In the conventional multifocal intraocular lens, when looking at an object at an intermediate distance or a short distance, out of focus light such as a flash or halos is generated to cause visual impairment. This is related to the property of light going straight. Most of the light incident at a long distance is perpendicular to the retina 20, but the light incident at a close distance is formed at various angles of incidence so that only a part of the light is incident vertically on the retina 20. In other words, when viewing an object at an intermediate distance or near distance, a plurality of images are formed in the retina due to light having different incidence angles, thereby causing visual impairment.
조절성 안내 렌즈(100)는 근거리나 중간거리에서 입사되는 광을 정렬하여 망막에 선명한 상을 형성할 수 있다.The adjustable intraocular lens 100 may form a clear image on the retina by aligning the light incident at a short or intermediate distance.
D1은 원거리에서 광이 입사되는 것을 나타내며, D2와 D3는 근거리나 중간거리에서 입사되는 광을 나타낸다. D2는 광학 섬유부(160)를 통과하는 것을 나타내벼, D3은 입사되는 각이 커서 광학 섬유부(160)의 측벽에 반사되는 것을 나타낸다. D1 represents light incident from a long distance, and D2 and D3 represent light incident from a short or medium distance. D2 indicates passing through the optical fiber unit 160, and D3 indicates that the incident angle is large and is reflected on the sidewall of the optical fiber unit 160.
D1과 같이 멀리서 입사되는 광은 각막(18), 중앙 광학부(110) 또는 광학 섬유부(160)에 수직으로 들어와서 통과한다. 즉, 멀리서 들어오는 광은 대부분 조절성 안내 렌즈(100)를 통과할 수 있다.Light incident from a distance such as D1 enters and passes perpendicular to the cornea 18, the central optical unit 110, or the optical fiber unit 160. In other words, the light coming in from far may pass through the adjustable intraocular lens 100.
D2와 같이 근거리나 중간거리에서 입사각이 작은 광이 입사되면, 즉 조절성 안내 렌즈에 대해서 거의 수직으로 입사되면 광은 광학 섬유부(160)를 통과할 수 있다. 입사각이 작은 광은 중앙 광학부(110) 및 광학 섬유부(160)를 모두 통과하여 초점 심도를 향상시킬 수 있다.When light having a small angle of incidence is incident at near or intermediate distances such as D2, that is, when the light is incident almost perpendicularly to the adjustable intraocular lens, the light may pass through the optical fiber unit 160. The light having a small incident angle passes through both the central optical unit 110 and the optical fiber unit 160 to improve the depth of focus.
반면에, D3와 같이 근거리나 중간거리에서 입사각이 큰 광이 입사되면, 광은 광학 섬유부(160)에 반사될 수 있다. 즉, 조절성 안내 렌즈(100)는 근거리에서 입사각이 큰 경우, 중앙 광학부(110)를 향하는 빛은 통과하나, 광학 섬유부(160)를 향하는 빛은 굴절률이 중앙 광학부(110)와 달라 반사한다. On the contrary, when light having a large incident angle is incident at a short distance or a medium distance, such as D3, the light may be reflected to the optical fiber unit 160. That is, when the angle of incidence of the adjustable intraocular lens 100 is large, the light passing through the central optical unit 110 passes, but the light directed toward the optical fiber unit 160 has a refractive index different from that of the central optical unit 110. Reflect.
특히, 빛은 광학 섬유부(160)의 측면에서 반사될 수 있다. 광학 섬유부(160)의 굴절률은 전이부(120)와 상이하므로, 입사각이 큰 빛은 전이부(120)를 통과하고, 광학 섬유부(160)의 측면에서 굴절률의 차이에 의해서 반사된다. In particular, light may be reflected at the side of the optical fiber portion 160. Since the refractive index of the optical fiber part 160 is different from the transition part 120, light having a large incident angle passes through the transition part 120 and is reflected by the difference in refractive index on the side of the optical fiber part 160.
또, 광학 섬유부(160)의 측면에 광흡수 도료 등을 도포할 수 있다. 입사각이 큰 빛은 전이부(120)를 통과하거나, 광학 섬유부(160)의 측면에서 도료를 통해 흡수될 수 있다.In addition, a light absorbing paint or the like can be applied to the side surface of the optical fiber unit 160. Light having a large incident angle may pass through the transition part 120 or may be absorbed through the paint on the side of the optical fiber part 160.
조절성 안내 렌즈(100)는 입사하는 빛 중 일부만 선택적으로 통과시키는바 광학 섬유부(160)에서 광을 정렬하여 초점 심도를 향상시킬 수 있다. 즉, 광학 섬유부(160)는 핀홀 효과와 유사한 효과를 형성하여 망막에 상이 선명하게 형성될 수 있다.The adjustable intraocular lens 100 selectively passes only a portion of the incident light, thereby aligning the light in the optical fiber unit 160 to improve the depth of focus. That is, the optical fiber unit 160 may form an effect similar to the pinhole effect, so that an image may be clearly formed on the retina.
조절성 안내 렌즈(100)는 중앙 광학부(110)에 입사되는 광은 투과하나, 광학 섬유부(160)에 입사되는 광은 선택적으로 투과하여 이미지를 선명하게 형성할 수 있다.The adjustable intraocular lens 100 transmits light incident on the central optical unit 110, but selectively transmits light incident on the optical fiber unit 160 to clearly form an image.
조절성 안내 렌즈(100)는 광학 섬유부(160)가 빛을 정렬하고, 빛의 상호 간섭을 최소화 하여 초점 심도를 향상할 수 있다.The adjustable guide lens 100 may improve the depth of focus by the optical fiber unit 160 to align the light, to minimize the mutual interference of the light.
조절성 안내 렌즈(200, 300)는 중앙 광학부(210, 310)를 통과하는 광의 양을 조절하여, 망막에 형성되는 이미지의 밝기를 조절할 수 있다. The adjustable intraocular lenses 200 and 300 may adjust the amount of light passing through the central optics 210 and 310 to adjust the brightness of the image formed on the retina.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will include such modifications and variations as long as they fall within the spirit of the invention.
본 발명의 일 실시예에 의하면, 조절성 안내 렌즈를 제공하여 초점 시도가 향상될 수 있으며, 산업상 이용하는 조절성 안내 렌즈가 적용되는 렌즈, 글라스, 안경 등에 본 발명의 실시예들을 적용할 수 있다. According to one embodiment of the present invention, an attempt to focus can be improved by providing an adjustable intraocular lens, and embodiments of the present invention can be applied to lenses, glasses, glasses, etc. to which the adjustable intraocular lens used in industry is applied. .

Claims (17)

  1. 전면과 후면을 가지고, 제1 방향으로 볼록하게 형성된 중앙 광학부를 구비한 렌즈 본체;A lens body having a front and a back and having a central optical part formed convexly in a first direction;
    상기 렌즈 본체의 가장자리에서 반경방향으로 연장되는 복수개의 지지부; 및A plurality of supports extending radially from an edge of the lens body; And
    적어도 일부가 상기 중앙 광학부의 내부에 포함되도록 배치되고, 상기 중앙 광학부의 외측에 상기 중앙 광학부를 일주하도록 배치되는 광학 섬유부;를 포함하는, 조절성 안내 렌즈.And an optical fiber unit disposed to include at least a portion of the central optical unit, and arranged around the central optical unit outside the central optical unit.
  2. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부의 굴절률은 상기 중앙 광학부의 굴절률과 다른, 조절성 안내 렌즈.The refractive index of the optical fiber portion is different from the refractive index of the central optical portion.
  3. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부는The optical fiber unit
    상기 광학 섬유부의 길이방향과 상기 제1 방향이 소정의 각을 형성하게 배치되는, 조절성 안내 렌즈.And the longitudinal direction of the optical fiber portion and the first direction are arranged to form a predetermined angle.
  4. 제1 항에 있어서,According to claim 1,
    상기 렌즈 본체는,The lens body,
    상기 중앙 광학부를 둘러싸며, 상기 광학 섬유부가 배치되는 전이부; 및A transition part surrounding the central optical part and in which the optical fiber part is disposed; And
    상기 전이부를 둘러싸며 상기 복수개의 지지부가 연결되는 가장자리부;를 구비하는, 조절성 안내 렌즈.And an edge portion surrounding the transition portion and to which the plurality of support portions are connected.
  5. 제4 항에 있어서,The method of claim 4, wherein
    상기 전이부는,The transition unit,
    상기 제1 방향으로의 두께는 상기 중앙 광학부에서 상기 가장자리부로 갈수록 얇아지는, 조절성 안내 렌즈.And the thickness in the first direction becomes thinner from the central optical portion toward the edge portion.
  6. 제 1항에 있어서,The method of claim 1,
    상기 광학 섬유부는, The optical fiber unit,
    상기 중앙 광학부에 인접하게 배치되는 제1 섬유부; 및A first fiber portion disposed adjacent to the central optical portion; And
    상기 제1 섬유부에 반경방향으로 이웃하게 배치되는 제2 섬유부;를 구비하는, 조절성 안내 렌즈. And a second fiber portion disposed radially adjacent to the first fiber portion.
  7. 제6 항에 있어서,The method of claim 6,
    상기 제1 섬유부의 길이 방항과 상기 제1 방향이 형성하는 각도의 크기는 상기 제2 섬유부의 길이 방향과 상기 제1 방향이 형성하는 각도의 크기보다 작은, 조절성 안내 렌즈. The length of the first fiber portion and the size of the angle formed by the first direction is smaller than the size of the length formed by the length direction and the first direction of the second fiber portion, the adjustable intraocular lens.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 광학 섬유부는,The optical fiber unit,
    상기 중앙 광학부의 반경방향으로 복수개 배치되고, 상기 광학 섬유부의 직경은 반경방향으로 감소하는, 조절성 안내 렌즈.And a plurality of radially arranged central portions of the central optical portion, wherein the diameter of the optical fiber portion decreases in the radial direction.
  9. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부는,The optical fiber unit,
    상기 렌즈 본체의 상기 전면에서 상기 후면으로 연장되는, 조절성 안내 렌즈. An adjustable intraocular lens extending from said front side of said lens body to said rear side.
  10. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부는,The optical fiber unit,
    상기 렌즈 본체의 상기 전면 또는 후면에 삽입되는, 조절성 안내 렌즈.The adjustable intraocular lens inserted into the front or the rear of the lens body.
  11. 제1항에 있어서,The method of claim 1,
    상기 광학 섬유부는,The optical fiber unit,
    상기 렌즈 본체의 내부에 배치되는, 조절성 안내 렌즈.The adjustable intraocular lens is disposed inside the lens body.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 광학 섬유부는, The optical fiber unit,
    상기 렌즈 본체의 상기 후면보다 상기 전면에 인접하거나, 상기 본체의 상기 전면보다 상기 후면에 인접하게 배치되는, 조절성 안내 렌즈.An adjustable intraocular lens disposed closer to the front surface than the rear surface of the lens body or adjacent to the rear surface than the front surface of the body.
  13. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부는,The optical fiber unit,
    상기 제1 방향으로 외벽이 테이퍼지도록 형성되는, 조절성 안내 렌즈. And the outer wall is tapered in the first direction.
  14. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부는,The optical fiber unit,
    유리 섬유 또는 광 섬유 중 어느 하나의 재료로 선택되는, 조절성 안내 렌즈.The adjustable intraocular lens selected from the materials of either glass fibers or optical fibers.
  15. 제1 항에 있어서,According to claim 1,
    상기 광학 섬유부로 입사되는 외부 광 중 적어도 일부는 상기 광학 섬유부의 내벽에서 전반사되는, 조절성 안내 렌즈.At least a portion of the external light incident on the optical fiber portion is totally reflected at the inner wall of the optical fiber portion, the adjustable intraocular lens.
  16. 제1 항에 있어서,According to claim 1,
    상기 중앙 광학부를 향하는 외부 광은 상기 중앙 광학부를 통과하고, 상기 광학 섬유부를 향하는 상기 외부 광은 입사각도에 따라 선택적으로 통과하는, 조절성 안내 렌즈.External light directed toward the central optical portion passes through the central optical portion, and the external light directed to the optical fiber portion selectively passes according to an angle of incidence.
  17. 제1 항에 있어서, According to claim 1,
    상기 광학 섬유부의 외벽에는 광흡수 도료가 도포되는, 조절성 안내 렌즈.The adjustable intraocular lens is coated with a light absorption paint on the outer wall of the optical fiber portion.
PCT/KR2016/008747 2015-08-13 2016-08-09 Adjustable intraocular lens WO2017026771A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680047445.2A CN107920917B (en) 2015-08-13 2016-08-09 Adjustable intraocular lens
EP16835411.6A EP3335678B1 (en) 2015-08-13 2016-08-09 Adjustable intraocular lens
US15/751,898 US10368978B2 (en) 2015-08-13 2016-08-09 Adjustable intraocular lens
JP2018513271A JP6648263B2 (en) 2015-08-13 2016-08-09 Adjustable intraocular lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150114569 2015-08-13
KR10-2015-0114569 2015-08-13
KR10-2016-0101224 2016-08-09
KR1020160101224A KR101816887B1 (en) 2015-08-13 2016-08-09 Accommodating intraocular lens

Publications (1)

Publication Number Publication Date
WO2017026771A1 true WO2017026771A1 (en) 2017-02-16

Family

ID=57983984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008747 WO2017026771A1 (en) 2015-08-13 2016-08-09 Adjustable intraocular lens

Country Status (1)

Country Link
WO (1) WO2017026771A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677040B2 (en) * 1993-08-27 2005-07-27 カミング,ジェイ・スチュワート Adjustable intraocular lens
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
KR20100114133A (en) * 2008-03-18 2010-10-22 픽셀옵틱스, 인크. Advanced electro-active optic device
KR20120093837A (en) * 2009-08-13 2012-08-23 아큐포커스, 인크. Masked intraocular implants and lenses
KR20140113447A (en) * 2013-03-15 2014-09-24 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Methods and apparatus to form ophthalmic devices incorporating photonic elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677040B2 (en) * 1993-08-27 2005-07-27 カミング,ジェイ・スチュワート Adjustable intraocular lens
US20080077238A1 (en) * 2006-09-21 2008-03-27 Advanced Medical Optics, Inc. Intraocular lenses for managing glare, adhesion, and cell migration
KR20100114133A (en) * 2008-03-18 2010-10-22 픽셀옵틱스, 인크. Advanced electro-active optic device
KR20120093837A (en) * 2009-08-13 2012-08-23 아큐포커스, 인크. Masked intraocular implants and lenses
KR20140113447A (en) * 2013-03-15 2014-09-24 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Methods and apparatus to form ophthalmic devices incorporating photonic elements

Similar Documents

Publication Publication Date Title
JP6648263B2 (en) Adjustable intraocular lens
US6197058B1 (en) Corrective intraocular lens system and intraocular lenses and lens handling device therefor
US6342073B1 (en) Intraocular lens for posterior vaulting
WO2016182261A1 (en) Soft contact lens for presbyopia and method for manufacturing same
DE69328359D1 (en) THIN INTRA-Ocular lens
US20150081015A1 (en) Intraocular Lens
US11938018B2 (en) Intraocular pseudophakic contact lens (IOPCL) for treating age-related macular degeneration (AMD) or other eye disorders
US7217289B2 (en) Treatment of photic disturbances in the eye
WO2004107020A9 (en) Narrow profile intraocular lens
US20210137674A1 (en) Intraocular implant with removable optic
GB2095119A (en) Circular keratotomy with insert for myopia correction
KR101390215B1 (en) Soft contact lens for presbyopia and method for thereof
CN108132544A (en) Dual defocus contact lens
WO2017026771A1 (en) Adjustable intraocular lens
WO2019198889A1 (en) Contact lens worn on one eye to improve presbyopia
WO2015108211A1 (en) Soft contact lens for presbyopia and manufacturing method therefor
US11864991B2 (en) Intraocular pseudophakic contact lens (IOPCL)-based telescopic approach for treating age-related macular degeneration (AMD) or other eye disorders
Ohara et al. Role of positioning holes in intraocular lens glare
US20170239040A1 (en) Lens design
WO2021075839A1 (en) Multifocal intraocular lens having asymmetric near-range zones
KR20230139690A (en) Adjustable intraocular lens
RU2002456C1 (en) Artificial crystalline lens
KR20060092228A (en) Intraocular lens for inhibiting pco and aco

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018513271

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016835411

Country of ref document: EP