WO2017024578A1 - 同步方法及装置 - Google Patents

同步方法及装置 Download PDF

Info

Publication number
WO2017024578A1
WO2017024578A1 PCT/CN2015/086835 CN2015086835W WO2017024578A1 WO 2017024578 A1 WO2017024578 A1 WO 2017024578A1 CN 2015086835 W CN2015086835 W CN 2015086835W WO 2017024578 A1 WO2017024578 A1 WO 2017024578A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
site
synchronization
location information
synchronized
Prior art date
Application number
PCT/CN2015/086835
Other languages
English (en)
French (fr)
Inventor
王曼
奥鲁佛松•亨里克
仇力炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/086835 priority Critical patent/WO2017024578A1/zh
Priority to EP15900776.4A priority patent/EP3316660B1/en
Priority to CN201580081432.2A priority patent/CN107836136B/zh
Publication of WO2017024578A1 publication Critical patent/WO2017024578A1/zh
Priority to US15/894,091 priority patent/US10582462B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communications, and in particular, to a synchronization method and apparatus.
  • Network snooping is a commonly used synchronization method. It mainly includes the network reference signal broadcast by the synchronization site listening source station, and the time when the network reference signal is heard is used as the synchronization reference time, and the source and the source station are used according to the synchronization reference time. Synchronize.
  • the synchronization method and device provided by the application can improve the synchronization precision between stations.
  • a first aspect of the present application provides a synchronization method comprising:
  • the first station acquires a signal propagation delay between the first station and the second station, where the first station is a station to be synchronized, and the second station is a source station;
  • the first station receives a first network reference signal from the second station
  • the first station obtains a synchronization reference time by advancing the reception time of the first network reference signal by the signal propagation delay;
  • the first station synchronizes with the second station according to the synchronization reference time.
  • a second aspect of the present application provides yet another synchronization method, including:
  • the synchronization control terminal acquires location information of the site, where location information of the site is used to determine a signal propagation delay between the first site and the second site, where the first site is a site to be synchronized, and the second site is a source a location, the location information of the site includes at least location information of the second site, the signal propagation delay is used to calculate a synchronization reference time of the first site, and the synchronization reference time is used by the first site Synchronizing with the second site, wherein the synchronization parameter
  • the test time is obtained by advancing the reception time of the first network reference signal received by the first station from the second station by the signal propagation delay.
  • a third aspect of the present application provides yet another synchronization method, including:
  • the second station sends synchronization information
  • the synchronization information includes location information of the second site
  • the location information of the second site is used to determine the first site and the second together with location information of the first site a signal propagation delay between the stations
  • the signal propagation delay is used to calculate a synchronization reference time of the first station
  • the synchronization reference time is used for synchronizing the first station with the second station,
  • the synchronization reference time is obtained by advancing the reception time of the first network reference signal received by the first station from the second station by the signal propagation delay;
  • the synchronization information includes a signal propagation delay between the first station and the second station, where the signal propagation delay is used to calculate a synchronization reference time of the first station, where the synchronization reference time is used. Synchronizing with the second station at the first station, the synchronization reference time is propagated by advancing the reception time of the first network reference signal received by the first station from the second station Time delay is obtained;
  • the first site is a site to be synchronized, and the second site is a source site.
  • a fourth aspect of the present application provides a site comprising:
  • a signal propagation delay acquisition module configured to acquire a signal propagation delay between the site and the source site, where the site is a site to be synchronized
  • a receiving module configured to receive a first network reference signal from the source site
  • a synchronization reference time acquisition module configured to obtain a synchronization reference time by advancing the reception time of the first network reference signal by the signal propagation delay
  • a synchronization module configured to synchronize with the source site according to the synchronization reference time.
  • a fifth aspect of the present application provides a synchronization apparatus, including:
  • a location information obtaining module configured to acquire location information of the site, where location information of the site is used to determine a signal propagation delay between the first site and the second site, where the first site is a site to be synchronized,
  • the second site is a source site
  • the location information of the site includes at least location information of the second site
  • the signal propagation delay is used to calculate a synchronization reference time of the first site, where the synchronization reference time is used for Synchronizing the first site with the second site, wherein the synchronization reference time receives the first site from the second site by receiving the first site
  • the reception time of the network reference signal is obtained in advance of the signal propagation delay.
  • a sixth aspect of the present application provides yet another site, including:
  • a synchronization information issuance module configured to send synchronization information, where the synchronization information includes location information of the site, where the location information of the site is used to determine the to-be-synchronized site together with the location information of the site to be synchronized a signal propagation delay between the stations, the signal propagation delay is used to calculate a synchronization reference time of the station to be synchronized, and the synchronization reference time is used for synchronizing the station to be synchronized with the station,
  • the synchronization reference time is obtained by advancing the reception time of the first network reference signal from the station to be synchronized by the station to be synchronized;
  • the synchronization information includes a signal propagation delay between the station to be synchronized and the station, where the signal propagation delay is used to calculate a synchronization reference time of the station to be synchronized, and the synchronization reference time is used. Synchronizing with the station at the station to be synchronized, the synchronization reference time is obtained by advancing the receiving time of receiving the first network reference signal from the station to the station to be synchronized by the propagation delay .
  • the source station sends its location information, and after calculating the signal propagation delay according to the location information of the source site and the location information of the site to be synchronized, the site to be synchronized will receive the information according to the site to be synchronized.
  • the synchronization reference time obtained by the propagation time delay of the first network reference signal from the source station is synchronized with the source station, and it can be seen that the station to be synchronized is in synchronization with the source station, and the source and the source are synchronized.
  • the signal propagation delay between the stations compensates for the reception time of the first network reference signal, so that the propagation delay can be subtracted from the synchronization reference time, thereby improving the synchronization accuracy.
  • FIG. 1 is a schematic diagram of an application scenario of a synchronization method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of still another application scenario of a synchronization method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a synchronization method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another application scenario of a synchronization method according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of still another synchronization method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of still another synchronization method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of still another synchronization method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of still another synchronization method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of still another synchronization method according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of still another station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a synchronization apparatus according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of still another synchronization device according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of still another synchronization device according to an embodiment of the present invention.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the UE may also be referred to as a terminal, and may communicate with one or more core networks via a RAN (Radio Access Network), and the UE may be a mobile terminal, such as a mobile phone. (or "cellular" telephone) and a computer having a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network,
  • RAN Radio Access Network
  • the UE may also be referred to as a terminal, and may communicate with one or more core networks via a RAN (Radio Access Network), and the UE may be a mobile terminal, such as a mobile phone. (or "cellular" telephone) and a computer having a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network,
  • This embodiment of the present invention is not limited thereto.
  • the base station in the embodiment of the present invention may be a BTS (Base Transceiver Station) in GSM or CDMA, a Node B in WCDMA, or an evolved node in LTE.
  • B Base Transceiver Station
  • eNode B, eNB this embodiment of the present invention is not limited thereto.
  • the synchronization method and apparatus disclosed in the embodiments of the present application are used for synchronizing at various sites of a communication system, where the “site” may include a macro cell and a small station, where the small station may be a micro station ( Micro cell), pico cell, femto cell, and entities with simple base station functions, such as repeaters and relays.
  • the site may include a macro cell and a small station, where the small station may be a micro station ( Micro cell), pico cell, femto cell, and entities with simple base station functions, such as repeaters and relays.
  • the synchronization method and apparatus in this embodiment can be used for synchronization between macro stations (such as the scene shown in FIG. 1), or synchronization between a macro station and a small station (as shown in FIG. 2). Scenes).
  • the first site described in the embodiment of the present application is a site to be synchronized, and the second site is a source site. During the synchronization process, the second site sends a network reference signal.
  • the network reference signal sent by the second site that is, the source site, is recorded as the first network reference signal.
  • the station to be synchronized synchronizes with the source station according to the time when the first network reference signal is received, that is, the synchronization reference time, because the network reference signal is Propagation delay between the source site and the site to be synchronized for synchronization In terms of, it cannot be ignored. For example, if the distance of the network reference signal from the source station to the station to be synchronized is greater than 300 m, then the propagation delay of the network reference signal from the source station to the station to be synchronized is 1 us, which is not negligible with respect to the synchronization accuracy of 3 us. In this case, if only the time at which the network reference signal is received is synchronized, a large deviation occurs.
  • S301 The first station acquires a signal propagation delay between the first station and the second station.
  • S302 The first station receives the first network reference signal from the second station.
  • S303 The first station records a receiving time of the first network reference signal.
  • the first station obtains a synchronization reference time by delaying a reception time of the first network reference signal by a signal propagation delay;
  • the synchronization reference time is the difference between the reception time of the first network reference signal and the signal propagation delay.
  • the receiving time of the first network reference signal is considered to be the same as the unit of the signal propagation delay, or the units of the two may be unified before calculating the synchronization reference time, for example, two.
  • the units are all nanoseconds.
  • S304 The first station synchronizes with the second station according to the synchronization reference time.
  • the propagation time delay of the first network reference signal compensates the reception time of the network reference signal, and higher synchronization accuracy can be ensured than the prior art.
  • Another synchronization method disclosed in the embodiment of the present application, as shown in FIG. 4, includes the following steps:
  • the second site sends a first network reference signal, where the first network reference signal carries location information of the second site.
  • the second station may periodically broadcast the first network reference signal to trigger the synchronization process.
  • the second site needs to send the first network reference signal by using a pre-configured physical resource, where the physical resource includes a time domain, a frequency domain, a spatial domain resource, and a code resource.
  • the time domain resource is determined by the frame number, the subframe number, and the intra-subframe offset.
  • the frequency domain resource may select a subcarrier, a plurality of subcarriers, or a resource block (RB), and several RBs.
  • the airspace resources contain various multi-antenna spatial structures, spatial layering and other information.
  • the first network reference signal includes, but is not limited to, a CRS (Cell Reference Signal), a PRS (Positioning Reference Signal), a CSI-RS (Channel State Information Reference Signal), and Other types of custom reference signals.
  • CRS Cell Reference Signal
  • PRS Positioning Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • Such reference signals are only triggered during the time period in which synchronization is required, and transmission is performed with as little time-frequency resources as possible to reduce overhead; it will be configured at the idle resources of the target site, so that the reference signal will not be transmitted to the target.
  • the reception of the station causes interference.
  • the pre-configured physical resources are pre-agreed by the source site and the target site, and are known to the source site and the target site.
  • the pre-agreed process has the following methods: the specific physical resources transmitted by the network reference signal are pre-agreed or specified by the site, and a certain type of network reference signal is sent only by a specific physical resource; or, the system temporarily
  • the specific physical resource that sends the network reference signal is sent simultaneously or separately from the synchronization indication sent by the system; or some reference signals have their own definition of the physical resource to be sent, and the network reference signal is sent according to the definition of the network side.
  • These sending physical resources are well known to the entire network.
  • the second station may send the first network reference signal with the least time-frequency resources in the synchronization period only, in order to reduce the interference of the first network reference signal to the first station to receive other signals, The second station may only use the idle resources of the first station to send a first network reference signal.
  • S403 The first station calculates a signal propagation delay between the second station and the second station.
  • the first station marks the synchronization reference time obtained by the reception time advance signal propagation delay of the first network reference signal as the local synchronization time.
  • the local time of the first station is not changed, but only the local simultaneous time is marked.
  • the service to be synchronized is performed according to the local synchronization time.
  • the signal propagation delay is calculated by the first station, thereby performing synchronization, and has high synchronization precision.
  • the signal propagation delay may also be sent to the first station by other stations (for example, the second station).
  • the second station may carry the propagation delay.
  • the first network reference signal is sent to the second station.
  • the second station may obtain the signal propagation delay in the manner that the first station obtains the signal propagation delay in the embodiment, and the second station may obtain the location information of the first station in the process of configuring the resource information with the first station.
  • the embodiment can be applied to the communication system shown in FIG. 5, which includes a plurality of stations and a synchronization control terminal.
  • the synchronization process between the two sites is controlled by the synchronous control terminal.
  • the first station sends its location information to the synchronization control end, and records the location information of the first site.
  • the second station sends its location information to the synchronization control end, and records the location information of the second site.
  • S603 The synchronization control terminal sends a synchronization instruction to the second station.
  • the synchronization control terminal calculates a signal propagation delay between the first station and the second station according to the location information of the first location site and the location information of the second site.
  • the synchronization control end sends the signal propagation delay to the first station.
  • S606 The first station receives the first network reference signal sent by the second station.
  • the second station may periodically send to the first station in a point-to-point manner.
  • First network reference signal may be used to periodically send to the first station in a point-to-point manner.
  • the order of execution of S605 and S606 is not limited.
  • the first station calculates a synchronization reference time
  • the first station calculates an adjustment amount
  • the adjustment amount is the difference between the synchronization reference time and the transmission time of the first network reference signal.
  • the synchronization adjustment time ⁇ T T-Tpd-t, where T is the time when the first station receives the first network reference signal, t is the time when the second station sends the first network reference signal, and Tpd is the signal propagation delay.
  • S609 The first station adjusts the local time according to the adjustment amount.
  • the local time of the first station is adjusted according to the adjustment amount, instead of marking the local synchronization time.
  • the local time of the first site before adjustment is 13:00 and the adjustment amount is 1 minute
  • the local time of the first site after adjustment is 13:01.
  • the synchronization control terminal may be an Operation Administration and Maintenance (OAM) device. Because the OAM device already has a communication interface with each site in the communication system, it is easier to implement as a synchronous control terminal. .
  • OAM Operation Administration and Maintenance
  • Another synchronization method disclosed in the embodiment of the present application can be applied to the communication system shown in FIG. 5. As shown in FIG. 7, the method in this embodiment includes the following steps:
  • S701 The first station sends a synchronization request to the synchronization control terminal.
  • the synchronization control end sends a synchronization instruction to the second station.
  • the second station sends the location information of the second site to the synchronization control end, and sends the first network reference information to the first site.
  • the synchronization control end sends the location information of the second site to the first site.
  • the first station calculates the location information of the first site and the location information of the second site. Signal propagation delay;
  • S706 The first station calculates a synchronization reference time, and synchronizes with the second station according to the synchronization reference time.
  • the method in this embodiment is different from the foregoing embodiment in that the synchronization control terminal only sends the location information of the source site, and the propagation delay is calculated by the site to be synchronized.
  • the above embodiments are described by the synchronization between the two sites.
  • the method described in the present application can also implement synchronization between multiple sites, that is, multiple sites to be synchronized are synchronized with the source site.
  • Another synchronization method disclosed in the embodiment of the present application is an example in which the first site and the third site are synchronized with the second site. As shown in FIG. 8, the method includes the following steps:
  • S801 The first station records a time when the first network reference signal is received.
  • the first station acquires a signal propagation delay between the first station and the second station, and records the first signal propagation delay.
  • the first station calculates a synchronization reference time and marks the synchronization reference time as a local synchronization time;
  • S804 The first station sends a second network reference signal.
  • the first station may send the second network reference signal in the next synchronization period after the synchronization is completed in the synchronization period.
  • the role of the second network reference signal for the third station is the same as that of the first network reference signal for the first station, and the specific form and transmission mode can be referred to the first network reference signal.
  • S805 The third station records the time when the second network reference signal is received.
  • the third station acquires a signal propagation delay between the second station and the third station, and records the second signal propagation delay.
  • the third station transmits the second network reference signal by the second signal when the receiving time is advanced.
  • the delayed synchronization reference time is marked as the local synchronization time.
  • the third station may also synchronize with the first station according to the existing synchronization method.
  • the method in this embodiment can implement high-precision synchronization between multiple sites; and if the third site is far away from the second site and cannot detect the first network reference signal of the second site, By using the second site as an intermediate site, synchronization between the third site and the second site can still be achieved.
  • Another synchronization method disclosed in the embodiment of the present application is an example in which the first site and the third site are synchronized with the second site. As shown in FIG. 9, the method includes the following steps:
  • S901 The first station receives the first network reference signal sent by the second station.
  • the first network reference signal carries a time when the second station sends the first network reference signal.
  • the first station calculates an adjustment amount, where the adjustment amount is a difference between a synchronization reference time of the first station and a transmission time of the first network reference signal, and is recorded as an adjustment amount of the first station;
  • S903 The first station sends the second network reference time and the adjustment amount of the first station
  • the second network reference signal carries the time when the first station sends the second network reference signal, and the adjustment amount of the first station may be sent separately, or sent by the synchronization control end, or may be carried in the second network reference signal.
  • S904 The third station acquires a signal propagation delay between the first station and the third station.
  • the third station calculates an adjustment amount relative to the second station, that is, a reference adjustment amount
  • the third station calculates the adjustment amount of the third station, and the adjustment amount of the third station is the first station.
  • the sum of the adjustment amount of the point and the reference adjustment amount, that is, ⁇ t3 ⁇ t1+ ⁇ t2;
  • the first station adjusts the local time according to the adjustment amount of the first station
  • S908 The third station adjusts the local time according to the adjustment amount of the third station.
  • the first station and the third station may adjust the local time (FIG. 9) at the same time in the same adjustment time (the contract adjustment period), or may be separately adjusted, which is not limited herein.
  • a station to be synchronized is used as a relay, so that high-precision synchronization is achieved between other stations and the source station.
  • the synchronization control terminal uniformly sends synchronization commands to multiple sites to be synchronized, and uniformly controls synchronization of multiple sites. As shown in Figure 10, the following steps are included:
  • the synchronization control terminal receives the first timing difference and the second timing difference
  • the first timing difference is the difference between the time when the first station reported by the first station receives the first network reference signal and the time when the second station sends the first network reference signal
  • the second timing difference is reported by the third station. The difference between the time when the third station receives the second network reference signal and the time when the first station sends the second network reference signal.
  • the synchronization control terminal calculates a first adjustment amount and a second adjustment amount
  • the first adjustment amount is the difference between the first timing difference and the first signal propagation delay
  • the second adjustment amount is the difference between the second timing difference and the second signal propagation delay
  • the first signal propagation delay is the first station.
  • the signal propagation delay between the second station and the third station is the signal propagation delay between the second station and the third station.
  • S1003 The synchronization control end simultaneously sends a synchronization adjustment instruction to the first station and the third station;
  • the synchronization adjustment command sent to the first station carries the first adjustment amount, and carries the second adjustment amount in the synchronization adjustment instruction sent to the third station.
  • S1004 The first station adjusts the local time according to the first adjustment amount
  • S1005 The second station adjusts the local time according to the second adjustment amount.
  • the synchronization control end uniformly controls the synchronization process of each station to be synchronized, realizes the synchronization of the stations in one area, and compensates the path propagation delay of the signal, improves the synchronization precision, and realizes the connection between the distant sites. Synchronize.
  • the above embodiments relate to a plurality of sites to be synchronized, and the two sites to be synchronized are taken as an example for description.
  • the scenario of two sites to be synchronized can be used to obtain the synchronization process of two or more sites to be synchronized. No longer.
  • the embodiment of the present application further discloses a site, where the site may be a macro station or a small station, as shown in FIG. 11, including:
  • the signal propagation delay acquisition module 1101 is configured to acquire a signal propagation delay between the site and the source site, where the site is a site to be synchronized;
  • the receiving module 1102 is configured to receive a first network reference signal from the source site.
  • the synchronization reference time acquisition module 1103 is configured to obtain a synchronization reference time by advancing the reception time of the first network reference signal by the signal propagation delay;
  • the synchronization module 1104 is configured to synchronize with the source site according to the synchronization reference time.
  • Figure 12 is a specific implementation of the site shown in Figure 11, the site may be a macro station or a small station, including:
  • the receiving module 1201 is configured to receive a first network reference signal from the source site.
  • the signal propagation delay acquisition module 1202 includes an obtaining unit 12021 and a computing unit 12022, where:
  • the obtaining unit 12021 is configured to acquire location information of the site and location information of the source site.
  • the obtaining, by the acquiring module, the location information of the source site may be: acquiring the location information of the source site from the first network reference signal; or receiving the location information of the source site sent by the synchronization control terminal.
  • the specific implementation manner of the location information of the acquiring unit may be: locally acquiring location information of the site; or receiving location information of the site sent by the synchronization control terminal.
  • the calculating unit 12022 is configured to calculate a signal propagation delay between the site and the source site according to location information of the site and location information of the source site.
  • the synchronization reference time adjustment module 1203 is configured to obtain a synchronization reference time by advancing the reception time of the first network reference signal by the signal propagation delay;
  • the synchronization module 1204 is configured to mark the synchronization reference time as a local synchronization time.
  • the site described in this embodiment may further include:
  • the network reference signal issuance module 1205 is configured to determine, after the synchronization module marks the synchronization reference time as a local synchronization time, a second network reference signal, so that other stations to be synchronized receive the first part from the site And the second network reference signal is synchronized with the station according to the second network reference signal.
  • FIG. 13 is another specific implementation form of the site shown in FIG. 11, where the site may be a macro station or a small station, including:
  • the receiving module 1301 is configured to receive a first network reference signal sent by the source station;
  • the signal propagation delay acquisition module 1302 is configured to receive the signal propagation delay sent by the synchronization control terminal, or obtain the signal propagation delay from the received first network reference signal.
  • the synchronization reference time acquisition module 1303 is configured to obtain a synchronization reference time by advancing the reception time of the first network reference signal by the signal propagation delay;
  • the synchronization module 1304 is configured to calculate an adjustment amount, where the adjustment amount is a difference between the synchronization reference time and a transmission time of the first network reference signal, and adjust a local time according to the adjustment amount.
  • the site described in this embodiment may further include:
  • the adjustment amount sending module 1305 is configured to send the adjustment amount, where the adjustment amount is used by other stations to be synchronized to calculate an adjustment amount between the other station to be synchronized and the source station, and the other stations to be synchronized
  • the amount of adjustment with the source site is used to synchronize the other sites to be synchronized with the source site.
  • the method for calculating the respective adjustment amounts and the synchronization of the stations to be synchronized can be referred to the manner of the first site, and details are not described herein again.
  • the propagation delay can be compensated for the synchronization reference time to improve the synchronization accuracy.
  • a synchronization device disclosed in the embodiment of the present application, as shown in FIG. 14, includes:
  • the location information obtaining module 1401 is configured to acquire location information of the site, where location information of the site is used to determine a signal propagation delay between the first site and the second site, where the first site is a site to be synchronized,
  • the second site is a source site
  • the location information of the site includes at least location information of the second site
  • the propagation delay is used to calculate a synchronization reference time of the first site, where the synchronization reference time is used for Synchronizing the first station with the second station, the synchronization reference time advances the signal propagation delay by receiving a reception time of the first network reference signal from the second station by the first station get.
  • the device in this embodiment may be disposed in the OAM to achieve the purpose of controlling the synchronization process between the sites through the OAM.
  • a specific implementation manner of the location information obtaining module acquiring the location information of the site may be: acquiring location information of the first site and location information of the second site; further, the location information obtaining module receives the location information Location information of the first site sent by the first station, and receiving location information of the second site sent by the second site; or locally acquiring location information of the first site and the first Location information of the second site.
  • the synchronization device in the embodiment may further include:
  • the calculating module 1402 is configured to: after the acquiring module acquires location information of the first site and location information of the second site, according to location information of the first site and location information of the second site, Calculating a signal propagation delay between the first station and the second station.
  • a propagation delay sending module 1403 configured to send a signal propagation delay between the first station and the second station to the first station.
  • the synchronization device in this embodiment can calculate and transmit the signal propagation delay between the station to be synchronized and the source station to the station to be synchronized, so as to improve the synchronization precision between the station to be synchronized and the source station.
  • FIG. 15 is another synchronization device according to an embodiment of the present application, including:
  • the location information obtaining module 1501 is configured to receive location information of the second site sent by the second station.
  • a location information sending module 1502 configured to send location information of the second site to the The first site, the location information of the second site is used by the first site to calculate a signal propagation delay between the first site and the second site.
  • the first station is a station to be synchronized
  • the second station is a source station.
  • the first station may calculate a signal propagation delay between the first station and the second station.
  • the specific process refer to the method embodiment, which is not described here.
  • the synchronization device in the embodiment After receiving the location information of the source site sent by the source station, the synchronization device in the embodiment sends the location information to the site to be synchronized to improve the synchronization precision.
  • FIG. 16 is another synchronization device according to an embodiment of the present disclosure, including:
  • the location information obtaining module 1601 is configured to receive location information of the second site sent by the second station.
  • the timing difference receiving module 1602 is configured to receive a respective timing difference sent by at least two stations to be synchronized, where a timing difference of any one station to be synchronized receives the first network reference signal sent by the second station for the station a time difference between a time when the second station sends the first network reference signal, and the at least two stations to be synchronized include a third station and the first station;
  • the signal propagation delay acquisition module 1603 is configured to acquire a signal propagation delay between the at least two stations to be synchronized and the respective source stations;
  • the adjustment amount calculation module 1604 is configured to separately calculate adjustment amounts of the at least two stations to be synchronized according to the timing difference and the signal propagation delay;
  • the adjustment amount of any one station to be synchronized is the difference between the timing difference of the station to be synchronized and the signal propagation delay between the source station and the source station.
  • the instruction sending module 1605 is configured to send a synchronization instruction to the at least two stations to be synchronized at the same time, wherein the synchronization instruction sent to any one station to be synchronized carries an adjustment amount corresponding to the station, the adjustment amount Used to adjust local time for this site.
  • the synchronization device calculates the adjustment amount of each station to be synchronized with respect to the source station, and simultaneously delivers the respective adjustment amounts to the plurality of stations to be synchronized, thereby uniformly controlling multiple sites to be synchronized. At the same time, synchronous adjustment is performed to achieve synchronization between multiple sites to be synchronized.
  • the site may be a macro station or a small station, including:
  • a synchronization information sending module configured to send synchronization information
  • the synchronization information includes location information of the site, and the location information of the site is used to determine a signal propagation delay between the site to be synchronized and the site together with location information of a site to be synchronized, the signal
  • the propagation delay is used to calculate a synchronization reference time of the station to be synchronized, and the synchronization reference time is used for synchronizing the station to be synchronized with the station, and the synchronization reference time passes the site to be synchronized.
  • Receiving a reception time of the first network reference signal from the station is advanced by the signal propagation delay; wherein the station is a source station.
  • a specific implementation manner of the synchronization information sending module transmitting the synchronization information is: sending a first network reference signal, where the first network reference signal carries location information of the site
  • another specific implementation manner of the synchronization information sending module sending the synchronization information is: sending the location information of the site to the synchronization control terminal, so that the synchronization control terminal sends the location information of the site to the
  • the synchronized station determines the signal propagation delay between the station to be synchronized and the station according to the location information of the station and the location information of the station to be synchronized.
  • the synchronization information includes: a signal propagation delay between the station to be synchronized and the station, where the signal propagation delay is used to calculate a synchronization reference time of the station to be synchronized, and the synchronization reference time is used. Synchronizing with the station at the station to be synchronized, the synchronization reference time is obtained by the station to be synchronized receiving the reception time of the first network reference signal sent by the station, and the signal propagation delay is obtained.
  • the site is a source site.
  • the specific implementation manner of the synchronization information sending module to send the synchronization information may be: sending a first network reference signal, where the first network reference signal carries the to-be-synchronized station and Signal propagation delay between the stations.
  • the synchronization information sending module may send the first network reference signal only in the synchronization period; and/or only occupy the idle resource of the station to be synchronized to send the first network reference signal.
  • the site described in this embodiment can send its own location letter. Information, or the propagation delay between the stations to be synchronized, to improve the synchronization accuracy of the stations to be synchronized.
  • the embodiment of the present application further discloses a synchronization system, including: a first site (a site to be synchronized) and a second site (a source site), wherein the function and structure of the first site can be referred to FIG. 11 or FIG. The site, no longer elaborate here.
  • the second station is configured to send synchronization information, where the synchronization information includes location information of the second station, or a signal propagation delay between the first station and the second station.
  • the location information sent by the second station is beneficial to the first station to calculate the signal propagation delay between the two, thereby improving the synchronization precision.
  • Yet another synchronization system disclosed in the embodiment of the present application includes: a first station (a station to be synchronized), a second station (a source station), and a synchronization device.
  • the function and structure of the first site may refer to the site described in FIG. 11 or FIG. 13 , and details are not described herein again.
  • the second site is configured to send synchronization information, where the synchronization information includes location information of the second site or a signal propagation delay between the first site and the second site.
  • the synchronization device can control the synchronization between the first site and the second site.
  • the embodiment of the present application also discloses a station, including a receiver, a processor, and a memory, wherein the receiver, the processor, and the memory can communicate via a bus.
  • the receiver receives the first network reference signal from the source station;
  • the processor is configured to obtain a signal propagation delay between the station and the source station, obtain a synchronization reference time by advancing the reception time of the first network reference signal by the signal propagation delay, and according to the synchronization reference time,
  • the source site is synchronized, wherein the site is a site to be synchronized;
  • the site described in this embodiment can be used as a site to be synchronized, which can improve synchronization accuracy.
  • Yet another synchronization device disclosed in the embodiment of the present application includes a processor and a memory, and the processor and the memory communicate via a bus.
  • the processor is configured to acquire location information of the site, where location information of the site is used to determine a signal propagation delay between the first site and the second site, where the first site is a site to be synchronized, and the second site is The site is a source site, the location information of the site includes at least location information of the second site, and the signal propagation delay is used to calculate a synchronization reference time of the first site, where the synchronization reference time is used for Synchronizing with the second station, wherein the synchronization reference time is propagated by advancing the reception time of the first network reference signal received by the first station from the second station Delayed.
  • the synchronization device described in this embodiment may be specifically OAM, and controls the synchronization process to improve the synchronization precision.
  • Another embodiment of the present application also discloses another station, including: a transmitter for issuing synchronization information.
  • the site described in this embodiment can obtain higher synchronization accuracy by issuing synchronization information.
  • the functions described in the method of the present embodiment can be stored in a computing device readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the embodiments of the present invention that contributes to the prior art or a portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a
  • the computing device (which may be a personal computer, server, mobile computing device, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供的同步方法及装置,源站点发送其位置信息,在获取依据源站点的位置信息与待同步的站点的位置信息共同计算出信号传播时延后,由待同步的站点依据将接收到来自于源站点的第一网络参考信号的接收时间提前传播时延而得到的同步参考时间,与源站点进行同步,可见,待同步的站点在与源站点进行同步的过程中,以其与源站点间的信号传播时延补偿第一网络参考信号的接收时间,因此,能够从同步参考时间中减去耗费的传播时延,从而提高同步的精度。

Description

同步方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种同步方法及装置。
背景技术
随着无线通信的发展,许多业务的实现都需要保证站点间的同步,例如宏基站和小基站间的同步。
网络侦听是一种常用的同步方法,主要包括,待同步站点侦听源站点广播的网络参考信号,将侦听到网络参考信号的时间作为同步参考时间,并依据同步参考时间与源站点进行同步。
现有的同步方法无法实现高精度的同步。
发明内容
本申请提供的同步方法及装置,可以提高站点间的同步精度。
为了实现上述目的,本申请提供了以下技术方案:
本申请的第一方面提供了一种同步方法,包括:
第一站点获取所述第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点;
所述第一站点接收来自于所述第二站点的第一网络参考信号;
所述第一站点通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
所述第一站点依据所述同步参考时间,与所述第二站点进行同步。
本申请的第二方面提供了又一种同步方法,包括:
同步控制端获取站点的位置信息,所述站点的位置信息用于确定第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点,所述站点的位置信息至少包括所述第二站点的位置信息,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,其中,所述同步参 考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到。
本申请的第三方面提供了又一种同步方法,包括:
第二站点发出同步信息,所述同步信息包括所述第二站点的位置信息,所述第二站点的位置信息用于与第一站点的位置信息共同确定所述第一站点与所述第二站点间的信号传播时延,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到;
或者,所述同步信息包括所述第一站点与所述第二站点间的信号传播时延,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到;
其中,所述第一站点为待同步的站点,所述第二站点为源站点。
本申请的第四方面提供了一种站点,包括:
信号传播时延获取模块,用于获取所述站点与源站点间的信号传播时延,所述站点为待同步的站点;
接收模块,用于接收来自于所述源站点的第一网络参考信号;
同步参考时间获取模块,用于通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
同步模块,用于依据所述同步参考时间,与所述源站点进行同步。
本申请的第五方面提供了一种同步装置,包括:
位置信息获取模块,用于获取站点的位置信息,所述站点的位置信息用于确定第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点,所述站点的位置信息至少包括所述第二站点的位置信息,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,其中,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一 网络参考信号的接收时间提前所述信号传播时延得到。
本申请的第六方面提供了又一种站点,包括:
同步信息发出模块,用于发出同步信息,所述同步信息包括所述站点的位置信息,所述站点的位置信息用于与待同步的站点的位置信息共同确定所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网络参考信号的接收时间提前所述传播时延得到;
或者,所述同步信息包括所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网络参考信号的接收时间提前所述传播时延得到。
本申请提供的同步方法及装置,源站点发送其位置信息,在获取依据源站点的位置信息与待同步的站点的位置信息共同计算出信号传播时延后,由待同步的站点依据将接收到来自于源站点的第一网络参考信号的接收时间提前传播时延而得到的同步参考时间,与源站点进行同步,可见,待同步的站点在与源站点进行同步的过程中,以其与源站点间的信号传播时延补偿第一网络参考信号的接收时间,因此,能够从同步参考时间中减去耗费的传播时延,从而提高同步的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开的同步方法的一种应用场景的示意图;
图2为本发明实施例公开的同步方法的又一种应用场景的示意图;
图3为本发明实施例公开的一种同步方法的流程图;
图4为本发明实施例公开的又一种同步方法的流程图;
图5为本发明实施例公开的同步方法的又一种应用场景的示意图;
图6为本发明实施例公开的又一种同步方法的流程图;
图7为本发明实施例公开的又一种同步方法的流程图;
图8为本发明实施例公开的又一种同步方法的流程图;
图9为本发明实施例公开的又一种同步方法的流程图;
图10为本发明实施例公开的又一种同步方法的流程图;
图11为本发明实施例公开的一种站点的结构示意图;
图12为本发明实施例公开的又一种站点的结构示意图;
图13为本发明实施例公开的又一种站点的结构示意图;
图14为本发明实施例公开的一种同步装置的结构示意图;
图15为本发明实施例公开的又一种同步装置的结构示意图;
图16为本发明实施例公开的又一种同步装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要说明的是,本发明的技术方案可以应用于无线蜂窝网络的各种通信系统,例如:GSM(Global System of Mobile communication, 全球移动通讯)系统,CDMA(Code Division Multiple Access,码分多址)系统,WCDMA(Wideband Code Division Multiple Access Wireless,宽带码分多址)系统,GPRS(General Packet Radio Service,通用分组无线业务)系统,LTE(Long Term Evolution,长期演进)系统,UMTS(Universal Mobile Telecommunications System,通用移动通信系统)等,本发明实施例对此并不限定。
在本发明实施例中,UE也可称之为终端(Terminal),可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,本发明实施例对此并不限定。
本发明实施例中所述的基站,可以是GSM或CDMA中的BTS(Base Transceiver Station,基站收发台),也可以是WCDMA中的节点B(Node B),还可以是LTE中的演进型节点B(eNode B,eNB,本发明实施例对此并不限定。
本申请实施例公开的同步方法及装置,用于在通信系统的各个站点进行同步,其中,所述“站点”可以包括宏站(macro cell)和小站,其中,小站可以是微站(micro cell),微微站(pico cell),家庭基站(femto cell),以及有简易基站功能的实体,如直放站和中继。
也就是说,本实施例所述同步方法及装置,可以用于宏站之间的同步(如图1所示的场景),或者,宏站和小站间的同步(如图2所示的场景)。
本申请实施例中所述的第一站点为待同步的站点,第二站点为源站点。在同步过程中,第二站点发出网络参考信号,本申请实施例中,将第二站点即源站点发出的网络参考信号均记为第一网络参考信号。
在图1或图2的应用场景中,利用现有的同步技术,待同步的站点依据接收到第一网络参考信号的时间即同步参考时间,与源站点间进行同步,而因为网络参考信号在源站点与待同步的站点之间的传播时延对于同步时 间而言,不能被忽略。例如网络参考信号从源站点到待同步的站点的间距大于300m,那么网络参考信号从源站点到待同步站点的传播时延为1us,这个时间相对于3us的同步精度来说是不可忽略的,在此情况下,如果仅以接收到网络参考信号的时间为同步依据,则会出现较大的偏差。
本申请实施例公开的一种同步方法,如图3所示,包括以下步骤:
S301:第一站点获取第一站点与第二站点间的信号传播时延;
S302:第一站点接收来自于第二站点的第一网络参考信号;
S303:第一站点记录第一网络参考信号的接收时间;
S304:第一站点通过将第一网络参考信号的接收时间提前信号传播时延得到同步参考时间;
具体地,同步参考时间为第一网络参考信号的接收时间与信号传播时延之差。
需要说明的是,本实施例中,认为第一网络参考信号的接收时间与信号传播时延的单位是相同的,或者,在计算同步参考时间之前,可以将两者的单位统一,例如,两者的单位均为纳秒。
S304:第一站点依据同步参考时间,与第二站点进行同步。
本实施例中,以第一网络参考信号的传播时延补偿网络参考信号的接收时间,相比于现有技术,能够保证较高的同步精度。
本申请实施例公开的又一种同步方法,如图4所示,包括以下步骤:
S401:第二站点发出第一网络参考信号,第一网络参考信号中携带第二站点的位置信息;
本实施例中,第二站点可以周期性地广播第一网络参考信号,以触发同步过程。
具体地,第二站点需要通过预先配置的物理资源发送第一网络参考信号,其中,物理资源包括时域、频域、空域资源和码资源。时域资源由帧号,子帧号和子帧内偏移确定。频域资源可以选择子载波、若干个子载波,或者资源块(Resource Block,RB)、若干个RB。空域资源包含各种多天线空间结构,空间分层等信息。
第一网络参考信号包含但不限于CRS(Cell Reference Signal,小区特定参考信号),PRS(Positioning Reference Signal,定位参考信号),CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号),以及其它类型的自定义的参考信号。这类参考信号只在需要同步的时间段内触发,用尽量少的时频资源来进行传输以便减少开销;将被配置在目标站点空闲资源处,这样,发送参考信号的时候将不会对目标站点的接收造成干扰。
进一步地,预先配置的物理资源由源站点和目标站点事先约定,对源站点和目标站点来说是已知的。事先约定的过程具体有以下几种方式:站点间事先约定或者规定了网络参考信号发送的特定物理资源,某一类型的网络参考信号只由特定物理资源发送;或者,由系统根据业务需要临时下发发送网络参考信号的具体物理资源,与系统下发的同步指示同时发送或者分开发送;或者,某些参考信号本身有关于其发送物理资源的定义,根据这些网络侧的定义发送网络参考信号,这些发送物理资源对整个网络来说是公知的。
为了减小资源的开销,第二站点可以仅在同步周期内、用尽量少的时频资源来发出第一网络参考信号,为了降低第一网络参考信号对第一站点接收其它信号造成干扰,第二站点可以仅占用所述第一站点的空闲资源发出第一网络参考信号。
S402:第一站点侦听到第一网络参考信号后,记录第一网络参考信号的接收时间;
S403:第一站点计算与第二站点间的信号传播时延;
具体地,信号传播时延为Tpd=(P1-P2)/光速,其中,所述Tpd为信号传播时延,P1-P2为所述第一站点与所述第二站点之间的距离差,P1及P2均为位置信息。
具体地,考虑P1,P2的具体位置信息,主要包括经度和纬度信息,P1的经度和纬度用J1和W1表示为P1(J1,W1),P2的经度和纬度用J2和W2表示为P2(J2,W2),那么具体的传播时延为
Figure PCTCN2015086835-appb-000001
光速,其中光速=3*108m/s。
S404:第一站点将第一网络参考信号的接收时间提前信号传播时延得到的同步参考时间标记为本地同步时间。
也就是说,本实施例中,并不改变第一站点的本地时间,而仅标记本地同时时间,在第一站点与其它站点进行通信的过程中,依据本地同步时间进行需要同步的业务。
本实施例中,由第一站点计算出信号传播时延,从而进行同步,具有较高的同步精度。
需要说明的是,信号传播时延除了可以由第一站点计算得到之外,也可以由其它站点(例如第二站点)发送给第一站点,具体地,第二站点可以将传播时延携带在第一网络参考信号中发送给第二站点。第二站点可以采用本实施例中第一站点获取信号传播时延的方式,获取信号传播时延,第二站点可以在与第一站点配置资源信息的过程中,获取第一站点的位置信息。
本申请实施例公开的又一种同步方法,本实施例可以应用在如图5所示的通信系统中,其中包括若干站点以及同步控制端,与上述实施例不同的是,本实施例中,由同步控制端控制两个站点之间的同步过程。
如图6所示,本实施例所述方法包括以下步骤:
S601:第一站点向同步控制端发送其位置信息,记为第一站点的位置信息;
S602:第二站点向同步控制端发送其位置信息,记为第二站点的位置信息;
S603:同步控制端向第二站点发送同步指令;
S604:同步控制端依据第一位置站点的位置信息和第二站点的位置信息,计算第一站点与第二站点间的信号传播时延;
以上各步骤的顺序不做限定。
S605:同步控制端将信号传播时延发送给第一站点;
S606:第一站点接收第二站点发送的第一网络参考信号;
本实施例中,第二站点可以周期性地以点对点的方式向第一站点发送 第一网络参考信号。
S605和S606的执行顺序不做限定。
S607:第一站点计算同步参考时间;
S608:第一站点计算调整量;
具体地,调整量为同步参考时间与第一网络参考信号的发送时间之差。
即:同步调整时间ΔT=T-Tpd-t,其中,T为第一站点接收到第一网络参考信号的时间,t为第二站点发送第一网络参考信号的时间,Tpd为信号传播时延。
S609:第一站点依据所述调整量调整本地时间。
与上述实施例不同的是,本实施例中,依据调整量对第一站点的本地时间进行了调整,而非标记本地同步时间。
例如,调整前第一站点的本地时间为13:00,调整量为1分钟,则调整后第一站点的本地时间为13:01。
与上述实施例不同的是,本实施例中,由同步控制端触发同步过程,并预先计算及向待同步的站点下发信号传播时延,对同步过程进行统一控制。
本实施例中,同步控制端可以为运行管理和维护(Operation Administration and Maintenance,OAM)设备,因为OAM设备已具有与通信系统中各个站点的通信接口,所以,作为同步控制端使用,更加易于实现。
本申请实施例公开的又一种同步方法,可以应用于如图5所示的通信系统中,如图7所示,本实施例所述方法包括以下步骤:
S701:第一站点向同步控制端发送同步请求;
S702:同步控制端向第二站点下发同步指令;
S703:第二站点向同步控制端发送第二站点的位置信息并向第一站点发送第一网络参考信息;
S704:同步控制端向第一站点下发第二站点的位置信息;
S705:第一站点依据第一站点的位置信息和第二站点的位置信息计算 信号传播时延;
S706:第一站点计算同步参考时间,并依据同步参考时间,与第二站点进行同步。
本实施例所述方法,与上述实施例不同的是,同步控制端仅下发源站点的位置信息,由待同步站点自行计算出传播时延。
上述实施例均以两个站点之间的同步进行说明,本申请所述的方法,还可以实现多个站点间的同步,即多个待同步的站点均实现与源站点的同步。
本申请实施例公开的又一种同步方法,以第一站点和第三站点均与第二站点进行同步为例,如图8所示,包括以下步骤:
S801:第一站点记录接收到第一网络参考信号的时间;
S802:第一站点获取第一站点与第二站点间的信号传播时延,记为第一信号传播时延;
获取第一信号传播时延的具体方式可以参见上述实施例,这里不再赘述。
S803:第一站点计算同步参考时间并将同步参考时间标记为本地同步时间;
S804:第一站点发出第二网络参考信号;
具体地,第一站点可以在本同步周期内完成同步后,在下一个同步周期发送第二网络参考信号。第二网络参考信号对于第三站点而言的作用,与第一网络参考信号对于第一站点而言的作用相同,其具体形式及发送方式均可以参见第一网络参考信号。
S805:第三站点记录接收到第二网络参考信号的时间;
S806:第三站点获取第二站点与第三站点间的信号传播时延,记为第二信号传播时延;
具体地,第三站点获取第二信号传播时延的方式可以参见上述实施例中第一站点获取第一信号传播时延的方式,这里不再赘述。
S807:第三站点将第二网络参考信号的接收时间提前第二信号传播时 延得到的同步参考时间标记为本地同步时间。
或者,第三站点在接收到第二网络参考信号后,也可以依据现有的同步方法与第一站点进行同步。
本实施例中所述方法,能够实现多个站点之间的高精度同步;且在第三站点与第二站点距离较远而无法侦听到第二站点的第一网络参考信号的情况下,将第二站点作为中间站点,仍然可以实现第三站点与第二站点间的同步。
需要说明的是,本实施例仅以三个站点为例,更多站点间的同步以此方法类推。
本申请实施例公开的又一种同步方法,以第一站点和第三站点均与第二站点进行同步为例,如图9所示,包括以下步骤:
S901:第一站点接收第二站点发送的第一网络参考信号;
第一网络参考信号中携带第二站点发送第一网络参考信号的时间。
S902:第一站点计算调整量,调整量为第一站点的同步参考时间与第一网络参考信号的发送时间之差,记为第一站点的调整量;
具体地,第一站点的调整量为:Δt1=T1-Tpd1-t1,其中,T1为第一网络参考信号的接收时间,Tpd1为第一站点与第二站点之间的信号的传播时延,t1为第一网络参考信号的发送时间。
S903:第一站点发送第二网络参考时间和第一站点的调整量;
第二网络参考信号中携带第一站点发送第二网络参考信号的时间,第一站点的调整量可以单独发送,或者由同步控制端发送,也可以携带在第二网络参考信号中发送。
S904:第三站点获取第一站点与第三站点间的信号传播时延;
S905:第三站点计算相对于第二站点的调整量,即为参考调整量;
具体地,参考调整量为:Δt2=T2-Tpd2-t2,其中,T2为第二网络参考信号的接收时间,Tpd2为第一站点与第三站点之间的信号的传播时延,t2为第二网络参考信号的发送时间。
S906:第三站点计算第三站点的调整量,第三站点的调整量为第一站 点的调整量和参考调整量之和,即Δt3=Δt1+Δt2;
S907:第一站点依据第一站点的调整量,调整本地时间;
S908:第三站点依据第三站点的调整量,调整本地时间。
可选地,第一站点和第三站点可以在相同的调整时间(约定调整周期内)同时调整各自的本地时间(图9),也可以分别调整,这里不做限定。
本实施例中,以一个待同步的站点作为中继,使得其它站点与源站点之间实现高精度的同步。
本申请实施例公开的又一种同步方法,与上述实施例不同的是,本实施例中,由同步控制端统一向多个待同步的站点下发同步指令,统一控制多个站点的同步,如图10所示,包括以下步骤:
S1001:同步控制端接收第一定时差和第二定时差;
其中,第一定时差为第一站点上报的第一站点接收到第一网络参考信号的时间与第二站点发送第一网络参考信号的时间之差,第二定时差为第三站点上报的第三站点接收到第二网络参考信号的时间与第一站点发送第二网络参考信号的时间之差。
S1002:同步控制端计算第一调整量和第二调整量;
其中,第一调整量为第一定时差与第一信号传播时延之差,第二调整量为第二定时差与第二信号传播时延之差,第一信号传播时延为第一站点与第二站点间的信号传播时延,第二信号传播时延为第二站点与第三站点间的信号传播时延。
S1003:同步控制端同时向第一站点和第三站点下发同步调整指令;
在向第一站点下发的同步调整指令中,携带第一调整量,在向第三站点下发的同步调整指令中,携带第二调整量。
S1004:第一站点依据第一调整量调整本地时间;
S1005:第二站点依据第二调整量调整本地时间。
本实施例中,由同步控制端统一控制各个待同步的站点的同步过程,实现一个区域的站点的同步,并且,补偿信号的路径传播时延,提高同步精度,实现在较远的站点间的同步。
以上涉及多个待同步的站点的实施例,均以两个待同步的站点为例进行说明,以两个待同步的站点的情况类推,可得到两个以上待同步的站点的同步过程,这里不再赘述。
与上述方法实施例相对应地,本申请实施例还公开了一种站点,所述站点可以为宏站或者小站,如图11所示,包括:
信号传播时延获取模块1101,用于获取所述站点与源站点间的信号传播时延,所述站点为待同步的站点;
接收模块1102,用于接收来自于所述源站点的第一网络参考信号;
同步参考时间获取模块1103,用于通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
同步模块1104,用于依据所述同步参考时间,与所述源站点进行同步。
图12所示为图11所述站点的一种具体实现形式,所述站点可以为宏站或者小站,包括:
接收模块1201,用于接收来自于所述源站点的第一网络参考信号;
信号传播时延获取模块1202,其中具体包括获取单元12021及计算单元12022,其中:
获取单元12021,用于获取所述站点的位置信息与源站点的位置信息;
获取模块获取源站点的位置信息的具体实现方式可以为:从所述第一网络参考信号中获取所述源站点的位置信息;或者,接收同步控制端发送的所述源站点的位置信息。
获取单元获取所述站点的位置信息的具体实现方式可以为:从本地调取所述站点的位置信息;或者,接收同步控制端发送的所述站点的位置信息。
计算单元12022,用于依据所述站点的位置信息和所述源站点的位置信息,计算所述站点与所述源站点间的信号传播时延。
同步参考时间调整模块1203,用于通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
同步模块1204,用于将所述同步参考时间标记为本地同步时间。
在上述同步方式后,为了实现多个待同步的站点间的同步,本实施例所述的站点还可以包括:
网络参考信号发出模块1205,用于在所述同步模块将所述同步参考时间标记为本地同步时间之后,确定第二网络参考信号,使得其它待同步的站点接收来自于所述站点的所述第二网络参考信号,并依据所述第二网络参考信号,与所述站点进行同步。
图13为图11所示的站点的另一种具体实现形式,所述站点可以为宏站或者小站,包括:
接收模块1301,用于接收由所述源站点发出的第一网络参考信号;
信号传播时延获取模块1302,用于接收同步控制端发送的所述信号传播时延;或者,从接收到的所述第一网络参考信号中获取所述信号传播时延。
同步参考时间获取模块1303,用于通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
同步模块1304,用于计算调整量,所述调整量为所述同步参考时间与所述第一网络参考信号的发送时间之差,并依据所述调整量调整本地时间。
基于此同步方式,为了实现多个待同步的站点间的同步,本实施例所述的站点还可以包括:
调整量发送模块1305,用于发送所述调整量,所述调整量用于其它待同步的站点计算所述其它待同步的站点与所述源站点间的调整量,所述其它待同步的站点与所述源站点间的调整量用于所述其它待同步的站点与所述源站点进行同步。具体地,其它待同步的站点计算各自的调整量及进行同步的方法可以参见第一站点的方式,这里不再赘述。
上述实施例中所述的站点,作为待同步的站点的情况下,可以将传播时延对同步参考时间进行补偿,以提高同步的精度。
本申请实施例公开的一种同步装置,如图14所示,包括:
位置信息获取模块1401,用于获取站点的位置信息,所述站点的位置信息用于确定第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点,所述站点的位置信息至少包括所述第二站点的位置信息,所述传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到。
本实施例中所述装置可以设置在OAM中,以实现通过OAM对站点间的同步过程进行控制的目的。
具体地,位置信息获取模块获取站点的位置信息的一种具体实现方式可以为:获取所述第一站点的位置信息和所述第二站点的位置信息;进一步地,位置信息获取模块接收所述第一站点发送的所述第一站点的位置信息,并接收所述第二站点发送的所述第二站点的位置信息;或者,从本地调取所述第一站点的位置信息和所述第二站点的位置信息。
在获取模块获取到第一站点的位置信息和第二站点的位置信息的情况下,本实施例中所述的同步装置,还可以包括:
计算模块1402,用于在所述获取模块获取所述第一站点的位置信息和所述第二站点的位置信息之后,依据所述第一站点的位置信息和所述第二站点的位置信息,计算所述第一站点与所述第二站点间的信号传播时延。
以及,传播时延发送模块1403,用于将所述第一站点与第二站点间的信号传播时延发送给所述第一站点。
本实施例所述的同步装置,可以计算并向待同步的站点发送待同步的站点与源站点之间的信号传播时延,以提高待同步的站点与源站点间的同步精度。
图15为本申请实施例公开的另一种同步装置,包括:
位置信息获取模块1501,用于接收第二站点发送的第二站点的位置信息;
位置信息发送模块1502,用于将所述第二站点的位置信息发送给所述 第一站点,所述第二站点的位置信息用于所述第一站点计算所述第一站点与第二站点间的信号传播时延。
本实施例中,第一站点为待同步的站点,第二站点为源站点,第一站点接收到第二站点的位置信息后,可以计算出第一站点与第二站点间的信号传播时延,并进行同步,具体过程可以参见方法实施例,这里不再赘述。
本实施例中所述的同步装置,在接收到源站点发送的源站点的位置信息后,将其发送给待同步的站点,以提高同步的精度。
图16为本申请实施例公开的另一种同步装置,包括:
位置信息获取模块1601,用于接收第二站点发送的第二站点的位置信息;
定时差接收模块1602,用于接收至少两个待同步的站点发送的各自的定时差,其中,任意一个待同步的站点的定时差为此站点接收所述第二站点发出的第一网络参考信号的时间与所述第二站点发出所述第一网络参考信号的时间之差,所述至少两个待同步的站点包括第三站点及所述第一站点;
信号传播时延获取模块1603,用于获取所述至少两个待同步的站点与各自的源站点间的信号传播时延;
信号传播时延的获取方法可以参见上述实施例,这里不再赘述。
调整量计算模块1604,用于依据所述定时差及所述信号传播时延,分别计算所述至少两个待同步的站点的调整量;
其中,任意一个待同步站点的调整量为此待同步站点的定时差与其源站点间的信号传播时延之差
指令发送模块1605,用于同时向所述至少两个待同步的站点发送同步指令,其中,向任意一个待同步的站点发送的同步指令中,携带与此站点对应的调整量,所述调整量用于此站点调整本地时间。
本实施例中,同步装置计算出各个待同步的站点相对于其源站点的调整量,并同时向多个待同步的站点下发各自的调整量,因此,能够统一控制多个待同步的站点同时进行同步调整,实现多个待同步的站点间的同步。
本申请实施例公开的又一种站点,所述站点可以为宏站或者小站,包括:
同步信息发送模块,用于发送同步信息;
所述同步信息包括所述站点的位置信息,所述站点的位置信息用于与待同步的站点的位置信息共同确定所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网络参考信号的接收时间提前所述信号传播时延得到;其中,所述站点为源站点。
在同步信息中包括自身的位置信息的情况下,同步信息发送模块发送同步信息的一种具体实现方式为:发送第一网络参考信号,所述第一网络参考信号中携带所述站点的位置信息;或者,同步信息发送模块发送同步信息的另一种具体实现方式为:向同步控制端发送所述站点的位置信息,以使得所述同步控制端将所述站点的位置信息发送给所述待同步的站点或者依据所述站点的位置信息与所述待同步的站点的位置信息共同确定所述待同步的站点与所述站点之间的信号传播时延。
或者,同步信息中包括:所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间为所述待同步的站点接收到由所述站点发出的第一网络参考信号的接收时间提前所述信号传播时延得到;其中,所述站点为源站点。
在同步信息中包括信号传播时延的情况下,同步信息发送模块发送同步信息的具体实现方式可以为:发出第一网络参考信号,所述第一网络参考信号中携带所述待同步的站点与所述站点间的信号传播时延。
需要说明的是,本实施例中,同步信息发送模块可以仅在同步周期内发出第一网络参考信号;和/或,仅占用所述待同步的站点的空闲资源发出第一网络参考信号。
本实施例中所述的站点,作为同步的源站点,可以发送自身的位置信 息,或者发送与待同步的站点间的传播时延,以提高待同步的站点的同步精度。
本申请实施例还公开了一种同步系统,包括:第一站点(待同步的站点)和第二站点(源站点),其中,第一站点的功能和结构可以参照图11或图12所示的站点,这里不再赘述。
第二站点用于发出同步信息,同步信息包括所述第二站点的位置信息,或者第一站点与第二站点间的信号传播时延。
本实施例中,第二站点发送的位置信息有利于第一站点计算出两者之间的信号传播时延,从而提高同步的精度。
本申请实施例公开的又一种同步系统,包括:第一站点(待同步的站点)、第二站点(源站点)和同步装置。
其中,第一站点的功能和结构可以参照图11或图13所述的站点,这里不再赘述。
第二站点用于发出同步信息,同步信息包括第二站点的位置信息或者第一站点与第二站点间的信号传播时延。
同步装置的功能和结构可以参照图14、图15或图16所示的同步装置,这里不再赘述。
本实施例所述的同步系统,可以由同步装置控制第一站点与第二站点进行同步。
本申请实施例还公开了一种站点,包括接收器、处理器和存储器,其中,接收器、处理器和存储器之间可以通过总线进行通信。
具体地,接收器接收来自于所述源站点的第一网络参考信号;
处理器用于获取所述站点与源站点间的信号传播时延,通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间,并依据所述同步参考时间,与所述源站点进行同步,其中,所述站点为待同步的站点;
存储器用于存储第一处理器中运行的程序,以及所述程序运行过程中产生的数据。
本实施例所述处理器可以实现的其它功能可以参见上述实施例中第一站点可实现的功能,这里不再赘述。
本实施例所述的站点,作为待同步的站点使用,可以提高同步精度。
本申请实施例公开的又一种同步设备,包括处理器和存储器,处理器和存储器通过总线通信。
具体地,处理器用于获取站点的位置信息,所述站点的位置信息用于确定第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点,所述站点的位置信息至少包括所述第二站点的位置信息,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,其中,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到。
存储器用于存储第二处理器中运行的程序,以及所述程序运行过程中产生的数据。
关于该同步设备的详细描述可以参照本发明其他实施例的相关内容,在此不做赘述。
本实施例中所述的同步设备可以具体为OAM,对同步过程进行控制,以提高同步的精度。
本申请实施例还公开了另一种站点,包括:发射器,用于发出同步信息。
具体地,同步信息包括所述站点的位置信息,所述站点的位置信息用于与待同步的站点的位置信息共同确定所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网 络参考信号的接收时间提前所述传播时延得到;
或者,同步信息包括所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网络参考信号的接收时间提前所述传播时延得到。
本实施例所述的站点,作为源站点,通过发出同步信息,可以使得待同步的站点获得较高的同步精度。
关于该站点的详细描述可以参照本发明其它实施例的相关内容,在此不做赘述。
本实施例方法所述的功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算设备可读取存储介质中。基于这样的理解,本发明实施例对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机,服务器,移动计算设备或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (40)

  1. 一种同步方法,其特征在于,包括:
    第一站点获取所述第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点;
    所述第一站点接收来自于所述第二站点的第一网络参考信号;
    所述第一站点通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
    所述第一站点依据所述同步参考时间,与所述第二站点进行同步。
  2. 根据权利要求1所述的方法,其特征在于,所述第一站点获取所述第一站点与第二站点间的信号传播时延包括:
    所述第一站点获取所述第一站点的位置信息与第二站点的位置信息;
    所述第一站点依据所述第一站点的位置信息和所述第二站点的位置信息,计算所述第一站点与所述第二站点间的信号传播时延。
  3. 根据权利要求2所述的方法,其特征在于,所述第一站点获取第二站点的位置信息包括:
    所述第一站点从所述第一网络参考信号中获取所述第二站点的位置信息;
    或者,所述第一站点接收同步控制端发送的所述第二站点的位置信息。
  4. 根据权利要求2所述的方法,其特征在于,所述第一站点获取所述第一站点的位置信息包括:
    所述第一站点从本地调取所述第一站点的位置信息;
    或者,所述第一站点接收同步控制端发送的所述第一站点的位置信息。
  5. 根据权利要求1所述的方法,其特征在于,所述第一站点获取所述第一站点与第二站点间的信号传播时延包括:
    所述第一站点接收同步控制端发送的所述信号传播时延;
    或者,所述第一站点从所述第一网络参考信号中获取所述信号传播时延。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一站点依据所述同步参考时间,与所述第二站点进行同步包括:
    所述第一站点将所述同步参考时间标记为本地同步时间。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一站点将所述同步参考时间标记为本地同步时间之后,还包括:
    所述第一站点确定第二网络参考信号,以使得第三站点接收来自于所述第一站点的所述第二网络参考信号,并依据所述第二网络参考信号与所述第一站点进行同步。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一站点依据所述同步参考时间,与所述第二站点进行同步包括:
    所述第一站点计算第一站点的调整量,所述第一站点的调整量为所述同步参考时间与所述第一网络参考信号的发送时间之差;
    所述第一站点依据所述第一站点的调整量调整本地时间。
  9. 根据权利要求8所述的方法,其特征在于,在所述第一站点依据所述第一站点的调整量调整本地时间之前,还包括:
    所述第一站点发送所述第一站点的调整量,所述第一站点的调整量用于第三站点计算所述第三站点的调整量,所述第三站点的调整量为所述第一站点的调整量与所述第三站点相对于所述第一站点的调整量之和,所述第三站点的调整量用于所述第三站点与所述第二站点进行同步。
  10. 一种同步方法,其特征在于,包括:
    同步控制端获取站点的位置信息,所述站点的位置信息用于确定第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点,所述站点的位置信息至少包括所述第二站点的位置信息,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,其中,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到。
  11. 根据权利要求10所述的方法,其特征在于,所述同步控制端获取站点的位置信息包括:
    所述同步控制端获取所述第一站点的位置信息和所述第二站点的位置信息;
    在所述同步控制端获取所述第一站点的位置信息和所述第二站点的位置信息之后,还包括:
    所述同步控制端依据所述第一站点的位置信息和所述第二站点的位置信息,计算所述第一站点与所述第二站点间的信号传播时延。
  12. 根据权利要求11所述的方法,其特征在于,所述同步控制端获取所述第一站点的位置信息和所述第二站点的位置信息包括:
    所述同步控制端接收所述第一站点发送的所述第一站点的位置信息,并接收所述第二站点发送的所述第二站点的位置信息;
    或者,所述同步控制端从本地调取所述第一站点的位置信息和所述第二站点的位置信息。
  13. 根据权利要求11所述的方法,其特征在于,还包括:
    所述同步控制端将所述第一站点与第二站点间的信号传播时延发送给所述第一站点。
  14. 根据权利要求10所述的方法,其特征在于,还包括:
    所述同步控制端将所述第二站点的位置信息发送给所述第一站点,所述第二站点的位置信息用于所述第一站点计算所述第一站点与第二站点间的信号传播时延。
  15. 根据权利要求10所述的方法,其特征在于,还包括:
    所述同步控制端接收至少两个待同步的站点发送的各自的定时差,其中,任意一个待同步的站点的定时差为此站点接收所述第二站点发出的第一网络参考信号的时间与所述第二站点发出所述第一网络参考信号的时间之差,所述至少两个待同步的站点包括第三站点及所述第一站点;
    所述同步控制端获取所述至少两个待同步的站点与各自的源站点间的信号传播时延;
    所述同步控制端依据所述定时差及所述信号传播时延,分别计算所述至少两个待同步的站点的调整量;
    所述同步控制端同时向所述至少两个待同步的站点发送同步指令,其中,向任意一个待同步的站点发送的同步指令中,携带与此站点对应的调整量,所述调整量用于此站点调整本地时间。
  16. 一种同步方法,其特征在于,包括:
    第二站点发出同步信息,所述同步信息包括所述第二站点的位置信息,所述第二站点的位置信息用于与第一站点的位置信息共同确定所述第一站点与所述第二站点间的信号传播时延,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到;
    或者,所述同步信息包括所述第一站点与所述第二站点间的信号传播时延,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到;
    其中,所述第一站点为待同步的站点,所述第二站点为源站点。
  17. 根据权利要求16所述的方法,其特征在于,所述第二站点发出同步信息包括:
    所述第二站点广播第一网络参考信号,所述第一网络参考信号中携带所述第二站点的位置信息。
  18. 根据权利要求16所述的方法,其特征在于,所述第二站点发出同步信息包括:
    所述第二站点向同步控制端发送所述第二站点的位置信息,以使得所述同步控制端将所述第二站点的位置信息发送给所述第一站点或者依据所述第二站点的位置信息与所述第一站点的位置信息共同确定所述第一站点与所述第二站点之间的信号传播时延。
  19. 根据权利要求16所述的方法,其特征在于,所述第二站点发出同步信息包括:
    所述第二站点发出第一网络参考信号,所述第一网络参考信号中携带所述第一站点与所述第二站点间的信号传播时延。
  20. 根据权利要求19所述的方法,其特征在于,所述第二站点发出第一网络参考信号包括:
    所述第二站点在同步周期内发出所述第一网络参考信号;
    和/或,所述第二站点占用所述第一站点的空闲资源发出第一网络参考信号。
  21. 一种站点,其特征在于,包括:
    信号传播时延获取模块,用于获取所述站点与源站点间的信号传播时延,所述站点为待同步的站点;
    接收模块,用于接收来自于所述源站点的第一网络参考信号;
    同步参考时间获取模块,用于通过将所述第一网络参考信号的接收时间提前所述信号传播时延得到同步参考时间;
    同步模块,用于依据所述同步参考时间,与所述源站点进行同步。
  22. 根据权利要求21所述的站点,其特征在于,所述信号传播时延获取模块包括:
    获取单元,用于获取所述站点的位置信息与源站点的位置信息;
    计算单元,用于依据所述站点的位置信息和所述源站点的位置信息,计算所述站点与所述源站点间的信号传播时延。
  23. 根据权利要求22所述的站点,其特征在于,所述获取单元用于获取源站点的位置信息包括:
    所述获取单元具体用于,从所述第一网络参考信号中获取所述源站点的位置信息;或者,接收同步控制端发送的所述源站点的位置信息。
  24. 根据权利要求22所述的站点,其特征在于,所述获取单元用于获取所述站点的位置信息包括:
    所述获取模块具体用于,从本地调取所述站点的位置信息;或者,接收同步控制端发送的所述站点的位置信息。
  25. 根据权利要求21所述的站点,其特征在于,所述信号传播时延获取模块用于获取所述站点与源站点间的信号传播时延包括:
    所述信号传播时延获取模块具体用于,接收同步控制端发送的所述信号传播时延;或者,从所述第一网络参考信号中获取所述信号传播时延。
  26. 根据权利要求21至25任一项所述的站点,其特征在于,所述同步模块用于依据所述同步参考时间,与所述源站点进行同步包括:
    所述同步模块具体用于,将所述同步参考时间标记为本地同步时间。
  27. 根据权利要求26所述的站点,其特征在于,还包括:
    网络参考信号发出模块,用于在所述同步模块将所述同步参考时间标记为本地同步时间之后,确定第二网络参考信号,以使得其它待同步的站点接收来自于所述站点的所述第二网络参考信号,并依据所述第二网络参考信号,与所述站点进行同步。
  28. 根据权利要求21至25任一项所述的站点,其特征在于,所述同步模块用于依据所述同步参考时间,与所述源站点进行同步包括:
    所述同步模块具体用于,计算第一站点的调整量,所述第一站点的调整量为所述同步参考时间与所述第一网络参考信号的发送时间之差;并依据所述第一站点的调整量调整本地时间。
  29. 根据权利要求28所述的站点,其特征在于,还包括:
    调整量发送模块,用于在所述第一站点依据所述第一站点的调整量调整本地时间之前,发送所述站点的调整量,所述站点的调整量用于其它待同步的站点计算所述其它待同步的站点的调整量,所述其它待同步的站点的调整量为所述站点的调整量与所述其它待同步的相对于所述源站点的调整量之和,所述其它待同步的站点的调整量用于所述其它待同步的站点与所述源站点进行同步。
  30. 一种同步装置,其特征在于,包括:
    位置信息获取模块,用于获取站点的位置信息,所述站点的位置信息用于确定第一站点与第二站点间的信号传播时延,所述第一站点为待同步的站点,所述第二站点为源站点,所述站点的位置信息至少包括所述第二站点的位置信息,所述信号传播时延用于计算所述第一站点的同步参考时间,所述同步参考时间用于所述第一站点与所述第二站点进行同步,其中,所述同步参考时间通过将所述第一站点接收到来自于所述第二站点的第一网络参考信号的接收时间提前所述信号传播时延得到。
  31. 根据权利要求30所述的装置,其特征在于,所述位置信息获取模块用于获取站点的位置信息包括:
    所述位置信息获取模块具体用于,获取所述第一站点的位置信息和所 述第二站点的位置信息;
    所述装置还包括:
    计算模块,用于在所述获取模块获取所述第一站点的位置信息和所述第二站点的位置信息之后,依据所述第一站点的位置信息和所述第二站点的位置信息,计算所述第一站点与所述第二站点间的信号传播时延。
  32. 根据权利要求31所述的装置,其特征在于,所述位置信息获取模块具体用于获取所述第一站点的位置信息和所述第二站点的位置信息包括:
    所述位置信息获取模块具体用于,接收所述第一站点发送的所述第一站点的位置信息,并接收所述第二站点发送的所述第二站点的位置信息;或者,从本地调取所述第一站点的位置信息和所述第二站点的位置信息。
  33. 根据权利要求31所述的装置,其特征在于,还包括:
    传播时延发送模块,用于将所述第一站点与第二站点间的信号传播时延发送给所述第一站点。
  34. 根据权利要求30所述的装置,其特征在于,还包括:
    位置信息发送模块,用于将所述第二站点的位置信息发送给所述第一站点,所述第二站点的位置信息用于所述第一站点计算所述第一站点与第二站点间的信号传播时延。
  35. 根据权利要求30所述的装置,其特征在于,还包括:
    定时差接收模块,用于接收至少两个待同步的站点发送的各自的定时差,其中,任意一个待同步的站点的定时差为此站点接收所述第二站点发出的第一网络参考信号的时间与所述第二站点发出所述第一网络参考信号的时间之差,所述至少两个待同步的站点包括第三站点及所述第一站点;
    信号传播时延获取模块,用于获取所述至少两个待同步的站点与各自的源站点间的信号传播时延;
    调整量计算模块,用于依据所述定时差及所述信号传播时延,分别计算所述至少两个待同步的站点的调整量,其中,任意一个待同步站点的调整量为此待同步站点的定时差与其源站点间的信号传播时延之差;
    指令发送模块,用于同时向所述至少两个待同步的站点发送同步指令, 其中,向任意一个待同步的站点发送的同步指令中,携带与此站点对应的调整量,所述调整量用于此站点调整本地时间。
  36. 一种站点,其特征在于,包括:
    同步信息发出模块,用于发出同步信息,所述同步信息包括所述站点的位置信息,所述站点的位置信息用于与待同步的站点的位置信息共同确定所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网络参考信号的接收时间提前所述传播时延得到;
    或者,所述同步信息包括所述待同步的站点与所述站点间的信号传播时延,所述信号传播时延用于计算所述待同步的站点的同步参考时间,所述同步参考时间用于所述待同步的站点与所述站点进行同步,所述同步参考时间通过将所述待同步的站点接收到来自于所述站点的第一网络参考信号的接收时间提前所述传播时延得到。
  37. 根据权利要求36所述的装置,其特征在于,所述同步信息发出模块用于发出同步信息包括:
    所述同步信息发出模块具体用于,广播第一网络参考信号,所述第一网络参考信号中携带所述站点的位置信息。
  38. 根据权利要求36所述的装置,其特征在于,所述同步信息发出模块用于发出同步信息包括:
    所述同步信息发出模块具体用于,向同步控制端发送所述站点的位置信息,以使得所述同步控制端将所述站点的位置信息发送给所述待同步的站点或者依据所述站点的位置信息与所述待同步的站点的位置信息共同确定所述待同步的站点与所述站点之间的信号传播时延。
  39. 根据权利要求36所述的装置,其特征在于,所述同步信息发出模块用于发出同步信息包括:
    所述同步信息发出模块具体用于,发出第一网络参考信号,所述第一网络参考信号中携带所述待同步的站点与所述站点间的信号传播时延。
  40. 根据权利要求39所述的站点,其特征在于,所述同步信息发出模块用于发出同步信息包括:
    所述同步信息发出模块具体用于,在同步周期内发出第一网络参考信号;和/或,占用所述待同步的站点的空闲资源发出第一网络参考信号。
PCT/CN2015/086835 2015-08-13 2015-08-13 同步方法及装置 WO2017024578A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/086835 WO2017024578A1 (zh) 2015-08-13 2015-08-13 同步方法及装置
EP15900776.4A EP3316660B1 (en) 2015-08-13 2015-08-13 Synchronization method and apparatus
CN201580081432.2A CN107836136B (zh) 2015-08-13 2015-08-13 同步方法及装置
US15/894,091 US10582462B2 (en) 2015-08-13 2018-02-12 Synchronization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086835 WO2017024578A1 (zh) 2015-08-13 2015-08-13 同步方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/894,091 Continuation US10582462B2 (en) 2015-08-13 2018-02-12 Synchronization method and apparatus

Publications (1)

Publication Number Publication Date
WO2017024578A1 true WO2017024578A1 (zh) 2017-02-16

Family

ID=57984605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086835 WO2017024578A1 (zh) 2015-08-13 2015-08-13 同步方法及装置

Country Status (4)

Country Link
US (1) US10582462B2 (zh)
EP (1) EP3316660B1 (zh)
CN (1) CN107836136B (zh)
WO (1) WO2017024578A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819514B (zh) * 2019-03-26 2024-01-26 四川中电昆辰科技有限公司 多个定位基站发射同步信号的定位系统及其方法
CN109819513B (zh) * 2019-03-26 2024-01-26 四川中电昆辰科技有限公司 多个定位基站发射同步信号的定位系统及其方法
DE102019125527B4 (de) * 2019-09-23 2021-04-01 Beckhoff Automation Gmbh Verfahren zur Zeitsynchronisation in einem Ethernet-basierten Netzwerk
EP4070590B1 (en) * 2020-04-29 2023-10-04 Nokia Technologies Oy Synchronizing terminal device to network clock
WO2022082379A1 (en) * 2020-10-19 2022-04-28 Lenovo (Beijing) Limited Methods, apparatuses, and media for propagation delay compensation
US11909582B2 (en) 2021-08-13 2024-02-20 Qualcomm Incorporated Network notification of a cell timing source outage
CN113708879B (zh) * 2021-09-10 2024-03-26 北京广利核系统工程有限公司 一种分布式系统的对时系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053985A1 (en) * 2000-05-16 2002-05-09 Nesbitt Bryce C. Method and system for providing corrected time dependent data across a wireless network
CN101075848A (zh) * 2007-07-05 2007-11-21 华为技术有限公司 一种微蜂窝网络基站同步的方法、系统和基站
JP2009260881A (ja) * 2008-04-21 2009-11-05 Nec Saitama Ltd 基地局間同期方法および該方法を用いた移動通信システム
CN101860803A (zh) * 2010-06-12 2010-10-13 珠海无线蜂网科技有限公司 一种广播电视信号的发射方法、传输中心、基站及系统
WO2015042954A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 站间同步的方法及基站
CN104581923A (zh) * 2013-10-25 2015-04-29 上海无线通信研究中心 通过无线链路传输精确时间信息的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483856B1 (en) * 1998-07-29 2002-11-19 Trimble Navigation Limited GPS synchronized data communications link
US6665541B1 (en) * 2000-05-04 2003-12-16 Snaptrack, Incorporated Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks
US7363009B2 (en) * 2003-02-03 2008-04-22 Qualcomm Incorporated Method and apparatus for determining propagation delays for use in wide area networks
US8798638B2 (en) * 2005-07-20 2014-08-05 Qualcomm Incorporated Methods and apparatus for providing base station position information and using position information to support timing and/or frequency corrections
US7477191B2 (en) * 2006-03-03 2009-01-13 Cisco Technology, Inc. System and method for performing time difference of arrival location without requiring a common time base or clock calibration
US7729707B2 (en) * 2006-10-24 2010-06-01 Aeroscout, Inc. Method and system for synchronization offset reduction in a TDOA location system
KR20100005084A (ko) * 2007-04-28 2010-01-13 후아웨이 테크놀러지 컴퍼니 리미티드 근접성 기반의 전송 모드 변경을 통한 간섭 감소를 위한 방법 및 시스템
CN101515831B (zh) * 2008-02-22 2013-08-28 杭州华三通信技术有限公司 一种时间同步传递方法、系统及装置
US8867520B2 (en) * 2008-03-07 2014-10-21 Charles Nicholls Using a network frequency reference to augment timing Synchronization in a wireless base station
US8335173B2 (en) * 2008-04-11 2012-12-18 Cisco Technology, Inc. Inserting time of departure information in frames to support multi-channel location techniques
US8774084B2 (en) * 2008-08-22 2014-07-08 Qualcomm Incorporated Base station synchronization
US9042296B2 (en) * 2009-07-23 2015-05-26 Qualcomm Incorporated Synchronization of devices in a wireless communication network
US9091746B2 (en) * 2010-07-01 2015-07-28 Qualcomm Incorporated Determination of positions of wireless transceivers to be added to a wireless communication network
WO2012119626A1 (en) * 2011-03-08 2012-09-13 Panasonic Corporation Propagation delay difference reporting for multiple component carriers
US9900856B2 (en) * 2015-03-20 2018-02-20 Qualcomm Incorporated Method and apparatus for time or frequency synchronization in non-geosynchronous satellite communication systems
WO2016155774A1 (en) * 2015-03-30 2016-10-06 Sony Corporation Apparatus, systems and methods for mobile network positioning of mtc devices using common reference or synchronization signals
US10045324B2 (en) * 2015-05-15 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for managing RSTD reports
US9999010B2 (en) * 2015-05-21 2018-06-12 Intel IP Corporation System and methods of time synchronization between wirelessly connected devices
US9913233B2 (en) * 2015-07-28 2018-03-06 Qualcomm Incorporated Synchronization for device-to-device positioning in wireless networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053985A1 (en) * 2000-05-16 2002-05-09 Nesbitt Bryce C. Method and system for providing corrected time dependent data across a wireless network
CN101075848A (zh) * 2007-07-05 2007-11-21 华为技术有限公司 一种微蜂窝网络基站同步的方法、系统和基站
JP2009260881A (ja) * 2008-04-21 2009-11-05 Nec Saitama Ltd 基地局間同期方法および該方法を用いた移動通信システム
CN101860803A (zh) * 2010-06-12 2010-10-13 珠海无线蜂网科技有限公司 一种广播电视信号的发射方法、传输中心、基站及系统
WO2015042954A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 站间同步的方法及基站
CN104581923A (zh) * 2013-10-25 2015-04-29 上海无线通信研究中心 通过无线链路传输精确时间信息的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316660A4 *

Also Published As

Publication number Publication date
CN107836136A (zh) 2018-03-23
US10582462B2 (en) 2020-03-03
EP3316660B1 (en) 2020-10-07
EP3316660A1 (en) 2018-05-02
US20180167900A1 (en) 2018-06-14
EP3316660A4 (en) 2018-08-08
CN107836136B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2017024578A1 (zh) 同步方法及装置
CN110475336B (zh) 一种实现网络同步的方法及装置
US9801022B2 (en) Providing OTDOA PRS assistance data
CN110971326B (zh) 一种时间同步的方法和装置
US20190037338A1 (en) Methods and systems for on-demand resource allocation for location determination of a mobile device
EP2833683B1 (en) Time synchronization method and system using wifi-direct
CN107431993A (zh) 基站同步
JP6384697B2 (ja) 同期方法、同期装置、および基地局
TWI747354B (zh) 用於行動通訊系統之使用者裝置及基地台
US20150312870A1 (en) Over-the-air synchronization for small cells in a wireless communication network
US11576133B2 (en) Timing synchronization of 5G V2X sidelink transmissions
WO2018038800A1 (en) System and methods to support a cluster of positioning beacons
GB2512689A (en) Timing advance method for synchronized wifi network
US20180270671A1 (en) Physical-layer cell identity (pci) selection
WO2017113404A1 (zh) 一种网络节点、报文传输方法和网络
JP2023081964A (ja) 方法、送信デバイス、及び受信デバイス
WO2017071136A1 (zh) 辅助定位的方法及装置
CN107431960B (zh) 用于无线电网络同步的方法和装置
WO2014100982A1 (zh) 一种空口同步方法及相关装置
WO2022063395A1 (en) Synchronization accuracy enhancement with common 5gs time for sidelink devices
US9655077B1 (en) Device and method for cellular synchronization assisted location estimation
KR20210093789A (ko) 무선 통신 시스템에서의 동기화 방법 및 장치
KR102178660B1 (ko) 무선 통신 시스템에서 mbms 서비스 패킷의 송수신을 지원하는 기법
US20190014552A1 (en) Method and Device for Transmitting Tracking Area Information
WO2022268067A1 (zh) 定位方法、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015900776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE