WO2017026379A1 - Flake-shaped hydrotalcite-type particle and application thereof - Google Patents

Flake-shaped hydrotalcite-type particle and application thereof Download PDF

Info

Publication number
WO2017026379A1
WO2017026379A1 PCT/JP2016/073042 JP2016073042W WO2017026379A1 WO 2017026379 A1 WO2017026379 A1 WO 2017026379A1 JP 2016073042 W JP2016073042 W JP 2016073042W WO 2017026379 A1 WO2017026379 A1 WO 2017026379A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrotalcite
plate
type particles
powder
particles
Prior art date
Application number
PCT/JP2016/073042
Other languages
French (fr)
Japanese (ja)
Inventor
寿夫 小泉
日六士 中尾
小林 恵太
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to JP2017534403A priority Critical patent/JP6743821B2/en
Publication of WO2017026379A1 publication Critical patent/WO2017026379A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc

Definitions

  • the present invention relates to plate-like hydrotalcite-type particles and uses thereof.
  • Hydrotalcite is a kind of layered clay mineral and is widely used for various applications such as catalysts, pharmaceuticals, and additives for resins. Even in cosmetic applications, particulate hydrotalcite (referred to as hydrotalcite-type particles) is used with the expectation of imparting functions such as adsorption of excess sebum, prevention of makeup collapse and shine.
  • hydrotalcite-type particles Many of the conventional hydrotalcite-type particles are Mg—Al-based hydrotalcite-type particles containing magnesium and aluminum as constituent elements (see, for example, Patent Document 1). However, Mg—Zn—Al-based hydrotalcite-type particles containing zinc as a constituent element in addition to magnesium and aluminum (see, for example, Patent Document 2), and Zn—Al-based hydrousite containing zinc and aluminum as constituent elements. Talsite-type particles (see, for example, Patent Documents 3 to 6) have also been developed.
  • most of the conventional hydrotalcite-type particles are Mg—Al-based hydrotalcite-type particles, but are basic due to the constituent element magnesium.
  • the basicity may irritate the skin and adversely affect the skin, so when using Mg-Al-based hydrotalcite-type particles, the amount of addition may be limited, At present, the basicity is reduced by a combination of the above.
  • the shape of the particles is desired to be plate-like rather than granular. This is because the slipperiness is better than the granular particles, and the coverage and orientation are also excellent.
  • conventional Zn—Al hydrotalcite-type particles are granular particles having an aspect ratio of 1 to 2, and there have been no reports of plate-like particles.
  • Zn-Al-based hydrotalcite-type particles have a lower ability to hold anions between layers than Mg-Al-based hydrotalcite-type particles, so conventional Mg-Al-based or Mg-Zn
  • a part of the raw water-soluble zinc compound for example, zinc sulfate
  • this is caused by the fact that it becomes zinc hydroxide during the formation of the precursor and finally becomes zinc oxide, and the layered structure of hydrotalcite cannot be maintained.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide plate-like hydrotalcite-type particles that are excellent in slipperiness and sufficiently reduced in irritation to the skin. Another object of the present invention is to provide a cosmetic containing such plate-like hydrotalcite-type particles.
  • the present inventor has intensively studied hydrotalcite-type particles, the present inventors have succeeded in producing Zn-Al-based hydrotalcite-type particles having zinc and aluminum as constituent elements and having a plate-like shape.
  • the plate-like hydrotalcite-type particles have a large average plate surface diameter, an appropriate thickness, and a pH value by a predetermined test method is also in an appropriate range, and the proportion of particles having a plate-like shape is high.
  • the slipperiness and the feeling of application to the skin when included in cosmetics are good, and the irritation to the skin is sufficiently reduced.
  • the adsorption performance of ammonia gas and phosphorus compound is also excellent, it has been found useful for various applications, and it has been conceived that the above-mentioned problems can be solved, and the present invention has been completed.
  • the present invention provides the following formula (1): (Zn) 1-x (Al) x (OH) 2 (A n ⁇ ) x / n ⁇ mH 2 O (1)
  • a n ⁇ represents an n-valent interlayer anion.
  • X and n are numbers satisfying the conditions of 0.2 ⁇ x ⁇ 0.4 and 1 ⁇ n ⁇ 4, respectively.
  • m is a number of 0 or more.
  • the average plate surface diameter is 150 to 800 nm
  • the aspect ratio (average plate surface diameter / average thickness) is 4.0 to 20.0
  • JIS K5101-17-1 plate-like hydrotalcite-type particles having a pH value of 6.0 to 8.5 according to the pigment test method.
  • the plate-like hydrotalcite-type particles preferably have a pore volume of 0.01 to 1.0 cm 3 / g according to the BJH method.
  • the plate-like hydrotalcite-type particles are preferably partially or entirely covered with a silicon compound.
  • a silicon compound In addition to suppressing excessive elution of zinc ions and reducing irritation to the skin to express an appropriate astringent action, compatibility and dispersibility with resins and solvents are improved, and water repellency is also achieved. In order to improve, it becomes useful not only for cosmetics but also for various uses such as additives to resins.
  • x and n are each, 0.30 ⁇ x ⁇ 0.35,1 ⁇ n ⁇ 3 integers, a satisfying number of, A n-carbonate ion (CO 3 2 - ) Is preferred.
  • the present invention is also a cosmetic containing the plate-like hydrotalcite-type particles.
  • a cosmetic is excellent in slipperiness and the feeling of application to the skin when it is included in the cosmetic, and the irritation to the skin is sufficiently reduced.
  • the plate-like hydrotalcite-type particles of the present invention are excellent in slipperiness and the feeling of application to the skin when included in cosmetics, and the irritation to the skin is sufficiently reduced. Useful for. In addition, since it has excellent adsorption performance for ammonia gas and phosphorus compounds, it is also useful for applications such as cosmetics and adsorbents to which these adsorption capabilities are added.
  • FIG. 2 is an X-ray diffraction pattern of plate-like hydrotalcite-type particles obtained in Example 11.
  • FIG. It is the electron micrograph which image
  • FIG. It is the graph which contrasted the time-dependent change of ammonia concentration at the time of making ammonia gas adsorb
  • FIG. It is a graph which shows the result of having performed the differential heat measurement about the hydrotalcite type particle obtained in Example 11 and Reference Example 1. It is a graph which shows the result of having performed the thermogravimetry about the hydrotalcite type particle obtained in Example 11 and Reference Example 1.
  • the plate-like hydrotalcite-type particles of the present invention have the following formula (1): (Zn) 1-x (Al) x (OH) 2 (A n ⁇ ) x / n ⁇ mH 2 O (1) (In the formula, A n ⁇ represents an n-valent interlayer anion. X and n are numbers satisfying the conditions of 0.2 ⁇ x ⁇ 0.4 and 1 ⁇ n ⁇ 4, respectively. m is a number greater than or equal to 0.)
  • the n-valent interlayer anion is not particularly limited, but hydroxide ion (OH ⁇ ), carbonate ion (CO 3 2 ⁇ ) and sulfate ion ( At least one selected from the group consisting of SO 4 2 ⁇ ) is preferred. Of these, carbonate ions are preferred.
  • n is a number satisfying 1 ⁇ n ⁇ 4 and may be appropriately adjusted depending on the valence of the interlayer anion. Preferably it is an integer of 1 to 3, more preferably 2.
  • n is a number of 0 or more. This m can be theoretically obtained by analyzing the crystal structure, but in reality, it is difficult to accurately measure the presence of the adhering water. Theoretically, it is preferably 0 or more and less than 5, for example.
  • x and n are each, 0.30 ⁇ x ⁇ 0.35,1 ⁇ n ⁇ 3 integers, a satisfying number of, A n-carbonate It is preferably an ion (CO 3 2 ⁇ ).
  • the plate-like hydrotalcite type particles are represented by the following formula (2): (Zn) 0.67 (Al) 0.33 (OH) 2 (CO 3 2 ⁇ ) 0.165 ⁇ mH 2 O (2) It is a plate-like particle
  • the plate-like hydrotalcite-type particles have an average plate surface diameter of 150 to 800 nm. If the average plate surface diameter is within this range, the fluidity of the powder containing particles will be stable, making it easy to handle during weighing and packaging, and the feel and slipperiness when applied to the skin. Even better. Preferably it is 180 nm or more, More preferably, it is 190 nm or more, More preferably, it is 300 nm or more, Preferably it is 500 nm or less, More preferably, it is 470 nm or less.
  • the aspect ratio (average plate surface diameter / average thickness) of the plate-like hydrotalcite particles is 4.0 to 20.0. If the aspect ratio is within this range, the fluidity of the powder containing the particles will be stable, making it easier to handle during weighing and packaging, as well as the feel and slipperiness when applied to the skin. It will be excellent. Preferably it is 4.5 to 15.0, more preferably 5.0 to 10.0.
  • the average value (that is, the average value of the aspect ratio) when the operation for obtaining the aspect ratio from the average plate surface diameter and the average thickness is repeated 10 times is preferably 4.0 to 20.0. More preferably, it is 4.5 to 15.0, and still more preferably 5.0 to 10.0.
  • the average plate surface diameter and the average thickness are values calculated based on a scanning electron micrograph. Specifically, it is determined according to the method described in Examples described later.
  • the plate-like hydrotalcite-type particles of the present invention are plate-like and have an important feature in having a certain aspect ratio, but at the same time, there is little variation in particle shape and aspect ratio.
  • the measured aspect ratio value is less than 4.0 or 20.
  • the number of times exceeding 0 is preferably 3 or less.
  • the coefficient of variation of the standard deviation calculated when the average plate surface diameter and the average thickness are measured is 0.5 or less, respectively. More preferably, it is 0.4 or less.
  • the plate-like hydrotalcite-type particles have a pH value (also referred to as “pigment pH”) of 6.0 to 8.5 according to the pigment test method of JIS K5101-17-1 (2004).
  • the pigment pH is preferably 7.0 to 8.4, more preferably 7.2 to 8.2.
  • the pigment pH is a value measured by a pigment test method of JIS K5101-17-1 (2004). Specifically, it is determined according to the method described in Examples described later.
  • the plate-like hydrotalcite-type particles preferably have a specific surface area of 0.1 to 50 m 2 / g.
  • the specific surface area is in this range, it has more sufficient strength, and the slipperiness and the feeling of application to the skin when it is included in the cosmetics are further improved. More preferably, it is 5 to 40 m 2 / g, and still more preferably 10 to 20 m 2 / g.
  • the specific surface area (also referred to as SSA) means the BET specific surface area.
  • the BET specific surface area refers to a specific surface area obtained by the BET method, which is one method for measuring the specific surface area.
  • the specific surface area refers to the surface area per unit mass of a certain object.
  • the BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount adsorbed.
  • the specific surface area is determined by obtaining the monomolecular adsorption amount VM by the BET equation from the relationship between the pressure P and the adsorption amount V. A detailed method for measuring the specific surface area in the present specification will be described in Examples described later.
  • the plate-like hydrotalcite-type particles is preferably ratio D 10 of D 90 indicative of sharpness of volume-based particle size distribution (D 90 / D 10) is 2 to 150.
  • D 90 / D 10 is within this range, there is little variation in the particle diameter, and the fluidity of the powder containing particles is stabilized. Therefore, it becomes easy to handle at the time of weighing and packaging, and it is excellent in the feeling of application to the skin and slipperiness when included in cosmetics.
  • the value of D 90 / D 10 is more preferably 10 or more, and further preferably 30 or more.
  • D 90 / D 10 is large, it means that the particle size distribution is broad, smaller value means that the particle size distribution is sharp.
  • D 10 means a 10% cumulative particle size on a volume basis
  • D 90 means a 90% cumulative particle size on a volume basis.
  • D 10 and D 90 are values obtained by measuring the particle size distribution, respectively. Specifically, it is determined according to the method described in Examples described later.
  • the plate-like hydrotalcite-type particles preferably have a median diameter (D 50 ) of secondary particles of 1 to 200 ⁇ m. If the median diameter (D 50 ) is within this range, the fluidity of the powder containing the particles will be stable, and it will be easy to handle during weighing and packaging. Excellent slipperiness.
  • the median diameter (D 50 ) means a 50% cumulative particle diameter on a volume basis, and when the powder is divided into two parts from a certain particle diameter, the diameter on which the larger side and the smaller side are equal. Say. Specifically, it is determined according to the method described in Examples described later.
  • the plate-like hydrotalcite-type particles may also have a part or all of the surface thereof coated with a surface coating agent as long as they do not impair a good feeling of application to the skin when included in cosmetics. Good.
  • a surface coating agent both inorganic compounds and organic compounds can be suitably used.
  • oxides, hydroxides, sulfates, carbonates, etc. such as silicon, calcium, barium, strontium, aluminum, zirconium, cerium, zinc, etc. are mentioned.
  • silicone oil for example, silicone oil, a fatty acid, and its metal salt, alkylsilane, alkoxysilane, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, an amino acid, nylon, carbomer, and its metal salt , Polyacrylic acid, trimethylpropanol, triethylamine, higher alcohols and the like.
  • a compound containing a silicon atom (also referred to as a silicon compound) is preferable. That is, it is preferable that a part or all of the surface of the plate-like hydrotalcite-type particle is coated with a silicon compound.
  • a silicon compound In addition to suppressing excessive elution of zinc ions and reducing irritation to the skin to express an appropriate astringent action, compatibility and dispersibility with resins and solvents are improved, and water repellency is also achieved. In order to improve, it becomes useful not only for cosmetics but also for various uses such as additives to resins. Silica is more preferable as the silicon compound.
  • the method for coating the surface of the plate-like hydrotalcite type particles with the surface coating agent is not particularly limited.
  • silica when silica is used, a method of adding sodium silicate and an acid to a slurry containing plate-like hydrotalcite-type particles and neutralizing the slurry can be used.
  • the surface coating amount is not particularly limited, but for example, the ratio of the surface coating agent such as silica to 0.001 to 30% by mass with respect to 100% by mass of the total amount of the plate-like hydrotalcite-type particles is preferable. More preferably, it is 5 to 25% by mass.
  • the plate-like hydrotalcite type particles preferably have an oil absorption of 20 to 300 mL / 100 g. If the amount of oil absorption is within this range, the degreasing effect of the skin can be obtained moderately, so that the skin is not stimulated and irritated, and it becomes more practical as a cosmetic raw material. More preferably, it is 25 to 200 mL / 100 g. In the present specification, the oil absorption amount is determined according to the method described in Examples described later.
  • the plate-like hydrotalcite-type particles preferably have a pore volume of 0.01 to 1.0 cm 3 / g according to the BJH method.
  • the pore volume is 0.01 cm 3 / g or more, the porosity of the particle itself is improved, so that the oil absorption in the pore inside the particle is sufficient, and the particle itself has an appropriate weight. For this reason, when touching the particle powder, the feeling of smoothness, uniform spreadability, and sustainability of smoothness are further improved.
  • the particle itself if it is 1.0 cm 3 / g or less, the particle itself has an appropriate porosity, so that the particle strength is sufficient, and the particles when the cosmetic containing hydrotalcite particles is applied onto the skin.
  • the durability of smoothness is further improved. More preferably, it is 0.02 to 0.5 cm 3 / g.
  • the pore volume is determined using a BJH (Barrett-Joyner-Halenda) method. Specifically, it is determined according to the method described in Examples described later.
  • the plate-like hydrotalcite-type particles are also excellent in ammonia gas and phosphorus compound adsorption performance. Therefore, it can be suitably used for these adsorbent applications.
  • the plate-like hydrotalcite-type particles of the present invention are excellent in adsorption performance of phosphorus compounds contained in wastewater discharged from garbage disposal sites and primary treated water discharged from septic tanks such as sewage treatment plants. It is extremely useful as an agent.
  • a zinc compound and an aluminum compound are used as raw materials, and a precursor having a half width of a peak derived from the (003) plane of 0.4 or more is obtained. It is preferable to employ a production method including the step (I) and the step (II) in which the precursor is held in an atmosphere having a temperature of 75 to 150 ° C. and a relative humidity of 75 to 100% RH.
  • a special device / equipment such as a pressure vessel required for hydrothermal synthesis or the like.
  • Step (I) is a step of obtaining a precursor having a half width of a peak derived from the (003) plane of 0.4 or more.
  • this step (I) the crystallization of hydrotalcite is suppressed to prepare a precursor in a low crystalline state, and this is used in step (II).
  • step (II) crystal growth to plate-like particles proceeds.
  • the precursor obtained in step (I) may contain hydrotalcite type particles.
  • one or more zinc compounds and aluminum compounds are used as raw materials.
  • These zinc compounds and aluminum compounds are not particularly limited, but from the viewpoint of facilitating production, it is preferable to use a water-soluble salt or a water-soluble salt containing an acid.
  • the zinc compound is preferably at least one selected from the group consisting of zinc hydroxide, zinc oxide, basic zinc carbonate and zinc sulfate
  • the aluminum compound includes aluminum hydroxide, aluminum oxide and It is preferably at least one selected from the group consisting of aluminum sulfate.
  • the zinc compound is preferably 1.5 to 4 mol in terms of zinc with respect to 1 mol in terms of aluminum in the aluminum compound.
  • the crystal structure of the obtained plate-like hydrotalcite type particles is stabilized.
  • the precursor can be suitably obtained.
  • the neutralization is preferably performed by mixing the raw material and the alkali component so that the pH of the mixed solution of the raw material and the alkali component is 7 or more. At this time, it may be carried out in the presence of a solvent described later, if necessary. More preferably, the neutralization reaction is performed so that the pH of the mixed solution of the raw material and the alkali component is 7.5 or more.
  • alkali metal salt is, for example, a salt of an alkali metal such as lithium, sodium, or potassium, and examples of the salt include hydroxide, carbonate, bicarbonate, silicate, aluminate, and organic amine salt. . Of these, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like are preferable.
  • Water an organic solvent, and these mixtures are mentioned, 1 type (s) or 2 or more types can be used.
  • the organic solvent include alcohol, acetone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane, and the like.
  • the alcohol include monovalent water-soluble alcohols such as methanol, ethanol, and propanol; 2 such as ethylene glycol and glycerin. Water-soluble alcohol having a valency or higher;
  • the solvent is preferably water, and more preferably ion-exchanged water.
  • carbon dioxide gas when carbonate is not used as a raw material, or when the generated particles do not satisfy the above formula (1) even when carbonate is used, carbon dioxide gas may be used separately. Carbon dioxide gas may be used in any operation as long as it is in step (I).
  • the drying means is not particularly limited. For example, vacuum drying, heat drying and the like can be mentioned.
  • the slurry may be dried as it is, or may be filtered and washed with water and then dried. In the case of drying after filtration and washing with water, it is also preferred that the slurry is once made into a slurry state and then dried by spray drying.
  • the said process (I) includes the neutralization which neutralizes a raw material in presence of a solvent, the drying of the slurry obtained by this neutralization, and the grinding
  • the pulverization method and pulverization conditions are not particularly limited, and may be performed using, for example, a ball mill, a reiki machine, a force mill, a hammer mill, a jet mill, or the like.
  • the precursor obtained in the step (I) may be in the form of a wet cake (for example, in a state where the solid content measured after drying at 105 ° C. for 18 hours is 15% by mass or more) or in the form of powder. Although it may exist, it is preferable that it is a powder form especially. It is preferable to use the powdery precursor for the step (II) because in the step (II), crystal growth on the plate-like particles further proceeds and excessive aggregation of the primary particles can be suppressed.
  • the solid content measured by the above method is preferably 85% by weight or more, more preferably 95% by weight or more. preferable.
  • the precursor has a half width of a peak derived from the (003) plane of 0.4 or more. If the precursor is in a highly crystalline state with a half width of less than 0.4, plate formation does not proceed sufficiently even if it is subjected to step (II), so the average plate surface diameter and aspect ratio are Plate-like hydrotalcite particles that fall within the scope of the present invention cannot be obtained.
  • the half width of the peak derived from the (003) plane of the precursor is preferably 0.5 or more, more preferably 0.6 or more, and still more preferably 0.7 or more.
  • the upper limit is preferably 3 or less. More preferably, it is 2 or less, More preferably, it is 1.2 or less.
  • the precursor preferably has a half width of a peak derived from the (006) plane of 0.4 or more. More preferably, it is 0.5 or more, More preferably, it is 0.6 or more, Most preferably, it is 0.7 or more.
  • the upper limit is preferably 3 or less. More preferably, it is 2 or less, More preferably, it is 1 or less.
  • the half width can be determined by an X-ray diffraction method. Specifically, it is calculated
  • the precursor preferably further has a specific surface area of more than 20 m 2 / g and 300 m 2 / g or less.
  • a specific surface area of more than 20 m 2 / g and 300 m 2 / g or less.
  • Step (II) is a step of holding the precursor obtained in the above step (I) in an atmosphere at a temperature of 75 to 150 ° C. and a relative humidity of 75 to 100% RH (also referred to as “wet atmosphere step”). is there.
  • the plate-like hydrotalcite is obtained by a simple means by passing through the process of simply holding the precursor in a high temperature and high humidity atmosphere. Since the mold particles can be obtained, a special device such as a pressure vessel can be dispensed with. That is, the manufacturing equipment can be simplified.
  • the precursor is held at a temperature of 75 to 150 ° C.
  • the temperature is preferably 76 ° C. or higher, more preferably 78 ° C. or higher, and still more preferably 80 ° C. or higher.
  • the holding temperature in the step (II) means the highest temperature reached in the step.
  • the difference of the upper limit and the minimum of temperature during holding shall be 10 degrees C or less.
  • the above step (II) is also performed in an atmosphere having a relative humidity of 75 to 100% RH.
  • the relative humidity is preferably 76% RH or more, more preferably 77% RH or more, still more preferably 78% RH or more, particularly preferably 79% RH or more, and most preferably 80%. % RH or higher.
  • the relative humidity in the step (II) means the maximum reached humidity in the step.
  • variation of relative humidity may bring about a change in the crystal growth of a plate-like particle
  • the holding time under the above-mentioned conditions may be a time sufficient for the precursor to grow into a plate-like particle. For example, it is preferably 1 to 300 hours. When the holding time is within this range, crystallization proceeds more sufficiently and the productivity is excellent. More preferably, it is 3 to 200 hours, and further preferably 6 to 180 hours.
  • the plate-like hydrotalcite-type particles of the present invention are excellent in slipperiness and feel when applied to the skin when included in cosmetics, and are sufficiently reduced in irritation to the skin. It also has excellent compound adsorption performance. Therefore, it can be used for various uses such as cosmetics, pharmaceuticals, quasi drugs, adsorbents, catalysts, and additives for resins. Among them, a cosmetic material that is particularly useful as a cosmetic raw material and includes the plate-like hydrotalcite-type particles is one aspect of the present invention.
  • the cosmetics contain the plate-like hydrotalcite-type particles of the present invention, the irritation to the skin is reduced, the sliding is good, and the skin feels excellent when applied to the skin. Soft focus effect and sebum adsorption effect can also be expected. Therefore, it is particularly suitable for the needs of the current market.
  • the cosmetic is not particularly limited, and examples thereof include foundations, makeup bases, sunscreens, eye shadows, blushers, mascaras, lipsticks, antiperspirants, and degreased paper. Among these, a foundation is particularly suitable.
  • the cosmetic may contain one or more other components as necessary.
  • other components are not specifically limited,
  • area are mentioned.
  • oil Specifically, oil; surfactant; moisturizer; higher alcohol; sequestering agent; various polymers (natural, semi-synthetic, synthetic or inorganic, water-soluble or oil-soluble polymers); UV screening agent; other Various extractants; Inorganic and organic pigments; Various powders such as inorganic and organic clay minerals; Inorganic and organic pigments treated with metal soap or silicone; Colorants such as organic dyes; Preservatives; Antioxidants A pigment, a thickener, a pH adjuster, a fragrance, a cooling agent, an astringent, a bactericidal agent, a skin activator, and the like. The content of these components is not particularly limited as long as the effects of the present invention are not impaired.
  • the oil content is not particularly limited.
  • the surfactant examples include lipophilic nonionic surfactants, hydrophilic nonionic surfactants, and other surfactants.
  • the lipophilic nonionic surfactant is not particularly limited.
  • Sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton oil fatty acid glycerin, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, ⁇ , ⁇ ' -Glycerol polyglycerol fatty acids such as glyceryl oleate, glycerol
  • the hydrophilic nonionic surfactant is not particularly limited.
  • POE sorbitan fatty acid esters such as POE sorbitan monooleate, POE sorbitan monostearate, POE sorbitan tetraoleate, POE sorbite monolaurate, and POE sorbite mono POE sorbite fatty acid esters such as oleate, POE sorbite pentaoleate, POE sorbite monostearate, POE glycerin fatty acid esters such as POE glycerol monostearate, POE glycerol monoisostearate, POE glycerol triisostearate, POE POE fatty acid esters such as monooleate, POE distearate, POE monodiolate, ethylene glycol stearate, POE lauryl ether, POE POE alkyl ethers such as yl ether, POE stearyl ether,
  • surfactants examples include anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts.
  • anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts.
  • cationic surfactants such as ammonium salts, alkyldimethylbenzylammonium salts, POE alkylamines, alkylamine salts, and polyamine fatty acid derivatives
  • amphoteric surfactants such as imidazoline-based amphoteric surfactants, and betaine-based surfactants.
  • the moisturizing agent is not particularly limited, and for example, xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, caronic acid, atelocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile salt, dl-pyrrolidone
  • xylitol sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, caronic acid, atelocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile salt, dl-pyrrolidone
  • Examples thereof include carboxylate, short-chain soluble collagen, diglycerin (EO) PO adduct, Izayoi rose extract, yarrow extract, and merirot extract.
  • the higher alcohol is not particularly limited, and examples thereof include linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyltetra
  • linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyltetra
  • branched chain alcohols such as decinol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, and octyldodecanol.
  • the sequestering agent is not particularly limited.
  • Examples thereof include sodium, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid and the like.
  • the natural water-soluble polymer is not particularly limited.
  • the semi-synthetic water-soluble polymer is not particularly limited.
  • starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch, methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, Examples thereof include cellulose polymers such as hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose and cellulose powder, and alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • CMC carboxymethylcellulose
  • alginic acid polymers such as sodium alginate and propylene glycol alginate.
  • the synthetic water-soluble polymer is not particularly limited, and examples thereof include vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone, polyoxyethylene polymers such as polyethylene glycol 20000, 40000, and 60000, and polyoxyethylene.
  • vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone
  • polyoxyethylene polymers such as polyethylene glycol 20000, 40000, and 60000
  • polyoxyethylene examples include polyoxypropylene copolymer copolymer polymers, acrylic polymers such as sodium polyacrylate, polyethyl acrylate, and polyacrylamide, polyethyleneimine, and cationic polymers.
  • the inorganic water-soluble polymer is not particularly limited, and examples thereof include bentonite, silicate A1Mg (beegum), laponite, hectorite, and silicic anhydride.
  • the UV screening agent is not particularly limited.
  • paraaminobenzoic acid hereinafter abbreviated as PABA
  • PABA paraaminobenzoic acid
  • PABA monoglycerin ester N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl
  • Benzoic acid UV screening agents such as PABA ethyl ester and N, N-dimethyl PABA butyl ester
  • Anthranilic acid UV screening agents such as homomenthyl-N-acetylanthranylate
  • Amyl salicylate Menthyl salicylate, Homomentil salicylate, Octyl salicylate
  • Salicylic acid UV screening agents such as phenyl salicylate, benzyl salicylate, p-isopropanol phenyl salicylate; octylcinnamate, ethyl-4-isoprop
  • Other drug components are not particularly limited and include, for example, vitamin A oil, retinol, retinol palmitate, inosit, pyridoxine hydrochloride, benzyl nicotinate, nicotinamide, nicotinic acid DL- ⁇ -tocopherol, magnesium ascorbate phosphate, 2 Vitamins such as -O- ⁇ -D-glucopyranosyl-L-ascorbic acid, vitamin D2 (ergocaciferol), dl- ⁇ -tocopherol, dl- ⁇ -tocopherol acetate, pantothenic acid, biotin; estradiol, ethinylestradiol, etc.
  • Hormones such as arginine, aspartic acid, cystine, cysteine, methionine, serine, leucine and tryptophan; anti-inflammatory agents such as allantoin and azulene; whitening agents such as arbutin; astringents such as tannic acid; L Menthol, cooling agents of camphor; and, sulfur, lysozyme chloride, pyridoxine chloride.
  • Various powders include, for example, bengara, yellow iron oxide, black iron oxide, mica titanium, iron oxide coated mica titanium, titanium oxide coated glass flakes and other bright colored pigments, mica, talc, kaolin, sericite, titanium dioxide.
  • Inorganic powders such as silica and organic powders such as polyethylene powder, nylon powder, cross-linked polystyrene, cellulose powder, and silicone powder.
  • a part or all of the powder component is hydrophobized by a known method with substances such as silicones, fluorine compounds, metal soaps, oil agents, acyl glutamates in order to improve sensory characteristics and cosmetic durability. Is.
  • Example 1 96.6 g of neutralized zinc sulfate heptahydrate and 81.2 mL of 354 g / L aluminum sulfate aqueous solution (28.7 g as Al 2 (SO 4 ) 3 ) are mixed so that the total amount becomes 350 mL A metal salt mixed aqueous solution to which ion exchange water was added was obtained. Separately, 46.7 mL of a 720 g / L sodium hydroxide aqueous solution and 26.7 g of sodium carbonate were mixed to obtain an alkali mixed aqueous solution to which ion-exchanged water was added so that the total amount became 350 mL.
  • Example 2 powders (2) to (2) containing hydrotalcite-type particles were obtained in the same manner as in Example 1 except that the retention time in “(5) Wet atmosphere process” was changed as shown in Table 1. 6) were obtained respectively.
  • Example 7-11 the reaction time in “(1) neutralization” (that is, the stirring time at 50 ° C.) was 10 minutes, and the retention time in “(5) wet atmosphere process” was as shown in Table 1. Except for the changes, powders (7) to (11) containing hydrotalcite-type particles were obtained in the same manner as in Example 1.
  • Example 12 The hydrotalcite precursor slurry obtained by “(1) Neutralization” in Example 10 was filtered and washed with water until the electric conductivity of the washing liquid became 100 ⁇ S / cm or less. When the obtained cake 3.3 g (solid content 30%) was subjected to the “(5) wet atmosphere step”, it was as shown in Table 1. Thus, a powder (12) containing hydrotalcite type particles was obtained.
  • Examples 13 and 14 (3) Maturation
  • the slurry obtained by “(1) Neutralization” in Example 7 was weighed into a 1 L round bottom flask so as to be 42 g in terms of solid content in the slurry, so that the total amount became 600 mL. After adding ion-exchange water, it stirred at 50 degreeC for 22 hours. This slurry was filtered and washed with water until the electric conductivity of the washing liquid became 100 ⁇ S / cm or less.
  • the obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (FM-1 manufactured by Osaka Chemical Co., Ltd.) for 20 seconds to obtain hydrotalcite precursor powder. It was. 1 g of the obtained powder was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was changed as shown in Table 1). In this way, powders (13) and (14) containing hydrotalcite-type particles were obtained.
  • Comparative Example 2 In Comparative Example 1, except that the Mg raw material used in “(1) Neutralization” was changed to the Zn raw material and the Mg raw material shown in Table 2, the slurry obtained in the same manner as in Comparative Example 1 was filtered and washed. Was washed with water until the electric conductivity of the sample became 100 ⁇ S / cm or less. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (FM-1 manufactured by Osaka Chemical Co., Ltd.) for 20 seconds to obtain hydrotalcite precursor powder. It was. 1 g of the obtained powder was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was changed as shown in Table 2). In this way, a powder (c2) containing hydrotalcite-type particles was obtained.
  • FM-1 manufactured by Osaka Chemical Co., Ltd.
  • Comparative Example 3 A powder (c3) containing hydrotalcite-type particles was obtained in the same manner as in Example 1 except that “(5) Wet atmosphere process” was not performed in Example 1.
  • Example 1 Comparative Examples 4 and 6 In Example 1, except that the Zn raw material used in “(1) Neutralization” was changed to the Zn raw material and Mg raw material shown in Table 2, and “(5) Wet atmosphere process” was not performed. In the same manner as in Example 1, powders (c4) and (c6) containing hydrotalcite-type particles were obtained.
  • Example 1 Comparative Examples 5 and 7
  • the Zn raw material used in “(1) Neutralization” was changed to the Zn raw material and the Mg raw material shown in Table 2, and the relative humidity and holding time in “(5) Wet atmosphere process” are shown in Table 2.
  • Powders (c5) and (c7) containing hydrotalcite-type particles were obtained in the same manner as in Example 1 except that the changes were made as described in 1.
  • Comparative Examples 8, 10-12 A powder containing hydrotalcite-type particles in the same manner as in Example 1, except that the temperature, relative humidity and holding time in “(5) Wet atmosphere process” in Example 1 were changed as shown in Table 2. (C8) and (c10) to (c12) were obtained.
  • Comparative Example 9 (4) The slurry obtained by “(1) neutralization” in hydrothermal example 1 is weighed into a 100 mL pressure vessel so that the amount is 5.3 g in terms of solid content in the slurry, and the total amount becomes 75 mL. After adding ion-exchanged water, the mixture was kept at 180 ° C. for 2 hours. The slurry was filtered, and washed with water until the electric conductivity of the washing liquid became 100 ⁇ S / cm or less to obtain a cake. The obtained cake was dried at a temperature of 105 ° C.
  • Comparative Example 13 (1) 96.6 g of neutralized zinc sulfate heptahydrate and 81.2 mL of 354 g / L aluminum sulfate aqueous solution (28.7 g as Al 2 (SO 4 ) 3 ) are mixed so that the total amount becomes 350 mL A metal salt mixed aqueous solution to which ion exchange water was added was obtained. Separately, 46.7 mL of a 720 g / L sodium hydroxide aqueous solution and 26.7 g of sodium carbonate were mixed to obtain an alkali mixed aqueous solution to which ion-exchanged water was added so that the total amount became 350 mL.
  • Example 7 a powder (c14) containing hydrotalcite-type particles was obtained in the same manner as in Example 7, except that “(5) Wet atmosphere process” was not performed.
  • Comparative Example 15 In Comparative Example 13, a cake was obtained in the same manner as Comparative Example 13 except that the aging temperature (50 ° C.) in “(3) Aging” was changed to 85 ° C. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (manufactured by Osaka Chemical Co., FM-1) for 20 seconds to obtain a powder containing hydrotalcite-type particles ( c15) was obtained.
  • a force mill manufactured by Osaka Chemical Co., FM-1
  • Comparative Examples 16 and 17 1 g of the hydrotalcite powder obtained in “(3) Aging” in Comparative Example 15 was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was as shown in Table 2). changed). In this way, powders (c16) and (c17) containing hydrotalcite-type particles were obtained.
  • Comparative Example 18 In Comparative Example 13, a cake was obtained in the same manner as Comparative Example 13 except that the aging temperature (50 ° C.) in “(3) Aging” was changed to 100 ° C. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (manufactured by Osaka Chemical Co., FM-1) for 20 seconds to obtain a powder containing hydrotalcite-type particles ( c18) was obtained.
  • a force mill manufactured by Osaka Chemical Co., FM-1
  • Reference example 1 For reference, commercially available hydrotalcite compounds (STABIACE.HT-1-NC, (Mg) 0.67 (Al) 0.33 (OH) 2 (CO 3 2 ⁇ ) 0.17 ⁇ 0. 5H 2 O (manufactured by Sakai Chemical Industry Co., Ltd.) was used as the powder of Reference Example 1 (hydrotalcite-type particles obtained in Reference Example 1).
  • Hydrotalcite-type particles obtained in each of the examples and comparative examples, and precursors used in “(5) Wet atmosphere process” (generated when “(5) Wet atmosphere process” is not performed)
  • the physical properties were measured and evaluated according to the following methods.
  • the powder X-ray diffraction pattern (also simply referred to as X-ray diffraction pattern) was measured for each of the obtained powders under the following conditions.
  • the X-ray diffraction pattern of the powder obtained in Example 11 is shown in FIG.
  • the (003) and (006) half-value widths were measured from the diffraction patterns obtained by X-ray diffraction measurement of the obtained powders.
  • the results are shown in Tables 3 and 4.
  • the X-ray diffraction patterns of all the powders obtained in the examples were in agreement with JCPDS card 00-048-1023.
  • SSA specific surface area
  • Tables 3 and 4 Used machine: Macsorb Model HM-1220, manufactured by Mountec Atmosphere: Nitrogen gas (N 2 ) Degassing condition of external degassing device: 105 ° C-15 minutes Degassing condition of specific surface area measuring device body: 105 ° C-5 minutes
  • the Mg, Zn and Al contents in hydrotalcite can be measured by the following method using inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • a spectroscope manufactured by SII, ICP SPS3100 is used as follows, and measurement is performed by an internal standard method using scandium (Sc) as an internal standard element.
  • Sc scandium
  • Measurement was performed using an automatic pore volume specific surface area / pore distribution measuring device (product name “BEL SORP-miniII”, manufactured by Nippon Bell Co., Ltd.). A measurement cell was filled with 0.1 g of a sample and subjected to degassing treatment at 200 ° C., and measurement was performed.
  • the BJH method is used as an analysis method for calculating the average pore diameter, the total pore volume, and the pore distribution.
  • the average pore diameter is a value obtained by dividing 4 times the total pore volume by the surface area. This assumes that all the pores in the sample are cylindrical, and that the cylindrical pores have a volume V. At this time, the volume of the cylindrical pore is represented by the following formula (i).
  • V ⁇ D 2 L / 4 (i)
  • D is the pore diameter
  • L is the length of the cylindrical pore.
  • A ⁇ DL (ii)
  • D 4V / A (iii)
  • D calculated by the above formula (iii) be the average pore diameter.
  • the total pore volume is an integrated value of pores in the entire range obtained from the pore distribution result by the BJH method. The results are shown in Tables 3 and 4.
  • Pigment pH The pigment pH of each powder was measured by the following method based on the pigment test method of “JIS K5101-17-1: 2004”. 5 g of sample was put into 50 g of distilled water in a glass container with a stopper, and after boiling for about 5 minutes with the stopper removed, the mixture was further boiled for 5 minutes. After boiling, the bottle was stoppered and allowed to cool to room temperature, then the stopper was opened, distilled water corresponding to the weight loss was added, stoppered again, shaken for 1 minute, and allowed to stand for 5 minutes. The stopper was removed and the pH was measured with a pH meter. The results are shown in Tables 3 and 4.
  • slipperiness (MIU, MMD) Evaluation of slipperiness of each sample was performed by the following method. Double-sided tape was affixed to the slide glass, about half a spoonful of powder (sample) was placed on the adhesive surface, the powder was spread with a cosmetic sponge, and a friction piece was set thereon. The slide glass was moved, and the average friction coefficient MIU and the variation value MMD of the average friction coefficient were measured from the load applied to the friction element. The measurement was performed with a friction tester (KES-SE, manufactured by Kato Tech).
  • the phosphorus compound adsorption rate for the blank after elapse of a time was calculated by the following formula.
  • Phosphorus compound adsorption ratio (%) 100 ⁇ (phosphate ion concentration of blank after elapse of a time ⁇ phosphate ion concentration of evaluation sample (sample) after elapse of a time) / (blank phosphoric acid after elapse of a time) Ion concentration) It should be noted that the phosphate ion concentration of the blank after elapse of time a is stirred for a predetermined time without putting an evaluation sample in 100 g of a solution prepared by adjusting the phosphate ion concentration to 50, 25, 5 ppm using potassium hydrogen phosphate.
  • the phosphate ion concentration of the filtered solution after a time has elapsed After 1 hour, 2 hours, and 4 hours, the blank phosphate ion concentrations were 50 ppm, 25 ppm, and 5 ppm, respectively, which were the same as the initial values.
  • ammonia gas adsorption rate (%) 100 ⁇ (blank ammonia concentration ⁇ ammonia concentration of evaluation sample) / (blank ammonia concentration)
  • the ammonia concentration of the blank is the ammonia concentration measured after sealing a sampling bag containing only 3 L of nitrogen gas containing 100 ppm of ammonia without putting an evaluation sample and allowing to stand for 1 hour.
  • the ammonia concentration in the blank was 100 ppm.
  • the powders obtained in Examples 1 to 14 all correspond to the plate-like hydrotalcite-type particles of the present invention, and the slipperiness (MIU, MMD) is significantly higher than the commercially available hydrotalcite powder in Reference Example 1. it was high.
  • the electron micrographs of the powder obtained in Example 11 (FIGS. 2-1 to 2-4)
  • the obtained powder is thin and has a rough surface.
  • the powders obtained in Comparative Examples 1 to 18 are all the plates of the present invention in that at least one of the structural formula, average plate surface diameter, aspect ratio, and pigment pH is outside the range defined in the present invention.
  • the powders obtained in Comparative Examples 1-18 are different from the powdered hydrotalcite-type particles. The coating feel was very good (see Tables 3 and 4).
  • the plate-like hydrotalcite-type particles of the present invention are excellent in the adsorption ability of ammonia gas and phosphorus compound.
  • the ammonia concentration does not change after 1 hour and 22 hours (see FIG. 4), and it can be seen that the adsorption equilibrium is reached in 1 hour.
  • the powder obtained in Comparative Example 18 was Zn—Al type granular hydrotalcite, and its specific surface area (SSA) was almost the same as that of the powder obtained in Example 11, but Comparative Example 18 Compared with the case where the powder obtained in the above is used, the ammonia gas adsorption ability is remarkably high when the powder obtained in Example 11 is used (see FIG. 4). Therefore, it was found that the plate-like hydrotalcite-type particles (Zn—Al type) of the present invention synthesized in a humid atmosphere have a particularly high ammonia gas adsorption ability. Moreover, about the powder obtained in Example 11, the change of the color of the powder before and behind ammonia gas adsorption did not change visually.
  • SSA specific surface area
  • the powder obtained by adsorbing ammonia gas to the powder obtained in Example 11 for 22 hours was filtered, washed and dried, and the same ammonia gas adsorption test was performed again. Therefore, it was found that reuse after adsorption is also possible.
  • the plate-like hydrotalcite-type particles of the present invention have excellent slipperiness, are sufficiently reduced in irritation to the skin, and have a good application feel to the skin when included in cosmetics. It was confirmed that the adsorbing ability of ammonia gas and phosphorus compound was remarkably excellent.

Abstract

The present invention provides flake-shaped hydrotalcite-type particles having superior glide and sufficiently reduced ability to cause skin irritation. The present invention also provides a cosmetic containing said flake-shaped hydrotalcite-type particles. The flake-shaped hydrotalcite-type particles are represented by a prescribed structural formula and have an average flake surface diameter of 150-800nm, an aspect ratio (average flake surface diameter/average thickness) of 4.0-20.0, and a pH value of 6.0-8.5 according to the JIS K5101-17-1 (2004) test methods for pigments.

Description

板状ハイドロタルサイト型粒子及びその用途Plate-like hydrotalcite-type particles and uses thereof
本発明は、板状ハイドロタルサイト型粒子及びその用途に関する。 The present invention relates to plate-like hydrotalcite-type particles and uses thereof.
ハイドロタルサイトは層状粘土鉱物の一種であり、触媒や医薬品、樹脂用添加剤等の多種多様な用途に広く使用されている。化粧料用途でも、余分な皮脂の吸着等の機能付与や、化粧崩れ、テカリの防止を期待して、粒子状のハイドロタルサイト(ハイドロタルサイト型粒子と称す)が使用されている。 Hydrotalcite is a kind of layered clay mineral and is widely used for various applications such as catalysts, pharmaceuticals, and additives for resins. Even in cosmetic applications, particulate hydrotalcite (referred to as hydrotalcite-type particles) is used with the expectation of imparting functions such as adsorption of excess sebum, prevention of makeup collapse and shine.
従来のハイドロタルサイト型粒子の多くは、マグネシウム及びアルミニウムを構成元素とするMg-Al系のハイドロタルサイト型粒子である(例えば、特許文献1参照)。だが、マグネシウム及びアルミニウムに加え、亜鉛も構成元素とするMg-Zn-Al系のハイドロタルサイト型粒子(例えば、特許文献2参照)や、亜鉛及びアルミニウムを構成元素とするZn-Al系のハイドロタルサイト型粒子(例えば、特許文献3~6参照)も開発されている。 Many of the conventional hydrotalcite-type particles are Mg—Al-based hydrotalcite-type particles containing magnesium and aluminum as constituent elements (see, for example, Patent Document 1). However, Mg—Zn—Al-based hydrotalcite-type particles containing zinc as a constituent element in addition to magnesium and aluminum (see, for example, Patent Document 2), and Zn—Al-based hydrousite containing zinc and aluminum as constituent elements. Talsite-type particles (see, for example, Patent Documents 3 to 6) have also been developed.
特開2000-247633号公報JP 2000-247633 A 特開2004-299931号公報JP 2004-299931 A 特開2002-226826号公報JP 2002-226826 A 特開平11-209258号公報Japanese Patent Laid-Open No. 11-209258 特開平11-240886号公報Japanese Patent Laid-Open No. 11-240886 特開平11-255973号公報Japanese Patent Application Laid-Open No. 11-255993
上述のとおり、従来のハイドロタルサイト型粒子の多くは、Mg-Al系のハイドロタルサイト型粒子であるが、構成元素であるマグネシウムに由来して塩基性を示す。化粧料等の用途では、その塩基性が皮膚を刺激して肌に悪影響を与えるため、Mg-Al系のハイドロタルサイト型粒子を使用する場合は、添加量を制限したり、他の材料との組み合わせにより塩基性を低減させたりする等を行っているのが現状である。Mg-Al系のハイドロタルサイト型粒子の塩基性を低減する手段としては、両性金属である亜鉛(Zn)をマグネシウムの一部又は全部と置換させることが考えられるが、従来のMg-Zn-Al系のハイドロタルサイト型粒子では、亜鉛は、マグネシウムサイトの一部を置換しているに留まり、塩基性が充分に低減されていない。 As described above, most of the conventional hydrotalcite-type particles are Mg—Al-based hydrotalcite-type particles, but are basic due to the constituent element magnesium. In applications such as cosmetics, the basicity may irritate the skin and adversely affect the skin, so when using Mg-Al-based hydrotalcite-type particles, the amount of addition may be limited, At present, the basicity is reduced by a combination of the above. As a means for reducing the basicity of Mg—Al-based hydrotalcite-type particles, it is conceivable to replace zinc (Zn), which is an amphoteric metal, with part or all of magnesium, but the conventional Mg—Zn— In the Al-based hydrotalcite-type particles, zinc only replaces a part of the magnesium site, and the basicity is not sufficiently reduced.
ところで、化粧料用途では、粒子の形状は、粒状よりも板状であることが望まれている。粒状粒子に比べ、滑り性が良好で、被覆性や配向性にも優れるためである。だが、従来のZn-Al系のハイドロタルサイト型粒子はアスペクト比が1~2の粒状粒子であり、板状粒子の報告例はこれまでにない。これは、Zn-Al系のハイドロタルサイト型粒子は、Mg-Al系のハイドロタルサイト型粒子に比べ、層間の陰イオンを保持する能力が低いため、従来のMg-Al系又はMg-Zn-Al系の板状ハイドロタルサイト型粒子の合成方法をそのまま転用してZn-Al系の板状ハイドロタルサイト型粒子を製造すると、原料の水溶性亜鉛化合物(例えば、硫酸亜鉛)の一部が前駆体生成中に水酸化亜鉛になり、最終的に酸化亜鉛となってハイドロタルサイトの層状構造を維持することができないことが要因と考えられる。Zn-Al系のハイドロタルサイト型粒子を製造する方法としてはまた、前駆体スラリーをろ過することで水酸化亜鉛を取り除いた後、水熱反応等により粒子を成長させる手法(特許文献6等)もあるが、この方法でも板状粒子は得られない。 By the way, in cosmetics applications, the shape of the particles is desired to be plate-like rather than granular. This is because the slipperiness is better than the granular particles, and the coverage and orientation are also excellent. However, conventional Zn—Al hydrotalcite-type particles are granular particles having an aspect ratio of 1 to 2, and there have been no reports of plate-like particles. This is because Zn-Al-based hydrotalcite-type particles have a lower ability to hold anions between layers than Mg-Al-based hydrotalcite-type particles, so conventional Mg-Al-based or Mg-Zn When the Zn-Al-based plate-like hydrotalcite-type particles are produced by directly applying the method for synthesizing -Al-based plate-like hydrotalcite-type particles, a part of the raw water-soluble zinc compound (for example, zinc sulfate) is produced. It is thought that this is caused by the fact that it becomes zinc hydroxide during the formation of the precursor and finally becomes zinc oxide, and the layered structure of hydrotalcite cannot be maintained. As a method for producing Zn—Al-based hydrotalcite-type particles, a method of growing particles by hydrothermal reaction after removing zinc hydroxide by filtering the precursor slurry (Patent Document 6, etc.) However, plate-like particles cannot be obtained by this method.
本発明は、上記現状に鑑み、滑り性に優れ、皮膚への刺激性が充分に低減された板状ハイドロタルサイト型粒子を提供することを目的とする。また、このような板状ハイドロタルサイト型粒子を含む化粧料を提供することも目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide plate-like hydrotalcite-type particles that are excellent in slipperiness and sufficiently reduced in irritation to the skin. Another object of the present invention is to provide a cosmetic containing such plate-like hydrotalcite-type particles.
本発明者は、ハイドロタルサイト型粒子について鋭意検討を進めるうち、亜鉛とアルミニウムとを構成元素とし、かつ板状形状を有するZn-Al系のハイドロタルサイト型粒子の製造に成功した。この板状ハイドロタルサイト型粒子は、平均板面径が大きく、適度な厚みも有するうえ、所定試験方法によるpH値も適度な範囲内にあり、板状形状を有する粒子の割合が高いことから滑り性や化粧料に含めた際の肌への塗布感触が良好で、かつ皮膚への刺激性が充分に低減されたものである。その他、アンモニアガスやリン化合物の吸着性能にも優れるため、種々様々な用途に有用であることも見いだし、上記課題を解決することができることに想到し、本発明を完成するに至った。 While the present inventor has intensively studied hydrotalcite-type particles, the present inventors have succeeded in producing Zn-Al-based hydrotalcite-type particles having zinc and aluminum as constituent elements and having a plate-like shape. The plate-like hydrotalcite-type particles have a large average plate surface diameter, an appropriate thickness, and a pH value by a predetermined test method is also in an appropriate range, and the proportion of particles having a plate-like shape is high. The slipperiness and the feeling of application to the skin when included in cosmetics are good, and the irritation to the skin is sufficiently reduced. In addition, since the adsorption performance of ammonia gas and phosphorus compound is also excellent, it has been found useful for various applications, and it has been conceived that the above-mentioned problems can be solved, and the present invention has been completed.
すなわち本発明は、下記式(1):
(Zn)1-x(Al)(OH)(An-x/n・mHO      (1)
(式中、An-は、n価の層間アニオンを表す。x及びnは、それぞれ、0.2≦x≦0.4、1≦n≦4の整数、の条件を満たす数である。mは、0以上の数である。)で表され、平均板面径が150~800nm、アスペクト比(平均板面径/平均厚み)が4.0~20.0、JIS K5101-17-1(2004年)の顔料試験方法によるpH値が6.0~8.5である板状ハイドロタルサイト型粒子である。
That is, the present invention provides the following formula (1):
(Zn) 1-x (Al) x (OH) 2 (A n− ) x / n · mH 2 O (1)
(In the formula, A n− represents an n-valent interlayer anion. X and n are numbers satisfying the conditions of 0.2 ≦ x ≦ 0.4 and 1 ≦ n ≦ 4, respectively. m is a number of 0 or more.), the average plate surface diameter is 150 to 800 nm, the aspect ratio (average plate surface diameter / average thickness) is 4.0 to 20.0, JIS K5101-17-1 (2004) plate-like hydrotalcite-type particles having a pH value of 6.0 to 8.5 according to the pigment test method.
上記板状ハイドロタルサイト型粒子は、BJH法による細孔容積が0.01~1.0cm/gであることが好ましい。これにより、粒子粉体に触れたときの、さらさら感や、均一な伸び広がり性、平滑感の持続性がより向上する他、例えば、ハイドロタルサイト粒子を含む化粧料を肌上に塗布した際に粒子が潰れることがより抑制されて、結果として平滑感の持続性がより向上する。 The plate-like hydrotalcite-type particles preferably have a pore volume of 0.01 to 1.0 cm 3 / g according to the BJH method. As a result, the feeling of smoothness, uniform stretchability and smoothness when touching the particle powder is further improved. For example, when cosmetics containing hydrotalcite particles are applied to the skin As a result, the sustainability of smoothness is further improved.
上記板状ハイドロタルサイト型粒子は、表面の一部又は全部がケイ素化合物で被覆されていることが好ましい。これにより、亜鉛イオンの過剰な溶出を抑制し、皮膚への刺激性を低減して適度な収斂作用を発現できることに加え、樹脂や溶媒との相溶性や分散性が向上する他、撥水性も向上するため、化粧料だけではなく、樹脂への添加剤等、各種用途により有用なものとなる。 The plate-like hydrotalcite-type particles are preferably partially or entirely covered with a silicon compound. In addition to suppressing excessive elution of zinc ions and reducing irritation to the skin to express an appropriate astringent action, compatibility and dispersibility with resins and solvents are improved, and water repellency is also achieved. In order to improve, it becomes useful not only for cosmetics but also for various uses such as additives to resins.
上記式(1)中、x及びnは、それぞれ、0.30≦x≦0.35、1≦n≦3の整数、の条件を満たす数であり、An-は炭酸イオン(CO 2-)であることが好ましい。これにより、結晶形状がより安定するため、安定して優れた滑り性や化粧料に含めた際の肌への感触を与えることが可能になる。 In the above formula (1), x and n are each, 0.30 ≦ x ≦ 0.35,1 ≦ n ≦ 3 integers, a satisfying number of, A n-carbonate ion (CO 3 2 - ) Is preferred. Thereby, since the crystal shape becomes more stable, it becomes possible to give a stable and excellent slipperiness and a feeling to the skin when included in cosmetics.
本発明はまた、上記板状ハイドロタルサイト型粒子を含む化粧料でもある。このような化粧料は、滑り性及び化粧料に含めた際の肌への塗布感触に優れ、皮膚への刺激性が充分に低減されたものである。 The present invention is also a cosmetic containing the plate-like hydrotalcite-type particles. Such a cosmetic is excellent in slipperiness and the feeling of application to the skin when it is included in the cosmetic, and the irritation to the skin is sufficiently reduced.
本発明の板状ハイドロタルサイト型粒子は、滑り性及び化粧料に含めた際の肌への塗布感触に優れ、皮膚への刺激性が充分に低減されたものであるため、特に化粧料用途に有用である。その他、アンモニアガスやリン化合物の吸着性能にも優れるため、これらの吸着性能が付加された化粧料や、吸着剤等の用途にも有用である。 The plate-like hydrotalcite-type particles of the present invention are excellent in slipperiness and the feeling of application to the skin when included in cosmetics, and the irritation to the skin is sufficiently reduced. Useful for. In addition, since it has excellent adsorption performance for ammonia gas and phosphorus compounds, it is also useful for applications such as cosmetics and adsorbents to which these adsorption capabilities are added.
実施例11で得た板状ハイドロタルサイト型粒子のX線回折パターンである。2 is an X-ray diffraction pattern of plate-like hydrotalcite-type particles obtained in Example 11. FIG. 実施例11で得た板状ハイドロタルサイト型粒子を、厚みが測定できるように撮影した電子顕微鏡写真である(倍率:50,000倍)。It is the electron micrograph which image | photographed the plate-shaped hydrotalcite type particle | grains obtained in Example 11 so that thickness could be measured (magnification: 50,000 times). 実施例11で得た板状ハイドロタルサイト型粒子を、厚みが測定できるように撮影した電子顕微鏡写真である(倍率:20,000倍)。It is the electron micrograph which image | photographed the plate-shaped hydrotalcite type particle | grains obtained in Example 11 so that thickness could be measured (magnification: 20,000 times). 実施例11で得た板状ハイドロタルサイト型粒子を、板面径が測定できるように撮影した電子顕微鏡写真である(倍率:50,000倍)。It is the electron micrograph which image | photographed the plate-shaped hydrotalcite type particle | grains obtained in Example 11 so that plate | board surface diameter could be measured (magnification | multiplying_factor: 50,000 times). 実施例11で得た板状ハイドロタルサイト型粒子を、板面径が測定できるように撮影した電子顕微鏡写真である(倍率:20,000倍)。It is the electron micrograph which image | photographed the plate-shaped hydrotalcite type particle | grains obtained in Example 11 so that a plate | board surface diameter could be measured (magnification | multiplying_factor: 20,000 times). 実施例11及び参考例1で得たハイドロタルサイト型粒子をそれぞれ用いてリン酸水素カリウムを吸着させた場合のリン酸イオン濃度の経時変化を対比したグラフである(リン酸イオン濃度の初期値:50ppm)。It is the graph which contrasted the time-dependent change of the phosphate ion concentration at the time of adsorbing potassium hydrogen phosphate using each of the hydrotalcite-type particles obtained in Example 11 and Reference Example 1 (initial value of phosphate ion concentration). : 50 ppm). 実施例11及び参考例1で得たハイドロタルサイト型粒子をそれぞれ用いてリン酸水素カリウムを吸着させた場合のリン酸イオン濃度の経時変化を対比したグラフである(リン酸イオン濃度の初期値:25ppm)。It is the graph which contrasted the time-dependent change of the phosphate ion concentration at the time of adsorbing potassium hydrogen phosphate using each of the hydrotalcite-type particles obtained in Example 11 and Reference Example 1 (initial value of phosphate ion concentration). : 25 ppm). 実施例11及び参考例1で得たハイドロタルサイト型粒子をそれぞれ用いてリン酸水素カリウムを吸着させた場合のリン酸イオン濃度の経時変化を対比したグラフである(リン酸イオン濃度の初期値:5ppm)。It is the graph which contrasted the time-dependent change of the phosphate ion concentration at the time of adsorbing potassium hydrogen phosphate using each of the hydrotalcite-type particles obtained in Example 11 and Reference Example 1 (initial value of phosphate ion concentration). : 5 ppm). 実施例11、比較例18及び参考例1で得たハイドロタルサイト型粒子をそれぞれ用いてアンモニアガスを吸着させた場合のアンモニア濃度の経時変化を対比したグラフである。It is the graph which contrasted the time-dependent change of ammonia concentration at the time of making ammonia gas adsorb | suck using each of the hydrotalcite type particle | grains obtained in Example 11, the comparative example 18, and the reference example 1. FIG. 実施例11及び参考例1で得たハイドロタルサイト型粒子について、示差熱測定を行った結果を示すグラフである。It is a graph which shows the result of having performed the differential heat measurement about the hydrotalcite type particle obtained in Example 11 and Reference Example 1. 実施例11及び参考例1で得たハイドロタルサイト型粒子について、熱重量測定を行った結果を示すグラフである。It is a graph which shows the result of having performed the thermogravimetry about the hydrotalcite type particle obtained in Example 11 and Reference Example 1.
以下、本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, although the preferable form of this invention is demonstrated concretely, this invention is not limited only to the following description, In the range which does not change the summary of this invention, it can change suitably and can apply.
〔板状ハイドロタルサイト型粒子〕
本発明の板状ハイドロタルサイト型粒子は、下記式(1):
(Zn)1-x(Al)(OH)(An-x/n・mHO      (1)
(式中、An-は、n価の層間アニオンを表す。x及びnは、それぞれ、0.2≦x≦0.4、1≦n≦4の整数、の条件を満たす数である。mは、0以上の数である。)で表される板状粒子である。
[Plate-like hydrotalcite-type particles]
The plate-like hydrotalcite-type particles of the present invention have the following formula (1):
(Zn) 1-x (Al) x (OH) 2 (A n− ) x / n · mH 2 O (1)
(In the formula, A n− represents an n-valent interlayer anion. X and n are numbers satisfying the conditions of 0.2 ≦ x ≦ 0.4 and 1 ≦ n ≦ 4, respectively. m is a number greater than or equal to 0.)
上記式(1)中、n価の層間アニオンとしては特に限定されないが、反応性及び環境負荷低減の観点から、水酸化物イオン(OH)、炭酸イオン(CO 2-)及び硫酸イオン(SO 2-)からなる群より選択される少なくとも1種が好適である。中でも、炭酸イオンが好ましい。 In the above formula (1), the n-valent interlayer anion is not particularly limited, but hydroxide ion (OH ), carbonate ion (CO 3 2− ) and sulfate ion ( At least one selected from the group consisting of SO 4 2− ) is preferred. Of these, carbonate ions are preferred.
xは、0.2≦x≦0.4を満たす数であるが、この範囲内にあると、結晶構造が安定する。より安定性を向上させる観点から、〔(1-x)/x〕が1.5/1~3/1となるようにxを調整することが好ましい。より好ましくは2/1となるように調整することである。この観点から、xは、0.25以上であることが好ましく、より好ましくは0.3以上であり、また、0.35以下であることが好ましい。特に好ましくは1/3(=約0.33)である。 x is a number satisfying 0.2 ≦ x ≦ 0.4, but if it is within this range, the crystal structure is stabilized. From the viewpoint of further improving the stability, it is preferable to adjust x so that [(1-x) / x] is 1.5 / 1 to 3/1. More preferably, it is adjusted to be 2/1. From this viewpoint, x is preferably 0.25 or more, more preferably 0.3 or more, and preferably 0.35 or less. Particularly preferred is 1/3 (= about 0.33).
nは、1≦n≦4を満たす数であり、層間アニオンの価数によって適宜調整すればよい。好ましくは1~3の整数、より好ましくは2である。 n is a number satisfying 1 ≦ n ≦ 4 and may be appropriately adjusted depending on the valence of the interlayer anion. Preferably it is an integer of 1 to 3, more preferably 2.
mは、0以上の数である。このmは、結晶構造を解析することで理論上求めることができるが、実際には、付着水の存在等によって正確に測定することは困難である。理論上は、例えば、0以上、5未満であることが好ましい。 m is a number of 0 or more. This m can be theoretically obtained by analyzing the crystal structure, but in reality, it is difficult to accurately measure the presence of the adhering water. Theoretically, it is preferably 0 or more and less than 5, for example.
本発明では特に、上記式(1)中、x及びnは、それぞれ、0.30≦x≦0.35、1≦n≦3の整数、の条件を満たす数であり、An-は炭酸イオン(CO 2-)であることが好ましい。これにより、結晶形状がより安定するため、安定して、優れた滑り性や化粧料に含めた際の肌への良好な塗布感触を与えることが可能になる。 Particularly in this invention, in the above formula (1), x and n are each, 0.30 ≦ x ≦ 0.35,1 ≦ n ≦ 3 integers, a satisfying number of, A n-carbonate It is preferably an ion (CO 3 2− ). Thereby, since the crystal shape becomes more stable, it becomes possible to stably give excellent slipperiness and a good application feel to the skin when it is included in cosmetics.
上記板状ハイドロタルサイト型粒子として最も好ましくは、下記式(2):
(Zn)0.67(Al)0.33(OH)(CO 2-0.165・mHO (2)
で表される板状粒子である。この構造では、結晶構造が極めて安定し、本発明の作用効果をより充分に発揮することが可能となる。この構造はJCPDSカード 00-048-1023から確認できる。
Most preferably, the plate-like hydrotalcite type particles are represented by the following formula (2):
(Zn) 0.67 (Al) 0.33 (OH) 2 (CO 3 2− ) 0.165 · mH 2 O (2)
It is a plate-like particle | grain represented by these. With this structure, the crystal structure is extremely stable, and the effects of the present invention can be more fully exhibited. This structure can be confirmed from JCPDS card 00-048-1023.
上記板状ハイドロタルサイト型粒子の平均板面径は、150~800nmである。平均板面径がこの範囲内にあると、粒子を含む粉体の流動性が安定することから、計量や包装時に取扱いやすいものとなり、化粧料に含めた際の肌への塗布感触や滑り性にも優れたものとなる。好ましくは180nm以上、より好ましくは190nm以上、更に好ましくは300nm以上であり、また、好ましくは500nm以下、より好ましくは470nm以下である。 The plate-like hydrotalcite-type particles have an average plate surface diameter of 150 to 800 nm. If the average plate surface diameter is within this range, the fluidity of the powder containing particles will be stable, making it easy to handle during weighing and packaging, and the feel and slipperiness when applied to the skin. Even better. Preferably it is 180 nm or more, More preferably, it is 190 nm or more, More preferably, it is 300 nm or more, Preferably it is 500 nm or less, More preferably, it is 470 nm or less.
上記板状ハイドロタルサイト型粒子のアスペクト比(平均板面径/平均厚み)は、4.0~20.0である。アスペクト比がこの範囲内にあると、粒子を含む粉体の流動性が安定することから、計量や包装時に取扱いやすいものとなり、化粧料に含めた際の肌への塗布感触や滑り性にも優れたものとなる。好ましくは4.5~15.0、より好ましくは5.0~10.0である。中でも、平均板面径及び平均厚みからアスペクト比を求める操作を10回繰り返した際の平均値(すなわちアスペクト比の平均値)が4.0~20.0であることが好ましい。より好ましくは4.5~15.0、更に好ましくは5.0~10.0である。
本明細書中、平均板面径及び平均厚みは、走査電子顕微鏡写真に基づいて算出される値である。具体的には、後述の実施例に記載の方法に従って求められる。
The aspect ratio (average plate surface diameter / average thickness) of the plate-like hydrotalcite particles is 4.0 to 20.0. If the aspect ratio is within this range, the fluidity of the powder containing the particles will be stable, making it easier to handle during weighing and packaging, as well as the feel and slipperiness when applied to the skin. It will be excellent. Preferably it is 4.5 to 15.0, more preferably 5.0 to 10.0. In particular, the average value (that is, the average value of the aspect ratio) when the operation for obtaining the aspect ratio from the average plate surface diameter and the average thickness is repeated 10 times is preferably 4.0 to 20.0. More preferably, it is 4.5 to 15.0, and still more preferably 5.0 to 10.0.
In the present specification, the average plate surface diameter and the average thickness are values calculated based on a scanning electron micrograph. Specifically, it is determined according to the method described in Examples described later.
ここで、本発明の板状ハイドロタルサイト型粒子は、板状であり、かつ一定のアスペクト比をもつことに重要な特徴を有するが、同時に、粒子形状とアスペクト比のばらつきが少ないことにも特徴がある。化粧料に含めた際の肌への塗布感触や滑り性を向上又は維持するためには、アスペクト比を10回測定した際、測定したアスペクト比の値が4.0未満であるか又は20.0を超える回数が3回以下であることが好ましい。また、平均板面径と平均厚みを測定した際に算出される標準偏差の変動係数が、それぞれ0.5以下であることが好ましい。より好ましくは0.4以下である。 Here, the plate-like hydrotalcite-type particles of the present invention are plate-like and have an important feature in having a certain aspect ratio, but at the same time, there is little variation in particle shape and aspect ratio. There are features. In order to improve or maintain the skin feel and slipperiness when included in cosmetics, when the aspect ratio is measured 10 times, the measured aspect ratio value is less than 4.0 or 20. The number of times exceeding 0 is preferably 3 or less. Moreover, it is preferable that the coefficient of variation of the standard deviation calculated when the average plate surface diameter and the average thickness are measured is 0.5 or less, respectively. More preferably, it is 0.4 or less.
上記板状ハイドロタルサイト型粒子は、JIS K5101-17-1(2004年)の顔料試験方法によるpH値(「顔料pH」とも称す)が6.0~8.5となるものである。この顔料pHがこの範囲内にあると、皮膚への刺激性が充分に低減されるため、化粧料等の直接肌に触れる用途に特に有用なものとなる。顔料pHは、好ましくは7.0~8.4、より好ましくは7.2~8.2である。
本明細書中、顔料pHは、JIS K5101-17-1(2004年)の顔料試験方法による測定値である。具体的には、後述の実施例に記載の方法に従って求められる。
The plate-like hydrotalcite-type particles have a pH value (also referred to as “pigment pH”) of 6.0 to 8.5 according to the pigment test method of JIS K5101-17-1 (2004). When the pigment pH is within this range, the irritation to the skin is sufficiently reduced, and thus it is particularly useful for applications such as cosmetics that directly touch the skin. The pigment pH is preferably 7.0 to 8.4, more preferably 7.2 to 8.2.
In the present specification, the pigment pH is a value measured by a pigment test method of JIS K5101-17-1 (2004). Specifically, it is determined according to the method described in Examples described later.
上記板状ハイドロタルサイト型粒子は、その比表面積が0.1~50m/gであることが好ましい。比表面積がこの範囲にあると、より充分な強度を有し、滑り性及び化粧料に含めた際の肌への塗布感触がより一層優れるものとなる。より好ましくは5~40m/g、更に好ましくは10~20m/gである。 The plate-like hydrotalcite-type particles preferably have a specific surface area of 0.1 to 50 m 2 / g. When the specific surface area is in this range, it has more sufficient strength, and the slipperiness and the feeling of application to the skin when it is included in the cosmetics are further improved. More preferably, it is 5 to 40 m 2 / g, and still more preferably 10 to 20 m 2 / g.
本明細書中、比表面積(SSAとも称する)は、BET比表面積を意味する。
BET比表面積とは、比表面積の測定方法の一つであるBET法により得られた比表面積のことをいう。比表面積とは、ある物体の単位質量あたりの表面積のことをいう。
BET法は、窒素等の気体粒子を固体粒子に吸着させ、吸着した量から比表面積を測定する気体吸着法である。具体的には、圧力Pと吸着量Vとの関係からBET式によって、単分子吸着量VMを求めることにより、比表面積を定める。本明細書中の比表面積の詳しい測定方法は後述の実施例において説明する。
In the present specification, the specific surface area (also referred to as SSA) means the BET specific surface area.
The BET specific surface area refers to a specific surface area obtained by the BET method, which is one method for measuring the specific surface area. The specific surface area refers to the surface area per unit mass of a certain object.
The BET method is a gas adsorption method in which gas particles such as nitrogen are adsorbed on solid particles and the specific surface area is measured from the amount adsorbed. Specifically, the specific surface area is determined by obtaining the monomolecular adsorption amount VM by the BET equation from the relationship between the pressure P and the adsorption amount V. A detailed method for measuring the specific surface area in the present specification will be described in Examples described later.
上記板状ハイドロタルサイト型粒子は、体積基準粒度分布のシャープさの指標となるD90のD10に対する比 (D90/D10)が2~150であることが好ましい。D90/D10がこの範囲内にあると、粒子径のバラツキが少ないため、粒子を含む粉体の流動性が安定する。それゆえ、計量や包装時に取扱いやすいものとなり、化粧料に含めた際の肌への塗布感触や滑り性にも優れたものとなる。D90/D10の値が大きくなると化粧料に含めた際の肌への塗布感触が向上する傾向にあるので、D90/D10の値は10以上がより好ましく、30以上が更に好ましい。なお、D90/D10が大きい程、粒度分布がブロードであることを意味し、この値が小さい程、粒度分布がシャープであることを意味する。
本明細書中、D10とは体積基準での10%積算粒径を意味し、D90とは体積基準での90%積算粒径を意味する。D10、D90はそれぞれ、粒度分布を測定することにより得られる値である。具体的には、後述の実施例に記載の方法に従って求められる。
The plate-like hydrotalcite-type particles is preferably ratio D 10 of D 90 indicative of sharpness of volume-based particle size distribution (D 90 / D 10) is 2 to 150. When D 90 / D 10 is within this range, there is little variation in the particle diameter, and the fluidity of the powder containing particles is stabilized. Therefore, it becomes easy to handle at the time of weighing and packaging, and it is excellent in the feeling of application to the skin and slipperiness when included in cosmetics. When the value of D 90 / D 10 is increased, the coating feel on the skin when it is included in the cosmetic tends to be improved. Therefore, the value of D 90 / D 10 is more preferably 10 or more, and further preferably 30 or more. Incidentally, as D 90 / D 10 is large, it means that the particle size distribution is broad, smaller value means that the particle size distribution is sharp.
In the present specification, D 10 means a 10% cumulative particle size on a volume basis, and D 90 means a 90% cumulative particle size on a volume basis. D 10 and D 90 are values obtained by measuring the particle size distribution, respectively. Specifically, it is determined according to the method described in Examples described later.
上記板状ハイドロタルサイト型粒子は、二次粒子のメジアン径(D50)が1~200μmであることが好ましい。メジアン径(D50)がこの範囲内にあると、粒子を含む粉体の流動性が安定することから、計量や包装時に取扱いやすいものとなり、化粧料に含めた際の肌への塗布感触や滑り性にも優れたものとなる。
本明細書中、メジアン径(D50)とは体積基準での50%積算粒径を意味し、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量となる径をいう。具体的には、後述の実施例に記載の方法に従って求められる。
The plate-like hydrotalcite-type particles preferably have a median diameter (D 50 ) of secondary particles of 1 to 200 μm. If the median diameter (D 50 ) is within this range, the fluidity of the powder containing the particles will be stable, and it will be easy to handle during weighing and packaging. Excellent slipperiness.
In the present specification, the median diameter (D 50 ) means a 50% cumulative particle diameter on a volume basis, and when the powder is divided into two parts from a certain particle diameter, the diameter on which the larger side and the smaller side are equal. Say. Specifically, it is determined according to the method described in Examples described later.
上記板状ハイドロタルサイト型粒子はまた、化粧料に含めた際の肌への良好な塗布感触を損なわない範囲であれば、その表面の一部又は全部が表面被覆剤で被覆されていてもよい。表面被覆剤としては、無機化合物及び有機化合物のいずれも好適に用いることができる。無機化合物としては特に限定されないが、例えば、ケイ素、カルシウム、バリウム、ストロンチウム、アルミニウム、ジルコニウム、セリウム、亜鉛等の酸化物、水酸化物、硫酸塩、炭酸塩等が挙げられる。有機化合物としては特に限定されないが、例えば、シリコーンオイル、脂肪酸及びその金属塩、アルキルシラン、アルコキシシラン、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、アミノ酸、ナイロン、カルボマー及びその金属塩、ポリアクリル酸、トリメチルプロパノール、トリエチルアミン、高級アルコール等が挙げられる。 The plate-like hydrotalcite-type particles may also have a part or all of the surface thereof coated with a surface coating agent as long as they do not impair a good feeling of application to the skin when included in cosmetics. Good. As the surface coating agent, both inorganic compounds and organic compounds can be suitably used. Although it does not specifically limit as an inorganic compound, For example, oxides, hydroxides, sulfates, carbonates, etc., such as silicon, calcium, barium, strontium, aluminum, zirconium, cerium, zinc, etc. are mentioned. Although it does not specifically limit as an organic compound, For example, silicone oil, a fatty acid, and its metal salt, alkylsilane, alkoxysilane, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, an amino acid, nylon, carbomer, and its metal salt , Polyacrylic acid, trimethylpropanol, triethylamine, higher alcohols and the like.
上記表面被覆剤の中でも、ケイ素原子を含む化合物(ケイ素化合物とも称す)が好ましい。すなわち上記板状ハイドロタルサイト型粒子は、表面の一部又は全部がケイ素化合物で被覆されていることが好適である。これにより、亜鉛イオンの過剰な溶出を抑制し、皮膚への刺激性を低減して適度な収斂作用を発現できることに加え、樹脂や溶媒との相溶性や分散性が向上する他、撥水性も向上するため、化粧料だけではなく、樹脂への添加剤等、各種用途により有用なものとなる。ケイ素化合物としてより好ましくは、シリカである。 Among the surface coating agents, a compound containing a silicon atom (also referred to as a silicon compound) is preferable. That is, it is preferable that a part or all of the surface of the plate-like hydrotalcite-type particle is coated with a silicon compound. In addition to suppressing excessive elution of zinc ions and reducing irritation to the skin to express an appropriate astringent action, compatibility and dispersibility with resins and solvents are improved, and water repellency is also achieved. In order to improve, it becomes useful not only for cosmetics but also for various uses such as additives to resins. Silica is more preferable as the silicon compound.
上記表面被覆剤を用いて板状ハイドロタルサイト型粒子の表面を被覆する方法としては特に限定されるものではない。例えば、シリカを用いる場合は、板状ハイドロタルサイト型粒子を含むスラリーに、珪酸ナトリウムと酸を加えて中和する方法等が挙げられる。表面被覆量は特に限定されないが、例えば、板状ハイドロタルサイト型粒子の総量100質量%に対し、シリカ等の表面被覆剤が占める割合が0.001~30質量%であることが好ましい。より好ましくは5~25質量%である。 The method for coating the surface of the plate-like hydrotalcite type particles with the surface coating agent is not particularly limited. For example, when silica is used, a method of adding sodium silicate and an acid to a slurry containing plate-like hydrotalcite-type particles and neutralizing the slurry can be used. The surface coating amount is not particularly limited, but for example, the ratio of the surface coating agent such as silica to 0.001 to 30% by mass with respect to 100% by mass of the total amount of the plate-like hydrotalcite-type particles is preferable. More preferably, it is 5 to 25% by mass.
上記板状ハイドロタルサイト型粒子は、吸油量が20~300mL/100gであることが好ましい。吸油量がこの範囲内にあると、皮膚の脂取り効果が適度に得られるため、肌を刺激してヒリヒリさせることがなく、化粧料原料としてより実用的なものとなる。より好ましくは25~200mL/100gである。
本明細書中、吸油量は、後述の実施例に記載の方法に従って求められる。
The plate-like hydrotalcite type particles preferably have an oil absorption of 20 to 300 mL / 100 g. If the amount of oil absorption is within this range, the degreasing effect of the skin can be obtained moderately, so that the skin is not stimulated and irritated, and it becomes more practical as a cosmetic raw material. More preferably, it is 25 to 200 mL / 100 g.
In the present specification, the oil absorption amount is determined according to the method described in Examples described later.
上記板状ハイドロタルサイト型粒子は、BJH法による細孔容積が0.01~1.0cm/gであることが好ましい。細孔容積が0.01cm/g以上であると、粒子自体の多孔性が向上するため、粒子内部の細孔での吸油性が充分なものとなり、また、粒子自体が適度な重さとなるため、粒子粉体に触ったときの、さらさら感、均一な延び広がり性、平滑感の持続性がより向上する。一方、1.0cm/g以下であると、粒子自体の多孔性が適度なものとなるため粒子強度が充分なものとなり、ハイドロタルサイト粒子を含む化粧料を肌上に塗布した際に粒子が崩壊することが充分に抑制されて、結果として平滑性の持続性がより向上する。より好ましくは0.02~0.5cm/gである。
本明細書中、細孔容積は、BJH(Barrett-Joyner-Halenda)法を用いて求められる。具体的には、後述の実施例に記載の方法に従って求められる。
The plate-like hydrotalcite-type particles preferably have a pore volume of 0.01 to 1.0 cm 3 / g according to the BJH method. When the pore volume is 0.01 cm 3 / g or more, the porosity of the particle itself is improved, so that the oil absorption in the pore inside the particle is sufficient, and the particle itself has an appropriate weight. For this reason, when touching the particle powder, the feeling of smoothness, uniform spreadability, and sustainability of smoothness are further improved. On the other hand, if it is 1.0 cm 3 / g or less, the particle itself has an appropriate porosity, so that the particle strength is sufficient, and the particles when the cosmetic containing hydrotalcite particles is applied onto the skin. Is sufficiently suppressed from breaking down, and as a result, the durability of smoothness is further improved. More preferably, it is 0.02 to 0.5 cm 3 / g.
In the present specification, the pore volume is determined using a BJH (Barrett-Joyner-Halenda) method. Specifically, it is determined according to the method described in Examples described later.
上記板状ハイドロタルサイト型粒子は、アンモニアガスやリン化合物の吸着性能にも優れるものである。したがって、これらの吸着剤用途にも好適に使用できる。特に本発明の板状ハイドロタルサイト型粒子は、ゴミ処分場から排出される排水や、下水処理場等の浄化槽から排出される一次処理水等に含まれるリン化合物の吸着性能に優れるため、吸着剤として極めて有用である。 The plate-like hydrotalcite-type particles are also excellent in ammonia gas and phosphorus compound adsorption performance. Therefore, it can be suitably used for these adsorbent applications. In particular, the plate-like hydrotalcite-type particles of the present invention are excellent in adsorption performance of phosphorus compounds contained in wastewater discharged from garbage disposal sites and primary treated water discharged from septic tanks such as sewage treatment plants. It is extremely useful as an agent.
〔製造方法〕
本発明の板状ハイドロタルサイト型粒子を得るには、例えば、亜鉛化合物及びアルミニウム化合物を原料として用い、(003)面に由来するピークの半価幅が0.4以上である前駆体を得る工程(I)と、該前駆体を、温度75~150℃で、かつ相対湿度75~100%RHの雰囲気下で保持する工程(II)とを含む製造方法を採用することが好ましい。このような製造方法を採用することで、水熱合成等で必要になる圧力容器等の特殊な装置・設備を導入することなく容易かつ簡便に板状ハイドロタルサイト型粒子を得ることができる。
以下、各工程について更に説明する。
〔Production method〕
In order to obtain the plate-like hydrotalcite-type particles of the present invention, for example, a zinc compound and an aluminum compound are used as raw materials, and a precursor having a half width of a peak derived from the (003) plane of 0.4 or more is obtained. It is preferable to employ a production method including the step (I) and the step (II) in which the precursor is held in an atmosphere having a temperature of 75 to 150 ° C. and a relative humidity of 75 to 100% RH. By adopting such a production method, plate-like hydrotalcite-type particles can be obtained easily and simply without introducing a special device / equipment such as a pressure vessel required for hydrothermal synthesis or the like.
Hereinafter, each step will be further described.
<工程(I)>
工程(I)は、(003)面に由来するピークの半価幅が0.4以上である前駆体を得る工程である。この工程(I)ではハイドロタルサイトの結晶化を抑えて低結晶状態の前駆体を作製し、これを工程(II)に供することで、工程(II)では板状粒子への結晶成長が進み、これによって、容易かつ簡便に本発明の板状ハイドロタルサイト型粒子を得ることができる。なお、工程(I)で得られる前駆体にはハイドロタルサイト型粒子が含まれることがある。
<Process (I)>
Step (I) is a step of obtaining a precursor having a half width of a peak derived from the (003) plane of 0.4 or more. In this step (I), the crystallization of hydrotalcite is suppressed to prepare a precursor in a low crystalline state, and this is used in step (II). In step (II), crystal growth to plate-like particles proceeds. Thus, the plate-like hydrotalcite-type particles of the present invention can be obtained easily and simply. The precursor obtained in step (I) may contain hydrotalcite type particles.
上記工程(I)では、原料として亜鉛化合物及びアルミニウム化合物をそれぞれ1種又は2種以上用いる。これら亜鉛化合物及びアルミニウム化合物としては特に限定されないが、製造を容易にする観点から、水溶性の塩、又は、酸を含む水に可溶の塩を用いることが好ましい。具体的には、亜鉛化合物は、水酸化亜鉛、酸化亜鉛、塩基性炭酸亜鉛及び硫酸亜鉛からなる群より選択される少なくとも1種であることが好ましく、アルミニウム化合物は、水酸化アルミニウム、酸化アルミニウム及び硫酸アルミニウムからなる群より選択される少なくとも1種であることが好ましい。これらの原料を用いることで、より容易かつ簡便に板状ハイドロタルサイト型粒子を得ることができる。 In the step (I), one or more zinc compounds and aluminum compounds are used as raw materials. These zinc compounds and aluminum compounds are not particularly limited, but from the viewpoint of facilitating production, it is preferable to use a water-soluble salt or a water-soluble salt containing an acid. Specifically, the zinc compound is preferably at least one selected from the group consisting of zinc hydroxide, zinc oxide, basic zinc carbonate and zinc sulfate, and the aluminum compound includes aluminum hydroxide, aluminum oxide and It is preferably at least one selected from the group consisting of aluminum sulfate. By using these raw materials, plate-like hydrotalcite-type particles can be obtained more easily and simply.
上記原料の使用量は、得られる板状ハイドロタルサイト型粒子が上記式(1)を満たすものとなるように調整すればよい。例えば、アルミニウム化合物のアルミニウム換算量1モルに対し、亜鉛化合物が、亜鉛換算で1.5~4モルとなるようにすることが好ましい。これにより、得られる板状ハイドロタルサイト型粒子の結晶構造が安定する。より安定性を向上させる観点から、アルミニウム化合物のアルミニウム換算量1モルに対し、亜鉛化合物が、亜鉛換算で1.5~3モルとなるように調整することがより好ましく、更に好ましくは2モルである。 What is necessary is just to adjust the usage-amount of the said raw material so that the obtained plate-like hydrotalcite type | mold particle may satisfy | fill said Formula (1). For example, the zinc compound is preferably 1.5 to 4 mol in terms of zinc with respect to 1 mol in terms of aluminum in the aluminum compound. Thereby, the crystal structure of the obtained plate-like hydrotalcite type particles is stabilized. From the viewpoint of further improving the stability, it is more preferable to adjust the zinc compound so that the amount of zinc compound is 1.5 to 3 mol in terms of zinc with respect to 1 mol in terms of aluminum of the aluminum compound, and more preferably 2 mol. is there.
上記工程(I)では、上記原料を、アルカリ成分を用いて中和することが好ましい。この中和を行うことで、前駆体を好適に得ることができる。この中和は、上記原料とアルカリ成分との混合溶液のpHが7以上になるように、上記原料とアルカリ成分とを混合することが好ましい。この際、必要に応じて後述する溶媒の存在下で行ってもよい。より好ましくは、上記原料とアルカリ成分との混合溶液のpHが7.5以上になるように中和反応させることである。 In the said process (I), it is preferable to neutralize the said raw material using an alkaline component. By performing this neutralization, the precursor can be suitably obtained. The neutralization is preferably performed by mixing the raw material and the alkali component so that the pH of the mixed solution of the raw material and the alkali component is 7 or more. At this time, it may be carried out in the presence of a solvent described later, if necessary. More preferably, the neutralization reaction is performed so that the pH of the mixed solution of the raw material and the alkali component is 7.5 or more.
上記アルカリ成分としては特に限定されないが、例えば、アルカリ金属塩等が挙げられ、1種又は2種以上を使用することができる。アルカリ金属塩とは、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属の塩であり、塩として、水酸化物、炭酸塩、炭酸水素塩、珪酸塩、アルミン酸塩、有機アミン塩等が挙げられる。中でも、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等が好適である。 Although it does not specifically limit as said alkali component, For example, an alkali metal salt etc. are mentioned, 1 type (s) or 2 or more types can be used. The alkali metal salt is, for example, a salt of an alkali metal such as lithium, sodium, or potassium, and examples of the salt include hydroxide, carbonate, bicarbonate, silicate, aluminate, and organic amine salt. . Of these, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like are preferable.
上記溶媒としては特に限定されず、水、有機溶媒及びこれらの混合物が挙げられ、1種又は2種以上を使用することができる。有機溶媒としては、例えば、アルコール、アセトン、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン等が挙げられ、アルコールとしては、メタノール、エタノール、プロパノール等の1価の水溶性アルコール;エチレングリコール、グリセリン等の2価以上の水溶性アルコール;等が挙げられる。溶媒として好ましくは水であり、より好ましくはイオン交換水である。 It does not specifically limit as said solvent, Water, an organic solvent, and these mixtures are mentioned, 1 type (s) or 2 or more types can be used. Examples of the organic solvent include alcohol, acetone, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane, and the like. Examples of the alcohol include monovalent water-soluble alcohols such as methanol, ethanol, and propanol; 2 such as ethylene glycol and glycerin. Water-soluble alcohol having a valency or higher; The solvent is preferably water, and more preferably ion-exchanged water.
ここで、原料として炭酸塩を用いない場合、あるいは、炭酸塩を用いても生成した粒子が上記式(1)を満たさない場合は、別途炭酸ガスを用いてもよい。炭酸ガスは、工程(I)の中であればどの操作で用いてもよい。 Here, when carbonate is not used as a raw material, or when the generated particles do not satisfy the above formula (1) even when carbonate is used, carbon dioxide gas may be used separately. Carbon dioxide gas may be used in any operation as long as it is in step (I).
上記工程(I)ではまた、上記中和で溶媒を用いた場合、得られたスラリーを乾燥することが好適である。この乾燥は、スラリーから溶媒が除去されるように行えばよく、乾燥手段は特に限定されるものではない。例えば、減圧乾燥、加熱乾燥等が挙げられる。また、スラリーをそのまま乾燥してもよいし、ろ過し水洗してから乾燥してもよい。ろ過し水洗してから乾燥する場合は、一旦スラリーの状態にしてから噴霧乾燥で乾燥することも好ましい。 In the step (I), when a solvent is used in the neutralization, it is preferable to dry the obtained slurry. This drying may be performed so that the solvent is removed from the slurry, and the drying means is not particularly limited. For example, vacuum drying, heat drying and the like can be mentioned. The slurry may be dried as it is, or may be filtered and washed with water and then dried. In the case of drying after filtration and washing with water, it is also preferred that the slurry is once made into a slurry state and then dried by spray drying.
上記乾燥の後、粉砕を行うことが好適である。すなわち上記工程(I)は、溶媒の存在下で原料を中和する中和と、該中和により得られたスラリーの乾燥と、乾燥したものの粉砕とを含むことが好ましい。粉砕方法及び粉砕条件は特に限定されず、例えば、ボールミル、ライカイ機、フォースミル、ハンマーミル、ジェットミル等を用いて行ってもよい。 It is preferable to perform pulverization after the drying. That is, it is preferable that the said process (I) includes the neutralization which neutralizes a raw material in presence of a solvent, the drying of the slurry obtained by this neutralization, and the grinding | pulverization of what was dried. The pulverization method and pulverization conditions are not particularly limited, and may be performed using, for example, a ball mill, a reiki machine, a force mill, a hammer mill, a jet mill, or the like.
上記工程(I)で得られる前駆体は、ウエットケーキ状(例えば、105℃で18時間乾燥後、測定した固形分が15質量%以上である状態)であってもよいし、粉体状であってもよいが、中でも、粉体状であることが好適である。粉体状の前駆体を工程(II)に供すると、工程(II)では板状粒子への結晶成長がより進み、かつ一次粒子の過度の凝集を抑制できるため、好ましい。 The precursor obtained in the step (I) may be in the form of a wet cake (for example, in a state where the solid content measured after drying at 105 ° C. for 18 hours is 15% by mass or more) or in the form of powder. Although it may exist, it is preferable that it is a powder form especially. It is preferable to use the powdery precursor for the step (II) because in the step (II), crystal growth on the plate-like particles further proceeds and excessive aggregation of the primary particles can be suppressed.
上記工程(I)で得られる前駆体が粉状態(粉体状)である場合、前記の方法で測定した固形分量が85重量%以上であることが好ましく、95重量%以上であることがより好ましい。 When the precursor obtained in the step (I) is in a powder state (powder), the solid content measured by the above method is preferably 85% by weight or more, more preferably 95% by weight or more. preferable.
上記前駆体は、(003)面に由来するピークの半価幅が0.4以上となるものである。半価幅が0.4未満であるような高結晶状態の前駆体であると、これを工程(II)に供しても充分に板状化が進まないため、平均板面径及びアスペクト比が本発明の範囲内となる板状ハイドロタルサイト型粒子を得ることができない。前駆体の(003)面に由来するピークの半価幅は、好ましくは0.5以上、より好ましくは0.6以上、更に好ましくは0.7以上である。また、上限は、3以下であることが好ましい。より好ましくは2以下、更に好ましくは1.2以下である。 The precursor has a half width of a peak derived from the (003) plane of 0.4 or more. If the precursor is in a highly crystalline state with a half width of less than 0.4, plate formation does not proceed sufficiently even if it is subjected to step (II), so the average plate surface diameter and aspect ratio are Plate-like hydrotalcite particles that fall within the scope of the present invention cannot be obtained. The half width of the peak derived from the (003) plane of the precursor is preferably 0.5 or more, more preferably 0.6 or more, and still more preferably 0.7 or more. The upper limit is preferably 3 or less. More preferably, it is 2 or less, More preferably, it is 1.2 or less.
上記前駆体はまた、(006)面に由来するピークの半価幅が0.4以上であることも好ましい。より好ましくは0.5以上、更に好ましくは0.6以上、特に好ましくは0.7以上である。また、上限は、3以下であることが好ましい。より好ましくは2以下、更に好ましくは1以下である。
本明細書中、半価幅は、X線回折法により求めることができる。具体的には、後述する実施例に記載の手法により求められる。
The precursor preferably has a half width of a peak derived from the (006) plane of 0.4 or more. More preferably, it is 0.5 or more, More preferably, it is 0.6 or more, Most preferably, it is 0.7 or more. The upper limit is preferably 3 or less. More preferably, it is 2 or less, More preferably, it is 1 or less.
In the present specification, the half width can be determined by an X-ray diffraction method. Specifically, it is calculated | required by the method as described in the Example mentioned later.
上記前駆体は更に、その比表面積が20m/gを超えて300m/g以下であることが好ましい。このような前駆体を工程(II)に供することで、得られる板状ハイドロタルサイト型粒子の強度や滑り性、化粧料に含めた際の肌への塗布感触がより良好なものとなる。より好ましくは25m/g以上、更に好ましくは30m/g以上である。比表面積の上限値は、より好ましくは250m/g以下である。 The precursor preferably further has a specific surface area of more than 20 m 2 / g and 300 m 2 / g or less. By providing such a precursor to the step (II), the strength and slipperiness of the obtained plate-like hydrotalcite-type particles and the feeling of application to the skin when included in cosmetics are improved. More preferably, it is 25 m < 2 > / g or more, More preferably, it is 30 m < 2 > / g or more. The upper limit value of the specific surface area is more preferably 250 m 2 / g or less.
<工程(II)>
工程(II)は、上記工程(I)により得た前駆体を、温度75~150℃で、かつ相対湿度75~100%RHの雰囲気下で保持する工程(「湿潤雰囲気工程」とも称す)である。上記製造方法では、従来法のような水熱や常圧での反応とは異なり、前駆体を高温高湿雰囲気下に保持するだけの工程を経ることで、簡便な手段により板状ハイドロタルサイト型粒子を得ることができるため、圧力容器等の特別な装置を不要にすることができる。すなわち製造設備を簡単にすることができる。
<Process (II)>
Step (II) is a step of holding the precursor obtained in the above step (I) in an atmosphere at a temperature of 75 to 150 ° C. and a relative humidity of 75 to 100% RH (also referred to as “wet atmosphere step”). is there. In the above production method, unlike the conventional reaction under hydrothermal or atmospheric pressure, the plate-like hydrotalcite is obtained by a simple means by passing through the process of simply holding the precursor in a high temperature and high humidity atmosphere. Since the mold particles can be obtained, a special device such as a pressure vessel can be dispensed with. That is, the manufacturing equipment can be simplified.
上記工程(II)では、温度75~150℃で前駆体を保持する。板状化を促進させる観点から、温度は76℃以上であることが好ましく、より好ましくは78℃以上、更に好ましくは80℃以上である。また、製造コストや設備仕様の観点から、95℃以下とすることが好ましい。
本明細書中、工程(II)の保持温度は、当該工程での最高到達温度を意味する。
なお、温度の変動は板状粒子の結晶成長に変化をもたらす場合があるため、保持中の温度の上限と下限の差が10℃以下とすることが好ましい。
In the step (II), the precursor is held at a temperature of 75 to 150 ° C. From the viewpoint of promoting plate formation, the temperature is preferably 76 ° C. or higher, more preferably 78 ° C. or higher, and still more preferably 80 ° C. or higher. Moreover, it is preferable to set it as 95 degrees C or less from a viewpoint of manufacturing cost or equipment specification.
In the present specification, the holding temperature in the step (II) means the highest temperature reached in the step.
In addition, since the fluctuation | variation of temperature may bring about a change in the crystal growth of a plate-like particle | grain, it is preferable that the difference of the upper limit and the minimum of temperature during holding shall be 10 degrees C or less.
上記工程(II)はまた、相対湿度が75~100%RHの雰囲気で行う。板状化を促進させる観点から、相対湿度は76%RH以上であることが好ましく、より好ましくは77%RH以上、更に好ましくは78%RH以上、特に好ましくは79%RH以上、最も好ましくは80%RH以上である。また、製造コストや設備仕様の観点から、95%RH以下とすることが好ましく、より好ましくは90%RH以下である。
本明細書中、工程(II)の相対湿度は、当該工程での最高到達湿度を意味する。
なお、相対湿度の変動は板状粒子の結晶成長に変化をもたらす場合があるため、保持中の湿度の上限と下限の差を10%以下とすることが好ましい。
The above step (II) is also performed in an atmosphere having a relative humidity of 75 to 100% RH. From the viewpoint of promoting plate formation, the relative humidity is preferably 76% RH or more, more preferably 77% RH or more, still more preferably 78% RH or more, particularly preferably 79% RH or more, and most preferably 80%. % RH or higher. Moreover, it is preferable to set it as 95% RH or less from a viewpoint of manufacturing cost or equipment specification, More preferably, it is 90% RH or less.
In the present specification, the relative humidity in the step (II) means the maximum reached humidity in the step.
In addition, since the fluctuation | variation of relative humidity may bring about a change in the crystal growth of a plate-like particle | grain, it is preferable to make the difference of the upper limit and the minimum of the humidity under holding | maintenance 10% or less.
上記条件下での保持時間は、前駆体が板状粒子に結晶成長するのに充分な時間であればよい。例えば、1~300時間であることが好ましい。保持時間がこの範囲内であると、結晶化がより充分に進み、生産性にも優れる。より好ましくは3~200時間、更に好ましくは6~180時間である。 The holding time under the above-mentioned conditions may be a time sufficient for the precursor to grow into a plate-like particle. For example, it is preferably 1 to 300 hours. When the holding time is within this range, crystallization proceeds more sufficiently and the productivity is excellent. More preferably, it is 3 to 200 hours, and further preferably 6 to 180 hours.
<他の工程>
上記製造方法では、上述した工程(I)及び(II)に加え、必要に応じて1又は2以上の粉砕、分級、洗浄、水熱、熟成、焼成、層間イオンの置換、表面被覆等のその他の工程を含んでもよい。その他の工程は特に限定されない。
<Other processes>
In the above production method, in addition to the above-mentioned steps (I) and (II), one or more pulverization, classification, washing, hydrothermal, aging, firing, intercalation of interlayer ions, surface coating, etc., as necessary These steps may be included. Other steps are not particularly limited.
〔用途〕
本発明の板状ハイドロタルサイト型粒子は、滑り性及び化粧料に含めた際の肌への塗布感触に優れ、皮膚への刺激性が充分に低減されたものであり、しかもアンモニアガスやリン化合物の吸着性能にも優れるものである。したがって、化粧料、医薬品、医薬部外品、吸着剤、触媒、樹脂用添加剤等の種々の用途に用いることができる。中でも、化粧料原料として特に有用であり、上記板状ハイドロタルサイト型粒子を含む化粧料は、本発明の1つである。
[Use]
The plate-like hydrotalcite-type particles of the present invention are excellent in slipperiness and feel when applied to the skin when included in cosmetics, and are sufficiently reduced in irritation to the skin. It also has excellent compound adsorption performance. Therefore, it can be used for various uses such as cosmetics, pharmaceuticals, quasi drugs, adsorbents, catalysts, and additives for resins. Among them, a cosmetic material that is particularly useful as a cosmetic raw material and includes the plate-like hydrotalcite-type particles is one aspect of the present invention.
上記化粧料は、本発明の板状ハイドロタルサイト型粒子を含むことで、肌への刺激性が低減され、滑りが良く、かつ化粧料に含めた際の肌への塗布感触に優れるうえ、ソフトフォーカス効果や皮脂吸着効果も期待できるものである。それゆえ、昨今の市場のニーズに特に適したものである。化粧料としては特に限定されず、例えば、ファンデーション、化粧下地、日焼け止め、アイシャドウ、頬紅、マスカラ、口紅、制汗剤、脂取り紙等が挙げられる。中でも、ファンデーションが特に好適である。 The cosmetics contain the plate-like hydrotalcite-type particles of the present invention, the irritation to the skin is reduced, the sliding is good, and the skin feels excellent when applied to the skin. Soft focus effect and sebum adsorption effect can also be expected. Therefore, it is particularly suitable for the needs of the current market. The cosmetic is not particularly limited, and examples thereof include foundations, makeup bases, sunscreens, eye shadows, blushers, mascaras, lipsticks, antiperspirants, and degreased paper. Among these, a foundation is particularly suitable.
上記化粧料はまた、必要に応じ、本発明の板状ハイドロタルサイト型粒子に加えて、他の成分を1種又は2種以上含んでいてもよい。他の成分は特に限定されないが、例えば、有機溶媒や分散剤の他、化粧料分野で通常使用されている任意の水性成分、油性成分が挙げられる。具体的には、油分;界面活性剤;保湿剤;高級アルコール;金属イオン封鎖剤;各種高分子(天然、半合成、合成若しくは無機の、水溶性又は油溶性高分子);紫外線遮蔽剤;その他薬剤成分;各種抽出液;無機及び有機顔料;無機及び有機粘土鉱物等の各種粉体;金属石鹸処理又はシリコーンで処理された無機及び有機顔料;有機染料等の色剤;防腐剤;酸化防止剤;色素;増粘剤;pH調整剤;香料;冷感剤;収斂剤;殺菌剤;皮膚賦活剤;等が挙げられる。これらの成分の含有量は、本発明の効果を損なわない範囲であれば特に限定されない。 In addition to the plate-like hydrotalcite-type particles of the present invention, the cosmetic may contain one or more other components as necessary. Although other components are not specifically limited, For example, the organic solvent and a dispersing agent other than the arbitrary aqueous component and oil-based component normally used in the cosmetics field | area are mentioned. Specifically, oil; surfactant; moisturizer; higher alcohol; sequestering agent; various polymers (natural, semi-synthetic, synthetic or inorganic, water-soluble or oil-soluble polymers); UV screening agent; other Various extractants; Inorganic and organic pigments; Various powders such as inorganic and organic clay minerals; Inorganic and organic pigments treated with metal soap or silicone; Colorants such as organic dyes; Preservatives; Antioxidants A pigment, a thickener, a pH adjuster, a fragrance, a cooling agent, an astringent, a bactericidal agent, a skin activator, and the like. The content of these components is not particularly limited as long as the effects of the present invention are not impaired.
油分としては特に限定されず、例えば、アボカド油、ツバキ油、タートル油、マカデミアナッツ油、トウモロコシ油、ミンク油、オリーブ油、ナタネ油、卵黄油、ゴマ油、パーシック油、小麦胚芽油、サザンカ油、ヒマシ油、アマニ油、サフラワー油、綿実油、エノ油、大豆油、落花生油、茶実油、カヤ油、コメヌカ油、シナギリ油、日本キリ油、ホホバ油、胚芽油、トリグリセリン、トリオクタン酸グリセリン、トリイソパルミチン酸グリセリン、カカオ脂、ヤシ油、馬脂、パーム油、牛脂、羊脂、パーム核油、豚脂、牛骨脂、モクロウ核油、硬化牛脂、硬化ヤシ油、硬化ひまし油等の硬化油、牛脚脂、モクロウ、ミツロウ、カンデリラロウ、綿ロウ、カルナウバロウ、ベイベリーロウ、イボタロウ、鯨ロウ、モンタンロウ、ヌカロウ、ラノリン、カポックロウ、酢酸ラノリン、液状ラノリン、サトウキビロウ、ラノリン脂肪酸イソプロピル、ラウリン酸ヘキシル、還元ラノリン、ジョジョバロウ、硬質ラノリン、セラックロウ、POEラノリンアルコールエーテル、POEラノリンアルコールアセテート、POEコレステロールエーテル、ラノリン脂肪酸ポリエチレングリコール、POE水素添加ラノリンアルコールエーテル、流動パラフィン、オゾケライト、プリスタン、パラフィン、セレシン、スクワレン、ワセリン、マイクロクリスタリンワックス等が挙げられる。 The oil content is not particularly limited. For example, avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, egg yolk oil, sesame oil, persic oil, wheat germ oil, southern oil, castor oil , Linseed oil, safflower oil, cottonseed oil, eno oil, soybean oil, peanut oil, tea seed oil, kaya oil, rice bran oil, cinnagari oil, Japanese kiri oil, jojoba oil, germ oil, triglycerin, glyceryl trioctanoate, tri Cured oils such as glyceryl isopalmitate, cocoa butter, coconut oil, horse fat, palm oil, beef tallow, sheep tallow, palm kernel oil, pork tallow, beef bone fat, owl kernel oil, hydrogenated beef tallow, hydrogenated palm oil, hydrogenated castor oil , Beef leg fat, mole, beeswax, candelilla wax, cotton wax, carnauba wax, bayberry wax, ibotarou, whale wax, montan wax, nukarou, la Phosphorus, kapok wax, lanolin acetate, liquid lanolin, sugar cane wax, lanolin fatty acid isopropyl, hexyl laurate, reduced lanolin, jojoballow, hard lanolin, shellac wax, POE lanolin alcohol ether, POE lanolin alcohol acetate, POE cholesterol ether, lanolin fatty acid polyethylene glycol POE hydrogenated lanolin alcohol ether, liquid paraffin, ozokerite, pristane, paraffin, ceresin, squalene, petrolatum, microcrystalline wax and the like.
界面活性剤としては、例えば、親油性非イオン界面活性剤、親水性非イオン界面活性剤の他、その他の界面活性剤が挙げられる。親油性非イオン界面活性剤としては特に限定されず、例えば、ソルビタンモノオレエート、ソルビタンモノイソステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンセスキオレエート、ソルビタントリオレエート、ペンタ-2-エチルヘキシル酸ジグリセロールソルビタン、テトラ-2-エチルヘキシル酸ジグリセロールソルビタン等のソルビタン脂肪酸エステル類、モノ綿実油脂肪酸グリセリン、モノエルカ酸グリセリン、セスキオレイン酸グリセリン、モノステアリン酸グリセリン、α,α’-オレイン酸ピログルタミン酸グリセリン、モノステアリン酸グリセリンリンゴ酸等のグリセリンポリグリセリン脂肪酸類、モノステアリン酸プロピレングリコール等のプロピレングリコール脂肪酸エステル類、硬化ヒマシ油誘導体、グリセリンアルキルエーテル等が挙げられる。 Examples of the surfactant include lipophilic nonionic surfactants, hydrophilic nonionic surfactants, and other surfactants. The lipophilic nonionic surfactant is not particularly limited. For example, sorbitan monooleate, sorbitan monoisostearate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate Sorbitan fatty acid esters such as diglycerol sorbitan penta-2-ethylhexylate, diglycerol sorbitan tetra-2-ethylhexylate, mono-cotton oil fatty acid glycerin, glyceryl monoerucate, glyceryl sesquioleate, glyceryl monostearate, α, α ' -Glycerol polyglycerol fatty acids such as glyceryl oleate, glycerol monostearate, malic monostearate, propylene glycol such as propylene glycol monostearate Examples include recall fatty acid esters, hardened castor oil derivatives, and glycerin alkyl ethers.
親水性非イオン界面活性剤としては特に限定されず、例えば、POEソルビタンモノオレエート、POEソルビタンモノステアレート、POEソルビタンテトラオレエート等のPOEソルビタン脂肪酸エステル類、POEソルビットモノラウレート、POEソルビットモノオレエート、POEソルビットペンタオレエート、POEソルビットモノステアレート等のPOEソルビット脂肪酸エステル類、POEグリセリンモノステアレート、POEグリセリンモノイソステアレート、POEグリセリントリイソステアレート等のPOEグリセリン脂肪酸エステル類、POEモノオレエート、POEジステアレート、POEモノジオレエート、システアリン酸エチレングリコール等のPOE脂肪酸エステル類、POEラウリルエーテル、POEオレイルエーテル、POEステアリルエーテル、POEベヘニルエーテル、POE2-オクチルドデシルエーテル、POEコレスタノールエーテル等のPOEアルキルエーテル類、POEオクチルフェニルエーテル、POEノニルフェニルエーテル、POEジノニルフェニルエーテル等のPOEアルキルフェニルエーテル類、ブルロニック等のプルアロニック型類、POE・POPセチルエーテル、POE・POP2-デシルテトラデシルエーテル、POE・POPモノブチルエーテル、POE・POP水添ラノリン、POE・POPグリセリンエーテル等のPOE・POPアルキルエーテル類、テトロニック等のテトラPOE・テトラPOPエチレンジアミン縮合物類、POEヒマシ油、POE硬化ヒマシ油、POE硬化ヒマシ油モノイソステアレート、POE硬化ヒマシ油トリイソステアレート、POE硬化ヒマシ油モノピログルタミン酸モノイソステアリン酸ジエステル、POE硬化ヒマシ油マレイン酸等のPOEヒマシ油硬化ヒマシ油誘導体、POEソルビットミツロウ等のPOEミツロウ・ラノリン誘導体、ヤシ油脂肪酸ジエタノールアミド、ラウリン酸モノエタノールアミド、脂肪酸イソプロパノールアミド等のアルカノールアミド、POEプロピレングリコール脂肪酸エステル、POEアルキルアミン、POE脂肪酸アミド、ショ糖脂肪酸エステル、POEノニルフェニルホルムアルデヒド縮合物、アルキルエトキシジメチルアミンオキシド、トリオレイルリン酸等が挙げられる。 The hydrophilic nonionic surfactant is not particularly limited. For example, POE sorbitan fatty acid esters such as POE sorbitan monooleate, POE sorbitan monostearate, POE sorbitan tetraoleate, POE sorbite monolaurate, and POE sorbite mono POE sorbite fatty acid esters such as oleate, POE sorbite pentaoleate, POE sorbite monostearate, POE glycerin fatty acid esters such as POE glycerol monostearate, POE glycerol monoisostearate, POE glycerol triisostearate, POE POE fatty acid esters such as monooleate, POE distearate, POE monodiolate, ethylene glycol stearate, POE lauryl ether, POE POE alkyl ethers such as yl ether, POE stearyl ether, POE behenyl ether, POE 2-octyldodecyl ether, POE cholestanol ether, POE alkyl phenyl ethers such as POE octyl phenyl ether, POE nonyl phenyl ether, POE dinonyl phenyl ether Plu-alonic types such as brulonic, POE / POP cetyl ether, POE / POP2-decyltetradecyl ether, POE / POP monobutyl ether, POE / POP hydrogenated lanolin, POE / POP alkyl ethers such as POE / POP glycerin ether, Tetronic PEO / TetraPOP ethylenediamine condensates, POE castor oil, POE hydrogenated castor oil, POE hydrogenated castor oil monoisos POE castor oil triisostearate, POE cured castor oil monopyroglutamic acid monoisostearic acid diester, POE castor oil cured castor oil derivatives such as POE cured castor oil maleic acid, POE beeswax and lanolin derivatives such as POE sorbite beeswax, Alkanolamides such as coconut oil fatty acid diethanolamide, lauric acid monoethanolamide, fatty acid isopropanolamide, POE propylene glycol fatty acid ester, POE alkylamine, POE fatty acid amide, sucrose fatty acid ester, POE nonylphenyl formaldehyde condensate, alkylethoxydimethylamine Examples thereof include oxide and trioleyl phosphate.
その他の界面活性剤としては、例えば、脂肪酸セッケン、高級アルキル硫酸エステル塩、POEラウリル硫酸トリエタノールアミン、アルキルエーテル硫酸エステル塩等のアニオン界面活性剤、アルキルトリメチルアンモニウム塩、アルキルピリジニウム塩、アルキル四級アンモニウム塩、アルキルジメチルベンジルアンモニウム塩、POEアルキルアミン、アルキルアミン塩、ポリアミン脂肪酸誘導体等のカチオン界面活性剤、イミダゾリン系両性界面活性剤、ベタイン系界面活性剤等の両性界面活性剤等が挙げられる。 Examples of other surfactants include anionic surfactants such as fatty acid soaps, higher alkyl sulfates, POE lauryl sulfate triethanolamine, alkyl ether sulfates, alkyltrimethylammonium salts, alkylpyridinium salts, alkyl quaternary salts. Examples thereof include cationic surfactants such as ammonium salts, alkyldimethylbenzylammonium salts, POE alkylamines, alkylamine salts, and polyamine fatty acid derivatives, amphoteric surfactants such as imidazoline-based amphoteric surfactants, and betaine-based surfactants.
保湿剤としては特に限定されず、例えば、キシリトール、ソルビトール、マルチトール、コンドロイチン硫酸、ヒアルロン酸、ムコイチン硫酸、カロニン酸、アテロコラーゲン、コレステリル-12-ヒドロキシステアレート、乳酸ナトリウム、胆汁酸塩、dl-ピロリドンカルボン酸塩、短鎖可溶性コラーゲン、ジグリセリン(EO)PO付加物、イザヨイバラ抽出物、セイヨウノコギリソウ抽出物、メリロート抽出物等が挙げられる。 The moisturizing agent is not particularly limited, and for example, xylitol, sorbitol, maltitol, chondroitin sulfate, hyaluronic acid, mucoitin sulfate, caronic acid, atelocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile salt, dl-pyrrolidone Examples thereof include carboxylate, short-chain soluble collagen, diglycerin (EO) PO adduct, Izayoi rose extract, yarrow extract, and merirot extract.
高級アルコールとしては特に限定されず、例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、ミリスチルアルコール、オレイルアルコール、セトステアリルアルコール等の直鎖アルコール、モノステアリルグリセリンエーテル(バチルアルコール)、2-デシルテトラデシノール、ラノリンアルコール、コレステロール、フィトステロール、ヘキシルドデカノール、イソステアリルアルコール、オクチルドデカノール等の分枝鎖アルコール等が挙げられる。 The higher alcohol is not particularly limited, and examples thereof include linear alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, myristyl alcohol, oleyl alcohol, cetostearyl alcohol, monostearyl glycerin ether (batyl alcohol), 2-decyltetra Examples thereof include branched chain alcohols such as decinol, lanolin alcohol, cholesterol, phytosterol, hexyldodecanol, isostearyl alcohol, and octyldodecanol.
金属イオン封鎖剤としては特に限定されず、例えば、1-ヒドロキシエタン-1,1- ジフォスホン酸、1-ヒドロキシエタン-1,1-ジフォスホン酸四ナトリウム塩、クエン酸ナトリウム、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸、リン酸、クエン酸、アスコルビン酸、コハク酸、エデト酸等が挙げられる。 The sequestering agent is not particularly limited. For example, 1-hydroxyethane-1,1- diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid tetrasodium salt, sodium citrate, sodium polyphosphate, metaphosphoric acid Examples thereof include sodium, gluconic acid, phosphoric acid, citric acid, ascorbic acid, succinic acid, edetic acid and the like.
天然の水溶性高分子としては特に限定されず、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルゲコロイド(カッソウエキス)、デンプン(コメ、トウモロコシ、バレイショ、コムギ)、グリチルリチン酸等の植物系高分子、キサンタンガム、デキストラン、サクシノグルカン、プルラン等の微生物系高分子、コラーゲン、カゼイン、アルブミン、ゼラチン等の動物系高分子を挙げることができる。 The natural water-soluble polymer is not particularly limited. For example, gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, agar, quince seed (malmello), algae colloid (gypsum extract), starch (rice, Corn, potato, wheat), plant polymers such as glycyrrhizic acid, microbial polymers such as xanthan gum, dextran, succinoglucan and pullulan, and animal polymers such as collagen, casein, albumin and gelatin. .
半合成の水溶性高分子としては特に限定されず、例えば、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等のデンプン系高分子、メチルセルロース、ニトロセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、セルロース硫酸ナトリウム、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム(CMC)、結晶セルロース、セルロース末等のセルロース系高分子、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等のアルギン酸系高分子等が挙げられる。 The semi-synthetic water-soluble polymer is not particularly limited. For example, starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch, methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, Examples thereof include cellulose polymers such as hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose and cellulose powder, and alginic acid polymers such as sodium alginate and propylene glycol alginate.
合成の水溶性高分子としては特に限定されず、例えば、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドン等のビニル系高分子、ポリエチレングリコール20000、40000、60000等のポリオキシエチレン系高分子、ポリオキシエチレンポリオキシプロピレン共重合体共重合系高分子、ポリアクリル酸ナトリウム、ポリエチルアクリレート、ポリアクリルアミド等のアクリル系高分子、ポリエチレンイミン、カチオンポリマー等が挙げられる。 The synthetic water-soluble polymer is not particularly limited, and examples thereof include vinyl polymers such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone, polyoxyethylene polymers such as polyethylene glycol 20000, 40000, and 60000, and polyoxyethylene. Examples include polyoxypropylene copolymer copolymer polymers, acrylic polymers such as sodium polyacrylate, polyethyl acrylate, and polyacrylamide, polyethyleneimine, and cationic polymers.
無機の水溶性高分子としては特に限定されず、例えば、ベントナイト、ケイ酸A1Mg(ビーガム)、ラポナイト、ヘクトライト、無水ケイ酸等が挙げられる。 The inorganic water-soluble polymer is not particularly limited, and examples thereof include bentonite, silicate A1Mg (beegum), laponite, hectorite, and silicic anhydride.
紫外線遮蔽剤としては特に限定されず、例えば、パラアミノ安息香酸(以下PABAと略す)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル等の安息香酸系紫外線遮蔽剤;ホモメンチル-N-アセチルアントラニレート等のアントラニル酸系紫外線遮蔽剤;アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-イソプロパノールフェニルサリシレート等のサリチル酸系紫外線遮蔽剤;オクチルシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等のケイ皮酸系紫外線遮蔽剤;2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸塩、4-フェニルベンゾフェノン、2-エチルヘキシル-4’-フェニル-ベンゾフェノン-2-カルボキシレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、4-ヒドロキシ-3- カルボキシベンゾフェノン等のベンゾフェノン系紫外線遮蔽剤;3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー、ウロカニン酸、ウロカニン酸エチルエステル、2-フェニル-5-メチルベンゾキサゾール、2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、ジベンザラジン、ジアニソイルメタン、4-メトキシ-4’-t-ブチルジベンゾイルメタン、5-(3,3-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン等が挙げられる。 The UV screening agent is not particularly limited. For example, paraaminobenzoic acid (hereinafter abbreviated as PABA), PABA monoglycerin ester, N, N-dipropoxy PABA ethyl ester, N, N-diethoxy PABA ethyl ester, N, N-dimethyl Benzoic acid UV screening agents such as PABA ethyl ester and N, N-dimethyl PABA butyl ester; Anthranilic acid UV screening agents such as homomenthyl-N-acetylanthranylate; Amyl salicylate, Menthyl salicylate, Homomentil salicylate, Octyl salicylate , Salicylic acid UV screening agents such as phenyl salicylate, benzyl salicylate, p-isopropanol phenyl salicylate; octylcinnamate, ethyl-4-isopropylcinnamate, methyl-2,5- Isopropyl cinnamate, ethyl-2,4-diisopropyl cinnamate, methyl-2,4-diisopropyl cinnamate, propyl-p-methoxycinnamate, isopropyl-p-methoxycinnamate, isoamyl-p-methoxycinnamate, 2- Ethoxyethyl-p-methoxycinnamate, cyclohexyl-p-methoxycinnamate, ethyl-α-cyano-β-phenylcinnamate, 2-ethylhexyl-α-cyano-β-phenylcinnamate, glyceryl mono-2-ethylhexa Cinnamic acid-based UV screening agents such as noyl-diparamethoxycinnamate; 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone , 2, 2 ', 4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonate, 4 -Benzophenone-based UV screening agents such as phenylbenzophenone, 2-ethylhexyl-4'-phenyl-benzophenone-2-carboxylate, 2-hydroxy-4-n-octoxybenzophenone, 4-hydroxy-3- carboxybenzophenone; (4'-methylbenzylidene) -d, l-camphor, 3-benzylidene-d, l-camphor, urocanic acid, urocanic acid ethyl ester, 2-phenyl-5-methylbenzoxazole, 2,2'-hydroxy- 5-methylphenylbenzoto Azole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, dibenzalazine, dianisoylmethane, 4-methoxy-4 ′ -T-butyldibenzoylmethane, 5- (3,3-dimethyl-2-norbornylidene) -3-pentan-2-one and the like.
その他薬剤成分としては特に限定されず、例えば、ビタミンA油、レチノール、パルミチン酸レチノール、イノシット、塩酸ピリドキシン、ニコチン酸ベンジル、ニコチン酸アミド、ニコチン酸DL-α-トコフェロール、アルコルビン酸リン酸マグネシウム、2-O-α-D-グルコピラノシル-L-アスコルビン酸、ビタミンD2(エルゴカシフェロール)、dl-α-トコフェロール、酢酸dl-α-トコフェロール、パントテン酸、ビオチン等のビタミン類;エストラジオール、エチニルエストラジオール等のホルモン;アルギニン、アスパラギン酸、シスチン、システイン、メチオニン、セリン、ロイシン、トリプトファン等のアミノ酸;アラントイン、アズレン等の抗炎症剤、アルブチン等の美白剤、;タンニン酸等の収斂剤;L-メントール、カンフル等の清涼剤;や、イオウ、塩化リゾチーム、塩化ピリドキシン等が挙げられる。 Other drug components are not particularly limited and include, for example, vitamin A oil, retinol, retinol palmitate, inosit, pyridoxine hydrochloride, benzyl nicotinate, nicotinamide, nicotinic acid DL-α-tocopherol, magnesium ascorbate phosphate, 2 Vitamins such as -O-α-D-glucopyranosyl-L-ascorbic acid, vitamin D2 (ergocaciferol), dl-α-tocopherol, dl-α-tocopherol acetate, pantothenic acid, biotin; estradiol, ethinylestradiol, etc. Hormones; amino acids such as arginine, aspartic acid, cystine, cysteine, methionine, serine, leucine and tryptophan; anti-inflammatory agents such as allantoin and azulene; whitening agents such as arbutin; astringents such as tannic acid; L Menthol, cooling agents of camphor; and, sulfur, lysozyme chloride, pyridoxine chloride.
各種の抽出液としては特に限定されず、例えば、ドクダミエキス、オウバクエキス、メリロートエキス、オドリコソウエキス、カンゾウエキス、シャクヤクエキス、サボンソウエキス、ヘチマエキス、キナエキス、ユキノシタエキス、クララエキス、コウホネエキス、ウイキョウエキス、サクラソウエキス、バラエキス、ジオウエキス、レモンエキス、シコンエキス、アロエエキス、ショウブ根エキス、ユーカリエキス、スギナエキス、セージエキス、タイムエキス、茶エキス、海藻エキス、キューカンバーエキス、チョウジエキス、キイチゴエキス、メリッサエキス、ニンジンエキス、マロニエエキス、モモエキス、桃葉エキス、クワエキス、ヤグリマギクエキス、ハマメリスエキス、プラセンタエキス、胸腺抽出物、シルク抽出液、甘草エキス等が挙げられる。 There are no particular limitations on the various extracts, for example, Dokudami extract, Oat extract, Merirot extract, Odorikosou extract, Licorice extract, Peonies extract, Soap extract, Loofah extract, Kina extract, Yukinoshita extract, Clara extract, Kouhone extract, Fennel Extract, Primrose Extract, Rose Extract, Giant Extract, Lemon Extract, Shikon Extract, Aloe Extract, Shobu Root Extract, Eucalyptus Extract, Horsetail Extract, Sage Extract, Thyme Extract, Tea Extract, Seaweed Extract, Cucumber Extract, Clove Extract, Raspberry Extract, Melissa Extract , Carrot extract, horse chestnut extract, peach extract, peach leaf extract, mulberry extract, cornflower extract, hamamelis extract, placenta extract, thymus extract, silk extract, licorice Kiss, and the like.
各種粉体としては、例えば、ベンガラ、黄酸化鉄、黒酸化鉄、雲母チタン、酸化鉄被覆雲母チタン、酸化チタン被覆ガラスフレーク等の光輝性着色顔料、マイカ、タルク、カオリン、セリサイト、二酸化チタン、シリカ等の無機粉末やポリエチレン末、ナイロン末、架橋ポリスチレン、セルロースパウダー、シリコーン末等の有機粉末等が挙げられる。好ましくは、官能特性向上や化粧持続性向上のため、粉末成分の一部又は全部をシリコーン類、フッ素化合物、金属石鹸、油剤、アシルグルタミン酸塩等の物質にて、公知の方法で疎水化処理したものである。 Various powders include, for example, bengara, yellow iron oxide, black iron oxide, mica titanium, iron oxide coated mica titanium, titanium oxide coated glass flakes and other bright colored pigments, mica, talc, kaolin, sericite, titanium dioxide. Inorganic powders such as silica and organic powders such as polyethylene powder, nylon powder, cross-linked polystyrene, cellulose powder, and silicone powder. Preferably, a part or all of the powder component is hydrophobized by a known method with substances such as silicones, fluorine compounds, metal soaps, oil agents, acyl glutamates in order to improve sensory characteristics and cosmetic durability. Is.
本発明を詳細に説明するために以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。特に断りのない限り、「%」とは「重量%(質量%)」を意味する。 In order to describe the present invention in detail, examples will be given below, but the present invention is not limited to these examples. Unless otherwise specified, “%” means “% by weight (mass%)”.
実施例1
(1)中和
硫酸亜鉛7水和物96.6gと、354g/Lの硫酸アルミニウム水溶液81.2mL(Al(SOとして28.7g)を混合し、全量が350mLとなるようにイオン交換水を加えた金属塩混合水溶液を得た。別途、720g/Lの水酸化ナトリウム水溶液46.7mLと、炭酸ナトリウム26.7gとを混合し、全量が350mLとなるようにイオン交換水を加えたアルカリ混合水溶液を得た。1Lの丸底フラスコにイオン交換水50mLを入れ、撹拌下において、これら水溶液を加えた。このときのスラリーのpHは9であった。その後、50℃で30分間撹拌することにより、スラリーを得た。
Example 1
(1) 96.6 g of neutralized zinc sulfate heptahydrate and 81.2 mL of 354 g / L aluminum sulfate aqueous solution (28.7 g as Al 2 (SO 4 ) 3 ) are mixed so that the total amount becomes 350 mL A metal salt mixed aqueous solution to which ion exchange water was added was obtained. Separately, 46.7 mL of a 720 g / L sodium hydroxide aqueous solution and 26.7 g of sodium carbonate were mixed to obtain an alkali mixed aqueous solution to which ion-exchanged water was added so that the total amount became 350 mL. In a 1 L round bottom flask, 50 mL of ion exchange water was added, and these aqueous solutions were added under stirring. The pH of the slurry at this time was 9. Then, the slurry was obtained by stirring for 30 minutes at 50 degreeC.
(2)乾燥・粉砕
上記「(1)中和」により得られたスラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗した。得られたケーキを105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト前駆体の粉末を得た。
(2) Drying and pulverization The slurry obtained by the above “(1) neutralization” was filtered and washed with water until the electric conductivity of the washing liquid became 100 μS / cm or less. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized for 20 seconds with a force mill (manufactured by Osaka Chemical Co., Ltd., FM-1) to obtain hydrotalcite precursor powder. .
(5)湿潤雰囲気工程
上記「(2)乾燥・粉砕」により得られた粉末のうち1gを、口内径27mm、高さ15mmのガラスシャーレに入れて、恒温恒湿器(エスペック社製、PR-1KT)に入れ、室温から85℃、相対湿度85%RHまで15分間かけて調整し、85℃、相対湿度85%RHにて3時間保持し、その後ヒーターへの通電を中止し室温まで冷却した。なお、この工程は大気中で行った。このようにして、ハイドロタルサイト型粒子を含む粉末(1)を得た。
(5) Wet atmosphere process 1 g of the powder obtained by the above “(2) Drying and pulverization” is placed in a glass petri dish having an inner diameter of 27 mm and a height of 15 mm, and a constant temperature and humidity chamber (manufactured by Espec Corp., PR- 1 KT), adjusted from room temperature to 85 ° C. and relative humidity 85% RH over 15 minutes, held at 85 ° C. and relative humidity 85% RH for 3 hours, then stopped energizing the heater and cooled to room temperature . In addition, this process was performed in air | atmosphere. In this way, a powder (1) containing hydrotalcite type particles was obtained.
実施例2~6
実施例1において、「(5)湿潤雰囲気工程」での保持時間を表1に示すとおりに変更したこと以外は、実施例1と同様にしてハイドロタルサイト型粒子を含む粉末(2)~(6)を各々得た。
Examples 2 to 6
In Example 1, powders (2) to (2) containing hydrotalcite-type particles were obtained in the same manner as in Example 1 except that the retention time in “(5) Wet atmosphere process” was changed as shown in Table 1. 6) were obtained respectively.
実施例7~11
実施例1において、「(1)中和」での反応時間(すなわち50℃での撹拌時間)を10分とし、かつ「(5)湿潤雰囲気工程」での保持時間を表1に示すとおりに変更したこと以外は、実施例1と同様にしてハイドロタルサイト型粒子を含む粉末(7)~(11)を各々得た。
Examples 7-11
In Example 1, the reaction time in “(1) neutralization” (that is, the stirring time at 50 ° C.) was 10 minutes, and the retention time in “(5) wet atmosphere process” was as shown in Table 1. Except for the changes, powders (7) to (11) containing hydrotalcite-type particles were obtained in the same manner as in Example 1.
実施例12
実施例10の「(1)中和」により得られたハイドロタルサイト前駆体スラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗した。得られたケーキ3.3g(固形分30%)を「(5)湿潤雰囲気工程」に供する際は表1の通りとした。このようにしてハイドロタルサイト型粒子を含む粉末(12)を得た。
Example 12
The hydrotalcite precursor slurry obtained by “(1) Neutralization” in Example 10 was filtered and washed with water until the electric conductivity of the washing liquid became 100 μS / cm or less. When the obtained cake 3.3 g (solid content 30%) was subjected to the “(5) wet atmosphere step”, it was as shown in Table 1. Thus, a powder (12) containing hydrotalcite type particles was obtained.
実施例13、14
(3)熟成
実施例7の「(1)中和」により得られたスラリーを、スラリー中の固形分換算で42gとなるように1Lの丸底フラスコに計り取り、全量が600mLとなるようにイオン交換水を加えた後、50℃で22時間撹拌した。このスラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗した。得られたケーキを、105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト前駆体の粉末を得た。得られた粉末のうち1gを、実施例1の「(5)湿潤雰囲気工程」に供した(但し、保持時間は表1に記載のとおりに変更した)。このようにしてハイドロタルサイト型粒子を含む粉末(13)、(14)を各々得た。
Examples 13 and 14
(3) Maturation The slurry obtained by “(1) Neutralization” in Example 7 was weighed into a 1 L round bottom flask so as to be 42 g in terms of solid content in the slurry, so that the total amount became 600 mL. After adding ion-exchange water, it stirred at 50 degreeC for 22 hours. This slurry was filtered and washed with water until the electric conductivity of the washing liquid became 100 μS / cm or less. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (FM-1 manufactured by Osaka Chemical Co., Ltd.) for 20 seconds to obtain hydrotalcite precursor powder. It was. 1 g of the obtained powder was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was changed as shown in Table 1). In this way, powders (13) and (14) containing hydrotalcite-type particles were obtained.
比較例1
(1)中和
297g/Lの硫酸マグネシウム7水和物136.2mL(MgSOとして40.5g)と、354g/Lの硫酸アルミニウム水溶液81.2mL(Al(SOとして28.7g)を混合し、全量が350mLとなるようにイオン交換水を加えた金属塩混合水溶液を得た。別途、720g/Lの水酸化ナトリウム水溶液46.7mLと、炭酸ナトリウム26.7gとを混合し、全量が350mLとなるようにイオン交換水を加えたアルカリ混合水溶液を得た。1Lの丸底フラスコにイオン交換水50mLを入れ、撹拌下において、これら水溶液を加えた。このときのスラリーのpHは9であった。その後、50℃で30分間撹拌することにより、ハイドロタルサイト前駆体のスラリーを得た。
Comparative Example 1
(1) Neutralization 297 g / L magnesium sulfate heptahydrate 136.2 mL (40.5 g as MgSO 4 ) and 354 g / L aluminum sulfate aqueous solution 81.2 mL (Al 2 (SO 4 ) 3 as 28.7 g ) To obtain a metal salt mixed aqueous solution to which ion exchange water was added so that the total amount became 350 mL. Separately, 46.7 mL of a 720 g / L sodium hydroxide aqueous solution and 26.7 g of sodium carbonate were mixed to obtain an alkali mixed aqueous solution to which ion-exchanged water was added so that the total amount became 350 mL. In a 1 L round bottom flask, 50 mL of ion exchange water was added, and these aqueous solutions were added under stirring. The pH of the slurry at this time was 9. Then, the slurry of the hydrotalcite precursor was obtained by stirring for 30 minutes at 50 degreeC.
(2)乾燥・粉砕
上記「(1)中和」により得られたスラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗した。得られたケーキを105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト前駆体の粉末を得た。得られた粉末のうち1gを、実施例1の「(5)湿潤雰囲気工程」に供した(但し、保持時間は表2に示すとおりに変更した)。このようにしてハイドロタルサイト型粒子を含む粉末(c1)を得た。
(2) Drying and pulverization The slurry obtained by the above “(1) neutralization” was filtered and washed with water until the electric conductivity of the washing liquid became 100 μS / cm or less. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized for 20 seconds with a force mill (manufactured by Osaka Chemical Co., Ltd., FM-1) to obtain hydrotalcite precursor powder. . 1 g of the obtained powder was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was changed as shown in Table 2). In this way, a powder (c1) containing hydrotalcite-type particles was obtained.
比較例2
比較例1において、「(1)中和」で用いたMg原料を表2に示すZn原料及びMg原料に変更したこと以外は、比較例1と同様にして得たスラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗した。得られたケーキを、105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト前駆体の粉末を得た。得られた粉末のうち1gを、実施例1の「(5)湿潤雰囲気工程」に供した(但し、保持時間は表2に示すとおりに変更した)。このようにしてハイドロタルサイト型粒子を含む粉末(c2)を得た。
Comparative Example 2
In Comparative Example 1, except that the Mg raw material used in “(1) Neutralization” was changed to the Zn raw material and the Mg raw material shown in Table 2, the slurry obtained in the same manner as in Comparative Example 1 was filtered and washed. Was washed with water until the electric conductivity of the sample became 100 μS / cm or less. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (FM-1 manufactured by Osaka Chemical Co., Ltd.) for 20 seconds to obtain hydrotalcite precursor powder. It was. 1 g of the obtained powder was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was changed as shown in Table 2). In this way, a powder (c2) containing hydrotalcite-type particles was obtained.
比較例3
実施例1において、「(5)湿潤雰囲気工程」を行わなかったこと以外は、実施例1と同様にして、ハイドロタルサイト型粒子を含む粉末(c3)を得た。
Comparative Example 3
A powder (c3) containing hydrotalcite-type particles was obtained in the same manner as in Example 1 except that “(5) Wet atmosphere process” was not performed in Example 1.
比較例4、6
実施例1において、「(1)中和」で用いたZn原料を表2に示すZn原料及びMg原料に変更し、かつ「(5)湿潤雰囲気工程」を行わなかったこと以外は、実施例1と同様にして、ハイドロタルサイト型粒子を含む粉末(c4)、(c6)を各々得た。
Comparative Examples 4 and 6
In Example 1, except that the Zn raw material used in “(1) Neutralization” was changed to the Zn raw material and Mg raw material shown in Table 2, and “(5) Wet atmosphere process” was not performed. In the same manner as in Example 1, powders (c4) and (c6) containing hydrotalcite-type particles were obtained.
比較例5、7
実施例1において、「(1)中和」で用いたZn原料を表2に示すZn原料及びMg原料に変更し、かつ「(5)湿潤雰囲気工程」での相対湿度及び保持時間を表2に記載のとおりに変更したこと以外は、実施例1と同様にしてハイドロタルサイト型粒子を含む粉末(c5)、(c7)を各々得た。
Comparative Examples 5 and 7
In Example 1, the Zn raw material used in “(1) Neutralization” was changed to the Zn raw material and the Mg raw material shown in Table 2, and the relative humidity and holding time in “(5) Wet atmosphere process” are shown in Table 2. Powders (c5) and (c7) containing hydrotalcite-type particles were obtained in the same manner as in Example 1 except that the changes were made as described in 1.
比較例8、10~12
実施例1において、「(5)湿潤雰囲気工程」での温度、相対湿度及び保持時間を表2に示すとおりに変更したこと以外は、実施例1と同様にしてハイドロタルサイト型粒子を含む粉末(c8)、(c10)~(c12)を各々得た。
Comparative Examples 8, 10-12
A powder containing hydrotalcite-type particles in the same manner as in Example 1, except that the temperature, relative humidity and holding time in “(5) Wet atmosphere process” in Example 1 were changed as shown in Table 2. (C8) and (c10) to (c12) were obtained.
比較例9
(4)水熱
実施例1の「(1)中和」により得られたスラリーを、スラリー中の固形分換算で5.3gとなるように100mLの圧力容器に計り取り、全量が75mLとなるようにイオン交換水を加えた後、180℃で2時間保持した。このスラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗することにより、ケーキを得た。得られたケーキを、105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒粉砕することにより、粉末(c9)を得たが、大半が酸化亜鉛であったため、後述の評価を行わなかった。
Comparative Example 9
(4) The slurry obtained by “(1) neutralization” in hydrothermal example 1 is weighed into a 100 mL pressure vessel so that the amount is 5.3 g in terms of solid content in the slurry, and the total amount becomes 75 mL. After adding ion-exchanged water, the mixture was kept at 180 ° C. for 2 hours. The slurry was filtered, and washed with water until the electric conductivity of the washing liquid became 100 μS / cm or less to obtain a cake. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (manufactured by Osaka Chemical Co., FM-1) for 20 seconds to obtain a powder (c9). Since most were zinc oxide, the below-mentioned evaluation was not performed.
比較例13
(1)中和
硫酸亜鉛7水和物96.6gと、354g/Lの硫酸アルミニウム水溶液81.2mL(Al(SOとして28.7g)を混合し、全量が350mLとなるようにイオン交換水を加えた金属塩混合水溶液を得た。別途、720g/Lの水酸化ナトリウム水溶液46.7mLと、炭酸ナトリウム26.7gとを混合し、全量が350mLとなるようにイオン交換水を加えたアルカリ混合水溶液を得た。1Lの丸底フラスコにイオン交換水50mLを入れ、撹拌下において、これら水溶液を加えた。このときのスラリーのpHは9であった。その後、50℃で10分間撹拌することにより、スラリーを得た。
Comparative Example 13
(1) 96.6 g of neutralized zinc sulfate heptahydrate and 81.2 mL of 354 g / L aluminum sulfate aqueous solution (28.7 g as Al 2 (SO 4 ) 3 ) are mixed so that the total amount becomes 350 mL A metal salt mixed aqueous solution to which ion exchange water was added was obtained. Separately, 46.7 mL of a 720 g / L sodium hydroxide aqueous solution and 26.7 g of sodium carbonate were mixed to obtain an alkali mixed aqueous solution to which ion-exchanged water was added so that the total amount became 350 mL. In a 1 L round bottom flask, 50 mL of ion exchange water was added, and these aqueous solutions were added under stirring. The pH of the slurry at this time was 9. Then, the slurry was obtained by stirring for 10 minutes at 50 degreeC.
(3)熟成
上記「(1)中和」により得られたスラリーを、スラリー中の固形分換算で42gとなるように1Lの丸底フラスコに計り取り、全量が600mLとなるようにイオン交換水を加えた後、50℃で22時間撹拌した。このスラリーをろ過し、洗液の電気伝導度が100μS/cm以下になるまで水洗した。得られたケーキを、105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト型粒子を含む粉末(c13)を得た。
(3) Aging The slurry obtained by the above “(1) Neutralization” is weighed into a 1 L round bottom flask so that the amount is 42 g in terms of solid content in the slurry, and ion-exchanged water so that the total amount becomes 600 mL. Then, the mixture was stirred at 50 ° C. for 22 hours. This slurry was filtered and washed with water until the electric conductivity of the washing liquid became 100 μS / cm or less. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (manufactured by Osaka Chemical Co., FM-1) for 20 seconds to obtain a powder containing hydrotalcite-type particles ( c13) was obtained.
比較例14
実施例7において、「(5)湿潤雰囲気工程」を行わなかったこと以外は、実施例7と同様にして、ハイドロタルサイト型粒子を含む粉末(c14)を得た。
Comparative Example 14
In Example 7, a powder (c14) containing hydrotalcite-type particles was obtained in the same manner as in Example 7, except that “(5) Wet atmosphere process” was not performed.
比較例15
比較例13において、「(3)熟成」での熟成温度(50℃)を85℃に変更したこと以外は、比較例13と同様にして、ケーキを得た。得られたケーキを、105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト型粒子を含む粉末(c15)を得た。
Comparative Example 15
In Comparative Example 13, a cake was obtained in the same manner as Comparative Example 13 except that the aging temperature (50 ° C.) in “(3) Aging” was changed to 85 ° C. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (manufactured by Osaka Chemical Co., FM-1) for 20 seconds to obtain a powder containing hydrotalcite-type particles ( c15) was obtained.
比較例16、17
比較例15の「(3)熟成」で得たハイドロタルサイトの粉末のうち1gを、実施例1の「(5)湿潤雰囲気工程」に供した(但し、保持時間は表2に示すとおりに変更した)。このようにしてハイドロタルサイト型粒子を含む粉末(c16)、(c17)を各々得た。
Comparative Examples 16 and 17
1 g of the hydrotalcite powder obtained in “(3) Aging” in Comparative Example 15 was subjected to “(5) Wet atmosphere process” in Example 1 (however, the holding time was as shown in Table 2). changed). In this way, powders (c16) and (c17) containing hydrotalcite-type particles were obtained.
比較例18
比較例13において、「(3)熟成」での熟成温度(50℃)を100℃に変更したこと以外は、比較例13と同様にして、ケーキを得た。得られたケーキを、105℃の温度で18時間乾燥し、乾燥粉5gをフォースミル(大阪ケミカル社製、FM-1)にて20秒間粉砕することにより、ハイドロタルサイト型粒子を含む粉末(c18)を得た。
Comparative Example 18
In Comparative Example 13, a cake was obtained in the same manner as Comparative Example 13 except that the aging temperature (50 ° C.) in “(3) Aging” was changed to 100 ° C. The obtained cake was dried at a temperature of 105 ° C. for 18 hours, and 5 g of the dried powder was pulverized with a force mill (manufactured by Osaka Chemical Co., FM-1) for 20 seconds to obtain a powder containing hydrotalcite-type particles ( c18) was obtained.
参考例1
参考のため、市販品であるハイドロタルサイト類化合物(STABIACE・HT-1-NC、(Mg)0.67(Al)0.33(OH)(CO 2-0.17・0.5HO、堺化学工業社製)を、参考例1の粉末(参考例1で得たハイドロタルサイト型粒子)とした。
Reference example 1
For reference, commercially available hydrotalcite compounds (STABIACE.HT-1-NC, (Mg) 0.67 (Al) 0.33 (OH) 2 (CO 3 2− ) 0.17 · 0. 5H 2 O (manufactured by Sakai Chemical Industry Co., Ltd.) was used as the powder of Reference Example 1 (hydrotalcite-type particles obtained in Reference Example 1).
各実施例及び比較例で得たハイドロタルサイト型粒子(粉体)、並びに、「(5)湿潤雰囲気工程」に供する際の前駆体(「(5)湿潤雰囲気工程」を行わない場合は生成物)について、以下の方法に従って、それぞれ、物性の測定と評価を行った。 Hydrotalcite-type particles (powder) obtained in each of the examples and comparative examples, and precursors used in “(5) Wet atmosphere process” (generated when “(5) Wet atmosphere process” is not performed) The physical properties were measured and evaluated according to the following methods.
1、半価幅の測定
得られた各粉体について、以下の条件により粉末X線回折パターン(単にX線回折パターンともいう)を測定した。例えば、実施例11で得た粉体のX線回折パターンを図1に示す。その後、得られた各粉体のX線回折の測定により得られた回折パターンから、(003)及び(006)半価幅を測定した。結果を表3及び4に示す。
なお、実施例で得た全ての粉体のX線回折パターンは、JCPDSカード 00-048-1023と一致した。
1. Measurement of half width The powder X-ray diffraction pattern (also simply referred to as X-ray diffraction pattern) was measured for each of the obtained powders under the following conditions. For example, the X-ray diffraction pattern of the powder obtained in Example 11 is shown in FIG. Thereafter, the (003) and (006) half-value widths were measured from the diffraction patterns obtained by X-ray diffraction measurement of the obtained powders. The results are shown in Tables 3 and 4.
The X-ray diffraction patterns of all the powders obtained in the examples were in agreement with JCPDS card 00-048-1023.
-分析条件-
使用機:リガク社製 RINT-UltimaIII
線源:CuKα
電圧:50kV
電流:300mA
試料回転速度:60rpm
発散スリット:1.00mm
発散縦制限スリット:10mm
散乱スリット:開放
受光スリット:開放
走査モード:FT
計数時間:2.0秒
ステップ幅:0.0200°
操作軸:2θ/θ
走査範囲:1.6000~70.0000°
積算回数:1回
ハイドロタルサイト型粒子の同定に用いたのは以下の資料である。
Zn0.67Al0.33(OH)(CO0.165・xHO:JCPDSカード 00-048-1023
MgAl(OH)12CO・3HO:JCPDSカード 00-051-1525
なお、線源としてCuKα線を用いたX線回折において、ハイドロタルサイトの最大ピークである(003)面に由来するピークは2θ=11.6°付近に、(006)面に由来するピークは2θ=23.4°付近にある。
-Analysis conditions-
Machine used: RINT-UltimaIII manufactured by Rigaku
Radiation source: CuKα
Voltage: 50kV
Current: 300mA
Sample rotation speed: 60 rpm
Divergence slit: 1.00mm
Divergence length restriction slit: 10 mm
Scattering slit: Open light receiving slit: Open scanning mode: FT
Counting time: 2.0 seconds Step width: 0.0200 °
Operation axis: 2θ / θ
Scanning range: 1.6000 to 70.000 °
Accumulation count: 1 times The following materials were used to identify hydrotalcite-type particles.
Zn 0.67 Al 0.33 (OH) 2 (CO 3 ) 0.165 · xH 2 O: JCPDS card 00-048-1023
Mg 4 Al 2 (OH) 12 CO 3 / 3H 2 O: JCPDS card 00-051-1525
In X-ray diffraction using CuKα rays as a radiation source, the peak derived from the (003) plane, which is the maximum peak of hydrotalcite, is near 2θ = 11.6 °, and the peak derived from the (006) plane is It is around 2θ = 23.4 °.
2、比表面積(SSA)の測定
以下の条件により比表面積(SSA)の測定を行った。結果を表3及び4に示す。
使用機:マウンテック社製、Macsorb Model HM-1220
雰囲気:窒素ガス(N
外部脱気装置の脱気条件:105℃-15分
比表面積測定装置本体の脱気条件:105℃-5分
2. Measurement of specific surface area (SSA) The specific surface area (SSA) was measured under the following conditions. The results are shown in Tables 3 and 4.
Used machine: Macsorb Model HM-1220, manufactured by Mountec
Atmosphere: Nitrogen gas (N 2 )
Degassing condition of external degassing device: 105 ° C-15 minutes Degassing condition of specific surface area measuring device body: 105 ° C-5 minutes
3、メジアン径(D50)及び粒度分布のシャープさ(D90/D10
レーザー回折・散乱式粒度分析計(HORIBA社製、型番:LA-950-V2)により粒度分布測定を行った。
まずサンプル(試料粉体)0.1gに0.025wt%ヘキサメタリン酸ナトリウム水溶液60mLを加え、超音波ホモジナイザー(US-600、日本精機製作所製)を用いて、強度をV-LEVEL3に設定して2分間分散処理を行うことにより、サンプルの懸濁液を準備した。この後、0.025wt%ヘキサメタリン酸ナトリウム水溶液を試料循環器に循環させ、透過率が80~95%になるように上記懸濁液を滴下して、循環速度5、撹拌速度1にて、60秒間超音波分散してから測定を行った。結果を表3及び4に示す。
3. Median diameter (D 50 ) and sharpness of particle size distribution (D 90 / D 10 )
The particle size distribution was measured with a laser diffraction / scattering particle size analyzer (manufactured by HORIBA, model number: LA-950-V2).
First, 60 mL of a 0.025 wt% sodium hexametaphosphate aqueous solution was added to 0.1 g of a sample (sample powder), and the strength was set to V-LEVEL 3 using an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Seisakusho). A sample suspension was prepared by performing a dispersion treatment for a minute. Thereafter, an aqueous 0.025 wt% sodium hexametaphosphate solution is circulated through the sample circulator, and the suspension is added dropwise so that the transmittance is 80 to 95%. Measurement was performed after ultrasonic dispersion for 2 seconds. The results are shown in Tables 3 and 4.
4、元素分析
ハイドロタルサイト中のMg,Zn,Al含有量は、誘導結合プラズマ(ICP)発光分光分析法を用い、以下の方法により測定することができる。
具体的には、以下のように、分光器(SII社製、ICP SPS3100)を使用し、スカンジウム(Sc)を内標準元素とする内標準法により測定する。
まず、試料約0.2gをビーカーに精秤し、塩酸約5mLを加えて溶解させ、100mLメスフラスコに充填し、イオン交換水でメスアップする。これをMg含有量測定では20倍、Zn含有量測定では50倍、Al含有量測定では10倍希釈し、かつSc濃度が10ppmとなるようにSc標準溶液を添加した溶液を試験液とし、下記の測定条件により測定し、得られた生データを下記の計算条件で計算することによりMg,Zn,Al含有量を算出する。結果を表3及び4に示す。
4. Elemental analysis The Mg, Zn and Al contents in hydrotalcite can be measured by the following method using inductively coupled plasma (ICP) emission spectroscopy.
Specifically, a spectroscope (manufactured by SII, ICP SPS3100) is used as follows, and measurement is performed by an internal standard method using scandium (Sc) as an internal standard element.
First, about 0.2 g of a sample is precisely weighed in a beaker, about 5 mL of hydrochloric acid is added and dissolved, filled into a 100 mL volumetric flask, and made up with ion-exchanged water. This was diluted 20 times for Mg content measurement, 50 times for Zn content measurement, 10 times for Al content measurement, and diluted with Sc standard solution so that the Sc concentration would be 10 ppm. The Mg, Zn and Al contents are calculated by measuring under the following measurement conditions and calculating the obtained raw data under the following calculation conditions. The results are shown in Tables 3 and 4.
-測定条件-
分光器(SII社製、ICP SPS3100)を使用し、波長279.55nm(Mg)、213.86nm(Zn)、396.15nm(Al)、361.49nm(Sc)にてそれぞれ検量線を作成した後、試料を測定する。
検量線用試料の濃度としては、
Mg(ppm)=50,40,30,20,10、
Zn(ppm)=20,16,12,8,4、
Al(ppm)=50,40,30,20,10
の各5点を使用する。
なお、いずれの検量線用試料も、Sc濃度が10ppmとなるようにSc標準溶液を添加した。計算条件は以下の通りである。
各含有量(%)=生データ×100/試料重量(g)×希釈倍率/10000
-Measurement condition-
Using a spectroscope (ICP SPS3100, manufactured by SII), calibration curves were prepared at wavelengths of 279.55 nm (Mg), 213.86 nm (Zn), 396.15 nm (Al), and 361.49 nm (Sc), respectively. After that, the sample is measured.
As the concentration of the calibration curve sample,
Mg (ppm) = 50, 40, 30, 20, 10,
Zn (ppm) = 20, 16, 12, 8, 4,
Al (ppm) = 50, 40, 30, 20, 10
5 points are used.
In all the calibration curve samples, the Sc standard solution was added so that the Sc concentration was 10 ppm. The calculation conditions are as follows.
Each content (%) = raw data × 100 / sample weight (g) × dilution ratio / 10000
また、以上のように求めたMg,Zn,Al含有量(重量%)を用い、下記計算式;
x=(Al含有量/26.982)÷{(Mg含有量/24.305)+(Zn含有量/65.38)+(Al含有量/26.982)}
により、上記式(1)中のxに該当する値を求めた。結果を表3及び4に示す。
Also, using the Mg, Zn, Al content (% by weight) determined as described above, the following calculation formula:
x = (Al content / 26.982) ÷ {(Mg content / 24.305) + (Zn content / 65.38) + (Al content / 26.982)}
Thus, a value corresponding to x in the above formula (1) was obtained. The results are shown in Tables 3 and 4.
5、細孔容積
自動比表面積/細孔分布測定装置(製品名「BEL SORP-miniII」、日本ベル社製)を用いて測定した。サンプル0.1gを測定セルに充填し、200℃にて脱ガス処理を行った後に測定を行った。
平均細孔直径、全細孔容積及び細孔分布を算出するための解析法は、BJH法を用いる。
平均細孔直径とは、全細孔容積の4倍を表面積で除した値のことを示す。これはサンプル中のすべての細孔を円筒形であると仮定し、その円筒型細孔が体積Vだとする。このとき円筒型細孔の体積は以下の式(i)で表される。
V=πDL/4  (i)
式中、Dは細孔直径、Lは円筒型細孔の長さとする。
次に、円筒型細孔の側面積Aを以下の式(ii)で表す。
A=πDL     (ii)
上記式(i)及び(ii)から、次の式(iii)が得られる。
D=4V/A    (iii)
上記式(iii)で算出されたDを平均細孔直径とする。
全細孔容積は、BJH法による細孔分布結果から得た全範囲の細孔の積算値である。結果を表3及び4に示す。
5. Measurement was performed using an automatic pore volume specific surface area / pore distribution measuring device (product name “BEL SORP-miniII”, manufactured by Nippon Bell Co., Ltd.). A measurement cell was filled with 0.1 g of a sample and subjected to degassing treatment at 200 ° C., and measurement was performed.
The BJH method is used as an analysis method for calculating the average pore diameter, the total pore volume, and the pore distribution.
The average pore diameter is a value obtained by dividing 4 times the total pore volume by the surface area. This assumes that all the pores in the sample are cylindrical, and that the cylindrical pores have a volume V. At this time, the volume of the cylindrical pore is represented by the following formula (i).
V = πD 2 L / 4 (i)
In the formula, D is the pore diameter, and L is the length of the cylindrical pore.
Next, the side area A of the cylindrical pore is expressed by the following formula (ii).
A = πDL (ii)
From the above formulas (i) and (ii), the following formula (iii) is obtained.
D = 4V / A (iii)
Let D calculated by the above formula (iii) be the average pore diameter.
The total pore volume is an integrated value of pores in the entire range obtained from the pore distribution result by the BJH method. The results are shown in Tables 3 and 4.
6、平均板面径、平均厚み及びアスペクト比
各粉体につき、電界放出型走査電子顕微鏡(日本電子社製、JSM-7000F)により、粒子が50~10000個程度写るように電子顕微鏡写真を撮影した。この電子顕微鏡写真上に無作為に引いた直線上にある粒子20個の板面径の平均値を、各粉体の平均板面径とした。同様の方法で平均厚み(粒子20個の厚みの平均値)を算出し、(平均板面径/平均厚み)によってアスペクト比を求めた。板面径、厚みが測定しにくい場合は、適宜倍率を上げて撮影したものを用いて測定した。実施例、比較例毎に撮影する粉体を換えてこの操作を10回繰り返し、求めたアスペクト比の平均値を算出した。結果を表3及び4に示す。また、実施例で得た粉体について、平均板面径と平均厚みを算出した際、同時に平均板面径と平均厚みの標準偏差(平均値との差の2乗を平均した値の平方根)とその変動係数(標準偏差を平均値で割った値)を算出した。結果を表3に示す。
6. Take an electron micrograph of the average plate surface diameter, average thickness, and aspect ratio powder using a field emission scanning electron microscope (JSM-7000F, manufactured by JEOL Ltd.) so that about 50 to 10,000 particles can be seen. did. The average value of the plate surface diameters of 20 particles on a straight line randomly drawn on this electron micrograph was taken as the average plate surface diameter of each powder. The average thickness (average value of the thickness of 20 particles) was calculated by the same method, and the aspect ratio was determined by (average plate surface diameter / average thickness). When it was difficult to measure the plate surface diameter and thickness, the measurement was carried out using a photograph taken at an appropriately increased magnification. This operation was repeated 10 times by changing the powder to be photographed for each example and comparative example, and the average value of the obtained aspect ratios was calculated. The results are shown in Tables 3 and 4. In addition, when the average plate surface diameter and average thickness were calculated for the powders obtained in the examples, the standard deviation of the average plate surface diameter and the average thickness (the square root of the value obtained by averaging the square of the difference from the average value) at the same time And its coefficient of variation (value obtained by dividing the standard deviation by the average value). The results are shown in Table 3.
7、顔料pH
各粉体の顔料pHを、「JIS  K5101-17-1:2004」の顔料試験方法に準拠した以下の方法により測定した。
栓付ガラス容器に蒸留水50gに試料5gを投入し、栓を外したまま、約5分間加熱して煮沸状態にした後、更に5分間煮沸した。煮沸後、栓をして常温まで放冷した後、栓を開き、減量に相当する蒸留水を加えて、再び栓をして1分間振り混ぜた後、5分間静置した。栓を取り外し、pH測定器にてpHを測定した。結果を表3及び4に示す。
7. Pigment pH
The pigment pH of each powder was measured by the following method based on the pigment test method of “JIS K5101-17-1: 2004”.
5 g of sample was put into 50 g of distilled water in a glass container with a stopper, and after boiling for about 5 minutes with the stopper removed, the mixture was further boiled for 5 minutes. After boiling, the bottle was stoppered and allowed to cool to room temperature, then the stopper was opened, distilled water corresponding to the weight loss was added, stoppered again, shaken for 1 minute, and allowed to stand for 5 minutes. The stopper was removed and the pH was measured with a pH meter. The results are shown in Tables 3 and 4.
8、吸油量
JIS K5101-13-1(2004年)に準拠した以下の方法で、ミリスチン酸イソプロピルを用い、吸油量を測定した。
試料約0.5gを薬包紙に精秤し、ガラス板の中央10cmのスリガラス部分に試料を載せる。ミクロビュレットにミリスチン酸イソプロピル(「IPM」と称す)を入れ、0.2mLを試料に滴加し、金ベラで練る。その後、IPMを1~2滴ずつ加え、滴加の都度、全体を金ベラで練る。全体が初めて硬いパテ状の塊になったときを終点とする。
吸油量は次式によって算出した。結果を表3(及び4)に示す。
吸油量(ml/100g)= {V(mL)÷ 試料重量(g)}× 100
8. Oil absorption The oil absorption was measured using isopropyl myristate by the following method in accordance with JIS K5101-13-1 (2004).
About 0.5 g of the sample is precisely weighed on the medicine wrapping paper, and the sample is placed on the ground glass portion of the center 10 cm of the glass plate. Add isopropyl myristate (referred to as “IPM”) to a microburette, add 0.2 mL dropwise to the sample, and knead with a gold spatula. Then, add 1-2 drops of IPM and knead the whole with a gold spatula each time. The end point is when the whole becomes a hard putty-like lump for the first time.
The oil absorption was calculated by the following formula. The results are shown in Table 3 (and 4).
Oil absorption (ml / 100 g) = {V (mL) ÷ sample weight (g)} × 100
9、滑り性(MIU、MMD)
各試料の滑り性評価は次のような方法で行った。
スライドガラスに両面テープを貼り付け、粘着面に薬さじ半分程度の粉末(試料)を載せ、化粧用スポンジで粉末を展ばし、その上に摩擦子をセットした。スライドガラスを移動させて、摩擦子にかかる負荷から、平均摩擦係数MIUと平均摩擦係数の変動値MMDを測定した。測定は摩擦感テスター(カトーテック製、KES-SE)により行った。
比較対象として、板状硫酸バリウム・H(堺化学工業社製)、及び、市販のハイドロタルサイト類化合物であるSTABIACE・HT-1NC(堺化学工業社製)(参考例1)を用いた。
板状硫酸バリウム・Hの平均摩擦係数MIUは0.64、平均摩擦係数の変動値MMDは0.0103であり、STABIACE・HT-1NCの平均摩擦係数MIUは0.897、平均摩擦係数の変動値MMDは0.047であった。
なお、平均摩擦係数MIUは、数値が小さいほど粉体が滑ることを示す指標であり、摩擦係数の変動値MMDは、数値が小さいほど滑らかでざらつきが無いことを示す指標である。結果を表3(及び4)に示す。
9, slipperiness (MIU, MMD)
Evaluation of slipperiness of each sample was performed by the following method.
Double-sided tape was affixed to the slide glass, about half a spoonful of powder (sample) was placed on the adhesive surface, the powder was spread with a cosmetic sponge, and a friction piece was set thereon. The slide glass was moved, and the average friction coefficient MIU and the variation value MMD of the average friction coefficient were measured from the load applied to the friction element. The measurement was performed with a friction tester (KES-SE, manufactured by Kato Tech).
For comparison, plate-like barium sulfate · H (manufactured by Sakai Chemical Industry Co., Ltd.) and STABIACE · HT-1NC (manufactured by Sakai Chemical Industry Co., Ltd.) (Reference Example 1), which is a commercially available hydrotalcite compound, were used.
The average friction coefficient MIU of plate-like barium sulfate · H is 0.64, the variation value MMD of the average friction coefficient is 0.0103, the average friction coefficient MIU of STABIACE · HT-1NC is 0.897, and the variation of the average friction coefficient The value MMD was 0.047.
The average friction coefficient MIU is an index indicating that the powder is slippery as the numerical value is small, and the variation value MMD of the friction coefficient is an index indicating that the numerical value is smooth and free from roughness. The results are shown in Table 3 (and 4).
10、化粧料としての評価(官能評価)
(1)まず、実施例及び比較例で得たハイドロタルサイト20.00重量%、マイカ(製品名:Y-2300X、ヤマグチマイカ社製)24.83重量%、セリサイト(製品名:FSE、三信鉱工社製)29.79重量%、球状シリコーン(製品名:KSP-105、信越化学工業社製)6.44重量%、酸化チタン(製品名:R-3LD、堺化学工業社製)7.36重量%、酸化鉄(黄)(製品名:黄酸化鉄、ピノア社製)1.10重量%、酸化鉄(赤)(製品名:ベンガラ、ピノア社製)0.37重量%、金属石鹸(製品名:JPM-100、堺化学工業社製)0.92重量%、及び、オイル(製品名:KF96、信越化学工業社製)9.20重量%を、コーヒーミルを用いて1分30秒間撹拌混合した。
得られた粉体状の混合物を、直径20mmφの金型に0.8g測り採り、プレス機を用いて、200kgf/cmの圧力にて30秒間保持して、ハイドロタルサイト含有ファンデーションを作製した。
10. Evaluation as cosmetics (sensory evaluation)
(1) First, hydrotalcite 20.00% by weight obtained in Examples and Comparative Examples, mica (product name: Y-2300X, manufactured by Yamaguchi Mica) 24.83% by weight, sericite (product name: FSE, Sanshin Mining Co., Ltd.) 29.79% by weight, spherical silicone (Product name: KSP-105, Shin-Etsu Chemical Co., Ltd.) 6.44% by weight, titanium oxide (Product name: R-3LD, Sakai Chemical Industry Co., Ltd.) 7.36% by weight, iron oxide (yellow) (product name: yellow iron oxide, manufactured by Pinoa) 1.10% by weight, iron oxide (red) (product name: Bengala, manufactured by Pinoa) 0.37% by weight, Metal soap (product name: JPM-100, manufactured by Sakai Chemical Industry Co., Ltd.) 0.92% by weight and oil (product name: KF96, manufactured by Shin-Etsu Chemical Co., Ltd.) 9.20% by weight were added to a coffee mill. Stir and mix for 30 minutes.
The obtained powdery mixture was weighed 0.8 g in a 20 mmφ diameter mold and held for 30 seconds at a pressure of 200 kgf / cm 2 using a press machine to prepare a hydrotalcite-containing foundation. .
(2)また、比較として、マイカ(製品名:Y-2300X、ヤマグチマイカ社製)31.03重量%、セリサイト(製品名:FSE、三信鉱工社製)37.24重量%、球状シリコーン(製品名:KSP-105、信越化学工業社製)8.05重量%、酸化チタン(製品名:R-3LD、堺化学工業社製)9.20重量%、酸化鉄(黄)(製品名:黄酸化鉄、ピノア社製)1.38重量%、酸化鉄(赤)(製品名:ベンガラ、ピノア社製)0.46重量%、金属石鹸(製品名:JPM-100、堺化学工業社製)1.15重量%、及び、オイル(製品名:KF96、信越化学工業社製)11.49重量%を、コーヒーミルを用いて1分30秒間撹拌混合した。
得られた粉体状の混合物を、直径20mmφの金型に0.8g測り採り、プレス機を用いて、200kgf/cmの圧力にて30秒間保持して、ハイドロタルサイト非含有ファンデーションを作製した。
(2) For comparison, mica (product name: Y-2300X, manufactured by Yamaguchi Mica) 31.03% by weight, sericite (product name: FSE, manufactured by Sanshin Mining Co., Ltd.) 37.24% by weight, spherical silicone (Product name: KSP-105, manufactured by Shin-Etsu Chemical Co., Ltd.) 8.05% by weight, titanium oxide (Product name: R-3LD, manufactured by Sakai Chemical Industry Co., Ltd.) 9.20% by weight, iron oxide (yellow) (Product name) : Yellow iron oxide (Pinoa) 1.38 wt%, Iron oxide (red) (Product name: Bengala, Pinoa) 0.46 wt%, Metal soap (Product name: JPM-100, Sakai Chemical Industry Co., Ltd.) 1.15% by weight and oil (product name: KF96, manufactured by Shin-Etsu Chemical Co., Ltd.) 11.49% by weight were stirred and mixed using a coffee mill for 1 minute 30 seconds.
0.8 g of the obtained powdery mixture is measured in a 20 mmφ diameter mold and is held for 30 seconds at a pressure of 200 kgf / cm 2 using a press machine to produce a hydrotalcite-free foundation. did.
(3)上記(1)及び(2)それぞれで得たファンデーションを10人のパネラーに対して塗布し、化粧料に含めた際の肌への塗布感触について、以下に示す基準で選んでもらい評価した。なお、試験は盲検として行った。評価結果を表3及び表4に示す。
(塗布感触の評価基準)
◎:上記(1)のハイドロタルサイト含有ファンデーションを用いる方が、上記(2)のハイドロタルサイト非含有ファンデーションを用いるよりも塗布感触が良好である。
○: どちらも同じ塗布感触である。
×:上記(2)のハイドロタルサイト非含有ファンデーションを用いる方が、上記(1)のハイドロタルサイト含有ファンデーションを用いるよりも塗布感触が良好である。
(3) The foundation obtained in (1) and (2) above was applied to 10 panelists, and the skin touch when it was included in cosmetics was selected according to the criteria shown below. did. The test was conducted blind. The evaluation results are shown in Tables 3 and 4.
(Evaluation criteria for coating feel)
A: The use feeling of the hydrotalcite-containing foundation (1) above is better than the use of the hydrotalcite-free foundation (2) above.
○: Both have the same coating feel.
X: The use feeling of the hydrotalcite-free foundation of the above (2) has a better coating feel than the use of the hydrotalcite-containing foundation of the above (1).
11、SEM画像
電界放出形走査電子顕微鏡(日本電子社製、JSM-7000F)にて粒子の形状を観察した。実施例11で得た粉体の電子顕微鏡写真を図2-1~2-4に示す。
11. SEM image The shape of the particles was observed with a field emission scanning electron microscope (manufactured by JEOL Ltd., JSM-7000F). Electron micrographs of the powder obtained in Example 11 are shown in FIGS. 2-1 to 2-4.
12、水溶液中のリン化合物吸着率
リン酸水素カリウムを用いて、リン酸イオン濃度を50,25,5ppmにそれぞれ調整した溶液100gに対し、試料を1g添加して所定の時間撹拌した後、ろ過した溶液のリン酸イオン濃度を、イオンクロマトグラフ(Dionex社製、型番:ICS-2000)にて測定した。実施例11で得た粉体を用いた場合について経時で測定したリン酸イオン濃度を、図3-1、3-2及び3-3に示す。これらの図面では、比較のため、参考例1の粉末を用いた場合の経時でのリン酸イオン濃度を併記した。
以下の式により、a時間経過後のブランクに対するリン化合物吸着率を算出した。
リン化合物吸着率(%)=100×(a時間経過後のブランクのリン酸イオン濃度-a時間経過後の評価サンプル(試料)のリン酸イオン濃度)/(a時間経過後のブランクのリン酸イオン濃度)
なお、a時間経過後のブランクのリン酸イオン濃度は、リン酸水素カリウムを用いてリン酸イオン濃度を50,25,5ppmに調整した溶液100gに、評価サンプルを入れずに所定の時間撹拌し、a時間経過した後のろ過した溶液のリン酸イオン濃度である。1時間経過後,2時間経過後,4時間経過後のブランクのリン酸イオン濃度は、それぞれ50ppm,25ppm,5ppmとなり、初期値と同じ値であった。
12. Phosphorus compound adsorption rate in aqueous solution To 100 g of a solution adjusted to a phosphate ion concentration of 50, 25, and 5 ppm using potassium hydrogen phosphate, 1 g of a sample was added and stirred for a predetermined time, followed by filtration. The phosphate ion concentration of the solution was measured with an ion chromatograph (manufactured by Dionex, model number: ICS-2000). The phosphate ion concentrations measured over time for the case where the powder obtained in Example 11 is used are shown in FIGS. 3-1, 3-2 and 3-3. In these drawings, for comparison, the phosphate ion concentration over time when the powder of Reference Example 1 was used is also shown.
The phosphorus compound adsorption rate for the blank after elapse of a time was calculated by the following formula.
Phosphorus compound adsorption ratio (%) = 100 × (phosphate ion concentration of blank after elapse of a time−phosphate ion concentration of evaluation sample (sample) after elapse of a time) / (blank phosphoric acid after elapse of a time) Ion concentration)
It should be noted that the phosphate ion concentration of the blank after elapse of time a is stirred for a predetermined time without putting an evaluation sample in 100 g of a solution prepared by adjusting the phosphate ion concentration to 50, 25, 5 ppm using potassium hydrogen phosphate. , The phosphate ion concentration of the filtered solution after a time has elapsed. After 1 hour, 2 hours, and 4 hours, the blank phosphate ion concentrations were 50 ppm, 25 ppm, and 5 ppm, respectively, which were the same as the initial values.
13、アンモニアガス吸着率
各試料粉末1.0gを、5Lのサンプリングバック(GLサイエンス社製)に入れ、ブランクとしてサンプルを入れていない5Lのサンプリングバックも用意した。アンモニアを100ppm含む窒素ガス3Lをサンプリングバック内に注入した後、直ちに密封し、20℃、湿度65%の条件下で1時間静置した。静置後、サンプリングバック内のガス100mLを吸引器で吸入し、アンモニアの濃度をガステック社製検知管(No.3La)で測定した。実施例11で得た粉体を用いた場合のアンモニア濃度の経時変化を、図4に示す。図4では、比較のため、比較例18及び参考例1で得た粉末を用いた場合のアンモニア濃度の経時変化を併記した。
以下の式により、ブランクに対するアンモニアガス吸着率を算出した。
アンモニアガス吸着率(%)=100×(ブランクのアンモニア濃度-評価サンプルのアンモニア濃度)/(ブランクのアンモニア濃度)
なお、ブランクのアンモニア濃度は、評価サンプルを入れずに、アンモニアを100ppm含む窒素ガス3Lのみを入れたサンプリングバックを密栓し、1時間静置した後に測定したアンモニア濃度である。ブランクのアンモニア濃度は100ppmであった。
13. Ammonia gas adsorption rate 1.0 g of each sample powder was put in a 5 L sampling bag (manufactured by GL Science Co., Ltd.), and a 5 L sampling bag without a sample was also prepared as a blank. After 3 L of nitrogen gas containing 100 ppm of ammonia was injected into the sampling bag, it was immediately sealed and allowed to stand for 1 hour at 20 ° C. and 65% humidity. After standing, 100 mL of gas in the sampling bag was sucked with a suction device, and the concentration of ammonia was measured with a detector tube (No. 3La) manufactured by Gastec. FIG. 4 shows changes with time in the ammonia concentration when the powder obtained in Example 11 was used. For comparison, FIG. 4 also shows the change over time in the ammonia concentration when the powders obtained in Comparative Example 18 and Reference Example 1 were used.
The ammonia gas adsorption rate with respect to the blank was calculated by the following formula.
Ammonia gas adsorption rate (%) = 100 × (blank ammonia concentration−ammonia concentration of evaluation sample) / (blank ammonia concentration)
In addition, the ammonia concentration of the blank is the ammonia concentration measured after sealing a sampling bag containing only 3 L of nitrogen gas containing 100 ppm of ammonia without putting an evaluation sample and allowing to stand for 1 hour. The ammonia concentration in the blank was 100 ppm.
14、示差熱・熱重量測定
実施例11及び参考例1の粉末について、示差熱・熱重量測定(TG/DTA)を行った。具体的には、以下の条件により示差熱・熱重量測定(TG/DTA)を行った。測定結果を図5-1及び5-2に示す。
-測定条件-
測定機:日立ハイテクサイエンス社製、示差熱・熱重量測定装置(型番:TG/DTA6300)
昇温速度:10℃/分
測定温度範囲:30~500℃
測定雰囲気:大気 200mL/分
リファレンス:Al
サンプル重量:10.0mg
試料容器:Al
14. Differential Heat / Thermogravimetry Measurement The powder of Example 11 and Reference Example 1 was subjected to differential heat / thermogravimetry (TG / DTA). Specifically, differential heat / thermogravimetry (TG / DTA) was performed under the following conditions. The measurement results are shown in FIGS. 5-1 and 5-2.
-Measurement condition-
Measuring machine: manufactured by Hitachi High-Tech Science Co., Ltd., differential heat / thermogravimetric measuring device (model number: TG / DTA6300)
Temperature increase rate: 10 ° C / min Measurement temperature range: 30-500 ° C
Measurement atmosphere: air 200 mL / min Reference: Al 2 O 3
Sample weight: 10.0mg
Sample container: Al
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
以上の実施例及び比較例より、以下のことを確認した。
実施例1~14で得た粉体は、全て本発明の板状ハイドロタルサイト型粒子に該当し、参考例1にある市販のハイドロタルサイト粉末に対して滑り性(MIU、MMD)が著しく高かった。特に実施例11で得た粉体は、板状硫酸バリウム・H(堺化学工業社製、MIU=0.64、MMD=0.0103)とほぼ同等又はそれ以上の滑り性を示した。このことは、例えば、実施例11で得た粉体の電子顕微鏡写真(図2-1~2-4)からも分かるように、得られた粉体が薄板状であり、かつ表面に細かいざらつきがない平滑な粒子であることに起因するものと推測できる。一方、比較例1~18で得た粉体は、構造式、平均板面径、アスペクト比及び顔料pHのうち1以上が本発明で規定した範囲外となる点で、いずれも本発明の板状ハイドロタルサイト型粒子とは相違するが、このような比較例1~18で得た粉体に対して、実施例1~14で得た粉体は、化粧料に含めた際の肌への塗布感触がきわめて良好な結果となっている(表3、4参照)。
From the above examples and comparative examples, the following was confirmed.
The powders obtained in Examples 1 to 14 all correspond to the plate-like hydrotalcite-type particles of the present invention, and the slipperiness (MIU, MMD) is significantly higher than the commercially available hydrotalcite powder in Reference Example 1. it was high. In particular, the powder obtained in Example 11 showed a slip property substantially equal to or higher than that of plate-like barium sulfate · H (manufactured by Sakai Chemical Industry Co., Ltd., MIU = 0.64, MMD = 0.0103). As can be seen from, for example, the electron micrographs of the powder obtained in Example 11 (FIGS. 2-1 to 2-4), the obtained powder is thin and has a rough surface. It can be presumed to be caused by the fact that the particles are smooth. On the other hand, the powders obtained in Comparative Examples 1 to 18 are all the plates of the present invention in that at least one of the structural formula, average plate surface diameter, aspect ratio, and pigment pH is outside the range defined in the present invention. In contrast to the powders obtained in Comparative Examples 1-18, the powders obtained in Examples 1-14 are different from the powdered hydrotalcite-type particles. The coating feel was very good (see Tables 3 and 4).
また図3-1~3-3及び図4より、本発明の板状ハイドロタルサイト型粒子は、アンモニアガス及びリン化合物の吸着能にも優れるものであることが分かった。例えば、実施例11で得た粉体を使用した場合、1時間後と22時間後でアンモニア濃度が変わらないため(図4参照)、1時間で吸着平衡に到達することが分かる。これに対し、比較例18で得た粉体はZn-Al型の粒状ハイドロタルサイトであり、その比表面積(SSA)は実施例11で得た粉体とほぼ同等であるものの、比較例18で得た粉体を使用した場合に比較して、実施例11で得た粉体を使用した場合はアンモニアガス吸着能が著しく高い(図4参照)。それゆえ、湿潤雰囲気で合成した本発明の板状ハイドロタルサイト型粒子(Zn-Al型)は、アンモニアガス吸着能が特異的に高いことが分かった。また、実施例11で得た粉体について、アンモニアガス吸着前後における粉体の色の変化は、目視では変化が見られなかった。更に、実施例11で得た粉体にアンモニアガスを22時間吸着させた粉を、ろ過・水洗・乾燥させ、再び同様のアンモニアガス吸着試験を行ったところ、初期と同様の吸着特性を示したことから、吸着後の再利用も可能であることが分かった。 Further, from FIGS. 3-1 to 3-3 and FIG. 4, it was found that the plate-like hydrotalcite-type particles of the present invention are excellent in the adsorption ability of ammonia gas and phosphorus compound. For example, when the powder obtained in Example 11 is used, the ammonia concentration does not change after 1 hour and 22 hours (see FIG. 4), and it can be seen that the adsorption equilibrium is reached in 1 hour. On the other hand, the powder obtained in Comparative Example 18 was Zn—Al type granular hydrotalcite, and its specific surface area (SSA) was almost the same as that of the powder obtained in Example 11, but Comparative Example 18 Compared with the case where the powder obtained in the above is used, the ammonia gas adsorption ability is remarkably high when the powder obtained in Example 11 is used (see FIG. 4). Therefore, it was found that the plate-like hydrotalcite-type particles (Zn—Al type) of the present invention synthesized in a humid atmosphere have a particularly high ammonia gas adsorption ability. Moreover, about the powder obtained in Example 11, the change of the color of the powder before and behind ammonia gas adsorption did not change visually. Further, the powder obtained by adsorbing ammonia gas to the powder obtained in Example 11 for 22 hours was filtered, washed and dried, and the same ammonia gas adsorption test was performed again. Therefore, it was found that reuse after adsorption is also possible.
したがって、本発明の板状ハイドロタルサイト型粒子は、滑り性に優れ、皮膚への刺激性が充分に低減され、かつ化粧料に含めた際の肌への塗布感触が良好なものであるうえ、アンモニアガス及びリン化合物の吸着能に際立って優れることを確認した。
 
Therefore, the plate-like hydrotalcite-type particles of the present invention have excellent slipperiness, are sufficiently reduced in irritation to the skin, and have a good application feel to the skin when included in cosmetics. It was confirmed that the adsorbing ability of ammonia gas and phosphorus compound was remarkably excellent.

Claims (5)

  1. 下記式(1):
    (Zn)1-x(Al)(OH)(An-x/n・mHO    (1)
    (式中、An-は、n価の層間アニオンを表す。x及びnは、それぞれ、0.2≦x≦0.4、1≦n≦4の整数、の条件を満たす数である。mは、0以上の数である。)で表され、平均板面径が150~800nm、アスペクト比(平均板面径/平均厚み)が4.0~20.0、JIS K5101-17-1(2004年)の顔料試験方法によるpH値が6.0~8.5である
    ことを特徴とする板状ハイドロタルサイト型粒子。
    Following formula (1):
    (Zn) 1-x (Al) x (OH) 2 (A n− ) x / n · mH 2 O (1)
    (In the formula, A n− represents an n-valent interlayer anion. X and n are numbers satisfying the conditions of 0.2 ≦ x ≦ 0.4 and 1 ≦ n ≦ 4, respectively. m is a number of 0 or more.), the average plate surface diameter is 150 to 800 nm, the aspect ratio (average plate surface diameter / average thickness) is 4.0 to 20.0, JIS K5101-17-1 (2004) A plate-like hydrotalcite-type particle having a pH value of 6.0 to 8.5 according to a pigment test method.
  2. BJH法による細孔容積が0.01~1.0cm/gである
    ことを特徴とする請求項1に記載の板状ハイドロタルサイト型粒子。
    The plate-like hydrotalcite-type particles according to claim 1, wherein the pore volume by BJH method is 0.01 to 1.0 cm 3 / g.
  3. 表面の一部又は全部がケイ素化合物で被覆されている
    ことを特徴とする請求項1又は2に記載の板状ハイドロタルサイト型粒子。
    The plate-like hydrotalcite-type particles according to claim 1 or 2, wherein a part or all of the surface is coated with a silicon compound.
  4. 前記式(1)中、x及びnは、それぞれ、0.30≦x≦0.35、1≦n≦3の整数、の条件を満たす数であり、An-は炭酸イオン(CO 2-)である
    ことを特徴とする請求項1~3のいずれかに記載の板状ハイドロタルサイト型粒子。
    In the formula (1), x and n are each, 0.30 ≦ x ≦ 0.35,1 ≦ n ≦ 3 integers, a satisfying number of, A n-carbonate ion (CO 3 2 - plate-like hydrotalcite-type particles according to any one of claims 1 to 3, characterized in that) it is.
  5. 請求項1~4のいずれかに記載の板状ハイドロタルサイト型粒子を含む
    ことを特徴とする化粧料。
     
     
     
    A cosmetic comprising the plate-like hydrotalcite-type particles according to any one of claims 1 to 4.


PCT/JP2016/073042 2015-08-11 2016-08-05 Flake-shaped hydrotalcite-type particle and application thereof WO2017026379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017534403A JP6743821B2 (en) 2015-08-11 2016-08-05 Plate-shaped hydrotalcite-type particles and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-159126 2015-08-11
JP2015159126 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017026379A1 true WO2017026379A1 (en) 2017-02-16

Family

ID=57983668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073042 WO2017026379A1 (en) 2015-08-11 2016-08-05 Flake-shaped hydrotalcite-type particle and application thereof

Country Status (3)

Country Link
JP (1) JP6743821B2 (en)
TW (1) TWI703987B (en)
WO (1) WO2017026379A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145278A (en) * 2017-03-03 2018-09-20 堺化学工業株式会社 Particulate inorganic compound and use therefor
JPWO2019131281A1 (en) * 2017-12-25 2020-12-24 戸田工業株式会社 Hydrotalcite particles, a method for producing the same, and a resin stabilizer and a resin composition comprising the same.
CN117486438A (en) * 2024-01-03 2024-02-02 北京哈泰克工程技术有限公司 Treatment method of desulfurization wastewater of power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120783A (en) * 2007-11-19 2009-06-04 Kaisui Kagaku Kenkyusho:Kk Ultraviolet absorber
WO2011024919A1 (en) * 2009-08-26 2011-03-03 戸田工業株式会社 Hydrotalcite particulate powder, heat retention agent for agricultural film, masterbatch for agricultural film, and agricultural film
JP2012246194A (en) * 2011-05-30 2012-12-13 National Institute Of Advanced Industrial Science & Technology Lamellar double hydroxide colloidal dispersion and method for manufacturing the same
WO2014185201A1 (en) * 2013-05-13 2014-11-20 テイカ株式会社 Layered double hydroxide capable of adsorbing unsaturated fatty acids selectively, and cosmetic produced using said layered double hydroxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120783A (en) * 2007-11-19 2009-06-04 Kaisui Kagaku Kenkyusho:Kk Ultraviolet absorber
WO2011024919A1 (en) * 2009-08-26 2011-03-03 戸田工業株式会社 Hydrotalcite particulate powder, heat retention agent for agricultural film, masterbatch for agricultural film, and agricultural film
JP2012246194A (en) * 2011-05-30 2012-12-13 National Institute Of Advanced Industrial Science & Technology Lamellar double hydroxide colloidal dispersion and method for manufacturing the same
WO2014185201A1 (en) * 2013-05-13 2014-11-20 テイカ株式会社 Layered double hydroxide capable of adsorbing unsaturated fatty acids selectively, and cosmetic produced using said layered double hydroxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. THEO KLOPROGGE ET AL.: "The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites", JOURNAL OF SOLID STATE CHEMISTRY, vol. 177, no. 11, November 2004 (2004-11-01), pages 4047 - 4057, XP004641958 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145278A (en) * 2017-03-03 2018-09-20 堺化学工業株式会社 Particulate inorganic compound and use therefor
JPWO2019131281A1 (en) * 2017-12-25 2020-12-24 戸田工業株式会社 Hydrotalcite particles, a method for producing the same, and a resin stabilizer and a resin composition comprising the same.
JP7239492B2 (en) 2017-12-25 2023-03-14 戸田工業株式会社 Hydrotalcite particles, method for producing the same, and resin stabilizer and resin composition comprising the same
CN117486438A (en) * 2024-01-03 2024-02-02 北京哈泰克工程技术有限公司 Treatment method of desulfurization wastewater of power plant
CN117486438B (en) * 2024-01-03 2024-04-02 北京哈泰克工程技术有限公司 Treatment method of desulfurization wastewater of power plant

Also Published As

Publication number Publication date
JPWO2017026379A1 (en) 2018-05-31
TWI703987B (en) 2020-09-11
TW201705935A (en) 2017-02-16
JP6743821B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
KR101913119B1 (en) Composite powder and method for producing same
EP2824073B1 (en) Method of preparing spherical zinc oxide particles of aggregated lamellar zinc oxide
WO2018004006A1 (en) Zinc oxide phosphor and method for producing same
CA2834233C (en) Hexagonal prism-shaped zinc oxide particles and method for production of the same
CN107249549B (en) Cosmetic material
EP2540670B1 (en) Process for preparing flaky particles coated with a fatty acid metal salt
WO2017026379A1 (en) Flake-shaped hydrotalcite-type particle and application thereof
JP5983086B2 (en) Cosmetics
EP3138552A1 (en) Cosmetic
EP3175836B1 (en) Cosmetic material
JP6051776B2 (en) Rare earth doped barium sulfate and cosmetics
JP6079950B1 (en) Method for producing plate-like hydrotalcite-type particles
JP6065520B2 (en) Method for producing zinc oxide particles
JP6589724B2 (en) Method for producing composite
JP6610379B2 (en) Hydrotalcite-type particles and method for producing the same
JP2023147613A (en) Aqueous dispersion and cosmetic
JP5983087B2 (en) Cosmetics
WO2023106195A1 (en) Zinc oxide particles each having surface coated with organosilicon, method for producing same, cosmetic preparation, dispersion, heat dissipating filler and resin composition
JP2023084113A (en) Hydrous silica surface coated zinc oxide particles, manufacturing method therefor, cosmetics, dispersion, heat-radiating filler, and resin composition
JP2023147614A (en) Oil-based dispersion and cosmetic
WO2022071143A1 (en) Cosmetic
JP2022176754A (en) Titanium dioxide particle dispersion and cosmetics containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835076

Country of ref document: EP

Kind code of ref document: A1