WO2017026044A1 - Glucose detector and method for detecting glucose - Google Patents

Glucose detector and method for detecting glucose Download PDF

Info

Publication number
WO2017026044A1
WO2017026044A1 PCT/JP2015/072700 JP2015072700W WO2017026044A1 WO 2017026044 A1 WO2017026044 A1 WO 2017026044A1 JP 2015072700 W JP2015072700 W JP 2015072700W WO 2017026044 A1 WO2017026044 A1 WO 2017026044A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
monomer
boronic acid
turbidity
hydrophilic
Prior art date
Application number
PCT/JP2015/072700
Other languages
French (fr)
Japanese (ja)
Inventor
桂史 塚本
モウアッド ラムラニ
Original Assignee
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン filed Critical 株式会社メニコン
Priority to JP2016571444A priority Critical patent/JP6194127B2/en
Priority to PCT/JP2015/072700 priority patent/WO2017026044A1/en
Publication of WO2017026044A1 publication Critical patent/WO2017026044A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to a glucose detector and a glucose detection method.
  • a glucose detector for example, a sensor for detecting a cis-type diol-containing specimen, which has a holographic element containing a boronic acid group and changes optical properties by reacting with glucose is proposed.
  • a glucose detector a contact lens having a holographic element containing a boronic acid group and reacting with glucose to change optical characteristics has been proposed (for example, see Patent Document 2).
  • an optical change is detected as a change in peak wavelength using a visible light source.
  • the present invention has been made in view of such problems, and a glucose detector and a glucose detection method capable of detecting glucose by effectively utilizing the action of a boronic acid group and glucose by changing the physical properties of the polymer.
  • the main purpose is to provide
  • the present inventors have used a polymer composed of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer, and the action of a boronic acid group and glucose.
  • a polymer composed of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer By combining the hydrophilic and hydrophobic balance of the whole polymer, it was found that glucose can be detected by effectively utilizing the action of boronic acid groups and glucose by changing the physical properties of the polymer, and the present invention has been completed.
  • the glucose detector of the present invention is It includes a polymer composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), and the turbidity of the polymer changes depending on the amount of glucose present. .
  • the glucose detection method of the present invention includes Using the glucose detector comprising a polymer composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), the turbidity of which varies depending on the amount of glucose present. Glucose is detected based on the change in turbidity.
  • FIG. 1 is a scheme showing an example of an equilibrium relationship between a phenylboronic acid group and glucose. Regarding the binding and dissociation of the boronic acid group and glucose, there is the equilibrium relationship of FIG. 1, and the boron atom of the boronic acid group is most likely to bind to glucose when taking a tetrahedral structure (FIG. 1 (2)). (See Non-Patent Document 1: Tetrahedron 2002, 58, 5291-5300, for example).
  • the hydrophilic monomer and the hydrophobic monomer in the polymer chain are combined. It is presumed that the side chain affects the boron atom of the boronic acid group and can be stabilized with a tetrahedral structure.
  • the hydrophilic-hydrophobic balance appropriately so that the hydrophilic-hydrophobic change of the polymer chain accompanying the binding and dissociation of boronic acid group and glucose affects the hydrophilic-hydrophobic property of the whole polymer, It is presumed that the detection sensitivity of the action of acid groups and glucose can be further increased.
  • the glucose detector of the present invention does not require special processing (formation of a hologram or the like) after polymer preparation, it can be prepared more easily, leading to efficiency during mass production.
  • the glucose detector of the present invention comprises a polymer composed of at least (A) a hydrophilic monomer, (B) a hydrophobic monomer, and (C) a boronic acid-containing monomer represented by chemical formula (1).
  • the hydrophilic monomer means a monomer having an octanol / water-partition coefficient (LogPow value) of 1.0 or less
  • the hydrophobic monomer means an octanol / water-partition coefficient (LogPow value) of 1.0.
  • LogPow value octanol / water-partition coefficient
  • logPow value octanol / water-partition coefficient
  • the hydrophilic monomer is a monomer having a LogPow value of 1.0 or less, but the LogPow value is preferably ⁇ 1.0 or more, more preferably ⁇ 0.8 or more. Further, the LogPow value of the hydrophilic monomer is preferably 0.8 or less, and more preferably 0.6 or less.
  • the hydrophilic monomer has, for example, one or more of nitrogen-containing groups (for example, amino groups) and hydroxy groups as hydrophilic groups, and one or more of acryloyl group, methacryloyl group, vinyl group and the like as bonding groups. It may be included.
  • hydrophilic monomer examples include acrylamide (AA), 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate, N, N′-dimethylacrylamide (DMAA), N-vinyl-2-pyrrolidone, 1- 1 or more selected from methyl-3-methylene-2-pyrrolidinone and the like.
  • AA acrylamide
  • HAA 2-hydroxyethyl acrylate
  • DMAA N′-dimethylacrylamide
  • N-vinyl-2-pyrrolidone 1- 1 or more selected from methyl-3-methylene-2-pyrrolidinone and the like.
  • AA, HEA, DMAA and the like are preferable.
  • the hydrophobic monomer is a monomer having a LogPow value exceeding 1.0, but the LogPow value is preferably 1.1 or more, and more preferably 1.2 or more. Further, the LogPow value of the hydrophobic monomer is preferably 5.0 or less, and more preferably 3.0 or less.
  • the hydrophobic monomer may have, for example, one or more of hydrophobic alkyl group, alkylene group, phenyl group, and the like, and one or more of acryloyl group, methacryloyl group, vinyl group, and the like as a bonding group. Good. Examples of the hydrophobic monomer include one or more selected from ethyl acrylate (EA), N-phenylacrylamide (NPA), and the like.
  • Examples of the boronic acid-containing monomer include those represented by chemical formula (1). Moreover, as a boronic acid containing monomer, it is good also as a monomer of Chemical formula (2), for example. Alternatively, examples of the boronic acid-containing monomer include Z-acrylamide phenylboronic acid (Z-APB: where Z is 2 to 4) represented by chemical formula (3).
  • the content Mi of the hydrophilic monomer is preferably in the range of 30 (mol%) to 80 (mol%), for example.
  • the content Mo of the hydrophobic monomer is preferably in the range of, for example, 10 (mol%) to 60 (mol%).
  • the content Mb of the boronic acid-containing monomer is preferably in the range of 4 (mol%) to 30 (mol%).
  • each content rate shall say the content rate with respect to the total amount (mol) of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid containing monomer.
  • the molar ratio Mi / Mb which is the content Mi (mol%) of the hydrophilic monomer with respect to the content Mb (mol%) of the boronic acid-containing monomer, is preferably 1 or more, and is preferably 3.2 or more. Is more preferable. Further, the molar ratio Mi / Mb is preferably 10 or less, and more preferably 7.6 or less. When the molar ratio Mi / Mb is in the range of 1 to 10, the change in turbidity with respect to the amount of glucose present is clear and preferable.
  • the molar ratio Mo / Mb which is the content Mo (mol%) of the hydrophobic monomer with respect to the content Mb (mol%) of the boronic acid-containing monomer, is preferably 1 or more, and is 1.5 or more. Is more preferable. Further, the molar ratio Mo / Mb is preferably 15 or less, and more preferably 11.4 or less. When the molar ratio Mo / Mb is in the range of 1 to 15, the change in turbidity with respect to the amount of glucose present is clear and preferable.
  • the hydrophilic monomer is acrylamide
  • the molar ratio Mi / Mb is in the range of 3.2 to 7.6 and the molar ratio Mo / Mb is in the range of 5 to 11.4.
  • the hydrophilic monomer is 2-hydroxyethyl acrylate
  • the molar ratio Mi / Mb is in the range of 5 to 7.5
  • the molar ratio Mo / Mb is in the range of 1.5 to 4 in particular.
  • the hydrophilic monomer is N, N-dimethylacrylamide
  • the molar ratio Mi / Mb is in the range of 4.5 to 5
  • the molar ratio Mo / Mb is in the range of 4 to 4.5. Particularly preferred.
  • the hydrophilic / hydrophobic balance value HHB is preferably 25 or more, and more preferably 33 or more. Further, the hydrophilic / hydrophobic balance value HHB is preferably 75 or less, more preferably 69 or less. When the hydrophilic / hydrophobic balance value HHB is in the range of 25 to 75, the change in turbidity with respect to the amount of glucose is clear and preferable.
  • the hydrophilic / hydrophobic balance value HHB is determined by the distribution coefficient Li and content ratio Mi (mol%) of the hydrophilic monomer, the distribution coefficient Lo and content ratio Mo (mol%) of the hydrophobic monomer, and the distribution coefficient Lb of the boronic acid-containing monomer.
  • the content Mb (mol%) is a value obtained using the mathematical formula (1).
  • the partition coefficient Li of the hydrophilic monomer is the octanol / water-partition coefficient (LogPow value) of the hydrophilic monomer
  • the partition coefficient Lo of the hydrophobic monomer is the octanol / water-partition coefficient (LogPow value) of the hydrophobic monomer.
  • the partition coefficient Lb of the boronic acid-containing monomer is the octanol / water-partition coefficient (LogPow value) of the boronic acid-containing monomer.
  • the LogPow value for example, a calculated value using software such as ALGOPS which is online software can be used. Moreover, the experimental value obtained from well-known literature can also be used.
  • this glucose detector contains acrylamide (AA) as a hydrophilic monomer, ethyl acrylate (EA) as a hydrophobic monomer, and Z-phenylacrylamide boronic acid (Z-APB) as a boronic acid-containing monomer
  • AA acrylamide
  • EA ethyl acrylate
  • Z-APB Z-phenylacrylamide boronic acid
  • the molar ratio is Mi / Mb is preferably in the range of 3.2 to 7.6, and the molar ratio Mo / Mb is preferably in the range of 5 to 11.4.
  • the hydrophilic / hydrophobic balance value HHB is preferably in the range of 41 to 56.
  • this glucose detector contains 2-hydroxyethyl acrylate (HEA) as a hydrophilic monomer, ethyl acrylate (EA) as a hydrophobic monomer, and Z-phenylacrylamide boronic acid (Z-APB) as a boronic acid-containing monomer
  • HAA 2-hydroxyethyl acrylate
  • EA ethyl acrylate
  • Z-APB Z-phenylacrylamide boronic acid
  • the molar ratio Mi / Mb is preferably in the range of 5 to 7.5
  • the molar ratio Mo / Mb is preferably in the range of 1.5 to 4.
  • the hydrophilic / hydrophobic balance value HHB is preferably in the range of 33 to 57.
  • This glucose detector contains N, N-dimethylacrylamide (DMAA) as a hydrophilic monomer, ethyl acrylate (EA) as a hydrophobic monomer, and Z-phenylacrylamide boronic acid (Z-APB) as a boronic acid-containing monomer.
  • DMAA N, N-dimethylacrylamide
  • EA ethyl acrylate
  • Z-APB Z-phenylacrylamide boronic acid
  • the molar ratio Mi / Mb is preferably in the range of 4.5 to 5
  • the molar ratio Mo / Mb is preferably in the range of 4 to 4.5.
  • the hydrophilic / hydrophobic balance value HHB is preferably in the range of 63 to 69.
  • the turbidity of the polymer changes depending on the amount of glucose due to the action of the boronic acid group of the boronic acid-containing monomer and glucose.
  • the turbidity change of the glucose detector can be visually determined, for example, colorless and transparent, partially turbid, or entirely turbid.
  • the turbidity T is a value obtained by imaging a glucose detector and performing image processing. The turbidity T is obtained as follows. First, the glucose detector after being immersed in a predetermined solution is imaged, and ImageJ which is image processing software in the public domain is used for the captured image, and the gray value G of the captured image is measured.
  • the turbidity T is obtained by Equation (2), where Gs is the gray value of the glucose detector and Gb is the gray value of the background on which the sample is placed.
  • Gs is the gray value of the glucose detector
  • Gb is the gray value of the background on which the sample is placed.
  • the glucose detector can use turbidity change (Turbidity Change Ratio: TCR) due to the amount of glucose as an index.
  • TCR turbidity Change Ratio
  • the turbidity change TCR is, for example, when the turbidity at the first concentration of glucose is T (+), and the turbidity at the second concentration lower than the first concentration is T ( ⁇ ).
  • the turbidity T (+) is a value in a 1M glucose phosphate buffer solution as a first concentration
  • the turbidity T ( ⁇ ) is a value in a phosphate buffer solution as a second concentration.
  • the turbidity change TCR may be obtained.
  • the turbidity change TCR is preferably 1.3 or more, more preferably 1.5 or more, and further preferably 2.0 or more.
  • the phosphate buffer solution was disodium hydrogen phosphate dodecahydrate 0.6 w / v%, sodium dihydrogen phosphate dihydrate 0.05 w / v%, sodium chloride 0.83 w / v% Consists of
  • the polymer contained in the glucose detector may be a hydrogel.
  • the glucose detector may be incorporated in an ophthalmic member, and the ophthalmic member may be a contact lens.
  • the glucose concentration contained in tear fluid has a correlation with blood glucose level (see Non-Patent Document 2: Current Eye Research, 2006, Vol. 31, No. 11, 895-901).
  • the glucose concentration contained in saliva has a correlation with the blood glucose level (see Non-Patent Document 3: Journal of Biomedicine and Biotecnology, Vol2009, Article ID430426). Therefore, with this glucose detector, it is possible to determine the blood glucose level from, for example, tears or saliva. For this reason, the glucose detection body of this invention can grasp
  • the glucose detector of the present invention may further contain a cross-linking agent.
  • the crosslinking agent include compounds having a plurality of polymerization groups among acryloyl group, methacryloyl group, vinyl group and allyl group.
  • the glucose detector of the present invention may further contain a polymerizable dye, may further contain an ultraviolet absorber, may further contain a photopolymerization initiator, and may be photosensitized. An agent may be further included.
  • the glucose detector may include non-polymerizable additives such as a water-soluble organic solvent, a surfactant, a refreshing agent, and a thickening agent.
  • the ophthalmic member incorporating the glucose detector is not particularly limited as long as the change in turbidity of the glucose detector can be confirmed, but a contact lens is preferable.
  • the contact lens incorporating the glucose detector is preferably a conventionally known contact lens such as an oxygen permeable hard contact lens, a hydrogel lens, or a silicone hydrogel lens, and more preferably a hydrogel lens. It is also possible to combine with a contact lens having a colored portion as typified by a fashionable contact lens so that the change in turbidity can be confirmed more effectively.
  • the oxygen permeable hard contact lens is a non-water-containing contact lens containing at least one or more of fluorine-containing methacrylate compound, silicon-containing methacrylate compound, silicon-containing styrene compound and the like as a main component.
  • the hydrogel lens is a hydrous contact lens containing at least one or more of (meth) acrylate compound, vinyl compound and the like as main components, and more specifically, 2-hydroxyethyl methacrylate, methacrylic acid, A contact lens comprising at least one or more of DMAA, N-vinyl-2-pyrrolidone, ethylene glycol dimethacrylate, glycerol methacrylate and the like as main components.
  • the silicone hydrogel lens is a hydrous contact lens containing at least one or more of silicon-containing (meth) acrylate compounds, silicon-containing macromonomers and the like as main components.
  • the glucose detector of the present invention can be directly used as a lens shape.
  • the glucose detector of the present invention prepared in advance can be incorporated at the time of manufacturing the contact lens.
  • the glucose detector of the present invention can be prepared and incorporated on a contact lens prepared in advance.
  • the monomer composition containing the photopolymerization initiator is filled in a mold corresponding to the shape of the desired ophthalmic lens material, and then the mold composition is irradiated with light.
  • Polymerization may be performed by irradiation.
  • the material of the mold used for polymerization by light irradiation is not particularly limited as long as it is a material that can transmit light necessary for polymerization and curing, and general-purpose resins such as polypropylene, polystyrene, nylon, and polyester are preferable. It may be. By molding and processing these materials, a mold having a desired shape can be obtained.
  • the glucose detection method of the present invention includes a polymer that is composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), and whose turbidity changes depending on the amount of glucose present.
  • a glucose detector is used to detect glucose based on a change in turbidity of the polymer. This turbidity change of the polymer may be caused by the action of the boronic acid group of the boronic acid-containing monomer and glucose.
  • the glucose can be detected by immersing the above-described glucose detector in a solution to be detected and measuring the turbidity T. In addition, turbidity can also be confirmed visually.
  • the glucose concentration and content can be detected in addition to the presence or absence of glucose by the turbidity T or turbidity change TCR described above. Further, for example, not only visual observation of turbidity but also a method of quantifying glucose by polymerizing the polymer of the present invention on an electrode and detecting an electrical signal (conductivity, etc.) can be employed.
  • the action of the boronic acid group and glucose can be effectively utilized by changing the physical properties of the polymer, and glucose can be detected.
  • the reason why such an effect is obtained is that, for example, by combining a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1) into a polymer, the hydrophilicity in the polymer chain can be obtained. It is presumed that the side chain of the monomer or hydrophobic monomer affects the boron atom of the boronic acid group and can be stabilized with a tetrahedral structure.
  • This glucose detector is preferably used for an ophthalmic member, for example, an ophthalmic lens such as a contact lens.
  • This compounded solution was poured into a mold and irradiated with ultraviolet light (UV, 365 nm) for 30 minutes at room temperature to be polymerized.
  • UV light UV, 365 nm
  • the polymer was taken out from the mold, cut into a circle with a diameter of 6 mm, and then immersed in ethanol to extract unpolymerized monomers and the solvent. Thereafter, the polymer was immersed in a phosphate buffer solution containing 1 M glucose for 12 hours or more, and a photograph of the polymer was taken. Thereafter, each polymer was transferred to a phosphate buffer solution, and a photograph of the polymer was taken again after 3-4 minutes.
  • UV light ultraviolet light
  • any one of the hydrophilic monomers AA, HEA, and DMAA, the hydrophobic monomer N-phenylacrylamide (NPA), and the boronic acid-containing monomer 3APB have an arbitrary mixing ratio (see Table 2). Except for the above, the same steps as in Experimental Example 1 were performed, and the obtained polymers were referred to as Experimental Examples 37 and 38. Note that the LogPow value of each monomer is 0.51 for 3APB, -0.65 for AA, 0.04 for HEA, 0.17 for DMAA, 0.17 for EA, according to the calculated value by the online software ALGOPS2.1. 1.24, NPA is 1.67.
  • Hydrophilic / hydrophobic balance value HHB is LogPow value of hydrophilic monomer Li, Hydromonomer content rate Mi (mol%), Hydrophobic monomer LogPow value Lo, Hydrophobic monomer content rate Mo (mol%)
  • the LogPow value of the boronic acid-containing monomer was Lb, and the content of the boronic acid-containing monomer was Mb (mol%), and the above formula (1) was used for calculation.
  • each content rate is a content rate with respect to the total amount (mol) of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid containing monomer.
  • Turbidity Turbidity is measured using ImageJ, which is image processing software in the public domain, and the gray value is measured from the photograph to be measured, the gray value of the sample is Gs, and the gray value of the background where the sample is placed is Gb. Calculated according to (2).
  • T turbidity
  • TCR turbidity Change Ratio
  • Tables 1 and 2 also show the results of visual confirmation of turbidity T (+) and turbidity change TCR.
  • Turbidity T (+) is A (T ⁇ 1.2; visually colorless and transparent), B (1.2 ⁇ T ⁇ 1.5; turbidity that can be visually confirmed), C ( T>1.5; turbidity that can be clearly confirmed visually).
  • the turbidity change TCR is a turbidity change when immersed in a phosphate buffer solution containing 1 M glucose and then immersed in a phosphate buffer solution not containing glucose.
  • A (TCR ⁇ 2.0; change in turbidity that can be clearly confirmed visually)
  • B (1.2 ⁇ TCR ⁇ 2.0; change in turbidity that can be visually confirmed)
  • C (TCR ⁇ 1.2; It was evaluated as a change in turbidity that could hardly be confirmed visually.
  • the hydrophilic / hydrophobic balance value HHB was in the range of 25 to 75, more preferably in the range of 33 to 69.
  • the molar ratio Mi / Mb is preferably in the range of 3.2 to 7.6, and the molar ratio Mo / Mb is preferably in the range of 5 to 11.4.
  • the hydrophilic / hydrophobic balance value HHB was preferably in the range of 41 to 56.
  • the molar ratio Mi / Mb is preferably in the range of 5 to 7.5
  • the molar ratio Mo / Mb is preferably in the range of 1.5 to 4 and hydrophilic.
  • the hydrophobic balance value HHB was preferably in the range of 33 to 57.
  • the molar ratio Mi / Mb is preferably in the range of 4.5 to 5
  • the molar ratio Mo / Mb is preferably in the range of 4 to 4.5
  • the hydrophilic / hydrophobic balance value HHB is 63. A range of 69 or less was preferred.
  • Example 42 A polymer in which the polymer of the present invention was incorporated in a contact lens was produced, and this was designated as Experimental Example 42.
  • the polymer of Experimental Example 26 soaked in a phosphate buffer solution containing 1 M glucose was placed in the center of the lens mold, and 2 mol containing 2,2-methoxy-2-aminophenylacetophenone and MBA were added from above.
  • -A monomer solution of hydroxyethyl methacrylate (HEMA) was injected. Thereafter, ultraviolet light (UV, 365 nm) was irradiated at room temperature for 30 minutes for polymerization.
  • the contact lens was removed from the lens mold and immersed in a phosphate buffer solution containing 1M glucose.
  • T (+) was 1.2
  • T ( ⁇ ) was 3.7.
  • the turbidity change TCR was 3.1, and good glucose responsiveness was obtained in a contact lens mainly composed of HEMA.
  • the glucose detector of the present invention can be used in the field of detecting glucose and can be used for applications such as contact lenses.

Abstract

This glucose detector contains a polymer that is configured at least of a hydrophilic monomer, a hydrophobic monomer and a boronic acid-containing monomer. The turbidity of the polymer is changed by the action of a boronic acid group of the boronic acid-containing monomer and glucose, and glucose is detected on the basis of the turbidity change. A method for detecting glucose according to the present invention uses this glucose detector and detects glucose on the basis of turbidity change of the polymer caused by the action of a boronic acid group of the boronic acid-containing monomer and glucose.

Description

グルコース検出体及びグルコース検出方法Glucose detector and glucose detection method
 本発明は、グルコース検出体及びグルコース検出方法に関する。 The present invention relates to a glucose detector and a glucose detection method.
 従来、グルコース検出体としては、例えば、シス型ジオール部含有検体を検出するためのセンサーであって、ボロン酸基を含むホログラフィック素子を有し、グルコースと反応し光学特性が変化するものが提案されている(例えば、特許文献1参照)。また、グルコース検出体としては、ボロン酸基を含むホログラフィック素子を有し、グルコースと反応し光学特性が変化するコンタクトレンズが提案されている(例えば、特許文献2参照)。このグルコース検出体では、光学的変化を、可視光の光源を利用してピーク波長の変化として検出するとしている。 Conventionally, as a glucose detector, for example, a sensor for detecting a cis-type diol-containing specimen, which has a holographic element containing a boronic acid group and changes optical properties by reacting with glucose is proposed. (For example, refer to Patent Document 1). As a glucose detector, a contact lens having a holographic element containing a boronic acid group and reacting with glucose to change optical characteristics has been proposed (for example, see Patent Document 2). In this glucose detector, an optical change is detected as a change in peak wavelength using a visible light source.
特表2006-519979号公報JP 2006-519979 A 特開2007-506999号公報JP 2007-506999 A
 しかしながら、上述の特許文献1、2の検出体では、ボロン酸基を含むホログラフィック素子の媒体として用いられるポリマーの構成成分については十分検討がなされておらず、ボロン酸基とグルコースの作用を、当該ポリマーの物性変化に十分に活用できていない。また、上述した特許文献1、2の検出体では、当該ポリマーの重合後に、ホログラムを発現させるような特殊なポリマー構造を形成する必要があった。また、例えば、このポリマーをコンタクトレンズに用いる場合などには、滅菌処理などを行う場合があるが、そのような外的要因によってポリマー構造が変性する可能性があり、その機能を十分に発現することができないおそれがあった。 However, in the above-described detectors of Patent Documents 1 and 2, a component of a polymer used as a medium of a holographic element containing a boronic acid group has not been sufficiently studied, and the action of a boronic acid group and glucose is It cannot be fully utilized for the change in physical properties of the polymer. Moreover, in the detection body of the patent documents 1 and 2 mentioned above, it was necessary to form the special polymer structure which expresses a hologram after superposition | polymerization of the said polymer. In addition, for example, when this polymer is used for a contact lens, sterilization may be performed. However, the polymer structure may be modified by such external factors, and its function is fully expressed. There was a risk of not being able to.
 本発明は、このような課題に鑑みなされたものであり、ボロン酸基とグルコースの作用をポリマーの物性変化により効果的に活用し、グルコースの検出をすることができるグルコース検出体及びグルコース検出方法を提供することを主目的とする。 The present invention has been made in view of such problems, and a glucose detector and a glucose detection method capable of detecting glucose by effectively utilizing the action of a boronic acid group and glucose by changing the physical properties of the polymer. The main purpose is to provide
 上述した目的を達成するために鋭意研究したところ、本発明者らは、親水性モノマーと、疎水性モノマーと、ボロン酸含有モノマーとにより構成されるポリマーを用い、ボロン酸基とグルコースの作用と、ポリマー全体の親水疎水バランスを組み合わせることにより、ボロン酸基とグルコースの作用をポリマーの物性変化により効果的に活用し、グルコースを検出することができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-described object, the present inventors have used a polymer composed of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer, and the action of a boronic acid group and glucose. By combining the hydrophilic and hydrophobic balance of the whole polymer, it was found that glucose can be detected by effectively utilizing the action of boronic acid groups and glucose by changing the physical properties of the polymer, and the present invention has been completed.
 即ち、本発明のグルコース検出体は、
 少なくとも親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとにより構成されるポリマーを含み、グルコースの存在量に応じて前記ポリマーの濁度が変化するものである。
That is, the glucose detector of the present invention is
It includes a polymer composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), and the turbidity of the polymer changes depending on the amount of glucose present. .
 また、本発明のグルコース検出方法は、
 少なくとも親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとにより構成されグルコースの存在量に応じて濁度が変化するポリマーを含むグルコース検出体を用い、前記ポリマーの濁度変化に基づいてグルコースを検出するものである。
The glucose detection method of the present invention includes
Using the glucose detector comprising a polymer composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), the turbidity of which varies depending on the amount of glucose present. Glucose is detected based on the change in turbidity.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明のグルコース検出体及びグルコース検出方法は、ボロン酸基とグルコースの作用をポリマーの物性変化により効果的に活用し、グルコースの検出をすることができる。このような効果が得られる理由は、例えば、以下のように推測される。図1は、フェニルボロン酸基とグルコースとの平衡関係の一例を表すスキームである。ボロン酸基とグルコースとの結合及び解離に関しては、図1の平衡関係があり、ボロン酸基のホウ素原子は、四面体構造(図1(2))をとるときに、グルコースと最も結合しやすい資質を有する(例えば、非特許文献1:Tetrahedron 2002,58,5291-5300参照)。本発明では、例えば、親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとを組み合わせてポリマーにすることで、ポリマー鎖中の親水性モノマーや疎水性モノマーの側鎖がボロン酸基のホウ素原子に影響を与え、四面体構造で安定化することができると推察される。さらには、ボロン酸基とグルコースの結合及び解離に伴うポリマー鎖の親水疎水性の変化を、ポリマー全体の親水疎水性に影響を及ぼすように、その親水疎水バランスを適当に調整することで、ボロン酸基とグルコースの作用の検出感度をより高めることができると推察される。また、本発明のグルコース検出体は、ポリマー調製後に特殊な処理(ホログラムの形成等)が必要ないため、調製がより容易に行え、量産時の効率化につながる。 The glucose detector and glucose detection method of the present invention can detect glucose by effectively utilizing the action of boronic acid groups and glucose by changing physical properties of the polymer. The reason why such an effect is obtained is estimated as follows, for example. FIG. 1 is a scheme showing an example of an equilibrium relationship between a phenylboronic acid group and glucose. Regarding the binding and dissociation of the boronic acid group and glucose, there is the equilibrium relationship of FIG. 1, and the boron atom of the boronic acid group is most likely to bind to glucose when taking a tetrahedral structure (FIG. 1 (2)). (See Non-Patent Document 1: Tetrahedron 2002, 58, 5291-5300, for example). In the present invention, for example, by combining a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1) into a polymer, the hydrophilic monomer and the hydrophobic monomer in the polymer chain are combined. It is presumed that the side chain affects the boron atom of the boronic acid group and can be stabilized with a tetrahedral structure. Furthermore, by adjusting the hydrophilic-hydrophobic balance appropriately so that the hydrophilic-hydrophobic change of the polymer chain accompanying the binding and dissociation of boronic acid group and glucose affects the hydrophilic-hydrophobic property of the whole polymer, It is presumed that the detection sensitivity of the action of acid groups and glucose can be further increased. In addition, since the glucose detector of the present invention does not require special processing (formation of a hologram or the like) after polymer preparation, it can be prepared more easily, leading to efficiency during mass production.
フェニルボロン酸とグルコースとの平衡関係の一例を表すスキーム。A scheme showing an example of an equilibrium relationship between phenylboronic acid and glucose.
 本発明のグルコース検出体は、少なくとも(A)親水性モノマーと、(B)疎水性モノマーと、(C)化学式(1)で表されるボロン酸含有モノマーとにより構成されるポリマーを含むものである。なお、本願において親水性モノマーとは、オクタノール/水-分配係数(LogPow値)が1.0以下のモノマーをいい、疎水性モノマーとは、オクタノール/水-分配係数(LogPow値)が1.0より大きいモノマーをいうものとする。 The glucose detector of the present invention comprises a polymer composed of at least (A) a hydrophilic monomer, (B) a hydrophobic monomer, and (C) a boronic acid-containing monomer represented by chemical formula (1). In the present application, the hydrophilic monomer means a monomer having an octanol / water-partition coefficient (LogPow value) of 1.0 or less, and the hydrophobic monomer means an octanol / water-partition coefficient (LogPow value) of 1.0. We will refer to the larger monomer.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 親水性モノマーは、LogPow値が1.0以下のモノマーであるが、LogPow値は、-1.0以上であることが好ましく、-0.8以上であることがより好ましい。また、親水性モノマーのLogPow値は、0.8以下であることが好ましく、0.6以下であることがより好ましい。親水性モノマーは、例えば、親水性基としての含窒素基(例えばアミノ基)やヒドロキシ基などのうち1以上を有すると共に、結合基としてのアクリロイル基、メタクリロイル基及びビニル基などのうち1以上を有するものとしてもよい。この親水性モノマーとしては、例えば、アクリルアミド(AA)、2-ヒドロキシエチルアクリレート(HEA)、2-ヒドロキシエチルメタクリレート、N,N’-ジメチルアクリルアミド(DMAA)、N-ビニル-2-ピロリドン、1-メチル-3-メチレン-2-ピロリジノンなどから選ばれる1以上が挙げられる。このうち、AA,HEA,DMAAなどが好ましい。 The hydrophilic monomer is a monomer having a LogPow value of 1.0 or less, but the LogPow value is preferably −1.0 or more, more preferably −0.8 or more. Further, the LogPow value of the hydrophilic monomer is preferably 0.8 or less, and more preferably 0.6 or less. The hydrophilic monomer has, for example, one or more of nitrogen-containing groups (for example, amino groups) and hydroxy groups as hydrophilic groups, and one or more of acryloyl group, methacryloyl group, vinyl group and the like as bonding groups. It may be included. Examples of the hydrophilic monomer include acrylamide (AA), 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate, N, N′-dimethylacrylamide (DMAA), N-vinyl-2-pyrrolidone, 1- 1 or more selected from methyl-3-methylene-2-pyrrolidinone and the like. Of these, AA, HEA, DMAA and the like are preferable.
 疎水性モノマーは、LogPow値が1.0を超えるモノマーであるが、LogPow値は、1.1以上であることが好ましく、1.2以上であることがより好ましい。また、疎水性モノマーのLogPow値は、5.0以下であることが好ましく、3.0以下であることがより好ましい。疎水性モノマーは、例えば、疎水性であるアルキル基やアルキレン基、フェニル基などのうち1以上を有すると共に、結合基としてのアクリロイル基、メタクリロイル基及びビニル基などのうち1以上を有するものとしてもよい。この疎水性モノマーとしては、例えば、エチルアクリレート(EA)、N-フェニルアクリルアミド(NPA)などから選ばれる1以上が挙げられる。 The hydrophobic monomer is a monomer having a LogPow value exceeding 1.0, but the LogPow value is preferably 1.1 or more, and more preferably 1.2 or more. Further, the LogPow value of the hydrophobic monomer is preferably 5.0 or less, and more preferably 3.0 or less. The hydrophobic monomer may have, for example, one or more of hydrophobic alkyl group, alkylene group, phenyl group, and the like, and one or more of acryloyl group, methacryloyl group, vinyl group, and the like as a bonding group. Good. Examples of the hydrophobic monomer include one or more selected from ethyl acrylate (EA), N-phenylacrylamide (NPA), and the like.
 ボロン酸含有モノマーとしては、化学式(1)のものが挙げられる。また、ボロン酸含有モノマーとしては、例えば、化学式(2)のモノマーとしてもよい。あるいは、ボロン酸含有モノマーは、化学式(3)に示すZ-アクリルアミドフェニルボロン酸(Z-APB:但しZは2~4)などが挙げられる。 Examples of the boronic acid-containing monomer include those represented by chemical formula (1). Moreover, as a boronic acid containing monomer, it is good also as a monomer of Chemical formula (2), for example. Alternatively, examples of the boronic acid-containing monomer include Z-acrylamide phenylboronic acid (Z-APB: where Z is 2 to 4) represented by chemical formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 親水性モノマーの含有率Miは、例えば、30(mol%)以上80(mol%)以下の範囲が好ましい。疎水性モノマーの含有率Moは、例えば、10(mol%)以上60(mol%)以下の範囲が好ましい。ボロン酸含有モノマーの含有率Mbは、例えば、4(mol%)以上30(mol%)以下の範囲が好ましい。なお、各含有率は、親水性モノマーと疎水性モノマーとボロン酸含有モノマーとの総量(mol)に対する含有率をいうものとする。また、ボロン酸含有モノマーの含有率Mb(mol%)に対する親水性モノマーの含有率Mi(mol%)であるモル比Mi/Mbは、1以上であることが好ましく、3.2以上であることがより好ましい。また、モル比Mi/Mbは、10以下であることが好ましく、7.6以下であることがより好ましい。モル比Mi/Mbが1~10の範囲では、グルコースの存在量に対する濁度の変化が明瞭であり、好ましい。また、ボロン酸含有モノマーの含有率Mb(mol%)に対する疎水性モノマーの含有率Mo(mol%)であるモル比Mo/Mbは、1以上であることが好ましく、1.5以上であることがより好ましい。また、モル比Mo/Mbは、15以下あることが好ましく、11.4以下であることがより好ましい。モル比Mo/Mbが1~15の範囲では、グルコースの存在量に対する濁度の変化が明瞭であり、好ましい。 The content Mi of the hydrophilic monomer is preferably in the range of 30 (mol%) to 80 (mol%), for example. The content Mo of the hydrophobic monomer is preferably in the range of, for example, 10 (mol%) to 60 (mol%). For example, the content Mb of the boronic acid-containing monomer is preferably in the range of 4 (mol%) to 30 (mol%). In addition, each content rate shall say the content rate with respect to the total amount (mol) of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid containing monomer. The molar ratio Mi / Mb, which is the content Mi (mol%) of the hydrophilic monomer with respect to the content Mb (mol%) of the boronic acid-containing monomer, is preferably 1 or more, and is preferably 3.2 or more. Is more preferable. Further, the molar ratio Mi / Mb is preferably 10 or less, and more preferably 7.6 or less. When the molar ratio Mi / Mb is in the range of 1 to 10, the change in turbidity with respect to the amount of glucose present is clear and preferable. The molar ratio Mo / Mb, which is the content Mo (mol%) of the hydrophobic monomer with respect to the content Mb (mol%) of the boronic acid-containing monomer, is preferably 1 or more, and is 1.5 or more. Is more preferable. Further, the molar ratio Mo / Mb is preferably 15 or less, and more preferably 11.4 or less. When the molar ratio Mo / Mb is in the range of 1 to 15, the change in turbidity with respect to the amount of glucose present is clear and preferable.
 なお、親水性モノマーがアクリルアミドであるときには、モル比Mi/Mbが3.2以上7.6以下の範囲で且つモル比Mo/Mbが5以上11.4以下の範囲であることが特に好ましい。また、親水性モノマーが2-ヒドロキシエチルアクリレートであるときには、モル比Mi/Mbが5以上7.5以下の範囲で且つモル比Mo/Mbが1.5以上4以下の範囲であることが特に好ましい。また、親水性モノマーがN,N-ジメチルアクリルアミドであるときには、モル比Mi/Mbが4.5以上5以下の範囲で且つモル比Mo/Mbが4以上4.5以下の範囲であることが特に好ましい。 In addition, when the hydrophilic monomer is acrylamide, it is particularly preferable that the molar ratio Mi / Mb is in the range of 3.2 to 7.6 and the molar ratio Mo / Mb is in the range of 5 to 11.4. In addition, when the hydrophilic monomer is 2-hydroxyethyl acrylate, the molar ratio Mi / Mb is in the range of 5 to 7.5 and the molar ratio Mo / Mb is in the range of 1.5 to 4 in particular. preferable. Further, when the hydrophilic monomer is N, N-dimethylacrylamide, the molar ratio Mi / Mb is in the range of 4.5 to 5, and the molar ratio Mo / Mb is in the range of 4 to 4.5. Particularly preferred.
 本発明のグルコース検出体は、親水疎水バランス値HHBが25以上であることが好ましく、33以上であることがより好ましい。また、この親水疎水バランス値HHBが75以下であることが好ましく、69以下であることがより好ましい。親水疎水バランス値HHBが25~75の範囲では、グルコースの存在量に対する濁度の変化が明瞭であり、好ましい。この親水疎水バランス値HHBは、親水性モノマーの分配係数Li及び含有率Mi(mol%)と、疎水性モノマーの分配係数Lo及び含有率Mo(mol%)と、ボロン酸含有モノマーの分配係数Lb及び含有率Mb(mol%)とにより、数式(1)を用いて求められる値である。なお、親水性モノマーの分配係数Liは、親水性モノマーのオクタノール/水-分配係数(LogPow値)であり、疎水性モノマーの分配係数Loは、疎水性モノマーのオクタノール/水-分配係数(LogPow値)であり、ボロン酸含有モノマーの分配係数Lbは、ボロン酸含有モノマーのオクタノール/水-分配係数(LogPow値)である。なお、LogPow値は、例えば、オンラインソフトウエアであるALGOPSなどのソフトウエアを利用した計算値を使用することができる。また、公知文献から得られる実験値を使用することもできる。 In the glucose detector of the present invention, the hydrophilic / hydrophobic balance value HHB is preferably 25 or more, and more preferably 33 or more. Further, the hydrophilic / hydrophobic balance value HHB is preferably 75 or less, more preferably 69 or less. When the hydrophilic / hydrophobic balance value HHB is in the range of 25 to 75, the change in turbidity with respect to the amount of glucose is clear and preferable. The hydrophilic / hydrophobic balance value HHB is determined by the distribution coefficient Li and content ratio Mi (mol%) of the hydrophilic monomer, the distribution coefficient Lo and content ratio Mo (mol%) of the hydrophobic monomer, and the distribution coefficient Lb of the boronic acid-containing monomer. And the content Mb (mol%) is a value obtained using the mathematical formula (1). The partition coefficient Li of the hydrophilic monomer is the octanol / water-partition coefficient (LogPow value) of the hydrophilic monomer, and the partition coefficient Lo of the hydrophobic monomer is the octanol / water-partition coefficient (LogPow value) of the hydrophobic monomer. The partition coefficient Lb of the boronic acid-containing monomer is the octanol / water-partition coefficient (LogPow value) of the boronic acid-containing monomer. As the LogPow value, for example, a calculated value using software such as ALGOPS which is online software can be used. Moreover, the experimental value obtained from well-known literature can also be used.
  (数1)
 親水疎水バランス値HHB=Li×Mi+Lo×Mo+Lb×Mb … 数式(1)
(Equation 1)
Hydrophilic / hydrophobic balance value HHB = Li × Mi + Lo × Mo + Lb × Mb Formula (1)
 このグルコース検出体は、親水性モノマーとしてアクリルアミド(AA)、疎水性モノマーとしてエチルアクリレート(EA)、ボロン酸含有モノマーとしてZ-フェニルアクリルアミドボロン酸(Z-APB)を含有する場合、モル比Mi/Mbは、3.2以上7.6以下の範囲が好ましく、モル比Mo/Mbは、5以上11.4以下の範囲が好ましい。また、このグルコース検出体において、親水疎水バランス値HHBは、41以上56以下の範囲が好ましい。 When this glucose detector contains acrylamide (AA) as a hydrophilic monomer, ethyl acrylate (EA) as a hydrophobic monomer, and Z-phenylacrylamide boronic acid (Z-APB) as a boronic acid-containing monomer, the molar ratio is Mi / Mb is preferably in the range of 3.2 to 7.6, and the molar ratio Mo / Mb is preferably in the range of 5 to 11.4. In this glucose detector, the hydrophilic / hydrophobic balance value HHB is preferably in the range of 41 to 56.
 このグルコース検出体は、親水性モノマーとして2-ヒドロキシエチルアクリレート(HEA)、疎水性モノマーとしてエチルアクリレート(EA)、ボロン酸含有モノマーとしてZ-フェニルアクリルアミドボロン酸(Z-APB)を含有する場合、モル比Mi/Mbは、5以上7.5以下の範囲が好ましく、モル比Mo/Mbは、1.5以上4以下の範囲が好ましい。また、このグルコース検出体において、親水疎水バランス値HHBは、33以上57以下の範囲が好ましい。 When this glucose detector contains 2-hydroxyethyl acrylate (HEA) as a hydrophilic monomer, ethyl acrylate (EA) as a hydrophobic monomer, and Z-phenylacrylamide boronic acid (Z-APB) as a boronic acid-containing monomer, The molar ratio Mi / Mb is preferably in the range of 5 to 7.5, and the molar ratio Mo / Mb is preferably in the range of 1.5 to 4. In this glucose detector, the hydrophilic / hydrophobic balance value HHB is preferably in the range of 33 to 57.
 このグルコース検出体は、親水性モノマーとしてN,N-ジメチルアクリルアミド(DMAA)、疎水性モノマーとしてエチルアクリレート(EA)、ボロン酸含有モノマーとしてZ-フェニルアクリルアミドボロン酸(Z-APB)を含有する場合、モル比Mi/Mbは、4.5以上5以下の範囲が好ましく、モル比Mo/Mbは、4以上4.5以下の範囲が好ましい。また、このグルコース検出体において、親水疎水バランス値HHBは、63以上69以下の範囲が好ましい。 This glucose detector contains N, N-dimethylacrylamide (DMAA) as a hydrophilic monomer, ethyl acrylate (EA) as a hydrophobic monomer, and Z-phenylacrylamide boronic acid (Z-APB) as a boronic acid-containing monomer. The molar ratio Mi / Mb is preferably in the range of 4.5 to 5, and the molar ratio Mo / Mb is preferably in the range of 4 to 4.5. In this glucose detector, the hydrophilic / hydrophobic balance value HHB is preferably in the range of 63 to 69.
 本発明のグルコース検出体は、ボロン酸含有モノマーのボロン酸基とグルコースとの作用により、グルコースの存在量に応じてポリマーの濁度が変化するものである。グルコース検出体の濁度変化は、例えば、無色透明、一部に濁りがある状態、全体に濁りがある状態など目視で判断することができる。ここでは、濁度Tは、グルコース検出体を撮像し、画像処理により求めた値とする。濁度Tは、以下のようにして求めるものとする。まず、所定の溶液に浸漬させたあとのグルコース検出体を撮像し、撮像した画像に対してパブリックドメインの画像処理ソフトであるImageJを使用し、撮像した画像のグレー値Gを測定する。濁度Tは、グルコース検出体のグレー値をGs、試料の置かれた背景のグレー値をGbとし、数式(2)により求めるものとする。濁度Tが1.0のとき、グルコース検出体は無色透明であり、値が大きくなるに従い濁度は高くなる。 In the glucose detector of the present invention, the turbidity of the polymer changes depending on the amount of glucose due to the action of the boronic acid group of the boronic acid-containing monomer and glucose. The turbidity change of the glucose detector can be visually determined, for example, colorless and transparent, partially turbid, or entirely turbid. Here, the turbidity T is a value obtained by imaging a glucose detector and performing image processing. The turbidity T is obtained as follows. First, the glucose detector after being immersed in a predetermined solution is imaged, and ImageJ which is image processing software in the public domain is used for the captured image, and the gray value G of the captured image is measured. The turbidity T is obtained by Equation (2), where Gs is the gray value of the glucose detector and Gb is the gray value of the background on which the sample is placed. When the turbidity T is 1.0, the glucose detector is colorless and transparent, and the turbidity increases as the value increases.
  (数2)
 濁度T=Gs/Gb … 数式(2)
(Equation 2)
Turbidity T = Gs / Gb Equation (2)
 グルコース検出体は、グルコース存在量による濁度変化(Turbidity Change Ratio:TCR)をその指標とすることができる。濁度変化TCRは、例えば、グルコースの第1濃度での濁度をT(+)、第1濃度より低い第2濃度での濁度をT(-)とした場合に、数式(3)により求めるものとする。濁度T(+)は、第1濃度として1Mグルコースリン酸緩衝溶液中での値とし、濁度T(-)は、第2濃度としてリン酸緩衝溶液中での値とし、これらを基準として濁度変化TCRを求めるものとしてもよい。この濁度変化TCRは、1.3以上であることが好ましく、1.5以上であることがより好ましく、2.0以上であることが更に好ましい。濁度変化TCRの値が大きいほど濁度Tの変化が明瞭であり、好ましい。なお、リン酸緩衝液は、リン酸水素二ナトリウム・12水和物0.6w/v%、リン酸二水素ナトリウム・2水和物0.05w/v%、塩化ナトリウム0.83w/v%から構成される。 The glucose detector can use turbidity change (Turbidity Change Ratio: TCR) due to the amount of glucose as an index. The turbidity change TCR is, for example, when the turbidity at the first concentration of glucose is T (+), and the turbidity at the second concentration lower than the first concentration is T (−). Suppose you want. The turbidity T (+) is a value in a 1M glucose phosphate buffer solution as a first concentration, and the turbidity T (−) is a value in a phosphate buffer solution as a second concentration. The turbidity change TCR may be obtained. The turbidity change TCR is preferably 1.3 or more, more preferably 1.5 or more, and further preferably 2.0 or more. The larger the value of the turbidity change TCR, the clearer the change in turbidity T, which is preferable. The phosphate buffer solution was disodium hydrogen phosphate dodecahydrate 0.6 w / v%, sodium dihydrogen phosphate dihydrate 0.05 w / v%, sodium chloride 0.83 w / v% Consists of
  (数3)
 濁度変化TCR=T(-)/T(+) … 数式(3)
(Equation 3)
Turbidity change TCR = T (−) / T (+) Equation (3)
 グルコース検出体に含まれるポリマーは、ハイドロゲルであるものとしてもよい。また、グルコース検出体は、眼科用部材に組み込まれているものとしてもよく、眼科用部材は、コンタクトレンズであるものとしてもよい。例えば、涙液に含まれるグルコース濃度は、血糖値と相関があることが知られている(非特許文献2参照:Current Eye Research,2006,Vol.31,No.11,895-901)。また、唾液に含まれるグルコース濃度は、血糖値と相関があることが知られている(非特許文献3参照:Journal of Biomedicine and Biotecnology,Vol2009,Article ID430426)。したがって、このグルコース検出体では、例えば、涙液や唾液などから血糖値を求めることが可能である。このため、本発明のグルコース検出体は、眼科用部材に組み込まれることにより、採血を要さずに血糖値の変化を把握することができる。 The polymer contained in the glucose detector may be a hydrogel. The glucose detector may be incorporated in an ophthalmic member, and the ophthalmic member may be a contact lens. For example, it is known that the glucose concentration contained in tear fluid has a correlation with blood glucose level (see Non-Patent Document 2: Current Eye Research, 2006, Vol. 31, No. 11, 895-901). Moreover, it is known that the glucose concentration contained in saliva has a correlation with the blood glucose level (see Non-Patent Document 3: Journal of Biomedicine and Biotecnology, Vol2009, Article ID430426). Therefore, with this glucose detector, it is possible to determine the blood glucose level from, for example, tears or saliva. For this reason, the glucose detection body of this invention can grasp | ascertain the change of a blood glucose level, without requiring blood collection by incorporating in the member for ophthalmology.
 また、本発明のグルコース検出体は、架橋剤を更に含むものとしてもよい。架橋剤としては、例えば、アクリロイル基、メタクリロイル基、ビニル基及びアリル基のうち複数の重合基を有する化合物が挙げられる。また、本発明のグルコース検出体は、重合性色素を更に含むものとしてもよいし、紫外線吸収剤を更に含むものとしてもよいし、光重合開始剤を更に含むものとしてもよいし、光増感剤を更に含むものとしてもよい。そのほか、グルコース検出体は、非重合性である、水溶性有機溶媒、界面活性剤、清涼化剤、粘稠化剤などの添加剤を含むものとしてもよい。 Moreover, the glucose detector of the present invention may further contain a cross-linking agent. Examples of the crosslinking agent include compounds having a plurality of polymerization groups among acryloyl group, methacryloyl group, vinyl group and allyl group. The glucose detector of the present invention may further contain a polymerizable dye, may further contain an ultraviolet absorber, may further contain a photopolymerization initiator, and may be photosensitized. An agent may be further included. In addition, the glucose detector may include non-polymerizable additives such as a water-soluble organic solvent, a surfactant, a refreshing agent, and a thickening agent.
 グルコース検出体が組み込まれた眼科用部材は、グルコース検出体の濁度の変化が確認できるものであれば特にその様態は限定されないが、コンタクトレンズが好ましい。 The ophthalmic member incorporating the glucose detector is not particularly limited as long as the change in turbidity of the glucose detector can be confirmed, but a contact lens is preferable.
 グルコース検出体が組み込まれたコンタクトレンズは、酸素透過性ハードコンタクトレンズ、ハイドロゲルレンズ、シリコーンハイドロゲルレンズなど従来公知のコンタクトレンズであることが好ましく、ハイドロゲルレンズであることが更に好ましい。また、おしゃれ用コンタクトレンズに代表されるような着色部を有するコンタクトレンズと組合せ、濁度の変化をより効果的に確認できるようにすることも可能である。 The contact lens incorporating the glucose detector is preferably a conventionally known contact lens such as an oxygen permeable hard contact lens, a hydrogel lens, or a silicone hydrogel lens, and more preferably a hydrogel lens. It is also possible to combine with a contact lens having a colored portion as typified by a fashionable contact lens so that the change in turbidity can be confirmed more effectively.
 酸素透過性ハードコンタクトレンズとは、フッ素含有メタクリレート系化合物、ケイ素含有メタクリレート系化合物、ケイ素含有スチレン系化合物等を主成分として少なくとも1種以上含む非含水性コンタクトレンズである。また、ハイドロゲルレンズとは、(メタ)アクリレート系化合物、ビニル系化合物等を主成分として少なくとも1種以上含む含水性コンタクトレンズであり、より具体的には、2-ヒドロキシエチルメタクリレート、メタクリル酸、DMAA、N-ビニル-2-ピロリドン、エチレングリコールジメタクリレート、グリセロールメタクリレート等を主成分として少なくとも1種以上含むコンタクトレンズである。シリコーンハイドロゲルレンズとは、ケイ素含有(メタ)アクリレート系化合物、ケイ素含有マクロモノマー等を主成分として少なくとも1種以上含む含水性コンタクトレンズである。 The oxygen permeable hard contact lens is a non-water-containing contact lens containing at least one or more of fluorine-containing methacrylate compound, silicon-containing methacrylate compound, silicon-containing styrene compound and the like as a main component. The hydrogel lens is a hydrous contact lens containing at least one or more of (meth) acrylate compound, vinyl compound and the like as main components, and more specifically, 2-hydroxyethyl methacrylate, methacrylic acid, A contact lens comprising at least one or more of DMAA, N-vinyl-2-pyrrolidone, ethylene glycol dimethacrylate, glycerol methacrylate and the like as main components. The silicone hydrogel lens is a hydrous contact lens containing at least one or more of silicon-containing (meth) acrylate compounds, silicon-containing macromonomers and the like as main components.
 本発明のグルコース検出体が組み込まれた眼科用部材を眼用レンズ用材料として用いる場合は、例えば、本発明のグルコース検出体をそのままレンズ形状とすることもできる。また、予め作製した本発明のグルコース検出体をコンタクトレンズ作製時に組み込むこともできる。更に、予め作製しておいたコンタクトレンズ上で、本発明のグルコース検出体を作製し組み込むこともできる。本発明のポリマーをそのまま成形する場合は、上記モノマーの組成物を鋳型法にて硬化させることができる。モノマー組成物に光を照射して重合させる場合には、所望の眼用レンズ材料の形状に対応した鋳型内に、上記光重合開始剤を含むモノマー組成物を充填した後、この鋳型に光を照射して重合を行えばよい。光照射による重合に用いられる鋳型の材質は、重合・硬化に必要な光を透過しうる材質である限り特に限定されるものではなく、ポリプロピレン、ポリスチレン、ナイロン、ポリエステルなどの汎用樹脂が好ましく、ガラスであってもよい。これらの材料を成形、加工することによって、所望の形状を有する鋳型とすることができる。 When the ophthalmic member in which the glucose detector of the present invention is incorporated is used as an ophthalmic lens material, for example, the glucose detector of the present invention can be directly used as a lens shape. In addition, the glucose detector of the present invention prepared in advance can be incorporated at the time of manufacturing the contact lens. Furthermore, the glucose detector of the present invention can be prepared and incorporated on a contact lens prepared in advance. When the polymer of the present invention is molded as it is, the monomer composition can be cured by a mold method. When the monomer composition is polymerized by irradiating with light, the monomer composition containing the photopolymerization initiator is filled in a mold corresponding to the shape of the desired ophthalmic lens material, and then the mold composition is irradiated with light. Polymerization may be performed by irradiation. The material of the mold used for polymerization by light irradiation is not particularly limited as long as it is a material that can transmit light necessary for polymerization and curing, and general-purpose resins such as polypropylene, polystyrene, nylon, and polyester are preferable. It may be. By molding and processing these materials, a mold having a desired shape can be obtained.
 本発明のグルコース検出方法は、少なくとも親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとにより構成されグルコースの存在量に応じて濁度が変化するポリマーを含むグルコース検出体を用い、ポリマーの濁度変化に基づいてグルコースを検出するものである。このポリマーの濁度変化は、ボロン酸含有モノマーのボロン酸基とグルコースとの作用により生じるものとしてもよい。このグルコース検出方法において、グルコースの検出は、上述したグルコース検出体を検出対象である溶液に浸漬させ、濁度Tを測定することにより行うことができる。なお、濁度は、目視で確認することもできる。例えば、グルコース検出体の濁りが大きくなるとグルコース量が増加したことがわかり、透明になるとグルコース量が減少したことがわかる。グルコース検出体の大きさと検査対象の溶液の量は、その濃度などに応じて適宜設定すればよい。また、このグルコース検出方法では、上述した濁度Tや濁度変化TCRにより、グルコースの有無のほか、グルコースの濃度、含有量などを検出することができる。また、例えば、濁度の可視的観察だけでなく、電極上に本発明のポリマーを重合させ、電気的シグナル(電導度等)を検出することでグルコースを定量する方法も採用可能である。 The glucose detection method of the present invention includes a polymer that is composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), and whose turbidity changes depending on the amount of glucose present. A glucose detector is used to detect glucose based on a change in turbidity of the polymer. This turbidity change of the polymer may be caused by the action of the boronic acid group of the boronic acid-containing monomer and glucose. In this glucose detection method, the glucose can be detected by immersing the above-described glucose detector in a solution to be detected and measuring the turbidity T. In addition, turbidity can also be confirmed visually. For example, when the turbidity of the glucose detector increases, it can be seen that the amount of glucose has increased, and when it becomes transparent, it has been found that the amount of glucose has decreased. What is necessary is just to set suitably the magnitude | size of the glucose detection body, and the quantity of the solution to be examined according to the density | concentration etc. Moreover, in this glucose detection method, the glucose concentration and content can be detected in addition to the presence or absence of glucose by the turbidity T or turbidity change TCR described above. Further, for example, not only visual observation of turbidity but also a method of quantifying glucose by polymerizing the polymer of the present invention on an electrode and detecting an electrical signal (conductivity, etc.) can be employed.
 以上詳述した本実施形態のグルコース検出体及びグルコース検出方法では、ボロン酸基とグルコースの作用をポリマーの物性変化により効果的に活用し、グルコースの検出をすることができる。このような効果が得られる理由は、例えば、親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとを組み合わせてポリマーにすることにより、ポリマー鎖中の親水性モノマーや疎水性モノマーの側鎖がボロン酸基のホウ素原子に影響を与え、四面体構造で安定化することができると推察される。さらには、ボロン酸基とグルコースの作用に伴うポリマー鎖の親水疎水性の変化を、ポリマー全体の親水疎水性に影響を及ぼすように、その親水疎水バランスを適当に調整することで、ボロン酸基とグルコースの作用の検出感度をより高めることができると推察される。このグルコース検出体は、眼科用部材、例えば、コンタクトレンズなどの眼用レンズに用いることが好適である。 In the glucose detector and glucose detection method of the present embodiment described in detail above, the action of the boronic acid group and glucose can be effectively utilized by changing the physical properties of the polymer, and glucose can be detected. The reason why such an effect is obtained is that, for example, by combining a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1) into a polymer, the hydrophilicity in the polymer chain can be obtained. It is presumed that the side chain of the monomer or hydrophobic monomer affects the boron atom of the boronic acid group and can be stabilized with a tetrahedral structure. Furthermore, by changing the hydrophilic / hydrophobic balance of the polymer chain due to the action of the boronic acid group and glucose appropriately so that the hydrophilic / hydrophobic balance of the polymer as a whole is affected, the boronic acid group It is speculated that the detection sensitivity of the action of glucose and glucose can be further increased. This glucose detector is preferably used for an ophthalmic member, for example, an ophthalmic lens such as a contact lens.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 以下には、本発明の重合性組成物を具体的に作製した例を実験例として説明する。なお、実験例20~23、26~28、30~32、34、37、39~41が本発明の実施例に相当し、実験例1~19、24、25、29、33、35、36、38が比較例に相当する。 Hereinafter, an example in which the polymerizable composition of the present invention was specifically produced will be described as an experimental example. Experimental Examples 20-23, 26-28, 30-32, 34, 37, 39-41 correspond to Examples of the present invention, and Experimental Examples 1-19, 24, 25, 29, 33, 35, 36 38 correspond to the comparative example.
[使用成分]
 実験例で用いた化合物の略称を以下に示す。
 3APB:3-アクリルアミドフェニルボロン酸
 4APB:4-アクリルアミドフェニルボロン酸
 AA:アクリルアミド
 HEA:2-ヒドロキシエチルアクリレート
 DMAA :N,N-ジメチルアクリルアミド
 EA:エチルアクリレート
 NPA:N-フェニルアクリルアミド
 MBA:N,N’-ジメチレンビスアクリルアミド
[Use ingredients]
Abbreviations of the compounds used in the experimental examples are shown below.
3APB: 3-acrylamidophenylboronic acid 4APB: 4-acrylamidophenylboronic acid AA: acrylamide HEA: 2-hydroxyethyl acrylate DMAA: N, N-dimethylacrylamide EA: ethyl acrylate NPA: N-phenylacrylamide MBA: N, N ′ -Dimethylene bisacrylamide
[試験体の作製:実験例1~18]
 親水性モノマーであるアクリルアミド(AA)と2-ヒドロキシエチルアクリレート(HEA)とN-ジメチルアクリルアミド(DMAA)とのうちいずれかと、ボロン酸含有モノマーである3-アクリルアミドフェニルボロン酸(3APB)とを任意の配合比(表1参照)になるよう量りとり、ジメチルスルホキシドに溶解した。また、架橋剤としてN,N’-ジメチレンビスアクリルアミド(MBA)をモノマー総量に対して1.5mol%、重合開始剤として2,2-メトキシ-2-アミノフェニルアセトフェノンをモノマー総量に対して2.0mol%添加した。この配合液をモールド型に流し込み、室温で紫外光(UV,365nm)を30分間照射し、重合させた。重合後、モールド型からポリマーを取り出し、直径6mmの円形に切り出したあと、エタノールに浸漬し、未重合モノマー及び溶媒を抽出した。その後、1Mのグルコースを含むリン酸緩衝溶液にポリマーを12時間以上浸漬し、ポリマーの写真を撮影した。その後、各ポリマーをリン酸緩衝溶液に移し、3~4分後に再度ポリマーの写真を撮影した。
[Production of Specimen: Experimental Examples 1 to 18]
Any of hydrophilic monomer acrylamide (AA), 2-hydroxyethyl acrylate (HEA) and N-dimethylacrylamide (DMAA) and boronic acid-containing monomer 3-acrylamidophenylboronic acid (3APB) And was dissolved in dimethyl sulfoxide. Further, N, N′-dimethylenebisacrylamide (MBA) as a crosslinking agent is 1.5 mol% with respect to the total amount of monomers, and 2,2-methoxy-2-aminophenylacetophenone as a polymerization initiator is 2 with respect to the total amount of monomers. 0.0 mol% was added. This compounded solution was poured into a mold and irradiated with ultraviolet light (UV, 365 nm) for 30 minutes at room temperature to be polymerized. After the polymerization, the polymer was taken out from the mold, cut into a circle with a diameter of 6 mm, and then immersed in ethanol to extract unpolymerized monomers and the solvent. Thereafter, the polymer was immersed in a phosphate buffer solution containing 1 M glucose for 12 hours or more, and a photograph of the polymer was taken. Thereafter, each polymer was transferred to a phosphate buffer solution, and a photograph of the polymer was taken again after 3-4 minutes.
[実験例19~36]
 親水性モノマーであるAAとHEAとDMAAとのうちいずれかと、疎水性モノマーであるエチルアクリレート(EA)と、ボロン酸含有モノマーである3APBとを任意の配合比(表2参照)になるようにした以外は実験例1と同様の工程を経て、得られたポリマーを実験例19~36とした。
[Experimental Examples 19 to 36]
Any one of the hydrophilic monomers AA, HEA, and DMAA, the hydrophobic monomer ethyl acrylate (EA), and the boronic acid-containing monomer 3APB so as to have an arbitrary mixing ratio (see Table 2). Except for the above, the same process as in Experimental Example 1 was performed, and the obtained polymers were referred to as Experimental Examples 19 to 36.
[実験例37,38]
 親水性モノマーであるAAとHEAとDMAAとのうちいずれかと、疎水性モノマーであるN-フェニルアクリルアミド(NPA)と、ボロン酸含有モノマーである3APBとを任意の配合比(表2参照)になるようにした以外は実験例1と同様の工程を経て、得られたポリマーを実験例37,38とした。なお、各モノマーのLogPow値は、オンラインソフトウエアのALGOPS2.1による計算値によれば、3APBが0.51、AAが-0.65、HEAが0.04、DMAAが0.17、EAが1.24、NPAが1.67である。
[Experimental Examples 37 and 38]
Any one of the hydrophilic monomers AA, HEA, and DMAA, the hydrophobic monomer N-phenylacrylamide (NPA), and the boronic acid-containing monomer 3APB have an arbitrary mixing ratio (see Table 2). Except for the above, the same steps as in Experimental Example 1 were performed, and the obtained polymers were referred to as Experimental Examples 37 and 38. Note that the LogPow value of each monomer is 0.51 for 3APB, -0.65 for AA, 0.04 for HEA, 0.17 for DMAA, 0.17 for EA, according to the calculated value by the online software ALGOPS2.1. 1.24, NPA is 1.67.
[実験例39~41]
 親水性モノマーであるAAとHEAとDMAAとのうちいずれかと、疎水性モノマーであるEAと、ボロン酸含有モノマーである4APBとを任意の配合比(表2参照)になるようにした以外は実験例1と同様の工程を経て、得られたポリマーを実験例39~41とした。なお、4APBのLogPow値は、オンラインソフトウエアのALGOPS2.1による計算値によれば、0.48である。
[Experimental Examples 39 to 41]
An experiment except that any one of hydrophilic monomers AA, HEA, and DMAA, a hydrophobic monomer EA, and a boronic acid-containing monomer 4APB were mixed at an arbitrary mixing ratio (see Table 2). The polymer obtained through the same steps as in Example 1 was designated as Experimental Examples 39 to 41. Note that the LogPow value of 4APB is 0.48 according to the value calculated by ALGOPS 2.1 of online software.
(親水疎水バランス値HHB:Hydrophilic/Hydrophobic Balance Value)
 親水疎水バランス値HHBは、親水性モノマーのLogPow値をLi、親水性モノマーの含有率をMi(mol%)、疎水性モノマーのLogPow値をLo、疎水性モノマーの含有率をMo(mol%)、ボロン酸含有モノマーのLogPow値をLb、ボロン酸含有モノマーの含有率をMb(mol%)とし、上記数式(1)により算出した。なお、各含有率は、親水性モノマーと疎水性モノマーとボロン酸含有モノマーとの総量(mol)に対する含有率である。
(Hydrophilic / Hydrophobic Balance Value)
Hydrophilic / hydrophobic balance value HHB is LogPow value of hydrophilic monomer Li, Hydromonomer content rate Mi (mol%), Hydrophobic monomer LogPow value Lo, Hydrophobic monomer content rate Mo (mol%) The LogPow value of the boronic acid-containing monomer was Lb, and the content of the boronic acid-containing monomer was Mb (mol%), and the above formula (1) was used for calculation. In addition, each content rate is a content rate with respect to the total amount (mol) of a hydrophilic monomer, a hydrophobic monomer, and a boronic acid containing monomer.
(濁度)
 濁度は、パブリックドメインの画像処理ソフトであるImageJを使用し、測定対象の写真からグレー値を測定し、試料のグレー値をGs、試料の置かれた背景のグレー値をGbとし、上記数式(2)により算出した。濁度Tが1.0のとき、試料は無色透明であり、値が大きくなるに従い濁度は高くなる。また、グルコースの有無による濁度の変化(Turbidity Change Ratio:TCR)は、1Mのグルコースを含むリン酸緩衝溶液中での濁度をT(+)、リン酸緩衝溶液中での濁度をT(-)とし、上記数式(3)により算出した。なお、表1,2には、目視により濁度T(+)及び濁度変化TCRを確認した結果も示した。濁度T(+)は、濁度の低い順に、A(T≦1.2;目視でほぼ無色透明)、B(1.2<T≦1.5;目視で確認できる濁り)、C(T>1.5;目視で明らかに確認できる濁り)として評価した。また、濁度変化TCRは、1Mのグルコースを含むリン酸緩衝溶液に浸漬させたのち、グルコースを含まないリン酸緩衝溶液に浸漬させた際の濁度変化において、濁度の変化が大きい順に、A(TCR≧2.0;目視で明確に確認できる濁度の変化)、B(1.2<TCR<2.0;目視で確認できる濁度の変化)、C(TCR≦1.2;目視でほぼ確認できない濁度の変化)として評価した。
(Turbidity)
Turbidity is measured using ImageJ, which is image processing software in the public domain, and the gray value is measured from the photograph to be measured, the gray value of the sample is Gs, and the gray value of the background where the sample is placed is Gb. Calculated according to (2). When the turbidity T is 1.0, the sample is colorless and transparent, and the turbidity increases as the value increases. The change in turbidity (Turbidity Change Ratio: TCR) with or without glucose is defined as T (+) in a phosphate buffer solution containing 1 M glucose, and T (+) in the phosphate buffer solution. (−) And calculated by the above formula (3). Tables 1 and 2 also show the results of visual confirmation of turbidity T (+) and turbidity change TCR. Turbidity T (+) is A (T ≦ 1.2; visually colorless and transparent), B (1.2 <T ≦ 1.5; turbidity that can be visually confirmed), C ( T>1.5; turbidity that can be clearly confirmed visually). In addition, the turbidity change TCR is a turbidity change when immersed in a phosphate buffer solution containing 1 M glucose and then immersed in a phosphate buffer solution not containing glucose. A (TCR ≧ 2.0; change in turbidity that can be clearly confirmed visually), B (1.2 <TCR <2.0; change in turbidity that can be visually confirmed), C (TCR ≦ 1.2; It was evaluated as a change in turbidity that could hardly be confirmed visually.
(結果と考察)
 実験例1~18のモノマーのモル比と親水疎水バランス値HHB、1Mのグルコースを含むリン酸緩衝溶液中での濁度T(+)、リン酸緩衝溶液中での濁度T(-)及び濁度変化TCRをまとめて表1に示した。同様に、実験例19~38の結果をまとめて表2に示した。表1に示すように、疎水性モノマーを用いない実験例1~18では、濁度変化TCRがほとんどなかったのに対し、実験例19~38では、比較的良好な濁度変化が起きていることがわかった。なかでも、親水疎水バランス値HHBが25以上75以下の範囲、より好ましくは、33以上69以下の範囲において濁度変化が明確にわかりやすい結果であった。また、実験例19~23,33~36,39では、モル比Mi/Mbは3.2以上7.6以下の範囲が好ましく、モル比Mo/Mbは5以上11.4以下の範囲が好ましく、親水疎水バランス値HHBは41以上56以下の範囲が好ましかった。また、実験例24~28,37,38,40では、モル比Mi/Mbは5以上7.5以下の範囲が好ましく、モル比Mo/Mbは1.5以上4以下の範囲が好ましく、親水疎水バランス値HHBは33以上57以下の範囲が好ましかった。実験例29~32,41では、モル比Mi/Mbは4.5以上5以下の範囲が好ましく、モル比Mo/Mbは4以上4.5以下の範囲が好ましく、親水疎水バランス値HHBは63以上69以下の範囲が好ましかった。
(Results and discussion)
The molar ratio of the monomers of Experimental Examples 1 to 18 and the hydrophilic / hydrophobic balance value HHB, turbidity T (+) in a phosphate buffer solution containing 1 M glucose, turbidity T (−) in a phosphate buffer solution, and The turbidity change TCR is summarized in Table 1. Similarly, the results of Experimental Examples 19 to 38 are summarized in Table 2. As shown in Table 1, in Examples 1 to 18 in which no hydrophobic monomer was used, there was almost no turbidity change TCR, whereas in Examples 19 to 38, a relatively good change in turbidity occurred. I understood it. In particular, the turbidity change was clearly clearly understood when the hydrophilic / hydrophobic balance value HHB was in the range of 25 to 75, more preferably in the range of 33 to 69. In Experimental Examples 19 to 23, 33 to 36, and 39, the molar ratio Mi / Mb is preferably in the range of 3.2 to 7.6, and the molar ratio Mo / Mb is preferably in the range of 5 to 11.4. The hydrophilic / hydrophobic balance value HHB was preferably in the range of 41 to 56. In Experimental Examples 24 to 28, 37, 38, and 40, the molar ratio Mi / Mb is preferably in the range of 5 to 7.5, the molar ratio Mo / Mb is preferably in the range of 1.5 to 4 and hydrophilic. The hydrophobic balance value HHB was preferably in the range of 33 to 57. In Experimental Examples 29 to 32, 41, the molar ratio Mi / Mb is preferably in the range of 4.5 to 5, the molar ratio Mo / Mb is preferably in the range of 4 to 4.5, and the hydrophilic / hydrophobic balance value HHB is 63. A range of 69 or less was preferred.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[実験例42]
 本発明のポリマーをコンタクトレンズに組み込んだものを作製し、これを実験例42とした。1Mのグルコースを含むリン酸緩衝溶液に浸した実験例26のポリマーを、レンズ型モールドの中心部に置き、その上から1mol%の2,2-メトキシ-2-アミノフェニルアセトフェノン及びMBAを含む2-ヒドロキシエチルメタクリレート(HEMA)のモノマー溶液を注入した。その後、室温で紫外光(UV,365nm)を30分間照射し、重合させた。重合後、レンズモールド型からコンタクトレンズを取り出し、1Mのグルコースを含むリン酸緩衝溶液に浸漬した。このコンタクトレンズのポリマー部分のグルコース応答性を確認したところ、T(+)は1.2、T(-)は3.7であった。また、濁度変化TCRは3.1であり、HEMAを主成分とするコンタクトレンズ中において良好なグルコース応答性を得た。
[Experimental Example 42]
A polymer in which the polymer of the present invention was incorporated in a contact lens was produced, and this was designated as Experimental Example 42. The polymer of Experimental Example 26 soaked in a phosphate buffer solution containing 1 M glucose was placed in the center of the lens mold, and 2 mol containing 2,2-methoxy-2-aminophenylacetophenone and MBA were added from above. -A monomer solution of hydroxyethyl methacrylate (HEMA) was injected. Thereafter, ultraviolet light (UV, 365 nm) was irradiated at room temperature for 30 minutes for polymerization. After the polymerization, the contact lens was removed from the lens mold and immersed in a phosphate buffer solution containing 1M glucose. When the glucose responsiveness of the polymer part of this contact lens was confirmed, T (+) was 1.2 and T (−) was 3.7. The turbidity change TCR was 3.1, and good glucose responsiveness was obtained in a contact lens mainly composed of HEMA.
 本発明のグルコース検出体は、グルコースの検出をする分野に利用することができ、コンタクトレンズなどの用途に用いることができる。 The glucose detector of the present invention can be used in the field of detecting glucose and can be used for applications such as contact lenses.

Claims (7)

  1.  少なくとも親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとにより構成されるポリマーを含み、グルコースの存在量に応じて前記ポリマーの濁度が変化する、グルコース検出体。
    Figure JPOXMLDOC01-appb-C000001
    A glucose detection comprising a polymer composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), wherein the turbidity of the polymer changes depending on the amount of glucose present body.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記親水性モノマーの分配係数Li及び含有率Mi(mol%)と、前記疎水性モノマーの分配係数Lo及び含有率Mo(mol%)と、前記ボロン酸含有モノマーの分配係数Lb及び含有率Mb(mol%)とにより求められる親水疎水バランス値HHBが25以上75以下の範囲である、請求項1に記載のグルコース検出体。 Partition coefficient Li and content rate Mi (mol%) of the hydrophilic monomer, partition coefficient Lo and content rate Mo (mol%) of the hydrophobic monomer, partition coefficient Lb and content rate Mb (of the boronic acid-containing monomer) 2. The glucose detector according to claim 1, wherein the hydrophilic / hydrophobic balance value HHB determined by the formula (mol%) is in the range of 25 to 75.
  3.  前記ボロン酸含有モノマーの含有率Mb(mol%)に対する前記親水性モノマーの含有率Mi(mol%)であるモル比Mi/Mbが1以上10以下の範囲を満たし、前記ボロン酸含有モノマーの含有率Mb(mol%)に対する前記疎水性モノマーの含有率Mo(mol%)であるモル比Mo/Mbが1以上15以下の範囲を満たす、請求項1又は2に記載のグルコース検出体。 The molar ratio Mi / Mb, which is the content ratio Mi (mol%) of the hydrophilic monomer with respect to the content ratio Mb (mol%) of the boronic acid-containing monomer, satisfies the range of 1 to 10, and the content of the boronic acid-containing monomer The glucose detector according to claim 1 or 2, wherein a molar ratio Mo / Mb, which is a content Mo (mol%) of the hydrophobic monomer with respect to a rate Mb (mol%), satisfies a range of 1 or more and 15 or less.
  4.  前記ポリマーは、ハイドロゲルである、請求項1~3のいずれか1項に記載のグルコース検出体。 The glucose detector according to any one of claims 1 to 3, wherein the polymer is a hydrogel.
  5.  眼科用部材に組み込まれている、請求項1~4のいずれか1項に記載のグルコース検出体。 The glucose detector according to any one of claims 1 to 4, which is incorporated in an ophthalmic member.
  6.  前記眼科用部材は、コンタクトレンズである、請求項1~5のいずれか1項に記載のグルコース検出体。 The glucose detector according to any one of claims 1 to 5, wherein the ophthalmic member is a contact lens.
  7.  少なくとも親水性モノマーと、疎水性モノマーと、化学式(1)で表されるボロン酸含有モノマーとにより構成されグルコースの存在量に応じて濁度が変化するポリマーを含むグルコース検出体を用い、前記ポリマーの濁度変化に基づいてグルコースを検出する、
     グルコース検出方法。
    Figure JPOXMLDOC01-appb-C000002
    Using the glucose detector comprising a polymer composed of at least a hydrophilic monomer, a hydrophobic monomer, and a boronic acid-containing monomer represented by the chemical formula (1), the turbidity of which varies depending on the amount of glucose present. Detecting glucose based on turbidity change of
    Glucose detection method.
    Figure JPOXMLDOC01-appb-C000002
PCT/JP2015/072700 2015-08-10 2015-08-10 Glucose detector and method for detecting glucose WO2017026044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016571444A JP6194127B2 (en) 2015-08-10 2015-08-10 Glucose detector and glucose detection method
PCT/JP2015/072700 WO2017026044A1 (en) 2015-08-10 2015-08-10 Glucose detector and method for detecting glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072700 WO2017026044A1 (en) 2015-08-10 2015-08-10 Glucose detector and method for detecting glucose

Publications (1)

Publication Number Publication Date
WO2017026044A1 true WO2017026044A1 (en) 2017-02-16

Family

ID=57983028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072700 WO2017026044A1 (en) 2015-08-10 2015-08-10 Glucose detector and method for detecting glucose

Country Status (2)

Country Link
JP (1) JP6194127B2 (en)
WO (1) WO2017026044A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221135A1 (en) * 2018-05-15 2019-11-21 大阪有機化学工業株式会社 Curable resin composition
WO2021053586A1 (en) * 2019-09-18 2021-03-25 Alcon Inc. Wet-packed soft hydrogel ocular inserts
CN115746196A (en) * 2022-11-15 2023-03-07 电子科技大学长三角研究院(湖州) Preparation method and application of isopropyl methacrylamide-fluorophenylboronic acid copolymerized glucose response microgel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133980B1 (en) * 2019-01-31 2020-07-14 세종대학교산학협력단 Organic-inorganic hydrogel glucose sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519979A (en) * 2003-03-11 2006-08-31 スマート ホログラムズ リミテッド Holographic sensor
JP2007506999A (en) * 2003-09-25 2007-03-22 スマート ホログラムズ リミテッド Ophthalmic device including a holographic sensor
JP2008523221A (en) * 2004-12-07 2008-07-03 キー メディカル テクノロジーズ インコーポレイテッド Nanohybrid polymers for ophthalmic applications
JP2011527713A (en) * 2008-07-09 2011-11-04 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Method for capturing a glucose probe in a pore of a polymer
JP2012530281A (en) * 2009-06-16 2012-11-29 ボーシュ アンド ローム インコーポレイティド Biomedical devices
JP2013505157A (en) * 2009-09-22 2013-02-14 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Hydrating hydrogel materials used in ophthalmic applications and methods
JP2013513822A (en) * 2009-12-14 2013-04-22 ノバルティス アーゲー Method for producing silicone hydrogel lenses from water-based lens preparations

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151436A (en) * 2014-02-13 2015-08-24 セイコーエプソン株式会社 Stimulation responsive gel material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519979A (en) * 2003-03-11 2006-08-31 スマート ホログラムズ リミテッド Holographic sensor
JP2007506999A (en) * 2003-09-25 2007-03-22 スマート ホログラムズ リミテッド Ophthalmic device including a holographic sensor
JP2008523221A (en) * 2004-12-07 2008-07-03 キー メディカル テクノロジーズ インコーポレイテッド Nanohybrid polymers for ophthalmic applications
JP2011527713A (en) * 2008-07-09 2011-11-04 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Method for capturing a glucose probe in a pore of a polymer
JP2012530281A (en) * 2009-06-16 2012-11-29 ボーシュ アンド ローム インコーポレイティド Biomedical devices
JP2013505157A (en) * 2009-09-22 2013-02-14 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Hydrating hydrogel materials used in ophthalmic applications and methods
JP2013513822A (en) * 2009-12-14 2013-04-22 ノバルティス アーゲー Method for producing silicone hydrogel lenses from water-based lens preparations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221135A1 (en) * 2018-05-15 2019-11-21 大阪有機化学工業株式会社 Curable resin composition
JPWO2019221135A1 (en) * 2018-05-15 2021-06-17 大阪有機化学工業株式会社 Curable resin composition
JP7368350B2 (en) 2018-05-15 2023-10-24 大阪有機化学工業株式会社 Curable resin composition
WO2021053586A1 (en) * 2019-09-18 2021-03-25 Alcon Inc. Wet-packed soft hydrogel ocular inserts
US11931454B2 (en) 2019-09-18 2024-03-19 Alcon Inc. Wet-packed soft hydrogel ocular inserts
CN115746196A (en) * 2022-11-15 2023-03-07 电子科技大学长三角研究院(湖州) Preparation method and application of isopropyl methacrylamide-fluorophenylboronic acid copolymerized glucose response microgel

Also Published As

Publication number Publication date
JP6194127B2 (en) 2017-09-06
JPWO2017026044A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6194127B2 (en) Glucose detector and glucose detection method
KR101002147B1 (en) Hydrogel of SemiInterpenetrating Network Structure and Process for Producing the Same
JP5707843B2 (en) Contact lens care formulation and packaging solution
JP7160350B2 (en) Biological tissue clearing method and its reagent
JP2015507761A (en) Redox method for contact lens modification
WO2009001987A1 (en) Silicone-hydrogel compound for soft contact lens and soft contact lens produced using the compound
Zhang et al. Stimuli-responsive copolymers of n-isopropyl acrylamide with enhanced longevity in water for micro-and nanofluidics, drug delivery and non-woven applications
JP2015502437A (en) Silicone hydrogel contact lenses modified with lanthanides or transition metal oxidants
JP2015508425A (en) Surface-modified contact lenses
WO2013128633A1 (en) Contact lens care preparation and packaging solution
JP2015502438A (en) High ionic strength process for contact lens modification
JP6628396B2 (en) Gel material for 3D printer
AU2016203263B2 (en) Macroinitiator containing hydrophobic segment
WO2017146102A1 (en) Device and production method for same
JP2015500913A (en) Multi-stage UV method for producing surface modified contact lenses
Paţachia et al. Study of the PVA hydrogel behaviour in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid.
TW201836652A (en) Ophthalmic lens and manufacturing method thereof
Lee et al. Facile fluorescent labeling of a polyacrylamide-based hydrogel film via radical initiation enables selective and reversible detection of Al 3+
JP2012088525A (en) Contact lens care formulation and packaging solution
JP6540316B2 (en) Medical device and method of manufacturing the same
JP4772939B2 (en) Polymerizable monomer composition and contact lens
KR20200065088A (en) Method for manufacturing coated contact lenses
Kasák et al. A polysulfobetaine hydrogel for immobilization of a glucose-binding protein
JP6856019B2 (en) Ocular lens and its manufacturing method
Siddiqa et al. Preparation of letrozole dispersed pHEMA/AAm-g-LDPE drug release system: In-vitro release kinetics for the treatment of endometriosis

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016571444

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900998

Country of ref document: EP

Kind code of ref document: A1