WO2017026486A1 - Polyester resin composition containing aminotriazine derivative and fatty acid - Google Patents

Polyester resin composition containing aminotriazine derivative and fatty acid Download PDF

Info

Publication number
WO2017026486A1
WO2017026486A1 PCT/JP2016/073454 JP2016073454W WO2017026486A1 WO 2017026486 A1 WO2017026486 A1 WO 2017026486A1 JP 2016073454 W JP2016073454 W JP 2016073454W WO 2017026486 A1 WO2017026486 A1 WO 2017026486A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin composition
carbon atoms
alkyl group
acid
Prior art date
Application number
PCT/JP2016/073454
Other languages
French (fr)
Japanese (ja)
Inventor
宅磨 長▲濱▼
一利 小高
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2017534468A priority Critical patent/JP6777889B2/en
Publication of WO2017026486A1 publication Critical patent/WO2017026486A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a polyester resin composition, and more particularly to a polyester resin composition containing an aminotriazine derivative and a fatty acid.
  • Polyester resins are widely used industrially as fibers and films because they are excellent in heat resistance, chemical resistance, mechanical properties, electrical properties, etc., and are excellent in cost / performance.
  • polylactic acid resin for example, has a high melting point of 160 to 180 ° C. and is excellent in transparency. Therefore, packaging materials such as containers and films, textile materials such as clothing, floor mats, automobile interior materials, and electrical / electronic products. It is expected as a molding material for housings and parts.
  • polyester resins including polylactic acid resins
  • the crystallization speed is generally very slow.
  • the glass transition temperature tends to be low, and the glass transition temperature around 60 ° C. tends to be softened.
  • an attempt has been made to increase the mold temperature at the time of injection molding and to increase the cooling time in the mold.
  • attempts have been made to increase the crystallization speed and the degree of crystallization, and improve the molding processability and heat resistance.
  • a method of adding a crystal nucleating agent is known as a method for improving the crystallization speed of a polyester resin.
  • the crystal nucleating agent serves as a primary crystal nucleus of the crystalline polymer, and functions to promote crystal growth and refine the crystal size and increase the crystallization speed.
  • a polyester resin crystal nucleating agent for example, 2-amino-1,3,5-triazine derivatives are known (Patent Document 1).
  • an additive called a lubricant is appropriately added to the polyester resin in order to improve moldability such as fluidity and releasability (removability from the molding machine surface such as a mold and a metal roll).
  • moldability such as fluidity and releasability (removability from the molding machine surface such as a mold and a metal roll).
  • the lubricant easily adheres (plates out) to the molding machine surface during molding, various methods for suppressing the plate out of the lubricant have been proposed. Specifically, specific fatty acids have been disclosed as lubricants that are difficult to plate out (Patent Documents 2 and 3).
  • Patent Document 1 promotes crystallization of the polyester resin, and a polyester resin molded product that can maintain high transparency even after crystallization is obtained.
  • Patent Document 2 and Patent Document 3 only disclose a lubricant for a specific use of a polyethylene terephthalate-based resin composition having a specific composition for calendar molding, and in injection molding of a polyester resin including polylactic acid. There is no specific mention of crystallization acceleration or plate-out phenomenon.
  • the present invention promotes the crystallization of a polyester resin and can produce a polyester resin molded product that can maintain high transparency even after crystallization with high productivity without plate-out, and can be used in a wide range of applications.
  • An object is to provide a polyester resin composition containing a nucleating agent.
  • the present inventors have found that the combined use of a specific 2-amino-1,3,5-triazine derivative and a specific fatty acid increases the crystallization speed of the polyester resin.
  • the present inventors have found that it is possible to realize a molded article having excellent transparency after crystallization, and to realize high moldability capable of suppressing the plate-out of the crystal nucleating agent.
  • the present invention provides 100 parts by mass of a polyester resin, 0.01 to 10 parts by mass of a 2-amino-1,3,5-triazine derivative represented by the formula [1], and 14 to 14 carbon atoms.
  • the present invention relates to a polyester resin composition comprising 0.01 to 10 parts by mass of 30 fatty acids.
  • R 1 and R 2 are each independently —C ( ⁇ O) R 5 , —C ( ⁇ O) OR 6 , —C ( ⁇ O) NR 7 R 8 , or —SO 2 R 9
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —C ( ⁇ O) R 5 , —C ( ⁇ O) OR 6 , —C ( ⁇ O ) Represents NR 7 R 8 or —SO 2 R 9 , wherein R 5 , R 6 and R 9 are each independently an alkyl group having 1 to 20 carbon atoms or an alkyl group having 1 to 6 carbon atoms.
  • the present invention relates to the polyester resin composition according to the first aspect, wherein the fatty acid is a fatty acid having 14 to 19 carbon atoms.
  • the present invention relates to the polyester resin composition according to the second aspect, wherein the fatty acid is at least one selected from the group consisting of palmitic acid, stearic acid, and 12-hydroxystearic acid.
  • R 3 and R 4 represents a hydrogen atom, to a polyester resin composition according to any one of the first aspect to the third aspect.
  • R 1 and R 2 are both —C ( ⁇ O) R 5 (R 5 is independently an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents a phenyl group which may be substituted with a), and relates to the polyester resin composition according to any one of the first to fourth aspects.
  • the present invention relates to the polyester resin composition according to the fifth aspect, wherein R 5 represents an alkyl group having 1 to 8 carbon atoms.
  • the present invention relates to the polyester resin composition according to the sixth aspect, in which R 5 represents an ethyl group or a propyl group.
  • the present invention relates to the polyester resin composition according to any one of the first aspect to the seventh aspect, in which the polyester resin is a polylactic acid resin.
  • the polyester resin is a polylactic acid resin.
  • it is related with the polyester resin molded object formed by crystallizing the polyester resin composition as described in any one of a 1st viewpoint thru
  • the polyester resin composition of the present invention crystallization of the polyester resin was promoted by using a specific 2-amino-1,3,5-triazine derivative as a crystal nucleating agent and further using a fatty acid as a plate-out inhibitor.
  • a polyester resin composition that is excellent in heat resistance and particularly excellent in moldability and capable of suppressing the plate-out of the crystal nucleating agent during the molding process.
  • the polyester resin composition of the present invention has a resin composition in which the transparency after crystallization is remarkably improved and the plate-out of the crystal nucleating agent is suppressed compared to a resin composition containing a conventional crystal nucleating agent. Things can be provided.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of DPM obtained in Production Example 1.
  • the polyester resin composition of the present invention comprises a polyester resin, a 2-amino-1,3,5-triazine derivative represented by the formula [1] (hereinafter also referred to as a derivative of the formula [1]), the number of carbon atoms It is a composition containing 14 to 30 fatty acids.
  • the 2-amino-1,3,5-triazine derivative used in the polyester resin composition of the present invention has a structure represented by the following formula [1].
  • This 2-amino-1,3,5-triazine derivative is preferably used as a crystal nucleating agent.
  • R 1 and R 2 are each independently —C ( ⁇ O) R 5 , —C ( ⁇ O) OR 6 , —C ( ⁇ O) NR 7 R 8 , or —SO 2 R 9.
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —C ( ⁇ O) R 5 , —C ( ⁇ O) OR 6 , —C ( ⁇ O ) Represents NR 7 R 8 or —SO 2 R 9 .
  • each R 5, R 6 and R 9 represents an alkyl group, or an alkyl phenyl group which may be substituted with a group having a carbon number of 1 to 6 carbon atoms 1 to 20,
  • R 7 and R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group optionally substituted with an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms may be a linear, branched, or cyclic alkyl group.
  • Examples of the linear alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl.
  • branched alkyl group examples include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group and the like.
  • Examples of the cyclic alkyl group include groups having a cyclopentyl ring and a cyclohexyl ring structure. Can be mentioned.
  • Examples of the alkyl group having 1 to 6 carbon atoms include those having 1 to 6 carbon atoms among the linear, branched or cyclic alkyl groups mentioned above.
  • Examples of the phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms include a phenyl group, a p-tolyl group, a 4-isopropylphenyl group, a 4-butylphenyl group, and a mesityl group. Can be mentioned.
  • R 3 and R 4 are preferably hydrogen atoms.
  • R 1 and R 2 are preferably —C ( ⁇ O) R 5 (R 5 is as defined above). Among them, R 5 has 1 to 8 carbon atoms.
  • An alkyl group is preferred, and R 5 is particularly preferably an ethyl group or a propyl group.
  • N, N ′-(6-amino-1,3,5-triazine-2,4-diyl) dipropionamide (DPM) represented by the formula [2] is particularly preferable. .
  • the polyester resin composition of the present invention may contain a 1,3,5-triazine derivative represented by the following formula [3] as long as the effects of the present invention are not impaired.
  • R 1 to R 4 have the same meaning as defined in formula [1].
  • R 10 represents —C ( ⁇ O) R 5 , —C ( ⁇ O) OR 6 , —C ( ⁇ O) NR 7 R 8 , or —SO 2 R 9
  • R 11 represents a hydrogen atom, carbon It represents an alkyl group having 1 to 6 atoms, —C ( ⁇ O) R 5 , —C ( ⁇ O) OR 6 , —C ( ⁇ O) NR 7 R 8 , or —SO 2 R 9 .
  • R 5 to R 9 have the same meaning as defined in formula [1].
  • the production method of the 2-amino-1,3,5-triazine derivative represented by the formula [1] is not particularly limited.
  • melamines and carboxylic acids or activated products thereof (acid halides, acid anhydrides)
  • Product acid azide, active ester, etc.
  • halogenated formic acid ester isocyanate
  • sulfonic acid or its activated form sulfonic acid halide, sulfonic anhydride, etc.
  • R 5 to R 7 and R 9 represent the same meaning as described above, R 5 ′ represents R 5 , R 6 ′ represents R 6 , and R 7 ′ represents R 7 . , R 9 ′ represent the same meaning as R 9, and may be the same group or different groups.
  • X is not particularly limited as long as it is a group capable of generating a desired bond (amide bond, sulfonamide bond), and examples thereof include a halogen atom such as a chlorine atom and a bromine atom.
  • R 5 and R 5 ′ , R 6 and R 6 ′ , R 7 and R 7 ′ , and R 9 and R 9 ′ are different groups, one is reacted first and then the other is reacted. Alternatively, both may be reacted at the same time.
  • the fatty acid used in the present invention is not particularly limited as long as it has 14 to 30 carbon atoms.
  • Examples of such fatty acids include myristic acid, pentadecylic acid, palmitic acid, 2-hexyldecanoic acid, palmitoleic acid, margaric acid, stearic acid, 2-octyldecanoic acid, 2- (4-methylhexyl) -8-methyldecane.
  • Acid 2- (4,4-dimethylpentan-2-yl) -5,7,7-trimethyloctanoic acid, 12-hydroxystearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15)- Linolenic acid, (6,9,12) -linolenic acid, eleostearic acid, arachidic acid, 2- (6-methylpentan-2-yl) -5,9-dimethyldecanoic acid, arachidonic acid, behenic acid, lignoserine Examples include acid, nervonic acid, serotic acid, montanic acid, and melicic acid. Among these, fatty acids having 14 to 19 carbon atoms are preferable. In particular, for example, when the polyester resin described later is a polylactic acid resin, palmitic acid, stearic acid, and 12-hydroxystearic acid are more preferable. These fatty acids may be used alone or in combination of two or more.
  • polyester resin examples include polyglycolic acid (PGA), polylactic acid (PLA), poly (3-hydroxybutyrate) (PHB), and poly ((3-hydroxybutyrate) -co- ( 3-hydroxyvalerate)) (PHBV), poly ((3-hydroxybutyrate) -co- (3-hydroxyhexanoate)) (PHBH), poly ((3-hydroxybutyrate) -co- (4 -Hydroxybutyrate)) (P3 / 4HB) and other polyhydroxyalkanoic acids (PHA); polyethylene succinate, polyethylene succinate / adipate, polybutylene succinate (PBS), polybutylene succinate / adipate, polybutylene succin Dehydration of diols such as nates / carbonates and aliphatic dicarboxylic acids Polycondensates of diols and aromatic dicarboxylic acids such as polyethylene terephthalate (PET), polyethylene terephthalate (PET), polyethylene ter
  • polyester resins may be used alone or in combination of two or more.
  • non-aromatic polyester resins polyhydroxyalkanoic acids (PHA), polycondensates of diols and aliphatic dicarboxylic acids, and polycaprolactone are preferred, and polyhydroxyalkanoic acids (PHA) are preferred. Is more preferable.
  • polylactic acid resin is more preferable.
  • the polylactic acid resin may include a homopolymer or copolymer of polylactic acid.
  • the arrangement pattern of the copolymer may be any of random copolymer, alternating copolymer, block copolymer, and graft copolymer. Further, it may be a blend polymer with another resin mainly composed of polylactic acid homopolymer or copolymer.
  • the other resin include biodegradable resins other than the polylactic acid resin described later, general-purpose thermoplastic resins, and general-purpose thermoplastic engineering plastics.
  • the polylactic acid is not particularly limited, and examples thereof include those obtained by ring-opening polymerization of lactide and those obtained by direct polycondensation of D-form, L-form, racemate, etc. of lactic acid. Examples thereof include lactic acid (PLLA), poly (D-lactic acid) (PDLA), and stereocomplexes thereof.
  • PLLA lactic acid
  • PDLA poly (D-lactic acid)
  • the number average molecular weight of polylactic acid is generally about 10,000 to 500,000.
  • a polylactic acid resin obtained by crosslinking with a crosslinking agent using heat, light, radiation, or the like can also be used.
  • biodegradable resins other than the polylactic acid resin that can be used as the blend polymer include polyglycolic acid (PGA), poly (3-hydroxybutyrate) (PHB), and poly ((3-hydroxybutyrate)- co- (3-hydroxyvalerate)) (PHBV), poly ((3-hydroxybutyrate) -co- (3-hydroxyhexanoate)) (PHBH), poly ((3-hydroxybutyrate) -co Polyhydroxyalkanoic acids (PHA) such as (4-hydroxybutyrate)) (P3 / 4HB); polybutylene succinate (PBS), polybutylene succinate / adipate, polybutylene succinate / carbonate, polybutylene adipate / Terephthalate, polyethylene succinate, polyethylene succinate / Polycondensates of diols and aliphatic dicarboxylic acids such as adipate; polycaprolactone, polyvinyl alcohol, modified starch; cellulose acetate; chit
  • thermoplastic resins examples include polyethylene (PE), polyethylene copolymer, polypropylene (PP), polypropylene copolymer, polybutylene (PB), ethylene-vinyl acetate copolymer (EVA), Polyolefin resins such as ethylene-ethyl acrylate copolymer (EEA) and poly (4-methyl-1-pentene); polystyrene (PS), high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS), Polystyrene resins such as acrylonitrile-butadiene-styrene copolymer (ABS); acrylic resins such as polymethyl methacrylate (PMMA); polyvinyl chloride resins; polyurethane resins; phenol resins; epoxy resins; amino resins; Such as butter, and the like.
  • PE polyethylene
  • PP polypropylene
  • PB polypropylene copolymer
  • EVA ethylene-vin
  • General-purpose engineering plastics include, for example, polyamide resins; polyimide resins; polycarbonate resins; polyphenylene ether resins; modified polyphenylene ether resins; polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); Examples thereof include polyphenylene sulfide resin.
  • the polyester resin composition of the present invention comprises 0.01 to 10 parts by mass of the 2-amino-1,3,5-triazine derivative represented by the formula [1] with respect to 100 parts by mass of the polyester resin described above. Include in quantity. By making the addition amount 0.01 parts by mass or more, a sufficient crystallization rate can be obtained. Moreover, even if it exceeds 10 parts by mass, the crystallization rate does not increase further, so that it is economically advantageous to use it at 10 parts by mass or less.
  • the derivative of the formula [1] is contained in an amount of 0.1 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the 1,3,5-triazine derivative represented by the above-mentioned formula [3] is included in the polyester resin composition of the present invention, it is about 0.5 parts by mass or less with respect to 100 parts by mass of the polyester resin. It is preferable to include by a ratio.
  • the polyester resin composition of the present invention contains the fatty acid in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyester resin described above. By setting the addition amount to 0.01 to 10 parts by mass, a sufficient plate-out suppressing effect can be obtained.
  • the fatty acid is contained in an amount of 0.1 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, with respect to 100 parts by mass of the polyester resin.
  • the blending method of the derivative of the formula [1] and the fatty acid into the polyester resin is not particularly limited and can be performed by a known method.
  • a polyester resin, a derivative of formula [1], a fatty acid, and various additives described later may be mixed with various mixers and kneaded using a single screw or twin screw extruder. Kneading is usually performed at a temperature of about 150 to 220 ° C.
  • generating the masterbatch which contains each component in high concentration, and adding this to a polyester resin is also possible.
  • the derivative of the formula [1] and a fatty acid can be added at the polymerization stage of the polyester resin.
  • a well-known inorganic filler can also be used for the polyester resin composition of this invention.
  • the inorganic filler include glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, glass flake, potassium titanate, calcium carbonate, magnesium sulfate, titanium oxide and the like.
  • the shape of these inorganic fillers may be any of fiber, granule, plate, needle, sphere, and powder. These inorganic fillers can be used within 300 parts by mass with respect to 100 parts by mass of the polyester resin.
  • a known flame retardant can also be used for the polyester resin composition of the present invention.
  • the flame retardant include halogen flame retardants such as bromine and chlorine; antimony flame retardants such as antimony trioxide and antimony pentoxide; inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide and silicone compounds.
  • Phosphorus flame retardants such as red phosphorus, phosphate esters, ammonium polyphosphate, phosphazene, etc .; melamine, melam, melem, melon, melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine / melam Melamine flame retardants such as melem double salt, melamine alkylphosphonate, melamine phenylphosphonate, melamine sulfate and melam methanesulfonate; fluororesins such as polytetrafluoroethylene (PTFE). These flame retardants can be used within 200 parts by mass with respect to 100 parts by mass of the polyester resin.
  • PTFE polytetrafluoroethylene
  • heat stabilizers In addition to the above components, heat stabilizers, light stabilizers, UV absorbers, antioxidants, impact modifiers, antistatic agents, pigments, colorants, release agents, lubricants, plasticizers, compatibilizers, foaming
  • general synthetic resins such as agents, fragrances, antibacterial and antifungal agents, various coupling agents such as silane, titanium, and aluminum, other various fillers, and other crystal nucleating agents
  • various additives can also be used in combination.
  • the present invention is also directed to a polyester resin molded article obtained by crystallizing the above-described polyester resin composition.
  • the polyester resin composition of the present invention can be easily produced into various molded articles by applying conventional molding methods such as general injection molding, blow molding, vacuum molding, compression molding, extrusion molding, and calendar molding. it can. Among these, injection molding, blow molding, vacuum molding, compression molding, and extrusion molding are preferable, and extrusion molding is more preferable as a method for obtaining a sheet.
  • the polyester resin molded article of the present invention comprises the crystallized polyester resin, a crystal nucleating agent comprising a 2-amino-1,3,5-triazine derivative represented by the formula [1], and a fatty acid. .
  • the polyester resin molded body of the present invention can be obtained, for example, by using the polyester resin composition of the present invention and crystallizing the polyester resin contained therein.
  • limiting in particular as a method to crystallize a polyester resin For example, in the process of shape
  • the temperature at which the polyester resin is crystallized is usually appropriately selected from temperatures not lower than the glass transition temperature and lower than the melting point of the resin.
  • the heating (annealing) temperature may be 60 to 170 ° C. Among these, 70 to 130 ° C is preferable, and 80 to 120 ° C is more preferable.
  • the temperature By setting the temperature to 60 ° C. or higher, crystallization proceeds in a more practical time.
  • it by setting it as 170 degrees C or less, more spherulites with a small crystal diameter exist, ie, it becomes a molded object which was more excellent in transparency.
  • the polyester resin molded article of the present invention has excellent transparency, heat resistance and mechanical strength because the spherulite diameter is small and uniform.
  • Hot press machine SA-302 desktop test press (5) Differential scanning calorimetry (DSC) manufactured by Tester Sangyo Co., Ltd. Device: Diamond DSC manufactured by PerkinElmer Japan (6) HAZE measurement device: Nippon Denshoku Industries Co., Ltd. Haze meter NDH 5000
  • FSIL fumed silica
  • HSTE 12-hydroxystearic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • ISTE 2- (4,4-Dimethylpentan-2-yl) -5,7,7-trimethyloctanoic acid
  • Fine oxocol registered trademark isostearic acid manufactured by Nissan Chemical Industries, Ltd.
  • LAU Lauric acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • LAUOH Lauryl alcohol [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • MYR Myristic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • PAM Palmitic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • STE Stearic acid [Lunac (registered trademark) S-98 manufactured by Kao Corporation]
  • the resin composition in the form of a film is taken out from between the brass plates, sandwiched between two other brass plates (same size as the above-mentioned brass plate) at about room temperature (about 23 ° C.), and rapidly cooled to obtain crystals.
  • An amorphous (amorphous) state polylactic acid resin film-like molded article containing a nucleating agent was obtained.
  • the amorphous film-shaped molded body was sandwiched between two 120 mm ⁇ 80 mm hard chrome plated metal plates and allowed to stand in an oven at 100 ° C. for 24 hours. After cooling to room temperature (approximately 23 ° C.), the surface of the metal plate to which the film had adhered was visually observed, and plate-out was evaluated according to the following criteria. The results are also shown in Table 1. [Plate-out evaluation criteria] A: No deposits were observed on the hard chrome plated metal plate, and there was no plate-out. C: There is a deposit on the hard chrome plated metal plate, and the DPM is plated out.
  • the resin composition containing DPM which is a 2-amino-1,3,5-triazine derivative and a fatty acid having 14 or more carbon atoms is a plate-out of DPM which is a crystal nucleating agent.
  • DPM which is a 2-amino-1,3,5-triazine derivative
  • a fatty acid having 14 or more carbon atoms is a crystal nucleating agent.
  • a resin composition containing only a crystal nucleating agent (Comparative Example 1), a resin composition containing a fatty acid having 12 carbon atoms (Comparative Example 2), a composition containing a higher alcohol (Comparative Example 3), The resin composition containing the silica particles used as a lubricant (Comparative Example 4) obtained a result of occurrence of DPM plate-out on the metal surface.

Abstract

[Problem] To provide a nucleating agent-containing polyester resin composition that accelerates crystallization of a polyester resin, that enables production of, at high productivity without causing a plate-out, a polyester resin molding capable of maintaining high transparency even after crystallization, and that can be used in a wide range of use applications. [Solution] A polyester resin composition containing 100 parts by mass of a polyester resin, 0.01-10 parts by mass of a 2-amino-1,3,5-triazine derivative represented by formula [1], and 0.01-10 parts by mass of a fatty acid having 14-30 carbon atoms, and a polyester resin molded object obtained through crystallization of the polyester resin composition (in the formula: R1 and R2 each independently represent -C(=O)R5, -C(=O)OR6, -C(=O)NR7R8, or -SO2R9; R3 and R4 each independently represent a hydrogen atom, an alkyl group having 1-6 carbon atoms, -C(=O)R5, -C(=O)OR6, -C(=O)NR7R8, or -SO2R9; R5, R6, and R9 each independently represent an alkyl group having 1-20 carbon atoms or a phenyl group optionally substituted with an alkyl group having 1-6 carbon atoms; and R7 and R8 each independently represent a hydrogen atom, an alkyl group having 1-20 carbon atoms, or a phenyl group optionally substituted with an alkyl group having 1-6 carbon atoms).

Description

アミノトリアジン誘導体及び脂肪酸を含むポリエステル樹脂組成物Polyester resin composition containing aminotriazine derivative and fatty acid
 本発明はポリエステル樹脂組成物に関し、より詳細には、アミノトリアジン誘導体及び脂肪酸を含むポリエステル樹脂組成物に関する。 The present invention relates to a polyester resin composition, and more particularly to a polyester resin composition containing an aminotriazine derivative and a fatty acid.
 ポリエステル樹脂は、耐熱性、耐薬品性、力学的特性、電気的特性等に優れており、コスト/性能において優れていることから、繊維やフィルムとして広く工業的に使用されている。また近年、自然環境保護の見地から、自然環境中で生分解可能な脂肪族ポリエステルに関する研究が精力的に行われている。その中でも例えばポリ乳酸樹脂は、融点が160~180℃と高く、透明性に優れるため、容器、フィルム等の包装材料、衣料、フロアマット、自動車用内装材等の繊維材料、及び電気・電子製品の筺体や部品等の成形材料として期待されている。 Polyester resins are widely used industrially as fibers and films because they are excellent in heat resistance, chemical resistance, mechanical properties, electrical properties, etc., and are excellent in cost / performance. In recent years, research on aliphatic polyesters that can be biodegraded in the natural environment has been vigorously conducted from the viewpoint of protecting the natural environment. Among them, polylactic acid resin, for example, has a high melting point of 160 to 180 ° C. and is excellent in transparency. Therefore, packaging materials such as containers and films, textile materials such as clothing, floor mats, automobile interior materials, and electrical / electronic products. It is expected as a molding material for housings and parts.
 しかしながら、ポリ乳酸樹脂をはじめ、ポリエステル樹脂は、結晶性樹脂であるにもかかわらず一般に結晶化速度が極めて遅いため、特に延伸が行われない射出成形等によって製造される場合、成形物は結晶化度が低くなりやすく、60℃前後のガラス転移温度を超えると軟化しやすくなるという欠点を有している。結晶化度を上げるために、射出成形時の金型温度を高くし、金型内での冷却時間を長くする方法が試みられているが、この方法では成形サイクルが長くなるために生産性に課題を有する。ポリエステル樹脂成形物を高い生産性で製造し、幅広い用途で利用するために、結晶化速度及び結晶化度を高め、成形加工性や耐熱性を改善する試みがなされている。 However, since polyester resins, including polylactic acid resins, are generally crystalline resins, the crystallization speed is generally very slow. However, the glass transition temperature tends to be low, and the glass transition temperature around 60 ° C. tends to be softened. In order to increase the crystallinity, an attempt has been made to increase the mold temperature at the time of injection molding and to increase the cooling time in the mold. Has a problem. In order to produce a polyester resin molded product with high productivity and use it in a wide range of applications, attempts have been made to increase the crystallization speed and the degree of crystallization, and improve the molding processability and heat resistance.
 一般にポリエステル樹脂の結晶化速度を向上させる方法としては、結晶核剤を添加する方法が知られている。結晶核剤とは、結晶性高分子の一次結晶核となり、結晶成長を促進し結晶サイズを微細化すると共に、結晶化速度を高める働きをする。このようなポリエステル樹脂の結晶核剤として、例えば、2-アミノ-1,3,5-トリアジン誘導体が知られている(特許文献1)。 Generally, a method of adding a crystal nucleating agent is known as a method for improving the crystallization speed of a polyester resin. The crystal nucleating agent serves as a primary crystal nucleus of the crystalline polymer, and functions to promote crystal growth and refine the crystal size and increase the crystallization speed. As such a polyester resin crystal nucleating agent, for example, 2-amino-1,3,5-triazine derivatives are known (Patent Document 1).
 ところで、ポリエステル樹脂には、流動性、離型性(金型、金属ロール等の成形機表面からの剥離性)といった成形性の改善のため、滑剤と呼ばれる添加剤が適宜添加される。しかし、滑剤は成形時に成形機表面へ付着(プレートアウト)しやすいため、滑剤のプレートアウトを抑制する種々の方法が提案されている。具体的には、自身がプレートアウトしにくい滑剤として、特定の脂肪酸が開示されている(特許文献2,3)。 By the way, an additive called a lubricant is appropriately added to the polyester resin in order to improve moldability such as fluidity and releasability (removability from the molding machine surface such as a mold and a metal roll). However, since the lubricant easily adheres (plates out) to the molding machine surface during molding, various methods for suppressing the plate out of the lubricant have been proposed. Specifically, specific fatty acids have been disclosed as lubricants that are difficult to plate out (Patent Documents 2 and 3).
国際公開2014/148555号パンフレットInternational publication 2014/148555 pamphlet 特開2003-191266号公報JP 2003-191266 A 特開2003-277592号公報Japanese Patent Laid-Open No. 2003-277592
 上記特許文献1で開示されている結晶核剤は、ポリエステル樹脂の結晶化を促進すると共に、結晶化後も高い透明性を保てるポリエステル樹脂成形物が得られる。しかしながら、結晶核剤が少なからずプレートアウトするという課題があった。
 なお特許文献2及び特許文献3は、カレンダー成形用の特定組成のポリエチレンテレフタレート系樹脂組成物という特定用途における滑剤が開示されているのみであり、ポリ乳酸をはじめとするポリエステル樹脂の射出成形等における結晶化の促進やプレートアウト現象について具体的な言及はない。
 本発明は、ポリエステル樹脂の結晶化を促進すると共に、結晶化後も高い透明性を保てるポリエステル樹脂成形物をプレートアウトがなく高い生産性で製造し、且つ幅広い用途で利用することができる、結晶核剤含有のポリエステル樹脂組成物を提供することを目的とする。
The crystal nucleating agent disclosed in Patent Document 1 promotes crystallization of the polyester resin, and a polyester resin molded product that can maintain high transparency even after crystallization is obtained. However, there is a problem that the crystal nucleating agent is not a little plate-out.
In addition, Patent Document 2 and Patent Document 3 only disclose a lubricant for a specific use of a polyethylene terephthalate-based resin composition having a specific composition for calendar molding, and in injection molding of a polyester resin including polylactic acid. There is no specific mention of crystallization acceleration or plate-out phenomenon.
The present invention promotes the crystallization of a polyester resin and can produce a polyester resin molded product that can maintain high transparency even after crystallization with high productivity without plate-out, and can be used in a wide range of applications. An object is to provide a polyester resin composition containing a nucleating agent.
 本発明者らは上記の課題を解決するべく鋭意検討を進めた結果、特定の2-アミノ-1,3,5-トリアジン誘導体と特定の脂肪酸との併用が、ポリエステル樹脂の結晶化速度を高め、結晶化後の透明性に優れる成形体を実現できると共に、結晶核剤のプレートアウトを抑制した高い成形加工性を実現できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the combined use of a specific 2-amino-1,3,5-triazine derivative and a specific fatty acid increases the crystallization speed of the polyester resin. The present inventors have found that it is possible to realize a molded article having excellent transparency after crystallization, and to realize high moldability capable of suppressing the plate-out of the crystal nucleating agent.
 すなわち本発明は、第1観点として、ポリエステル樹脂100質量部、式[1]で表される2-アミノ-1,3,5-トリアジン誘導体0.01~10質量部、及び炭素原子数14乃至30の脂肪酸0.01~10質量部を含む、ポリエステル樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000002


(式中、R及びRはそれぞれ独立して、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表し、R及びRはそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表す。ここでR、R及びRはそれぞれ独立して、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表し、R及びRはそれぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表す。)
 第2観点として、前記脂肪酸が炭素原子数14乃至19の脂肪酸である、第1観点に記載のポリエステル樹脂組成物に関する。
 第3観点として、前記脂肪酸が、パルミチン酸、ステアリン酸及び12-ヒドロキシステアリン酸からなる群から選ばれる少なくとも一種である、第2観点に記載のポリエステル樹脂組成物に関する。
 第4観点として、前記R及びRが水素原子を表す、第1観点乃至第3観点のうち何れか一項に記載のポリエステル樹脂組成物に関する。
 第5観点として、前記R及びRがともに-C(=O)R(Rはそれぞれ独立して、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表す)を表す、第1観点乃至第4観点のうち何れか一項に記載のポリエステル樹脂組成物に関する。
 第6観点として、前記Rが炭素原子数1乃至8のアルキル基を表す、第5観点に記載のポリエステル樹脂組成物に関する。
 第7観点として、前記Rが、エチル基又はプロピル基を表す、第6観点に記載のポリエステル樹脂組成物に関する。
 第8観点として、前記ポリエステル樹脂がポリ乳酸樹脂である、第1観点乃至第7観点のうち何れか一項に記載のポリエステル樹脂組成物に関する。
 第9観点として、第1観点乃至第8観点のうち何れか一項に記載のポリエステル樹脂組成物を結晶化してなる、ポリエステル樹脂成形体に関する。
That is, as a first aspect, the present invention provides 100 parts by mass of a polyester resin, 0.01 to 10 parts by mass of a 2-amino-1,3,5-triazine derivative represented by the formula [1], and 14 to 14 carbon atoms. The present invention relates to a polyester resin composition comprising 0.01 to 10 parts by mass of 30 fatty acids.
Figure JPOXMLDOC01-appb-C000002


Wherein R 1 and R 2 are each independently —C (═O) R 5 , —C (═O) OR 6 , —C (═O) NR 7 R 8 , or —SO 2 R 9 R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —C (═O) R 5 , —C (═O) OR 6 , —C (═O ) Represents NR 7 R 8 or —SO 2 R 9 , wherein R 5 , R 6 and R 9 are each independently an alkyl group having 1 to 20 carbon atoms or an alkyl group having 1 to 6 carbon atoms. Represents a phenyl group which may be substituted with a group, and R 7 and R 8 are each independently substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents an optionally substituted phenyl group.)
As a second aspect, the present invention relates to the polyester resin composition according to the first aspect, wherein the fatty acid is a fatty acid having 14 to 19 carbon atoms.
As a third aspect, the present invention relates to the polyester resin composition according to the second aspect, wherein the fatty acid is at least one selected from the group consisting of palmitic acid, stearic acid, and 12-hydroxystearic acid.
As a fourth aspect, the R 3 and R 4 represents a hydrogen atom, to a polyester resin composition according to any one of the first aspect to the third aspect.
As a fifth aspect, R 1 and R 2 are both —C (═O) R 5 (R 5 is independently an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents a phenyl group which may be substituted with a), and relates to the polyester resin composition according to any one of the first to fourth aspects.
As a sixth aspect, the present invention relates to the polyester resin composition according to the fifth aspect, wherein R 5 represents an alkyl group having 1 to 8 carbon atoms.
As a seventh aspect, the present invention relates to the polyester resin composition according to the sixth aspect, in which R 5 represents an ethyl group or a propyl group.
As an eighth aspect, the present invention relates to the polyester resin composition according to any one of the first aspect to the seventh aspect, in which the polyester resin is a polylactic acid resin.
As a 9th viewpoint, it is related with the polyester resin molded object formed by crystallizing the polyester resin composition as described in any one of a 1st viewpoint thru | or an 8th viewpoint.
 本発明のポリエステル樹脂組成物は特定の2-アミノ-1,3,5-トリアジン誘導体を結晶核剤として用い、さらにプレートアウト抑制剤として脂肪酸を用いることにより、ポリエステル樹脂の結晶化が促進されたものとなり、ひいては、耐熱性に優れ、特に成形加工時の結晶核剤のプレートアウトを抑制できる成形加工性に優れたポリエステル樹脂組成物を提供することができる。
 特に本発明のポリエステル樹脂組成物は、従来の結晶核剤を配合した樹脂組成物に比べて、結晶化後の透明性が飛躍的に優れ、該結晶核剤のプレートアウトが抑制された樹脂組成物を提供することができる。
In the polyester resin composition of the present invention, crystallization of the polyester resin was promoted by using a specific 2-amino-1,3,5-triazine derivative as a crystal nucleating agent and further using a fatty acid as a plate-out inhibitor. Thus, it is possible to provide a polyester resin composition that is excellent in heat resistance and particularly excellent in moldability and capable of suppressing the plate-out of the crystal nucleating agent during the molding process.
In particular, the polyester resin composition of the present invention has a resin composition in which the transparency after crystallization is remarkably improved and the plate-out of the crystal nucleating agent is suppressed compared to a resin composition containing a conventional crystal nucleating agent. Things can be provided.
図1は、製造例1で得られたDPMのH NMRスペクトルを示す図である。1 is a diagram showing a 1 H NMR spectrum of DPM obtained in Production Example 1. FIG.
 以下、本発明について詳細に説明する。
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂と、式[1]で表される2-アミノ-1,3,5-トリアジン誘導体(以下、式[1]の誘導体とも称する)と、炭素原子数14乃至30の脂肪酸とを含む組成物である。
Hereinafter, the present invention will be described in detail.
The polyester resin composition of the present invention comprises a polyester resin, a 2-amino-1,3,5-triazine derivative represented by the formula [1] (hereinafter also referred to as a derivative of the formula [1]), the number of carbon atoms It is a composition containing 14 to 30 fatty acids.
[2-アミノ-1,3,5-トリアジン誘導体]
 本発明のポリエステル樹脂組成物に用いられる2-アミノ-1,3,5-トリアジン誘導体は、下記式[1]で表される構造を有する。
 この2-アミノ-1,3,5-トリアジン誘導体は、結晶核剤として好適に使用される。
Figure JPOXMLDOC01-appb-C000003


 上記式中、R及びRはそれぞれ独立して、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表し、R及びRはそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表す。
 またR、R及びRはそれぞれ独立して、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表し、R及びRはそれぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表す。
[2-amino-1,3,5-triazine derivative]
The 2-amino-1,3,5-triazine derivative used in the polyester resin composition of the present invention has a structure represented by the following formula [1].
This 2-amino-1,3,5-triazine derivative is preferably used as a crystal nucleating agent.
Figure JPOXMLDOC01-appb-C000003


In the above formula, R 1 and R 2 are each independently —C (═O) R 5 , —C (═O) OR 6 , —C (═O) NR 7 R 8 , or —SO 2 R 9. R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —C (═O) R 5 , —C (═O) OR 6 , —C (═O ) Represents NR 7 R 8 or —SO 2 R 9 .
Also independently each R 5, R 6 and R 9 represents an alkyl group, or an alkyl phenyl group which may be substituted with a group having a carbon number of 1 to 6 carbon atoms 1 to 20, R 7 and R 8 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group optionally substituted with an alkyl group having 1 to 6 carbon atoms.
 上記炭素原子数1乃至20のアルキル基は、直鎖状、分枝鎖状、或いは環状のアルキル基の何れであってもよい。
 直鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基等が挙げられる。
 分岐鎖状のアルキル基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる
 環状のアルキル基としては、例えば、シクロペンチル環、シクロヘキシル環構造を有する基等が挙げられる。
 また、上記炭素原子数1乃至6のアルキル基としては、上述に挙げた直鎖状、分枝鎖状、或いは環状のアルキル基のうち、炭素原子数が1乃至6のものを挙げることができる。
 また、上記炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基としては、例えば、フェニル基、p-トリル基、4-イソプロピルフェニル基、4-ブチルフェニル基、メシチル基等が挙げられる。
The alkyl group having 1 to 20 carbon atoms may be a linear, branched, or cyclic alkyl group.
Examples of the linear alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl. Group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group Group, n-eicosyl group and the like.
Examples of the branched alkyl group include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group and the like. Examples of the cyclic alkyl group include groups having a cyclopentyl ring and a cyclohexyl ring structure. Can be mentioned.
Examples of the alkyl group having 1 to 6 carbon atoms include those having 1 to 6 carbon atoms among the linear, branched or cyclic alkyl groups mentioned above. .
Examples of the phenyl group which may be substituted with an alkyl group having 1 to 6 carbon atoms include a phenyl group, a p-tolyl group, a 4-isopropylphenyl group, a 4-butylphenyl group, and a mesityl group. Can be mentioned.
 上述の式[1]で表される2-アミノ-1,3,5-トリアジン誘導体において、R及びRが水素原子であることが好ましい。
 また、上記式[1]中、R及びRが-C(=O)R(Rは前述と同義である)であることが好ましく、中でもRが炭素原子数1乃至8のアルキル基であることが好ましく、特にRがエチル基又はプロピル基であることが好ましい。
In the 2-amino-1,3,5-triazine derivative represented by the above formula [1], R 3 and R 4 are preferably hydrogen atoms.
In the above formula [1], R 1 and R 2 are preferably —C (═O) R 5 (R 5 is as defined above). Among them, R 5 has 1 to 8 carbon atoms. An alkyl group is preferred, and R 5 is particularly preferably an ethyl group or a propyl group.
 中でも特に好ましいものとして、式[2]で表される、N,N’-(6-アミノ-1,3,5-トリアジン-2,4-ジイル)ジプロピオンアミド(DPM)を挙げることができる。
Figure JPOXMLDOC01-appb-C000004

Among these, N, N ′-(6-amino-1,3,5-triazine-2,4-diyl) dipropionamide (DPM) represented by the formula [2] is particularly preferable. .
Figure JPOXMLDOC01-appb-C000004

 本発明のポリエステル樹脂組成物には、本発明の効果を損なわない限りにおいて、下記式[3]で表される1,3,5-トリアジン誘導体が含まれていてもよい。


 上記式中、R~Rは式[1]で定義したものと同義である。
 R10は、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表し、R11は、水素原子、炭素原子数1乃至6のアルキル基、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表す。なおR乃至Rは式[1]で定義したものと同義である。
The polyester resin composition of the present invention may contain a 1,3,5-triazine derivative represented by the following formula [3] as long as the effects of the present invention are not impaired.


In the above formula, R 1 to R 4 have the same meaning as defined in formula [1].
R 10 represents —C (═O) R 5 , —C (═O) OR 6 , —C (═O) NR 7 R 8 , or —SO 2 R 9 , and R 11 represents a hydrogen atom, carbon It represents an alkyl group having 1 to 6 atoms, —C (═O) R 5 , —C (═O) OR 6 , —C (═O) NR 7 R 8 , or —SO 2 R 9 . R 5 to R 9 have the same meaning as defined in formula [1].
 式[1]で表される2-アミノ-1,3,5-トリアジン誘導体は、その製造方法は特に制限されないが、例えばメラミン類と、カルボン酸又はその活性化体(酸ハロゲン化物、酸無水物、酸アジド、活性エステルなど)、ハロゲン化ギ酸エステル、イソシアネート、若しくはスルホン酸又はその活性化体(スルホン酸ハロゲン化物、スルホン酸無水物など)等とを、従来公知の方法に従って、アミド化反応、ウレタン化反応、カルバミド化反応又はスルホンアミド化反応させることにより、容易に得ることができる。
 具体的には、例えば、式[4]乃至式[7]に示すスキームにて製造することができる。
The production method of the 2-amino-1,3,5-triazine derivative represented by the formula [1] is not particularly limited. For example, melamines and carboxylic acids or activated products thereof (acid halides, acid anhydrides) Product, acid azide, active ester, etc.), halogenated formic acid ester, isocyanate, or sulfonic acid or its activated form (sulfonic acid halide, sulfonic anhydride, etc.), etc., in accordance with a conventionally known method It can be easily obtained by urethanization reaction, carbamidation reaction or sulfonamidation reaction.
Specifically, for example, it can be produced by the scheme shown in Formula [4] to Formula [7].
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

 式[4]乃至式[7]において、R乃至R及びRは前記と同じ意味を表し、R5’はRと、R6’はRと、R7’はRと、R9’はRとそれぞれ同じ意味を表し、各々同一の基であってもよいし異なる基であってもよい。また、Xとしては、所望の結合(アミド結合、スルホンアミド結合)を生成できる基であれば特に制限されないが、塩素原子、臭素原子等のハロゲン原子などが挙げられる。なお、RとR5’、RとR6’、RとR7’、RとR9’が異なる基となる場合には、一方を先に反応させた後に他方を反応させてもよいし、双方を同時に反応させてもよい。 In the formulas [4] to [7], R 5 to R 7 and R 9 represent the same meaning as described above, R 5 ′ represents R 5 , R 6 ′ represents R 6 , and R 7 ′ represents R 7 . , R 9 ′ represent the same meaning as R 9, and may be the same group or different groups. X is not particularly limited as long as it is a group capable of generating a desired bond (amide bond, sulfonamide bond), and examples thereof include a halogen atom such as a chlorine atom and a bromine atom. When R 5 and R 5 ′ , R 6 and R 6 ′ , R 7 and R 7 ′ , and R 9 and R 9 ′ are different groups, one is reacted first and then the other is reacted. Alternatively, both may be reacted at the same time.
[炭素原子数14乃至30の脂肪酸]
 本発明で用いられる脂肪酸としては、炭素原子数が14乃至30の脂肪酸であれば、特に制限されない。
 このような脂肪酸としては、例えば、ミリスチン酸、ペンタデシル酸、パルミチン酸、2-ヘキシルデカン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、2-オクチルデカン酸、2-(4-メチルヘキシル)-8-メチルデカン酸、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸、12-ヒドロキシステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)-リノレン酸、(6,9,12)-リノレン酸、エレオステアリン酸、アラキジン酸、2-(6-メチルペンタン-2-イル)-5,9-ジメチルデカン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸等が挙げられる。
 これらの中でも、炭素原子数が14乃至19の脂肪酸が好ましい。特に、例えば後述するポリエステル樹脂がポリ乳酸樹脂である場合には、パルミチン酸、ステアリン酸、12-ヒドロキシステアリン酸がより好ましい。
 これらの脂肪酸は、1種を単独で使用しても2種以上を併用してもよい。
[C14-C30 fatty acid]
The fatty acid used in the present invention is not particularly limited as long as it has 14 to 30 carbon atoms.
Examples of such fatty acids include myristic acid, pentadecylic acid, palmitic acid, 2-hexyldecanoic acid, palmitoleic acid, margaric acid, stearic acid, 2-octyldecanoic acid, 2- (4-methylhexyl) -8-methyldecane. Acid, 2- (4,4-dimethylpentan-2-yl) -5,7,7-trimethyloctanoic acid, 12-hydroxystearic acid, oleic acid, vaccenic acid, linoleic acid, (9,12,15)- Linolenic acid, (6,9,12) -linolenic acid, eleostearic acid, arachidic acid, 2- (6-methylpentan-2-yl) -5,9-dimethyldecanoic acid, arachidonic acid, behenic acid, lignoserine Examples include acid, nervonic acid, serotic acid, montanic acid, and melicic acid.
Among these, fatty acids having 14 to 19 carbon atoms are preferable. In particular, for example, when the polyester resin described later is a polylactic acid resin, palmitic acid, stearic acid, and 12-hydroxystearic acid are more preferable.
These fatty acids may be used alone or in combination of two or more.
[ポリエステル樹脂]
 本発明に用いられるポリエステル樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)、ポリ(3-ヒドロキシブチレート)(PHB)、ポリ((3-ヒドロキシブチレート)-co-(3-ヒドロキシバレレート))(PHBV)、ポリ((3-ヒドロキシブチレート)-co-(3-ヒドロキシヘキサノエート))(PHBH)、ポリ((3-ヒドロキシブチレート)-co-(4-ヒドロキシブチレート))(P3/4HB)等のポリヒドロキシアルカン酸(PHA)類;ポリエチレンサクシネート、ポリエチレンサクシネート/アジペート、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネート/アジペート、ポリブチレンサクシネート/カーボネート等のジオールと脂肪族ジカルボン酸との重縮合物;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンアジペート/テレフタレート、ポリブチレンナフタレート等のジオールと芳香族ジカルボン酸との重縮合物;ポリカプロラクトンなどを挙げることができる。これらのポリエステル樹脂は、1種を単独で使用しても2種以上を併用してもよい。
 中でも、非芳香族ポリエステル樹脂である、ポリヒドロキシアルカン酸(PHA)類、ジオールと脂肪族ジカルボン酸との重縮合物、ポリカプロラクトンであることが好ましく、ポリヒドロキシアルカン酸(PHA)類であることがより好ましい。これらの中でも、ポリ乳酸樹脂であることがことさら好ましい。
[Polyester resin]
Examples of the polyester resin used in the present invention include polyglycolic acid (PGA), polylactic acid (PLA), poly (3-hydroxybutyrate) (PHB), and poly ((3-hydroxybutyrate) -co- ( 3-hydroxyvalerate)) (PHBV), poly ((3-hydroxybutyrate) -co- (3-hydroxyhexanoate)) (PHBH), poly ((3-hydroxybutyrate) -co- (4 -Hydroxybutyrate)) (P3 / 4HB) and other polyhydroxyalkanoic acids (PHA); polyethylene succinate, polyethylene succinate / adipate, polybutylene succinate (PBS), polybutylene succinate / adipate, polybutylene succin Dehydration of diols such as nates / carbonates and aliphatic dicarboxylic acids Polycondensates of diols and aromatic dicarboxylic acids such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene adipate / terephthalate, polybutylene naphthalate, etc .; polycaprolactone, etc. Can be mentioned. These polyester resins may be used alone or in combination of two or more.
Among these, non-aromatic polyester resins, polyhydroxyalkanoic acids (PHA), polycondensates of diols and aliphatic dicarboxylic acids, and polycaprolactone are preferred, and polyhydroxyalkanoic acids (PHA) are preferred. Is more preferable. Of these, polylactic acid resin is more preferable.
<ポリ乳酸樹脂>
 上記ポリ乳酸樹脂は、ポリ乳酸のホモポリマー又はコポリマーを含むことができる。ポリ乳酸樹脂がコポリマーの場合、コポリマーの配列様式はランダムコポリマー、交互コポリマー、ブロックコポリマー、グラフトコポリマーの何れであってもよい。
 また、ポリ乳酸のホモポリマー又はコポリマーを主体とした、他樹脂とのブレンドポリマーであってもよい。他樹脂とは、後述するポリ乳酸樹脂以外の生分解性樹脂、汎用の熱可塑性樹脂、汎用の熱可塑性エンジニアリングプラスチックなどが挙げられる。
 ポリ乳酸としては特に限定されるものではないが、例えばラクチドを開環重合させたものや、乳酸のD体、L体、ラセミ体などを直接重縮合させたものが挙げられ、ポリ(L-乳酸)(PLLA)、ポリ(D-乳酸)(PDLA)、これらのステレオコンプレックス体などが挙げられる。ポリ乳酸の数平均分子量は、一般に10,000から500,000程度である。またポリ乳酸樹脂を熱、光、放射線などを利用して架橋剤で架橋させたものも使用できる。
<Polylactic acid resin>
The polylactic acid resin may include a homopolymer or copolymer of polylactic acid. When the polylactic acid resin is a copolymer, the arrangement pattern of the copolymer may be any of random copolymer, alternating copolymer, block copolymer, and graft copolymer.
Further, it may be a blend polymer with another resin mainly composed of polylactic acid homopolymer or copolymer. Examples of the other resin include biodegradable resins other than the polylactic acid resin described later, general-purpose thermoplastic resins, and general-purpose thermoplastic engineering plastics.
The polylactic acid is not particularly limited, and examples thereof include those obtained by ring-opening polymerization of lactide and those obtained by direct polycondensation of D-form, L-form, racemate, etc. of lactic acid. Examples thereof include lactic acid (PLLA), poly (D-lactic acid) (PDLA), and stereocomplexes thereof. The number average molecular weight of polylactic acid is generally about 10,000 to 500,000. A polylactic acid resin obtained by crosslinking with a crosslinking agent using heat, light, radiation, or the like can also be used.
 上記ブレンドポリマーとして使用可能なポリ乳酸樹脂以外の生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ(3-ヒドロキシブチレート)(PHB)、ポリ((3-ヒドロキシブチレート)-co-(3-ヒドロキシバレレート))(PHBV)、ポリ((3-ヒドロキシブチレート)-co-(3-ヒドロキシヘキサノエート))(PHBH)、ポリ((3-ヒドロキシブチレート)-co-(4-ヒドロキシブチレート))(P3/4HB)等のポリヒドロキシアルカン酸(PHA)類;ポリブチレンサクシネート(PBS)、ポリブチレンサクシネート/アジペート、ポリブチレンサクシネート/カーボネート、ポリブチレンアジペート/テレフタレート、ポリエチレンサクシネート、ポリエチレンサクシネート/アジペート等のジオールと脂肪族ジカルボン酸との重縮合物;ポリカプロラクトン;ポリビニルアルコール;変性でんぷん;酢酸セルロース;キチン、キトサン;リグニンなどが挙げられる。 Examples of biodegradable resins other than the polylactic acid resin that can be used as the blend polymer include polyglycolic acid (PGA), poly (3-hydroxybutyrate) (PHB), and poly ((3-hydroxybutyrate)- co- (3-hydroxyvalerate)) (PHBV), poly ((3-hydroxybutyrate) -co- (3-hydroxyhexanoate)) (PHBH), poly ((3-hydroxybutyrate) -co Polyhydroxyalkanoic acids (PHA) such as (4-hydroxybutyrate)) (P3 / 4HB); polybutylene succinate (PBS), polybutylene succinate / adipate, polybutylene succinate / carbonate, polybutylene adipate / Terephthalate, polyethylene succinate, polyethylene succinate / Polycondensates of diols and aliphatic dicarboxylic acids such as adipate; polycaprolactone, polyvinyl alcohol, modified starch; cellulose acetate; chitin, chitosan; lignin and the like.
 また上記ブレンドポリマーとして使用可能な汎用の熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリエチレンコポリマー、ポリプロピレン(PP)、ポリプロピレンコポリマー、ポリブチレン(PB)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸エチル共重合体(EEA)、ポリ(4-メチル-1-ペンテン)等のポリオレフィン樹脂;ポリスチレン(PS)、高衝撃性ポリスチレン(HIPS)、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)等のポリスチレン系樹脂;ポリメタクリル酸メチル(PMMA)等のアクリル樹脂;ポリ塩化ビニル樹脂;ポリウレタン樹脂;フェノール樹脂;エポキシ樹脂;アミノ樹脂;不飽和ポリエステル樹脂などが挙げられる。
 汎用のエンジニアリングプラスチックとしては、例えば、ポリアミド樹脂;ポリイミド樹脂;ポリカーボネート樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンスルフィド樹脂などが挙げられる。
Examples of general-purpose thermoplastic resins that can be used as the blend polymer include polyethylene (PE), polyethylene copolymer, polypropylene (PP), polypropylene copolymer, polybutylene (PB), ethylene-vinyl acetate copolymer (EVA), Polyolefin resins such as ethylene-ethyl acrylate copolymer (EEA) and poly (4-methyl-1-pentene); polystyrene (PS), high impact polystyrene (HIPS), acrylonitrile-styrene copolymer (AS), Polystyrene resins such as acrylonitrile-butadiene-styrene copolymer (ABS); acrylic resins such as polymethyl methacrylate (PMMA); polyvinyl chloride resins; polyurethane resins; phenol resins; epoxy resins; amino resins; Such as butter, and the like.
General-purpose engineering plastics include, for example, polyamide resins; polyimide resins; polycarbonate resins; polyphenylene ether resins; modified polyphenylene ether resins; polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); Examples thereof include polyphenylene sulfide resin.
[樹脂組成物]
 本発明のポリエステル樹脂組成物は、上述のポリエステル樹脂100質量部に対して、前記式[1]で表される2-アミノ-1,3,5-トリアジン誘導体を0.01~10質量部の量にて含む。添加量を0.01質量部以上とすることにより、十分な結晶化速度を得ることができる。また、10質量部を超えても、結晶化速度がさらに速くなるわけではないため、10質量部以下で使用することが経済的に有利となる。
 好ましくは、上述のポリエステル樹脂100質量部に対して、前記式[1]の誘導体を0.1~5質量部の量にて、更に好ましくは0.1~2質量部の量にて含む。
 なお、本発明のポリエステル樹脂組成物に上述の式[3]で表される1,3,5-トリアジン誘導体が含まれる場合、ポリエステル樹脂100質量部に対して、およそ0.5質量部以下の割合で含むことが好ましい。
[Resin composition]
The polyester resin composition of the present invention comprises 0.01 to 10 parts by mass of the 2-amino-1,3,5-triazine derivative represented by the formula [1] with respect to 100 parts by mass of the polyester resin described above. Include in quantity. By making the addition amount 0.01 parts by mass or more, a sufficient crystallization rate can be obtained. Moreover, even if it exceeds 10 parts by mass, the crystallization rate does not increase further, so that it is economically advantageous to use it at 10 parts by mass or less.
Preferably, the derivative of the formula [1] is contained in an amount of 0.1 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the polyester resin.
When the 1,3,5-triazine derivative represented by the above-mentioned formula [3] is included in the polyester resin composition of the present invention, it is about 0.5 parts by mass or less with respect to 100 parts by mass of the polyester resin. It is preferable to include by a ratio.
 本発明のポリエステル樹脂組成物は、上述のポリエステル樹脂100質量部に対して、前記脂肪酸を0.01~10質量部の量にて含む。添加量を0.01~10質量部とすることにより、十分なプレートアウト抑制効果を得ることができる。
 好ましくは、上述のポリエステル樹脂100質量部に対して、前記脂肪酸を0.1~5質量部の量にて、更に好ましくは0.1~2質量部の量にて含む。
The polyester resin composition of the present invention contains the fatty acid in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyester resin described above. By setting the addition amount to 0.01 to 10 parts by mass, a sufficient plate-out suppressing effect can be obtained.
Preferably, the fatty acid is contained in an amount of 0.1 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, with respect to 100 parts by mass of the polyester resin.
 本発明において、ポリエステル樹脂への式[1]の誘導体及び脂肪酸の配合方法は特に制限されることなく、公知の方法によって行うことができる。
 例えば、ポリエステル樹脂、式[1]の誘導体及び脂肪酸並びに後述する各種添加剤を、それぞれ各種ミキサーで混合し、単軸又は二軸押出機等を用いて混練すればよい。混練は、通常150~220℃程度の温度で行われる。また、各成分を高濃度で含有するマスターバッチを生成し、これをポリエステル樹脂に添加する方法も可能である。また、ポリエステル樹脂の重合段階で、式[1]の誘導体及び脂肪酸を添加することもできる。
In the present invention, the blending method of the derivative of the formula [1] and the fatty acid into the polyester resin is not particularly limited and can be performed by a known method.
For example, a polyester resin, a derivative of formula [1], a fatty acid, and various additives described later may be mixed with various mixers and kneaded using a single screw or twin screw extruder. Kneading is usually performed at a temperature of about 150 to 220 ° C. Moreover, the method of producing | generating the masterbatch which contains each component in high concentration, and adding this to a polyester resin is also possible. Further, the derivative of the formula [1] and a fatty acid can be added at the polymerization stage of the polyester resin.
 本発明のポリエステル樹脂組成物は、公知の無機充填剤を使用することもできる。無機充填剤としては、例えば、ガラス繊維、炭素繊維、タルク、マイカ、シリカ、カオリン、クレー、ウオラストナイト、ガラスビーズ、ガラスフレーク、チタン酸カリウム、炭酸カルシウム、硫酸マグネシウム、酸化チタン等が挙げられる。これらの無機充填剤の形状は、繊維状、粒状、板状、針状、球状、粉末の何れでもよい。これらの無機充填剤は、ポリエステル樹脂100質量部に対して、300質量部以内で使用できる。 A well-known inorganic filler can also be used for the polyester resin composition of this invention. Examples of the inorganic filler include glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, glass flake, potassium titanate, calcium carbonate, magnesium sulfate, titanium oxide and the like. . The shape of these inorganic fillers may be any of fiber, granule, plate, needle, sphere, and powder. These inorganic fillers can be used within 300 parts by mass with respect to 100 parts by mass of the polyester resin.
 本発明のポリエステル樹脂組成物は、公知の難燃剤を使用することもできる。難燃剤としては、例えば、臭素系や塩素系等のハロゲン系難燃剤;三酸化アンチモン、五酸化アンチモン等のアンチモン系難燃剤;水酸化アルミニウム、水酸化マグネシウム、シリコーン系化合物等の無機系難燃剤;赤リン、リン酸エステル類、ポリリン酸アンモニウム、フォスファゼン等のリン系難燃剤;メラミン、メラム、メレム、メロン、メラミンシアヌレート、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラミン・メラム・メレム複塩、アルキルホスホン酸メラミン、フェニルホスホン酸メラミン、硫酸メラミン、メタンスルホン酸メラム等のメラミン系難燃剤;ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂などが挙げられる。これらの難燃剤は、ポリエステル樹脂100質量部に対して、200質量部以内で使用できる。 A known flame retardant can also be used for the polyester resin composition of the present invention. Examples of the flame retardant include halogen flame retardants such as bromine and chlorine; antimony flame retardants such as antimony trioxide and antimony pentoxide; inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide and silicone compounds. Phosphorus flame retardants such as red phosphorus, phosphate esters, ammonium polyphosphate, phosphazene, etc .; melamine, melam, melem, melon, melamine cyanurate, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, melamine / melam Melamine flame retardants such as melem double salt, melamine alkylphosphonate, melamine phenylphosphonate, melamine sulfate and melam methanesulfonate; fluororesins such as polytetrafluoroethylene (PTFE). These flame retardants can be used within 200 parts by mass with respect to 100 parts by mass of the polyester resin.
 また上記成分以外にも、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、衝撃改良剤、帯電防止剤、顔料、着色剤、離型剤、滑剤、可塑剤、相溶化剤、発泡剤、香料、抗菌抗カビ剤、シラン系、チタン系、アルミニウム系等の各種カップリング剤、その他の各種充填剤、その他の結晶核剤等、一般的な合成樹脂の製造時に、通常使用される各種添加剤も併用することができる。 In addition to the above components, heat stabilizers, light stabilizers, UV absorbers, antioxidants, impact modifiers, antistatic agents, pigments, colorants, release agents, lubricants, plasticizers, compatibilizers, foaming Commonly used in the production of general synthetic resins such as agents, fragrances, antibacterial and antifungal agents, various coupling agents such as silane, titanium, and aluminum, other various fillers, and other crystal nucleating agents Various additives can also be used in combination.
[樹脂成形体]
 本発明は、上述のポリエステル樹脂組成物を結晶化してなる、ポリエステル樹脂成形体も対象とする。
 本発明のポリエステル樹脂組成物は、一般の射出成形、ブロー成形、真空成形、圧縮成形、押出成形、カレンダー成形等の慣用の成形法を適用することによって、各種成形体を容易に製造することができる。中でも、射出成形、ブロー成形、真空成形、圧縮成形、押出成形が好ましく、特にシートを得る方法としては、押出成形がより好ましい。
 本発明のポリエステル樹脂成形体は、結晶化した前記ポリエステル樹脂、前記式[1]で表される2-アミノ-1,3,5-トリアジン誘導体からなる結晶核剤及び脂肪酸を含みて構成される。
[Resin molding]
The present invention is also directed to a polyester resin molded article obtained by crystallizing the above-described polyester resin composition.
The polyester resin composition of the present invention can be easily produced into various molded articles by applying conventional molding methods such as general injection molding, blow molding, vacuum molding, compression molding, extrusion molding, and calendar molding. it can. Among these, injection molding, blow molding, vacuum molding, compression molding, and extrusion molding are preferable, and extrusion molding is more preferable as a method for obtaining a sheet.
The polyester resin molded article of the present invention comprises the crystallized polyester resin, a crystal nucleating agent comprising a 2-amino-1,3,5-triazine derivative represented by the formula [1], and a fatty acid. .
 本発明のポリエステル樹脂成形体は、例えば、本発明のポリエステル樹脂組成物を使用し、これに含まれるポリエステル樹脂を結晶化させることによって得ることができる。ポリエステル樹脂を結晶化させる方法としては特に制限はなく、例えば、ポリエステル樹脂組成物を特定の形状に成形する過程において、ポリエステル樹脂組成物を結晶化が可能な温度以上で加熱すればよい。また、上記過程において、前記ポリエステル樹脂組成物を融点以上で加熱成形後、急冷して非晶質のまま成形体とし、これを加熱(アニール)することでも結晶化させることができる。 The polyester resin molded body of the present invention can be obtained, for example, by using the polyester resin composition of the present invention and crystallizing the polyester resin contained therein. There is no restriction | limiting in particular as a method to crystallize a polyester resin, For example, in the process of shape | molding a polyester resin composition in a specific shape, what is necessary is just to heat the polyester resin composition above the temperature which can crystallize. Further, in the above process, the polyester resin composition can be crystallized by heat-molding at a melting point or higher and then rapidly cooling to form an amorphous molded body, which is heated (annealed).
 ポリエステル樹脂を結晶化させるときの温度は、通常、その樹脂のガラス転移温度以上融点未満の温度から適宜選択される。例えば、ポリエステル樹脂としてポリ乳酸樹脂を使用する場合、加熱(アニール)温度としては、60~170℃が挙げられる。中でも、70~130℃が好ましく、80~120℃がより好ましい。60℃以上とすることで、より実用的な時間で結晶化が進行する。また、170℃以下とすることで、結晶径の小さな球晶がより多く存在する、すなわち、より透明性に優れた成形体となる。 The temperature at which the polyester resin is crystallized is usually appropriately selected from temperatures not lower than the glass transition temperature and lower than the melting point of the resin. For example, when a polylactic acid resin is used as the polyester resin, the heating (annealing) temperature may be 60 to 170 ° C. Among these, 70 to 130 ° C is preferable, and 80 to 120 ° C is more preferable. By setting the temperature to 60 ° C. or higher, crystallization proceeds in a more practical time. Moreover, by setting it as 170 degrees C or less, more spherulites with a small crystal diameter exist, ie, it becomes a molded object which was more excellent in transparency.
 本発明のポリエステル樹脂成形体は、その球晶径が小さくまた揃っているため、優れた透明性、耐熱性及び機械的強度を有するものとなる。 The polyester resin molded article of the present invention has excellent transparency, heat resistance and mechanical strength because the spherulite diameter is small and uniform.
 以下、実施例を挙げて本発明をより具体的に記載するが、本発明は以下の記述によって限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
(1)H NMRスペクトル
 装置:(株)JEOL RESONANCE製 JNM-ECX300
 溶媒:DMSO-d((CDSO))
 基準ピーク:DMSO-d(2.49ppm)
(2)融点/昇華点測定、5%重量減少温度(Td5%)測定
 装置:(株)リガク製 Thermo plus EVO2 TG8120
 測定条件:空気雰囲気下
 昇温速度:10℃/分(30~500℃)
(3)溶融混練
 装置:(株)東洋精機製作所製 ラボプラストミル マイクロ KF6V
(4)ホットプレス
 装置:テスター産業(株)製 SA-302 卓上型テストプレス
(5)示差走査熱量測定(DSC)
 装置:(株)パーキンエルマージャパン製 Diamond DSC
(6)HAZE測定
 装置:日本電色工業(株)製 ヘーズメーター NDH 5000
EXAMPLES Hereinafter, although an Example is given and this invention is described more concretely, this invention is not limited by the following description.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1) 1 H NMR spectrum apparatus: JNM-ECX300 manufactured by JEOL RESONANCE
Solvent: DMSO-d 6 ((CD 3 ) 2 SO))
Reference peak: DMSO-d 6 (2.49 ppm)
(2) Melting point / sublimation point measurement, 5% weight loss temperature (Td 5% ) measurement Device: Thermo plus EVO2 TG8120 manufactured by Rigaku Corporation
Measurement conditions: Under air atmosphere Temperature rising rate: 10 ° C / min (30-500 ° C)
(3) Melting and kneading equipment: Labo Plast Mill Micro KF6V manufactured by Toyo Seiki Seisakusho Co., Ltd.
(4) Hot press machine: SA-302 desktop test press (5) Differential scanning calorimetry (DSC) manufactured by Tester Sangyo Co., Ltd.
Device: Diamond DSC manufactured by PerkinElmer Japan
(6) HAZE measurement device: Nippon Denshoku Industries Co., Ltd. Haze meter NDH 5000
 また、用いた略号の意味は、以下の通りである。
FSIL:フュームドシリカ[日本アエロジル(株)製 AEROSIL(登録商標)200]
HSTE:12-ヒドロキシステアリン酸[東京化成工業(株)製]
ISTE:2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソステアリン酸]
LAU:ラウリン酸[東京化成工業(株)製]
LAUOH:ラウリルアルコール[東京化成工業(株)製]
MYR:ミリスチン酸[東京化成工業(株)製]
PAM:パルミチン酸[東京化成工業(株)製]
STE:ステアリン酸[花王(株)製 ルナック(登録商標)S-98]
The meanings of the abbreviations used are as follows.
FSIL: fumed silica [AEROSIL (registered trademark) 200 manufactured by Nippon Aerosil Co., Ltd.]
HSTE: 12-hydroxystearic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
ISTE: 2- (4,4-Dimethylpentan-2-yl) -5,7,7-trimethyloctanoic acid [Fine oxocol (registered trademark) isostearic acid manufactured by Nissan Chemical Industries, Ltd.]
LAU: Lauric acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
LAUOH: Lauryl alcohol [manufactured by Tokyo Chemical Industry Co., Ltd.]
MYR: Myristic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
PAM: Palmitic acid [manufactured by Tokyo Chemical Industry Co., Ltd.]
STE: Stearic acid [Lunac (registered trademark) S-98 manufactured by Kao Corporation]
[製造例1]N,N’-(6-アミノ-1,3,5-トリアジン-2,4-ジイル)ジプロピオンアミド(DPM)の製造
 撹拌機を備えた反応フラスコに、メラミン[日産化学工業(株)製]1.26g(10mmol)及びピリジン50gを仕込み、撹拌した。この中へ、無水プロピオン酸[関東化学(株)製]2.86g(22mmol)を加え、液温110℃で4時間加熱還流させた。この反応液を室温(およそ23℃)まで冷却した後、沈殿物をろ過し、メタノール50gで3回、アセトン50gで3回洗浄した。得られた湿品を80℃で8時間減圧乾燥することにより、目的とするDPMを白色粉末として1.64g得た(収率69%)。DPMのH NNRスペクトルを図1に示す。
 H NNR(DMSO-d):δ9.92(s,2H),7.14(s,2H),2.62(q,J=7.4Hz,4H),1.00(t,J=7.4Hz,6H)(ppm)
 昇華点:272.6℃、Td5%:255.2℃
[Production Example 1] Production of N, N '-(6-amino-1,3,5-triazine-2,4-diyl) dipropionamide (DPM) Melamine [Nissan Chemical Co., Ltd.] was placed in a reaction flask equipped with a stirrer. Industrial Co., Ltd.] 1.26 g (10 mmol) and 50 g of pyridine were charged and stirred. To this, 2.86 g (22 mmol) of propionic anhydride [manufactured by Kanto Chemical Co., Inc.] was added and heated to reflux at a liquid temperature of 110 ° C. for 4 hours. After the reaction solution was cooled to room temperature (approximately 23 ° C.), the precipitate was filtered and washed 3 times with 50 g of methanol and 3 times with 50 g of acetone. The obtained wet product was dried under reduced pressure at 80 ° C. for 8 hours to obtain 1.64 g of the intended DPM as a white powder (yield 69%). The 1 H NNR spectrum of DPM is shown in FIG.
1 H NNR (DMSO-d 6 ): δ 9.92 (s, 2H), 7.14 (s, 2H), 2.62 (q, J = 7.4 Hz, 4H), 1.00 (t, J = 7.4Hz, 6H) (ppm)
Sublimation point: 272.6 ° C., Td 5% : 255.2 ° C.
[実施例1乃至5、比較例1乃至4]
 ポリ乳酸(PLA)樹脂[NatureWorks LLC製 Ingeo Biopolymer 4032D]100質量部に対し、結晶核剤として製造例1に従って製造したDPM0.5質量部、及び表1に記載の脂肪酸0.5質量部を加え、185℃、50rpmで5分間溶融混練することでポリ乳酸樹脂組成物を得た。
 この樹脂組成物を、130μm厚のポリイミドフィルム(スペーサ)とともに、180mm×120mm×2mm厚の真鍮板2枚で挟み込み、200℃、25kgf/cmで1分間ホットプレスした。ホットプレス後直ちに、フィルム状になった樹脂組成物を真鍮板の間から取り出し、室温(およそ23℃)程度の別の真鍮板(上記真鍮板と同サイズ)2枚で挟み込んで急冷することで、結晶核剤を含む非晶(アモルファス)状態のポリ乳酸樹脂フィルム状成形体を得た。
[Examples 1 to 5, Comparative Examples 1 to 4]
To 100 parts by mass of polylactic acid (PLA) resin [Ingeo Biopolymer 4032D manufactured by NatureWorks LLC], 0.5 parts by mass of DPM produced according to Production Example 1 as a crystal nucleating agent and 0.5 parts by mass of fatty acids listed in Table 1 were added. The polylactic acid resin composition was obtained by melt-kneading at 185 ° C. and 50 rpm for 5 minutes.
This resin composition was sandwiched between two 180 mm × 120 mm × 2 mm thick brass plates together with a 130 μm thick polyimide film (spacer), and hot pressed at 200 ° C. and 25 kgf / cm 2 for 1 minute. Immediately after hot pressing, the resin composition in the form of a film is taken out from between the brass plates, sandwiched between two other brass plates (same size as the above-mentioned brass plate) at about room temperature (about 23 ° C.), and rapidly cooled to obtain crystals. An amorphous (amorphous) state polylactic acid resin film-like molded article containing a nucleating agent was obtained.
 上記非晶フィルム状成形体を、120mm×80mmの硬質クロムメッキ金属板2枚で挟み込み、100℃のオーブンに24時間静置した。室温(およそ23℃)まで冷却後、該フィルムが付着していた該金属板表面を目視で観察し、以下の基準でプレートアウトを評価した。結果を表1に併せて示す。
[プレートアウト評価基準]
 A:硬質クロムメッキ金属板に付着物は確認されず、プレートアウトなし。
 C:硬質クロムメッキ金属板に付着物があり、DPMがプレートアウトしている。
The amorphous film-shaped molded body was sandwiched between two 120 mm × 80 mm hard chrome plated metal plates and allowed to stand in an oven at 100 ° C. for 24 hours. After cooling to room temperature (approximately 23 ° C.), the surface of the metal plate to which the film had adhered was visually observed, and plate-out was evaluated according to the following criteria. The results are also shown in Table 1.
[Plate-out evaluation criteria]
A: No deposits were observed on the hard chrome plated metal plate, and there was no plate-out.
C: There is a deposit on the hard chrome plated metal plate, and the DPM is plated out.
 また、上記非晶フィルム状成形体からおよそ5mgを切り出し、DSCを用いて結晶化挙動を評価した。評価は、500℃/分で90℃まで昇温しそのまま90℃で保持したときの、90℃に達してからポリ乳酸の結晶化に由来する発熱(結晶化エンタルピーΔHc)がピークに達するまでの時間を、半結晶化時間(t1/2)として測定した。t1/2の値が小さいほど同一条件での結晶化速度が速く、結晶核剤として優れた効果を有することを表す。結果を表1に併せて示す。 Moreover, about 5 mg was cut out from the amorphous film-like molded product, and the crystallization behavior was evaluated using DSC. The evaluation is that when the temperature is raised to 90 ° C. at 500 ° C./min and kept at 90 ° C. until the exotherm derived from crystallization of polylactic acid (crystallization enthalpy ΔHc) reaches a peak. Time was measured as semi-crystallization time (t 1/2 ). The smaller the value of t1 / 2, the faster the crystallization rate under the same conditions, indicating that the crystal nucleating agent has an excellent effect. The results are also shown in Table 1.
 次に、上記非晶フィルム状成形体を40mm×25mmの矩形に切り出した。このフィルム状成形体を90℃のホットプレートで30分間アニール処理し、結晶化したポリ乳酸樹脂フィルム状成形体(およそ130μm厚)を得た。
 得られた結晶化フィルム状成形体のHAZEを測定し、以下の基準で透明性を評価した。結果を表1に併せて示す。
[透明性評価基準]
 A:0≦HAZE<10
 B:10≦HAZE<50
 C:50≦HAZE
Next, the amorphous film-like molded body was cut into a 40 mm × 25 mm rectangle. This film-shaped molded body was annealed for 30 minutes on a 90 ° C. hot plate to obtain a crystallized polylactic acid resin film-shaped molded body (approximately 130 μm thick).
The obtained crystallized film-like molded body was measured for HAZE, and the transparency was evaluated according to the following criteria. The results are also shown in Table 1.
[Transparency evaluation criteria]
A: 0 ≦ HAZE <10
B: 10 ≦ HAZE <50
C: 50 ≦ HAZE
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

 表1に示すように、2-アミノ-1,3,5-トリアジン誘導体であるDPM、及び炭素原子数が14以上である脂肪酸を配合した樹脂組成物は、結晶核剤であるDPMのプレートアウトを防止する結果を得た。すなわち、本発明の樹脂組成物は、成形加工時においてその鋳型表面を汚染しないことが確認された。さらに本結果においては、脂肪酸の添加(実施例1乃至実施例5)により、結晶核剤を単独で使用した後述する比較例1と比べて、半結晶時間が短縮され、プレートアウト抑制のみならず、結晶化促進の効果も得られるとする結果となった。
 一方、結晶核剤のみを配合した樹脂組成物(比較例1)、炭素原子数12の脂肪酸を配合した樹脂組成物(比較例2)、高級アルコールを配合した組成物(比較例3)、一般に滑剤として使用されるシリカ粒子を配合した樹脂組成物(比較例4)は、金属面へのDPMのプレートアウトが発生する結果を得た。
As shown in Table 1, the resin composition containing DPM which is a 2-amino-1,3,5-triazine derivative and a fatty acid having 14 or more carbon atoms is a plate-out of DPM which is a crystal nucleating agent. To prevent the result obtained. That is, it was confirmed that the resin composition of the present invention does not contaminate the mold surface during molding. Furthermore, in this result, the addition of the fatty acid (Examples 1 to 5) shortened the half crystallization time as compared with Comparative Example 1 described later using a crystal nucleating agent alone, and not only suppressed the plate-out. As a result, the effect of promoting crystallization was also obtained.
On the other hand, a resin composition containing only a crystal nucleating agent (Comparative Example 1), a resin composition containing a fatty acid having 12 carbon atoms (Comparative Example 2), a composition containing a higher alcohol (Comparative Example 3), The resin composition containing the silica particles used as a lubricant (Comparative Example 4) obtained a result of occurrence of DPM plate-out on the metal surface.

Claims (9)

  1. ポリエステル樹脂100質量部、式[1]で表される2-アミノ-1,3,5-トリアジン誘導体0.01~10質量部、及び炭素原子数14乃至30の脂肪酸0.01~10質量部を含む、ポリエステル樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001


    (式中、R及びRはそれぞれ独立して、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表し、R及びRはそれぞれ独立して、水素原子、炭素原子数1乃至6のアルキル基、-C(=O)R、-C(=O)OR、-C(=O)NR、又は-SOを表す。ここでR、R及びRはそれぞれ独立して、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表し、R及びRはそれぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表す。)
    100 parts by mass of a polyester resin, 0.01 to 10 parts by mass of a 2-amino-1,3,5-triazine derivative represented by the formula [1], and 0.01 to 10 parts by mass of a fatty acid having 14 to 30 carbon atoms A polyester resin composition comprising:
    Figure JPOXMLDOC01-appb-C000001


    Wherein R 1 and R 2 are each independently —C (═O) R 5 , —C (═O) OR 6 , —C (═O) NR 7 R 8 , or —SO 2 R 9 R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, —C (═O) R 5 , —C (═O) OR 6 , —C (═O ) Represents NR 7 R 8 or —SO 2 R 9 , wherein R 5 , R 6 and R 9 are each independently an alkyl group having 1 to 20 carbon atoms or an alkyl group having 1 to 6 carbon atoms. Represents a phenyl group which may be substituted with a group, and R 7 and R 8 are each independently substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. Represents an optionally substituted phenyl group.)
  2. 前記脂肪酸が炭素原子数14乃至19の脂肪酸である、請求項1に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1, wherein the fatty acid is a fatty acid having 14 to 19 carbon atoms.
  3. 前記脂肪酸が、パルミチン酸、ステアリン酸及び12-ヒドロキシステアリン酸からなる群から選ばれる少なくとも一種である、請求項2に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 2, wherein the fatty acid is at least one selected from the group consisting of palmitic acid, stearic acid, and 12-hydroxystearic acid.
  4. 前記R及びRが水素原子を表す、請求項1乃至請求項3のうち何れか一項に記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 3, wherein R 3 and R 4 represent a hydrogen atom.
  5. 前記R及びRがともに-C(=O)R(Rはそれぞれ独立して、炭素原子数1乃至20のアルキル基、又は炭素原子数1乃至6のアルキル基で置換されていてもよいフェニル基を表す)を表す、請求項1乃至請求項4のうち何れか一項に記載のポリエステル樹脂組成物。 R 1 and R 2 are both —C (═O) R 5 (R 5 is independently substituted with an alkyl group having 1 to 20 carbon atoms or an alkyl group having 1 to 6 carbon atoms. The polyester resin composition according to claim 1, which represents a good phenyl group.
  6. 前記Rが炭素原子数1乃至8のアルキル基を表す、請求項5に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 5, wherein R 5 represents an alkyl group having 1 to 8 carbon atoms.
  7. 前記Rが、エチル基又はプロピル基を表す、請求項6に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 6, wherein R 5 represents an ethyl group or a propyl group.
  8. 前記ポリエステル樹脂がポリ乳酸樹脂である、請求項1乃至請求項7のうち何れか一項に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1, wherein the polyester resin is a polylactic acid resin.
  9. 請求項1乃至請求項8のうち何れか一項に記載のポリエステル樹脂組成物を結晶化してなる、ポリエステル樹脂成形体。 The polyester resin molding formed by crystallizing the polyester resin composition as described in any one of Claims 1 thru | or 8.
PCT/JP2016/073454 2015-08-10 2016-08-09 Polyester resin composition containing aminotriazine derivative and fatty acid WO2017026486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017534468A JP6777889B2 (en) 2015-08-10 2016-08-09 Polyester resin composition containing aminotriazine derivative and fatty acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015158180 2015-08-10
JP2015-158180 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017026486A1 true WO2017026486A1 (en) 2017-02-16

Family

ID=57984411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073454 WO2017026486A1 (en) 2015-08-10 2016-08-09 Polyester resin composition containing aminotriazine derivative and fatty acid

Country Status (3)

Country Link
JP (1) JP6777889B2 (en)
TW (1) TW201716482A (en)
WO (1) WO2017026486A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024891B (en) * 2021-02-25 2023-05-19 吴建 Compatibilizer for PHA/PLA film and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827363A (en) * 1994-07-12 1996-01-30 Mitsui Toatsu Chem Inc Lactic acid polymer composition
JP2010529284A (en) * 2007-06-11 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (hydroxyalkanoic acid) and articles using the same
JP2014152193A (en) * 2013-02-05 2014-08-25 Lonseal Corp Polylactic acid-based calender molding film or sheet having flexibility
WO2014148555A1 (en) * 2013-03-22 2014-09-25 日産化学工業株式会社 Polyester resin composition containing amino-triazine derivative
JP2016176044A (en) * 2015-03-23 2016-10-06 三菱樹脂株式会社 Polylactic acid-based resin composition and molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827363A (en) * 1994-07-12 1996-01-30 Mitsui Toatsu Chem Inc Lactic acid polymer composition
JP2010529284A (en) * 2007-06-11 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (hydroxyalkanoic acid) and articles using the same
JP2014152193A (en) * 2013-02-05 2014-08-25 Lonseal Corp Polylactic acid-based calender molding film or sheet having flexibility
WO2014148555A1 (en) * 2013-03-22 2014-09-25 日産化学工業株式会社 Polyester resin composition containing amino-triazine derivative
JP2016176044A (en) * 2015-03-23 2016-10-06 三菱樹脂株式会社 Polylactic acid-based resin composition and molding

Also Published As

Publication number Publication date
JPWO2017026486A1 (en) 2018-05-31
TW201716482A (en) 2017-05-16
JP6777889B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US8119706B2 (en) Biodegradable resin composition
JP4112568B2 (en) Biodegradable resin composition
JP5958713B2 (en) Poly (3-hydroxyalkanoate) resin composition
JP4260794B2 (en) Manufacturing method of biodegradable resin molded products
JP4246196B2 (en) Manufacturing method of biodegradable resin molded products.
TW200540223A (en) Polylactic acid resin composition
US8455579B2 (en) Method for promoting crystallization of biodegradable resin composition
JP2008174735A (en) Polylactic acid resin composition
US10899720B2 (en) Polyester resin composition containing amino-triazine derivative
JP2004307528A (en) Injection molded product
WO2014077324A1 (en) Polyglycolic acid resin composition
JP2016222742A (en) Polylactic acid resin composition excellent in hydrolysis resistance
JP6777889B2 (en) Polyester resin composition containing aminotriazine derivative and fatty acid
JP2008037939A (en) Lactic acid resin composition
JP4870037B2 (en) Biodegradable resin composition
WO2016047602A1 (en) Polyester resin composition containing aminotriazine derivative and carboxylic acid amide
JP4800348B2 (en) Manufacturing method of biodegradable resin molded products.
JP4727706B2 (en) Manufacturing method of biodegradable resin molded products.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835183

Country of ref document: EP

Kind code of ref document: A1