WO2017026677A1 - Double-sided wire grid polarizing plate, and optical component comprising same - Google Patents

Double-sided wire grid polarizing plate, and optical component comprising same Download PDF

Info

Publication number
WO2017026677A1
WO2017026677A1 PCT/KR2016/007701 KR2016007701W WO2017026677A1 WO 2017026677 A1 WO2017026677 A1 WO 2017026677A1 KR 2016007701 W KR2016007701 W KR 2016007701W WO 2017026677 A1 WO2017026677 A1 WO 2017026677A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice
metal
wire grid
convex portion
double
Prior art date
Application number
PCT/KR2016/007701
Other languages
French (fr)
Korean (ko)
Inventor
김경종
황홍구
김시민
채헌승
남시욱
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2017026677A1 publication Critical patent/WO2017026677A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a wire grid polarizer and an optical component including the same, and more particularly, to a double-sided nano wire grid polarizer and an optical component including the same that can simultaneously achieve the polarization efficiency and brightness enhancement effect.
  • the polarizing plate transmits or reflects light in a specific direction among electromagnetic waves.
  • two polarizing plates are used in a liquid crystal display (LCD), so that liquid crystals in the liquid crystal cell cause optical interaction to implement an image.
  • LCD liquid crystal display
  • Polarizers using absorption type polarizing films are employed in polarizers that are mainly used in liquid crystal displays (LCDs), and in the case of absorption type polarizing films, iodine or dichroic dyes are adsorbed on polyvinyl alcohol (PVA) films, and a predetermined direction thereof is used. It is prepared by stretching. In this case, however, the mechanical strength of the transmission axis itself is weak, shrinks due to heat or moisture, and the polarization function is significantly reduced. Therefore, the light utilization efficiency is theoretically 50 because only the light vibrating in a specific direction passes. Can't exceed%
  • a wire grid polarizer (hereinafter, WGP) refers to an array in which metal wires are arranged in parallel, and polarization components parallel to the metal grid are reflected and vertical polarization components are transmitted, and the reflected light is reused. It is possible to manufacture an LCD having high luminance characteristics.
  • WGP light absorption occurs when the arrangement period of the metal lattice, that is, the wire spacing is close to or larger than the wavelength of the incident electromagnetic wave, and the loss of light due to absorption is minimized only when the arrangement period of the metal lattice is sufficiently small.
  • a first grating layer having at least one first lattice pattern on a substrate and a second metal layer formed on the first lattice pattern A second lattice layer having at least one lattice pattern, and a light absorbing layer stacked on the second lattice layer to absorb light from the outside, thereby improving luminance without decreasing contrast ratio (CR).
  • WGP which can be disclosed, and in the Republic of Korea Patent No.
  • the shape of the pattern is different for each region, and the period (P), height (H), width (W) and duty cycle (DC) of the pattern Disclosed is a liquid crystal display device capable of improving polarization performance and light efficiency by including at least one of different wire grid polarizers for each region.
  • the polarization efficiency for determining the contrast ratio (CR) of the display may be excellent as the S polarization transmittance (T S ) is as low as possible, and the brightness of the display, that is, the brightness is high, the P polarization transmittance (T P ). The more it can be improved.
  • P polarization is 100% transmitted and S polarization is not 100% absorbed or reflected. Therefore, in order to improve the P polarization transmittance (T P ), reducing the width and height of the metal lattice increases S polarization. Transmittance (T S ) can also be increased together, so that the polarization efficiency is rather low, and when the line width is widened to increase the polarization efficiency, the P polarization transmittance is lowered. That is, the P polarization transmittance and the polarization efficiency act in a trade-off relationship.
  • Theoretical methods to improve the P polarization transmittance (T P ) and the polarization efficiency simultaneously are to reduce the pitch (Ptich, distance from the lattice start point to the next lattice start point) at the same line width, that is, to reduce the distance between metal lattice. Can be.
  • the pitch Ptich, distance from the lattice start point to the next lattice start point
  • T S S polarization transmittance transmittance
  • the present invention includes a pattern capable of stacking more metals in a line width and pitch of the same range, and the metal grids facing each other based on the substrate layer without substantially controlling the pitch of the pattern. By staggering between them, it is to provide an effect as if the lattice spacing is narrowed to provide a double-sided wire grid polarizer plate and an optical component including the same P-transmittance and polarization efficiency of the trade-off relationship at the same time improved.
  • a first preferred embodiment of the present invention for achieving the above problem is the substrate layer 110; A resin layer 120 formed on both sides of the base layer and including a concave-convex pattern by the lattice-shaped convex portion 200; And a metal lattice 130 pattern layer formed on the lattice-shaped convex portions of the resin layer, wherein the lattice-shaped convex portion 200 is curved at least in one direction of the left side and the right side of the convex portion, It is a double-sided wire grid polarizer, characterized in that the irregular shape including one or more sections inclined to form an acute angle.
  • the grid-shaped convex part 200 includes at least one side protrusion and side depressions by at least one side part including at least one section of an inclined or curved section, and the side protrusions and side depressions
  • the metal lattice may be formed in contact with the lattice-shaped convex portion, and may be preferably formed so that the lamination width of the lattice-shaped convex portion formed in the horizontal direction at the largest protrusion by filling the metal is 10 nm to 100 nm.
  • the width equal to the line width of each metal grid in the vertical direction from the bottom of all the metal grid 130 formed on both sides of the wire grid unit 100 Assume that a virtual shadow formed in any grid is to form a shadow grid 300 having a width extended by one or more adjacent shadows that overlap or abut the interface. Can be.
  • the double-sided wire grid polarizing plate may satisfy the F.F (Fill Factor) value calculated by Equation 1 below 1.05.
  • the metal grating 130 has a height 131 per unit grating 1 to 1000 nm, a line width 132 is 1 to 140 nm, and the next grating starts at a point where any grating starts.
  • the pitch 133 which is defined as the distance to the point, may be 50 to 200 nm.
  • the double-sided wire grid polarizer according to the first embodiment may have a P polarization transmittance of 50% to 99%, an S polarization transmittance of less than 1%, and a polarization efficiency of 95% to 100%.
  • the present invention makes the optical part including the double-sided wire grid polarizer according to the first embodiment a second preferred embodiment of the present invention, and the optical part according to the second embodiment has a contrast.
  • the contrast ratio (CR) may be 500 to 1,000,000.
  • the polarization efficiency can be improved without decreasing the P polarization transmittance.
  • the P polarization transmittance and the polarization efficiency which are considered to be a conventional trade-off relationship, can be improved simultaneously without substantially controlling the pitch value of the grating.
  • FIG. 1 is a cross-sectional view illustrating an example of a double-sided wire grid polarizing plate of the present invention, in which the formation directions of metal grids facing each other based on the base layer have opposite directions to each other.
  • FIG. 2 is a perspective view of FIG. 1.
  • FIG 3 is a cross-sectional view illustrating an example of a double-sided wire grid polarizer of the present invention, in which the formation directions of metal grids facing each other based on the base layer have the same direction.
  • FIG. 4 is a cross-sectional view showing an example of various shapes of the grid-shaped convex portion 200 of the present invention.
  • FIG. 5 is a cross-sectional view showing the relationship between the maximum protrusions 210 and the maximum depressions 220 in any of the grid-shaped convex portions with various shapes of the grid-shaped convex portion 200 of the present invention.
  • FIG. 6 is an enlarged view of a portion of the wire grid polarizer of the present invention and virtual shadows S1 and S2 vertically formed toward the bottom surface from a grid of positional positions facing each other and overlap with each other to form a single shadow grid 300. Is an imaginary diagram showing the formation of.
  • metal grid Pitch 134 vertical gap between metal grids
  • the wire grid of the present invention has a grid-shaped convex portion 200 having an irregular shape including one or more sections in which at least one side surface portion of the convex portion is curved or inclined to form an acute angle with the ground. It can be made a more preferable feature.
  • WGP which is composed of a single layer
  • the uneven pattern must be formed very precisely in order to narrow the gap between the wire grids or the metal grids in order to increase the polarization efficiency.However, it is very difficult to realize a more precise pattern in the microstructure of the micro or nano size. It is difficult.
  • the P polarization transmittance may decrease. Accordingly, there is a limit to improving P polarization transmittance and polarization efficiency through a single layer of WGP.
  • the metal grids facing each other are staggered between the grid gaps of each other, so that the gaps between the grids are reduced as a whole.
  • the wire grid polarizer of the present invention may have a P polarization transmittance of 50% to 99%, an S polarization transmittance of less than 1%, and a polarization efficiency of 95% to 100%. Accordingly, when applied to an optical component such as a liquid crystal display device, it is possible to provide a display excellent in brightness and CR characteristics.
  • the droplet display device in the present invention compared to the PVA-type absorption polarizing film The relative luminance may be 100 to 180%, and the contrast ratio may be 500 to 1,000,000.
  • the present invention provides an optical component including the wire grid polarizer.
  • the optical part of the present invention may be representatively a liquid crystal display device, but is not necessarily limited thereto.
  • the double-sided WGP of the present invention is not a shape in which the lattice-shaped convex part 200 has a monotonous side part as in the prior art, but is vertically inclined or curved at an oblique side surface. As it may have a pattern different from the conventional one.
  • the grid-shaped convex portion forms a valley on at least one side of the left side and the right side by the unique shape of the grid-shaped convex portion, and since the formed valley may be filled with metal, the line width of the relatively same range, Compared with the conventional WGP showing the height and pitch, the metal lamination amount can be increased efficiently, and as a result, the polarization efficiency can be improved without lowering the P polarization transmittance.
  • the grid-shaped convex portion 200 may include at least one of the side protrusion and the side recessed portion by the side portion including at least one section inclined or curved.
  • the side protrusions and the side depressions described in the present invention are judged as the side protrusions, and the portions forming the peaks from the side surfaces of the lattice convex portions, respectively, and the side grooves are formed.
  • the protrusion and the depression are in the form of only one, it is preferable that the depression is located closer to the inward direction of the lattice convex portion, but if the protrusion includes two or more protrusions or depressions, any protrusion is lattice than any depression. It may be located closer to the inward direction of the convex portion. That is, the protrusion and the depression are not necessarily determined according to the relative position, and it is preferable to judge by the shape.
  • the lattice-shaped convex portions do not necessarily coincide with each other in the shape of the lattice formed on the other surface.
  • the shape of the lattice-shaped convex portion is not necessarily symmetrical, and may have irregularities in the shape of the protrusions and the depressions in the left and right directions or may have the protrusions and the depressions in only one direction.
  • the distance deviation in the horizontal direction between the largest protrusion and the largest depression, that is, the distance between P1 and P2 is less than 1 nm
  • the effect of improving the amount of metal lamination by the depression is insignificant, and the depth is deeply recessed so that the distance exceeds 30 nm.
  • Forming a portion is very difficult to implement in a micropattern and even when formed, it can be difficult to completely fill the metal up to the depth of the indentation.
  • the metal is filled in the depression so that the amount of stacking of the metal can be easily increased as compared with the general pattern having the same line width and pitch.
  • WGP since the polarization and reflection of light are determined by the metal pattern layer, when the stacking amount of metal is increased, the reflectance may be improved and the polarization efficiency may be improved.
  • the amount of stacking of metal is excessively increased to improve the reflectance. In this case, if the light transmission period becomes too narrow, the luminance may be lowered.
  • the metal is filled in the valley formed on the side surface without narrowing the transmission section of the light, the polarization efficiency can be improved without decreasing the luminance in the same range of pitch and line width conditions.
  • the lattice-shaped convex portion 200 has the width of the convex portion at a constant ratio from the upper end to the lower end with respect to the ground and the horizontal direction based on the convex cross-sectional shape as illustrated in FIG. 4.
  • the decreasing shape or the convex portion may be a shape inclined to one side while maintaining a constant width.
  • all inclined sections of both sides form an acute angle with the ground, and the lattice convex part is inclined to one side while maintaining a constant width.
  • an inclination that forms an acute angle with the ground is generated from the side of the lattice-shaped convex part.
  • the side portion includes a curved section, the width of the convex portion increases and decreases relative to the ground and the horizontal direction based on the cross-sectional shape of the convex portion, the section in which the width of the convex portion increases and is constant, the convex portion A section where the width decreases and increases, a section where the width of the convexity decreases, a section that becomes constant, the width of the convexity is constant, a section that increases, the width of the convexity is constant, the section that decreases and the constant width is maintained, but the inclined direction of the convexity is changed. It may have a shape including at least one curved section of the section. At this time, the curved section in the present invention may mean both the pointed and curved form connected.
  • the line width is 5 to 100nm
  • the height in the direction perpendicular to the surface is 10 to 500nm in terms of being able to imprint close to the desired shape.
  • the line width and height of the lattice-shaped convex portion being too small outside the above range is very difficult to implement the pattern itself, and the pattern aggregation may occur when the line width and height are too large outside the above range.
  • the grid-shaped convex portion is defined as the distance from the leftmost vertical line drawn from an arbitrary convex portion to the left-most vertical line drawn from an adjacent lattice convex portion when drawing an imaginary vertical line perpendicular to the ground while contacting the outer edge of the convex portion. It may be desirable for the pitch value to be 20-200 nm. It is difficult to secure a light transmission path after the metal lattice having a pitch value of less than 20 nm, and when the pitch value exceeds 200 nm, it may be difficult to expect excellent polarization characteristics (extinction ratio) for visible light.
  • the metal grating 130 has a height 131 per unit grid of 1 to 1000 nm, a line width 132 of 1 to 140 nm, and a point from which an arbitrary grating starts to a point where the next grating starts.
  • the pitch 133 which is defined as a distance of, may be 50 to 200 nm.
  • a more preferable height of the metal lattice may be 10 to 500 nm and a line width of 1 to 100 nm, and a more preferable height of 40 to 250 nm and a line width of 30 to 80 nm.
  • the polarization efficiency can be increased while maintaining a high P polarization transmittance.
  • the spacing between the gratings positioned horizontally is advantageous to satisfy the above range, more preferably 50 to 200 nm, more preferably 80 to 150 nm.
  • the metal lattice 130 has a vertical gap (134) with respect to the lattice on the opposite side facing each other with respect to the vertical direction from the arbitrary lattice centers, and may be 0.05 to 500 ⁇ m, for thinning More preferably, it may be 0.05 to 300 ⁇ m, more preferably 0.3 to 150 ⁇ m, but is not necessarily limited thereto.
  • the metal grating 120 is formed in contact with the lattice convex portion 200 of the WGP, wherein the metal is filled from the maximum depression of the lattice convex portion in the horizontal direction from the maximum protrusion
  • the lamination width of the metal lattice i.e., formed so that the thickness of the metal lattice from the largest protrusion of the lattice-shaped convex portion is 10 nm to 100 nm is preferable in view of more effectively improving polarization efficiency.
  • the metal lattice does not necessarily have to be formed higher than the lattice convex portion, the metal lattice may be formed to have a thickness of 10 nm to 200 m in the vertical direction from the uppermost end of the lattice convex portion.
  • the metal lattice pattern may be formed from any one metal or conductor selected from the group consisting of aluminum, copper, chromium, platinum, gold, silver, nickel and alloys thereof, taking into consideration reflectance and economical efficiency. It may be more desirable to use aluminum and alloys thereof.
  • the method of stacking a metal lead on the curable resin includes a method of sputtering, vacuum thermal deposition, or a dry etching method of simultaneously etching a polymer and a metal to form a metal lead layer, and the method of manufacturing the same is not limited thereto.
  • the metal grating is in the form of a lattice such as a prism and a lenticular, and is formed on the convex portion or the concave portion of the resin layer pattern, and the shape thereof may be varied by the deposition method, so that the cross-sectional shape of the metal grating is particularly limited. It doesn't work.
  • the cross-sectional shape of the pattern is a shape in which a semicircle, an ellipse, a regular polygon, a polygon, a rounded polygon, a 'b' shape, a fan shape, a boomerang shape, a dome shape, and a sinusoidal shape are repeated.
  • the pattern may be repeated in distinctly angular form or may be smoothly connected and repeated in a curved curve.
  • the metal lattice may be formed to face each other with respect to each other centering the substrate layer as shown in Figure 1 and 2, or may be formed in the same direction as shown in Figure 3 .
  • the direction of formation of the metal lattice facing each other is not limited in the present invention, and may be determined depending on which direction the depression is formed in the lattice-shaped convex portions formed on each surface, which can be selected by an operator as necessary.
  • the metal lattice pattern layer in the present invention is basically sufficient to satisfy the above range, except that all metal lattice 130 formed on both sides of the wire grid polarizer of the present invention are vertically directed toward the bottom.
  • a virtual shadow having a width equal to the line width of the metal grid is formed, the virtual shadow S1 formed in any grid present on one surface of the substrate is overlapped by the shadow S2 formed in the grid on the opposite surface, or It may be desirable to be able to form a shadow grid (Shadow grid, 300) having a line width of the metal grid line width or more in contact with the interface surface in terms of improving the P polarization transmittance and polarization efficiency.
  • the concept of the shadow grid introduced in the present invention can be more easily understood with reference to FIG.
  • the scope of the present invention is not necessarily limited by FIG.
  • the metal lattice pattern on the top surface of the base layer is regarded as the second layer, and the metal lattice formed on the opposite side is referred to as the second layer.
  • the shadow of the grid is indicated by S2 and the shadow of the grid located on S1 and the second layer.
  • Shadows S1 and S2 overlap each other to form shadows connected as one, as shown in FIG. 6.
  • shadows S1 or S2 by one lattice due to overlapping or border contact (not shown) of the shadows are formed.
  • Shadows that have a width that extends beyond the width of the shadow are defined as 'shadow grids' (300).
  • the width of the shadow grating is not an actual line width of each metal grating, the width of the shadow grating may serve as a factor for narrowing the gap between the metal gratings without affecting the P polarization transmittance at all.
  • the shadow grids may also overlap or taste with each other, and in this case, shadows may be formed over the entire bottom surface, and higher polarization efficiency may be achieved when all shadows are formed on the bottom surface.
  • the wire grid polarizing plate preferably has a F.F (Fill Factor) value calculated by Equation 1 below by the concept of the shadow grating.
  • fill factor represents the ratio of the metal lattice line width to the pitch of the metal lattice in a single layer, and the closer the value of F.F is to 1, the higher the polarization efficiency is. According to this analysis, at the same pitch, the larger the line width, the closer the value of F.F can be.
  • the present invention which does not control the pitch, it may be more easily understood to apply the ratio of the line width of the shadow grating to the line width of the metal grating, rather than the conventional F.F calculation formula that substitutes the pitch value.
  • FF is the line width of the shadow grating to the line width of the metal grating. It is to be interpreted as the ratio of.
  • the value of FF is 1.05 or more. It is preferable.
  • the base layer 110 is a triacetyl cellulose (TAC) film, polymethyl methacrylate (PMMA) film, polyethylene terephthalate film, polycarbonate film, polypropylene film, polyethylene film, polystyrene film, polyepoxy film , Cyclic olefin polymer (COP) film, cyclic olefin copolymer (COC) film, copolymer film of polycarbonate resin and cyclic olefin polymer, and air of polycarbonate resin and cyclic olefin copolymer It may be any transparent film or glass selected from the group comprising the coalescence film.
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • PMMA polyethylene terephthalate film
  • polycarbonate film polypropylene film
  • polyethylene film polystyrene film
  • polyepoxy film polyepoxy film
  • the metal pattern layer is formed on both sides, the light passing through the WGP of the present invention passes through the metal lattice and passes through the base layer, so that the base layer does not interfere with the polarization characteristic.
  • Isotropic substrates having a thickness of 50 nm or less, more preferably 20 nm or less, may be advantageous.
  • the thickness of the base layer may be 5 ⁇ m to 250 ⁇ m, and more preferably 20 ⁇ m to 125 ⁇ m, to favor mechanical strength and flexibility .
  • the resin layer 120 may include polyvinyl resin, silicone resin, acrylic resin, epoxy resin, methacryl resin, phenol resin, polyester resin, styrene resin, alkyd resin, amino resin, It is preferable that it is formed with 1 or more types of curable resins chosen from the group containing with a polyurethane-type resin.
  • curable resins include unsaturated polyester, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, acrylic acid, methacrylic acid, and hydride.
  • WGPs of Examples 1 to 4 including lattice-shaped convex portions and metal lattice meeting the conditions described in Table 1 below were prepared on both sides of the base layer.
  • the substrate was used a triacetyl cellulose (TAC) film having a thickness of 80 ⁇ m, after applying the acrylic photosensitive composition on both sides of the TAC, the nickel electrostatic stamp is in close contact with the ultraviolet (high pressure mercury lamp, 20 W / cm 2 )
  • the resin layer which provided the lattice-shaped convex part on both surfaces was manufactured.
  • the metal lattice was formed by partially depositing aluminum on the resin layer thus formed through sputtering.
  • Comparative Example 1 which satisfies the conditions described in Table 1 below, but includes a conventional lattice-shaped convex portion in which protrusions and depressions do not exist, unlike Examples 1 to 4, respectively.
  • WGPs of 2 were prepared. At this time, the resin layer, metal pattern layer, base material layer, manufacturing process, etc. used for the WGP of Comparative Examples 1 and 2 were controlled to be the same as those used in Production Examples 1 to 4 above.
  • Example 1 30 100 100 15 both sides 40 120 70 1.27
  • Example 2 30 100 100 15 both sides 50 120 90 1.38
  • Example 3 30 100 100 15 both sides 60 120 85 1.13
  • Example 1 81.5 0.008 99.980
  • Example 2 80.9 0.001 99.998
  • Example 3 80.2 0.004 99.990
  • Example 4 81.3 0.075 99.816 Comparative Example 1 80.7 0.069 99.826 Comparative Example 2 80.4 0.021 99.948
  • the polarization efficiency of Examples 1 to 3 in which the convex gratings having the distance between the largest protrusions and the maximum depressions are formed on both sides of the base layer is the common convex gratings of the base layer cross section and both sides. It was remarkably improved compared to Comparative Examples 1 to 2 formed in the above measured at 99.99%. However, in the case of Example 4 having a F.F of less than 1.05, it was confirmed that the P canal tube transmittance was improved, but the improvement in polarization efficiency due to lamination was found to be less than expected compared to Examples 1 to 3.
  • the polarizers (WGP) of Examples 1 to 4 and Comparative Examples 1 and 2 prepared above were attached to each other to analyze luminance.
  • a commercially available PVA-type absorbing polarizer was used as a control.
  • the highest luminance (Maximum Luminance, White) and the lowest luminance (Minimum Luminance, Black) were analyzed by rotating the WGP attached to the lower surface of the liquid crystal display panel 360 degrees.
  • Luminance measurement was performed by measuring the luminance at any of five points using BM-7A (Japan TOPCON Co., Ltd.), and evaluating the average value.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention relates to a double-sided wire grid polarizing plate, and also relates to an optical component comprising the same, the double-sided wire grid polarizing plate comprising: a base layer (110); a resin layer (120) which is formed on both surfaces of the base layer and includes uneven patterns formed by grid-type protrusion parts (200); and a metal grid pattern layer (130) formed on the grid-type protrusion parts of the resin layer, wherein the grid-type protrusion parts (200) are formed in an irregular shape in which at least one side surface from among the left side surface and the right side surface of the grid-type protrusion parts includes at least one section which is curved or is inclined so as to form an acute angle with the ground.

Description

양면형 와이어 그리드 편광판 및 이를 포함한 광학부품Double sided wire grid polarizer and optical parts including the same
본 발명은 와이어 그리드 편광판 및 이를 포함한 광학부품에 관한 것으로, 보다 구체적으로는 편광효율 및 휘도 향상 효과를 동시에 달성할 수 있는 양면형 나노 와이어 그리드 편광판 및 이를 포함한 광학부품에 관한 것이다.The present invention relates to a wire grid polarizer and an optical component including the same, and more particularly, to a double-sided nano wire grid polarizer and an optical component including the same that can simultaneously achieve the polarization efficiency and brightness enhancement effect.
편광판은 전자기파 중 특정 방향의 빛을 투과시키거나 반사시키는 역할을 하며 일반적으로 액정표시장치(LCD)에서는 두 장의 편광판이 사용되어 액정셀 내의 액정이 광학적인 상호작용을 일으켜 이미지를 구현하게 된다. The polarizing plate transmits or reflects light in a specific direction among electromagnetic waves. In general, two polarizing plates are used in a liquid crystal display (LCD), so that liquid crystals in the liquid crystal cell cause optical interaction to implement an image.
현재 액정표시장치(LCD)에 주로 사용되고 있는 편광판에는 흡수형 편광 필름을 이용한 편광판이 채용되며, 흡수형 편광 필름의 경우 주로 폴리비닐알코올(PVA) 필름에 요오드나 이색성염료를 흡착시키고 이를 일정방향으로 연신하여 제조한다. 그러나 이러한 경우 그 자체가 투과축의 방향에 대한 기계적 강도가 약하고, 열이나 수분에 의해 수축하여 편광기능이 현저히 저하되며, 특정 방향으로 진동하는 빛만을 통과시켜 선편광을 만들기 때문에 광이용 효율이 이론적으로 50%를 넘을 수 없다.Polarizers using absorption type polarizing films are employed in polarizers that are mainly used in liquid crystal displays (LCDs), and in the case of absorption type polarizing films, iodine or dichroic dyes are adsorbed on polyvinyl alcohol (PVA) films, and a predetermined direction thereof is used. It is prepared by stretching. In this case, however, the mechanical strength of the transmission axis itself is weak, shrinks due to heat or moisture, and the polarization function is significantly reduced. Therefore, the light utilization efficiency is theoretically 50 because only the light vibrating in a specific direction passes. Can't exceed%
반면, 와이어 그리드 편광판(이하, WGP)은 금속 와이어가 평행하게 배열된 어레이를 말하며, 금속 격자(Metal Grid)와 평행한 편광성분은 반사되고 수직한 편광성분은 투과시키며, 반사된 광을 재이용할 수 있어서 높은 휘도특성을 갖는 LCD를 제조할 수 있다. WGP에서는 금속 격자의 배열주기 즉, 와이어 간격이 입사되는 전자기파의 파장과 근사하거나 클 경우에는 흡광 현상이 나타나며, 금속 격자의 배열 주기가 충분히 작아야만 흡광에 의한 빛의 손실을 최소화할 수 있다. On the other hand, a wire grid polarizer (hereinafter, WGP) refers to an array in which metal wires are arranged in parallel, and polarization components parallel to the metal grid are reflected and vertical polarization components are transmitted, and the reflected light is reused. It is possible to manufacture an LCD having high luminance characteristics. In the WGP, light absorption occurs when the arrangement period of the metal lattice, that is, the wire spacing is close to or larger than the wavelength of the incident electromagnetic wave, and the loss of light due to absorption is minimized only when the arrangement period of the metal lattice is sufficiently small.
WGP와 관련된 종래기술로는, 대한민국 특허출원 제2010-0102358호에서 기판상에 적어도 1이상의 제1격자 패턴을 구비한 제1 격자층과 상기 제1격자 패턴의 상부에 금속재질로 형성되는 제2격자 패턴을 적어도 1이상 구비하는 제2 격자층, 그리고 상기 제2격자층상에 적층되어 외부에서 유입되는 빛을 흡수하는 광흡수층을 포함함으로써 명암대조비(C.R, contrast ratio)의 저하없이 휘도향상을 구현할 수 있는 WGP를 개시하고 있고, 대한민국 등록특허 제10-1336097호에서 패턴의 형상이 영역별로 서로 다르며, 패턴의 주기(P), 높이(H), 폭(W) 및 듀티 사이클(DC; duty cycle) 중 적어도 하나가 영역별로 서로 다른 와이어 그리드 편광판을 포함함으로써 편광성능 및 광효율을 향상시킬 수 있는 액정디스플레이 장치를 개시하고 있는 바이다.In the related art related to WGP, in Korean Patent Application No. 2010-0102358, a first grating layer having at least one first lattice pattern on a substrate and a second metal layer formed on the first lattice pattern A second lattice layer having at least one lattice pattern, and a light absorbing layer stacked on the second lattice layer to absorb light from the outside, thereby improving luminance without decreasing contrast ratio (CR). WGP which can be disclosed, and in the Republic of Korea Patent No. 10-1336097, the shape of the pattern is different for each region, and the period (P), height (H), width (W) and duty cycle (DC) of the pattern Disclosed is a liquid crystal display device capable of improving polarization performance and light efficiency by including at least one of different wire grid polarizers for each region.
한편, WGP에 비편광 빛(Unpolarized Light)을 조사하였을 경우, 금속 격자와 직교하는 방향으로 진동하며 투과하는 빛을 'P 편광', 평행한 방향으로 진동하며 반사되는 광은 'S 편광'이라고 한다. 이때, 디스플레이의 명암대조비(C.R, contrast ratio)를 결정하는 편광효율은 S 편광 투과율(TS)이 가능한 낮을수록 우수해질 수 있으며, 디스플레이의 휘도 즉, 밝기는 P 편광 투과율(TP)이 높을수록 향상될 수 있다.On the other hand, when unpolarized light is irradiated to the WGP, the light transmitted while vibrating in a direction orthogonal to the metal lattice is 'P polarized light' and the reflected light is vibrated in a parallel direction and is called 'S polarized light'. . In this case, the polarization efficiency for determining the contrast ratio (CR) of the display may be excellent as the S polarization transmittance (T S ) is as low as possible, and the brightness of the display, that is, the brightness is high, the P polarization transmittance (T P ). The more it can be improved.
다만, 실제로는 P 편광이 100% 투과되고 S 편광이 100% 흡수 또는 반사가 되지 못하는데, 이에 따라 P 편광 투과율(TP)을 향상시키키 위해 금속 격자의 선폭(width)과 높이를 줄이면 S 편광 투과율(TS)도 함께 높아질 수 있어 편광효율은 오히려 낮아지게 되고, 편광효율을 높이기 위해 선폭을 넓히면 P 편광 투과율이 떨어지게되는 현상이 발생하게 된다. 즉, P 편광 투과율과 편광효율은 트레이드-오프(trade-off)관계로 작용하는 것이다.However, in practice, P polarization is 100% transmitted and S polarization is not 100% absorbed or reflected. Therefore, in order to improve the P polarization transmittance (T P ), reducing the width and height of the metal lattice increases S polarization. Transmittance (T S ) can also be increased together, so that the polarization efficiency is rather low, and when the line width is widened to increase the polarization efficiency, the P polarization transmittance is lowered. That is, the P polarization transmittance and the polarization efficiency act in a trade-off relationship.
P 편광 투과율(TP)과 편광효율을 동시에 향상시키기 위한 이론적인 방법으로는 동일한 선폭에서 피치(Ptich, 격자 시작점부터 다음 격자 시작점까지 거리)를 줄이는 방법 즉, 금속 격자간 거리를 줄이는 방법을 들 수 있다. 금속 격자간 거리를 좁히게 되면 P 편광 투과율(TP)엔 영향을 미치지 않으면서도 S 편광 투과율(TS)이 현저히 낮아질 수 있으므로 매우 높은 편광효율을 기대할 수 있는 것이다. 그러나 현재의 기술로는 피치를 80nm 미만으로 형성하는 것이 거의 불가능한 실정이다.Theoretical methods to improve the P polarization transmittance (T P ) and the polarization efficiency simultaneously are to reduce the pitch (Ptich, distance from the lattice start point to the next lattice start point) at the same line width, that is, to reduce the distance between metal lattice. Can be. When the distance between the metal lattice is narrowed, the S polarization transmittance (T S ) can be significantly lowered without affecting the P polarization transmittance (T P ), so that very high polarization efficiency can be expected. However, the current technology is almost impossible to form a pitch of less than 80nm.
이에 본 발명은 동일 범위의 선폭 및 피치에서 상대적으로 금속을 더 많이 적층할 수 있는 패턴을 포함하고, 이와 함께 패턴의 피치를 실질적으로 제어하지는 않아도 기재층을 기준으로 마주하는 금속 격자들을 서로의 간격 사이에 오도록 엇갈려 위치시킴으로써, 마치 격자 간격이 좁혀지는 것과 같은 효과를 유도하여 트레이드-오프 관계인 P 편광 투과율과 편광효율이 동시에 향상된 양면형 와이어 그리드 편광판 및 이를 포함한 광학부품을 제공하고자 한다. Accordingly, the present invention includes a pattern capable of stacking more metals in a line width and pitch of the same range, and the metal grids facing each other based on the substrate layer without substantially controlling the pitch of the pattern. By staggering between them, it is to provide an effect as if the lattice spacing is narrowed to provide a double-sided wire grid polarizer plate and an optical component including the same P-transmittance and polarization efficiency of the trade-off relationship at the same time improved.
상기 해결 과제를 달성하기 위한 본 발명의 바람직한 제 1 구현예는 기재층(110); 상기 기재층의 양면에 형성되며 격자형 볼록부(200)에 의한 요철 패턴을 포함하는 수지층(120); 및 상기 수지층의 격자형 볼록부 상에 형성되는 금속 격자(130) 패턴층을 포함하며, 상기 격자형 볼록부(200)는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 굴곡지거나 지면과 예각을 이루도록 경사진 구간을 한 구간이상 포함하는 부정형의 형상인 것임을 특징으로 하는 양면형 와이어 그리드 편광판이다.A first preferred embodiment of the present invention for achieving the above problem is the substrate layer 110; A resin layer 120 formed on both sides of the base layer and including a concave-convex pattern by the lattice-shaped convex portion 200; And a metal lattice 130 pattern layer formed on the lattice-shaped convex portions of the resin layer, wherein the lattice-shaped convex portion 200 is curved at least in one direction of the left side and the right side of the convex portion, It is a double-sided wire grid polarizer, characterized in that the irregular shape including one or more sections inclined to form an acute angle.
상기 제 1 구현예에 따른 격자형 볼록부(200)는 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 측면부에 의해서 측면 돌출부와 측면 함몰부를 각각 최소 1 이상 포함하는 것이며, 상기 측면 돌출부 및 측면 함몰부는 동일한 방향을 기준으로 최대 돌출부(210)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P1);과 최대 함몰부(220)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P2) 사이의 거리가 1 내지 30nm인 것이 바람직할 수 있다.The grid-shaped convex part 200 according to the first embodiment includes at least one side protrusion and side depressions by at least one side part including at least one section of an inclined or curved section, and the side protrusions and side depressions The point where the virtual line vertically lowered toward the ground at the maximum protrusion 210 meets the ground based on the same direction (P1); and the virtual line vertically lowered toward the ground at the maximum recess 220 meets the ground. It may be desirable for the distance between points P2 to be between 1 and 30 nm.
이때, 상기 금속 격자는 격자형 볼록부와 맞닿아 형성된 것이고, 격자형 볼록부의 최대 함몰부에서부터 금속이 채워져 최대 돌출부에서 수평방향으로 이루는 적층폭이 10nm 내지 100nm 가 되도록 형성된 것이 바람직할 수 있다.In this case, the metal lattice may be formed in contact with the lattice-shaped convex portion, and may be preferably formed so that the lamination width of the lattice-shaped convex portion formed in the horizontal direction at the largest protrusion by filling the metal is 10 nm to 100 nm.
한편, 상기 제 1 구현예에 따른 양면형 와이어 그리드 편광판에 의하면, 와이어 그리드 유닛(100)의 양면에 형성된 모든 금속 격자(130)로부터 바닥면을 향해 수직 방향으로 각각의 금속 격자의 선폭과 동일한 폭을 갖는 가상의 그림자를 형성한다 가정할 때, 임의의 격자에서 형성된 가상의 그림자는 이와 중첩되거나 경계면이 맞닿는 하나 이상의 인접한 그림자에 의해 연장된 폭을 갖는 그림자 격자(Shadow grid, 300)를 형성하는 것일 수 있다.On the other hand, according to the double-sided wire grid polarizer according to the first embodiment, the width equal to the line width of each metal grid in the vertical direction from the bottom of all the metal grid 130 formed on both sides of the wire grid unit 100 Assume that a virtual shadow formed in any grid is to form a shadow grid 300 having a width extended by one or more adjacent shadows that overlap or abut the interface. Can be.
이때, 상기 양면형 와이어 그리드 편광판은 하기 식 1에 따라 계산되는 F.F(Fill Factor)의 값이 1.05 이상을 만족하는 것일 수 있다.In this case, the double-sided wire grid polarizing plate may satisfy the F.F (Fill Factor) value calculated by Equation 1 below 1.05.
식 1)
Figure PCTKR2016007701-appb-I000001
Equation 1)
Figure PCTKR2016007701-appb-I000001
또한, 상기 제 1 구현예에 따른 금속 격자(130)는 단위 격자당 높이(131)가 1 내지 1000nm이고, 선폭(132)이 1 내지 140nm이며, 임의의 격자가 시작되는 지점에서 다음 격자가 시작되는 지점까지의 거리로 정의되는 피치(Pitch, 133)가 50 내지 200nm일 수 있다. In addition, the metal grating 130 according to the first embodiment has a height 131 per unit grating 1 to 1000 nm, a line width 132 is 1 to 140 nm, and the next grating starts at a point where any grating starts. The pitch 133, which is defined as the distance to the point, may be 50 to 200 nm.
나아가, 상기 제 1 구현예에 따른 양면형 와이어 그리드 편광판은 P 편광 투과율이 50% 내지 99%이고, S 편광 투과율이 1% 미만이며, 편광효율이 95% 내지 100% 일 수 있다.Furthermore, the double-sided wire grid polarizer according to the first embodiment may have a P polarization transmittance of 50% to 99%, an S polarization transmittance of less than 1%, and a polarization efficiency of 95% to 100%.
이와 같은 광학적 특성으로 인해, 본 발명은 상기 제 1 구현예에 따른 양면형 와이어 그리드 편광판을 포함하는 광학부품을 본 발명의 바람직한 제 2 구현예로 하며, 상기 제 2 구현예에 따른 광학부품은 명암대조비(C.R, contrast ratio)가 500내지 1,000,000일 수 있다.Due to such optical properties, the present invention makes the optical part including the double-sided wire grid polarizer according to the first embodiment a second preferred embodiment of the present invention, and the optical part according to the second embodiment has a contrast. The contrast ratio (CR) may be 500 to 1,000,000.
본 발명에 따르면 동일한 범위의 피치와 선폭을 갖는 종래의 WGP 패턴에 비해, 상대적으로 격자 패턴 상에 적층되는 금속의 적층량을 효과적으로 증가시킬 수 있기 때문에 P 편광 투과율의 저하없이 편광효율을 향상시킬 수 있다. 또한, 격자의 피치(Pitch)값을 실질적으로 제어하지 않아도 종래 트레이드-오프(trade-off)관계로 여겨지던 P편광 투과율과 편광 효율을 동시에 향상시킬 수 있다.According to the present invention, compared to the conventional WGP pattern having the same range of pitch and line width, since the lamination amount of the metal laminated on the lattice pattern can be effectively increased, the polarization efficiency can be improved without decreasing the P polarization transmittance. have. In addition, the P polarization transmittance and the polarization efficiency, which are considered to be a conventional trade-off relationship, can be improved simultaneously without substantially controlling the pitch value of the grating.
도 1은 본 발명의 양면형 와이어 그리드 편광판의 일예를 나타낸 것으로, 기재층을 기준으로 서로 마주하는 금속 격자의 형성 방향이 서로 반대 방향을 갖는 경우를 반영한 단면도이다.1 is a cross-sectional view illustrating an example of a double-sided wire grid polarizing plate of the present invention, in which the formation directions of metal grids facing each other based on the base layer have opposite directions to each other.
도 2는 도 1의 사시도이다.2 is a perspective view of FIG. 1.
도 3은 본 발명의 양면형 와이어 그리드 편광판의 일예를 나타낸 것으로, 기재층을 기준으로 서로 마주하는 금속 격자의 형성 방향이 서로 같은 방향을 갖는 경우를 반영한 단면도이다.3 is a cross-sectional view illustrating an example of a double-sided wire grid polarizer of the present invention, in which the formation directions of metal grids facing each other based on the base layer have the same direction.
도 4는 본 발명의 격자형 볼록부(200)의 다양한 형상의 일예를 나타낸 단면도이다.4 is a cross-sectional view showing an example of various shapes of the grid-shaped convex portion 200 of the present invention.
도 5는 본 발명의 격자형 볼록부(200)의 다양한 형상과 함께 임의의 격자형 볼록부에서의 최대 돌출부(210)와 최대 함몰부(220) 관계를 나타낸 단면도이다.5 is a cross-sectional view showing the relationship between the maximum protrusions 210 and the maximum depressions 220 in any of the grid-shaped convex portions with various shapes of the grid-shaped convex portion 200 of the present invention.
도 6은 본 발명의 와이어 그리드 편광판의 일부를 확대한 확대도 및 마주하는 위치 관계의 격자로부터 바닥면을 향해 수직으로 형성한 가상의 그림자(S1 및 S2)가 서로 중첩되어 하나의 그림자 격자(300)를 형성한 것을 나타낸 가상도이다.FIG. 6 is an enlarged view of a portion of the wire grid polarizer of the present invention and virtual shadows S1 and S2 vertically formed toward the bottom surface from a grid of positional positions facing each other and overlap with each other to form a single shadow grid 300. Is an imaginary diagram showing the formation of.
<부호의 설명><Description of the code>
100: 양면형 와이어 그리드 편광판 110: 기재층100: double-sided wire grid polarizer 110: base material layer
120: 수지층 130: 금속 격자 120: resin layer 130: metal lattice
131: 금속 격자의 높이 132: 금속 격자의 선폭131: height of the metal grid 132: line width of the metal grid
133: 금속 격자 Pitch 134: 금속 격자간 상하 간격 133: metal grid Pitch 134: vertical gap between metal grids
200: 격자형 볼록부 200: lattice-shaped convex portion
210: 격자형 볼록부의 최대 돌출부210: maximum protrusion of the lattice-shaped convex portion
220: 격자형 볼록부의 최대 함몰부220: maximum depression of the lattice convex
300: 그림자 격자300: shadow grid
본 발명은 기재층(110); 상기 기재층의 양면에 형성되며 격자형 볼록부(200)에 의한 요철 패턴을 포함하는 수지층(120); 및 상기 수지층의 격자형 볼록부 상에 형성되는 금속 격자(130) 패턴층을 포함하는 양면형 와이어 그리드 편광판(이하, WGP)를 제공한다. 특히, 본 발명의 와이어 그리드는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 굴곡지거나 지면과 예각을 이루도록 경사진 구간을 한 구간이상 포함하는 부정형의 형상인 격자형 볼록부(200)를 갖는 것임을 보다 바람직한 특징으로 할 수 있다.The present invention substrate layer 110; A resin layer 120 formed on both sides of the base layer and including a concave-convex pattern by the lattice-shaped convex portion 200; And a metal grid 130 pattern layer formed on the lattice-shaped convex portion of the resin layer. In particular, the wire grid of the present invention has a grid-shaped convex portion 200 having an irregular shape including one or more sections in which at least one side surface portion of the convex portion is curved or inclined to form an acute angle with the ground. It can be made a more preferable feature.
통상 단층으로 구성된 WGP에서는 편광효율을 높이기 위하여 와이어 그리드, 즉 금속 격자간의 간격을 좁히기 위해서 요철 패턴을 매우 정밀하게 형성해야 하지만, 마이크로 혹은 나노 크기에 해당하는 미세 구조에서 보다 정밀한 패턴을 구현하기란 매우 어렵다. 또한, 편광효율을 높이기 위한 작업으로 선폭을 증가시켜 격자간 간격을 좁힐 경우, P편광 투과율이 저하될 수 있다. 이에 따라 단층의 WGP를 통해서는 P편광 투과율과 편광효율을 향상시키는데 한계가 있다.In WGP, which is composed of a single layer, the uneven pattern must be formed very precisely in order to narrow the gap between the wire grids or the metal grids in order to increase the polarization efficiency.However, it is very difficult to realize a more precise pattern in the microstructure of the micro or nano size. It is difficult. In addition, when the line width is increased in order to increase the polarization efficiency to narrow the distance between the gratings, the P polarization transmittance may decrease. Accordingly, there is a limit to improving P polarization transmittance and polarization efficiency through a single layer of WGP.
그러나 본 발명의 양면형 와이어 그리드 편광판은 마주하는 금속 격자들이 서로의 격자 간격 사이에 엇갈려 위치하고 있어, 전체적으로는 격자간 간격이 좁혀지는 것과 같아질 수 있다. 이로 인해 종래 WGP의 한계점이었던 금속 격자간 간격을 실질적으로 제어하지 않고도 유리한 방법으로 격자간 간격을 좁히는 효과를 얻을 수 있다.However, in the double-sided wire grid polarizer of the present invention, the metal grids facing each other are staggered between the grid gaps of each other, so that the gaps between the grids are reduced as a whole. As a result, it is possible to obtain an effect of narrowing the distance between gratings in an advantageous manner without substantially controlling the distance between metal gratings, which is a limitation of the conventional WGP.
이로써, 본 발명의 와이어 그리드 편광판은 P 편광 투과율이 50% 내지 99% 일 수 있고, S 편광 투과율이 1% 미만일 수 있으며, 편광효율이 95% 내지 100% 일 수 있다. 이에 따라 액정표시장치와 같은 광학부품에 적용되었을 경우, 휘도와 C.R특성이 우수한 디스플레이를 제공할 수 있게 된다. 또한, 본 발명에서 상기 액적표시장치는 PVA형 흡수편광필름 대비 상대 휘도가 100 내지 180%일 수 있으며, 명암대조비(C.R, contrast ratio)가 500 내지 1,000,000일 수 있다.As a result, the wire grid polarizer of the present invention may have a P polarization transmittance of 50% to 99%, an S polarization transmittance of less than 1%, and a polarization efficiency of 95% to 100%. Accordingly, when applied to an optical component such as a liquid crystal display device, it is possible to provide a display excellent in brightness and CR characteristics. In addition, the droplet display device in the present invention compared to the PVA-type absorption polarizing film The relative luminance may be 100 to 180%, and the contrast ratio may be 500 to 1,000,000.
또한, 본 발명은 상기 와이어 그리드 편광판을 포함하는 광학부품을 제공한다. 이때, 본 발명의 상기 광학부품은 대표적으로 액정표시장치일 수 있으나 반드시 이에 제한되는 것은 아니다.In addition, the present invention provides an optical component including the wire grid polarizer. In this case, the optical part of the present invention may be representatively a liquid crystal display device, but is not necessarily limited thereto.
이하, 도면과 함께 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
격자형 볼록부Lattice Convex
본 발명의 양면형 WGP는 도면을 통해 확인할 수 있는 바와 같이, 격자형 볼록부(200)가 종래와 같이 단조로운 측면부를 가지며 수직으로 곧게 뻗어있는 형상이 아니라 비스듬하게 기울어져 있거나 측면부에 굴곡이 형성되어 있음에 따라 종래와는 차별화된 패턴을 갖는 것일 수 있다. 특히, 본 발명은 이와 같은 격자형 볼록부의 독특한 형상에 의해 격자형 볼록부는 좌측면 및 우측면 중 적어도 하나의 측면에 골을 형성하게 되고, 형성된 골에 금속이 채워질 수 있으므로 상대적으로 동일한 범위의 선폭, 높이, 피치를 나타내는 종래의 WGP에 비해 금속 적층량을 효율적으로 증대시킬 수 있으며, 결과적으로 P 편광 투과율의 저하없이 편광효율을 향상시킬 수 있다.As can be seen from the drawings, the double-sided WGP of the present invention is not a shape in which the lattice-shaped convex part 200 has a monotonous side part as in the prior art, but is vertically inclined or curved at an oblique side surface. As it may have a pattern different from the conventional one. In particular, according to the present invention, the grid-shaped convex portion forms a valley on at least one side of the left side and the right side by the unique shape of the grid-shaped convex portion, and since the formed valley may be filled with metal, the line width of the relatively same range, Compared with the conventional WGP showing the height and pitch, the metal lamination amount can be increased efficiently, and as a result, the polarization efficiency can be improved without lowering the P polarization transmittance.
본 발명에서 상기 격자형 볼록부(200)는 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 측면부에 의해서 측면 돌출부와 측면 함몰부를 각각 최소 1 이상 포함하는 것일 수 있다. 이때, 본 발명에서 설명하고 있는 측면 돌출부와 측면 함몰부는 각각 격자형 볼록부의 측면으로부터 산을 형성하고 있는 부분을 측면 돌출부로 판단하고, 골을 형성하고 있는 부분을 측면 함몰부로 판단하는 것이 바람직하다. 만약, 돌출부와 함몰부가 각각 하나만 존재하는 형태일 경우라면 함몰부가 격자형 볼록부의 내측방향으로 더 가까이 위치하고 있는 것이 바람직하지만, 2 이상의 돌출부 또는 함몰부를 포함한다면 임의의 돌출부는 임의의 함몰부보다 격자형 볼록부의 내측방향에 더 가까이 위치하고 있을 수도 있다. 즉, 돌출부와 함몰부는 반드시 상대적인 위치에 따라 결정되는 것은 아니며, 형상에 의해 판단하는 것이 바람직하다.In the present invention, the grid-shaped convex portion 200 may include at least one of the side protrusion and the side recessed portion by the side portion including at least one section inclined or curved. At this time, it is preferable that the side protrusions and the side depressions described in the present invention are judged as the side protrusions, and the portions forming the peaks from the side surfaces of the lattice convex portions, respectively, and the side grooves are formed. If the protrusion and the depression are in the form of only one, it is preferable that the depression is located closer to the inward direction of the lattice convex portion, but if the protrusion includes two or more protrusions or depressions, any protrusion is lattice than any depression. It may be located closer to the inward direction of the convex portion. That is, the protrusion and the depression are not necessarily determined according to the relative position, and it is preferable to judge by the shape.
상기 격자형 볼록부는 다른 면에 형성된 격자의 형상과 반드시 서로 일치할 필요는 없다. 다만, 본 발명에서 상기 측면 돌출부 및 측면 함몰부는 동일한 방향을 기준으로 최대 돌출부(210)에서 지면에 수직으로 내린 가상의 선이 지면과 만나는 지점(P1);과 최대 함몰부(220)에서 지면에 수직으로 내린 가상의 선이 지면과 만나는 지점(P2) 사이의 거리가 1 내지 30nm인 것이 바람직하다.The lattice-shaped convex portions do not necessarily coincide with each other in the shape of the lattice formed on the other surface. However, in the present invention, the side protrusion and the side recessed portion (P1) where the imaginary line falling perpendicular to the ground at the maximum protrusion 210 meets the ground based on the same direction; and the maximum recessed portion 220 on the ground. It is preferable that the distance between the point P2 where the vertically lowered virtual line meets the ground is 1 to 30 nm.
본 발명에서 상기 격자형 볼록부의 형상은 반드시 좌우 대칭될 필요는 없으며, 좌우 방향의의 돌출부 및 함몰부의 형태가 불규칙하거나 한 방향으로만 돌출부 및 함몰부를 갖더라도 무방하다. 다만, 최대 돌출부와 최대 함몰부 사이의 수평방향으로의 거리 편차 즉, P1과 P2 사이의 거리가 1nm 미만일 경우 함몰부에 의한 금속 적층량 향상 효과가 미미하고, 그 거리가 30nm를 초과하도록 깊게 함몰부를 형성하는 것은 미세패턴에서 구현하기가 매우 까다로우며 형성할지라도 최대 함볼부의 깊이까지 금속을 완벽히 채워넣기가 어려울 수 있다.In the present invention, the shape of the lattice-shaped convex portion is not necessarily symmetrical, and may have irregularities in the shape of the protrusions and the depressions in the left and right directions or may have the protrusions and the depressions in only one direction. However, when the distance deviation in the horizontal direction between the largest protrusion and the largest depression, that is, the distance between P1 and P2 is less than 1 nm, the effect of improving the amount of metal lamination by the depression is insignificant, and the depth is deeply recessed so that the distance exceeds 30 nm. Forming a portion is very difficult to implement in a micropattern and even when formed, it can be difficult to completely fill the metal up to the depth of the indentation.
이와 같이 격자형 볼록부에 함몰부가 형성될 경우, 금속이 함몰부에 채워지게 됨으로 동일한 선폭과 피치를 갖는 일반 패턴에 비해 금속의 적층량이 용이하게 증대될 수 있다. WGP에서는 금속 패턴층에 의해 빛의 편광과 반사가 결정되므로 금속의 적층량이 증가하게 되면 반사율이 향상되어 편광효율이 향상될 수 있는데, 일반적으로 반사율을 향상시키기 위하여 금속의 적층량을 과도하게 증가시킬 경우 오히려 빛의 투과 구간이 지나치게 좁아져 버리면 휘도가 저하될 수 있다. 그러나, 본 발명에서는 빛의 투과 구간을 좁히지 않고 측면에 형성된 골에 금속을 채우는 방식이므로 동일한 범위의 피치와 선폭 조건에서 휘도 저하 없이 편광효율을 향상시킬 수 있는 것이다.As described above, when the depression is formed in the lattice-shaped convex portion, the metal is filled in the depression so that the amount of stacking of the metal can be easily increased as compared with the general pattern having the same line width and pitch. In WGP, since the polarization and reflection of light are determined by the metal pattern layer, when the stacking amount of metal is increased, the reflectance may be improved and the polarization efficiency may be improved. Generally, the amount of stacking of metal is excessively increased to improve the reflectance. In this case, if the light transmission period becomes too narrow, the luminance may be lowered. However, in the present invention, since the metal is filled in the valley formed on the side surface without narrowing the transmission section of the light, the polarization efficiency can be improved without decreasing the luminance in the same range of pitch and line width conditions.
본 발명의 바람직한 양태에 따르면, 상기 격자형 볼록부(200)는 도 4에서 예시한 것과 같이 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 볼록부의 폭이 상단부에서 하단부로 일정한 비율로 감소하는 형상 또는 볼록부가 일정한 폭을 유지하며 한 측면으로 기울어진 형상인 것일 수 있다. 이때, 격자형 볼록부의 상단부에서 하단부로 폭이 일정한 비율로 감소하는 형상에서는 양 측면의 경사진 구간이 모두 지면과 예각을 이루게 되는 것이고, 격자형 볼록부가 일정한 폭을 유지하며 한 측면으로 기울어진 형상에서는 격자형 볼록부가 치우쳐진 방향의 측면에서 지면과 예각을 이루는 경사가 발생되는 것이다.According to a preferred embodiment of the present invention, the lattice-shaped convex portion 200 has the width of the convex portion at a constant ratio from the upper end to the lower end with respect to the ground and the horizontal direction based on the convex cross-sectional shape as illustrated in FIG. 4. The decreasing shape or the convex portion may be a shape inclined to one side while maintaining a constant width. At this time, in a shape in which the width decreases at a constant ratio from the upper end to the lower end of the lattice convex part, all inclined sections of both sides form an acute angle with the ground, and the lattice convex part is inclined to one side while maintaining a constant width. In this case, an inclination that forms an acute angle with the ground is generated from the side of the lattice-shaped convex part.
또한, 측면부가 굴곡진 구간을 포함하는 형상으로서, 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 볼록부의 폭이 증가하다가 감소하는 구간, 볼록부의 폭이 증가하다가 일정해지는 구간, 볼록부의 폭이 감소하다가 증가하는 구간, 볼록부의 폭이 감소하다 일정해지는 구간, 볼록부의 폭이 일정하다 증가하는 구간, 볼록부의 폭이 일정하다 감소하는 구간 및 일정한 폭을 유지하되 볼록부의 기울어진 방향이 바뀌는 구간 중 적어도 어느 하나의 굴곡진 구간을 포함하는 형상일 수 있다. 이때, 본 발명에서 굴곡진 구간은 뾰족하게 꺾이는 형태와 곡선으로 연결된 형태 모두를 의미하는 것일 수 있다.In addition, the side portion includes a curved section, the width of the convex portion increases and decreases relative to the ground and the horizontal direction based on the cross-sectional shape of the convex portion, the section in which the width of the convex portion increases and is constant, the convex portion A section where the width decreases and increases, a section where the width of the convexity decreases, a section that becomes constant, the width of the convexity is constant, a section that increases, the width of the convexity is constant, the section that decreases and the constant width is maintained, but the inclined direction of the convexity is changed. It may have a shape including at least one curved section of the section. At this time, the curved section in the present invention may mean both the pointed and curved form connected.
아울러, 본 발명의 바람직한 구현예에 따르면, 상기 격자형 볼록부는 볼록부 횡단면 형상을 기준으로 지면과 수평 방향으로의 격자형 볼록부가 갖는 최대 폭을 선폭으로 정의할 때, 선폭이 5 내지 100nm이고, 지면과 수직한 방향으로 이루는 높이가 10 내지 500nm가 되도록 형성하는 것이 원하는 형상에 가깝게 임프린팅 할 수 있는 측면에서 바람직하다. 격자형 볼록부의 선폭과 높이가 상기 범위를 벗어나 지나치게 작은 것은 패턴 구현 자체가 매우 까다롭고, 선폭과 높이가 상기 범위를 벗어나 지나치게 클 경우 패턴 뭉침 현상이 발생될 수 있다.In addition, according to a preferred embodiment of the present invention, when the lattice-shaped convex portion defines the maximum width of the lattice-shaped convex portions in the horizontal direction with the ground based on the convex cross-sectional shape, the line width is 5 to 100nm, It is preferable to form the height in the direction perpendicular to the surface to be 10 to 500nm in terms of being able to imprint close to the desired shape. The line width and height of the lattice-shaped convex portion being too small outside the above range is very difficult to implement the pattern itself, and the pattern aggregation may occur when the line width and height are too large outside the above range.
또한, 상기 격자형 볼록부는 볼록부의 외곽과 맞닿으며 지면과 수직한 가상의 수직선을 그었을 때, 임의의 볼록부에서 그어진 최 좌측부 수직선에서 이웃한 격자형 볼록부에서 그어진 최 좌측부 수직선까지의 거리로 정의되는 피치(Pitch) 값이 20 내지 200nm인 것이 바람직할 수 있다. 피치 값이 20nm미만 금속 격자가 형성된 후 빛 투과 통로를 확보하기가 어렵고, 피치 값이 200nm를 초과하면 가시광선에 대해 우수한 편광특성(소광비, extinction ratio)을 기대하기 어려워질 수 있다.In addition, the grid-shaped convex portion is defined as the distance from the leftmost vertical line drawn from an arbitrary convex portion to the left-most vertical line drawn from an adjacent lattice convex portion when drawing an imaginary vertical line perpendicular to the ground while contacting the outer edge of the convex portion. It may be desirable for the pitch value to be 20-200 nm. It is difficult to secure a light transmission path after the metal lattice having a pitch value of less than 20 nm, and when the pitch value exceeds 200 nm, it may be difficult to expect excellent polarization characteristics (extinction ratio) for visible light.
금속 격자Metal grid
한편, 본 발명에서 상기 금속 격자(130)는 단위 격자당 높이(131)가 1 내지 1000nm이고, 선폭(132)이 1 내지 140nm이며, 임의의 격자가 시작되는 지점에서 다음 격자가 시작되는 지점까지의 거리로 정의되는 피치(Pitch, 133)가 50 내지 200nm일 수 있다. Meanwhile, in the present invention, the metal grating 130 has a height 131 per unit grid of 1 to 1000 nm, a line width 132 of 1 to 140 nm, and a point from which an arbitrary grating starts to a point where the next grating starts. The pitch 133, which is defined as a distance of, may be 50 to 200 nm.
금속 격자의 선폭 및 높이는 증가할수록 편광효율이 향상될 수 있으나, P편광 투과율은 감소할 수 있으므로, 이를 고려하여 금속격자의 선폭 및 높이는 상기 범위를 만족하는 것이 유리하다. 또한, 이런 측면을 고려하여 본 발명에서 금속격자의 보다 바람직한 높이는 10 내지 500nm 및 선폭은 1 내지 100nm 일 수 있으며, 더욱 바람직한 높이는 40 내지 250nm 및 선폭은 30 내지 80nm일 수 있다.As the line width and height of the metal lattice increase, the polarization efficiency may be improved. However, since the P polarization transmittance may decrease, the line width and height of the metal lattice may be advantageously satisfied within the above range. Further, in consideration of this aspect, in the present invention, a more preferable height of the metal lattice may be 10 to 500 nm and a line width of 1 to 100 nm, and a more preferable height of 40 to 250 nm and a line width of 30 to 80 nm.
또한, 금속격자 간 거리가 작아질수록 높은 P편광 투과율을 유지하면서, 편광효율을 증대시킬 수 있다. 수평상에 위치한 격자간 간격은 상기 범위를 만족하는 것이 유리하며 보다 바람직하게는 50 내지 200nm, 더욱 바람직하게는 80 내지 150 nm를 만족하는 것이 좋다.In addition, as the distance between the metal lattice decreases, the polarization efficiency can be increased while maintaining a high P polarization transmittance. The spacing between the gratings positioned horizontally is advantageous to satisfy the above range, more preferably 50 to 200 nm, more preferably 80 to 150 nm.
아울러, 상기 금속 격자(130)는 임의의 격자로부터 수직방향 기준, 기재층을 중심으로 서로 마주하고 있는 반대면의 격자와의 상하 간격이(134)이 0.05 내지 500㎛일 수 있으며, 박막화를 위해 보다 바람직하게는 0.05 내지 300㎛, 좀 더 바람직하게는 0.3 내지 150㎛일 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition, the metal lattice 130 has a vertical gap (134) with respect to the lattice on the opposite side facing each other with respect to the vertical direction from the arbitrary lattice centers, and may be 0.05 to 500㎛, for thinning More preferably, it may be 0.05 to 300 μm, more preferably 0.3 to 150 μm, but is not necessarily limited thereto.
본 발명에서 상기 금속 격자(120)는 도 5에서 나타낸 바와 같이, WGP의 격자형 볼록부(200)에 맞닿아 형성된 것이며, 이때, 금속은 격자형 볼록부의 최대 함몰부에서부터 채워져 최대 돌출부로부터 수평방향으로의 적층폭, 즉 격자형 볼록부의 최대 돌출부로부터의 금속 격자의 두께가 10nm 내지 100nm가 되도록 형성된 것이 편광효율을 보다 효과적으로 향상시킬 수 있는 측면에서 바람직하다. 또한, 금속 격자가 격자형 볼록부보다 반드시 높게 형성될 필요는 없으나, 격자형 볼록부의 최상단부로부터 수직방향으로 10nm 내지 200m의 두께를 갖도록 형성된 것이 편광효율 향상에 있어 효과가 보다 우수할 수 있다.In the present invention, as shown in Figure 5, the metal grating 120 is formed in contact with the lattice convex portion 200 of the WGP, wherein the metal is filled from the maximum depression of the lattice convex portion in the horizontal direction from the maximum protrusion The lamination width of the metal lattice, i.e., formed so that the thickness of the metal lattice from the largest protrusion of the lattice-shaped convex portion is 10 nm to 100 nm is preferable in view of more effectively improving polarization efficiency. In addition, although the metal lattice does not necessarily have to be formed higher than the lattice convex portion, the metal lattice may be formed to have a thickness of 10 nm to 200 m in the vertical direction from the uppermost end of the lattice convex portion.
본 발명에서 상기 금속 격자 패턴은 알루미늄, 구리, 크롬, 백금, 금, 은, 니켈 및 이들의 합금을 포함하는 그룹으로부터 선택된 어느 하나의 금속 또는 도전체로부터 형성될 수 있으며, 반사율 및 경제성을 고려하였을 때 알루미늄 및 이의 합금을 사용하는 것이 보다 바람직할 수 있다. 경화성 수지 상부에 금속도선을 적층시키는 방법은 스퍼터링, 진공열증착을 이용하는 방법 또는 고분자와 금속을 동시에 식각하여 금속 도선층을 형성하는 건식 에칭방법 등이 있으며, 이를 제조하는 방법에는 제한을 두지 않는다.In the present invention, the metal lattice pattern may be formed from any one metal or conductor selected from the group consisting of aluminum, copper, chromium, platinum, gold, silver, nickel and alloys thereof, taking into consideration reflectance and economical efficiency. It may be more desirable to use aluminum and alloys thereof. The method of stacking a metal lead on the curable resin includes a method of sputtering, vacuum thermal deposition, or a dry etching method of simultaneously etching a polymer and a metal to form a metal lead layer, and the method of manufacturing the same is not limited thereto.
본 발명에서 상기 금속 격자는 프리즘 및 렌티큘러 등과 같은 선격자 형태이며, 수지층 패턴의 볼록부 또는 오목부 상에 형성되는 것으로 증착 방법에 의해 형상은 다양해 질 수 있으므로, 금속 격자의 단면 형상은 특별히 제한되지 않는다. 다만 수지층 패턴의 경우, 패턴 단면 형상이 반원, 타원, 정다각형, 다각형, 모서리가 둥근 다각형, ‘ㄱ’자형, 부채꼴 형, 부메랑 형, 돔 형, 정현파(正弦波)형 등이 반복되는 형상일 수 있으며, 패턴은 뚜렷하게 각진 형태로 반복되거나 만곡한 곡선으로 부드럽게 연결되며 반복될 수도 있다.In the present invention, the metal grating is in the form of a lattice such as a prism and a lenticular, and is formed on the convex portion or the concave portion of the resin layer pattern, and the shape thereof may be varied by the deposition method, so that the cross-sectional shape of the metal grating is particularly limited. It doesn't work. However, in the case of the resin layer pattern, the cross-sectional shape of the pattern is a shape in which a semicircle, an ellipse, a regular polygon, a polygon, a rounded polygon, a 'b' shape, a fan shape, a boomerang shape, a dome shape, and a sinusoidal shape are repeated. The pattern may be repeated in distinctly angular form or may be smoothly connected and repeated in a curved curve.
또한, 본 발명에서 상기 금속 격자는 기재층을 중심으로 서로 마주보고 있는 금속 격자가 도 1 및 2와 같이 서로 다른 방향을 향해 형성된 것일 수도 있고, 도 3과 같이 서로 같은 방향을 향해 형성된 것일 수도 있다. 서로 마주보고 있는 금속 격자의 형성 방향은 본 발명에서 한정되는 것이 아니며, 각 면에 형성된 격자형 볼록부에서 함몰부가 어느 방향으로 형성되었는지에 따라 결정될 수 있고, 이는 필요에 의해 작업자가 선택할 수 있는 사항에 해당된다.In addition, in the present invention, the metal lattice may be formed to face each other with respect to each other centering the substrate layer as shown in Figure 1 and 2, or may be formed in the same direction as shown in Figure 3 . The direction of formation of the metal lattice facing each other is not limited in the present invention, and may be determined depending on which direction the depression is formed in the lattice-shaped convex portions formed on each surface, which can be selected by an operator as necessary. Corresponds to
이와 같이 본 발명에서 금속 격자 패턴층은 기본적으로 상기 범위를 만족하기만 하면 충분하며, 다만, 본 발명의 와이어 그리드 편광판의 양면에 형성된 모든 금속 격자(130)로부터 바닥면을 향해 수직 방향으로 각각의 금속 격자의 선폭과 동일한 폭을 갖는 가상의 그림자를 형성한다 가정할 때, 기재 일면에 존재하는 임의의 격자에서 형성된 가상의 그림자(S1)가 반대면의 격자에서 형성된 그림자(S2)에 의해 중첩되거나 경계면이 맞닿아 금속 격자 선폭 이상의 선폭을 갖는 그림자 격자(Shadow grid, 300)를 형성할 수 있는 것이 P편광 투과율과 편광효율을 보다 향상시킬 수 있는 측면에서 무엇보다 바람직할 수 있다.As such, the metal lattice pattern layer in the present invention is basically sufficient to satisfy the above range, except that all metal lattice 130 formed on both sides of the wire grid polarizer of the present invention are vertically directed toward the bottom. Assuming that a virtual shadow having a width equal to the line width of the metal grid is formed, the virtual shadow S1 formed in any grid present on one surface of the substrate is overlapped by the shadow S2 formed in the grid on the opposite surface, or It may be desirable to be able to form a shadow grid (Shadow grid, 300) having a line width of the metal grid line width or more in contact with the interface surface in terms of improving the P polarization transmittance and polarization efficiency.
본 발명에서 도입한 그림자 격자의 개념은 도 6을 참고로 하면 보다 쉽게 이해될 수 있다. 그러나 반드시 본 발명의 범위가 도 6에 의해 한정되는 것은 아니다. 도 6의 경우, 기재층을 중심으로 상면에 위치한 금속 격자 패턴을 제 1 층, 그 반대 면으로 형성된 금속 격자를 제 2 층이라 보고, 모든 격자에서 바닥면을 향해 그림자를 내려 제 1 층에 위치한 격자의 그림자는 S1 및 제 2 층에 위치한 격자의 그림자는 S2로 표시한 것이다. The concept of the shadow grid introduced in the present invention can be more easily understood with reference to FIG. However, the scope of the present invention is not necessarily limited by FIG. In FIG. 6, the metal lattice pattern on the top surface of the base layer is regarded as the second layer, and the metal lattice formed on the opposite side is referred to as the second layer. The shadow of the grid is indicated by S2 and the shadow of the grid located on S1 and the second layer.
상기 S1 및 S2는 각각 중첩되어 도 6에 나타낸 바와 같이 하나로 연결된 그림자를 형성하는데, 본 발명에서는 이와 같이 그림자의 중첩 또는 경계의 맞닿음(미도시)으로 인해 격자 하나에 의한 그림자(S1 또는 S2가 될 수 있음) 의 폭보다 연장된 폭을 갖는 그림자를 바로 '그림자 격자(Shadow grid, 300)'로 정의하는 것이다. S1 and S2 overlap each other to form shadows connected as one, as shown in FIG. 6. In the present invention, shadows S1 or S2 by one lattice due to overlapping or border contact (not shown) of the shadows are formed. Shadows that have a width that extends beyond the width of the shadow are defined as 'shadow grids' (300).
상기 그림자 격자의 폭은 각각의 금속 격자가 갖는 실제 선폭이 아니므로 P 편광투과율에 전혀 영향을 미치는 요소가 아니면서도 금속 격자간의 간격을 좁히는 요소로 작용할 수 있다. 상기 그림자 격자는 그림자 격자끼리 또한 중첩되거나 맛닿아 있을 수 있고, 그 경우 바닥면 전체에 그림자가 형성되어 있을 수 있으며, 그림자가 바닥면에 모두 형성되었을 경우 보다 높은 편광효율을 달성할 수 있다.Since the width of the shadow grating is not an actual line width of each metal grating, the width of the shadow grating may serve as a factor for narrowing the gap between the metal gratings without affecting the P polarization transmittance at all. The shadow grids may also overlap or taste with each other, and in this case, shadows may be formed over the entire bottom surface, and higher polarization efficiency may be achieved when all shadows are formed on the bottom surface.
보다 구체적으로 본 발명에서 와이어 그리드 편광판은 상기 그림자 격자의 개념에 의해 하기 식 1에 따라 계산되는 F.F(Fill Factor)의 값이 1.05 이상인 것이 바람직하다. More specifically, in the present invention, the wire grid polarizing plate preferably has a F.F (Fill Factor) value calculated by Equation 1 below by the concept of the shadow grating.
식 1)
Figure PCTKR2016007701-appb-I000002
Equation 1)
Figure PCTKR2016007701-appb-I000002
통상 F.F(Fill factor)의 개념은 단층에서의 금속격자의 피치에 대한 금속격자 선폭의 비율을 나타내는 것이며, F.F의 값이 1에 가까울수록 높은 편광효율을 갖는 WGP로 볼 수 있다. 이와 같은 해석에 따르면, 동일한 피치에서는 선폭이 커질수록 F.F의 값이 1에 가까워질 수 있다. 그러나 피치를 제어하지 않는 본 발명에서는 피치 값을 대입하는 종래 F.F 계산식 그대로를 적용하기 보다는 금속 격자의 선폭에 대한 그림자 격자의 선폭의 비율을 적용하는 것이 보다 쉽게 이해될 수 있다. In general, the concept of fill factor (F.F) represents the ratio of the metal lattice line width to the pitch of the metal lattice in a single layer, and the closer the value of F.F is to 1, the higher the polarization efficiency is. According to this analysis, at the same pitch, the larger the line width, the closer the value of F.F can be. However, in the present invention which does not control the pitch, it may be more easily understood to apply the ratio of the line width of the shadow grating to the line width of the metal grating, rather than the conventional F.F calculation formula that substitutes the pitch value.
만약, 본 발명의 상기 식 1의 F.F값이 1을 초과할 경우, 그림자 격자에 의한 선폭이 더 큰 것이므로, 이에 따라 동일한 피치에서 선폭이 증가한 것과 같은 효과를 얻을 수 있으므로 편광효율의 상승을 기대해 볼 수 있는 것이다. 즉, 본 발명에서의 금속 격자의 선폭에 대한 그림자 격자의 선폭 비율은 종래 피치에 대한 금속격자 선폭의 비와 비례하는 것으로 해석될 수 있으므로 본 발명에서는 F.F를 금속 격자의 선폭에 대한 그림자 격자의 선폭의 비율로 해석하는 것이다. 다만 이때, 본 발명에서 상기 F.F값이 1.05 미만일 경우, 금속 격자간의 간격을 좁히는 효과가 미미하여 편광효율을 기대하는 만큼 향상시키기 곤란할 수 있으므로, 편광효율을 상승 측면에서 본 발명에서 F.F의 값은 1.05 이상인 것이 바람직하다.If the FF value of Equation 1 of the present invention exceeds 1, since the line width due to the shadow grating is larger, the same effect as the line width is increased at the same pitch can be expected to increase the polarization efficiency. It can be. That is, since the line width ratio of the shadow grating to the line width of the metal grating in the present invention can be interpreted as being proportional to the ratio of the metal lattice line width to the conventional pitch, in the present invention, FF is the line width of the shadow grating to the line width of the metal grating. It is to be interpreted as the ratio of. However, in this case, when the FF value is less than 1.05 in the present invention, the effect of narrowing the spacing between metal lattice may be insignificant, so that it may be difficult to improve the polarization efficiency as much as expected. In the present invention, the value of FF is 1.05 or more. It is preferable.
기재층Substrate layer 및 수지층 And resin layer
본 발명에서 상기 기재층(110)은 트리아세틸 셀룰로오스(TAC) 필름, 폴리메틸메타아크릴레이트(PMMA) 필름, 폴리에틸렌테레프탈레이트 필름, 폴리카보네이트 필름, 폴리프로필렌 필름, 폴리에틸렌 필름, 폴리스티렌 필름, 폴리에폭시 필름, 고리형 올레핀계 중합체(COP) 필름, 고리형 올레핀계 공중합체(COC) 필름, 폴리카보네이트계 수지와 고리형 올레핀계 중합체의 공중합체 필름 및 폴리카보네이트계 수지와 고리형 올레핀계 공중합체의 공중합체 필름을 포함하는 그룹으로부터 선택된 어느 하나의 투명 필름 또는 유리일 수 있다. In the present invention, the base layer 110 is a triacetyl cellulose (TAC) film, polymethyl methacrylate (PMMA) film, polyethylene terephthalate film, polycarbonate film, polypropylene film, polyethylene film, polystyrene film, polyepoxy film , Cyclic olefin polymer (COP) film, cyclic olefin copolymer (COC) film, copolymer film of polycarbonate resin and cyclic olefin polymer, and air of polycarbonate resin and cyclic olefin copolymer It may be any transparent film or glass selected from the group comprising the coalescence film.
본 발명의 경우 양면으로 금속 패턴층이 형성되므로 본 발명의 WGP를 통과 하는 빛은 금속 격자를 반드시 지나 기재층을 통과하므로, 기재층은 편광 특성을 저해하지 않도록 Retardation(복굴절율과 필름 두께의 곱)이 50nm 이하, 보다 바람직하게는 20nm이하인 등방성 기재가 유리할 수 있다. 본 발명에서 반드시 이에 제한되는 것은 아니나 상기 기재층의 두께는 기계적 강도 및 유연성에 있어서 유리하도록 5㎛ 내지 250㎛일 수 있으며, 보다 바람직하게는 20㎛ 내지 125㎛일 수 있다. In the case of the present invention, since the metal pattern layer is formed on both sides, the light passing through the WGP of the present invention passes through the metal lattice and passes through the base layer, so that the base layer does not interfere with the polarization characteristic. Isotropic substrates having a thickness of 50 nm or less, more preferably 20 nm or less, may be advantageous. Although not necessarily limited thereto, the thickness of the base layer may be 5 μm to 250 μm, and more preferably 20 μm to 125 μm, to favor mechanical strength and flexibility .
한편, 본 발명에서 상기 수지층(120)은 폴리비닐계 수지, 실리콘계 수지, 아크릴계 수지, 에폭시 수지, 메타아크릴계 수지, 페놀 수지, 폴리에스테르계 수지, 스티렌계 수지, 알키드계 수지, 아미노계 수지 및 폴리우레탄계 수지로 포함하는 그룹으로부터 선택된 1종 이상의 경화성 수지로 형성되는 것이 바람직하다.Meanwhile, in the present invention, the resin layer 120 may include polyvinyl resin, silicone resin, acrylic resin, epoxy resin, methacryl resin, phenol resin, polyester resin, styrene resin, alkyd resin, amino resin, It is preferable that it is formed with 1 or more types of curable resins chosen from the group containing with a polyurethane-type resin.
이때, 보다 구체적인 경화성 수지의 종류로는 불포화폴리에스테르, 메틸메타크릴레이트, 에틸메타크릴레이트, 이소부틸메타크릴레이트, 노말부틸메타크릴레이트, 노말부틸메틸메타크릴레이트, 아크릴산, 메타크릴산, 히드록시에틸메타크릴레이트, 히드록시프로필메타크릴레이트, 히드록시에틸아크릴레이트, 아크릴아미드, 메티롤아크릴아미드, 글리시딜메타크릴레이트, 에틸아크릴레이트, 이소부틸아크릴레이트, 노말부틸아크릴레이트, 2-에틸헥실아크릴레이트의 단독중합체, 이들의 공중합체 또는 삼원 공중합체 등이 있을 수 있다.At this time, more specific types of curable resins include unsaturated polyester, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, acrylic acid, methacrylic acid, and hydride. Hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, acrylamide, metyrolacrylamide, glycidyl methacrylate, ethyl acrylate, isobutyl acrylate, normal butyl acrylate, 2- Homopolymers of ethylhexyl acrylate, copolymers or terpolymers thereof, and the like.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the present invention is not limited thereto.
실시예Example 1 내지 4. 돌출부 및  1 to 4. protrusions and 함몰부를Depression 갖는 격자형 볼록부가  Lattice Convex 기재층Substrate layer 양면에 형성된 양면형  Double sided formed on both sides 와이어wire 그리드 제조 Grid manufacturing
하기 표 1에 기재된 조건을 만족하는 격자형 볼록부 및 금속격자를 기재층의 양면에 포함한 실시예 1 내지 4의 WGP를 제조하였다. 이때, 기재는 두께 80㎛의 트리아세틸 셀룰로오스(TAC) 필름을 사용하였고, TAC의 양면에 아크릴계 감광성 조성물을 도포한 후, 니켈 전주 스템프를 밀착시키고 자외선(고압수은등, 20 W/cm2)을 기재층 쪽에서 조사하여 아크릴계 감광 수지를 경화시킴으로써 격자형 볼록부를 양면에 형성한 수지층을 제조하였다. 이와 같이 형성된 수지층 위에 스퍼터링을 통해 알루미늄을 부분적으로 증착하여 금속 격자를 형성하였다.WGPs of Examples 1 to 4 including lattice-shaped convex portions and metal lattice meeting the conditions described in Table 1 below were prepared on both sides of the base layer. At this time, the substrate was used a triacetyl cellulose (TAC) film having a thickness of 80㎛, after applying the acrylic photosensitive composition on both sides of the TAC, the nickel electrostatic stamp is in close contact with the ultraviolet (high pressure mercury lamp, 20 W / cm 2 ) By irradiating from the layer side and hardening acrylic photosensitive resin, the resin layer which provided the lattice-shaped convex part on both surfaces was manufactured. The metal lattice was formed by partially depositing aluminum on the resin layer thus formed through sputtering.
비교예 1 및 2. 일반 격자형 볼록부가 기재층 단면 및 양면에 형성된 와이어 그리드 제조Comparative Examples 1 and 2. Wire grid fabrication in which the general lattice-shaped convex portions were formed on the substrate layer end face and both sides
하기 표 1에 기재된 조건을 만족하되, 상기 실시예 1 내지 4와 달리 돌출부와 함몰부가 존재하지 않는 통상의 격자형 볼록부를 포함하되, 각각 수지층을 기재층의 단면 및 양면에 형성한 비교예 1 내지 2의 WGP를 제조하였다. 이때, 비교예 1 및 2의 WGP에 사용한 수지층, 금속 패턴층, 기재층 및 제조공정 등은 상기 제조예 1 내지 4에서 사용한 것과 동일하도록 제어하였다.Comparative Example 1, which satisfies the conditions described in Table 1 below, but includes a conventional lattice-shaped convex portion in which protrusions and depressions do not exist, unlike Examples 1 to 4, respectively. WGPs of 2 were prepared. At this time, the resin layer, metal pattern layer, base material layer, manufacturing process, etc. used for the WGP of Comparative Examples 1 and 2 were controlled to be the same as those used in Production Examples 1 to 4 above.
격자형 볼록부Lattice Convex 금속 격자Metal grid
선폭(nm)Line width (nm) 높이(nm)Height (nm) 피치(nm)Pitch (nm) P1과 P2 사이의 거리(1)) (nm)Distance between P1 and P2 (1) (nm) 양면/단면Duplex / Single Side 격자형 볼록부의 최대 돌출부로부터 수평방향의 두께2) (nm)Thickness in the horizontal direction from the largest projection of the lattice-shaped convex part 2) (nm) 금속 격자의 최대 높이 (nm)Maximum height of the metal grid (nm) 그림자 격자의 선폭(nm)Linewidth of Shadow Grid (nm) F.F(Fill Factor)Fill Factor (F.F)
실시예 1Example 1 3030 100100 100100 1515 양면both sides 4040 120120 7070 1.271.27
실시예 2Example 2 3030 100100 100100 1515 양면both sides 5050 120120 9090 1.381.38
실시예 3Example 3 3030 100100 100100 1515 양면both sides 6060 120120 8585 1.131.13
실시예 4Example 4 3030 100100 100100 1515 양면both sides 4040 120120 5757 1.041.04
비교예 1Comparative Example 1 3030 100100 100100 00 단면section 4040 120120 -- --
비교예 2Comparative Example 2 3030 100100 100100 00 양면both sides 4040 120120 7070 1.751.75
1) 격자형 볼록부의 최대 돌출부 및 최대 함몰부에서 각각 지면과 수직한 방향으로 내린 지점사이의 거리, 도 5에 표기된 부호 참고.1) The distance between the point where the lattice-shaped convex part is lowered in the direction perpendicular to the ground at the largest projection and the largest depression, respectively, and the reference sign indicated in FIG.
2) 비교예 1 및 2의 경우 격자형 볼록부의 측면으로부터 수평방향으로 적층된 금속의 두께를 적용함. 2) For Comparative Examples 1 and 2, the thickness of the metal laminated in the horizontal direction from the side of the lattice-shaped convex part is applied.
<< 측정예Measurement example >>
RETS-100 장비(OTSUKA ELECTRONICS사)를 이용하여, 상기 실시예 1 내지 4 및 비교예 1 내지 2 편광판의 P 편광 투과도(TP) 및 S 편광 투과도(TS)를 측정하였으며, 이로부터 측정된 값을 이용하여 하기 식 2로 편광효율을 계산하여 그 결과를 하기 표 2에 반영하였다.Using the RETS-100 equipment (OTSUKA ELECTRONICS Co., Ltd.), P polarization transmittance (T P ) and S polarization transmittance (T S ) of the polarizing plates of Examples 1 to 4 and Comparative Examples 1 and 2 were measured and measured therefrom. The polarization efficiency was calculated by the following Equation 2 using the values, and the results are reflected in Table 2 below.
식 2)
Figure PCTKR2016007701-appb-I000003
Equation 2)
Figure PCTKR2016007701-appb-I000003
P 편광 투과율(%)P polarization transmittance (%) S 편광 투과율(%)S polarization transmittance (%) 편광효율(%)Polarization Efficiency (%)
실시예 1Example 1 81.581.5 0.0080.008 99.98099.980
실시예 2Example 2 80.980.9 0.0010.001 99.99899.998
실시예 3Example 3 80.280.2 0.0040.004 99.99099.990
실시예 4Example 4 81.381.3 0.0750.075 99.81699.816
비교예 1Comparative Example 1 80.780.7 0.0690.069 99.82699.826
비교예 2Comparative Example 2 80.480.4 0.0210.021 99.94899.948
상기 표 2의 결과를 통해 확인할 수 있듯이, 최대 돌출부와 최대 함몰부 사이의 거리가 존재하는 볼록형 격자를 기재층 양면으로 형성한 실시예 1 내지 3의 편광효율은 일반 볼록형 격자를 기재층 단면 및 양면에 형성한 비교예 1 내지 2에 비해 현저하게 향상되어 99.99%이상으로 측정되었다. 다만, F.F가 1.05 미만인 실시예 4의 경우, P편관 투과율은 향상된 것을 확인할 수 있었으나, 적층에 따른 편광효율 향상은 실시예 1 내지 3에 비해 기대에 미치지 못하는 것으로 나타났다. As can be seen from the results in Table 2, the polarization efficiency of Examples 1 to 3 in which the convex gratings having the distance between the largest protrusions and the maximum depressions are formed on both sides of the base layer is the common convex gratings of the base layer cross section and both sides. It was remarkably improved compared to Comparative Examples 1 to 2 formed in the above measured at 99.99%. However, in the case of Example 4 having a F.F of less than 1.05, it was confirmed that the P canal tube transmittance was improved, but the improvement in polarization efficiency due to lamination was found to be less than expected compared to Examples 1 to 3.
이어서 5인치 액정디스플레이 패널의 하면 편광필름을 제거한 후, 상기 제조된 실시예 1 내지 4 및 비교예 1 내지 2의 편광판(WGP)을 각각 부착하여 휘도를 분석하였다. WGP의 상대휘도 및 명암대조비(C.R)을 분석하기 위하여 상용된 PVA형 흡수 편광자를 대조군으로 사용하였다. 휘도 측정시 액정디스플레이 패널의 하면에 부착된 WGP를 360도 회전하여 가장 높은 휘도(Maximum Luminance, White) 및 가장 낮은 휘도(Minimum Luminance, Black)를 분석하였다. 휘도 측정은 BM-7A(일본 TOPCON사)를 사용하여 임의의 5지점의 휘도를 측정하여 그 평균값을 구하여 평가하였다.Subsequently, after removing the lower polarizing film of the 5-inch liquid crystal display panel, the polarizers (WGP) of Examples 1 to 4 and Comparative Examples 1 and 2 prepared above were attached to each other to analyze luminance. To analyze the relative luminance and contrast ratio (C.R) of WGP, a commercially available PVA-type absorbing polarizer was used as a control. In the luminance measurement, the highest luminance (Maximum Luminance, White) and the lowest luminance (Minimum Luminance, Black) were analyzed by rotating the WGP attached to the lower surface of the liquid crystal display panel 360 degrees. Luminance measurement was performed by measuring the luminance at any of five points using BM-7A (Japan TOPCON Co., Ltd.), and evaluating the average value.
구분division MaximumLuminance(White)MaximumLuminance (White) MinimumLuminance(Black)MinimumLuminance (Black) Contrast Ratio(White/Black)Contrast Ratio (White / Black)
휘도(nit)Luminance (nit) 상대휘도(REF:대조군)Relative luminance (REF: control) 휘도(nit)Luminance (nit) 상대휘도(REF:대조군)Relative luminance (REF: control)
실시예 1Example 1 686686 132%132% 0.370.37 93%93% 18541854
실시예 2Example 2 675675 130%130% 0.210.21 53%53% 32143214
실시예 3Example 3 671671 129%129% 0.280.28 70%70% 23962396
실시예 4Example 4 682682 131%131% 1.561.56 390%390% 437437
비교예 1Comparative Example 1 669669 129%129% 1.421.42 355%355% 471471
비교예 2Comparative Example 2 670670 129%129% 0.960.96 240%240% 698698
대조군(PVA)Control (PVA) 520520 100%100% 0.40.4 100%100% 13001300
표 3의 결과에 따르면, 함몰부에 금속이 채워진 와이어 그리드 유닛을 양면으로 형성한 실시예 1 내지 3을 디스플레이에 적용할 경우, PVA형 흡수편광필름(대조군)에 대비해서 휘도와 명암비(C.R)가 향상되는 것으로 나타났으며, 특히, 일반 격자형 볼록부를 갖는 단면 및 양면으로 WGP(비교예 1 및 2)를 적용하였을 때 보다 월등히 높은 명암비를 나타낸다는 것을 확인할 수 있었다. 다만, 휘도평가 결과에서도 마찬가지로 실시예 4는 F.F의 영향으로 인해 그 효과 향상이 실시예 1 내지 3에 크게 미치지는 못한 것으로 나타났다.According to the results of Table 3, when applying Examples 1 to 3, in which the metal grid-filled wire grid unit was formed on both sides, to the display, the luminance and contrast ratio (CR) were compared with those of the PVA-type absorption polarizing film (control group). It was confirmed that the improved, especially, when the WGP (Comparative Examples 1 and 2) is applied to the cross-section and both sides having a general lattice-shaped convex portion, it was confirmed that shows a significantly higher contrast ratio. However, also in the results of the luminance evaluation, it was shown that in Example 4, due to the influence of F.F, the improvement of the effect was not significantly lower than those of Examples 1 to 3.

Claims (9)

  1. 기재층(110); 상기 기재층의 양면에 형성되며 격자형 볼록부(200)에 의한 요철 패턴을 포함하는 수지층(120); 및 상기 수지층의 격자형 볼록부 상에 형성되는 금속 격자(130) 패턴층을 포함하며,Base layer 110; A resin layer 120 formed on both sides of the base layer and including a concave-convex pattern by the lattice-shaped convex portion 200; And a metal lattice 130 pattern layer formed on the lattice-shaped convex portions of the resin layer,
    상기 격자형 볼록부(200)는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 굴곡지거나 지면과 예각을 이루도록 경사진 구간을 한 구간이상 포함하는 부정형의 형상인 것임을 특징으로 하는 양면형 와이어 그리드 편광판.The grid-shaped convex portion 200 is a double-sided wire grid, characterized in that the irregular shape including at least one section of the inclined side to form a bent or acute angle with the ground surface of at least one of the left side and the right side of the convex portion. Polarizer.
  2. 제 1 항에 있어서, 상기 격자형 볼록부(200)는 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 측면부에 의해서 측면 돌출부와 측면 함몰부를 각각 최소 1 이상 포함하는 것이고,The method of claim 1, wherein the grid-shaped convex portion 200 is to include at least one side projection and side depressions each by a side portion including at least one section inclined or curved,
    상기 측면 돌출부 및 측면 함몰부는 동일한 방향을 기준으로 최대 돌출부(210)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P1);과 최대 함몰부(220)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P2) 사이의 거리가 1 내지 30nm 인 것임을 특징으로 하는 양면형 와이어 그리드 편광판.The lateral protrusion and the side recessed portion (P1) where the imaginary line vertically lowered toward the ground at the maximum protrusion 210 meets the ground based on the same direction; and lowered vertically toward the ground at the maximum recess 220 The distance between the point P2 where the imaginary line meets the ground is 1 to 30 nm. Double-sided wire grid polarizer, characterized in that the.
  3. 제 2 항에 있어서, 상기 금속 격자는 격자형 볼록부와 맞닿아 형성된 것이고, 격자형 볼록부의 최대 함몰부에서부터 금속이 채워져 최대 돌출부에서 수평방향으로 이루는 적층폭이 10nm 내지 100nm 가 되도록 형성된 것임을 특징으로 하는 양면형 와이어 그리드 편광판.3. The metal lattice of claim 2, wherein the metal lattice is formed in contact with the lattice-shaped convex portion, and the lamination width formed in the horizontal direction at the largest protrusion by filling the metal from the largest depression of the lattice-shaped convex portion is 10 nm to 100 nm. Two-sided wire grid polarizer.
  4. 제 1 항에 있어서, 와이어 그리드 유닛(100)의 양면에 형성된 모든 금속 격자(130)로부터 바닥면을 향해 수직 방향으로 각각의 금속 격자의 선폭과 동일한 폭을 갖는 가상의 그림자를 형성한다 가정할 때,The method of claim 1, wherein a virtual shadow having a width equal to the line width of each metal grating is formed in a vertical direction from all metal gratings 130 formed on both sides of the wire grid unit 100 toward the bottom. ,
    임의의 격자에서 형성된 가상의 그림자는 이와 중첩되거나 경계면이 맞닿는 하나 이상의 인접한 그림자에 의해 연장된 폭을 갖는 그림자 격자(Shadow grid, 300)를 형성하는 것임을 특징으로 하는 양면형 와이어 그리드 편광판.And wherein the imaginary shadow formed in any grid forms a shadow grid 300 having a width that overlaps or extends by one or more adjacent shadows that abut the interface.
  5. 제 4 항에 있어서, 상기 와이어 그리드 편광판은 하기 식 1에 따라 계산되는 F.F(Fill Factor)의 값이 1.05 이상인 것임을 특징으로 하는 양면형 와이어 그리드 편광판.The double-sided wire grid polarizer of claim 4, wherein the wire grid polarizer has a F.F (Fill Factor) value calculated by Equation 1 below 1.05.
    식 1)
    Figure PCTKR2016007701-appb-I000004
    Equation 1)
    Figure PCTKR2016007701-appb-I000004
  6. 제 1 항에 있어서, 상기 금속 격자(130)는 단위 격자당 높이(131)가 1 내지 1000nm이고, 선폭(132)이 1 내지 140nm이며, 임의의 격자가 시작되는 지점에서 다음 격자가 시작되는 지점까지의 거리로 정의되는 피치(Pitch, 133)가 50 내지 200nm임을 특징으로 하는 양면형 와이어 그리드 편광판The metal grating 130 has a height 131 per unit grating of 1 to 1000 nm, a line width 132 of 1 to 140 nm, and a point at which the next grating starts at a point where any grating starts. Double-sided wire grid polarizer characterized in that the pitch (133) defined by the distance to 50 to 200nm
  7. 제 1 항에 있어서, 상기 와이어 그리드 편광판은 P 편광 투과율이 50% 내지 99% 이고, S 편광 투과율이 1% 미만이며, 편광효율이 95% 내지 100%인 것을 특징으로 하는 양면형 와이어 그리드 편광판.The double-sided wire grid polarizer of claim 1, wherein the wire grid polarizer has a P polarization transmittance of 50% to 99%, an S polarization transmittance of less than 1%, and a polarization efficiency of 95% to 100%.
  8. 상기 제 1 항 내지 제 7 항 중 어느 한 항의 양면형 와이어 그리드 편광판을 포함하는 광학부품.An optical component comprising the double-sided wire grid polarizer of any one of claims 1 to 7.
  9. 제 8 항에 있어서, 상기 광학부품은 명암대조비(C.R, contrast ratio)가 500 내지 1,000,000인 것을 특징으로 하는 광학부품.The optical component of claim 8, wherein the optical component has a contrast ratio (C.R) of 500 to 1,000,000.
PCT/KR2016/007701 2015-08-07 2016-08-04 Double-sided wire grid polarizing plate, and optical component comprising same WO2017026677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0111677 2015-08-07
KR1020150111677A KR20170017558A (en) 2015-08-07 2015-08-07 Both Sides Type Wire Grid Polarizer And Liquid Crystal Display Device Including The Same

Publications (1)

Publication Number Publication Date
WO2017026677A1 true WO2017026677A1 (en) 2017-02-16

Family

ID=57984375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007701 WO2017026677A1 (en) 2015-08-07 2016-08-04 Double-sided wire grid polarizing plate, and optical component comprising same

Country Status (2)

Country Link
KR (1) KR20170017558A (en)
WO (1) WO2017026677A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US293142A (en) * 1884-02-05 Daniel a
KR20090081794A (en) * 2008-01-25 2009-07-29 주식회사 엘지화학 Wire Grid Polarizer
KR20090108592A (en) * 2007-01-12 2009-10-15 도레이 카부시키가이샤 Polarizing plate and liquid crystal display device using the same
KR20090123865A (en) * 2007-02-27 2009-12-02 니폰 제온 가부시키가이샤 Grid polarizer
KR20130079323A (en) * 2010-04-19 2013-07-10 아사히 가라스 가부시키가이샤 Wire-grid polarizer manufacturing method and liquid-crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US293142A (en) * 1884-02-05 Daniel a
KR20090108592A (en) * 2007-01-12 2009-10-15 도레이 카부시키가이샤 Polarizing plate and liquid crystal display device using the same
KR20090123865A (en) * 2007-02-27 2009-12-02 니폰 제온 가부시키가이샤 Grid polarizer
KR20090081794A (en) * 2008-01-25 2009-07-29 주식회사 엘지화학 Wire Grid Polarizer
KR20130079323A (en) * 2010-04-19 2013-07-10 아사히 가라스 가부시키가이샤 Wire-grid polarizer manufacturing method and liquid-crystal display device

Also Published As

Publication number Publication date
KR20170017558A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP2023133583A (en) Polarizing plate
KR101178722B1 (en) Light guide panel and lcd back light unit using the same
WO2017115967A1 (en) Wire grid polarizing plate and optical component including same
TWI289688B (en) Light guide plate and backlight assembly having the same
US20100295762A1 (en) Display apparatus including an optical plate and method of manufacturing the same
WO2016195463A1 (en) Wire grid polarizer and liquid crystal display device comprising same
TWI374315B (en)
TWI777073B (en) Polarizing plate and optical display comprising the same
TWI388883B (en) Prism sheet having inclined ridges and liquid crystal display using the same
KR101813753B1 (en) Liquid crystal display apparatus
TWI719878B (en) Polarizing plate and optical display apparatus comprising the same
WO2015149378A1 (en) Exposure mask and manufacturing method of color filter
WO2017026677A1 (en) Double-sided wire grid polarizing plate, and optical component comprising same
WO2017026735A1 (en) Wire grid polarizing plate and optical component comprising same
WO2017026734A1 (en) Wire grid polarizing plate and optical component comprising same
KR20090050283A (en) Prism sheet and optical film including it
WO2011062461A2 (en) Integrated optical sheet and optical device including same
TW201100870A (en) Manufacturing methods for an diffusion brightness enhancement optical film and backlight module utilizing the optical film
KR102514151B1 (en) Polarizing plate and optical display apparatus comprising the same
KR20140083409A (en) Liquid crystal display device
WO2018062962A1 (en) Wire grid polarizer and display device comprising same
KR20160091179A (en) Optical sheet for back light unit and manufacturing method thereof
WO2020124705A1 (en) Preparation method for display panel, display panel, and display device
TWI842058B (en) Polarizing plate and optical display comprising the same
TWI626476B (en) Light diffusion plate and backlight unit comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835318

Country of ref document: EP

Kind code of ref document: A1