WO2017024689A1 - 耳机 - Google Patents
耳机 Download PDFInfo
- Publication number
- WO2017024689A1 WO2017024689A1 PCT/CN2015/095257 CN2015095257W WO2017024689A1 WO 2017024689 A1 WO2017024689 A1 WO 2017024689A1 CN 2015095257 W CN2015095257 W CN 2015095257W WO 2017024689 A1 WO2017024689 A1 WO 2017024689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- auditory canal
- external auditory
- earphone
- photosensor
- convex portion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
Definitions
- the present invention relates to a hearing device, and more particularly to an earphone.
- earphones As a new communication tool, earphones are small and easy to wear, and are widely used in people's lives and work.
- an earphone can measure heart rate information of a human body by detecting vibration at the ear tip of the earphone.
- the heart rate information of the earphone detection for detecting the heart rate can also reflect the real situation of the human body to a certain extent, but the detection mode is greatly affected by the external environment. For example, when the wearer is exercising, the movement of the body inevitably causes the vibration of the auricle, which is bound to interfere with the detection and analysis of the heart rate signal.
- One technical problem to be solved by the present invention is to provide an earphone that can accurately detect physiological information of a human body without being affected by an external environment.
- an earphone comprising: a headphone body, the earphone body comprising a sounding portion, the sounding portion being adapted to transmit sound to the external auditory canal; the convex portion, Extending from the earphone body, adapted to be inserted into the external auditory canal; the photoelectric sensor, the positional relationship between the photoelectric sensor and the convex portion is set such that light emitted by the photoelectric sensor can be irradiated on the inner wall of the external auditory canal, and the photoelectric sensor can receive the external auditory canal Light reflected from the inner wall.
- the light emitted from the photosensor can enter the external auditory canal of the wearer through the convex portion provided on the earphone body, and receive the light reflected from the inner wall of the external auditory canal, so that the photoelectric sensor can detect the received
- the change in the intensity of the reflected light determines the physiological information of the human body, such as heart rate information, based on the optical information of the inner wall of the external auditory canal.
- the earphone for detecting physiological information determines physiological information by detecting a signal change in the external auditory canal by a photoelectric sensor, and the external auditory canal is at a position where the outer ear is deep, and the external ambient light is rarely incident on the external auditory canal. Therefore, the influence of the external ambient light on the measurement result is small and negligible, and the way of photoelectrically detecting the physiological information is not affected by the movement state of the wearer, so that the detected physiological information is highly reliable.
- the length of the raised portion ranges from 5 mm to 15 mm.
- the convex portion can be preferably disposed between 5 mm and 15 mm, so that the photoelectric sensor can detect the signal deep in the external auditory canal, thereby ensuring the accuracy of detection, and It will not pose a danger to the human ear.
- the raised portion includes a first end remote from the earphone body and a second end contacting the earphone body, and the photosensor is disposed at the first end of the raised portion.
- the photoelectric sensor can illuminate the light emitted by the photoelectric sensor to the external auditory canal and receive the light reflected from the external auditory canal, so that the depth of the external auditory canal can be detected.
- the intensity of light changes to confirm the physiological information of the human body (such as heart rate), so that the test results can be affected by the external environment and improve the accuracy of the test results.
- the convex portion is a tubular convex portion
- the second end of the tubular convex portion surrounds the sound emitting portion
- the photosensor is disposed inside the first end of the tubular convex portion and between the inner wall of the tubular convex portion A void is formed.
- the convex portion is formed into a tubular shape, and the photoelectric sensor is disposed inside the first end of the tubular convex portion, so that the photoelectric sensor can detect the signal change in the external auditory canal, and the tubular shape
- the convex portion can also introduce the sound emitted from the sounding part into the external auditory canal, so that the earphone can measure the physiological information without affecting the normal use.
- the photosensor of the earphone of the present invention may further comprise a first side emitting light and receiving light and a second side opposite to the first side, the first side being adjacent to a portion of the inner wall of the tubular convex portion, the second side being tubular A gap is formed between the inner walls of the other portion of the convex portion.
- the photosensor can emit light into the external auditory canal through the tubular convex portion and receive light reflected from the external auditory canal, so that physiological information can be determined based on the signal change of the reflected light.
- the sound emitting portion of the earphone of the present invention may also be located outside the second end of the convex portion.
- the physiological information detecting function and the sound transmitting function of the earphone can be made unaffected.
- the earphone of the present invention may further comprise a silicone sleeve, the silicone sleeve is disposed on the earphone body, and has a sleeve adapted to be inserted into the external ear canal, the silicone sleeve is capable of transmitting light emitted by the photoelectric sensor, and the sleeve surrounds the convex portion and the sounding portion.
- a gap is formed between the convex portion and a portion of the inner wall of the sleeve, and sound emitted from the sounding portion enters the external auditory canal through the gap.
- the silicone sleeve can not only be used to protect the earphone, but also improve the comfort when wearing.
- the sleeve of the silicone sleeve is larger than the convex portion, so that the silicone sleeve can also act as a sound tube, so that the sound can be from the silicone sleeve.
- the gap formed by the cannula enters the external auditory canal to improve the sound amplification capability.
- the photosensor of the earphone of the present invention may also be disposed on the earphone body, and the convex portion may be an optical waveguide component capable of conducting light emitted by the photosensor.
- the convex portion is made of the optical waveguide component, and the photoelectric sensor can emit light to the outer ear canal and receive the light reflected from the external auditory canal through the convex portion disposed thereon, so that the photoelectric sensor can detect the external auditory canal without going deep into the external auditory canal. Signal within, thereby determining physiological information.
- the optical waveguide component may further include a columnar portion extending from the photosensor and an optical reflection portion located on a side of the columnar portion away from the earphone body, and the light emitted from the photosensor is conducted to the optical reflection portion through the columnar portion, and is optically Reflective partial reflection
- the light reflected from the inner wall of the external auditory canal is reflected by the optically reflective portion to the columnar portion and is conducted to the photosensor through the columnar portion.
- the photosensor can emit light to the outer ear canal through the columnar portion and the optically reflective portion of the optical waveguide member, and receive light reflected from the external auditory canal.
- the earphone of the present invention may further comprise a sound tube, the sound tube extending around the sounding portion, extending from the earphone body, adapted to be inserted into the external auditory canal, so as to transmit the sound emitted from the sounding portion to the external auditory canal, and the convex portion is the sound tube. portion.
- a part of the sound tube is set as a convex portion made of the optical waveguide member, so that the earphone can measure physiological information without affecting its normal use.
- Fig. 1 shows a schematic block diagram of the structure of an earphone of the present invention.
- Fig. 2 is a block diagram showing the structure of an embodiment of the earphone of the present invention.
- Fig. 3 is a block diagram showing the structure of another embodiment of the earphone of the present invention.
- Fig. 4 is a block diagram showing another embodiment of the earphone of the present invention.
- Fig. 5 is a block diagram showing the structure of another embodiment of the earphone of the present invention.
- Fig. 6 is a view showing the structure of another embodiment of the earphone of the present invention.
- Headphone body 2. Raised portion; 21, second end; 22, first end; 3. Photoelectric sensor; 4. Sounding part; 5. Silicone sleeve; , optical reflection part; 7, sound tube.
- the invention discloses an earphone for detecting physiological information of a human body by using a photoelectric sensor.
- the detection principle is as follows: a photoelectric sensor is arranged on the earphone body, and when worn, the photoelectric sensor can inject the emitted light into the external auditory canal of the wearer and receive the slave light. The light reflected back from the external auditory canal. By analyzing the reflected light, you can understand the changes in the optical information of the inner wall of the external auditory canal to understand some physiological information of the human body.
- the heart rate is detected as an example for further explanation.
- the intensity of the reflected light received will be reduced.
- the absorption of light by skin, muscles, tissues, etc. is constant throughout the blood circulation.
- the blood volume in the skin shows a pulsating change under the action of the heart.
- the peripheral blood volume is the largest, the light absorption is also the largest, and the detected reflected light intensity is the smallest.
- the detected reflected light has the highest light intensity. Therefore, the intensity of the received reflected light also changes pulsatingly with the contraction and relaxation of the heart. In this way, the received light intensity signal is converted into an electrical signal to obtain pulse related information, thereby obtaining heart rate information.
- heart rate information it is also possible to obtain other human physiological information such as body temperature by optical detection inside the external auditory canal.
- Fig. 1 shows a schematic block diagram of the structure of an earphone based on the present invention.
- the earphone of the embodiment of the present invention includes an earphone body 1, a convex portion 2, and a photoelectric sensor 3.
- the earphone body 1 includes a sound emitting portion 4, and the sound emitting portion 4 is adapted to transmit sound to the external auditory canal.
- the earphone body 1 may further include other components included in existing earphones such as a lead wire, a data interface, and an ear cover.
- the convex portion 2 extends from the earphone body 1 and is adapted to be inserted into the external auditory canal. Since the length of the human ear canal is 20 mm on average, the length of the convex portion 2 can be preferably set to 5 mm to 15 mm, so that the photoelectric sensor 3 can be accurately detected. The relevant information in the external auditory canal does not cause damage to the ear because the insertion is too deep.
- the positional relationship between the photosensor 3 and the convex portion 2 is set such that light emitted from the photosensor 3 can be irradiated on the inner wall of the external auditory canal, and the photosensor 3 can receive light reflected from the inner wall of the external auditory canal.
- the photosensor 3 can inject the emitted light to the external auditory canal under the action of the convex portion 2, and receive the light reflected from the external auditory canal, so that the human heart rate information can be determined based on the received signal of the reflected light.
- the convex portion 2 may also preferably include a first end remote from the earphone body 1 and a second end contacting the earphone body 1, and the photosensor 3 is disposed at the first end of the convex portion 2.
- the photoelectric sensor 3 is disposed at the first end of the convex portion 2 in various ways.
- the photoelectric sensor 3 may be disposed at the side of the first end of the convex portion 2, or may open a top portion of the first end. a groove, the photoelectric sensor 3 is disposed in the groove, the photoelectric sensor 3 can be disposed at the top of the first end, and the like, and a plurality of other fixing manners can be provided, as long as the photoelectric sensor 3 can be fixed at The first end of the raised portion 2 is sufficient.
- the photosensor 3 and the convex portion 2 are disposed such that the working portion of the photosensor 3 that emits light and receives light is spaced apart from the inner wall of the external auditory canal by the convex portion 2, at least the convex portion 2 is disposed at the working portion and the external auditory canal
- the portion between the inner walls may be made of a material that can transmit light emitted from the photosensor 3.
- the photoelectric sensor of the present invention can convert the intensity of the received light reflected by the external auditory canal into an electrical signal, which can be used to reflect the physiological information of the human body (for example, heart rate information), and therefore can also preferably be in the earphone.
- a processing unit and a display unit (or a playing unit) are added to the body, and the processing unit can be used to convert the electrical signal of the photoelectric sensor into heart rate information, and then displayed by the display unit (or broadcast by the playing unit).
- the processing unit may also be disposed not on the headset but on other devices that communicate with the headset to obtain a corresponding electrical signal.
- the earphone of the present invention can also detect physiological information of the human body, such as heart rate, under the premise that the earphone can be used normally. Moreover, the earphone of the embodiment of the present invention detects the physiological information by detecting the signal in the external auditory canal through the photoelectric sensor. Since the external auditory canal is in the deep part of the outer ear, the external ambient light is rarely able to enter, so the influence of the external ambient light on the measurement is caused. Smaller, negligible, and the way to detect heart rate photoelectrically is not worn The influence of the motion state of the person makes the detected heart rate information highly reliable.
- the earphone of the present invention may also be any existing earphone, for example, it may be an in-ear earphone, a head-mounted earphone, which can be worn by a user in a conventional manner.
- the earphone of the present invention for example, uses a headwear, a neckband, an ear clip, an ear hook, a press fit, and the like.
- FIG. 1 The structural block diagram of the earphone of the present invention is briefly described above with reference to FIG. 1.
- the structure of the earphone of the present invention will be further described in detail below with reference to specific embodiments, and the differences from FIG. 1 will be mainly described, and the details are not described again.
- Fig. 2 is a block diagram showing the structure of an embodiment of the earphone of the present invention.
- the earphone according to the embodiment of the present invention includes the earphone body 1, the convex portion 2, and the photoelectric sensor 3.
- the earphone body 1 As shown in FIG. 2, the earphone according to the embodiment of the present invention includes the earphone body 1, the convex portion 2, and the photoelectric sensor 3.
- FIG. 1 The differences between the embodiment of the present invention and FIG. 1 will be described in detail below, and the same portions are not described again.
- the raised portion 2 of the embodiment of the invention is a tubular raised portion comprising a first end 22 remote from the earphone body 1 and a second end 21 contacting the earphone body 1, the second end 21 of the tubular raised portion surrounding
- the sounding portion 4, that is, the periphery of the bottom of the second end 21 corresponds to the sounding portion 4, so that the tubular convex portion can enclose the sound emitting portion 4, so that the sound emitted from the sounding portion 4 can be guided by the tubular convex portion.
- the photosensor 3 is disposed inside the first end 22 of the tubular convex portion and forms a gap with a portion of the inner wall of the tubular convex portion.
- the photosensor 3 of the embodiment of the present invention may be pasted on the inner wall of the first end 22, or a vertical support plate may be disposed in the first end 22, and the photosensor 22 is fixed between the support plate and the inner wall.
- a vertical support plate may be disposed in the first end 22, and the photosensor 22 is fixed between the support plate and the inner wall.
- the mounting position of the first end of the tubular convex portion and the characteristics of the tubular convex portion can also be determined according to the properties of the photoelectric sensor 3.
- the photoelectric sensor may be an infrared light photoelectric sensor.
- the photoelectric sensor may include an infrared light emitting tube and an infrared light receiving tube, and the infrared light emitting tube is used to emit infrared light to the external auditory canal.
- the infrared light receiving tube is configured to receive infrared light reflected from the external auditory canal.
- the side of the photoelectric sensor including the infrared light emitting tube and the infrared receiving tube may be fixed near the inner wall of the tubular convex portion, in order to make the infrared light emitting tube
- the emitted light can be transmitted through the tubular convex portion to the external auditory canal
- the inner wall of the tubular convex portion corresponding to the infrared light emitting tube and the infrared receiving tube can be disposed as a transparent or translucent structure so that the infrared light emitting tube emits Infrared light can be incident on the inner wall of the external auditory canal through the inner wall, and the infrared light receiving tube can receive infrared light reflected from the inner wall of the external auditory canal to ensure that the heart rate measurement can be performed normally.
- the photoelectric sensor 3 emits infrared light to define the properties of the tubular convex portion. It should be understood that, according to the light-emitting characteristics of the photoelectric sensor, the tubular convex portion may also be made of different materials or colors. The composition of the medium is as long as it can pass through the light found by the photoelectric sensor.
- FIG. 3 is a schematic structural view of an earphone according to another embodiment of the present invention.
- the sound emitting portion 4 of the embodiment of the present invention is located outside the second end 21 of the convex portion 2, and the convex portion 2 is used to support the photosensor 3, wherein the convex portion 2 supports the photosensor 3.
- the photosensor 3 can be fixed to the side of the first end 22 of the raised portion 2, and the photosensor 3 can also be placed on top of the first end 22 of the raised portion 2, and also at the raised portion 2.
- a groove is formed at the top of the first end 22, the photosensor 3 is placed in the groove, and the like.
- the heart rate information can be determined by accurately measuring the light intensity change of the reflected light in the external auditory canal by the photoelectric sensor, but when the wearing part 4 is far away from the external auditory canal, the sound emitting part 4 is emitted. A large portion of the sound may leak out, making the wearer feel less loud and reducing the wearer's hearing experience.
- a silicone sleeve 5 can be preferably sleeved on the earphone body 1.
- the silicone sleeve 5 has The sleeve is adapted to be inserted into the external auditory canal, and the silicone sleeve 5 is capable of transmitting light emitted from the photosensor, and the sleeve surrounds the convex portion 2 and the sounding portion 4, and the generating portion 4 and the convex portion 2 are wrapped together, and the convex portion 2 is wrapped.
- a gap is formed, so that the sound emitted from the sounding portion 4 can enter the external auditory canal through the gap under the guidance of the silicone sleeve 5, so that the sound can be prevented from leaking.
- the silicone material has good toughness and elasticity, is not easily deformed by external force, and has a smooth hand feeling. Therefore, the wearer can also improve the comfort of the wearer.
- the silicone sleeve is applied to the earphone body and the photoelectric sensor and the convex portion. And so on can also play a protective role.
- the photosensor 3, the convex portion 2 and the earphone body 1 may be potted, for example, the photosensor 3 may be sealed with the convex portion 2 by an electronic glue, and the bottom of the convex portion 2 may be The earphone body 1 is sealed with an electronic glue. At this time, the periphery of the sounding portion 4 and the earphone body 1 can be sealed with an electronic glue. This will fully protect the relevant components.
- FIG. 5 is a schematic structural diagram of an earphone according to still another embodiment of the present invention.
- the photosensor 3 is disposed on the earphone body 1, and the convex portion is an optical waveguide member 6 capable of conducting light emitted from the photosensor 3.
- the optical waveguide member 6 includes a columnar portion 61 extending from the photosensor 3 and an optical reflection portion 62 located on a side of the columnar portion 61 away from the headphone body 1, and light emitted from the photosensor 3 is conducted to the optical reflection portion 62 via the columnar portion 61,
- the light reflected from the optical reflection portion 62 is reflected to the inner wall of the external auditory canal, and the light reflected from the inner wall of the external auditory canal is reflected by the optical reflection portion 62 to the columnar portion 61, and is conducted to the photosensor 3 via the columnar portion 61.
- the photoelectric sensor 3 can irradiate light to the external auditory canal without passing through the external auditory canal through the optical waveguide component 6, and receive the light reflected from the external auditory canal, and then the photoelectric sensor can determine the inside of the external auditory canal according to the change of the received light intensity of the reflected reflected light. Heart rate information.
- FIG. 6 is a schematic structural view of an earphone according to still another embodiment of the present invention.
- the earphone according to the embodiment of the present invention further includes a sound tube 7, and the sound tube 7 is disposed around the sounding portion 4, and extends from the earphone body 1, and the length of the sound tube 7 is set to be suitable for insertion into the external auditory canal. This makes it easy to transmit the sound from the sounding part 4 to the external auditory canal.
- a part of the sound tube 7 of the embodiment of the present invention is composed of the optical waveguide member 6.
- the photosensor 3 is disposed on a side of the optical waveguide member 6 remote from the earphone body 1.
- the photosensor 3 may be disposed on the earphone body 1 and the optical waveguide component 6 is from the photosensor 3 extension.
- the optical waveguide member 6 corresponds to the optical waveguide member 6 in Fig. 5, and may have the columnar portion 61 and the optical reflection portion 62 as well.
- the sound tube 7 can be used to introduce sound into the human ear, and can also guide the light emitted by the photoelectric sensor 3 into the external auditory canal, and introduce the light reflected from the external auditory canal into the photoelectric sensor, so that the earphone of the present invention can measure the heart rate. At the same time, it does not affect normal use.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明公开了一种耳机,包括:耳机本体,耳机本体包括发声部位,发声部位适于将声音传入外耳道;凸起部分,从耳机本体延伸,适于插入外耳道;光电传感器,光电传感器与凸起部分之间的位置关系被设置为,使得光电传感器发出的光能够照射在外耳道的内壁上,并且使得光电传感器能够接收外耳道的内壁反射的光。由此,通过在耳机本体上设置的凸起部分,可以使得光电传感器发出的光能够进入外耳道内,并经外耳道的内壁反射回来,从而通过检测反射光的光强的变化,就可以根据外耳道内壁的光学信息来确定人体的生理信息,例如心率信息。使得检测得到的生理信息更加准确,且检测结果不受佩戴者运动的影响。
Description
本发明涉及一种听力设备,特别是涉及一种耳机。
耳机作为一种新的通信工具,具有小巧、佩戴方便的特点,在人们的生活、工作中被广泛使用。
例如,晨起锻炼时候我们可以边听音乐边健身,上班途中我们还可以佩戴耳机观看视频、欣赏音乐、进行听力锻炼等等。
但是,虽然目前的耳机在生活中被广泛应用,但是其主要功能还仅限于听音乐、通话等,功能还比较单一,没有能够充分利用其小巧、佩戴方便的优势。
最近新兴起一些可以检测人体生理信息的耳机。例如,一种耳机可以通过检测耳机耳廓处的振动测量人体的心率信息。这种检测心率的耳机检测的心率信息在一定程度下也能反映人体的真实情况,但是,这种检测方式受外部环境影响较大。例如,在佩戴者进行运动时,身体的运动必然会引起耳廓的振动,这种振动势必会对心率信号的检测、分析带来干扰。
因此,需要一种可以不受外部环境影响、精确地检测人体生理信息的耳机。
发明内容
本发明要解决的一个技术问题是提供一种耳机,其能够不受外部环境的影响、精确地检测人体的生理信息。
根据本发明的一个方面,公开了一种耳机,包括:耳机本体,耳机本体包括发声部位,发声部位适于将声音传入外耳道;凸起部分,
从耳机本体延伸,适于插入外耳道;光电传感器,光电传感器与凸起部分之间的位置关系被设置为,使得光电传感器发出的光能够照射在外耳道的内壁上,并且使得光电传感器能够接收外耳道的内壁反射的光。
由此,通过在耳机本体上设置的凸起部分,使得光电传感器发出的光能够进入佩戴者的外耳道,并接收从经外耳道的内壁反射回来的光,这样,光电传感器就可以通过检测接收到的反射光的光强的变化,根据外耳道内壁的光学信息来确定人体的生理信息,例如心率信息。
综上,本发明的检测生理信息(例如心率)的耳机是通过光电传感器检测外耳道中的信号变化来确定生理信息的,而外耳道处于外耳较深的位置,外部环境光很少入射到外耳道中,因此外部环境光对测量结果造成的影响较小,可以忽略不计,并且光电检测生理信息的方式不受佩戴者的运动状态的影响,使得检测到的生理信息可靠度较高。
优选地,凸起部分的长度范围是5mm-15mm。
由于人耳的外耳道的长度平均是20mm,因此,凸起部分可以优选地设置在5mm-15mm之间,这样,使得光电传感器可以检测到外耳道深处的信号,既保证了检测的准确性,又不会对人耳造成危险。
优选地,凸起部分包括远离耳机本体的第一端和接触耳机本体的第二端,光电传感器设置在凸起部分的第一端。
由此,通过将光电传感器设置在凸起部分远离耳机本体的第一端,使得光电传感器可以将其发出的光照射到外耳道,并接收从外耳道反射回来的光,这样就可以通过检测外耳道深处的光的强度变化,来确认人体的生理信息(例如心率),使得检测结果可以不受外部环境的影响,提高检测结果的准确性。
优选地,凸起部分为管状凸起部分,管状凸起部分的第二端围绕发声部位,光电传感器设置在管状凸起部分的第一端的内部,并与管状凸起部分的部分内壁之间形成空隙。
将凸起部分设为管状,光电传感器设在管状凸起部分的第一端的内部,这样,光电传感器可以检测外耳道内的信号变化情况,且管状
凸起部分还可以将发声部位发出的声音导入外耳道,使得耳机在可以测量生理信息的同时,还不影响正常使用。
优选地,本发明的耳机的光电传感器还可以包括发出光并接收光的第一侧和与第一侧相反的第二侧,第一侧靠近管状凸起部分的一部分内壁,第二侧与管状凸起部分的另一部分内壁之间形成空隙。
这样,光电传感器可以通过管状凸起部分将光发射到外耳道中,并将接收从外耳道反射回来的光,从而可以根据反射光的信号变化情况来确定生理信息。
优选地,本发明的耳机的发声部位还可以位于凸起部分的第二端的外侧。
这样,可以使得耳机的生理信息检测功能与声音传递功能互不影响。
优选地,本发明的耳机还可以包括硅胶套,硅胶套套设在耳机本体上,具有适于插入外耳道的套管,硅胶套能够透过光电传感器发出的光,套管围绕凸起部分和发声部位,凸起部分与套管的部分内壁之间形成空隙,发声部位发出的声音通过空隙进入外耳道。
这样,硅胶套不仅可以用来保护耳机,还可以提高佩戴时的舒适度,另外,硅胶套的套管大于凸起部分,这样,硅胶套还可以充当导音管,使得声音可以从硅胶套与套管形成的空隙中进入外耳道,提高扩音能力。
优选地,本发明的耳机的光电传感器还可以设置在耳机本体上,凸起部分可以是能够传导光电传感器发出的光的光波导部件。
由此,凸起部分采用光波导部件制成,光电传感器就可以通过设置在其上的凸起部分向外耳道发射光以及接收从外耳道反射回来的光,这样,光电传感器不必深入外耳道即可检测外耳道内的信号,从而确定生理信息。
优选地,上述光波导部件还可以包括从光电传感器延伸的柱状部分和位于柱状部分远离所述耳机本体一侧的光学反射部分,光电传感器发出的光经柱状部分传导到光学反射部分,并由光学反射部分反射
到外耳道内壁,外耳道内壁反射的光经光学反射部分反射到柱状部分,并经柱状部分传导到光电传感器。
这样,光电传感器通过光波导部件的柱状部分和光学反射部分就可以向外耳道发射光,并接收从外耳道反射的光。
优选地,本发明的耳机还可以包括出音管,出音管围绕发声部位,从耳机本体延伸,适于插入外耳道,以便将发声部位发出的声音传入外耳道,凸起部分是出音管的一部分。
这样,将出音管的一部分设置成由光波导部件制成的凸起部分,使得耳机在测量生理信息的同时,又不会影响其正常使用。
通过结合附图对本公开示例性实施方式进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施方式中,相同的参考标号通常代表相同部件。
图1示出了本发明的耳机的结构的示意性方框图。
图2示出了本发明的耳机的一种实施例的结构示意图。
图3示出了本发明的耳机的另一种实施例的结构示意图。
图4示出了本发明的耳机的另一种实施例的结构示意图。
图5示出了本发明的耳机的另一种实施例的结构示意图。
图6示出了本发明的耳机的另一种实施例的结构示意图。
图1至图6中标号的具体含义为:
1、耳机本体;2、凸起部分;21、第二端;22、第一端;3、光电传感器;4、发声部位;5、硅胶套;6、光波导部件;61、柱状部分;62、光学反射部分;7、出音管。
下面将参照附图更详细地描述本公开的优选实施方式。虽然附图中显示了本公开的优选实施方式,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施
方式是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
本发明公开了一种利用光电传感器检测人体生理信息的耳机,其检测原理如下:在耳机本体上设置光电传感器,在佩戴时,光电传感器可以将发出的光入射至佩戴者的外耳道,并接收从外耳道反射回来的光。通过分析反射回来的光,可以了解外耳道内壁的光学信息变化,从而了解人体的一些生理信息。
例如,这里以检测心率为例,进行进一步说明。
由于受到皮肤肌肉和血液的吸收衰减作用,接收到的反射回来的光的强度将减弱。一般而言,皮肤、肌肉、组织等对光的吸收在整个血液循环过程中是保持恒定不变的。而皮肤内的血液容积在心脏作用下则呈现脉动性变化。当心脏收缩时,外周血容量最多,光吸收量也最大,检测到的反射光的光强也就最小。当心脏舒张时,正好相反,检测到的反射光的光强最大。因此,接收到的反射光的光强也随心脏的收缩和舒张而成脉动性变化。这样,将接收到的光强信号转换成电信号即可获得脉搏的相关信息,从而得到心率信息。
本领域技术人员应当明白,除了心率信息,通过对外耳道内部进行光学检测,还有可能获得其它人体生理信息,例如体温等。
下面结合附图对本发明的耳机的结构作进一步详细说明。
图1示出了基于本发明的耳机的结构的示意性方框图。
如图1所示,本发明实施例的耳机包括耳机本体1、凸起部分2以及光电传感器3。
耳机本体1包括发声部位4,发声部位4适于将声音传入外耳道,其中,耳机本体1还可以包括引线、数据接口、耳套等现有耳机含有的其它部件。
凸起部分2从耳机本体1延伸,适于插入外耳道,由于人体外耳道长度平均是20mm,因此可以优选地将凸起部分2的长度范围设为5mm-15mm,这样可以使得光电传感器3精确地探测外耳道内的相关信息的同时不会因为插入太深对耳朵造成损害。
光电传感器3与凸起部分2之间的位置关系被设置为,使得光电传感器3发出的光能够照射在外耳道的内壁上,并且使得光电传感器3能够接收外耳道的内壁反射的光。
这样,光电传感器3在凸起部分2的作用下,可以将发出的光入射至外耳道,并接收从外耳道反射的光,从而可以基于接收到的反射光的信号来确定人体心率信息。
另外,凸起部分2还可以优选地包括远离耳机本体1的第一端和接触耳机本体1的第二端,光电传感器3设置在凸起部分2的第一端。
其中,光电传感器3设置在凸起部分2的第一端有多种设置方式,例如,光电传感器3可以设置在凸起部分2的第一端的侧部,还可以在第一端顶部开设一个凹槽,将光电传感器3设于凹槽之内,还可以将光电传感器3设在第一端的顶部等等,另外,还可以有多种其它的固定方式,只要能使光电传感器3固定在凸起部分2的第一端即可。
另外,当光电传感器3和凸起部分2被设置为,光电传感器3发光和接收光的工作部位与外耳道内壁之间隔着凸起部分2时,凸起部分2的至少设置在该工作部位和外耳道内壁之间的部分可以采用能够透过光电传感器3所发出的光的材料制成。
应该知道,本发明的光电传感器可以将接收到的外耳道反射的光的强度转化为电信号,此电信号就可以用来反映人体的生理信息(例如心率信息),因此,还可以优选地在耳机本体上增设一个处理单元、显示单元(或播放单元),处理单元可以用来将光电传感器的电信号转换成心率信息,然后由显示单元显示(或由播放单元播报)。当然,处理单元也可以不设置在耳机上,而是设置在与耳机进行通信以获得相应电信号的其它设备上。
综上,本发明的耳机在保证耳机可以正常使用的前提下,还可以检测人体的生理信息,例如心率。且本发明实施例的耳机是通过光电传感器检测外耳道中的信号,以此来确定生理信息的,由于外耳道处于外耳的深处,外部环境光很少能够进入,因此外部环境光对测量造成的影响较小,可以忽略不计,且光电检测心率的方式可以不受佩戴
者的运动状态的影响,使得检测到的心率信息可靠度较高。
另外,还应该知道,在满足上述技术特征的情况下,本发明的耳机还可以是现有的任何一种耳机,例如,可以是入耳式耳机,头挂式耳机,用户可通过传统的方式佩戴本发明的耳机,例如,使用头戴、颈带、耳夹、耳钩、压配合等等。
上面结合图1简单叙述了本发明的耳机的结构框图,下面就具体实施例对本发明的耳机的结构作进一步详细说明,其中重点叙述与图1的不同之处,对于相同之处不再赘述。
图2示出了本发明的耳机的一种实施例的结构示意图。
如图2所示,本发明实施例的耳机包含耳机本体1、凸起部分2以及光电传感器3,下面就本发明实施例与图1的不同之处做详细说明,相同之处不再赘述。
本发明实施例的凸起部分2是管状凸起部分,管状凸起部分包括远离耳机本体1的第一端22和接触耳机本体1的第二端21,管状凸起部分的第二端21围绕发声部位4,即第二端21底部四周对应于发声部位4,使得管状凸起部分可以将发声部位4包裹在内,这样,发声部位4发出的声音就可以在管状凸起部分的引导下,引至管状凸起部分的第一端22。光电传感器3设置在管状凸起部分的第一端22的内部,并与管状凸起部分的部分内壁之间形成空隙。这样,引至管状凸起部分的第一端22处的声音就可以通过第一端22的空隙进入人耳(此处,可以进入外耳道)。
其中,本发明实施例的光电传感器3既可以粘贴在第一端22的内壁处,还可以在第一端22内设有一个竖直的支撑板,光电传感器22固定在支撑板和内壁之间,当然还可以有多种其它将光电传感器3固定在第一端22的方式,此处不再一一赘述。
另外,在实际应用中,还可以根据光电传感器3的性质确定其在管状凸起部分的第一端的安装位置及管状凸起部分的特性。例如,光电传感器可以是红外光光电传感器,此时,光电传感器可以包含红外光发光管和红外光接收管,红外光发光管用来向外耳道发射红外光,
红外光接收管用来接收从外耳道反射回来的红外光,这种情况下,可以将光电传感器包括红外发光管和红外接收管的那一侧靠近管状凸起部分的内壁固定,为了使得红外光发光管发出的光可以透过管状凸起部分,入射到外耳道,还可以将与红外发光管和红外接收管对应的管状凸起部分的内壁设置为透明或半透明结构,以使得红外光发光管发出的红外光可以透过内壁入射到外耳道的内壁处,且红外光接收管可以接收从外耳道的内壁反射回来的红外光,确保心率测量可以正常进行。
需要注意的是,上面是以光电传感器3发射红外光为例来对管状凸起部分的性质做以限定,应该知道,根据光电传感器的发光特性,管状凸起部分还可以由不同材料或颜色的介质组成,只要其能透过光电传感器发现的光即可。
图3是本发明另一种实施例的耳机的结构示意图。
如图3所示,本发明实施例的发声部位4位于凸起部分2的第二端21的外侧,此时凸起部分2用来支撑光电传感器3,其中,凸起部分2支撑光电传感器3可以有多种支撑方式,只要能将光电传感器3固定在凸起部分2的第一端22即可。例如,可以将光电传感器3固定在凸起部分2的第一端22的侧部,还可以将光电传感器3置于凸起部分2的第一端22的顶部,还可以在凸起部分2的第一端22的顶部开设凹槽,将光电传感器3置于凹槽内等等。
本发明实施例的耳机,可以通过光电传感器精确地测量外耳道内的反射光的光强变化,以此来确定心率信息,但是在佩戴时,由于发声部位4离外耳道较远,因此发声部位4发出的声音可能会有很大一部分泄露出去,使得佩戴者听到的声音较小,降低佩戴者的听觉体验。
因此,为了使得耳机在可以检测心率的同时,还可以将声音尽可能多的传入人耳,可以优选地在耳机本体1上套设一个硅胶套5,如图4所示,硅胶套5具有适于插入外耳道的套管,且硅胶套5能够透过光电传感器发出的光,套管围绕凸起部分2和发声部位4,将发生部位4和凸起部分2都包裹起来,凸起部分2与套管的部分内壁之间
形成空隙,这样,发声部位4发出的声音就可以在硅胶套5的引导下通过空隙进入外耳道,从而可以保证声音不外漏。
且硅胶材料的韧性、弹性很好,不容易因外力而永久变形,而且手感比较光滑,因此,佩戴时还可以提高佩戴者的舒适度,另外,硅胶套对耳机本体及光电传感器、凸起部分等还可以起到保护作用。
另外,作为优选,还可以将光电传感器3、凸起部分2与耳机本体1做灌封胶处理,例如,可以用电子胶将光电传感器3与凸起部分2密封,并将凸起部分2底部与耳机本体1用电子胶密封,此时还可以将发声部位4的四周与耳机本体1用电子胶密封。这样可以充分保护相关部件。
图5是本发明又一种实施例的耳机的结构示意图。
如图5所示,光电传感器3设置在耳机本体1上,凸起部分是能够传导光电传感器3发出的光的光波导部件6。
其中,光波导部件6包括从光电传感器3延伸的柱状部分61和位于柱状部分61远离耳机本体1一侧的光学反射部分62,光电传感器3发出的光经柱状部分61传导到光学反射部分62,并由光学反射部分62反射到外耳道内壁,外耳道内壁反射的光经光学反射部分62反射到柱状部分61,并经柱状部分61传导到光电传感器3。
这样,光电传感器3通过光波导部件6可以不必深入外耳道即可将光照射到外耳道,并接收从外耳道反射回来的光,然后光电传感器就可以根据接收到的反射光的光强变化来确定外耳道内部的心率信息。
图6是本发明再一个实施例的耳机的结构示意图。
如图6所示,本发明实施例的耳机还包括出音管7,出音管7围绕发声部位4设置,且从耳机本体1延伸,出音管7的长度设置为适于插入外耳道即可,这样可以方便将发声部位4发出的声音传入外耳道。
另外,本发明实施例的出音管7的一部分由光波导部件6组成。光电传感器3设置在光波导部件6的远离耳机本体1的一侧。例如,光电传感器3可以设置在耳机本体1上,光波导部件6从光电传感器
3延伸。这种情况下,光波导部件6相当于图5中的光波导部件6,同样可以具有柱状部分61和光学反射部分62。
这样,出音管7既可以用来将声音传入人耳,又可以将光电传感器3发出的光导入外耳道,并将从外耳道反射回来的光导入光电传感器,使得本发明的耳机可以测量心率的同时,又不影响正常使用。
上文中已经参考附图2至6详细描述了本发明的各实施例。应该知道,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
Claims (10)
- 一种耳机,包括:耳机本体,所述耳机本体包括发声部位,所述发声部位适于将声音传入外耳道;凸起部分,从所述耳机本体延伸,适于插入外耳道;光电传感器,所述光电传感器与所述凸起部分之间的位置关系被设置为,使得所述光电传感器发出的光能够照射在所述外耳道的内壁上,并且使得所述光电传感器能够接收所述外耳道的内壁反射的光。
- 根据权利要求1所述的耳机,其中,所述凸起部分的长度范围是5mm-15mm。
- 根据权利要求1所述的耳机,其中,所述凸起部分包括远离所述耳机本体的第一端和接触所述耳机本体的第二端,所述光电传感器设置在所述凸起部分的第一端。
- 根据权利要求3所述的耳机,其中,所述凸起部分为管状凸起部分,所述管状凸起部分的第二端围绕所述发声部位,所述光电传感器设置在所述管状凸起部分的第一端的内部,并与所述管状凸起部分的部分内壁之间形成空隙。
- 根据权利要求4所述的耳机,其中,所述光电传感器包括发出光并接收光的第一侧和与所述第一侧相反的第二侧,所述第一侧靠近所述管状凸起部分的一部分内壁,所述第二侧与所述管状凸起部分的另一部分内壁之间形成空隙。
- 根据权利要求3所述的耳机,其中,所述发声部位位于所述凸起部分的第二端的外侧。
- 根据权利要求6所述的耳机,还包括:硅胶套,套设在所述耳机本体上,具有适于插入所述外耳道的套管,所述硅胶套能够透过所述光电传感器发出的光,所述套管围绕所述凸起部分和所述发声部位,所述凸起部分与所述套管的部分内壁之间形成空隙,所述发声部位发出的声音通过所述空隙进入所述外耳道。
- 根据权利要求1所述的耳机,其中,所述光电传感器设置在所述耳机本体上,所述凸起部分是能够传导所述光电传感器发出的光的光波导部件。
- 根据权利要求8所述的耳机,其中,所述光波导部件包括从所述光电传感器延伸的柱状部分和位于所述柱状部分远离所述耳机本体一侧的光学反射部分,所述光电传感器发出的光经所述柱状部分传导到所述光学反射部分,并由所述光学反射部分反射到所述外耳道内壁,所述外耳道内壁反射的光经所述光学反射部分反射到所述柱状部分,并经所述柱状部分传导到所述光电传感器。
- 根据权利要求8或9所述的耳机,还包括:出音管,围绕所述发声部位,从所述耳机本体延伸,适于插入外耳道,以便将所述发声部位发出的声音传入所述外耳道,所述凸起部分是所述出音管的一部分。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510486531.0A CN105100994B (zh) | 2015-08-10 | 2015-08-10 | 耳机 |
CN201510486531.0 | 2015-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017024689A1 true WO2017024689A1 (zh) | 2017-02-16 |
Family
ID=54580364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/095257 WO2017024689A1 (zh) | 2015-08-10 | 2015-11-23 | 耳机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105100994B (zh) |
WO (1) | WO2017024689A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113632500A (zh) * | 2021-03-24 | 2021-11-09 | 株式会社未来 | 输出光和声音的耳机 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105451115B (zh) | 2016-01-05 | 2019-04-30 | 深圳市汇顶科技股份有限公司 | 一种具有生物特征检测功能的耳机、交互系统及方法 |
CN106170118A (zh) * | 2016-09-23 | 2016-11-30 | 深圳前海零距物联网科技有限公司 | 新型音频输出装置 |
CN107257515A (zh) * | 2017-06-16 | 2017-10-17 | 广州市凯创信息技术服务有限公司 | 智能心率血氧蓝牙耳机 |
CN107426644A (zh) * | 2017-09-20 | 2017-12-01 | 东莞市桐音电子科技有限公司 | 一种智能双插头耳机 |
CN107509133B (zh) * | 2017-09-30 | 2021-07-13 | 江西联创电声有限公司 | 耳机套及含有该耳机套的降噪耳机 |
CN209437238U (zh) | 2017-12-05 | 2019-09-27 | 深圳市汇顶科技股份有限公司 | 耳塞式装置及电子装置 |
CN110464327A (zh) * | 2019-08-22 | 2019-11-19 | 深圳市优创亿科技有限公司 | 一种入耳式测试心率的穿戴设备及测试方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050612A1 (ja) * | 2012-09-28 | 2014-04-03 | ローム株式会社 | 脈波センサ |
CN104622427A (zh) * | 2013-11-13 | 2015-05-20 | 富港电子(东莞)有限公司 | 耳塞、使用该耳塞的生理机能量测耳机及其量测方法 |
CN104735579A (zh) * | 2013-12-20 | 2015-06-24 | Gn奈康有限公司 | 用于具有生理传感器的耳机的适配系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8788002B2 (en) * | 2009-02-25 | 2014-07-22 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
CN204316714U (zh) * | 2015-01-19 | 2015-05-06 | 张进东 | 一种健康监护耳机 |
-
2015
- 2015-08-10 CN CN201510486531.0A patent/CN105100994B/zh active Active
- 2015-11-23 WO PCT/CN2015/095257 patent/WO2017024689A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050612A1 (ja) * | 2012-09-28 | 2014-04-03 | ローム株式会社 | 脈波センサ |
CN104622427A (zh) * | 2013-11-13 | 2015-05-20 | 富港电子(东莞)有限公司 | 耳塞、使用该耳塞的生理机能量测耳机及其量测方法 |
CN104735579A (zh) * | 2013-12-20 | 2015-06-24 | Gn奈康有限公司 | 用于具有生理传感器的耳机的适配系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113632500A (zh) * | 2021-03-24 | 2021-11-09 | 株式会社未来 | 输出光和声音的耳机 |
CN113632500B (zh) * | 2021-03-24 | 2022-10-18 | 株式会社未来 | 输出光和声音的耳机 |
Also Published As
Publication number | Publication date |
---|---|
CN105100994A (zh) | 2015-11-25 |
CN105100994B (zh) | 2019-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017024689A1 (zh) | 耳机 | |
US12076126B2 (en) | Physiological monitoring devices having sensing elements decoupled from body motion | |
US20200375547A1 (en) | Methods and apparatus for detecting motion via optomechanics | |
CN107041169B (zh) | 具有光学传感器的耳机设备 | |
JP2008136556A (ja) | イヤホン装置 | |
US10646125B2 (en) | Biological information measurement apparatus | |
CN110166916A (zh) | 耳内式助听器装置、助听器及电声变换器 | |
CN107438400A (zh) | 用于生理传感器的光导系统 | |
CN106551682B (zh) | 一种用于测量人体生命体征的耳机 | |
JP2015521424A (ja) | 生理学的センサ付きのイヤホン及び小型イヤホン | |
JP5915197B2 (ja) | 血流センサ | |
CN201197707Y (zh) | 一种运动时连续监测生命体征参数的传感装置 | |
CN208017485U (zh) | 生理信号量测装置 | |
JP2016072798A (ja) | 音声振動出力装置 | |
CN205754747U (zh) | 心率运动耳机 | |
JP2006000215A (ja) | 生体情報測定装置及び方法 | |
CN109348349A (zh) | 入耳式耳机 | |
TWM602017U (zh) | 耳掛式心跳偵測裝置 | |
CN218352686U (zh) | 一种耳机 | |
CN216253204U (zh) | 一种智能健康检测耳机 | |
TWI516248B (zh) | 耳塞、使用該耳塞的生理機能量測耳機及其量測方法 | |
TWM561502U (zh) | 生理訊號量測裝置 | |
JP2005329147A (ja) | 生体情報測定装置 | |
KR20160081435A (ko) | 귀걸이형 청각지원 디바이스 기반의 하이브리드 생체감지 장치 | |
TW201501690A (zh) | 耳道式量測裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15900884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15900884 Country of ref document: EP Kind code of ref document: A1 |