WO2017024771A1 - 距离感测基板、显示装置、显示系统和分辨率调整方法 - Google Patents

距离感测基板、显示装置、显示系统和分辨率调整方法 Download PDF

Info

Publication number
WO2017024771A1
WO2017024771A1 PCT/CN2016/071038 CN2016071038W WO2017024771A1 WO 2017024771 A1 WO2017024771 A1 WO 2017024771A1 CN 2016071038 W CN2016071038 W CN 2016071038W WO 2017024771 A1 WO2017024771 A1 WO 2017024771A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
energy density
display screen
resolution
distance
Prior art date
Application number
PCT/CN2016/071038
Other languages
English (en)
French (fr)
Inventor
王薇
张�浩
时凌云
董学
刘冲
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/527,072 priority Critical patent/US10228759B2/en
Publication of WO2017024771A1 publication Critical patent/WO2017024771A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a distance sensing substrate, a display device, a display system, and a resolution adjustment method.
  • High PPI Pixel Per Inch, the number of pixels per inch
  • GPU Graphics Processing Unit
  • the resolution of the human eye is not static, and it will change at any time according to the distance, the environment, and the speed of the image.
  • One of the important theories is Apple's "retina" standard. When the viewer is 10-12 inches (about 25-30 cm) from the display, the resolution of the display should be 300 ppi (300 pixels per inch). The viewer's retina cannot distinguish the pixels, that is, it does not feel grainy.
  • the technical problem to be solved by the present invention is how to adjust the resolution of the display screen according to the viewing distance of the user.
  • the present invention provides a distance sensing substrate comprising:
  • a particle emitter for emitting a first particle beam to a viewer
  • a particle receiver for receiving a first particle beam reflected by a viewer
  • a processing unit configured to acquire an energy density of the emitted first particle beam and an energy density of the received first particle beam.
  • the particle receiver comprises:
  • each receiving area includes:
  • a receiving electrode for receiving the particle beam to generate an excitation current
  • the switching thin film transistor is configured to conduct the receiving electrode and the corresponding second wire when the corresponding first wire transmits the scanning signal, so that the excitation current generated by the receiving electrode is transmitted to the corresponding second wire.
  • the distance sensing substrate further includes:
  • the plurality of first wires and the plurality of gate lines coincide with a projection of the distance sensing substrate substrate
  • the plurality of second wires and the plurality of data lines are at the distance A projection coincidence of the substrate substrate is sensed, and the switching thin film transistor and the driving thin film transistor coincide with a projection of the distance sensing substrate substrate.
  • each pixel region further includes a pixel electrode
  • the plurality of first wires are formed over the plurality of gate lines, the plurality of second wires are formed over the plurality of data lines, and the switching thin film transistor is formed on the driving thin film transistor
  • the receiving electrode is formed over the pixel electrode.
  • the first particle beam is infrared light.
  • the first particle beam is an electron beam.
  • the invention also provides a display device, comprising a display screen, further comprising:
  • the adjusting unit adjusts the resolution of the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam.
  • the processing unit obtains a viewing distance of the viewer from the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam.
  • the adjusting unit adjusts a resolution of the display screen according to the viewing distance.
  • the processing unit is further configured to acquire an exit position of the first particle beam and an incident position of the first particle beam on the display screen to obtain the exit position to the incident a first distance of the position, obtaining a second distance of the first particle beam propagation according to the energy density of the first particle beam attenuation, according to the first distance and the second distance The viewing distance is obtained.
  • the processing unit is further configured to determine an incident position of the first particle beam according to a first wire that transmits a scan signal and a second wire that transmits an excitation current.
  • the processing unit obtains an energy density of the first particle beam attenuation according to the energy density of the emitted first particle beam and the received energy density of the first particle beam,
  • the adjusting unit adjusts a resolution of the display screen according to the viewing distance.
  • the adjustment unit reduces the resolution of the display screen when the viewing distance is greater than the first value.
  • the adjustment unit increases the resolution of the display screen when the viewing distance is less than the second value.
  • the display device further includes:
  • a face recognition unit configured to identify whether a viewer's face is facing the display screen
  • the adjustment unit reduces the resolution of the display screen when the viewer's face is not facing the display screen.
  • the present invention also provides a display system, including the above display device, further comprising:
  • a wearable device for emitting a second particle beam to the display device when the particle emitter does not emit a first particle beam
  • the processing unit is further configured to detect an energy density of the received second particle beam, and the adjusting unit is further configured to adjust a resolution of the display screen according to the received energy density of the second particle beam.
  • the invention also provides a resolution adjustment method based on the above display device, comprising:
  • the resolution of the display screen is adjusted based on the energy density of the emitted first particle beam and the received energy density of the first particle beam.
  • adjusting the resolution of the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam comprises:
  • the resolution of the display screen is adjusted according to the viewing distance.
  • obtaining the viewing distance based on the energy density of the emitted first particle beam and the received energy density of the first particle beam includes:
  • the viewing distance is obtained according to the first distance and the second distance.
  • adjusting the resolution of the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam comprises:
  • the attenuated energy density is less than the second predetermined value, it is determined that the viewing distance is less than the second value.
  • adjusting the resolution of the display screen includes:
  • the resolution of the display screen is lowered when the viewing distance is greater than the first value.
  • adjusting the resolution of the display screen includes:
  • the resolution of the display screen is increased.
  • the resolution adjustment method further includes:
  • Identifying whether the viewer's face is facing the display screen reduces the resolution of the display screen when the viewer's face is not facing the display screen.
  • the invention also proposes a resolution adjustment method based on the above display system, comprising:
  • the display device detects the energy density of the received second particle beam and adjusts the resolution of the display screen based on the received energy density of the second particle beam.
  • the resolution of the display screen can be adjusted according to the viewing distance of the viewer from the display screen, and when the viewing distance is large, the resolution of the display screen is appropriately reduced, thereby reducing the display screen while ensuring the user's viewing effect. Power consumption.
  • FIG. 1 shows a schematic block diagram of a distance sensing substrate in accordance with one embodiment of the present invention
  • FIGS. 2 and 3 are views showing the structure of a particle receiver according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the relationship between a particle receiver and a display device according to an embodiment of the present invention.
  • FIG. 5 shows a schematic block diagram of a display device in accordance with one embodiment of the present invention
  • FIG. 6 shows a schematic diagram of calculating a viewing distance according to an embodiment of the present invention
  • Figure 7 shows a schematic block diagram of a display system in accordance with one embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a resolution adjustment method according to an embodiment of the present invention.
  • FIG. 9 is a specific schematic flowchart of a resolution adjustment method according to an embodiment of the present invention.
  • FIG. 10 is a specific schematic flowchart of calculating a viewing distance according to still another embodiment of the present invention.
  • FIG. 11 is a specific schematic flowchart of a resolution adjustment method according to still another embodiment of the present invention.
  • FIG. 12 shows a schematic flow chart of a resolution adjustment method according to still another embodiment of the present invention.
  • a distance sensing substrate 10 includes:
  • a particle emitter 11 for emitting a first particle beam to a viewer
  • a particle receiver 12 for receiving a first particle beam reflected by a viewer
  • the processing unit 13 is configured to acquire the energy density of the emitted first particle beam and the received energy density of the first particle beam.
  • the distance sensing substrate 10 in this embodiment may be disposed on the display screen 21 of the display device 20.
  • the human eye is closer to the display screen 21 (for example, when the mobile phone display screen is viewed, the distance is generally about 20 cm). Since the velocity of the emitted particles is extremely fast, if the distance is determined by detecting the time difference between the emitted particles and the received particles, the time difference is extremely difficult to determine, and thus the calculated distance is not accurate enough.
  • the distance is determined by detecting the energy density of the emitted first particle beam and the received energy density of the first particle beam, and determining the distance with respect to detecting the time difference between the emitted particle and the receiving particle can greatly improve the accuracy of the determination distance. degree.
  • the numerical range of the viewing distance of the viewer from the display screen 21 is determined according to the energy density of the emitted first particle beam and the received energy density of the first particle beam, and then the display is performed according to the numerical range in which the viewing distance is located.
  • the resolution of the screen 21 is adjusted. When the viewing distance of the user is large, the resolution of the display screen 21 can be appropriately reduced, so that the power consumption of the display screen is reduced under the premise of ensuring the user's viewing effect.
  • the particle receiver 11 may include:
  • each receiving area includes:
  • Receiving electrode 113 for receiving a particle beam to generate an excitation current
  • the switching thin film transistor 114 conducts the receiving electrode 113 and the corresponding second wire when the corresponding first wire 111 transmits the scanning signal, so that the excitation current generated by the receiving electrode 113 is transmitted to the corresponding second wire 112.
  • the structure of the particle receiver 12 is similar to that of the array substrate in the display device 20, and the particle receiver 12 may be planar to receive an incident particle beam.
  • the distance sensing substrate may further include:
  • the distance sensing substrate 10 is capable of transmitting and receiving a first particle beam to implement a function of distance detection, and can also implement a display driving function through a structure such as a gate, a data line, and a driving thin film transistor.
  • the distance sensing substrate 10 can be used as a distance sensor of the display device 20 on the one hand.
  • the related functions of the distance detection can realize the related functions of the display driving as the array substrate of the display device 20, thereby improving the integration degree of the relevant functional modules in the distance sensing substrate 10.
  • the plurality of first wires 111 overlap the projections of the plurality of gate lines on the substrate of the sensing substrate 10, and the plurality of second wires 112 overlap the projection of the plurality of data lines on the substrate of the sensing substrate 10, and the switching thin film transistor 114 and the driving The thin film transistor 24 coincides with a projection from the base of the sensing substrate 10.
  • the plurality of first wires 111 and the plurality of second wires 112 may not be blocked from the pixel region, thereby not correcting The aperture ratio of the pixel area affects.
  • the projection of the switching thin film transistor 114 and the driving thin film transistor 24 at a distance from the substrate of the sensing substrate 10 such that the switching thin film transistor 114 does not affect the aperture ratio of the pixel region.
  • Each pixel region may further include a pixel electrode 25,
  • a plurality of first wires 111 are formed over the plurality of gate lines, a plurality of second wires 112 are formed over the plurality of data lines, a switching thin film transistor 114 is formed over the driving thin film transistor 24, and a receiving electrode 113 is formed at the pixel electrode Above 25.
  • the plurality of first conductive lines 111, the plurality of second conductive lines 112, the switching thin film transistor 114, and the receiving electrode 113 may be continuously formed, so that the distance sensing substrate 10 is formed.
  • the structural layer that realizes the display driving related function and the structural layer that realizes the distance detecting related function can be formed in a single structure, thereby improving the integration degree of the distance sensing substrate 10 and reducing the thickness of the distance sensing substrate 10.
  • the first particle beam can be infrared light.
  • the infrared light is invisible light, it can avoid interference to the user's viewing; on the other hand, since the infrared light is much smaller than the ultraviolet light to the human body, the measurement can be completed. It is guaranteed to minimize damage to the human body while judging.
  • the first particle beam can be an electron beam.
  • the present invention further provides a display device 20, including a display screen 21, further comprising:
  • the distance sensing substrate 10 The distance sensing substrate 10;
  • the adjusting unit 22 adjusts the resolution of the display screen 21 according to the energy density of the emitted first particle beam and the received energy density of the first particle beam.
  • the numerical range of the viewing distance of the viewer from the display screen 21 is determined according to the energy density of the emitted first particle beam and the received energy density of the first particle beam, and then the display is performed according to the numerical range in which the viewing distance is located.
  • the resolution of the screen 21 is adjusted. When the viewing distance of the user is large, the resolution of the display screen 21 can be appropriately reduced, thereby reducing the power consumption of the display screen while ensuring the user's viewing effect.
  • the processing unit 13 obtains the viewing distance of the viewer from the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam.
  • the adjustment unit 22 adjusts the resolution of the display screen according to the viewing distance.
  • I is the energy density of the first particle beam incident on the display screen 11 after propagation in the medium
  • I 0 is the energy density of the emitted particle beam
  • e is the base of the natural logarithm
  • is the linear attenuation coefficient of the photon
  • H It is the viewing distance.
  • the processing unit 13 is further configured to acquire an exit position of the first particle beam and an incident position of the first particle beam on the display screen to obtain a first distance from the exit position to the incident position, according to the first particle beam.
  • the attenuated energy density obtains a second distance traveled by the first particle beam, and the viewing distance is obtained based on the first distance and the second distance.
  • the processing unit 13 is further configured to determine an incident position of the first particle beam based on the first wire 111 transmitting the scan signal and the second wire 112 transmitting the excitation current.
  • the exit position of the particle beam can be determined according to the position of the particle emitter 11.
  • the exit position of the particle beam, the incident position, and the reflection point of the particle beam on the viewer's face may form a triangle, and generally when the viewer faces the display screen 21, the distance from the electron beam exit point to the reflection point and the reflection point to the incident point The distances are approximately equal.
  • the viewing distance calculated according to the present embodiment is the vertical distance of the user from the display screen 21, which is closer to the actual distance of the user from the display screen 21.
  • the processing unit 13 obtains the energy density of the first particle beam attenuation according to the energy density of the emitted first particle beam and the received energy density of the first particle beam,
  • the adjustment unit 22 adjusts the resolution of the display screen according to the viewing distance.
  • the specific viewing distance is not calculated, and the relationship between the viewing distance and the first value and the second value may be directly determined according to the energy density of the first particle beam attenuation, thereby performing an adjustment operation, simplifying the calculation step, and improving the judgment. speed.
  • the distance sensing substrate 10 emits and receives a particle beam, and the operation of calculating the energy density can be performed according to a preset period, avoiding frequent calculations and causing excessive power consumption.
  • the adjustment unit 22 can reduce the resolution of the display screen when the viewing distance is greater than the first value.
  • the viewing distance is large (greater than the first distance)
  • the user's resolving power for the pixel points is lowered, so that the resolution of the display screen 21 can be lowered, thereby realizing energy saving while ensuring the user's viewing effect.
  • the adjustment unit 22 can increase the resolution of the display screen when the viewing distance is less than the second value.
  • the viewing distance is small (less than the second distance)
  • the user's resolving power for the pixel points is improved, so that the resolution of the display screen 21 can be improved, thereby ensuring the user's viewing effect.
  • the second distance is smaller than the first distance.
  • the display screen 21 can be maintained to display the image at a normal resolution.
  • the display device may further include:
  • the face recognition unit 23 is configured to identify whether the viewer's face is facing the display screen.
  • the adjusting unit 22 lowers the display when the viewer's face is not facing the display screen. Resolution.
  • the resolution can be lowered to save power. If the user looks at the display screen 11 and the resolution of the pixel is reduced relative to the front display 11, the resolution can be reduced. Electrical energy.
  • the present invention further provides a display system 30, including the above display device 20, further comprising:
  • the wearable device 31 is configured to emit a second particle beam to the display device 20 when the particle emitter 11 does not emit the first particle beam,
  • the processing unit 13 is further configured to detect the energy density of the received second particle beam, and the adjusting unit is further configured to adjust the resolution of the display screen 21 according to the received energy density of the second particle beam.
  • the user can wear the wearable device 31 that is associated with the display device 20.
  • the second particle beam is emitted to the display device by the wearable device 31, and the display device 20 does not need to emit the first particle beam itself, thereby further improving the endurance of the display device 20.
  • the wearable device 31 may be smart glasses, a smart headband, a smart earphone, or the like.
  • the display device 20 in the above embodiment may be any product or component having a display function, such as an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • the present invention also provides a resolution adjustment method based on the above display device, including:
  • adjusting the resolution of the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam includes:
  • obtaining the viewing distance according to the energy density of the emitted first particle beam and the received energy density of the first particle beam includes:
  • S311 Acquire an exit position of the first particle beam and an incident position of the first particle beam on the display screen to obtain a first distance from the exit position to the incident position;
  • adjusting the resolution of the display screen according to the energy density of the emitted first particle beam and the received energy density of the first particle beam includes:
  • Adjusting the resolution of the display can include:
  • the resolution of the display is lowered.
  • Adjusting the resolution of the display can include:
  • the resolution adjustment method may further include:
  • the present invention also provides a resolution adjustment method based on the above display system, including:
  • the display device detects an energy density of the received second particle beam
  • A3 adjusting the resolution of the display screen according to the energy density of the received second particle beam.
  • the resolution of the display screen can be adjusted according to the viewing distance of the viewer from the display screen, and when the viewing distance of the user is large, the resolution of the display screen is appropriately reduced, thereby ensuring the user's viewing effect. Reduce the power consumption of the display.
  • first and second are used for descriptive purposes only and should not be construed as indicating or implying relative importance.
  • plurality means two or more, unless There are also clear limits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种距离感测基板(10)、显示装置(20)、显示系统(30)和分辨率调整方法。上述距离感测基板(10)包括:粒子发射器(11),用于向观看者发射第一粒子束;粒子接收器(12),用于接收观看者反射的第一粒子束;以及处理单元(13),用于获取发射的第一粒子束的能量密度和接收的第一粒子束的能量密度。上述距离感测基板(10)可以根据观看者距离显示屏(21)的观看距离来调整显示屏(21)的分辨率,在用户观看距离较大时,适当降低显示屏(21)的分辨率,从而在保证用户观看效果的前提下降低显示屏(21)的耗电量。

Description

距离感测基板、显示装置、显示系统和分辨率调整方法 技术领域
本发明涉及显示技术领域,具体而言,涉及距离感测基板、显示装置、显示系统和分辨率调整方法。
背景技术
高PPI(Pixels Per Inch,每英寸的像素数目)一直是显示领域的一个重要目标,一度成为手机,电视等产品的重要卖点。然而,高PPI带来观看效果好等优点的同时,也带来一些弊端。高PPI会导致GPU(Graphics Processing Unit,图形处理芯片)处理数据增多,从而导致电池耗电大。
实际上人眼的分辨率并不是一成不变的,一般会根据距离,环境,以及图像的运行速度而随时变化。其中一个重要理论就是苹果公司提出的“视网膜”标准,当观看者距离显示屏10-12英寸(约25-30厘米)时,显示屏的分辨率只要达到300ppi(每英寸300个像素点)以上,观看者的视网膜就无法分辨出像素点了,也即不会感觉到颗粒感。
所以当人眼距离手机距离很近时,为了使消费者看不到显示屏的小瑕疵,尽力展现完美的图像,可以用手机本身的高分辨率。但是当屏幕距离用户较远时,即使分辨率不满足上述分辨率,用户也不会分辨出像素点,因此没有必要始终保持显示屏处于一个较高的分辨率而造成过多的电量消耗。
发明内容
本发明所要解决的技术问题是,如何根据用户的观看距离调节显示屏的分辨率。
为此目的,本发明提出了一种距离感测基板,包括:
粒子发射器,用于向观看者发射第一粒子束;
粒子接收器,用于接收观看者反射的第一粒子束;以及
处理单元,用于获取发射的第一粒子束的能量密度和接收的第一粒子束的能量密度。
在一个实施例中,所述粒子接收器包括:
多条沿第一方向设置的第一导线和多条沿第二方向设置的第二导线,多条第一导线和多条第二导线交叉界定多个接收区域,其中,多条第一导线逐条传输扫描信号,每个接收区域包括:
接收电极,用于接收所述粒子束,生成激励电流;
开关薄膜晶体管,在相应的第一导线传输扫描信号时将所述接收电极与相应的第二导线导通,以使所述接收电极生成的激励电流传输至相应的第二导线。
在一个实施例中,所述距离感测基板还包括:
多条栅线和多条数据线,多条栅线和多条数据线交叉界定多个像素区域,每个像素区域包括驱动薄膜晶体管。
在一个实施例中,所述多条第一导线与所述多条栅线在所述距离感测基板基底的投影重合,所述多条第二导线与所述多条数据线在所述距离感测基板基底的投影重合,所述开关薄膜晶体管与所述驱动薄膜晶体管在所述距离感测基板基底的投影重合。
在一个实施例中,每个像素区域还包括像素电极,
所述多条第一导线形成在所述多条栅线之上,所述多条第二导线形成在所述多条数据线之上,所述开关薄膜晶体管形成在所述驱动薄膜晶体管之上,所述接收电极形成在所述像素电极之上。
在一个实施例中,所述第一粒子束为红外光。
在一个实施例中,所述第一粒子束为电子束。
本发明还提出了一种显示装置,包括显示屏,还包括:
上述距离感测基板;以及
调整单元,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整所述显示屏的分辨率。
在一个实施例中,所述处理单元根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得观看者距离所述显示屏的观看距离,
所述调整单元根据所述观看距离调整所述显示屏的分辨率。
在一个实施例中,所述处理单元还用于获取所述第一粒子束的出射位置以及所述第一粒子束在所述显示屏上的入射位置,以获得所述出射位置到所述入射位置的第一距离,根据第一粒子束衰减的能量密度获得所述第一粒子束传播的第二距离,根据所述第一距离和所述第二距离获 得所述观看距离。
在一个实施例中,所述处理单元还用于根据传输扫描信号的第一导线和传输激励电流的第二导线确定所述第一粒子束的入射位置。
在一个实施例中,所述处理单元根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得第一粒子束衰减的能量密度,
若衰减的能量密度大于第一预设值,则判定所述观看距离大于第一数值,
若衰减的能量密度小于第二预设值,则判定所述观看距离小于第二数值,
所述调整单元根据所述观看距离调整所述显示屏的分辨率。
在一个实施例中,所述调整单元在所述观看距离大于第一数值时,降低所述显示屏的分辨率。
在一个实施例中,所述调整单元在所述观看距离小于第二数值时,提高所述显示屏的分辨率。
在一个实施例中,所述显示装置还包括:
人脸识别单元,用于识别观看者的面部是否朝向所述显示屏,
其中,所述调整单元在所述观看者的面部没有朝向所述显示屏时降低所述显示屏的分辨率。
本发明还提出了一种显示系统,包括上述显示装置,还包括:
穿戴设备,在所述粒子发射器未发射第一粒子束时,用于向所述显示装置发射第二粒子束,
其中,所述处理单元还用于检测接收的第二粒子束的能量密度,所述调整单元还用于根据接收的第二粒子束的能量密度调整所述显示屏的分辨率。
本发明还提出了一种基于上述显示装置的分辨率调整方法,包括:
向观看者发射第一粒子束;
接收观看者反射的第一粒子束;
根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率。
在一个实施例中,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率包括:
根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密 度获得观看距离;
根据所述观看距离调整所述显示屏的分辨率。
在一个实施例中,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度获得观看距离包括:
获取所述第一粒子束的出射位置以及所述第一粒子束在所述显示屏上的入射位置,以获得所述出射位置到所述入射位置的第一距离;
根据第一粒子束衰减的能量密度获得所述第一粒子束传播的第二距离;
根据所述第一距离和所述第二距离获得所述观看距离。
在一个实施例中,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率包括:
根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得第一粒子束衰减的能量密度,
若衰减的能量密度大于第一预设值,则判定所述观看距离大于第一数值,
若衰减的能量密度小于第二预设值,则判定所述观看距离小于第二数值。
在一个实施例中,调整所述显示屏的分辨率包括:
在所述观看距离大于第一数值时,降低所述显示屏的分辨率。
在一个实施例中,调整所述显示屏的分辨率包括:
在所述观看距离小于第二数值时,提高所述显示屏的分辨率。
在一个实施例中,所述分辨率调整方法还包括:
识别观看者的面部是否朝向所述显示屏,在所述观看者的面部没有朝向所述显示屏时降低所述显示屏的分辨率。
本发明还提出了一种基于上述显示系统的分辨率调整方法,包括:
向显示装置发射第二粒子束;
显示装置检测接收的第二粒子束的能量密度,根据接收的第二粒子束的能量密度调整所述显示屏的分辨率。
通过上述技术方案,可以根据观看者距离显示屏的观看距离来调整显示屏的分辨率,在观看距离较大时,适当降低显示屏的分辨率,从而在保证用户观看效果的前提下降低显示屏的耗电量。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1示出了根据本发明一个实施例的距离感测基板的示意性框图;
图2和图3示出了根据本发明一个实施例的粒子接收器的结构示意图;
图4示出了根据本发明一个实施例的粒子接收器与显示装置的关系示意图;
图5示出了根据本发明一个实施例的显示装置的示意性框图;
图6示出了根据本发明一个实施例的计算观看距离的示意图;
图7示出了根据本发明一个实施例的显示系统的示意性框图;
图8示出了根据本发明一个实施例的分辨率调整方法的示意性流程图;
图9示出了根据本发明一个实施例的分辨率调整方法的具体示意性流程图;
图10示出了根据本发明又一个实施例的计算观看距离的具体示意性流程图;
图11示出了根据本发明又一个实施例的分辨率调整方法的具体示意性流程图;
图12示出了根据本发明又一个实施例的分辨率调整方法的示意性流程图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
如图1所示,根据本发明一个实施例的距离感测基板10,包括:
粒子发射器11,用于向观看者发射第一粒子束;
粒子接收器12,用于接收观看者反射的第一粒子束;以及
处理单元13,用于获取发射的第一粒子束的能量密度和接收的第一粒子束的能量密度。
本实施例中的距离感测基板10可以设置在显示装置20的显示屏21上。一般用户观看显示屏21时,人眼距离显示屏21较近(例如观看手机显示屏时一般距离在20cm左右)。由于发射粒子的速度极快,若通过检测发射粒子和接收粒子的时间差来判定距离,该时间差极难确定,因此计算出的距离也不够精确。本实施例通过检测发射的第一粒子束的能量密度和接收的第一粒子束的能量密度来判定距离,相对于检测发射粒子和接收粒子的时间差来判定距离,可以极大地提高判定距离的精确度。
本实施例可以根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度来判断观看者距离显示屏21的观看距离的数值范围,进而根据观看距离所处的数值范围对显示屏21的分辨率进行调整。在用户观看距离较大时,可以适当降低显示屏21的分辨率,这样在保证用户观看效果的前提下降低显示屏的耗电量。
如图2和图3所示,粒子接收器11可以包括:
多条沿第一方向设置的第一导线111和多条沿第二方向设置的第二导线112,多条第一导线111和多条第二导线112交叉界定多个接收区域,其中,多条第一导线111逐条传输扫描信号,每个接收区域包括:
接收电极113,用于接收粒子束,生成激励电流;
开关薄膜晶体管114,在相应的第一导线111传输扫描信号时将接收电极113与相应的第二导线导通,以使接收电极113生成的激励电流传输至相应的第二导线112。
在本实施例中,粒子接收器12的结构与显示装置20中阵列基板的结构相似,粒子接收器12可以为平面状,以便接收入射的粒子束。
如图4所示,所述距离感测基板还可以包括:
多条栅线和多条数据线,多条栅线和多条数据线交叉界定多个像素区域,每个像素区域包括驱动薄膜晶体管24。
在本实施例中,距离感测基板10除了能够发射和接收第一粒子束来实现距离检测的相关功能,还可以通过栅极、数据线和驱动薄膜晶体管等结构实现显示驱动的功能。当将距离感测基板10设置在显示装置20中时,距离感测基板10一方面可以作为显示装置20的距离传感器实 现距离检测的相关功能,另一方面可以作为显示装置20的阵列基板实现显示驱动的相关功能,从而提高了距离感测基板10中相关功能模块的集成度。
多条第一导线111与多条栅线在距离感测基板10基底的投影重合,多条第二导线112与多条数据线在距离感测基板10基底的投影重合,开关薄膜晶体管114与驱动薄膜晶体管24在距离感测基板10基底的投影重合。
本实施例中,当距离感测基板10同时实现显示驱动和距离检测的相关功能时,可以使得多条第一导线111和多条第二导线112不会对像素区域造成遮挡,从而不会对像素区域的开口率造成影响。
进一步地,还可以设置开关薄膜晶体管114与驱动薄膜晶体管24在距离感测基板10基底的投影重合,使得开关薄膜晶体管114不会对像素区域的开口率造成影响。
每个像素区域还可以包括像素电极25,
多条第一导线111形成在多条栅线之上,多条第二导线112形成在多条数据线之上,开关薄膜晶体管114形成在驱动薄膜晶体管24之上,接收电极113形成在像素电极25之上。
在本实施例中,可以在形成驱动薄膜晶体管24和像素电极25之后,继续形成多条第一导线111、多条第二导线112、开关薄膜晶体管114以及接收电极113,使得距离感测基板10实现显示驱动相关功能的结构层和实现距离检测相关功能的结构层能够形成在一个整体的结构中,从而提高了距离感测基板10的集成度,降低了距离感测基板10的厚度。
当然,也可以根据需要分别制作实现显示驱动相关功能的结构层和实现距离检测相关功能的结构层,然后将两部分结构层进行贴合。
第一粒子束可以为红外光。
通过发射和接收红外光线测距,一方面由于红外光线为不可见光,可以避免对用户的观看造成干扰;另一方面由于红外光线相对于紫外光对人体损伤要小得多,因此可以在完成测距判定的同时保证对人体损伤最小化。
第一粒子束可以为电子束。
通过发射和接收电子束测距,一方面由于人眼无法观测到电子束,可以避免对用户的观看造成干扰;另一方面由于电子束的能量密度较 大,在经过观看者面部反射后仍能够具有较高的能量密度,便于接收以及提高后续计算精度。
如图5所示,本发明还提出了一种显示装置20,包括显示屏21,还包括:
上述距离感测基板10;
调整单元22,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏21的分辨率。
本实施例可以根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度来判断观看者距离显示屏21的观看距离的数值范围,进而根据观看距离所处的数值范围对显示屏21的分辨率进行调整。在用户观看距离较大时,可以适当降低显示屏21的分辨率,从而在保证用户观看效果的前提下降低显示屏的耗电量。
处理单元13根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得观看者距离显示屏的观看距离。
调整单元22根据观看距离调整显示屏的分辨率。
例如接收的第一粒子束的能量密度为I,I=AI0e-μH
其中,I是第一粒子束在介质中传播后入射到显示屏11的能量密度,I0是出射的粒子束的能量密度;e是自然对数的底数;μ是光子的线性衰减系数,H是观看距离。
从而可以得出H=-(1/μ)*ln(I/AI0)。
如图6所示,处理单元13还用于获取第一粒子束的出射位置以及第一粒子束在显示屏上的入射位置,以获得出射位置到入射位置的第一距离,根据第一粒子束衰减的能量密度获得第一粒子束传播的第二距离,根据第一距离和第二距离获得观看距离。
处理单元13还用于根据传输扫描信号的第一导线111和传输激励电流的第二导线112确定第一粒子束的入射位置。
粒子束的出射位置可以根据粒子发射器11的位置确定。粒子束的出射位置、入射位置和粒子束在观看者面部的反射点可以构成一个三角形,并且一般在观看者正视显示屏21时,电子束出射点到反射点的距离和反射点到入射点的距离近似相等。
也即上述三角形一般情况下可以近似为等腰三角形,其中第一距离D为等腰三角形的底边长度,第二距离L为等腰三角形两条腰的长度之 和,而观看距离H则为等腰三角形的高。根据勾股定理可以得到H2+(D/2)2=(L/2)2,进而可以得出观看距离H。
根据本实施例计算得出的观看距离是用户距离显示屏21的垂直距离,更接近用户距离显示屏21的实际距离。
处理单元13根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得第一粒子束衰减的能量密度,
若衰减的能量密度大于第一预设值,则判定观看距离大于第一数值,
若衰减的能量密度小于第二预设值,则判定观看距离小于第二数值,
调整单元22根据观看距离调整显示屏的分辨率。
本实施例无需计算出具体的观看距离,可以直接根据第一粒子束衰减的能量密度来判断观看距离与第一数值和第二数值的关系,从而进行调整操作,简化了计算步骤,提高了判断速度。
需要说明的是,上述实施例中距离感测基板10发射和接收粒子束,以及计算能量密度的操作可以按照预设周期进行,避免频繁计算而导致过多电量消耗。
调整单元22可以在观看距离大于第一数值时,降低显示屏的分辨率。
当观看距离较大时(大于第一距离),用户对于像素点的分辨能力会降低,因此可以将显示屏21的分辨率降低,从而在保证用户观看效果的前提下实现节约电能。
调整单元22可以在观看距离小于第二数值时,提高显示屏的分辨率。
当观看距离较小时(小于第二距离),用户对于像素点的分辨能力会提高,因此可以将显示屏21的分辨率提高,从而保证用户的观看效果。
需要说明的是,第二距离小于第一距离。当观看距离在第二距离至第一距离之间时,可以维持显示屏21以正常分辨率显示图像。
显示装置还可以包括:
人脸识别单元23,用于识别观看者的面部是否朝向显示屏,
其中,调整单元22在观看者的面部没有朝向显示屏时降低显示屏 的分辨率。
当观看者没有面向显示屏11时,说明用户没有观看显示屏,或者正侧视显示屏11。若用户没有观看显示屏11,则可以降低分辨率以节约电能,若用户侧视显示屏11,相对于正视显示屏11时对像素点的分辨能力也会降低,因此也可以降低分辨率来节约电能。
如图7所示,本发明还提出了一种显示系统30,包括上述显示装置20,还包括:
穿戴设备31,在粒子发射器11未发射第一粒子束时,用于向显示装置20发射第二粒子束,
其中,处理单元13还用于检测接收的第二粒子束的能量密度,调整单元还用于根据接收的第二粒子束的能量密度调整显示屏21的分辨率。
用户可以穿戴与显示装置20配套的穿戴设备31。通过该穿戴设备31向显示装置发射第二粒子束,无需显示装置20自身发射第一粒子束,进一步提高显示装置20的续航能力。其中穿戴设备31可以是智能眼镜、智能头环、智能耳机等。
上述实施例中的显示装置20可以为:电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
如图8所示,本发明还提出了一种基于上述显示装置的分辨率调整方法,包括:
S1,向观看者发射第一粒子束;
S2,接收观看者反射的第一粒子束;
S3,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率。
如图9所示,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率包括:
S31,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度获得观看距离;
S32,根据观看距离调整显示屏的分辨率。
如图10所示,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度获得观看距离包括:
S311,获取第一粒子束的出射位置以及第一粒子束在显示屏上的入射位置,以获得出射位置到入射位置的第一距离;
S312,根据第一粒子束衰减的能量密度获得第一粒子束传播的第二距离;
S313,根据第一距离和第二距离获得观看距离。
如图11所示,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率包括:
S31’,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得第一粒子束衰减的能量密度,
S32’,若衰减的能量密度大于第一预设值,则判定观看距离大于第一数值,
S33’,若衰减的能量密度小于第二预设值,则判定观看距离小于第二数值。
调整显示屏的分辨率可以包括:
在观看距离大于第一数值时,降低显示屏的分辨率。
调整显示屏的分辨率可以包括:
在观看距离小于第二数值时,提高显示屏的分辨率。
分辨率调整方法还可以包括:
识别观看者的面部是否朝向显示屏,在观看者的面部没有朝向显示屏时降低显示屏的分辨率。
如图12所示,本发明还提出了一种基于上述显示系统的分辨率调整方法,包括:
A1,向显示装置发射第二粒子束;
A2,显示装置检测接收的第二粒子束的能量密度;
A3,根据接收的第二粒子束的能量密度调整显示屏的分辨率。
以上结合附图详细说明了本发明的技术方案,考虑到现有技术中,显示图像时始终保持在一个较高的分辨率,造成电量的浪费。通过本发明的技术方案,可以根据观看者距离显示屏的观看距离来调整显示屏的分辨率,在用户观看距离较大时,适当降低显示屏的分辨率,从而在保证用户观看效果的前提下降低显示屏的耗电量。
在本发明中,术语“第一”、“第二”仅用于描述目的,而不应当理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非 另有明确的限定。
以上所述仅为本发明的优选实施例,并不用于限制本发明。对于本领域的技术人员来说,本发明可以有各种修改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种距离感测基板,其特征在于,包括:
    粒子发射器,用于向观看者发射第一粒子束;
    粒子接收器,用于接收观看者反射的第一粒子束;以及
    处理单元,用于获取发射的第一粒子束的能量密度和接收的第一粒子束的能量密度。
  2. 根据权利要求1所述的距离感测基板,其特征在于,所述粒子接收器包括:
    多条沿第一方向设置的第一导线和多条沿第二方向设置的第二导线,多条第一导线和多条第二导线交叉界定多个接收区域,其中,多条第一导线逐条传输扫描信号,每个接收区域包括:
    接收电极,用于接收所述粒子束,生成激励电流;
    开关薄膜晶体管,在相应的第一导线传输扫描信号时将所述接收电极与相应的第二导线导通,以使所述接收电极生成的激励电流传输至相应的第二导线。
  3. 根据权利要求2所述的距离感测基板,其特征在于,还包括:
    多条栅线和多条数据线,多条栅线和多条数据线交叉界定多个像素区域,每个像素区域包括驱动薄膜晶体管。
  4. 根据权利要求3所述的距离感测基板,其特征在于,所述多条第一导线与所述多条栅线在所述距离感测基板基底的投影重合,所述多条第二导线与所述多条数据线在所述距离感测基板基底的投影重合,所述开关薄膜晶体管与所述驱动薄膜晶体管在所述距离感测基板基底的投影重合。
  5. 根据权利要求3所述的距离感测基板,其特征在于,每个像素区域还包括像素电极,
    所述多条第一导线形成在所述多条栅线之上,所述多条第二导线形成在所述多条数据线之上,所述开关薄膜晶体管形成在所述驱动薄膜晶体管之上,所述接收电极形成在所述像素电极之上。
  6. 根据权利要求1所述的距离感测基板,其特征在于,所述第一粒子束为红外光。
  7. 根据权利要求1所述的距离感测基板,其特征在于,所述第一粒 子束为电子束。
  8. 一种显示装置,包括显示屏,其特征在于,还包括:
    如权利要求1至7中任一项所述的距离感测基板;以及
    调整单元,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整所述显示屏的分辨率。
  9. 根据权利要求8所述的显示装置,其特征在于,所述处理单元根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得观看者距离所述显示屏的观看距离,
    所述调整单元根据所述观看距离调整所述显示屏的分辨率。
  10. 根据权利要求9所述的显示装置,其特征在于,所述处理单元还用于获取所述第一粒子束的出射位置以及所述第一粒子束在所述显示屏上的入射位置,以获得所述出射位置到所述入射位置的第一距离,根据第一粒子束衰减的能量密度获得所述第一粒子束传播的第二距离,根据所述第一距离和所述第二距离获得所述观看距离。
  11. 根据权利要求10所述的显示装置,其特征在于,所述处理单元根据传输扫描信号的第一导线和传输激励电流的第二导线确定所述第一粒子束的入射位置。
  12. 根据权利要求9所述的显示装置,其特征在于,所述处理单元根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得第一粒子束衰减的能量密度,
    若衰减的能量密度大于第一预设值,则判定所述观看距离大于第一数值,
    若衰减的能量密度小于第二预设值,则判定所述观看距离小于第二数值,
    所述调整单元根据所述观看距离调整所述显示屏的分辨率。
  13. 根据权利要求9至12中任一项所述的显示装置,其特征在于,所述调整单元在所述观看距离大于第一数值时,降低所述显示屏的分辨率。
  14. 根据权利要求9至12中任一项所述的显示装置,其特征在于,所述调整单元在所述观看距离小于第二数值时,提高所述显示屏的分辨率。
  15. 根据权利要求8至12中任一项所述的显示装置,其特征在于, 还包括:
    人脸识别单元,用于识别观看者的面部是否朝向所述显示屏,
    其中,所述调整单元在所述观看者的面部没有朝向所述显示屏时降低所述显示屏的分辨率。
  16. 一种显示系统,其特征在于,包括权利要求8至15中任一项所述的显示装置,还包括:
    穿戴设备,在所述粒子发射器未发射第一粒子束时,用于向所述显示装置发射第二粒子束,
    其中,所述处理单元还用于检测接收的第二粒子束的能量密度,所述调整单元还用于根据接收的第二粒子束的能量密度调整所述显示屏的分辨率。
  17. 一种基于权利要求8至15中任一项所述显示装置的分辨率调整方法,其特征在于,包括:
    向观看者发射第一粒子束;
    接收观看者反射的第一粒子束;
    根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率。
  18. 根据权利要求17所述的分辨率调整方法,其特征在于,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率包括:
    根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度获得观看距离;
    根据所述观看距离调整所述显示屏的分辨率。
  19. 根据权利要求18所述的分辨率调整方法,其特征在于,根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度获得观看距离包括:
    获取所述第一粒子束的出射位置以及所述第一粒子束在所述显示屏上的入射位置,以获得所述出射位置到所述入射位置的第一距离;
    根据第一粒子束衰减的能量密度获得所述第一粒子束传播的第二距离;
    根据所述第一距离和所述第二距离获得所述观看距离。
  20. 根据权利要求17所述的分辨率调整方法,其特征在于,根据发 射的第一粒子束的能量密度和接收的第一粒子束的能量密度调整显示屏的分辨率包括:
    根据发射的第一粒子束的能量密度和接收的第一粒子束的能量密度,获得第一粒子束衰减的能量密度,
    若衰减的能量密度大于第一预设值,则判定所述观看距离大于第一数值,
    若衰减的能量密度小于第二预设值,则判定所述观看距离小于第二数值。
  21. 根据权利要求18至20中任一项所述的分辨率调整方法,其特征在于,调整所述显示屏的分辨率包括:
    在所述观看距离大于第一数值时,降低所述显示屏的分辨率。
  22. 根据权利要求18至20中任一项所述的分辨率调整方法,其特征在于,调整所述显示屏的分辨率包括:
    在所述观看距离小于第二数值时,提高所述显示屏的分辨率。
  23. 根据权利要求17至20中任一项所述的分辨率调整方法,其特征在于,还包括:
    识别观看者的面部是否朝向所述显示屏,在所述观看者的面部没有朝向所述显示屏时降低所述显示屏的分辨率。
  24. 一种基于权利要求16所述显示系统的分辨率调整方法,其特征在于,包括:
    向显示装置发射第二粒子束;
    显示装置检测接收的第二粒子束的能量密度,根据接收的第二粒子束的能量密度调整所述显示屏的分辨率。
PCT/CN2016/071038 2015-08-12 2016-01-15 距离感测基板、显示装置、显示系统和分辨率调整方法 WO2017024771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/527,072 US10228759B2 (en) 2015-08-12 2016-01-15 Distance sensing substrate, display device, display system and resolution adjustment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510494471.7 2015-08-12
CN201510494471.7A CN105183149B (zh) 2015-08-12 2015-08-12 距离感测基板、显示装置、显示系统和分辨率调整方法

Publications (1)

Publication Number Publication Date
WO2017024771A1 true WO2017024771A1 (zh) 2017-02-16

Family

ID=54905276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071038 WO2017024771A1 (zh) 2015-08-12 2016-01-15 距离感测基板、显示装置、显示系统和分辨率调整方法

Country Status (3)

Country Link
US (1) US10228759B2 (zh)
CN (1) CN105183149B (zh)
WO (1) WO2017024771A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105183149B (zh) 2015-08-12 2018-02-27 京东方科技集团股份有限公司 距离感测基板、显示装置、显示系统和分辨率调整方法
CN105100506B (zh) 2015-08-12 2018-10-12 京东方科技集团股份有限公司 显示装置、显示系统和分辨率调整方法
CN106292018B (zh) * 2016-11-01 2019-08-13 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN208589037U (zh) * 2017-08-01 2019-03-08 苹果公司 电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080122798A1 (en) * 2006-10-13 2008-05-29 Atsushi Koshiyama Information display apparatus with proximity detection performance and information display method using the same
CN103578445A (zh) * 2012-07-27 2014-02-12 富泰华工业(深圳)有限公司 调整屏幕解析度或亮度的电子装置及其屏幕调整方法
CN104361849A (zh) * 2014-11-27 2015-02-18 上海斐讯数据通信技术有限公司 显示器的显示调节系统及调节方法
CN104618575A (zh) * 2014-12-30 2015-05-13 小米科技有限责任公司 检测物体接近的方法和装置
US20150221064A1 (en) * 2014-02-03 2015-08-06 Nvidia Corporation User distance based modification of a resolution of a display unit interfaced with a data processing device and/or a display area size thereon
CN105100506A (zh) * 2015-08-12 2015-11-25 京东方科技集团股份有限公司 显示装置、显示系统和分辨率调整方法
CN105183149A (zh) * 2015-08-12 2015-12-23 京东方科技集团股份有限公司 距离感测基板、显示装置、显示系统和分辨率调整方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944978B2 (en) * 2001-06-11 2005-09-20 Douglas Dynamics, Llc Snowplow and mount assembly
WO2007113580A1 (en) * 2006-04-05 2007-10-11 British Telecommunications Public Limited Company Intelligent media content playing device with user attention detection, corresponding method and carrier medium
JP4310330B2 (ja) * 2006-09-26 2009-08-05 キヤノン株式会社 表示制御装置及び表示制御方法
US20110003773A1 (en) * 2008-03-03 2011-01-06 Luna Innovations Incorporated Using fullerenes to enhance and stimulate hair growth
CN101609659B (zh) * 2008-06-19 2012-01-25 深圳富泰宏精密工业有限公司 调整屏幕解析度的系统及方法
AT10236U3 (de) * 2008-07-10 2009-09-15 Avl List Gmbh Messanordnung und verfahren zur erfassung von messdaten
KR101296900B1 (ko) * 2009-01-07 2013-08-14 엘지디스플레이 주식회사 입체 영상의 뷰 제어방법과 이를 이용한 입체 영상표시장치
KR101592010B1 (ko) * 2009-07-17 2016-02-05 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
TW201104531A (en) * 2009-07-17 2011-02-01 Egalax Empia Technology Inc Method and device for palm rejection
JP5528739B2 (ja) * 2009-08-12 2014-06-25 株式会社ジャパンディスプレイ 検出装置、表示装置、および物体の近接距離測定方法
JP5549203B2 (ja) * 2009-12-01 2014-07-16 セイコーエプソン株式会社 光学式位置検出装置、ハンド装置およびタッチパネル
US20120181255A1 (en) * 2011-01-13 2012-07-19 Bruck Gerald J Flux enhanced high energy density welding
KR20130027188A (ko) * 2011-09-07 2013-03-15 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN104280739A (zh) * 2013-07-10 2015-01-14 富泰华工业(深圳)有限公司 距离测量系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080122798A1 (en) * 2006-10-13 2008-05-29 Atsushi Koshiyama Information display apparatus with proximity detection performance and information display method using the same
CN103578445A (zh) * 2012-07-27 2014-02-12 富泰华工业(深圳)有限公司 调整屏幕解析度或亮度的电子装置及其屏幕调整方法
US20150221064A1 (en) * 2014-02-03 2015-08-06 Nvidia Corporation User distance based modification of a resolution of a display unit interfaced with a data processing device and/or a display area size thereon
CN104361849A (zh) * 2014-11-27 2015-02-18 上海斐讯数据通信技术有限公司 显示器的显示调节系统及调节方法
CN104618575A (zh) * 2014-12-30 2015-05-13 小米科技有限责任公司 检测物体接近的方法和装置
CN105100506A (zh) * 2015-08-12 2015-11-25 京东方科技集团股份有限公司 显示装置、显示系统和分辨率调整方法
CN105183149A (zh) * 2015-08-12 2015-12-23 京东方科技集团股份有限公司 距离感测基板、显示装置、显示系统和分辨率调整方法

Also Published As

Publication number Publication date
US20170364142A1 (en) 2017-12-21
CN105183149B (zh) 2018-02-27
US10228759B2 (en) 2019-03-12
CN105183149A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
US10199009B2 (en) Display adjusting system and display adjusting method
US11990076B2 (en) Ambient light and proximity detection method, photographing method, and terminal
WO2017024765A1 (zh) 显示装置、显示系统和分辨率调整方法
WO2017024771A1 (zh) 距离感测基板、显示装置、显示系统和分辨率调整方法
US10978006B2 (en) User terminal device and method for adjusting luminance thereof
US9372540B2 (en) Method and electronic device for gesture recognition
US9122354B2 (en) Detecting wave gestures near an illuminated surface
CN105023552A (zh) 显示器及其亮度调整方法
US9886933B2 (en) Brightness adjustment system and method, and mobile terminal
KR20140144410A (ko) 음향신호를 위한 빔포밍 방법 및 장치
CN102104767A (zh) 具有透视失真校正的脸部姿势改进
US11592873B2 (en) Display stack topologies for under-display optical transceivers
TW201015404A (en) Optical touch display device, optical touch sensing device and touch sensing method
WO2023035414A1 (zh) 基于雷达的电视曲率调整方法、装置、电视及存储介质
CN104010208B (zh) 一种具有红外定位功能的液晶电视及其红外定位方法
US20200081120A1 (en) Ultrasonic Sensor
US10725551B2 (en) Three-dimensional touch sensing method, three-dimensional display device and wearable device
US11861114B2 (en) Electronic equipment, method for controlling electronic equipment, and storage medium
CN111212159B (zh) 终端设备
CN106155279A (zh) 一种动态调整终端屏幕显示的方法及终端
TWI827028B (zh) 一種目標追蹤方法與裝置
CN115079126B (zh) 点云处理方法、装置、设备及存储介质
CN112995578B (zh) 电子地图显示方法、装置、系统及电子设备
US20150253817A1 (en) Portable electronic device and control method thereof
KR101460041B1 (ko) 시청거리를 고려한 백라이트 디밍 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834399

Country of ref document: EP

Kind code of ref document: A1