WO2017024995A1 - Ac-ac变换器及其控制方法 - Google Patents

Ac-ac变换器及其控制方法 Download PDF

Info

Publication number
WO2017024995A1
WO2017024995A1 PCT/CN2016/093572 CN2016093572W WO2017024995A1 WO 2017024995 A1 WO2017024995 A1 WO 2017024995A1 CN 2016093572 W CN2016093572 W CN 2016093572W WO 2017024995 A1 WO2017024995 A1 WO 2017024995A1
Authority
WO
WIPO (PCT)
Prior art keywords
controllable switch
bidirectional controllable
turned
controlling
inductor
Prior art date
Application number
PCT/CN2016/093572
Other languages
English (en)
French (fr)
Inventor
李晗
郑志军
陈其洲
斯托布⋅I
顾亦磊
Original Assignee
伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
李晗
郑志军
陈其洲
斯托布⋅I
顾亦磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构, 李晗, 郑志军, 陈其洲, 斯托布⋅I, 顾亦磊 filed Critical 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
Publication of WO2017024995A1 publication Critical patent/WO2017024995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to the field of power electronics, and in particular to an AC-AC converter.
  • AC power is increasingly used in people's daily lives. As people's requirements for power quality are getting higher and higher, it is expected to provide voltage-stabilized AC power to consumers.
  • FIG. 1 is a two-stage AC-AC converter 10 of the prior art including an AC-DC converter 12, a storage capacitor C connected to the output of the AC-DC converter 12, and a storage capacitor.
  • the direct current on C is converted into an alternating current DC-AC inverter 13. Since the function of the storage capacitor C is energy storage and voltage regulation, the storage capacitor C should select an aluminum capacitor with a large capacitance value. For example, in a 1KVA online uninterruptible power supply with an output voltage of 220 volts, the capacitance of the storage capacitor C is about 700 uF.
  • the storage capacitor has a large volume and a high cost, so the AC-AC converter 10 is large in size, high in cost, and low in power density.
  • the technical problem to be solved by the present invention is to provide a small-sized, low-cost AC-AC converter.
  • an embodiment of the present invention provides an AC-AC converter, including:
  • first inductor electrically connected to the AC input terminal and the first bidirectional controllable switch, wherein the junction point of the first inductor and the first bidirectional controllable switch is a first node;
  • a second inductor electrically connected to the AC output and a second bidirectional controllable switch, wherein the junction point of the second inductor and the second bidirectional controllable switch is a second node;
  • a third bidirectional controllable switch electrically coupled between the first node and the second node
  • a capacitor one end of the capacitor is electrically connected to a junction point of the first bidirectional controllable switch and the second bidirectional controllable switch, and the other end is electrically connected to the fourth bidirectional controllable switch and the fifth bidirectional controllable switch respectively Connected to the first node and the second node.
  • the capacitor is a film capacitor.
  • the first, second, third, fourth or fifth bidirectional controllable switch comprises a reverse Two insulated gate bipolar transistors with antiparallel diodes connected in series.
  • the first, second, third, fourth or fifth bidirectional controllable switch comprises two metal oxide half field effect transistors having anti-parallel diodes connected in series in reverse.
  • the first, second, third, fourth or fifth bidirectional controllable switch comprises two reverse-resistance insulated gate bipolar transistors connected in anti-parallel.
  • An embodiment of the present invention also provides a control method for the AC-AC converter described above, wherein the first two-way is controlled when a voltage of an alternating current of the alternating current input terminal is within a first predetermined range greater than a first threshold
  • the controllable switch and the fifth bidirectional controllable switch are turned off, controlling the fourth bidirectional controllable switch to be turned on, and providing the second bidirectional controllable switch and the third bidirectional controllable switch with complementary pulse width modulated signals.
  • the fourth bidirectional controllable switch is controlled to be turned on, so that a conductive path is formed from the first inductor and the fourth bidirectional controllable switch to the capacitor, and alternately Carry out the following two steps,
  • Another embodiment of the present invention also provides a control method for the AC-AC converter described above, controlling the second when a voltage of an alternating current of the alternating current input is within a second predetermined range less than a second threshold
  • the bidirectional controllable switch and the fourth bidirectional controllable switch are turned off, controlling the fifth bidirectional controllable switch to be turned on, and providing the first bidirectional controllable switch and the third bidirectional controllable switch with complementary pulse width modulation signals.
  • controlling the fifth bidirectional controllable switch to be turned on to form a conduction path from the capacitor, the fifth bidirectional controllable switch to the second inductor, and alternately the fifth bidirectional controllable switch to be turned on to form a conduction path from the capacitor, the fifth bidirectional controllable switch to the second inductor, and alternately.
  • Another embodiment of the present invention also provides a control method for the AC-AC converter described above, wherein when the voltage at the AC input is between a second threshold and a first threshold, wherein the second threshold is less than the a threshold; controlling the first bidirectional controllable switch and the second bidirectional controllable switch to be disconnected, controlling the fourth bidirectional controllable switch, the fifth bidirectional controllable switch to be turned on, or both Disconnecting, controlling the third bidirectional controllable switch to be turned on, such that the AC input terminal is connected to the AC output terminal through the first inductor and the second inductor connected in series.
  • the AC-AC converter of the invention adopts a small number of components and can adopt a film capacitor with a small capacitance value, and has small volume, low cost and high power density.
  • Figure 1 is an AC-AC converter of the prior art.
  • FIG. 2 is a circuit diagram of a prior art Buck converter.
  • FIG. 3 is a circuit diagram of a prior art Boost converter.
  • FIG. 4a is a circuit diagram of an AC-AC converter in accordance with a preferred embodiment of the present invention.
  • Figure 4b is a circuit diagram of a bidirectional controllable switch in accordance with a first embodiment of the present invention.
  • Figure 4c is a circuit diagram of a bidirectional controllable switch in accordance with a second embodiment of the present invention.
  • Figure 4d is a circuit diagram of a bidirectional controllable switch in accordance with a third embodiment of the present invention.
  • FIG. 5 and 6 are equivalent circuit diagrams of the AC-AC converter shown in Fig. 4a in a buck mode during the positive half cycle of the alternating current.
  • Figure 7 and Figure 8 are the drop of the AC-AC converter shown in Figure 4a during the negative half cycle of the alternating current Equivalent circuit diagram in pressure mode.
  • FIG. 9 and 10 are equivalent circuit diagrams of the AC-AC converter shown in Fig. 4a in a boost mode during the positive half cycle of the alternating current.
  • 11 and 12 are equivalent circuit diagrams of the AC-AC converter shown in Fig. 4a in a boost mode in the negative half cycle of the alternating current.
  • FIG. 2 is a circuit diagram of a prior art Buck converter.
  • the switching transistor Q1 in the Buck converter By controlling the switching transistor Q1 in the Buck converter to operate in a pulse width modulation mode (ie, the switching transistor Q1 is alternately turned on and off at a high frequency), the output DC voltage is lower than the input DC voltage.
  • FIG. 3 is a circuit diagram of a prior art Boost converter.
  • the switching transistor Q2 in the Boost converter By controlling the switching transistor Q2 in the Boost converter to operate in a pulse width modulation mode (ie, the switching transistor Q2 is alternately turned on and off at a high frequency), the output DC voltage is higher than the input DC voltage.
  • FIG. 4a is a circuit diagram of an AC-AC converter in accordance with a preferred embodiment of the present invention.
  • the bidirectional controllable switches B1 - B5 are indicated by switch symbols in Figure 4a (see Figures 4b-4d for specific construction).
  • the AC-AC converter 20 includes an inductor L1 electrically connected to the AC input terminal and a bidirectional controllable switch B1, an inductor L2 electrically connected to the AC output terminal and a bidirectional controllable switch B2, where the inductor L1 and the bidirectional are defined
  • the junction point of the controllable switch B1 is the first node N1
  • the junction point of the inductor L2 and the bidirectional controllable switch B2 is the second node N2
  • the junction point of the bidirectional controllable switch B1 and the bidirectional controllable switch B2 is the third node N3.
  • the AC-AC converter 20 further includes a bidirectional controllable switch B3 electrically connected between the first node N1 and the second node N2.
  • One end of the capacitor C1 is connected to the third node N3, and the other end is respectively connected to the bidirectional controllable switch B4.
  • B5 is connected to the first node N1 and the second node N2.
  • the AC-AC converter 20 of the present invention includes five bidirectional controllable switches B1 to B5, two inductors L1 and L2, and a capacitor C1.
  • the number of components used is small and the cost is low.
  • FIGs 4b-4d show circuit diagrams of the bidirectional controllable switch of the present invention.
  • an insulated gate bipolar transistor (IGBT) T1 with an antiparallel diode D1 has a reverse
  • the IGBT T2 of the diode D2 is reversely connected in series to form a bidirectional controllable switch.
  • a metal oxide half field effect transistor (MOSFET) T3 having an antiparallel diode D3 and a MOSFET T4 having an antiparallel diode D4 are connected in reverse to form a bidirectional controllable switch.
  • MOSFET metal oxide half field effect transistor
  • the reverse-resistance insulated gate bipolar transistors (RBIGBT) T5, T6 are connected in anti-parallel to form a bidirectional controllable switch.
  • the two-way controllable switch can also be a single device with bidirectional controllable functionality.
  • the AC-AC converter 20 can operate in the following three modes of operation:
  • the AC-AC converter 20 operates in the buck mode when the voltage at the AC input is within a first predetermined voltage range greater than the first threshold.
  • the AC-AC converter 20 operates in the boost mode when the voltage at the AC input is within a second predetermined voltage range that is less than the second threshold.
  • the AC-AC converter 20 When the voltage at the AC input is between the second threshold and the first threshold, the AC-AC converter 20 operates in the normal output mode.
  • the first threshold is greater than the second threshold.
  • Buck mode The bidirectional controllable switches B1, B5 are controlled to be in the off state.
  • the bidirectional controllable switch B4 is controlled to be turned on to form a conduction path from the inductor L1, the bidirectional controllable switch B4 to the capacitor C1, so that the capacitor C1 is used to filter the switching ripple while alternately performing the following two Control process:
  • the bidirectional controllable switch B4 is controlled to be turned on, so that the slave capacitor C1
  • the bidirectional controllable switch B4 forms a conduction path to the inductor L1, and alternately performs the following two control processes:
  • the bidirectional controllable switches B3, B2 are controlled in complementary pulse width modulation. Based on the above control process, the inductor L1 and the capacitor C1 can be used as an input filter, and the capacitor C1 is used for filtering the switching ripple, and is not used for energy storage. Therefore, a film capacitor having a small capacitance value can be selected, which is small in size and low in cost.
  • the bidirectional controllable switches B3, B2 and the inductor L2 can be used as a Buck converter, thereby realizing an AC power having a reduced voltage at the AC output.
  • Boost mode The bidirectional controllable switches B2 and B4 are controlled to be in an off state.
  • the bidirectional controllable switch B5 is controlled to be turned on, so that a conduction path is formed from the capacitor C1, the bidirectional controllable switch B5, and the inductor L2, so that the capacitor C1 is used to filter the switching ripple while alternately proceeding as follows Two control processes:
  • the bidirectional controllable switch B5 is controlled to be turned on, so that a conduction path is formed from the inductor L2, the bidirectional controllable switch B5 to the capacitor C1, and the following two control processes are alternately performed:
  • the bidirectional controllable switches B3, B1 are controlled in complementary pulse width modulation. Based on the above control process, the inductor L2 and the capacitor C1 are used as output filters. Similarly, the capacitor C1 is used for filtering the switching ripple, and is not used for energy storage. Therefore, a film capacitor having a small capacitance value can be selected, which is small in size and low in cost.
  • the inductor L1 and the bidirectional controllable switches B1 and B3 function as a Boost converter, thereby realizing an alternating current whose voltage is increased at the AC output terminal.
  • Normal output mode control the bidirectional controllable switches B1 and B2 to open, control one of the bidirectional controllable switches B4, B5 to be turned on or both are turned off, and control the bidirectional controllable switch B3 to be always on.
  • the AC input is connected to the AC output through series connected inductors L1 and L2.
  • the capacitor C1 can select a film capacitor with a capacitance value of 7.5 uF, which is much smaller in cost and volume than the storage capacitor C in the prior art. And the power density of the bidirectional AC-AC converter 20 is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种AC-AC变换器(20)及其控制方法。该AC-AC变换器包括电连接至交流输入端的第一电感(L1)和第一双向可控开关(B1),第一电感和第一双向可控开关的联结点为第一节点(N1);电连接至交流输出端的第二电感(L2)和第二双向可控开关(B2),第二电感和第二双向可控开关的联结点为第二节点(N2);电连接在第一节点和第二节点之间的第三双向可控开关(B3);以及第四双向可控开关(B4)、第五双向可控开关(B5)和电容(C1)。电容的一端电连接至第一双向可控开关和第二双向可控开关的联结点,且另一端分别通过第四双向可控开关和第五双向可控开关电连接至第一节点和第二节点。该AC-AC变换器体积小、成本低、功率密度大。

Description

AC-AC变换器及其控制方法 技术领域
本发明涉及电力电子领域,具体涉及一种AC-AC变换器。
背景技术
交流电越来越多地用于人们的日常生活中,随着人们对供电品质的要求越来越高,目前期望能够给用电设备提供电压稳定的交流电。
图1是现有技术中的一种两阶段AC-AC变换器10,其包括AC-DC变换器12,连接在AC-DC变换器12的输出端的储能电容C和用于将储能电容C上的直流电转换为交流电的DC-AC逆变器13。由于储能电容C的作用是储能和稳压,因此储能电容C应当选择电容值大的铝电容器。例如在输出电压为220伏的1KVA在线式不间断电源中,储能电容C的电容值为700uF左右。该储能电容的体积大、成本高,因此AC-AC变换器10的体积大、成本高、功率密度小。
发明内容
针对上述现有技术,本发明要解决的技术问题是提供一种体积小、成本低的AC-AC变换器。
为了解决上述技术问题,本发明的一个实施例提供了一种AC-AC变换器,包括:
电连接至交流输入端的第一电感和第一双向可控开关,所述第一电感和第一双向可控开关的联结点为第一节点;
电连接至交流输出端的第二电感和第二双向可控开关,所述第二电感和第二双向可控开关的联结点为第二节点;
电连接在所述第一节点和第二节点之间的第三双向可控开关;
第四双向可控开关和第五双向可控开关;以及
电容,所述电容的一端电连接至所述第一双向可控开关和第二双向可控开关的联结点,且另一端分别通过所述第四双向可控开关和第五双向可控开关电连接至所述第一节点和第二节点。
优选的,所述电容为薄膜电容器。
优选的,所述第一、第二、第三、第四或第五双向可控开关包括反向 串联的2个具有反向并联二极管的绝缘栅双极型晶体管。
优选的,所述第一、第二、第三、第四或第五双向可控开关包括反向串联的2个具有反向并联二极管的金氧半场效应晶体管。
优选的,所述第一、第二、第三、第四或第五双向可控开关包括反向并联的2个逆阻型绝缘栅双极型晶体管。
本发明的一个实施例还提供了用于上述的AC-AC变换器的控制方法,当所述交流输入端的交流电的电压在大于第一阈值的第一预定范围内时,控制所述第一双向可控开关和第五双向可控开关截止,控制所述第四双向可控开关导通,并给所述第二双向可控开关和第三双向可控开关提供互补的脉宽调制信号。
优选的,在所述交流电的正半周期内,控制所述第四双向可控开关导通,使得从所述第一电感、第四双向可控开关到所述电容形成导通路径,同时交替进行如下两个步骤,
11)控制所述第三双向可控开关导通,且控制所述第二双向可控开关截止,以允许电流从所述第一电感流向所述第二电感;
12)控制所述第三双向可控开关截止,且控制所述第二双向可控开关导通,使得从所述第二双向可控开关到所述第二电感形成导通路径;
在所述交流电的负半周期内,控制所述第四双向可控开关导通,使得从所述电容、第四双向可控开关到所述第一电感形成导通路径,同时交替进行如下两个步骤,
21)控制所述第三双向可控开关导通,且控制所述第二双向可控开关截止,以允许电流从所述第二电感流向所述第一电感;
22)控制所述第三双向可控开关截止,且控制所述第二双向可控开关导通,使得从所述第二电感到所述第二双向可控开关形成导通路径。
本发明的另一个实施例还提供了用于上述的AC-AC变换器的控制方法,当所述交流输入端的交流电的电压在小于第二阈值的第二预定范围内时,控制所述第二双向可控开关和第四双向可控开关截止,控制所述第五双向可控开关导通,且给所述第一双向可控开关和第三双向可控开关提供互补的脉宽调制信号。
优选的,在所述交流电的正半周期内,控制所述第五双向可控开关导通使得从所述电容、第五双向可控开关到所述第二电感形成导通路径,同时交替进行如下两个步骤,
11)控制所述第一双向可控开关导通,且控制所述第三双向可控开关截止,使得从所述第一电感到所述第一双向可控开关形成导通路径;
12)控制所述第一双向可控开关截止,且控制所述第三双向可控开关导通以允许电流从所述第一电感流向所述第二电感;
在所述交流电的负半周期内,控制所述第五双向可控开关导通使得从所述第二电感、第五双向可控开关到所述电容形成导通路径,同时交替进行如下两个步骤,
21)控制所述第一双向可控开关导通,且控制所述第三双向可控开关截止,使得从所述第一双向可控开关到所述第一电感形成导通路径;
22)控制所述第一双向可控开关截止,且控制所述第三双向可控开关导通以允许电流从所述第二电感流向所述第一电感。
本发明的另一个实施例还提供了用于上述的AC-AC变换器的控制方法,当交流输入端的电压在第二阈值至第一阈值之间时,其中所述第二阈值小于所述第一阈值;控制所述第一双向可控开关和所述第二双向可控开关断开,控制所述第四双向可控开关、所述第五双向可控开关之一导通或两者都断开,控制所述第三双向可控开关一直导通,使得所述交流输入端通过串联的所述第一电感和第二电感连接至所述交流输出端。
本发明的AC-AC变换器采用元器件数量少,且可以采用电容值小的薄膜电容器,体积小、成本低、功率密度大。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是现有技术中的一种AC-AC变换器。
图2是现有技术中的Buck变换器的电路图。
图3是现有技术中的Boost变换器的电路图。
图4a是根据本发明较佳实施例的AC-AC变换器的电路图。
图4b是根据本发明第一个实施例的双向可控开关的电路图。
图4c是根据本发明第二个实施例的双向可控开关的电路图。
图4d是根据本发明第三个实施例的双向可控开关的电路图。
图5和图6是图4a所示的AC-AC变换器在交流电的正半周期内的降压模式下的等效电路图。
图7和图8是图4a所示的AC-AC变换器在交流电的负半周期内的降 压模式下的等效电路图。
图9和图10是图4a所示的AC-AC变换器在交流电的正半周期内的升压模式下的等效电路图。
图11和图12是图4a所示的AC-AC变换器在交流电的负半周期内的升压模式下的等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。
为了便于理解本发明AC-AC变换器实现升压和降压的原理,首先简单介绍现有技术中经典的Buck变换器和Boost变换器的工作原理。
图2是现有技术中的Buck变换器的电路图。通过控制Buck变换器中的开关管Q1以脉宽调制方式工作(即开关管Q1在高频下交替地导通和截止),从而实现输出的直流电压低于输入的直流电压。
图3是现有技术中的Boost变换器的电路图。通过控制Boost变换器中的开关管Q2以脉宽调制方式工作(即开关管Q2在高频下交替地导通和截止),从而实现输出的直流电压高于输入的直流电压。
图4a是根据本发明较佳实施例的AC-AC变换器的电路图。为了简化图4a,在图4a中用开关符号表示双向可控开关B1~B5(具体结构参见图4b-4d)。
如图4a所示,AC-AC变换器20包括电连接至交流输入端的电感L1和双向可控开关B1,电连接至交流输出端的电感L2和双向可控开关B2,在此定义电感L1和双向可控开关B1的联结点为第一节点N1,电感L2和双向可控开关B2的联结点为第二节点N2,双向可控开关B1和双向可控开关B2的联结点为第三节点N3。AC-AC变换器20还包括电连接在第一节点N1和第二节点N2之间的双向可控开关B3,电容C1的一端连接至第三节点N3,另一端分别通过双向可控开关B4、B5连接至第一节点N1和第二节点N2。
本发明的AC-AC变换器20包括5个双向可控开关B1~B5、2个电感L1、L2和一个电容C1,采用的元器件数目少,成本低。
图4b-4d示出了本发明的双向可控开关的电路图。如图4b所示,具有反向并联二极管D1的绝缘栅双极型晶体管(IGBT)T1和具有反向并 联二极管D2的IGBT T2反向串联形成一个双向可控开关。如图4c所示,具有反向并联二极管D3的金氧半场效应晶体管(MOSFET)T3和具有反向并联二极管D4的MOSFET T4反向串联形成一个双向可控开关。如图4d所示,逆阻型绝缘栅双极型晶体管(RBIGBT)T5、T6反向并联形成一个双向可控开关。在本发明的其他实施例中,双向可控开关还可以是具有双向可控功能的单颗器件。
下面将结合AC-AC变换器20的工作模式和等效电路来说明其优点。对于本领域的技术人员来说,可以基于现有的脉宽调制控制器(例如MCS-51单片机)采用现有的生成方法(例如软件生成法)分别给双向可控开关B1~B5提供所需占空比的脉宽调制信号(PWM),以控制其导通或截止。
基于交流输入端的电压值,AC-AC变换器20可以工作在以下三种工作模式中:
(1)当交流输入端的电压在大于第一阈值的第一预定电压范围内时,AC-AC变换器20工作在降压模式。
(2)当交流输入端的电压在小于第二阈值的第二预定电压范围内时,AC-AC变换器20工作在升压模式。
(3)当交流输入端的电压在第二阈值至第一阈值之间时,AC-AC变换器20工作在正常输出模式。其中第一阈值大于第二阈值。
以下将分别说明上述工作模式的实现方法。
降压模式:双向可控开关B1、B5被控制处于截止状态。
在交流电的正半周期内,控制双向可控开关B4导通使得从电感L1、双向可控开关B4到电容C1形成导通路径,使得电容C1用于滤除开关纹波,同时交替进行如下两个控制过程:
(11)控制双向可控开关B3导通,且控制双向可控开关B2截止,以允许电流从电感L1流向电感L2,形成的等效电路图如图5所示,其中电流流向如图5中的虚线箭头所示。
(12)控制双向可控开关B3截止,且控制双向可控开关B2导通使得从双向可控开关B2到电感L2形成导通路径,其中电流流向如图6中的虚线箭头所示,电感L1通过双向可控开关B4和电容C1续流,电感L2通过双向可控开关B2续流。
在交流电的负半周期内,控制双向可控开关B4导通,使得从电容C1、 双向可控开关B4到电感L1形成导通路径,同时交替进行如下两个控制过程:
(21)控制双向可控开关B3导通,且控制双向可控开关B2截止,以允许电流从电感L2流向电感L1,形成的等效电路图如图7所示,其中电流流向如图7中的虚线箭头所示。
(22)控制双向可控开关B3截止,且控制双向可控开关B2导通,使得从电感L2到双向可控开关B2形成导通路径,其中电流流向如图8中的虚线箭头所示,电感L1通过电容C1和双向可控开关B4续流,电感L2通过双向可控开关B2续流。
在降压模式中,双向可控开关B3、B2是以互补的脉宽调制方式被控制。基于上述控制过程,电感L1和电容C1可作为输入滤波器,电容C1用于过滤开关纹波,并不用于储能,因此其可以选用电容值小的薄膜电容器,体积小、成本低。另外双向可控开关B3、B2和电感L2可作为Buck变换器,从而实现了在交流输出端得到电压降低的交流电。
升压模式:双向可控开关B2、B4被控制处于截止状态。
在交流电的正半周期内,控制双向可控开关B5导通,使得从电容C1、双向可控开关B5到电感L2形成导通路径,使得电容C1用于滤除开关纹波,同时交替进行如下两个控制过程:
(11)控制双向可控开关B1导通,且控制双向可控开关B3截止,使得从电感L1到双向可控开关B1形成导通路径,形成的等效电路图如图9所示,其中电流流向如图9中的虚线箭头所示;
(12)控制双向可控开关B1截止,且控制双向可控开关B3导通以允许电流从电感L1流向电感L2,形成的等效电路图如图10所示,其中电流流向如图10中的虚线箭头所示。
在交流电的负半周期内,控制双向可控开关B5导通,使得从电感L2、双向可控开关B5到电容C1形成导通路径,同时交替进行如下两个控制过程:
(21)控制双向可控开关B1导通,且控制双向可控开关B3截止,使得从双向可控开关B1到电感L1形成导通路径,形成的等效电路图如图11所示,其中电流流向如图11中的虚线箭头所示;
(22)控制双向可控开关B1截止,且控制双向可控开关B3导通以允 许电流从电感L2流向电感L1。形成的等效电路图如图12所示,其中电流流向如图12中的虚线箭头所示。
在升压模式中,双向可控开关B3、B1是以互补的脉宽调制方式被控制。基于上述控制过程,电感L2和电容C1作为输出滤波器,同样电容C1用于过滤开关纹波,并不用于储能,因此其可以选用电容值小的薄膜电容器,体积小、成本低。另外电感L1、双向可控开关B1、B3作为Boost变换器,从而实现了在交流输出端得到电压升高的交流电。
正常输出模式:控制双向可控开关B1和B2断开,控制双向可控开关B4、B5之一导通或两者都断开,且控制双向可控开关B3一直导通。实现交流输入端通过串联的电感L1和L2连接至交流输出端。
采用本发明的双向AC-AC变换器20,当所需的输出电压为220V时,电容C1可以选用电容值为7.5uF的薄膜电容器,其成本和体积远小于现有技术中的储能电容C,且提高了双向AC-AC变换器20的功率密度。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。

Claims (10)

  1. 一种AC-AC变换器,其特征在于,包括:
    电连接至交流输入端的第一电感和第一双向可控开关,所述第一电感和第一双向可控开关的联结点为第一节点;
    电连接至交流输出端的第二电感和第二双向可控开关,所述第二电感和第二双向可控开关的联结点为第二节点;
    电连接在所述第一节点和第二节点之间的第三双向可控开关;
    第四双向可控开关和第五双向可控开关;以及
    电容,所述电容的一端电连接至所述第一双向可控开关和第二双向可控开关的联结点,且另一端分别通过所述第四双向可控开关和第五双向可控开关电连接至所述第一节点和第二节点。
  2. 根据权利要求1所述的AC-AC变换器,其特征在于,所述电容为薄膜电容器。
  3. 根据权利要求1所述的AC-AC变换器,其特征在于,所述第一、第二、第三、第四或第五双向可控开关包括反向串联的2个具有反向并联二极管的绝缘栅双极型晶体管。
  4. 根据权利要求1所述的AC-AC变换器,其特征在于,所述第一、第二、第三、第四或第五双向可控开关包括反向串联的2个具有反向并联二极管的金氧半场效应晶体管。
  5. 根据权利要求1所述的AC-AC变换器,其特征在于,所述第一、第二、第三、第四或第五双向可控开关包括反向并联的2个逆阻型绝缘栅双极型晶体管。
  6. 一种用于权利要求1至5中任一项所述的AC-AC变换器的控制方法,其特征在于,当所述交流输入端的交流电的电压在大于第一阈值的第一预定范围内时,控制所述第一双向可控开关和第五双向可控开关截止,控制所述第四双向可控开关导通,并给所述第二双向可控开关和第三双向可控开关提供互补的脉宽调制信号,使所述AC-AC变换器工作在降压模式。
  7. 根据权利要求6所述的控制方法,其特征在于,
    在所述交流电的正半周期内,控制所述第四双向可控开关导通,使得从所述第一电感、第四双向可控开关到所述电容形成导通路径,同时交替 进行如下两个步骤,
    11)控制所述第三双向可控开关导通,且控制所述第二双向可控开关截止,以允许电流从所述第一电感流向所述第二电感;
    12)控制所述第三双向可控开关截止,且控制所述第二双向可控开关导通,使得从所述第二双向可控开关到所述第二电感形成导通路径;
    在所述交流电的负半周期内,控制所述第四双向可控开关导通,使得从所述电容、第四双向可控开关到所述第一电感形成导通路径,同时交替进行如下两个步骤,
    21)控制所述第三双向可控开关导通,且控制所述第二双向可控开关截止,以允许电流从所述第二电感流向所述第一电感;
    22)控制所述第三双向可控开关截止,且控制所述第二双向可控开关导通,使得从所述第二电感到所述第二双向可控开关形成导通路径。
  8. 一种用于权利要求1至5中任一项所述的AC-AC变换器的控制方法,其特征在于,当所述交流输入端的交流电的电压在小于第二阈值的第二预定范围内时,控制所述第二双向可控开关和第四双向可控开关截止,控制所述第五双向可控开关导通,且给所述第一双向可控开关和第三双向可控开关提供互补的脉宽调制信号使所述AC-AC变换器工作在升压模式。
  9. 根据权利要求8所述的AC-AC变换器的控制方法,其特征在于,
    在所述交流电的正半周期内,控制所述第五双向可控开关导通使得从所述电容、第五双向可控开关到所述第二电感形成导通路径,同时交替进行如下两个步骤,
    11)控制所述第一双向可控开关导通,且控制所述第三双向可控开关截止,使得从所述第一电感到所述第一双向可控开关形成导通路径;
    12)控制所述第一双向可控开关截止,且控制所述第三双向可控开关导通以允许电流从所述第一电感流向所述第二电感;
    在所述交流电的负半周期内,控制所述第五双向可控开关导通使得从所述第二电感、第五双向可控开关到所述电容形成导通路径,同时交替进行如下两个步骤,
    21)控制所述第一双向可控开关导通,且控制所述第三双向可控开关截止,使得从所述第一双向可控开关到所述第一电感形成导通路径;
    22)控制所述第一双向可控开关截止,且控制所述第三双向可控开关导通以允许电流从所述第二电感流向所述第一电感。
  10. 一种用于权利要求1至5中任一项所述的AC-AC变换器的控制方法,其特征在于,当交流输入端的电压在第二阈值至第一阈值之间时,其中所述第二阈值小于所述第一阈值;
    控制所述第一双向可控开关和所述第二双向可控开关断开,控制所述第四双向可控开关、所述第五双向可控开关之一导通或两者都断开,控制所述第三双向可控开关一直导通,使得所述交流输入端通过串联的所述第一电感和第二电感连接至所述交流输出端。
PCT/CN2016/093572 2015-08-12 2016-08-05 Ac-ac变换器及其控制方法 WO2017024995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510494124.4A CN106452094A (zh) 2015-08-12 2015-08-12 Ac-ac变换器及其控制方法
CN201510494124.4 2015-08-12

Publications (1)

Publication Number Publication Date
WO2017024995A1 true WO2017024995A1 (zh) 2017-02-16

Family

ID=57983059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093572 WO2017024995A1 (zh) 2015-08-12 2016-08-05 Ac-ac变换器及其控制方法

Country Status (2)

Country Link
CN (1) CN106452094A (zh)
WO (1) WO2017024995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022073A (zh) * 2019-05-07 2019-07-16 成都信息工程大学 一种ac-ac电压调节电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039078A (zh) * 2007-01-30 2007-09-19 南京理工大学 非隔离式交-交型三电平ac-ac变换器
JP4882266B2 (ja) * 2005-04-12 2012-02-22 富士電機株式会社 交流−交流変換装置
CN103081324A (zh) * 2010-11-17 2013-05-01 富士电机株式会社 交流-交流转换器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204119044U (zh) * 2014-04-16 2015-01-21 杨飏 一种新型基于Buck-Boost的AC-AC变换器
CN104201905B (zh) * 2014-08-30 2019-04-02 龚秋声 交流斩波双向调压电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882266B2 (ja) * 2005-04-12 2012-02-22 富士電機株式会社 交流−交流変換装置
CN101039078A (zh) * 2007-01-30 2007-09-19 南京理工大学 非隔离式交-交型三电平ac-ac变换器
CN103081324A (zh) * 2010-11-17 2013-05-01 富士电机株式会社 交流-交流转换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YOUJUN ET AL.: "Research on Cascaded Buck-Boost AC/AC Converter", ELECTRIC POWER AUTOMATION EQUIPMENT, vol. 30, no. 9, 30 September 2010 (2010-09-30), pages 46 - 50, ISSN: 1006-6047 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022073A (zh) * 2019-05-07 2019-07-16 成都信息工程大学 一种ac-ac电压调节电路
CN110022073B (zh) * 2019-05-07 2024-01-30 成都信息工程大学 一种ac-ac电压调节电路

Also Published As

Publication number Publication date
CN106452094A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN105720825B (zh) 用于开关模式电源的系统和方法
WO2019128071A1 (zh) 一种dc-dc变换器
CN104410252B (zh) 源极驱动电路及其控制方法
US9537401B2 (en) Push-pull converter and modulation method for controlling a push-pull converter
US20150207424A1 (en) Switching power supply and electric power converter
US10298128B2 (en) Multi-switch power converter
JP2008109775A (ja) Dc−dcコンバータおよびその制御方法
TWI680634B (zh) 電源管理電路和移動終端
TWI513164B (zh) 返馳式主動箝位電源轉換器
CN105991021B (zh) 双向dc-dc变换器
CN103683919A (zh) 高功率因数低谐波失真恒流电路及装置
CN103633849A (zh) 减少功率转换器电磁干扰的双闸极驱动电路及控制方法
EP3324707B1 (en) Isolated single-ended primary inductor converter with voltage clamp circuit
CN107134929B (zh) 双向直流变换器及双向直流变换控制方法
CN115720045A (zh) 可升降压的双向直流-直流电源转换装置及其控制方法
JP5678860B2 (ja) 交流直流変換器
CN207069909U (zh) 双向直流变换器
WO2017024995A1 (zh) Ac-ac变换器及其控制方法
US9698666B2 (en) Power supply and gate driver therein
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器
US20220216802A1 (en) Three-phase converter and control method thereof
Ghodsi et al. A new switched boost inverter using transformer suitable for the microgrid-connected PV with high boost ability
CN108736698A (zh) 电源供应器与残余电压放电方法
TWI628906B (zh) 電源供應器與殘餘電壓放電方法
TWI650923B (zh) 功率因數校正電路結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834619

Country of ref document: EP

Kind code of ref document: A1