WO2017022887A1 - Reporter plant system for detection of harmful non-degradable aromatic compounds and use thereof - Google Patents

Reporter plant system for detection of harmful non-degradable aromatic compounds and use thereof Download PDF

Info

Publication number
WO2017022887A1
WO2017022887A1 PCT/KR2015/011937 KR2015011937W WO2017022887A1 WO 2017022887 A1 WO2017022887 A1 WO 2017022887A1 KR 2015011937 W KR2015011937 W KR 2015011937W WO 2017022887 A1 WO2017022887 A1 WO 2017022887A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
plant
promoter
growth hormone
pseudomonas putida
Prior art date
Application number
PCT/KR2015/011937
Other languages
French (fr)
Korean (ko)
Inventor
류충민
이혜란
권오석
이승구
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2017022887A1 publication Critical patent/WO2017022887A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a reporter plant system for detecting hardly decomposable hazardous aromatic compounds and uses thereof.
  • non-degradable aromatic compound When a non-degradable aromatic compound is released into nature through a food chain or other pathway, it is usually carcinogenic or acts as an environmental hormone by reacting with a polymer such as DNA or protein in cells with its structural similarity and high reactivity. Examples include dioxins, which are emitted during the combustion of automobile emissions and garbage, which not only cause cancer, but also cause reproductive and immune system abnormalities. Also, DDT (dichloro-diphenyl-trichloroethane) is produced as a pesticide. It acts as an environmental hormone that is harmful to the reproductive system. Hardly degradable aromatic compounds entering nature are classified as environmentally toxic substances to be removed first in developed countries.
  • BTEX compounds refer to benzene, toluene, ethylbenzene and xylene. Recently, due to the rapid growth of industrial activities, a considerable amount of harmful pollutants are released into the natural environment, among which VOCs (volatile BTEX compounds, a representative oil compound of organic compounds, are becoming more contaminated due to leakages and accidents in oil storage and widespread use in industry. Pollution caused by these is widely found in the public drinking water system such as surface water source, ground water source, and treated drinking water. Most VOCs are found to be toxic organic chemicals that cause carcinogenicity. Directives and legislation are on the rise.
  • chromatography-mass spectrometry In order to measure such BTEX, chromatography-mass spectrometry (GC-MS) and the like have been conventionally used as an instrument chemical method, but such a method is expensive, takes a long time by complicated processing, and has no expertise. Silver is not easy to use and also requires heavy equipment, there was a limitation in use that can not be used in the field (Korean Patent Publication No. 10-2004-0076292).
  • BTEX compounds benzene, toluene, ethylbenzene, xylene
  • TNT 2,4,6-trinitrotoluene
  • DNT 2,4-Dinitrotoluene
  • Korean Patent No. 1430685 discloses an artificial biosensor for detecting a degradable harmful aromatic compound and a manufacturing method thereof
  • Korean Patent No. 0539142 discloses a biosensor for detecting a BT extract and a method of manufacturing the same. have.
  • the reporter plant system for detecting the hardly degradable harmful aromatic compound of the present invention and its use.
  • the TodST-IAA module operates in the presence of toluene to transform plant to produce plant growth hormone, and includes a DR5 promoter and a GUS gene which recognizes the same.
  • RNAi expression vector comprising an expression vector or a DR5 promoter and a ChlH (Mg-chelatase H subunit) gene
  • ChlH Mg-chelatase H subunit
  • the present invention is 1) Pseudomonas putida derived from todS gene, Pseudomonas putida derived from todT gene, Pseudomonas putida derived from the promoter (promoter) and plant growth hormone (plant growth hormone) Transformed rhizobacteria for the production of plant growth hormone in the presence of a hardly degradable noxious aromatic compound characterized by being transformed with an expression vector comprising a gene: and 2) a promoter and reporter gene specifically recognized by the plant growth hormone
  • a reporter plant system for detecting hardly decomposable harmful aromatic compounds in soil comprising a plant transformed with an RNAi expression vector comprising a promoter and a pigment generating gene that the expression vector or plant growth hormone specifically recognizes.
  • the present invention provides a method for producing a reporter plant system for detecting hardly decomposable harmful aromatic compounds in the soil.
  • the present invention also provides a method for detecting a hardly decomposable harmful aromatic compound in soil using a reporter plant system for detecting a hardly decomposable harmful aromatic compound in soil.
  • the present invention can provide a reporter plant system which is very useful for detecting hardly decomposable harmful aromatic compounds including toluene, and can more sensitively and accurately detect the hardly decomposable hazardous aromatic compounds than in the prior art.
  • it is possible to recognize the direct simplicity rather than the indirect external recognition system of the area where people are not easily accessible, and it can be useful for developing a system that can recognize toxic substances in real life without using chemical / physical equipment. have.
  • Figure 1 shows a schematic diagram of toluene reporter plant production using Pseudomonas putida TodST-IAA module and DR5-GUS system of the present invention.
  • FIG. 2 shows the biosynthetic pathway of plant growth hormone IAA (Indole-3-acetic acid) produced by bacteria.
  • IAA Indole-3-acetic acid
  • the purple arrow is the IAM (indole-3-acetamide) pathway and the red arrow is the IPyA (Indole-3-pyruvate) pathway.
  • Figure 3 shows the IAA production capacity of Pseudomonas putida 06iaaMH, 30iaaMH and ipdC strain of the present invention when treated with toluene.
  • Figure 4 shows the results of GUS expression of Arabidopsis plants using IAA production capacity of Pseudomonas putida 06iaaMH, 30iaaMH and ipdC strain of the present invention with or without toluene.
  • Figure 5 shows the root colonization capacity (root colonization capacity) of the Pseudomonas putida strain of the present invention.
  • Figure 6 shows a schematic diagram of toluene reporter transgenic plant production using Pseudomonas putida TodST-IAA module and Ch1H-RNAi system of the present invention.
  • FIG. 7 shows a schematic diagram of a method for producing a pK7_DR5_Ch1H vector of the present invention.
  • Figure 8 shows the RNAi phenotype of the Ch1H gene when treated with Agrobacterium tumefasiens strains and IAA standards transformed with RNAi expression vector on the leaves of tobacco plants Nicotiana benthamiana with or without toluene. It is shown. Mock is a negative control treated with nothing.
  • RNAi expression vectors on a leaf of the plant conversion was Agrobacterium Tome Pacific Enschede (Agrobacterium tumefasiens) strain, IAA-producing strain of Pseudomonas footage is (Pseudomonas putida) O6iaaMH strain and Pseudomonas When treated with Pseudomonas chlororaphis strain and IAA standards, the RNAi phenotype of the Ch1H gene is shown. Water control is a negative control with no treatment.
  • RNAi expression vectors on a leaf of the plant conversion was Agrobacterium Tome Pacific Enschede (Agrobacterium tumefasiens) strain, IAA-producing strain of Pseudomonas footage is (Pseudomonas putida) O6iaaMH strain and Pseudomonas Chlorophyll content is shown when treated with Pseudomonas chlororaphis strain and IAA standards. Water control is a negative control with no treatment.
  • the present invention is a.
  • a plant transformed with an expression vector comprising a promoter and a reporter gene specifically recognized by the plant growth hormone or an RNAi expression vector comprising a promoter and a pigment generating gene specifically recognized by the plant growth hormone Provided is a reporter plant system for detecting hardly decomposable harmful aromatic compounds in soil.
  • the todS gene preferably has a nucleotide sequence of SEQ ID NO: 7, but is not limited thereto.
  • the todT gene preferably has a nucleotide sequence of SEQ ID NO: 8, but is not limited thereto.
  • the promoter of the todX gene preferably has a nucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
  • the promoters of the todS gene, the todT gene, and the todX gene are composed of nucleotide sequences in which one or several bases are added, deleted, or substituted as long as they have the same activity in the nucleotide sequences of SEQ ID NO: 7, SEQ ID NO: 8, and SEQ ID NO: 9, respectively. It is preferred, but not limited to.
  • the promoters of the todS gene, the todT gene, and the todX gene are at least 80% homology, more specifically at least 90% homology, most specifically 95%, 96% to the nucleotide sequences of SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively. It is preferably composed of a base sequence having a homology of at least 97%, 98%, 99% or 99.5%, but is not limited thereto.
  • the plant growth hormone is preferably IAA (indole acetic acid), cytokinin (cytokinin), gibberellin (gibberellin), ethylene (ethylene), abscisic acid (brassinosteroid), etc., but is not limited thereto. Do not.
  • the promoter specifically recognized by the plant growth hormone is preferably a DR5 promoter, a cytokinin receptor promoter, an ethylene receptor promoter, or a pathogenesis-related 1 promoter, but is not limited thereto. .
  • the reporter gene is composed of green fluorescent protein (GFP), alkaline phosphatase, luciferase, luciferase, beta-glucuronidase (GUS) and beta-galactosidase genes. It is preferably any one selected from the group, more preferably beta-glucuronidase (GUS) gene, but is not limited thereto.
  • GFP green fluorescent protein
  • GUS beta-glucuronidase
  • the pigment generating gene is preferably a ChlH (Mg-chelatase H subunit) gene or a PDS (phytoene desaturase) gene, but is not limited thereto.
  • the rhizosphere bacteria are Pseudomonas putida , Paenibacillus polymyxa E681, Bacillus subtilis GB03, Bacillus pumilus INR7 is preferred, but not limited thereto.
  • the hardly decomposable hazardous aromatic compound may be a BTEX compound (benzene, toluene, ethylbenzene, xylene) or toluene compound (for example, 2,4,6-trinitrotoluene (2). , 4,6-trinitrotoluene, TNT)), more preferably toluene, but is not limited thereto.
  • BTEX compound benzene, toluene, ethylbenzene, xylene
  • toluene compound for example, 2,4,6-trinitrotoluene (2). , 4,6-trinitrotoluene, TNT
  • vector is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells.
  • carrier is often used interchangeably with “vector”.
  • expression vector refers to a recombinant DNA molecule comprising a coding sequence of interest and a suitable nucleic acid sequence necessary to express a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
  • Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells.
  • a suitable host such as Agrobacterium tumerfaciens
  • Another type of Ti-plasmid vector (see EP 0 116 718 B1) is used to transfer hybrid DNA sequences to protoplasts from which current plant cells or new plants can be produced that properly insert hybrid DNA into the plant's genome. have.
  • a particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838.
  • viral vectors such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc.
  • CaMV double stranded plant viruses
  • gemini viruses single stranded viruses
  • it may be selected from an incomplete plant viral vector.
  • the use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
  • the expression vector will preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate, phosphinothricin and glufosinate, kanamycin, G418, bleomycin, hygromycin, There are antibiotic resistance genes such as chloramphenicol, but are not limited thereto.
  • the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter.
  • promoter refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
  • a "plant promoter” is a promoter capable of initiating transcription in plant cells.
  • a “constitutive promoter” is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.
  • terminators can be used, for example nopalin synthase (NOS), rice ⁇ -amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens (Agrobacterium) terminators of the octopine gene of tumefaciens, but are not limited thereto.
  • NOS nopalin synthase
  • rice ⁇ -amylase RAmy1 A terminator Phaseoline terminator
  • Agrobacterium tumefaciens (Agrobacterium) terminators of the octopine gene of tumefaciens but are not limited thereto.
  • terminators With regard to the need for terminators, such regions are generally known to increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly desirable in the context of the present invention.
  • Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including both dicotyledonous plants as well as monocotyledonous plants. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. The method is based on the calcium / polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), electroporation of protoplasts ( Shillito et al., 1985, Bio / Technol.
  • step 2) transforming the expression vector of step 1) to the rhizosphere bacteria to prepare a transformed rhizosphere bacterium for plant growth hormone production in the presence of a hardly decomposable harmful aromatic compound;
  • RNAi expression comprising the expression vector comprising a promoter and a reporter gene that the plant growth hormone specifically recognizes the transformed rhizosphere bacteria of step 2) or a promoter and a pigment generating gene that the plant growth hormone specifically recognizes
  • a method for producing a reporter plant system for detecting a non-degradable harmful aromatic compound in soil comprising the step of treating the plant transformed with the vector.
  • each gene, plant growth hormone, rhizosphere bacteria, reporter gene, pigment generating gene and the like are as described above.
  • RNAi expression vector comprising an expression vector comprising a promoter and a reporter gene specifically recognized by the plant growth hormone or a promoter and a pigment generating gene specifically recognized by the plant growth hormone in the test sample. Planting step;
  • the color change of the transgenic plant can be confirmed in comparison with the non-transformed plant, but is not limited thereto. That is, when toluene is present in the test sample, the plant transformed with the expression vector including the reporter gene may be colored through expression of the reporter gene, compared to the non-transformed plant, and RNAi including the pigment generating gene. Plants transformed with the expression vector may have a problem in the production of chloroplast pigment, and the plant may turn yellow. Therefore, the presence or absence of toluene can be detected through the color change of the transgenic plant.
  • Pseudomonas putida ( Pseudomonas putida ) Fabrication of TodST-IAA Module
  • the TodST module using the two-component system of microorganisms was used.
  • IAA Indole-3-acetic acid
  • TodT-BOX the artificial biosensor for detecting degradable harmful aromatic compound and its manufacturing method
  • Pseudomonas putida KT2440 strain was used (FIG. 1).
  • Auxin (auxin) is a representative plant growth hormone affects the growth of the cells, some bacteria in the plant root area to produce and secrete auxin, which can be absorbed by the plant and used for growth.
  • IAA Indole-3-acetic acid
  • IAM indole-3-acetamide pathway
  • IPyA Indole-3-pyruvate pathway
  • IAAld indole-3-acetaldehyde
  • IPDC Indolepyruvate decarboxylase
  • iaaM , iaaH and ipdC genes In order to produce a Pseudomonas (Pseudomonas) in and azo RY rilrum (Azospirillum) in strains with the expression vectors to produce high levels of IAA, iaaH and iaaM gene from Pseudomonas chloro lapis (Pseudomonas chlororaphis) O6 and 30-84 strains The ipdC gene was obtained from an Azospirillum brasilense Cd strain to prepare an expression vector.
  • Pseudomonas chloro lapis (Pseudomonas chlororaphis) O6 and 30-84 strains, and azo RY rilrum bra chamber lances (Azospirillum brasilense) inoculated with the respective strain Cd KB (King's B) 3ml broth and incubated at 30 °C 24 hours. Then, the cells were collected by centrifugation and genomic DNA was extracted using NanoHelix PureHelix Genomic DNA Prep Kit (Column Type). Since genomic DNA as a template amplified iaaM , iaaH and ipdC using Roche's Expand High Fidelity PCR system.
  • Pseudomonas putida KT2440 strain (pBBRBB_TodST) was transformed using Bio-Rad's Gene Pulser Xcell Electroporation System, and colonies growing on LB agar medium containing 50 ⁇ g / ml of gentamicin were selected and Pseudomonas putida. ) O6iaaMH, Pseudomonas putida 30iaaMH and Pseudomonas putida ipdC strains were obtained.
  • the absorbance was then measured at 530 nm using an UV spectrophotometer, and a standard curve was prepared using IAA (indole-3-acetic acid, Sigma, USA) as a standard and compared with the IAA standard curve. OD value was converted into IAA concentration.
  • the footage is Pseudomonas (Pseudomonas putida) ip dC, O6iaa MH and MH iaa 30 strain having a TodST-IAA module as set forth in 3, when processing the toluene, about 31 ⁇ g / ml respectively, 38 ⁇ g / ml And 20 ⁇ g / ml of IAA, but did not produce IAA when not treated with toluene.
  • the Pseudomonas chlororaphis O6 strain producing IAA it was confirmed that the color reaction occurred regardless of toluene treatment.
  • the cell suspension was then irrigated 10 ml each to Arabidopsis thaliana DR5-GUS , followed by 100 ⁇ M of toluene after 3 days. After 3 days of treatment, Arabidopsis thaliana DR5-GUS was extracted and stained with GUS to confirm GUS expression. Plants were placed in GUS staining reagent (100mM NaH 2 PO 4 , 5mM Potassium Ferricyanide, 5mM Potassium Ferrocyanide, 10mM EDTA, 0.1% Triton X-100, 5mg / ml X-Gluc) and soaked for 12 hours at 37 ° C. Were removed and washed until the plant became white in 50% ethanol.
  • GUS staining reagent 100mM NaH 2 PO 4 , 5mM Potassium Ferricyanide, 5mM Potassium Ferrocyanide, 10mM EDTA, 0.1% Triton X-100, 5mg / ml
  • Pseudomonas putida was produced to observe the root zone fixation to confirm whether the plant exists while maintaining the interaction in the plant roots.
  • a wild tobacco species Nicotiana benthamiana was selected as a model plant, and the target gene was selected from tobacco Chl H (magnesium protoporphyrin chelatase H subunit).
  • Chl H is an important enzyme that chelates magnesium in the chloroplasts of plants. When RNAi of this gene occurs, it causes problems in the production of pigments of chloroplasts and turns the plants yellow.
  • Chl H gene fragment was obtained using the primer set of Chl H in Table 1 below. Since each primer contains a position capable of recombination with a vector, a construct was constructed to express Chl H by recombinantly in an RNAi-enabled plasmid in Nicotiana benthamiana .
  • Chl H RNAi vectors were prepared for pK7GWIWG2-I, a binary vector used for hairpin RNA expression.
  • the bacteria's two-component system recognizes external VOCs (Volatile organic compounds) in TodS, which causes phosphorylation to activate TodT, moves into the nucleus, and binds to the TodT box.
  • DR5 promoter reported as an auxin response element
  • RNAi vectors Genomic DNA was extracted from transgenic Arabidopsis seedlings inserted with DR5 :: GUS, and the gene fragment of about 300bp corresponding to the DR5 sequence and the -46 CaMV minimal promoter region was extracted using the primers of Table 1 below. Amplified.
  • the attR-ChlH-attR-intron portion was amplified with the primers of Table 1 below, and amplified so as to be connected to the DR5 promoter, thereby obtaining an insert of about 1.2 kb. . Since the amplification was carried out with a primer including a position capable of recombination with the vector, pK7_DR5_ccdB vector was constructed through recombination.
  • PK7GWIWG2 (I) containing the ChlH gene was obtained through the gateway cloning system BP reaction to obtain the pDONR-ChlH vector, which is an RNAi vector containing the DR5 promoter and Chl H through the LR reaction with the pK7_DR5_ccdB vector.
  • pK7_DR5_ChlH was obtained (FIG. 7).
  • the constructed pK7_DR5_Ch1H vector was transformed into the Agrobacterium tumefaciens GV2260 strain, and then Agrobacterium tumefaciens ( A. tumefaciens ) cell suspension on the leaves of Nicotiana benthamiana . Direct infiltration was performed. Then, after 1-2 days, IAA standards were infiltrated at various concentrations of 100 nM, 10 ⁇ M, 100 ⁇ M and 1 mM. As a result, as shown in FIG. 8, the Chl H phenotype was observed to change the color of the leaf only at the intersection of the IAA standard treatment group and the Agrobacterium tumefaciens treatment group. Part did not show the Chl H phenotype.
  • Chl H RNAi turned yellow regardless of all treatments, but in DR5- chl H, the Pseudomonas putida O6iaaMH treatment, Pseudomonas putida treated with toluene, Pseudomonas chlorolapi treatment and IAA treatment only It was observed that the cross section treated with the bacterium tumefaciens strain turned yellow.
  • Chl H RNAi showed low chlorophyll content regardless of all treatments, but DR5- chl H showed high chlorophyll content in toluene-treated treatments, but Pseudomonas treated with toluene. Chlorophyll content was low only in Pseudomonas putida and IAA treatments.
  • IAA generated by Pseudomonas putida strain with TodST-IAA module in the presence of toluene was able to confirm the operation of the phyto-sensor system in which chl H RNAi occurred and changed the phenotype.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

The present invention relates to a reporter plant system for the detection of harmful non-degradable aromatic compounds and a use thereof. The present invention can provide a reporter plant system which is very useful for the detection of harmful non-degradable aromatic compounds including toluene, and is able to detect harmful non-degradable aromatic compounds more sensitively and accurately than the prior art. Also, the present invention makes it possible to directly and simply recognize a human-inaccessible area rather than by means of an indirect external recognition system, and can be effectively used to develop a system capable of recognizing toxic substances in real life without using a chemical or physical apparatus.

Description

난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템 및 이의 용도Reporter plant system for detection of hardly degradable harmful aromatic compounds and use thereof
본 발명은 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템 및 이의 용도에 관한 것이다.The present invention relates to a reporter plant system for detecting hardly decomposable hazardous aromatic compounds and uses thereof.
난분해성 방향족 화합물이 자연으로 배출될 경우 먹이사슬이나 다른 경로를 통해 생체로 유입되면 대개 그 구조적 유사성과 높은 반응성으로 세포 내 DNA나 단백질 등과 같은 고분자와 반응하여 발암성이 되거나 환경호르몬으로 작용한다. 그 예로, 자동차 배출가스와 쓰레기 연소 과정에서 배출되는 다이옥신을 들 수 있는 데 이는 암을 유발할 뿐만 아니라 생식 및 면역체계 이상을 초래하는 물질이며, 또한 DDT(dichloro-diphenyl-trichloroethane)는 살충제로 생산되어 생식체계에 유해한 환경호르몬으로 작용한다. 자연에 유입되는 난분해성 방향족 화합물은 선진국에서 최우선적으로 제거해야 할 환경 독성물질로 분류된다. 이러한 난분해성 방향족 화합물을 측정하기 위하여 기기 화학적 방법이 활용되고 있으나 막대한 장비로 비용이 높은 점과 복잡한 처리에 의해 시간이 오래 걸리며 누구나 활용이 용이하지 않는 점으로 경제적 기술적 효과가 크게 부각되지 않고 있는 실정이다. 또한 이들 중장비 기기는 현장에서 활용할 수 없는 불편함도 있다. 그러므로 난분해성 방향족 화합물을 보다 신속, 간단, 저비용으로 정확하게 검출하는 기술개발은 스톡홀름 환경협약을 이행해야 하는 국가사회적 측면과 고비용과 현장적용에서 문제점을 해결해야 하는 경제적, 환경기술적 차원에서 중요하다.When a non-degradable aromatic compound is released into nature through a food chain or other pathway, it is usually carcinogenic or acts as an environmental hormone by reacting with a polymer such as DNA or protein in cells with its structural similarity and high reactivity. Examples include dioxins, which are emitted during the combustion of automobile emissions and garbage, which not only cause cancer, but also cause reproductive and immune system abnormalities. Also, DDT (dichloro-diphenyl-trichloroethane) is produced as a pesticide. It acts as an environmental hormone that is harmful to the reproductive system. Hardly degradable aromatic compounds entering nature are classified as environmentally toxic substances to be removed first in developed countries. Instrumental chemical methods are used to measure these hardly decomposable aromatic compounds, but the economic and technical effects are not highlighted due to the high cost of the large equipment and the long time due to the complicated processing and the inability to use them. to be. In addition, these heavy equipment equipment is inconvenient to use in the field. Therefore, the development of technology to detect hardly decomposable aromatic compounds more quickly, simply and at low cost is important in terms of national and social aspects of implementing the Stockholm Environmental Convention and in terms of economic and environmental technologies that must solve problems in high cost and field application.
BTEX 화합물은 벤젠(benzene), 톨루엔(toluene), 에틸벤젠(ethylbenzene), 크실렌(xylene)을 일컫는 것으로 최근 산업활동의 급성장에 따라 상당량의 유해오염물질들이 자연환경으로 유출되고 있는데 이 중에서도 VOCs(volatile organic compounds)의 대표적인 유류물질인 BTEX 화합물은 유류저장소에서의 누출 및 사고, 산업체에서의 광범위한 사용으로 인해 오염 정도가 심해지고 있다. 이들에 의한 오염은 지표수원, 지하수원, 처리식수 등 공공 식수계 전반에 걸쳐 광범위하게 발견되고 있으며 대부분의 VOCs는 발암을 유발하는 유독성 유기화학물질로 판명되고 있어 전 세계적으로 음용수의 휘발성 유기물질 규제지침 및 법령제정이 강화되고 있는 추세이다.BTEX compounds refer to benzene, toluene, ethylbenzene and xylene. Recently, due to the rapid growth of industrial activities, a considerable amount of harmful pollutants are released into the natural environment, among which VOCs (volatile BTEX compounds, a representative oil compound of organic compounds, are becoming more contaminated due to leakages and accidents in oil storage and widespread use in industry. Pollution caused by these is widely found in the public drinking water system such as surface water source, ground water source, and treated drinking water. Most VOCs are found to be toxic organic chemicals that cause carcinogenicity. Directives and legislation are on the rise.
이러한 BTEX를 측정하기 위하여, 종래에는 기기 화학적 방법으로 크로마토그래피-질량분석법(GC-MS) 등이 활용되고 있었으나 이러한 방법은 비용이 많이 들고, 복잡한 처리에 의해 시간이 오래 걸리며, 전문지식이 없는 사람은 활용이 용이하지 않고 또한 중장비 기기를 필요로 해 현장에서 활용할 수 없는 사용상의 한계가 있었다(한국공개특허 제10-2004-0076292호). 따라서, 유류 관련 유해 환경오염물질인 BTEX 화합물(벤젠, 톨루엔, 에틸벤젠, 크실렌)과 폭발물에서 유래하는 톨루엔계 화합물인 2,4,6-trinitrotoluene(TNT), 그리고 2,4-Dinitrotoluene(DNT) 등 난분해성 유해 방향족 화합물을 효율적으로 검출하고 제거하기 위한 기술개발 노력이 지속되고 있다.In order to measure such BTEX, chromatography-mass spectrometry (GC-MS) and the like have been conventionally used as an instrument chemical method, but such a method is expensive, takes a long time by complicated processing, and has no expertise. Silver is not easy to use and also requires heavy equipment, there was a limitation in use that can not be used in the field (Korean Patent Publication No. 10-2004-0076292). Therefore, BTEX compounds (benzene, toluene, ethylbenzene, xylene), which are oil-related harmful environmental pollutants, and 2,4,6-trinitrotoluene (TNT), which are derived from explosives, and 2,4-Dinitrotoluene (DNT) Efforts to develop technologies for efficiently detecting and removing hardly decomposable hazardous aromatic compounds have continued.
한편, 한국등록특허 제1430685호에 난분해성 유해 방향족 화합물 감지용 인공바이오센서 및 이의 제조방법에 대해 개시되어 있고, 한국등록특허 제0539142호에 비티이엑스 검출용 바이오센서 및 그 제조방법에 대해 개시되어 있다. 하지만, 본 발명의 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템 및 이의 용도에 대해서는 언급된 바 없다. Meanwhile, Korean Patent No. 1430685 discloses an artificial biosensor for detecting a degradable harmful aromatic compound and a manufacturing method thereof, and Korean Patent No. 0539142 discloses a biosensor for detecting a BT extract and a method of manufacturing the same. have. However, there is no mention of the reporter plant system for detecting the hardly degradable harmful aromatic compound of the present invention and its use.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 근권세균을 톨루엔 존재시 TodST-IAA 모듈이 작동하여 식물생장호르몬을 생산하도록 형질전환시키고, 이를 인식하는 DR5 프로모터 및 GUS 유전자를 포함하는 발현벡터 또는 DR5 프로모터 및 ChlH(Mg-chelatase H subunit) 유전자를 포함하는 RNAi 발현벡터로 형질전환된 식물체를 제작하여 그 표현형으로 비형질전환 식물체에 비해 형질전환 식물체의 색이 변하는 것을 확인함으로써, 본 발명을 완성하였다.The present invention is derived from the above requirements, in the present invention, the TodST-IAA module operates in the presence of toluene to transform plant to produce plant growth hormone, and includes a DR5 promoter and a GUS gene which recognizes the same. By preparing a plant transformed with an RNAi expression vector comprising an expression vector or a DR5 promoter and a ChlH (Mg-chelatase H subunit) gene, the phenotype of the transformed plant compared to the non-transformed plant was confirmed. The invention has been completed.
상기 목적을 달성하기 위하여, 본 발명은 1) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터로 형질전환된 것을 특징으로 하는 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균: 및 2) 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체로 이루어진 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템을 제공한다.In order to achieve the above object, the present invention is 1) Pseudomonas putida derived from todS gene, Pseudomonas putida derived from todT gene, Pseudomonas putida derived from the promoter (promoter) and plant growth hormone (plant growth hormone) Transformed rhizobacteria for the production of plant growth hormone in the presence of a hardly degradable noxious aromatic compound characterized by being transformed with an expression vector comprising a gene: and 2) a promoter and reporter gene specifically recognized by the plant growth hormone Provided is a reporter plant system for detecting hardly decomposable harmful aromatic compounds in soil, comprising a plant transformed with an RNAi expression vector comprising a promoter and a pigment generating gene that the expression vector or plant growth hormone specifically recognizes.
또한, 본 발명은 상기 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템의 제조 방법을 제공한다.In addition, the present invention provides a method for producing a reporter plant system for detecting hardly decomposable harmful aromatic compounds in the soil.
또한, 본 발명은 상기 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템을 이용한 토양 내 난분해성 유해 방향족 화합물의 검출 방법을 제공한다.The present invention also provides a method for detecting a hardly decomposable harmful aromatic compound in soil using a reporter plant system for detecting a hardly decomposable harmful aromatic compound in soil.
본 발명은 톨루엔을 포함한 난분해성 유해 방향족 화합물의 감지에 매우 유용한 리포터 식물시스템을 제공할 수 있으며, 종래 기술보다 상기 난분해성 유해 방향족 화합물질을 더욱 민감하고 정확하게 감지할 수 있다. 또한, 사람의 접근이 용이하지 않은 지역의 간접적인 외부인식 시스템이 아닌 직접적인 간편인지가 가능하며, 화학적/물리적 기구를 사용하지 않고 실생활에서 독성물질을 인식할 수 있는 시스템을 개발하는데 유용하게 사용될 수 있다. The present invention can provide a reporter plant system which is very useful for detecting hardly decomposable harmful aromatic compounds including toluene, and can more sensitively and accurately detect the hardly decomposable hazardous aromatic compounds than in the prior art. In addition, it is possible to recognize the direct simplicity rather than the indirect external recognition system of the area where people are not easily accessible, and it can be useful for developing a system that can recognize toxic substances in real life without using chemical / physical equipment. have.
도 1은 본 발명의 슈도모나스 푸티다(Pseudomonas putida) TodST-IAA 모듈 및 DR5-GUS 시스템을 이용한 톨루엔(toluene) 리포터 식물체 제작 모식도를 나타낸 것이다.Figure 1 shows a schematic diagram of toluene reporter plant production using Pseudomonas putida TodST-IAA module and DR5-GUS system of the present invention.
도 2는 세균이 생산하는 식물생장호르몬인 IAA(Indole-3-acetic acid)의 생합성 경로를 나타낸 것이다. 보라색 화살표시는 IAM(indole-3-acetamide) 경로이며, 빨간색 화살표시는 IPyA(Indole-3-pyruvate) 경로이다.Figure 2 shows the biosynthetic pathway of plant growth hormone IAA (Indole-3-acetic acid) produced by bacteria. The purple arrow is the IAM (indole-3-acetamide) pathway and the red arrow is the IPyA (Indole-3-pyruvate) pathway.
도 3은 톨루엔을 처리하였을 때, 본 발명의 슈도모나스 푸티다(Pseudomonas putida) 06iaaMH, 30iaaMH 및 ipdC 균주의 IAA 생산능을 나타낸 것이다. Figure 3 shows the IAA production capacity of Pseudomonas putida 06iaaMH, 30iaaMH and ipdC strain of the present invention when treated with toluene.
도 4는 톨루엔 유무에 따른 본 발명의 슈도모나스 푸티다(Pseudomonas putida) 06iaaMH, 30iaaMH 및 ipdC 균주의 IAA 생산능을 이용하여 애기장대 식물체의 GUS 발현 결과를 나타낸 것이다.Figure 4 shows the results of GUS expression of Arabidopsis plants using IAA production capacity of Pseudomonas putida 06iaaMH, 30iaaMH and ipdC strain of the present invention with or without toluene.
도 5는 본 발명의 슈도모나스 푸티다(Pseudomonas putida) 균주의 근권 정착력(root colonization capacity)을 나타낸 것이다.Figure 5 shows the root colonization capacity (root colonization capacity) of the Pseudomonas putida strain of the present invention.
도 6은 본 발명의 슈도모나스 푸티다(Pseudomonas putida) TodST-IAA 모듈 및 Ch1H-RNAi 시스템을 이용한 톨루엔 리포터 형질전환 식물체 제작 모식도를 나타낸 것이다.Figure 6 shows a schematic diagram of toluene reporter transgenic plant production using Pseudomonas putida TodST-IAA module and Ch1H-RNAi system of the present invention.
도 7은 본 발명의 pK7_DR5_Ch1H 벡터의 제작 방법의 모식도를 나타낸 것이다.7 shows a schematic diagram of a method for producing a pK7_DR5_Ch1H vector of the present invention.
도 8은 톨루엔 유무에 따른 담배(Nicotiana benthamiana) 식물체의 잎에 RNAi 발현 벡터로 형질전환시킨 아그로박테리움 투메파시엔스(Agrobacterium tumefasiens) 균주와 IAA 표준물질을 농도별로 처리하였을 때, Ch1H 유전자의 RNAi 표현형을 나타낸 것이다. Mock는 아무것도 처리하지 않은 음성 대조군이다.Figure 8 shows the RNAi phenotype of the Ch1H gene when treated with Agrobacterium tumefasiens strains and IAA standards transformed with RNAi expression vector on the leaves of tobacco plants Nicotiana benthamiana with or without toluene. It is shown. Mock is a negative control treated with nothing.
도 9는 톨루엔 유무에 따른 담배(Nicotiana benthamiana) 식물체의 잎에 RNAi 발현 벡터로 형질전환시킨 아그로박테리움 투메파시엔스(Agrobacterium tumefasiens) 균주, IAA 생산 균주인 슈도모나스 푸티다(Pseudomonas putida) O6iaaMH 균주와 슈도모나스 클로로라피스(Pseudomonas chlororaphis) 균주 및 IAA 표준물질을 처리하였을 때, Ch1H 유전자의 RNAi 표현형을 나타낸 것이다. Water control은 아무것도 처리하지 않은 음성 대조군이다. 9 is a cigarette in accordance with toluene or without (Nicotiana benthamiana) transfected with RNAi expression vectors on a leaf of the plant conversion was Agrobacterium Tome Pacific Enschede (Agrobacterium tumefasiens) strain, IAA-producing strain of Pseudomonas footage is (Pseudomonas putida) O6iaaMH strain and Pseudomonas When treated with Pseudomonas chlororaphis strain and IAA standards, the RNAi phenotype of the Ch1H gene is shown. Water control is a negative control with no treatment.
도 10은 톨루엔 유무에 따른 담배(Nicotiana benthamiana) 식물체의 잎에 RNAi 발현 벡터로 형질전환시킨 아그로박테리움 투메파시엔스(Agrobacterium tumefasiens) 균주, IAA 생산 균주인 슈도모나스 푸티다(Pseudomonas putida) O6iaaMH 균주와 슈도모나스 클로로라피스(Pseudomonas chlororaphis) 균주 및 IAA 표준물질을 처리하였을 때, 엽록소(chlorophyll) 함량을 나타낸 것이다. Water control은 아무것도 처리하지 않은 음성 대조군이다. 10 is a cigarette in accordance with toluene or without (Nicotiana benthamiana) transfected with RNAi expression vectors on a leaf of the plant conversion was Agrobacterium Tome Pacific Enschede (Agrobacterium tumefasiens) strain, IAA-producing strain of Pseudomonas footage is (Pseudomonas putida) O6iaaMH strain and Pseudomonas Chlorophyll content is shown when treated with Pseudomonas chlororaphis strain and IAA standards. Water control is a negative control with no treatment.
본 발명은The present invention
1) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터로 형질전환된 것을 특징으로 하는 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균: 및1) Pseudomonas putida derived from todS gene, Pseudomonas putida- derived todT gene, Pseudomonas putida- derived todX gene promoter (promoter) and plant growth hormone (plant growth hormone) gene transformed with the expression vector Transformed rhizome bacteria for the production of plant growth hormone in the presence of a non-degradable harmful aromatic compound, characterized in that: and
2) 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체로 이루어진 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템을 제공한다.2) a plant transformed with an expression vector comprising a promoter and a reporter gene specifically recognized by the plant growth hormone or an RNAi expression vector comprising a promoter and a pigment generating gene specifically recognized by the plant growth hormone Provided is a reporter plant system for detecting hardly decomposable harmful aromatic compounds in soil.
상기 todS 유전자는 구체적으로 서열번호 7의 염기서열을 갖는 것이 바람직하지만, 이에 제한되지 않는다.Specifically, the todS gene preferably has a nucleotide sequence of SEQ ID NO: 7, but is not limited thereto.
상기 todT 유전자는 구체적으로 서열번호 8의 염기서열을 갖는 것이 바람직하지만, 이에 제한되지 않는다. Specifically, the todT gene preferably has a nucleotide sequence of SEQ ID NO: 8, but is not limited thereto.
상기 todX 유전자의 프로모터는 구체적으로 서열번호 9의 염기서열을 갖는 것이 바람직하지만, 이에 제한되지 않는다. Specifically, the promoter of the todX gene preferably has a nucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
상기 todS 유전자, todT 유전자 및 todX 유전자의 프로모터는 각각 서열번호 7, 서열번호 8 및 서열번호 9의 염기서열에서 동일한 활성을 갖는 한, 하나 또는 몇 개의 염기가 첨가, 결실, 치환되는 염기서열로 구성되는 것이 바람직하지만, 이에 제한되지 않는다. The promoters of the todS gene, the todT gene, and the todX gene are composed of nucleotide sequences in which one or several bases are added, deleted, or substituted as long as they have the same activity in the nucleotide sequences of SEQ ID NO: 7, SEQ ID NO: 8, and SEQ ID NO: 9, respectively. It is preferred, but not limited to.
상기 todS 유전자, todT 유전자 및 todX 유전자의 프로모터는 각각 서열번호 7, 서열번호 8 및 서열번호 9의 염기서열에 80% 이상의 상동성, 보다 구체적으로 90% 이상의 상동성, 가장 구체적 95%, 96%, 97%, 98%, 99% 또는 99.5% 이상의 상동성을 갖는 염기서열로 구성되는 것이 바람직하지만, 이에 제한되지 않는다. The promoters of the todS gene, the todT gene, and the todX gene are at least 80% homology, more specifically at least 90% homology, most specifically 95%, 96% to the nucleotide sequences of SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively. It is preferably composed of a base sequence having a homology of at least 97%, 98%, 99% or 99.5%, but is not limited thereto.
상기 식물생장호르몬은 IAA(indole acetic acid), 사이토키닌(cytokinin), 지베렐린(gibberellin), 에틸렌(ethylene), 앱시스산(abscisic acid), 브라시노스테로이드(brassinosteroid) 등인 것이 바람직하지만, 이에 제한되지 않는다.The plant growth hormone is preferably IAA (indole acetic acid), cytokinin (cytokinin), gibberellin (gibberellin), ethylene (ethylene), abscisic acid (brassinosteroid), etc., but is not limited thereto. Do not.
상기 식물생장호르몬이 특이적으로 인식하는 프로모터는 DR5 프로모터, 사이토키닌 수용체(cytokinin receptor) 프로모터, 에틸렌 수용체(ethylene receptor) 프로모터, PR1(pathogenesis-related 1) 프로모터인 것이 바람직하지만, 이에 제한되지 않는다.The promoter specifically recognized by the plant growth hormone is preferably a DR5 promoter, a cytokinin receptor promoter, an ethylene receptor promoter, or a pathogenesis-related 1 promoter, but is not limited thereto. .
상기 리포터 유전자는 녹색형광단백질(GFP), 알칼라인 포스파타제(alkaline phosphatase), 루시페라제(luciferase), 베타-글루쿠로니다아제(GUS) 및 베타-갈락토시다아제(β-galactosidase) 유전자로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하며, 더 바람직하게는 베타-글루쿠로니다아제(GUS) 유전자일 수 있으나, 이에 제한되지 않는다. The reporter gene is composed of green fluorescent protein (GFP), alkaline phosphatase, luciferase, luciferase, beta-glucuronidase (GUS) and beta-galactosidase genes. It is preferably any one selected from the group, more preferably beta-glucuronidase (GUS) gene, but is not limited thereto.
상기 색소 생성 유전자는 ChlH(Mg-chelatase H subunit) 유전자, PDS(phytoene desaturase) 유전자인 것이 바람직하지만, 이에 제한되지 않는다.The pigment generating gene is preferably a ChlH (Mg-chelatase H subunit) gene or a PDS (phytoene desaturase) gene, but is not limited thereto.
상기 근권세균은 슈도모나스 푸티다(Pseudomonas putida), 패니바실러스 폴리믹사(Paenibacillus polymyxa) E681, 바실러스 서틸리스(Bacillus subtilis) GB03, 바실러스 푸밀러스(Bacillus pumilus) INR7인 것이 바람직하지만, 이에 제한되지 않는다.The rhizosphere bacteria are Pseudomonas putida , Paenibacillus polymyxa E681, Bacillus subtilis GB03, Bacillus pumilus INR7 is preferred, but not limited thereto.
상기 난분해성 유해 방향족 화합물은 BTEX 화합물(벤젠(benzene), 톨루엔(toluene), 에틸벤젠(ethylbenzene), 크실렌(xylene)) 또는 톨루엔계 화합물(예를 들면, 2,4,6-트리니트로톨루엔(2,4,6-trinitrotoluene, TNT))인 것이 바람직하며, 더 바람직하게는 톨루엔(toluene)일 수 있으나, 이에 제한되지 않는다. The hardly decomposable hazardous aromatic compound may be a BTEX compound (benzene, toluene, ethylbenzene, xylene) or toluene compound (for example, 2,4,6-trinitrotoluene (2). , 4,6-trinitrotoluene, TNT)), more preferably toluene, but is not limited thereto.
용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.The term “vector” is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells. The term "carrier" is often used interchangeably with "vector". The term “expression vector” refers to a recombinant DNA molecule comprising a coding sequence of interest and a suitable nucleic acid sequence necessary to express a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.Preferred examples of plant expression vectors are Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells. Another type of Ti-plasmid vector (see EP 0 116 718 B1) is used to transfer hybrid DNA sequences to protoplasts from which current plant cells or new plants can be produced that properly insert hybrid DNA into the plant's genome. have. A particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host are viral vectors, such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc. For example, it may be selected from an incomplete plant viral vector. The use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate), 포스피노트리신(phosphinothricin) 및 글루포시네이트(glufosinate)와 같은 제초제 저항성 유전자, 카나마이신(Kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 제한되지 않는다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate, phosphinothricin and glufosinate, kanamycin, G418, bleomycin, hygromycin, There are antibiotic resistance genes such as chloramphenicol, but are not limited thereto.
본 발명의 식물 발현 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. In the plant expression vector of the present invention, the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter.
"프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.The term "promoter" refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.
본 발명의 식물 발현 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the plant expression vectors of the present invention, conventional terminators can be used, for example nopalin synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens (Agrobacterium) terminators of the octopine gene of tumefaciens, but are not limited thereto. With regard to the need for terminators, such regions are generally known to increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly desirable in the context of the present invention.
식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), 원형질체의 전기천공법 (Shillito et al., 1985, Bio/Technol. 3: 1099-1102), 식물 요소로의 현미주사법 (Crossway et al.,1986, Mol. Gen. Genet. 202: 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al.,1987, Nature 327: 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EPA 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 바이너리 벡터 기술을 이용하는 것이다.Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including both dicotyledonous plants as well as monocotyledonous plants. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. The method is based on the calcium / polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), electroporation of protoplasts ( Shillito et al., 1985, Bio / Technol. 3: 1099-1102), microscopic injection into plant elements (Crossway et al., 1986, Mol. Gen. Genet. 202: 179-185), of various plant elements ( DNA or RNA-coated) particle bombardment (Klein et al., 1987, Nature 327: 70), in Agrobacterium tumerfaciens mediated gene transfer (non-invasion) by plant infiltration or transformation of mature pollen or vesicles. Integrity) can be appropriately selected from infection by virus (EP 0 301 316) and the like. Preferred methods according to the invention include Agrobacterium mediated DNA delivery. Especially preferred is the use of the so-called binary vector technology as described in EPA 120 516 and US Pat. No. 4,940,838.
또한, 본 발명은In addition, the present invention
1) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터를 제조하는 단계;1) preparing an expression vector comprising a promoter and plant growth hormone gene of Pseudomonas putida- derived todS gene, Pseudomonas putida- derived todT gene, and Pseudomonas putida- derived todX gene ;
2) 상기 1) 단계의 발현 벡터를 근권세균에 형질전환시켜 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균을 제조하는 단계; 및2) transforming the expression vector of step 1) to the rhizosphere bacteria to prepare a transformed rhizosphere bacterium for plant growth hormone production in the presence of a hardly decomposable harmful aromatic compound; And
3) 상기 2) 단계의 형질전환 근권세균을 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체에 처리하는 단계를 포함하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템의 제조 방법을 제공한다.3) RNAi expression comprising the expression vector comprising a promoter and a reporter gene that the plant growth hormone specifically recognizes the transformed rhizosphere bacteria of step 2) or a promoter and a pigment generating gene that the plant growth hormone specifically recognizes Provided is a method for producing a reporter plant system for detecting a non-degradable harmful aromatic compound in soil, comprising the step of treating the plant transformed with the vector.
본 발명의 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템의 제조 방법에서, 각 유전자, 식물생장호르몬, 근권세균, 리포터 유전자, 색소 생성 유전자 등은 전술한 바와 같다.In the method for producing a reporter plant system for detecting a hardly degradable noxious aromatic compound in soil of the present invention, each gene, plant growth hormone, rhizosphere bacteria, reporter gene, pigment generating gene and the like are as described above.
또한, 본 발명은In addition, the present invention
1) 피검시료에 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체를 식재하는 단계;1) A plant transformed with an RNAi expression vector comprising an expression vector comprising a promoter and a reporter gene specifically recognized by the plant growth hormone or a promoter and a pigment generating gene specifically recognized by the plant growth hormone in the test sample. Planting step;
2) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터로 형질전환된 것을 특징으로 하는 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균을 상기 1) 단계의 형질전환 식물체가 식재된 피검시료에 처리하는 단계; 및2) transformed with an expression vector comprising a Pseudomonas putida derived todS gene, Pseudomonas putida derived todT gene, Pseudomonas putida derived todX promoter and a plant growth hormone gene Treating the transformed plant root bacteria for plant growth hormone production to a test sample in which the transformed plant of step 1) is grown in the presence of a hardly decomposable harmful aromatic compound; And
3) 상기 2) 단계의 형질전환 근권세균의 처리 후 식재된 형질전환 식물체의 색 변화를 확인하는 단계를 포함하는 토양 내 난분해성 유해 방향족 화합물의 검출 방법을 제공한다.3) It provides a method for detecting hardly degradable harmful aromatic compounds in the soil comprising the step of confirming the color change of the transgenic plant planted after the treatment of the transformed rhizosphere bacteria of step 2).
상기 형질전환 식물체의 색 변화는 비형질전환 식물체와 비교하여 확인할 수 있으나, 이에 제한되지 않는다. 즉, 피검 시료에 톨루엔이 존재하는 경우에는 비형질전환 식물체와 비교하여 리포터 유전자를 포함하는 발현 벡터로 형질전환된 식물체는 리포터 유전자의 발현을 통해 색을 나타낼 수 있으며, 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체는 엽록체의 색소 생성에 문제가 생겨 식물체가 노란색으로 변할 수 있다. 따라서, 톨루엔의 존재 유무를 형질전환 식물체의 색 변화를 통해 검출할 수 있는 것이다.The color change of the transgenic plant can be confirmed in comparison with the non-transformed plant, but is not limited thereto. That is, when toluene is present in the test sample, the plant transformed with the expression vector including the reporter gene may be colored through expression of the reporter gene, compared to the non-transformed plant, and RNAi including the pigment generating gene. Plants transformed with the expression vector may have a problem in the production of chloroplast pigment, and the plant may turn yellow. Therefore, the presence or absence of toluene can be detected through the color change of the transgenic plant.
이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for explaining the present invention in more detail, it is obvious to those skilled in the art that the scope of the present invention is not limited by them.
실시예 1. DR5-GUS 시스템을 이용한 톨루엔(toluene) 리포터 식물체 제작Example 1 Preparation of Toluene Reporter Plant Using DR5-GUS System
(1) 슈도모나스 푸티다((1) Pseudomonas putida ( Pseudomonas putidaPseudomonas putida ) TodST-IAA 모듈의 제작) Fabrication of TodST-IAA Module
톨루엔(toluene)을 인식하여 식물이 반응할 수 있는 신호를 생산 및 증폭하게 하기 위하여, 미생물의 이성분조절체계(Two component system)를 이용한 TodST 모듈을 사용하였다. 이 모듈의 TodT-BOX 이하에 식물 호르몬인 IAA(Indole-3-acetic acid)를 생산하는 시스템을 구축하고자 난분해성 유해 방향족 화합물 감지용 인공바이오센서 및 이의 제조방법(한국등록특허 제1430685호)의 슈도모나스 푸티다(Pseudomonas putida) KT2440 균주를 사용하였다(도 1). 옥신(auxin)은 대표적인 식물생장호르몬으로 세포의 생장에 영향을 주며, 식물 근권에서 일부 세균들이 옥신을 생성 및 분비하고 이를 식물이 흡수하여 생장에 이용할 수 있다. 옥신 중에 대표적인 IAA(Indole-3-acetic acid)는 여러 세균에서 다양한 경로로 생성된다. 그 중 가장 특징적인 것은 IAM(indole-3-acetamide) 경로로, 먼저 트립토판(tryptophan)이 iaaM 유전자에 의해 암호화된 트립토판-2-모노옥시게나아제(tryptophan-2-monooxygenase)에 의해 IAM으로 전환된 후 iaaH 유전자에 의해 암호화된 IAM 가수분해효소(amidase, IaaH)에 의해 IAA로 되며, 많은 세균에서 iaaM및 iaaH가 발견된다. 또한, IPyA(Indole-3-pyruvate) 경로는 대부분의 식물에서 IAA를 합성하는 주요 경로이며, 여러 세균에서도 존재하는데 트립토판 아미노산전달효소(tryptophan aminotransferase)에 의해 IPyA로 전환되면서 시작된다. IPyA는 IPDC(Indolepyruvate decarboxylase)에 의해 카르복시기가 제거되면서 IAAld(indole-3-acetaldehyde)로 바뀐 후 IAA로 산화된다(도 2). 따라서, iaaM, iaaHipdC 유전자를 포함하는 발현벡터를 이용하여 높은 농도의 IAA를 생산하는 슈도모나스(Pseudomonas) 속 및 아조스피릴룸(Azospirillum) 속 균주를 제작하기 위하여, iaaMiaaH 유전자는 슈도모나스 클로로라피스(Pseudomonas chlororaphis) O6 및 30-84 균주로부터 얻었으며, ipdC 유전자는 아조스피릴룸 브라실렌스(Azospirillum brasilense) Cd 균주로부터 얻어 발현벡터를 제작하였다. 슈도모나스 클로로라피스(Pseudomonas chlororaphis) O6 및 30-84 균주와 아조스피릴룸 브라실렌스(Azospirillum brasilense) Cd 균주를 각각 KB(King's B) 액체배지 3㎖에 접종하고 30℃에서 24시간 배양하였다. 그 다음, 원심분리하여 균체를 수거한 후 Nanohelix사의 PureHelix Genomic DNA Prep Kit(Column Type)를 사용하여 게놈 DNA를 추출하였다. 이후 게놈 DNA를 주형으로 Roche사의 Expand High Fidelity PCR 시스템을 이용하여 iaaM, iaaHipdC를 증폭하였다. 증폭한 상기 iaaM, iaaHipdC 유전자 조각을 pSEVA641_TodX_RFP 벡터와 라이게이션(ligation)한 후, 슈도모나스 푸티다(Pseudomonas putida) KT2440 균주(pBBRBB_TodST)에 Bio-Rad사의 Gene Pulser Xcell Electroporation 시스템을 이용하여 형질전환한 후, 젠타마이신(Gentamicin) 50㎍/㎖을 첨가한 LB 한천배지에서 자라나는 콜로니를 선별하여 슈도모나스 푸티다(Pseudomonas putida) O6iaaMH, 슈도모나스 푸티다(Pseudomonas putida) 30iaaMH 및 슈도모나스 푸티다(Pseudomonas putida) ipdC 균주를 얻었다. In order to recognize and toluene (toluene) to produce and amplify the signal that plants can react, the TodST module using the two-component system of microorganisms was used. In order to establish a system for producing plant hormone IAA (Indole-3-acetic acid) below TodT-BOX of this module, the artificial biosensor for detecting degradable harmful aromatic compound and its manufacturing method (Korean Patent No. 1430685) Pseudomonas putida KT2440 strain was used (FIG. 1). Auxin (auxin) is a representative plant growth hormone affects the growth of the cells, some bacteria in the plant root area to produce and secrete auxin, which can be absorbed by the plant and used for growth. Indole-3-acetic acid (IAA), a representative of auxin, is produced by various pathways in various bacteria. The most characteristic of these is the indole-3-acetamide (IAM) pathway, which is first converted to tryptophan by tryptophan-2-monooxygenase encoded by the iaaM gene. It is then made IAA by IAM hydrolase (amidase, IaaH) encoded by the iaaH gene, and iaaM and iaaH are found in many bacteria. In addition, the IPyA (Indole-3-pyruvate) pathway is a major pathway for synthesizing IAA in most plants, and is also present in various bacteria, and is initiated by conversion to IPyA by tryptophan aminotransferase. IPyA is oxidized to IAA after changing to IAAld (indole-3-acetaldehyde) while carboxyl group is removed by IPDC (Indolepyruvate decarboxylase) (FIG. 2). Thus, including the iaaM , iaaH and ipdC genes In order to produce a Pseudomonas (Pseudomonas) in and azo RY rilrum (Azospirillum) in strains with the expression vectors to produce high levels of IAA, iaaH and iaaM gene from Pseudomonas chloro lapis (Pseudomonas chlororaphis) O6 and 30-84 strains The ipdC gene was obtained from an Azospirillum brasilense Cd strain to prepare an expression vector. Pseudomonas chloro lapis (Pseudomonas chlororaphis) O6 and 30-84 strains, and azo RY rilrum bra chamber lances (Azospirillum brasilense) inoculated with the respective strain Cd KB (King's B) 3㎖ broth and incubated at 30 ℃ 24 hours. Then, the cells were collected by centrifugation and genomic DNA was extracted using NanoHelix PureHelix Genomic DNA Prep Kit (Column Type). Since genomic DNA as a template amplified iaaM , iaaH and ipdC using Roche's Expand High Fidelity PCR system. After amplifying the amplified iaaM , iaaH and ipdC gene fragments with the pSEVA641_TodX_RFP vector, Pseudomonas putida KT2440 strain (pBBRBB_TodST) was transformed using Bio-Rad's Gene Pulser Xcell Electroporation System, and colonies growing on LB agar medium containing 50 µg / ml of gentamicin were selected and Pseudomonas putida. ) O6iaaMH, Pseudomonas putida 30iaaMH and Pseudomonas putida ipdC strains were obtained.
(2) 인비트로((2) in vitro ( in vitroin vitro ) 톨루엔 의존적 TodST-IAA 모듈의 작동 검증Operational Verification of Toluene-Dependent TodST-IAA Module
슈도모나스 푸티다(Pseudomonas putida) O6iaaMH, 슈도모나스 푸티다 (Pseudomonas putida) 30iaaMH 및 슈도모나스 푸티다(Pseudomonas putida) ipdC 균주의 IAA 생산 여부는 살코프스키 시험(Salkowski test)을 통하여 육안으로 확인하였으며, TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) 균주에 톨루엔을 처리했을 때의 IAA 생산량을 IAA의 표준곡선(Standard curve)과 비교하여 정량화하였다. 균주를 YEM(효모 추출물 0.1%, 만니톨 1%, K2HPO4 0.05%, 황산마그네슘 0.02%, 염화나트륨 0.01%, PH 7.0) 배지에 0.1% 트립토판을 첨가한 배지와 첨가하지 않은 배지에 각각 접종하고 3일간 30℃에서 170rpm으로 진탕배양하였다. 배양액 중 1㎖을 원심분리하여 상등액을 유리관(glass tube)으로 옮긴 후 살코프스키 시약(Salkowski reagent; 0.5M FeCl3 2㎖ + 35% HClO4 98.0㎖) 1㎖을 첨가하고 암조건에서 25분간 반응시켰다. 그런 다음, 자외선 분광광도계(UV spectrophotometer)를 이용하여 530nm에서 흡광도를 측정하였으며, 표준물질로 IAA(indole-3-acetic acid, Sigma, USA)를 사용하여 표준곡선을 작성하고 IAA 표준곡선과 비교하여 OD값을 IAA 농도로 환산하였다. 그 결과, 도 3에 개시된 바와 같이 TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) ipdC, O6iaaMH 및 30iaaMH 균주는 톨루엔을 처리했을 때, 각각 약 31㎍/㎖, 38㎍/㎖ 및 20㎍/㎖의 IAA를 생산하는 것으로 나타났지만, 톨루엔을 처리하지 않았을 때는 IAA를 생산하지 않는 것을 확인할 수 있었다. IAA를 생산하는 슈도모나스 클로로라피스(Pseudomonas chlororaphis) O6 균주에서는 톨루엔 처리 유무와 관계없이 발색반응이 일어나는 것을 확인할 수 있었다. Pseudomonas putida O6iaaMH, Pseudomonas putida In (Pseudomonas putida) 30iaaMH and Pseudomonas footage is (Pseudomonas putida) IAA production whether the ipdC strains was confirmed with the naked eye through the flesh Corp. ski test (Salkowski test), the Pseudomonas footage with TodST-IAA module (Pseudomonas putida) strains The yield of IAA when treated with toluene was quantified by comparison with the standard curve of IAA. Strains were inoculated in YEM (0.1% yeast extract, mannitol 1%, K 2 HPO 4 0.05%, magnesium sulfate 0.02%, sodium chloride 0.01%, PH 7.0) medium with 0.1% tryptophan and medium without Shake culture was performed at 30 ° C. at 170 rpm for 3 days. Centrifuge 1 ml of the culture, transfer the supernatant to a glass tube, and add 1 ml of Salkowski reagent (2 ml of 0.5M FeCl 3 + 35% HClO 4 98.0 ml) for 25 minutes under dark conditions. Reacted. The absorbance was then measured at 530 nm using an UV spectrophotometer, and a standard curve was prepared using IAA (indole-3-acetic acid, Sigma, USA) as a standard and compared with the IAA standard curve. OD value was converted into IAA concentration. As a result, the footage is Pseudomonas (Pseudomonas putida) ip dC, O6iaa MH and MH iaa 30 strain having a TodST-IAA module as set forth in 3, when processing the toluene, about 31㎍ / ㎖ respectively, 38㎍ / ㎖ And 20 μg / ml of IAA, but did not produce IAA when not treated with toluene. In the Pseudomonas chlororaphis O6 strain producing IAA, it was confirmed that the color reaction occurred regardless of toluene treatment.
(3) 애기장대( Arabidopsis thaliana ) DR5-GUS 를 이용한 GUS 조직화학분석(histochemical assay) (3) Arabidopsis (Arabidopsis thaliana) GUS staining minutes using DR5-GUS analysis (histochemical assay)
TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) 균주에 톨루엔을 처리하였을 때, 생산된 IAA가 식물에 의해서 인식되는지를 확인하기 위해서, 애기장대(Arabidopsis thaliana) DR5-GUS를 이용하여 GUS 조직화학분석(histochemical assay)을 실시하였다. 식물 호르몬에 의해 GUS 유전자의 발현이 조절되는 애기장대(Arabidopsis thaliana) DR5-GUS를 3주간 키운 뒤, 슈도모나스 푸티다(Pseudomonas putida) 균주를 KB 액체배지에 2일간 배양하고, OD600=5.0의 세포(Cell)를 PBS 버퍼에 워싱(washing)하였다. 그런 다음, 상기 세포현탁액(Cell suspension)을 애기장대(Arabidopsis thaliana) DR5-GUS에 10㎖씩 관주하였으며, 3일 후 100μM의 톨루엔을 관주하였다. 처리 3일 후, 애기장대(Arabidopsis thaliana) DR5-GUS를 뽑아 GUS 염색(staining)을 하여 GUS 발현 유무를 확인하였다. 식물체를 GUS 염색시약(100mM NaH2PO4, 5mM Potassium Ferricyanide, 5mM Potassium Ferrocyanide, 10mM EDTA, 0.1% Triton X-100, 5mg/ml X-Gluc)에 넣고 37℃에서 12시간 침지한 후 GUS 염색시약을 제거하고 50% 에탄올에 식물체가 하얗게 될 때까지 세척하였다. 그 후 파랗게 염색된 식물체를 육안으로 관찰하여 확인할 수 있었다. 그 결과, 도 4에 개시된 바와 같이 슈도모나스 푸티다(Pseudomonas putida)의 현탁액을 관주한 후 톨루엔을 처리한 애기장대 DR5-GUS는 GUS가 발현되어 파랗게 변하였지만, 상기 현탁액을 관주한 후 톨리엔을 처리하지 않은 애기장대 DR5-GUS에서는 GUS가 발현되지 않았다. 따라서, 토양에 남아있는 TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) 균주가 외부의 톨루엔을 인지함으로써, 생산한 IAA가 세포내 자연적으로 생산되는 IAA와 독립적으로 리포터 시스템을 성립할 수 있는 것을 식물체 조건하에서 확인할 수 있었다.GUS histochemistry using Arabidopsis thaliana DR5-GUS to confirm whether the produced IAA is recognized by plants when Pseudomonas putida strain with TodST-IAA module is treated with toluene A histochemical assay was performed. The back of Arabidopsis (Arabidopsis thaliana) DR5-GUS which the expression of the GUS gene controlled by the plant hormone grown 3 weeks, the Pseudomonas footage (Pseudomonas putida) strain KB liquid medium two days incubation and, OD 600 = 5.0 the cells (Cell) was washed in PBS buffer. The cell suspension was then irrigated 10 ml each to Arabidopsis thaliana DR5-GUS , followed by 100 μM of toluene after 3 days. After 3 days of treatment, Arabidopsis thaliana DR5-GUS was extracted and stained with GUS to confirm GUS expression. Plants were placed in GUS staining reagent (100mM NaH 2 PO 4 , 5mM Potassium Ferricyanide, 5mM Potassium Ferrocyanide, 10mM EDTA, 0.1% Triton X-100, 5mg / ml X-Gluc) and soaked for 12 hours at 37 ° C. Were removed and washed until the plant became white in 50% ethanol. After that, blue-dyed plants were visually observed and confirmed. As a result, the Arabidopsis DR5-GUS treated with toluene after irrigation of a suspension of Pseudomonas putida as shown in FIG. 4 turned blue with GUS expression, but after treatment with toluene GUS was not expressed in Arabidopsis DR5-GUS which did not. Thus, remaining in the soil Pseudomonas putida strain with TodST-IAA module recognizes external toluene, confirming that the produced IAA can establish the reporter system independently of the IAA produced naturally in the cell under plant conditions. .
(4) 슈도모나스 푸티다((4) Pseudomonas putida ( Pseudomonas putidaPseudomonas putida )의 근권 정착력 검증Root Settlement Test
제작된 슈도모나스 푸티다(Pseudomonas putida)가 식물뿌리에서 상호작용을 유지하면서 존재하는지 확인하기 위하여 근권 정착력을 관찰하였다. TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) 균주를 KB 액체배지에 배양하고 담배식물의 뿌리에 OD600=0.1, 1 및 10의 세포 현탁액(cell suspension)을 10㎖씩 관주하였다. 이후 0, 3, 7, 14 및 28일 동안 담배식물 근권에 존재하는 슈도모나스 푸티다(Pseudomonas putida)의 집단(population)을 평판계수법으로 확인하였다. 그 결과, 도 5에 개시된 바와 같이 관주 처리 4주 후에도 슈도모나스 푸티다(Pseudomonas putida)가 담배 근권에서 뿌리무게(root weight)당 104CFU를 유지하고 있었다. 따라서, 담배식물의 근권에서 본 발명의 슈도모나스 푸티다(Pseudomonas putida)가 정착하고 있음을 확인할 수 있었다. Pseudomonas putida was produced to observe the root zone fixation to confirm whether the plant exists while maintaining the interaction in the plant roots. Pseudomonas putida strains with TodST-IAA modules were cultured in KB liquid medium and 10 mL of cell suspensions of OD 600 = 0.1, 1 and 10 were irrigated in the roots of tobacco plants. Then, the population of Pseudomonas putida present in the roots of tobacco plants for 0, 3, 7, 14 and 28 days was confirmed by the plate counting method. As a result, as shown in FIG. 5, Pseudomonas putida maintained 10 4 CFU per root weight in the root of tobacco even after 4 weeks of irrigation treatment. Therefore, it was confirmed that Pseudomonas putida of the present invention is settled in the root zone of tobacco plants.
실시예 2. ChlH RNAi 시스템을 이용한 톨루엔(Toluene) 리포터 형질전환 식물체 제작 Example 2 Preparation of Toluene Reporter Transformed Object Using ChlH RNAi System
(1) 비녹색화(De-greeining) 유전자 획득 및(1) acquisition of de-greeining genes and RNAi 발현 벡터 제작RNAi Expression Vector Construction
식물이 노랗게 변하는 리포터(repoter)를 개발하기 위해 야생담배종인 니코티아나 벤타미아나(Nicotiana benthamiana)를 모델 식물로 선택하였고, 타겟 유전자로는 담배의 ChlH(magnesium protoporphyrin chelatase H subunit)를 선택하였다. ChlH는 식물의 엽록체에서 마그네슘(Magnesium)을 킬레이션(chelation)하는 중요한 효소로, 이 유전자의 RNAi가 일어나면 엽록체의 색소 생성에 문제가 생겨 식물체가 노란색으로 변하게 된다(도 6). To develop a reporter in which the plant turns yellow, a wild tobacco species Nicotiana benthamiana was selected as a model plant, and the target gene was selected from tobacco Chl H (magnesium protoporphyrin chelatase H subunit). Chl H is an important enzyme that chelates magnesium in the chloroplasts of plants. When RNAi of this gene occurs, it causes problems in the production of pigments of chloroplasts and turns the plants yellow.
따라서, 니코티아나 벤타미아나(Nicotiana benthamiana) ChlH 유전자의 RNAi를 위해 하기 표 1의 ChlH의 프라이머 세트를 이용하여 상기 ChlH 유전자 조각을 얻었다. 각 프라이머에는 벡터와 재조합이 가능한 위치가 포함되어 있으므로 니코티아나 벤타미아나(Nicotiana benthamiana)에서 RNAi가 가능한 플라스미드에 재조합을 통하여 ChlH가 발현하도록 구조체(construct)를 제작하였다. 헤어핀(hairpin) RNA 발현에 사용되는 바이너리 벡터(Binary Vector)인 pK7GWIWG2-Ⅰ를 대상으로 ChlH RNAi 벡터를 제작하였다. 세균의 이성분조절체계(two-component system)에 의해 외부의 VOCs(Volatile organic compounds)를 TodS에서 인지하여 인산화 반응이 일어나 TodT가 활성화되고 핵 속으로 이동하여 TodT box에 결합하면 식물 호르몬인 IAA(Indole-3-acetic acid)를 생산하도록 하였다. 이 호르몬을 식물이 인식하고 반응하게 하고자, 옥신 반응요소(response element)로 보고된 바 있는 DR5 프로모터를 RNAi 벡터의 프로모터로 사용하였다. DR5::GUS가 삽입된 형질전환 애기장대 유묘(Transgenic Arabidopsis seedling)로부터 게놈 DNA를 추출하여 하기 표 1의 프라이머를 사용하여 DR5 염기서열과 -46 CaMV minimal promoter 부분에 해당하는 약 300bp의 유전자 조각을 증폭하였다. pK7GWIWG2-Ⅰ에 있는 P35S 프로모터와 DR5 프로모터를 치환하기 위해 하기 표 1의 프라이머로 attR-ChlH-attR-intron 부분을 증폭하고, DR5 프로모터와 이어질 수 있도록 증폭하여 약 1.2kb의 인서트(insert)를 얻었다. 벡터와 재조합이 가능한 위치를 포함한 프라이머로 증폭하였으므로 재조합을 통하여 pK7_DR5_ccdB 벡터를 제작하였다. ChlH 유전자를 가지고 있는 pK7GWIWG2(Ⅰ)을 게이트웨이 클로닝 시스템 BP 반응(gateway cloning system BP reaction)을 통해 pDONR-ChlH 벡터를 얻고, 이것을 pK7_DR5_ccdB 벡터와 LR 반응을 거쳐 DR5 프로모터와 ChlH를 가지고 있는 RNAi 벡터인 pK7_DR5_ChlH를 얻었다(도 7). Thus, for the RNAi of Nicotiana benthamiana Chl H gene, the Chl H gene fragment was obtained using the primer set of Chl H in Table 1 below. Since each primer contains a position capable of recombination with a vector, a construct was constructed to express Chl H by recombinantly in an RNAi-enabled plasmid in Nicotiana benthamiana . Chl H RNAi vectors were prepared for pK7GWIWG2-I, a binary vector used for hairpin RNA expression. The bacteria's two-component system recognizes external VOCs (Volatile organic compounds) in TodS, which causes phosphorylation to activate TodT, moves into the nucleus, and binds to the TodT box. Indole-3-acetic acid) was produced. To allow the plant to recognize and respond to this hormone, the DR5 promoter, reported as an auxin response element, was used as a promoter for RNAi vectors. Genomic DNA was extracted from transgenic Arabidopsis seedlings inserted with DR5 :: GUS, and the gene fragment of about 300bp corresponding to the DR5 sequence and the -46 CaMV minimal promoter region was extracted using the primers of Table 1 below. Amplified. To replace the P35S promoter and the DR5 promoter in pK7GWIWG2-I, the attR-ChlH-attR-intron portion was amplified with the primers of Table 1 below, and amplified so as to be connected to the DR5 promoter, thereby obtaining an insert of about 1.2 kb. . Since the amplification was carried out with a primer including a position capable of recombination with the vector, pK7_DR5_ccdB vector was constructed through recombination. PK7GWIWG2 (Ⅰ) containing the ChlH gene was obtained through the gateway cloning system BP reaction to obtain the pDONR-ChlH vector, which is an RNAi vector containing the DR5 promoter and Chl H through the LR reaction with the pK7_DR5_ccdB vector. pK7_DR5_ChlH was obtained (FIG. 7).
표 1 본 발명에 사용된 프라이머
프라이머 이름 서열번호 염기서열(5'-3') 타겟 유전자
attB1_NbChlHi_F 1 GGACAAGTTTGTACAAAAAAGCAGGCTCGAGCGGCCGCCCGGGCAGGTGGAGATGT NbChlH
attB1_NbChlHi_R 2 GGGGACCACTTTGTACAAGAAAGCTGGGTCATGAATTTGAGCTTGAAACTTGCCATTGT
rec-DR5-L 3 AGCTCAAGCTAAGCTTGACGGCCAGTGCCAAGCTTG DR5 promoter
CaMV-linker-R 4 GGGGCCCGCTAAGCTTACCAT
linker-attR-L 5 ATGGTAAGCTTAGCGGGCCCCCAGGCGGCCGCA CTAGTGA
rec-HindIII-intron-R 6 AATGAACGCTAAGCTTAATATGACTCTCAATAAAGTCTCATACCAAC pK7GWIWG2(Ⅰ)
Table 1 Primer used in the present invention
Primer name SEQ ID NO: Sequence (5'-3 ') Target genes
attB1_NbChlHi_F One GGACAAGTTTGTACAAAAAAGCAGGCTCGAGCGGCCGCCCGGGCAGGTGGAGATGT NbChlH
attB1_NbChlHi_R
2 GGGGACCACTTTGTACAAGAAAGCTGGGTCATGAATTTGAGCTTGAAACTTGCCATTGT
rec-DR5-L 3 AGCTCAAGCTAAGCTTGACGGCCAGTGCCAAGCTTG DR5 promoter
CaMV-linker-R 4 GGGGCCCGCTAAGCTTACCAT
linker-attR-L 5 ATGGTAAGCTTAGCGGGCCCCCAGGCGGCCGCA CTAGTGA
rec-HindIII-intron-R 6 AATGAACGCTAAGCTTAATATGACTCTCAATAAAGTCTCATACCAAC pK7GWIWG2 (Ⅰ)
(2) 제작한 RNAi 발현 벡터를 이용한 리포터 식물 구동 검증(2) Reporter plant driving verification using the prepared RNAi expression vector
상기 구축한 pK7_DR5_Ch1H 벡터를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) GV2260 균주에 형질전환시킨 후, 니코티아나 벤타미아나(Nicotiana benthamiana)의 잎에 아그로박테리움 투메파시엔스(A. tumefaciens) 세포현탁액을 직접 주입(infiltration)하였다. 그런 다음, 1~2일 뒤 IAA 표준물질을 100nM, 10μM, 100μM 및 1mM의 다양한 농도로 주사(infiltration)하였다. 그 결과 도 8에 개시된 바와 같이 IAA 표준물질 처리구와 아그로박테리움 투메파시엔스(A. tumefaciens) 처리구가 교차된 부분에서만 ChlH 표현형으로 잎의 색이 노랗게 변화하는 것을 관찰하였으며, Mock 및 교차하지 않는 부분에서는 ChlH 표현형이 나타나지 않았다.The constructed pK7_DR5_Ch1H vector was transformed into the Agrobacterium tumefaciens GV2260 strain, and then Agrobacterium tumefaciens ( A. tumefaciens ) cell suspension on the leaves of Nicotiana benthamiana . Direct infiltration was performed. Then, after 1-2 days, IAA standards were infiltrated at various concentrations of 100 nM, 10 μM, 100 μM and 1 mM. As a result, as shown in FIG. 8, the Chl H phenotype was observed to change the color of the leaf only at the intersection of the IAA standard treatment group and the Agrobacterium tumefaciens treatment group. Part did not show the Chl H phenotype.
(3) DR5-chlH RNAi 벡터가 도입된 담배 식물체에서 슈도모나스 푸티다(Pseudomonas putida)의 효과 검정 (3) Effect test of Pseudomonas putida in tobacco plants incorporating DR5-chlH RNAi vector
본 발명의 TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) 균주가 생산하는 IAA에 반응하여 ChlH의 표현형을 나타내는지 확인하고자, 톨루엔을 처리한 슈도모나스 푸티다(Pseudomonas putida) 세포 현탁액(OD600=0.1)을 주입(infiltration)하여 니코티아나 벤타미아나(Nicotiana benthamiana) 잎의 색이 변하는지를 관찰하였다. 그 결과, 도 9에 개시된 바와 같이 ChlH RNAi에서는 모든 처리구에 상관없이 노랗게 변하였지만, DR5-chlH에서는 톨루엔을 처리한 슈도모나스 푸티다(Pseudomonas putida) O6iaaMH 처리구와 슈도모나스 클로로라피스 처리구 및 IAA 처리구에서만 아그로박테리움 투메파시엔스(A. tumefaciens) 균주가 처리된 교차 부분이 노랗게 변하는 것을 관찰할 수 있었다. Pseudomonas putida cell suspension (OD 600 ) treated with toluene to determine whether the Pseudomonas putida strain having the TodST-IAA module of the present invention exhibits a Chl H phenotype in response to IAA produced. = 0.1) was injected (infiltration) to observe whether the color of Nicotiana benthamiana leaves change. As a result, as shown in FIG. 9, Chl H RNAi turned yellow regardless of all treatments, but in DR5- chl H, the Pseudomonas putida O6iaaMH treatment, Pseudomonas putida treated with toluene, Pseudomonas chlorolapi treatment and IAA treatment only It was observed that the cross section treated with the bacterium tumefaciens strain turned yellow.
또한, 슈도모나스 푸티다 O6iaaMH(Pseudomonas putida) 균주가 생산하는 IAA에 반응하여 나타난 ChlH의 표현형을 정량화하고자 담배식물의 노랗게 변한 부분의 엽록소(chlorophyll) 함량을 측정하였다. 그 결과, 도 10에 개시된 바와 같이 ChlH RNAi에서는 모든 처리구에 상관없이 엽록소 함량이 낮게 나타났지만, DR5-chlH는 톨루엔을 처리하지 않은 처리구에서 엽록소 함량이 정상적으로 높게 나타났지만, 톨루엔을 처리한 슈도모나스 푸티다(Pseudomonas putida) 처리구와 IAA 처리구에서만 엽록소 함량이 낮게 나타났다.In addition, in order to quantify the phenotype of Chl H in response to IAA produced by Pseudomonas putida ( Pseudomonas putida ) strain, the chlorophyll content of the yellowed part of the tobacco plant was measured. As a result, as shown in FIG. 10, Chl H RNAi showed low chlorophyll content regardless of all treatments, but DR5- chl H showed high chlorophyll content in toluene-treated treatments, but Pseudomonas treated with toluene. Chlorophyll content was low only in Pseudomonas putida and IAA treatments.
최종적으로, 톨루엔 존재시 TodST-IAA 모듈을 갖는 슈도모나스 푸티다(Pseudomonas putida) 균주에 의해 생성된 IAA에 의해서 chlH RNAi가 일어나 표현형을 변화시키는 phyto-sensor 시스템의 구동을 확인할 수 있었다.Finally, IAA generated by Pseudomonas putida strain with TodST-IAA module in the presence of toluene was able to confirm the operation of the phyto-sensor system in which chl H RNAi occurred and changed the phenotype.

Claims (10)

1) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터로 형질전환된 것을 특징으로 하는 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균: 및1) Pseudomonas putida derived from todS gene, Pseudomonas putida- derived todT gene, Pseudomonas putida- derived todX gene promoter (promoter) and plant growth hormone (plant growth hormone) gene transformed with the expression vector Transformed rhizome bacteria for the production of plant growth hormone in the presence of a non-degradable harmful aromatic compound, characterized in that: and
2) 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체로 이루어진 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.2) a plant transformed with an expression vector comprising a promoter and a reporter gene specifically recognized by the plant growth hormone or an RNAi expression vector comprising a promoter and a pigment generating gene specifically recognized by the plant growth hormone A reporter plant system for detecting hardly decomposable hazardous aromatic compounds in soil.
제1항에 있어서, 상기 식물생장호르몬은 IAA(indole acetic acid), 사이토키닌(cytokinin), 지베렐린(gibberellin), 에틸렌(ethylene), 앱시스산(abscisic acid) 또는 브라시노스테로이드(brassinosteroid)인 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.According to claim 1, wherein the plant growth hormone IAA (indole acetic acid), cytokinin (cytokinin), gibberellin (gibberellin), ethylene (ethylene), abscisic acid (abscisic acid) or brassinosteroid (brassinosteroid) A reporter plant system for detecting difficult-to-decompose harmful aromatic compounds in soil.
제1항에 있어서, 상기 식물생장호르몬이 특이적으로 인식하는 프로모터는 DR5 프로모터, 사이토키닌 수용체(cytokinin receptor) 프로모터, 에틸렌 수용체(ethylene receptor) 프로모터 또는 PR1(pathogenesis-related 1) 프로모터인 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.The method of claim 1, wherein the promoter specifically recognized by the plant growth hormone is a DR5 promoter, a cytokinin receptor (cytokinin receptor) promoter, an ethylene receptor (ethylene receptor) promoter or a PR1 (pathogenesis-related 1) promoter A reporter plant system for detecting hardly decomposable hazardous aromatic compounds in soil.
제1항에 있어서, 상기 리포터 유전자는 녹색형광단백질(GFP), 알칼라인 포스파타제(alkaline phosphatase), 루시페라제(luciferase), 베타-글루쿠로니다아제(GUS) 및 베타-갈락토시다아제(β-galactosidase) 유전자로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.The method of claim 1, wherein the reporter gene is a green fluorescent protein (GFP), alkaline phosphatase (alkaline phosphatase), luciferase (luciferase), beta-glucuronidase (GUS) and beta-galactosidase (β) -galactosidase) Reporter plant system for detecting hardly decomposable harmful aromatic compounds in soil, characterized in that any one selected from the group consisting of.
제1항에 있어서, 상기 색소 생성 유전자는 ChlH(Mg-chelatase H subunit) 유전자 또는 PDS(phytoene desaturase) 유전자인 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.The reporter plant system of claim 1, wherein the pigment generating gene is a ChlH (Mg-chelatase H subunit) gene or a PDS (phytoene desaturase) gene.
제1항에 있어서, 상기 근권세균은 슈도모나스 푸티다(Pseudomonas putida), 패니바실러스 폴리믹사(Paenibacillus polymyxa), 바실러스 서틸리스(Bacillus subtilis) 또는 바실러스 푸밀러스(Bacillus pumilus)인 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.According to claim 1, wherein the myobacterial bacteria Pseudomonas putida ( Pseudomonas putida ), Paenibacillus polymyxa ( Paenibacillus polymyxa ), Bacillus subtilis ( Bacillus subtilis ) or Bacillus pumilus ( Bacillus pumilus ) characterized in that Reporter plant system for the detection of hardly degradable harmful aromatic compounds.
제1항에 있어서, 상기 난분해성 유해 방향족 화합물은 톨루엔(toluene), 벤젠(benzene), 에틸벤젠(ethylbenzene), 크실렌(xylene) 또는 2,4,6-트리니트로톨루엔(2,4,6-trinitrotoluene, TNT)인 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템.The method of claim 1, wherein the hardly decomposable hazardous aromatic compound is toluene, benzene, ethylbenzene, xylene or 2,4,6-trinitrotoluene , TNT) reporter plant system for detecting a non-degradable harmful aromatic compound in the soil.
1) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터를 제조하는 단계; 1) preparing an expression vector comprising a promoter and plant growth hormone gene of Pseudomonas putida- derived todS gene, Pseudomonas putida- derived todT gene, and Pseudomonas putida- derived todX gene ;
2) 상기 1) 단계의 발현 벡터를 근권세균에 형질전환시켜 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균을 제조하는 단계; 및 2) transforming the expression vector of step 1) to the rhizosphere bacteria to prepare a transformed rhizosphere bacterium for plant growth hormone production in the presence of a hardly decomposable harmful aromatic compound; And
3) 상기 2) 단계의 형질전환 근권세균을 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체에 처리하는 단계를 포함하는 토양 내 난분해성 유해 방향족 화합물 감지용 리포터 식물 시스템의 제조 방법.3) RNAi expression comprising the expression vector comprising a promoter and a reporter gene that the plant growth hormone specifically recognizes the transformed rhizosphere bacteria of step 2) or a promoter and a pigment generating gene that the plant growth hormone specifically recognizes A method for producing a reporter plant system for detecting hardly decomposable harmful aromatic compounds in soil, comprising the step of treating a plant transformed with a vector.
1) 피검시료에 식물생장호르몬이 특이적으로 인식하는 프로모터 및 리포터 유전자를 포함하는 발현 벡터 또는 식물생장호르몬이 특이적으로 인식하는 프로모터 및 색소 생성 유전자를 포함하는 RNAi 발현 벡터로 형질전환된 식물체를 식재하는 단계;1) A plant transformed with an RNAi expression vector comprising an expression vector comprising a promoter and a reporter gene specifically recognized by the plant growth hormone or a promoter and a pigment generating gene specifically recognized by the plant growth hormone in the test sample. Planting step;
2) 슈도모나스 푸티다(Pseudomonas putida) 유래 todS 유전자, 슈도모나스 푸티다 유래 todT 유전자, 슈도모나스 푸티다 유래 todX 유전자의 프로모터(promoter) 및 식물생장호르몬(plant growth hormone) 유전자를 포함하는 발현 벡터로 형질전환된 것을 특징으로 하는 난분해성 유해 방향족 화합물 존재시 식물생장호르몬 생산용 형질전환 근권세균을 상기 1) 단계의 형질전환 식물체가 식재된 피검시료에 처리하는 단계; 및2) transformed with an expression vector comprising a Pseudomonas putida derived todS gene, Pseudomonas putida derived todT gene, Pseudomonas putida derived todX promoter and a plant growth hormone gene Treating the transformed plant root bacteria for plant growth hormone production to a test sample in which the transformed plant of step 1) is grown in the presence of a hardly decomposable harmful aromatic compound; And
3) 상기 2) 단계의 형질전환 근권세균의 처리 후 식재된 형질전환 식물체의 색 변화를 확인하는 단계를 포함하는 토양 내 난분해성 유해 방향족 화합물의 검출 방법.3) The method of detecting hardly degradable harmful aromatic compounds in soil comprising the step of confirming the color change of the transgenic plant planted after the treatment of the transformed rhizosphere bacteria of step 2).
제9항에 있어서, 상기 형질전환 식물체의 색 변화는 비형질전환 식물체와 비교하여 확인하는 것을 특징으로 하는 토양 내 난분해성 유해 방향족 화합물의 검출 방법.10. The method of claim 9, wherein the color change of the transgenic plant is confirmed in comparison with the non-transformed plant.
PCT/KR2015/011937 2015-08-06 2015-11-06 Reporter plant system for detection of harmful non-degradable aromatic compounds and use thereof WO2017022887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0110918 2015-08-06
KR1020150110918A KR101699017B1 (en) 2015-08-06 2015-08-06 Repoter plant system for non-degradable harmful aromatic compound detection and uses thereof

Publications (1)

Publication Number Publication Date
WO2017022887A1 true WO2017022887A1 (en) 2017-02-09

Family

ID=57943175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011937 WO2017022887A1 (en) 2015-08-06 2015-11-06 Reporter plant system for detection of harmful non-degradable aromatic compounds and use thereof

Country Status (2)

Country Link
KR (1) KR101699017B1 (en)
WO (1) WO2017022887A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365729A (en) * 2017-08-25 2017-11-21 山东烟草研究院有限公司 A kind of Paenibacillus polymyxa and its application
CN113373102A (en) * 2021-07-05 2021-09-10 青岛农业大学 Novel photosynthetic bacteria for detecting explosives and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010032491A (en) * 1997-11-25 2001-04-25 유티-배텔, 엘엘씨 Bioluminescent bioreporter integrated circuit
WO2003100084A1 (en) * 2002-05-23 2003-12-04 National Research Council Of Canada A new biosensor
CN101619341A (en) * 2008-06-30 2010-01-06 财团法人生物技术开发中心 Transformant used for detecting concentration and degradation efficiency of organic pollutants and detection method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430685B1 (en) * 2011-11-17 2014-08-14 한국생명공학연구원 Artificial biosensor for non-degradable harmful aromatic compound detection and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010032491A (en) * 1997-11-25 2001-04-25 유티-배텔, 엘엘씨 Bioluminescent bioreporter integrated circuit
WO2003100084A1 (en) * 2002-05-23 2003-12-04 National Research Council Of Canada A new biosensor
CN101619341A (en) * 2008-06-30 2010-01-06 财团法人生物技术开发中心 Transformant used for detecting concentration and degradation efficiency of organic pollutants and detection method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BUSCH, ANDREAS ET AL.: "Catabolite Repression of the TodS/TodT Two-Component System and Effector-Dependent Transphosphorylation of TodT as the Basis for Toluene Dioxygenase Catabolic Pathway Control", JOURNAL OF BACTERIOLOGY., vol. 192, no. 16, 2010, pages 4246 - 4250, XP055362792 *
LEE, HAE - RAN ET AL.: "The Engineered Rhizosphere Bacterium Help Plant Sense a Hazards Chemical", 10TH INTERNATIONAL PGPR WORKSHOP, 16 June 2015 (2015-06-16), pages 46 - 47 *
LEE, HAE - RAN ET AL.: "The Engineered Rhizosphere Bacterium Help Plant Sense a Hazards Chemical", RHIZOSPHERE4, 21 June 2015 (2015-06-21), pages 317 - 318 *
LEE, SEUNG GU ET AL.: "Next generation BioGreen 21 Business-Designing Bio-parts and Circuits for Sentinel Plant Systems", REPORT OF SYSTEMS & SYNTHETIC AGROBIOTECH CENTER, 7 November 2014 (2014-11-07), pages 1 - 37 *
LEE, SEUNG GU ET AL.: "Phyto-Sensor Development Based on Synthetic Biology", RURAL DEVELOPMENT ADMINISTRATION, STUDY REPORT OF NEXT GENERATION BIOGREEN 21 BUSINESS, 23 February 2013 (2013-02-23), pages 1 - 89 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365729A (en) * 2017-08-25 2017-11-21 山东烟草研究院有限公司 A kind of Paenibacillus polymyxa and its application
CN107365729B (en) * 2017-08-25 2020-10-16 山东烟草研究院有限公司 Paenibacillus polymyxa and application thereof
CN113373102A (en) * 2021-07-05 2021-09-10 青岛农业大学 Novel photosynthetic bacteria for detecting explosives and preparation method and application thereof
CN113373102B (en) * 2021-07-05 2022-09-09 青岛农业大学 Photosynthetic bacteria for detecting explosives and preparation method and application thereof

Also Published As

Publication number Publication date
KR101699017B1 (en) 2017-01-23

Similar Documents

Publication Publication Date Title
Hwang et al. Agrobacterium-mediated plant transformation: biology and applications
Zhao et al. Osa‐miR167d facilitates infection of Magnaporthe oryzae in rice
US10443064B2 (en) Methods and compositions for targeted polynucleotide modification
Dahmani et al. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma
Gelvin Agrobacterium and plant genes involved in T-DNA transfer and integration
Wu et al. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings
Vain et al. Agrobacterium‐mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T‐DNA insertional mutagenesis
CN111886337A (en) Use of morphogenetic factors for improving gene editing
Muthukumar et al. Stable transformation of ferns using spores as targets: Pteris vittata and Ceratopteris thalictroides
US20070220628A1 (en) Methods and compositions for in planta production of inverted repeats
EP3359674A1 (en) Method for producing whole plants from protoplasts
Wang et al. Spelling changes and fluorescent tagging with prime editing vectors for plants
Mestiri et al. Multiple host‐cell recombination pathways act in A grobacterium‐mediated transformation of plant cells
Yadav et al. Strain specific Agrobacterium-mediated genetic transformation of Bacopa monnieri
Novakova et al. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation
CN116391038A (en) Engineered Cas endonuclease variants for improved genome editing
Kumar et al. Expression of an endo α-1, 3-Glucanase gene from Trichoderma harzianum in rice induces resistance against sheath blight
Cho et al. Development of an efficient marker‐free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1
Ditt et al. The plant cell defense and Agrobacterium tumefaciens
WO2017022887A1 (en) Reporter plant system for detection of harmful non-degradable aromatic compounds and use thereof
Kapildev et al. High-efficient Agrobacterium-mediated in planta transformation in black gram (Vigna mungo (L.) Hepper)
Zeng et al. Integrated analysis of the miRNAome and transcriptome reveals miRNA–mRNA regulatory networks in Catharanthus roseus through Cuscuta campestris-mediated infection With “Candidatus Liberibacter asiaticus”
Pasin Assembly of plant virus agroinfectious clones using biological material or DNA synthesis
Padmanabhan et al. Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes
Aregawi et al. Pathway to validate gene function in key bioenergy crop, Sorghum bicolor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900473

Country of ref document: EP

Kind code of ref document: A1