WO2017022775A1 - Anion exchanger, ion conductivity-imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis apparatus - Google Patents

Anion exchanger, ion conductivity-imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis apparatus Download PDF

Info

Publication number
WO2017022775A1
WO2017022775A1 PCT/JP2016/072701 JP2016072701W WO2017022775A1 WO 2017022775 A1 WO2017022775 A1 WO 2017022775A1 JP 2016072701 W JP2016072701 W JP 2016072701W WO 2017022775 A1 WO2017022775 A1 WO 2017022775A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
catalyst electrode
catalyst
imparting agent
ion conductivity
Prior art date
Application number
PCT/JP2016/072701
Other languages
French (fr)
Japanese (ja)
Inventor
由樹 吉川
武範 磯村
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2017533095A priority Critical patent/JPWO2017022775A1/en
Publication of WO2017022775A1 publication Critical patent/WO2017022775A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an anion exchanger having heat resistance, an ion conductivity imparting agent, and a catalyst electrode layer.
  • the present invention also relates to a novel laminate having the catalyst electrode layer, a novel polymer electrolyte fuel cell and a water electrolysis apparatus including the laminate.
  • a fuel cell is a power generation system that takes out chemical energy of fuel as electric power, and several types of fuel cells such as alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, and solid polymer type have been proposed and studied. Has been. Among these, the polymer electrolyte fuel cell is expected to be a small and medium-sized low-temperature operation fuel cell such as a stationary power source and an in-vehicle application because the operation temperature is particularly low.
  • the solid polymer fuel cell is a fuel cell using a solid polymer such as an ion exchange resin as an electrolyte.
  • the polymer electrolyte fuel cell is configured such that the space in the cell partition wall 1 having the fuel circulation hole 2 and the oxidant gas circulation hole 3 communicating with the outside is used as the fuel for the solid polymer electrolyte membrane 8.
  • It has a basic structure in which a fuel chamber 9 that communicates with the outside through the fuel circulation hole 2 and an oxidant chamber 10 that communicates with the outside through the oxidant gas circulation hole 3 are formed.
  • fuel made of a liquid such as hydrogen gas or alcohol is supplied to the fuel chamber 9 through the fuel flow hole 2 and the oxidant gas flow hole is supplied to the oxidant chamber 10.
  • 3 is supplied with oxygen-containing gas such as pure oxygen or air as an oxidant, and an external load circuit is connected between the fuel chamber side catalyst electrode layer 5 and the oxidant chamber side catalyst electrode layer 7 as follows. Electric energy is generated by a simple mechanism.
  • the solid polymer electrolyte membrane 8 use of an anion exchange membrane has been studied in that the reaction field becomes alkaline and a metal other than a noble metal can be used.
  • hydrogen or alcohol or the like is supplied to the fuel chamber 9 and oxygen and water are supplied to the oxidant chamber 10, so that the catalyst contained in the electrode and the oxygen and water are contained in the oxidant chamber side catalyst electrode layer 7.
  • hydroxide ions are transferred to the fuel chamber 9 through the solid polymer electrolyte membrane 8 made of the anion exchange membrane, and react with the fuel in the fuel chamber side catalyst electrode layer 5 to generate water. become.
  • electrons generated in the fuel chamber side catalyst electrode layer 5 are moved to the oxidant chamber side catalyst electrode layer 7 through an external load circuit, and the energy of this reaction is used as electric energy.
  • Patent Document 1 Methyl) styrene / divinylbenzene copolymer quaternized with amine
  • Patent Document 3 a block copolymer having chloromethylated styrene quaternized with amine
  • the chloromethyl group is substantially aminated and introduced.
  • the group is attached at the benzylic position relative to the aromatic ring.
  • the benzyl position is known to be susceptible to nucleophilic attack because of its high reactivity.
  • Patent Document 4 by extending the chain length of the alkyl group between the quaternary ammonium base and the aromatic ring, the reactivity of the quaternary ammonium salt can be remarkably suppressed, and the chemical stability of the exchange group can be enhanced. It is known (Patent Document 4).
  • Patent Document 4 discloses a crosslinked anion exchanger excellent in heat resistance, comprising a polymer of a styrene monomer and an unsaturated hydrocarbon-containing crosslinkable monomer in which the chain length of an alkyl group between a quaternary ammonium group and an aromatic ring is extended. About. However, since it is insolubilized by introducing a crosslinkable monomer that does not contain an exchange group, there is a problem in that the ratio of ion exchange components decreases due to the introduction of a crosslinked structure.
  • the inventors of the present invention have intensively studied to achieve both heat resistance and insolubilization and high exchange capacity.
  • a crosslinked structure having an ammonium group it was found that both insolubilization and high ion exchange capacity can be achieved, and the present invention has been completed.
  • the first present invention is an anion exchanger containing a structural unit having a crosslinked structure represented by the following formula (1).
  • Forma (1) represents a structural unit in which two aromatic rings are bridged, a is an integer of 3 to 10, b is an integer of 2 to 8, R 1 , R 2 , R 3 and R 4 Are each independently selected from a methyl group or an ethyl group, X ⁇ is one or more pairs selected from the group consisting of OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
  • the anion exchanger of the first aspect of the present invention exhibits excellent characteristics as an ion conductivity imparting agent, and in order to obtain excellent characteristics and durability when used in a fuel cell or a water electrolysis device, It is preferable that 70% by mass or more of the polymer is included in the structural unit having the crosslinked structure represented by 1).
  • the second aspect of the present invention is an ion conductivity-imparting agent comprising the anion exchanger of the first aspect of the present invention containing 70% by mass or more of the polymer having a cross-linking structure represented by the formula (1).
  • the third aspect of the present invention is a catalyst electrode layer containing the ion conductivity-imparting agent of the second aspect of the present invention and an electrode catalyst.
  • the fourth invention is a membrane-electrode assembly comprising the catalyst electrode layer of the third invention.
  • the fifth aspect of the present invention is an anion exchange membrane fuel cell comprising the membrane-electrode assembly of the fourth aspect of the present invention.
  • the sixth aspect of the present invention is a water electrolysis apparatus comprising the membrane-electrode assembly of the fourth aspect of the present invention.
  • the seventh aspect of the present invention provides a catalyst electrode layer-forming composition
  • a catalyst electrode layer-forming composition comprising a styrenic polymer having a halogenated alkyl group on an aromatic ring and an electrode catalyst, as a gas diffusion electrode, an anion exchange membrane, or a precursor of an anion exchange membrane.
  • the third phase is obtained by contacting with the diamine compound and performing quaternization and crosslinking reaction of the styrenic polymer having a halogenated alkyl group on the aromatic ring. It is a manufacturing method of the catalyst electrode layer characterized by forming the catalyst electrode layer as described in this invention.
  • the anion exchanger of the present invention provides heat resistance of the ion exchange group by using a styrenic polymer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is extended.
  • a cross-linked structure having a quaternary ammonium group By using a cross-linked structure having a quaternary ammonium group, the increase in the cross-linking ratio by introduction of the cross-linked structure into the anion exchanger and the high ion exchange capacity are compatible.
  • the ion exchanger of the present invention is used as an ion conductivity-imparting agent, and a catalyst electrode layer containing the ion conductivity-imparting agent and an electrode catalyst is used as a catalyst electrode layer for an anion exchange membrane fuel cell or a water electrolysis device.
  • a catalyst electrode layer containing the ion conductivity-imparting agent and an electrode catalyst is used as a catalyst electrode layer for an anion exchange membrane fuel cell or a water electrolysis device.
  • the anion exchanger of the present invention can be used as an ion conductivity imparting agent for forming a catalyst electrode layer used in an anion exchange membrane fuel cell or a water electrolysis apparatus.
  • the catalyst electrode layer means both an anode to which a fuel gas such as hydrogen reacts and a cathode to which an oxidant gas such as oxygen and air reacts, and its use is not particularly limited to one electrode. It can be suitably used for the production of both anode and cathode catalyst electrode layers.
  • the anion exchanger of the present invention contains a structural unit having a crosslinked structure represented by the following formula (1).
  • X ⁇ I one or more counter ions selected from the group consisting of OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
  • the structural unit represented by the formula (1) is represented by — (CH 2 ) a N + (X ⁇ ) R 1 R 2 (CH 2 ) b N + (X ⁇ ) R 3 R 4 (CH 2 ) a ⁇ . Having two groups that bridge two aromatic rings and contain two quaternary ammonium salts.
  • A is an integer represented by 3 to 10 and b is 2 to 8.
  • a represents a methylene chain length for bonding an aromatic ring and a nitrogen atom of a quaternary ammonium salt adjacent thereto
  • b represents a methylene chain length for bonding two quaternary ammonium salt nitrogens.
  • a is preferably in the range of 3-6.
  • — (CH 2 ) a N + (X ⁇ ) R 1 R 2 (CH 2 ) b N + (X ⁇ ) R 3 R 4 (CH 2 ) a ⁇ is not a mere cross-linked site, but has ion conductivity. It needs to be designed to contribute.
  • b which is the methylene chain length for bonding two quaternary ammonium salts, is in the range of 2 to 8, and preferably in the range of 2 to 6.
  • R 1 , R 2 , R 3 and R 4 are each independently selected from a methyl group or an ethyl group.
  • X ⁇ is a counter ion of a quaternary base type anion exchange group, which is a counter ion selected from OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , Cl ⁇ , Br ⁇ and I ⁇ , and is one kind. Alternatively, two or more counter ions may be mixed.
  • the anion exchanger of the present invention can be used as an ion conductivity-imparting agent for catalyst electrode layers for anion exchange membrane fuel cells and water electrolysis.
  • the structural unit having a crosslinked structure represented by the formula (1) is a group having a crosslinked structure and an ion exchange group as described above. It contributes to the expression of ionic conductivity while improving the chemical stability and dimensional stability of the conductivity-imparting agent. In particular, it has been found that the durability tends to increase as the amount of the crosslinked structure introduced increases at a high temperature of 70 ° C. or higher for the operating temperature of the fuel cell or the water electrolysis apparatus.
  • the anion exchanger as the ion conductivity-imparting agent has a sufficient amount of ion conductivity around the ion exchange group due to the alkyl group between the ion exchange group and the aromatic ring in the crosslinked structure. A space where water can exist is secured, and the ionic conductivity is not impaired even if the introduction amount of the crosslinked structure is increased. Therefore, the amount of the crosslinked structure introduced into the anion exchanger of the present invention may be determined in consideration of the operating conditions of the fuel cell, the intended durability and battery output, or the operating conditions of the water electrolysis apparatus.
  • the proportion of the structural unit having a crosslinked structure represented by the formula (1) is preferably 70% by mass or more of the anion exchanger, When used at a high temperature of 70 ° C. or higher, the proportion of the structural unit represented by the formula (1) is more preferably 80% by mass or more.
  • the anion exchanger according to the present invention in which the content of the structural unit represented by the formula (1) is 70% by mass or more, heat resistance is imparted to the ion exchange group, and water insolubilization and high ion exchange capacity increase are achieved. compatible. Therefore, the anion exchanger can be suitably used as the ion conductivity-imparting agent of the present invention used in the catalyst electrode layer of an anion exchange membrane fuel cell or a water electrolysis device.
  • the anion exchanger of the present invention may be composed of any polymer as long as it contains a structural unit having a crosslinked structure represented by the formula (1).
  • a polymer of an aromatic vinyl compound hereinafter referred to as “styrene-based polymer”.
  • a polymer is used in the meaning including a homopolymer and a copolymer.
  • the anion exchanger of the present invention includes a first non-crosslinked quaternary ammonium salt type anion exchange group represented by the following formula (2) in addition to the structural unit having a crosslinked structure represented by the formula (1). (Hereinafter, also simply referred to as a first non-crosslinked structural unit).
  • c is an integer of 3 to 10, preferably 3 to 6, R 5 and R 6 are each independently a methyl group or an ethyl group, and R 7 is a straight chain having 1 to 8 carbon atoms.
  • a chain alkyl group, X ⁇ is at least one counter ion selected from the group consisting of OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , Cl ⁇ , Br ⁇ and I ⁇ )
  • high ionic conductivity can be maintained even when the fuel cell is operated at a low operating temperature.
  • the operating temperature is low, the ionic conductivity is low, but by introducing the first non-crosslinked constituent unit represented by the above formula (2), the hydrophilicity of the anion exchanger is increased and the water content is increased. The ion conductivity can be increased.
  • the operating temperature is low, the influence of swelling and shrinkage is small, and the durability of the catalyst electrode layer containing the ion conductivity-imparting agent is hardly lowered.
  • the content of the first non-crosslinked constituent unit represented by the formula (2) in the anion exchanger of the present invention is such that the operating temperature is increased when the anion exchanger is used as an ion conductivity-imparting agent. From the viewpoint of preventing the elution of the ion conductivity-imparting agent due to, preferably 0 to 20% by mass, more preferably 0 to 10% by mass.
  • the anion exchanger of the present invention may be copolymerized with other components as necessary within the limits that do not violate the purpose of the present invention in order to adjust the reactivity and physical properties of the anion exchanger. Good.
  • optional components include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, vinylnaphthalene, and acenaphthylene.
  • the content of the structural unit derived from other components is not particularly limited, but is preferably 0 to 10% by mass, and particularly preferably 0 to 5% by mass.
  • the anion exchanger of the present invention may contain a second non-crosslinked quaternary ammonium base represented by the following formula (3) in addition to the structural unit having a crosslinked structure represented by the formula (1).
  • the anion exchanger of the present invention is obtained by crosslinking a styrene polymer having a halogenated alkyl group on an aromatic ring with a diamine compound, as will be described later.
  • a styrene polymer having a halogenated alkyl group on the aromatic ring and the diamine compound come into contact with each other, when the diamine compound reacts with two halogenated alkyl groups, a structural unit represented by the formula (1) is formed. However, when it reacts with only one halogenated alkyl group, a second non-bridged quaternary ammonium base of formula (3) is formed.
  • the structural unit of the formula (3) has a quaternary ammonium base represented by — (CH 2 ) a N + (X ⁇ ) R 1 R 2 (CH 2 ) b NR 3 R 4 .
  • a is an integer of 3 to 10
  • b is an integer of 2 to 8
  • R 1 , R 2 , R 3 and R 4 are each independently a methyl group or an ethyl group.
  • X ⁇ is one or more counter ions selected from the group consisting of OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
  • the preferable range of a and b is the same as that of Formula (1).
  • the structural unit having the second non-crosslinked quaternary ammonium base represented by the formula (3) has a quaternary ammonium salt structure, even if it is formed, the performance as an ion conductivity-imparting agent such as ion conductivity is improved. The impact is very small.
  • the styrene polymer having a halogenated alkyl group on the non-crosslinked aromatic ring is subjected to a crosslinking reaction with a diamine compound, the amount of formula (3) produced is very small and suppressed.
  • the proportion of the structure of formula (3) is known to be about 10% mol even when there are many. This can be known by a generally known C 13 solid state NMR method or titration method.
  • the polymerization mode of the anion exchanger of the present invention is not particularly limited, and in the case of a copolymer, it may be a random copolymer or a block copolymer.
  • the number average molecular weight of the styrene polymer is preferably 5000 to 300,000, and more preferably 5000 to 200,000.
  • the anion exchanger of the present invention can be obtained by reacting a styrene polymer having a halogenated alkyl group with an aromatic ring containing a structural unit represented by the formula (4) and a diamine compound.
  • a is an integer of 3 to 10, preferably 3 to 6, and Y is any one of Cl, Br, and I.
  • the method for synthesizing the styrenic polymer having a halogenated alkyl group in the aromatic ring is not particularly limited, but a method of polymerizing a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, or after polymerization Examples thereof include a method of introducing a halogenated alkyl group into an aromatic ring of a styrene polymer obtained by polymerizing an aromatic vinyl compound into which a halogenated alkyl group can be introduced.
  • a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance is a known method. Polymerize.
  • the aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance may be polymerized alone or may be copolymerized with other aromatic vinyl compounds.
  • aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, those having 3 to 10 carbon atoms in the methylene chain for bonding the aromatic ring and the halogen atom are used.
  • Preferred aromatic vinyl compounds include chloropropyl styrene, chlorobutyl styrene, chloropentyl styrene, chlorohexyl styrene, bromopropyl styrene, bromobutyl styrene, bromopentyl styrene, bromohexyl styrene, iodopropyl styrene, iodobutyl styrene, iodopentyl styrene.
  • haloalkylstyrene having 3 to 6 carbon atoms in the methylene chain connecting the aromatic ring and the halogen atom, such as io
  • chloropropyl styrene, chlorobutyl styrene, bromopropyl styrene, bromobutyl styrene may be used because of easy availability and high polymerization rate. preferable.
  • aromatic vinyl compounds include styrene, ⁇ -methylstyrene, vinyl naphthalene, acenaphthylene, vinyl pyridine, vinyl imidazole, and vinyl oxazoline.
  • haloalkylstyrenes having 7 or more carbon atoms in the methylene chain which are not exemplified above, have a low polymerization rate and are likely to cause gelation during the polymerization.
  • a styrenic polymer having a halogenated alkyl group having 7 or more carbon atoms in the methylene chain in the aromatic ring is a fragrance that can be introduced with a halogenated alkyl group after polymerization. It is preferable to synthesize by a method in which a halogenated alkyl group is introduced into an aromatic ring of a styrene polymer obtained by polymerizing an aromatic vinyl compound.
  • the content of the aromatic vinyl compound having a halogenated alkyl group in the aromatic ring is preferably from 70 to 100% by mass, and from 90 to 100%. More preferably, it is mass%.
  • a method for introducing a halogenated alkyl group into an aromatic ring of a styrene polymer obtained by polymerizing an aromatic vinyl compound into which a halogenated alkyl group can be introduced after polymerization will be described.
  • an aromatic vinyl compound having a structure capable of introducing a halogenated alkyl group is polymerized.
  • a halogenated alkyl group is introduced into the structure to obtain a styrene polymer having a halogenated alkyl group on the aromatic ring.
  • styrenic polymer capable of introducing a halogenated alkyl group a polymer obtained by polymerizing styrene alone or a copolymerized with an aromatic vinyl compound other than styrene can be used.
  • aromatic vinyl compounds other than styrene include ⁇ -methylstyrene, vinyl naphthalene, acenaphthylene, vinyl pyridine, vinyl imidazole, and vinyl oxazoline.
  • the method for introducing a halogenated alkyl group into the styrene polymer after polymerization is not particularly limited, and a known method may be employed. Specifically, when styrene is used as an aromatic vinyl compound into which a halogenated alkyl group can be introduced after polymerization, a method in which an aromatic ring derived from styrene is reacted with formaldehyde and then halogenated, and an aromatic ring derived from styrene is halogenated. For example, a method in which an alkyl group is given by a Grineer reaction after the formation of the alkyl chain, and the alkyl chain terminal is halogenated.
  • solution polymerization As a method for polymerizing a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, or a polymerizable composition containing a monomer capable of introducing a halogenated alkyl group after polymerization, solution polymerization is used.
  • Well-known polymerization methods such as suspension polymerization and emulsion polymerization are employed. The polymerization method depends on the monomer composition of the polymerizable composition and the like, and is not particularly limited and may be appropriately selected.
  • the anion exchanger of the present invention can be produced by reacting a styrene polymer having a halogenated alkyl group on the aromatic ring with a diamine compound. That is, it is represented by the formula (1) in which a halogenated alkyl group of a styrene polymer having a halogenated alkyl group on an aromatic ring reacts with a diamine compound to form a crosslinked structure by a quaternary ammonium salt type anion exchange group.
  • the anion exchanger of the present invention containing a structural unit having a crosslinked structure can be obtained.
  • diamine compound used here a diamine compound capable of obtaining a crosslinked structure of a structural unit having a crosslinked structure represented by the formula (1) after quaternization and crosslinking reaction may be appropriately selected.
  • alkyldiamine compound capable of obtaining a structural unit having a crosslinked structure represented by the formula (1)
  • an alkyldiamine compound having a tertiary amine at both ends represented by the following formula (5) is preferable. Since alkyldiamine has a quaternary ammonium salt as a cross-linked structure formed after the reaction, it can contribute to improvement of ion conductivity required when the anion exchanger of the present invention is used as an ion conductivity-imparting agent.
  • alkyl diamine compound used here examples include ethylene diamine, propane diamine, butane diamine, pentane diamine, hexane diamine, heptane diamine, and octane diamine.
  • N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, N, N-dimethyl-N ′, N′-diethylethylenediamine is used as the ethylenediamine.
  • Examples of the propanediamine include N, N, N ′, N′-tetramethylpropanediamine, N, N, N ′, N′-tetraethylpropanediamine, N, N-dimethyl-N ′, N′-diethylpropane
  • Examples of diamines include N, N, N ′, N′-tetramethylbutanediamine, N, N, N ′, N′-tetraethylbutanediamine, and N, N-dimethyl-N ′, N′—.
  • Diethylbutanediamine is exemplified, and as pentanediamine, N, N, N ′, N′-tetramethylpentanediamine, N, N, N ′, N′-tetraethylpentanediamine And N, N-dimethyl-N ′, N′-diethylpentanediamine, and examples of hexanediamine include N, N, N ′, N′-tetramethylhexanediamine, N-ethylhexanediamine, N, N, N ', N'-tetraethylhexanediamine, N, N-dimethyl-N', N'-diethylhexanediamine are exemplified, and as heptanediamine, N, N, N ', N'-tetramethylheptanediamine, N, N, N ′, N′-tetraethylheptanediamine, N, N-dimethyl-N
  • N, N, N ′, N′-tetramethylbutanediamine is particularly preferable from the viewpoint of easy reaction, chemical durability of the crosslinked structure formed after the reaction and high ion conductivity.
  • N, N, N ′, N′-tetramethylhexanediamine and N, N, N ′, N′-tetramethyloctanediamine can be preferably used.
  • the diamine compound represented by the formula (5) reacts with two halogenated alkyls of the styrenic polymer having a halogenated alkyl group on the aromatic ring to form a crosslinked structure having two quaternary ammonium salts.
  • the following formula (6) schematically shows a reaction for forming a crosslinked structure, and two halogenated alkyls represented by (CH 2 ) a Y (Y is a halogen atom, and one of Cl, Br, and I) Each undergoes a quaternary ammonium salt forming reaction with a tertiary amine at the terminal of the diamine compound to form a crosslinked structure.
  • the method for contacting the diamine compound and the styrene polymer having a halogenated alkyl group on the aromatic ring is not particularly limited, but the dried styrene polymer having a halogenated alkyl group on the aromatic ring is converted to the diamine.
  • Examples thereof include a method of contacting with a compound and a method of bringing a styrenic polymer having a halogenated alkyl group into an aromatic ring into a solution and then contacting with a diamine compound in the solution.
  • the reaction temperature is preferably 15 to 40 ° C.
  • the reaction time is preferably 5 to 48 hours in the former case. In the latter case, the polymer gels due to the long-time reaction. Therefore, it is preferably 30 minutes to 1 hour.
  • the excess diamine compound may be removed by a washing operation.
  • the counter ion is a halogen ion, it can be ion-exchanged to a hydroxide ion, a bicarbonate ion, a carbonate ion or the like.
  • the ion exchange method is not particularly limited, and a known method can be employed. After exchanging the counter ions, excess ions may be removed by washing.
  • the catalyst electrode layer of the present invention comprises an ion conductivity imparting agent and an electrode catalyst comprising an anion exchanger in which the content of the structural unit represented by the formula (1) is 70% by mass or more, and an anion exchange membrane. It can be suitably used as a catalyst electrode layer of a fuel cell or water electrolysis apparatus.
  • An ion conductivity-imparting agent comprising an anion exchanger having a constitutional unit content represented by formula (1) of 70% by mass or more is used at a high temperature when used in a catalyst electrode layer of a fuel cell or a water electrolysis device. Even if it is operated, the ion exchange group does not deteriorate, and it does not elute into water inside the fuel cell or water electrolysis device and maintains high ionic conductivity, and has good physical properties over a long period of operation. Therefore, good fuel cell output and durability and water electrolysis performance can be realized.
  • the ion conductivity-imparting agent of the present invention includes the first non-crosslinked structural unit represented by the formula (2) and the second non-crosslinked structural unit represented by the formula (3).
  • a structural unit of cross-linking may be included.
  • the catalyst is formed at the interface between the catalyst electrode layer and the ion exchange membrane.
  • the alkyl halide group of the styrene polymer having an alkyl halide group on the aromatic ring in the precursor of the electrode layer and the precursor of the ion exchange membrane is cross-linked by a diamine, and the ion conductivity-imparting agent of the present invention is exchanged with the ion exchange membrane. It also includes a structure in which the membrane is integrated with the structural unit represented by the formula (1).
  • the content of the structural unit represented by the formula (1) of the ion conductivity-imparting agent of the present invention is 70% by mass or more, and the solubility in water and the volume change due to swelling shrinkage are reduced while maintaining a high ion exchange capacity. Therefore, it is preferable that it is 80 mass% or more.
  • the ion exchange capacity of the ion conductivity-imparting agent is preferably 2.8 to 5.0 mmol / g because it can achieve excellent anion conductivity and water retention properties.
  • the water content is preferably 10 to 100% as a value measured under the conditions of 40 ° C. and 90% RH.
  • the catalyst electrode layer of the present invention contains an electrode catalyst in addition to the ion conductivity-imparting agent.
  • a known catalyst can be used as the catalyst contained in the catalyst electrode layer.
  • platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten which promote hydrogen oxidation reaction or hydrogen generation reaction and oxygen reduction reaction or oxygen generation reaction
  • Metal particles such as vanadium, lanthanum-based metals, or alloys thereof can be used without limitation, but a platinum group catalyst is preferably used because of its excellent catalytic activity.
  • the particle size of the metal particles used as the catalyst is usually 0.1 to 100 nm, more preferably 0.5 to 10 nm. The smaller the particle size, the higher the catalyst performance. However, it is difficult to produce a material having a particle size of less than 0.5 nm.
  • These catalysts may be used after being supported on a conductive agent in advance.
  • the conductive agent is not particularly limited as long as it is an electronic conductive material. For example, carbon black such as furnace black and acetylene black, activated carbon, graphite and the like are generally used alone or in combination. is there.
  • the content of these catalysts is usually 0.01 to 10 mg / cm 2 , more preferably 0.1 to 5.0 mg / cm 2 in terms of metal weight per unit area when the catalyst electrode layer is in a sheet form. .
  • the catalyst electrode layer of the present invention may contain an electron conductivity-imparting agent for the purpose of increasing electron conductivity and obtaining excellent characteristics.
  • the electron conductivity-imparting agent include carbon black, graphite, carbon nanotube, carbon nanohorn, and carbon fiber.
  • the content of the ion conductivity-imparting agent and the electrode catalyst in the catalyst electrode layer and the amount ratio thereof reflect the structure of the catalyst electrode layer and directly affect the electrochemical characteristics of the catalyst electrode layer.
  • the ion conductivity imparting agent is too small, the ion conductivity in the catalyst electrode layer becomes insufficient, which is not preferable.
  • the ion conductivity imparting agent is too large, the individual electrode catalyst particles are thickly coated with the ion conductivity imparting agent. As a result, the contact between the catalyst particles deteriorates and the electron conductivity becomes low, which is not preferable. Therefore, it is very important to adjust both ionic conductivity and electronic conductivity in the catalyst electrode layer to appropriate ranges.
  • the mass ratio of the electrode catalyst to the ion conductivity imparting agent varies depending on the structure of the electrode catalyst used such as particle size and specific surface area and the structure of the ion conductivity imparting agent.
  • the mass of the agent is preferably in the range of 99/1 to 30/70, and more preferably in the range of 95/5 to 50/50.
  • the catalyst electrode layer of the present invention may contain a binder as necessary.
  • a binder as necessary.
  • thermoplastic resins are generally used as the binder to be added as necessary.
  • thermoplastic resins that can be suitably used include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-par Fluoroalkyl vinyl ether copolymers, polyether ether ketones, polyether sulfones, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, and the like.
  • the binder is used, the content is preferably 5 to 25% by weight of the catalyst electrode layer.
  • a binder may be used independently and may mix and use 2 or more types.
  • the thickness of the catalyst electrode layer is not particularly limited, and may be appropriately determined according to the intended use. In general, the thickness is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m.
  • the catalyst electrode layer of the present invention uses a composition for forming a catalyst electrode layer containing a styrene polymer having an alkyl halide group on an aromatic ring (hereinafter also referred to as an ion conductivity-imparting agent precursor) and an electrode catalyst.
  • an ion conductivity-imparting agent precursor a composition for forming a catalyst electrode layer containing a styrene polymer having an alkyl halide group on an aromatic ring
  • the ion conductivity imparting agent is brought into contact with the diamine compound in a solution containing the diamine compound. It can be produced by quaternizing and crosslinking the precursor.
  • the method for producing a catalyst electrode layer of the present invention when the catalyst electrode layer precursor containing an ion conductivity-imparting agent precursor is subjected to quaternization and crosslinking reaction in a solution containing a diamine compound, before and after the reaction. Since the change in the dimensional change of the catalyst electrode layer itself and the internal microstructure formed in the precursor of the catalyst electrode layer can be made extremely small, it is possible to produce a catalyst electrode layer with very excellent characteristics. it can. That is, according to the method for producing a catalyst electrode layer of the present invention, the dimensional change before and after the crosslinking reaction between the ion conductivity imparting agent precursor before the reaction and the ion conductivity imparting agent obtained by the reaction. This is because the rate is very small. The reason for this is considered that the swelling of the ion conductivity-imparting agent is suppressed to a minimum because the ratio of the diamine used for the quaternization and the crosslinking reaction is high.
  • factors affecting the characteristics of the catalyst electrode layer include electronic conductivity in the catalyst electrode layer, presence of internal pores formed by the catalyst particles and the ion conductivity imparting agent, and gas diffusivity in the ion conductivity imparting agent.
  • the ion conductivity in the ion conductivity-imparting agent is known. The higher the electron conductivity in the catalyst electrode layer, the gas diffusibility in the ion conductivity-imparting agent, and the ion conductivity in the ion conductivity-imparting agent, the better the characteristics of the catalyst electrode layer are achieved.
  • the ion conductivity-imparting agent when the ion conductivity-imparting agent is greatly swollen during the crosslinking reaction, the ion conductivity was coated or contacted with the electron conductivity-imparting agent such as catalyst particles and carbon fine particles in the precursor state.
  • the electron conductivity-imparting agent such as catalyst particles and carbon fine particles in the precursor state.
  • the imparting agent swells, the contact between the catalyst particles responsible for electron conduction and the electron conduction imparting agent is deteriorated, the electron conductivity is lowered, and the characteristics of the catalyst electrode layer are lowered.
  • the swelling of the ion conductivity-imparting agent closes the internal pores formed inside the catalyst electrode precursor layer, the gas diffusibility also decreases. For these reasons, when the ion conductivity-imparting agent in the catalyst electrode layer swells greatly, the characteristics of the catalyst electrode layer become insufficient.
  • the swell of the ion conductivity-imparting agent when the swell of the ion conductivity-imparting agent is large, the dimensions of the catalyst electrode layer itself increase. That is, since the size in the state of the precursor becomes larger after the quaternization and the crosslinking reaction, a mismatch with the size of the fuel cell used for power generation tends to occur. If the area of the catalyst electrode layer is larger than the optimum size for the fuel cell to be used, in many cases, it becomes difficult to keep the inside of the cell airtight, causing gas leaks, etc., only reducing the efficiency of the fuel cell. It is even dangerous when using fuel such as hydrogen gas. Thus, the large dimensional change of the catalyst electrode layer during the crosslinking and quaternization reaction affects not only productivity but also power generation efficiency and safety.
  • the catalyst electrode layer is in direct contact with the liquid, so the effect of swelling of the ionic conductivity imparting agent due to water absorption is large, and it occurs due to catalyst dropping due to dimensional change of the catalyst electrode layer and electrode reaction. Electrolysis efficiency is significantly reduced due to the retention of gas in the catalyst electrode layer. In addition, an increase in pressure in the electrolysis cell due to gas stagnation causes gas leakage and the like, which not only lowers electrolysis efficiency, but is also dangerous because the generated gas is hydrogen gas. The large dimensional change of the catalyst electrode layer during the cross-linking and quaternization reaction as described above also affects the reduction in electrolysis efficiency and safety.
  • a catalyst electrode layer having excellent characteristics is obtained, but also excellent in terms of productivity of the catalyst electrode layer, power generation efficiency of a fuel cell using the catalyst electrode layer, electrolysis efficiency of a water electrolysis apparatus, and safety. You can enjoy the effect.
  • composition for forming catalyst electrode layer a dispersion liquid comprising an electrode catalyst, an ion conductivity-imparting agent precursor and the like can be prepared and applied to an anion exchange membrane or a gas diffusion layer.
  • a dispersion containing an electrode catalyst and an ion conductivity-imparting agent precursor is referred to as a composition for forming a catalyst electrode layer, and a layer formed by applying this is referred to as a catalyst electrode precursor layer.
  • the composition for forming a catalyst electrode layer includes an ion conductivity imparting agent precursor and an electrode catalyst, and may further include a solvent and an electron conductivity imparting agent as necessary.
  • the ion conductivity-imparting agent precursor is not particularly limited, and may be solid or dissolved in the catalyst electrode layer forming composition.
  • the catalyst particles are uniformly coated with the ionic conductivity-imparting agent after the individual catalyst particles are quaternized and crosslinked, the electrochemical function of the catalyst is exhibited, and the catalyst electrode layer Highly active. Therefore, when a solvent is added to the ion conductivity-imparting agent precursor and the ion conductivity-imparting agent precursor is made into a solution, the electrode catalyst is uniformly dispersed in the dispersion, and the surface has a sufficient ion-conductivity imparting agent. By covering with a precursor, a catalyst electrode layer having excellent characteristics can be obtained.
  • the solvent used for the solution of the ion conductivity-imparting agent precursor is not particularly limited, but the ion conductivity-imparting agent precursor itself dissolves well, and it has good compatibility with the catalyst fine particles to obtain a high dispersion state. It is desirable to use a polar solvent.
  • solvents include cyclic ether organic solvents such as tetrahydrofuran and dioxane, alcohols such as methanol, ethanol, propanol and isopropyl alcohol, esters such as water and ethyl acetate, and cyclic hydrocarbons such as cyclohexane. . Moreover, you may use these mixed solvents.
  • the method of making the solution is not particularly limited, but a method of simply adding the ion conductivity-imparting agent precursor to the solvent and stirring it is simple. Depending on the composition and solvent composition of the ion conductivity-imparting agent precursor, dissolution is promoted by heating. The dissolution is preferably carried out at 15 ° C. or higher and below the boiling point of the solvent used.
  • the concentration of the ion conductivity-imparting agent precursor solution is not particularly limited. However, when the concentration of the solution is too high, the viscosity of the solution is generally extremely high, which causes a problem in handling when forming the catalyst electrode layer. In view of the fact that it takes time to form a solution, the concentration of the solution is preferably set to a relatively low concentration.
  • the concentration of the ion conductivity-imparting agent precursor in the entire solution is 1 to 20% by mass. It is preferable that
  • the electrode catalyst used in the method for producing the catalyst electrode layer of the present invention will be described.
  • a known catalyst can be used as described above.
  • metal particles such as platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, vanadium, or alloys thereof that promote hydrogen oxidation reaction and oxygen reduction reaction
  • the particle size of the metal particles used as the catalyst is usually 0.1 to 100 nm, more preferably 0.5 to 10 nm. The smaller the particle size, the higher the catalyst performance. However, it is difficult to produce a material having a particle size of less than 0.5 nm.
  • These catalysts may be used after being supported on a conductive agent in advance.
  • the conductive agent is not particularly limited as long as it is an electronic conductive material. For example, carbon black such as furnace black and acetylene black, activated carbon, graphite and the like are generally used alone or in combination. is there.
  • the content of these catalysts is usually 0.01 to 10 mg / cm 2 , more preferably 0.1 to 5.0 mg / cm 2 in terms of metal weight per unit area when the catalyst electrode layer is in a sheet form. .
  • An electron conductivity-imparting agent may be added to the composition for the purpose of increasing the electron conductivity of the catalyst electrode layer and obtaining excellent properties.
  • Examples of the electron conductivity-imparting agent include carbon black, graphite, carbon nanotube, carbon nanohorn, and carbon fiber.
  • the addition amount and the ratio of the ion conductivity-imparting agent precursor and the electrode catalyst greatly affect the structure of the resulting catalyst electrode precursor layer. Directly affects the electrochemical properties of If the ion conductivity imparting agent precursor is too small, the ion conductivity becomes insufficient when the catalyst electrode layer is formed, which is not preferable. On the contrary, if the amount is too large, the individual electrode catalyst particles impart ion conductivity. Since it will be thickly coated with the agent, the contact between the particles becomes poor and the electron conductivity becomes low, which is not preferable. Therefore, it is very important to adjust both ionic conductivity and electronic conductivity in the catalyst electrode layer to appropriate ranges.
  • the mass ratio of electrode catalyst to ion conductivity-imparting agent precursor (mass of electrode catalyst / ion conductivity) varies depending on the structure of the electrode catalyst used, such as particle size and specific surface area, and the structure of the ion conductivity-imparting agent.
  • the mass of the imparting agent precursor is preferably in the range of 99/1 to 40/60, and more preferably in the range of 95/5 to 50/50.
  • the catalyst electrode layer forming composition of the present invention may contain a binder as necessary.
  • a binder as necessary.
  • thermoplastic resins are generally used as the binder to be added as necessary.
  • thermoplastic resins that can be suitably used include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-par Fluoroalkyl vinyl ether copolymers, polyether ether ketones, polyether sulfones, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, and the like.
  • the content of the binder in the composition for forming a catalyst electrode layer is preferably an amount that is 5 to 25% by weight of the catalyst electrode layer.
  • a binder may be used independently and may mix and use 2 or more types.
  • the composition for forming a catalyst electrode layer is obtained by mixing at least an ion conductivity-imparting agent precursor, an electrode catalyst, and, if necessary, an electron conductivity-imparting agent in a solvent.
  • the electrode catalyst is in a highly dispersed state in the composition. Therefore, a method of obtaining a highly dispersed state of the electrode catalyst is preferably employed as a mixing method.
  • Examples of the dispersing device include a bead mill, a ball mill, a high-pressure collision type dispersing device, an ultrasonic dispersing device, etc., and may be selected according to the aggregation state of the electrode catalyst to be used and the energy required for the dispersion, such as time and temperature.
  • the mixing conditions may be determined in the same manner.
  • the viscosity of the composition for forming a catalyst electrode layer is not particularly limited as long as it is suitable for a coating method described later.
  • the viscosity is strongly dependent on the electrode catalyst dispersion and the amount of solvent added to the composition.
  • the amount of the solvent added is determined so that the masses of the ion conductivity-imparting agent precursor and the electrode catalyst are 0.1 to 10% by mass, respectively.
  • Method for forming catalyst electrode precursor layer In the method for producing a catalyst electrode layer in the present invention, the above-mentioned catalyst electrode layer forming composition is applied to a gas diffusion layer or an anion exchange membrane to form a catalyst electrode precursor layer and then a catalyst electrode layer. In some cases, a catalyst electrode layer is formed after coating on a precursor of an ion exchange membrane having a halogenated alkyl group to form a catalyst electrode precursor layer.
  • the method for applying the composition for forming a catalyst electrode layer is not particularly limited, and may be determined according to characteristics to be applied, such as a desired thickness of the catalyst electrode layer. Examples of the method include spray coating, bar coating, roll coating, gravure printing, and screen printing.
  • the applied catalyst electrode precursor layer is dried at an appropriate temperature.
  • the drying conditions are not particularly limited, and may be determined according to the amount of solvent used, the boiling point, etc., as long as cracks, pinholes, etc. do not occur in the catalyst electrode precursor layer during drying. In general, drying is preferably performed at a temperature of 15 to 70 ° C. for 5 to 48 hours.
  • the thickness of the catalyst electrode precursor layer formed on the object to be applied is not particularly limited, and may be determined as appropriate according to the intended use. In general, the thickness is preferably 0.1 to 50 ⁇ m, and more preferably 0.5 to 20 ⁇ m.
  • the method for producing a catalyst electrode layer according to the present invention includes the case where the above-mentioned composition for forming a catalyst electrode layer is applied to the gas diffusion layer or the anion exchange membrane, and the case of halogenation.
  • a composition for forming a catalyst electrode layer is applied onto a precursor of an ion exchange membrane having an alkyl group.
  • the catalyst electrode precursor layer formed on the gas diffusion layer or the anion exchange membrane may be quaternized and crosslinked in a solution containing a diamine compound.
  • the gas diffusion layer examples include carbon paper, carbon cloth, nickel foam, titanium foam, foamed metal, and the like, and porous graphite.
  • carbon paper and carbon cloth are preferably selected.
  • nickel foam or titanium foam is preferably selected.
  • the gas diffusion layer is used for the purpose of facilitating the discharge of water generated by power generation outside the system when used in a fuel cell, and the purpose of suppressing the drying of the membrane-electrode assembly when using a dry gas or the like. Therefore, it may have a microporous layer composed of carbon black and a binder such as polytetrafluoroethylene, but can be used without any particular limitation in the present invention.
  • a gas diffusion layer having a microporous layer can be used for the purpose of easily discharging hydrogen generated by electrolysis out of the system.
  • the gas diffusion layer is not particularly limited, but is preferably a carbon porous membrane.
  • carbon fiber woven fabric, carbon paper, or the like can be used.
  • the thickness of the gas diffusion layer is preferably 50 to 300 ⁇ m, and the porosity is preferably 50 to 90%.
  • this carbon porous membrane is preferably used when the catalyst electrode layer is formed by post-crosslinking. The reason is that after the catalyst electrode precursor layer is formed, the catalyst electrode precursor layer and the diamine compound are brought into contact with each other, but the carbon porous membrane does not undergo deformation such as swelling. It is.
  • a known anion exchange membrane can be used without any particular limitation as the anion exchange membrane.
  • anion exchange membranes are generally supported by a base material such as a woven fabric, a nonwoven fabric, or a porous membrane made of a thermoplastic resin, but have low gas permeability and can be thinned.
  • a base material such as a woven fabric, a nonwoven fabric, or a porous membrane made of a thermoplastic resin, but have low gas permeability and can be thinned.
  • the base material include a porous film made of a thermoplastic resin such as a polyolefin resin such as polyethylene, polypropylene, and polymethylpentene, and a fluorine resin such as polytetrafluoroethylene, poly (tetrafluoroethylene-hexafluoropropylene), and polyvinylidene fluoride.
  • the film thickness of these hydrocarbon-based anion exchange membranes is preferably from 5 to 200 ⁇ m, more preferably from the viewpoint of keeping electric resistance low and imparting mechanical strength necessary as a support membrane. Has a thickness of 8 to 150 ⁇ m.
  • the catalyst electrode precursor layer formed on the gas diffusion layer or the anion exchange membrane is quaternized and crosslinked in a solution containing a diamine compound.
  • the halogenated alkyl group of the ion conductivity-imparting agent precursor in the catalyst electrode precursor layer can be quaternized and crosslinked in a solution containing the diamine compound because the crosslinking reaction with the diamine compound proceeds easily. is there.
  • the ion conductivity imparting agent precursor When the ion conductivity imparting agent precursor is quaternized and crosslinked with a diamine compound, there is a feature that the dimensional change of the ion conductivity imparting agent before and after the progress of the quaternization and crosslinking reaction can be suppressed minutely. This is because the ionic conductivity-imparting agent precursor is cross-linked with the quaternization in the solution containing the diamine compound to become an ionic conductivity-imparting agent having a cross-linked structure, thereby suppressing swelling and shrinkage. This feature expresses the function of suppressing dimensional changes in the manufacturing process of the catalyst electrode layer, and functions effectively to obtain a very high performance catalyst electrode layer.
  • the diamine compound used here refers to the production of the anion exchanger of the present invention described above, which can form a structural unit having a crosslinked structure represented by the formula (1) after quaternization and crosslinking reaction. What is necessary is just to select suitably the diamine compound of Formula (5) to be used.
  • a method suitable for manufacturing a catalyst electrode layer containing an ion conductivity-imparting agent having a crosslinked structure may be used. Specifically, a method of immersing the catalyst electrode precursor layer in a solution containing a diamine compound diluted in a solvent as necessary, a method of spraying a solution containing a diamine compound on the catalyst electrode precursor layer, and the like are included. . Among these, it is preferable to employ a method of dipping.
  • the amount of the diamine compound used for forming the crosslinked structure may be appropriately determined according to the diamine compound, the type of halogenated alkyl group contained in the ion conductivity-imparting agent precursor, the desired degree of crosslinking, the ion exchange capacity, and the like. Good. Specifically, when the total number of moles of halogenated alkyl groups contained in the ion conductivity-imparting agent precursor is n1, the amount of the diamine compound used is preferably 0.7 mole times or more of n1, and so on. It is preferable that it is more than mol times.
  • the catalyst electrode layer of the present invention is produced by reacting the catalyst electrode precursor layer with the diamine compound, a tertiary amine is used in combination, which is an essential component of the ion conductivity-imparting agent, represented by the formula (1).
  • the first non-crosslinked structural unit represented by the following formula (2) can be introduced.
  • the balance between hydrophilicity and hydrophobicity of the catalyst electrode layer of the present invention can be controlled.
  • the operating temperature is low, the ionic conductivity is low, but by introducing the first non-crosslinked structural unit represented by the above formula (2), the hydrophilicity of the catalyst electrode layer is increased and the water content is increased.
  • the content of the first non-crosslinked constituent unit represented by the formula (2) is preferably 0 to 20% by mass, more preferably 0, in order to prevent elution of the ion conductivity-imparting agent due to an increase in operating temperature. ⁇ 10% by mass.
  • c is an integer of 3 to 10, preferably 3 to 6
  • R 5 and R 6 are each independently a methyl group or an ethyl group
  • R 7 is a straight chain having 1 to 8 carbon atoms.
  • a chain alkyl group, X ⁇ is at least one counter ion selected from the group consisting of OH ⁇ , HCO 3 ⁇ , CO 3 2 ⁇ , Cl ⁇ , Br ⁇ and I ⁇ )
  • a tertiary amine capable of obtaining a structure represented by the formula (2) after introduction may be appropriately selected.
  • trimethylamine, triethylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylamine, dimethylpentylamine, dimethylhexylamine, dimethylheptylamine, dimethyloctylamine, diethylmethylamine, diethylpropylamine, diethylbutylamine, diethylpentylamine examples include diethylhexylamine, diethylheptylamine, diethyloctylamine, ethylmethylpropylamine, ethylmethylbutylamine, ethylmethylpentylamine, ethylmethylhexylamine, ethylmethylheptylamine, ethylmethyloctylamine and the like.
  • tertiary amine it is preferable to use trimethylamine, triethylamine, dimethylbutylamine, dimethylhexylamine, dimethyloctylamine, diethylbutylamine, diethylhexylamine, diethyloctylamine for reasons of high reactivity and availability. .
  • a method of bringing the catalyst electrode precursor layer of the present invention into contact with a mixture of a diamine compound and a tertiary amine a method in which a tertiary amine is brought into contact, and a method in which a diamine compound is brought into contact, and Any method of contacting the tertiary amine after contacting the diamine compound may be adopted.
  • the amount of tertiary amine used may be determined in consideration of the ratio with the diamine compound used together depending on the desired degree of crosslinking. If a large amount of monofunctional quaternizing agent (tertiary amine) reacts with the alkyl halide, as described above, the swelling of the ion conductivity-imparting agent during the post-crosslinking reaction becomes large. Since the ionic conductivity imparting agent of the invention does not exhibit the effect of suppressing swelling during the crosslinking reaction, the characteristics of the present invention are not exhibited, which is not preferable.
  • the tertiary amine and the diamine compound are used simultaneously or stepwise, the tertiary involved in the reaction with respect to 1 mole of the alkyl halide group of the ion conductivity-imparting agent contained in the catalyst electrode precursor layer.
  • the amine is preferably 0.3 mol or less, and more preferably 0.2 mol or less. Moreover, it is preferable that it is 0.01 mol or more.
  • the total amount of the diamine compound and the tertiary amine used as required may be equal to or greater than the equivalent mole of the halogenated alkyl group of the ion conductivity-imparting agent precursor. preferable.
  • the solution containing the diamine compound may contain a solvent.
  • a tertiary amine that is, when a diamine compound alone is used in the reaction, it is preferable not to use a solvent because the diamine concentration during the reaction does not change and does not affect the reaction rate.
  • the solvent to be used can be selected without particular limitation as long as the components of the catalyst electrode precursor layer are not dissolved, and water, alcohols such as methanol, ethanol and propanol, ketones such as acetone and the like are preferably used.
  • the reaction temperature is preferably 15 to 40 ° C.
  • the reaction time is preferably 5 to 48 hours, and more preferably 5 to 24 hours from the viewpoint of increasing productivity.
  • the excess diamine compound may be removed by a washing operation.
  • the counter ion when it is a halogen ion, it can be ion-exchanged to a hydroxide ion, a bicarbonate ion, a carbonate ion, or the like.
  • the ion exchange method is not particularly limited, and a known method can be employed. After exchanging the counter ions, excess ions may be removed by washing.
  • a catalyst electrode precursor layer is formed on an ion exchange membrane precursor having a halogenated alkyl group, and the catalyst electrode layer is formed by performing quaternization and a crosslinking reaction in a solution containing a diamine compound.
  • the precursor of an anion exchange membrane having a halogenated alkyl group means a precursor of an ion exchange membrane having a functional group into which an ion exchange group can be introduced, which is produced by a known method for producing an anion exchange membrane.
  • Examples include precursors of hydrocarbon-based anion exchange membranes, and specific examples include membranes filled with chloromethylstyrene-divinylbenzene copolymer, bromobutylstyrene-divinylbenzene copolymer, and the like.
  • the copolymers contained in the precursors of these anion exchange membranes are generally supported by a base material such as a woven fabric, a nonwoven fabric, or a porous membrane made of a thermoplastic resin, but the gas permeability is low.
  • the base material includes polyolefin resins such as polyoctane, polypropylene and polymethylpentene, and fluorine-based resins such as polytetrafluorooctane, poly (tetrafluorooctanehexafluoropropylene) and polyvinylidene fluoride.
  • a base material made of a porous film made of a thermoplastic resin such as.
  • the film thickness of these hydrocarbon-based anion exchange membranes is preferably from 5 to 200 ⁇ m, more preferably from the viewpoint of keeping electric resistance low and imparting mechanical strength necessary as a support membrane. Has a thickness of 8 to 150 ⁇ m.
  • the quaternization and crosslinking reaction of the catalyst electrode precursor layer formed on the anion exchange membrane precursor is performed by the above-described gas diffusion layer or catalyst electrode precursor layer formed on the anion exchange membrane.
  • the quaternization and crosslinking reaction are preferably performed under the same conditions.
  • the membrane-electrode assembly formed by laminating the catalyst electrode layer and the anion exchange membrane of the present invention can be suitably used for an anion exchange membrane fuel cell and a water electrolysis apparatus.
  • the composition for forming a catalyst electrode layer containing an ion conductivity-imparting agent precursor and a catalyst is placed on the anion exchange membrane or the precursor of the anion exchange membrane. It can be obtained by coating, drying, forming a catalyst electrode precursor layer, contacting with a diamine compound, and performing a quaternization and a crosslinking reaction.
  • the gas diffusion electrode formed by laminating the catalyst electrode layer and the gas diffusion layer of the present invention can be suitably used for an anion exchange membrane fuel cell and a water electrolysis device.
  • the gas diffusion electrode of the present invention forms a catalyst electrode precursor layer by applying a catalyst electrode layer forming composition containing an ion conductivity-imparting agent precursor and a catalyst onto the gas diffusion layer and drying it. It can be obtained by contacting with a diamine compound to carry out a quaternization and a crosslinking reaction.
  • an anion exchange membrane fuel cell can be assembled with the configuration shown in FIG. 1, for example. That is, when the catalyst electrode layer is formed on the gas diffusion layer, two of them are used to sandwich the anion exchange membrane on the side where the catalyst electrode layer is formed. Thereby, the state where 4, 5, 6, 7, and 8 in FIG. 1 are combined can be realized.
  • the catalyst electrode layer precursor is directly formed on both sides of the anion exchange membrane or its precursor and the catalyst electrode layer is formed after crosslinking and quaternization, it can be used as a fuel cell as it is. it can.
  • a fuel cell can be configured by stacking a support (carbon porous membrane) functioning as a gas diffusion layer on the catalyst electrode layer in order to improve gas diffusibility.
  • the above-described anion exchange membrane fuel cell can generate electric power by supplying humidified hydrogen gas to the fuel chamber side and humidified oxygen or air to the oxidizer chamber side when hydrogen is used as the fuel.
  • the heat resistance of the anion exchange group is improved, and further, the elution of the ion conductivity imparting agent from the catalyst electrode layer accompanying the increase in the operating temperature is prevented and the ion Since conductivity can be maintained high, it is possible to maintain good power generation performance of the fuel cell over a long period of time.
  • a water electrolysis apparatus can be assembled. That is, when the catalyst electrode layer is formed on the gas diffusion layer and the gas diffusion electrode is formed after cross-linking and quaternization, the one in which both sides of the anion exchange membrane are sandwiched between the gas diffusion electrodes is used as the water electrolysis apparatus. Can be used. Alternatively, if the catalyst electrode layer precursor is formed directly on both sides of the anion exchange membrane or its precursor and the catalyst electrode layer is formed after crosslinking and quaternization, it should be used as it is as a water electrolysis device. Can do. Further, a water electrolysis apparatus is configured by stacking a support (carbon porous body or metal porous body) functioning as a gas diffusion layer on the catalyst electrode layer in order to improve gas diffusibility. be able to.
  • a support carbon porous body or metal porous body
  • FIG. 2 shows a simple configuration example of such a water electrolysis apparatus, but the water electrolysis apparatus of the present invention is not limited to the structure of FIG.
  • the example of the water electrolysis apparatus 20 using the anion exchange membrane 8 was shown.
  • a cathode side catalyst electrode layer 11 is provided on one side of the anion exchange membrane 8, and an anode side catalyst electrode layer 12 is provided on the other side.
  • a gas diffusion layer may be provided on the surface of each catalyst electrode layer, it is omitted in this figure.
  • At least one of the cathode side catalyst electrode layer 11 and the anode side catalyst electrode layer 12 may be the catalyst electrode layer of the present invention, but preferably both are formed of the catalyst electrode layer of the present invention.
  • Each catalyst electrode layer is connected to an external power source 30 via conductors 31 and 32, respectively.
  • the electrolytic cell is provided with raw water supply pipes 13 and 14 for supplying raw water.
  • a dilute alkaline aqueous solution is preferably used from the viewpoint of electrolysis efficiency, and for example, a dilute aqueous solution of KOH is used.
  • water electrolysis starts.
  • the reaction on the cathode side and the anode side is as follows.
  • the heat resistance of the anion exchange group is improved, and further, the elution of the ion conductivity-imparting agent from the catalyst electrode layer accompanying the increase in the operating temperature is prevented and the ion conductivity is increased. Therefore, it is possible to maintain the operation with high electrolytic efficiency over a long period of time.
  • the present invention will be described in detail using examples, but the present invention is not limited to these examples.
  • the characteristic of the anion exchanger shown in an Example and a comparative example and a fuel cell shows the value measured with the following method.
  • the Visking tube was made of cellulose, the molecular weight cut off was 8,000, and the mass (Dv (g)) after drying under reduced pressure at 50 ° C. for 3 hours was measured in advance.
  • a tertiary amine containing a 13 C isotope in the molecule can be used, and the amount of the tertiary amine contained by the 13 C-NMR spectrum can be quantified.
  • the peak area of the 13 C-NMR spectrum of trimethylamine obtained from a cast film prepared using only trimethylamine ( 13 C isotope) was set to 1, and the mixture was crosslinked with a mixed solution of diamine compound and trimethylamine mixed at an arbitrary ratio.
  • the content of formula (1) was determined from the following formula.
  • Content crosslinking degree ⁇ molecular weight of formula (1) / [crosslinking degree ⁇ molecular weight of formula (1) + P ⁇ molecular weight of formula (2)]
  • the content of the structure of the obtained formula (1) is also shown in Table 1.
  • the catalyst electrode layer is formed on an ion exchange membrane or a precursor thereof, that is, when a membrane-electrode assembly is formed, a gas diffusion layer (Toray Industries, Inc.) cut into 23 mm square (about 5 cm 2 ) Two sheets of HGP-H-060 (thickness: 200 ⁇ m) were used and laminated one by one on the catalyst electrode layers on both sides of the membrane-electrode assembly, and assembled into the fuel cell shown in FIG.
  • a gas diffusion layer Toray Industries, Inc.
  • Example 1 30 g of bromobutylstyrene was subjected to radical polymerization with 2,2′azobisisobutyronitrile in a toluene solvent to obtain polybromobutylstyrene (number average molecular weight 80,000). A cast film of the obtained polybromobutylstyrene was prepared and immersed in 50 g of a diamine compound (N, N, N ′, N′-tetramethyl-1,6-hexanediamine). The cast film of the anion exchanger was obtained by taking out after 24 hours, and wash
  • a diamine compound N, N, N ′, N′-tetramethyl-1,6-hexanediamine
  • Table 1 shows the content, the solubility test result, the heat resistance test result, the ion exchange capacity, and the moisture content of the structural unit having the crosslinked structure represented by the formula (1) of the cast film of the obtained anion exchanger. .
  • a catalyst a carbon particle having a primary particle size of 30 to 50 nm and platinum particles having a particle size of 2 to 10 nm supported
  • a composition for forming a catalyst electrode layer was applied on a gas diffusion layer (carbon paper manufactured by SGL Carbon, GDL25BC, thickness 190 ⁇ m) in a size of 23 mm square (about 5 cm 2 ) so that platinum would be 0.5 mgcm ⁇ 2 , dried, and then dried.
  • a catalyst electrode precursor layer was obtained on the diffusion layer.
  • the catalyst electrode precursor layer was immersed in 20 g of a diamine compound (N, N, N ′, N′-tetramethyl-1,6-hexanediamine).
  • the gas diffusion electrode was obtained by removing after 24 hours and washing.
  • the obtained gas diffusion electrode was immersed in a 1 mol / L potassium bicarbonate aqueous solution 5 times for 15 minutes, exchanged counter ions with bicarbonate ions, washed with ion exchange water, and then dried at room temperature for 24 hours. I let you.
  • the thickness of the catalyst electrode layer was 5 ⁇ m.
  • a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
  • Example 2 The same as in Example 1 except that a solution having a molar ratio of 2: 8 of trimethylamine and N, N, N ′, N′-tetramethyl-1,6-hexanediamine was used as a reagent for quaternization / crosslinking reaction.
  • the operation was carried out to prepare an anion exchanger cast film and a gas diffusion electrode.
  • Table 1 shows the content, the solubility test result, the ion exchange capacity, and the water content of the structural unit having the crosslinked structure represented by the formula (1) of the cast film of the obtained anion exchanger.
  • a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
  • Example 3 An anion exchanger cast film and a gas diffusion electrode were prepared in the same manner as in Example 1 except that polybromopropylstyrene was used instead of polybromobutylstyrene.
  • Table 1 shows the content, the solubility test result, the heat resistance test result, the ion exchange capacity, and the moisture content of the structural unit having the crosslinked structure represented by the formula (1) of the cast film of the obtained anion exchanger. .
  • a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
  • Comparative Example 1 An anion exchanger cast film and a gas diffusion electrode were prepared in the same manner as in Example 1 except that commercially available polychloromethylstyrene (number average molecular weight 55,000) was used instead of polybromobutylstyrene. .
  • Table 1 shows the solubility test results, ion exchange capacity, and moisture content of the cast film of the obtained anion exchanger.
  • a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
  • Comparative Example 2 An anion exchanger cast film and a gas diffusion electrode were prepared in the same manner as in Example 2 except that commercially available polychloromethylstyrene was used instead of polybromobutylstyrene. Table 1 shows the solubility test results, heat resistance test results, ion exchange capacity and water content of the cast film of the obtained anion exchanger. In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
  • Comparative Example 3 Crosslink by adding 1.75 parts by weight of divinylbenzene (purity 57%) and 1.0 part by weight of azobisbutyronitrile to 98.25 parts by weight of bromobutylstyrene and maintaining at 70 ° C. for 24 hours in a nitrogen atmosphere. A polymer was obtained. The obtained crosslinked polymer was suspended in dioxane, then, 3 molar equivalents of trimethylamine with respect to the bromo group were added dropwise, and the suspension was reacted at 50 ° C. for 10 hours. The resulting quaternized crosslinked polymer was washed thoroughly with ion exchange water.
  • the resulting quaternized crosslinked polymer was subjected to solubility test results, heat resistance test results, ion exchange capacity measurement, and moisture content measurement. The results are shown in Table 1. Further, the obtained quaternized crosslinked polymer and Pt / C catalyst were dispersed in a propanol solvent to prepare a composition for forming a catalyst electrode layer. This was applied onto the gas diffusion layer and then dried to obtain a gas diffusion electrode. A power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
  • Comparative Example 4 The same operation as in Comparative Example 3 was performed except that 17.5 parts by weight of divinylbenzene (purity 57%) and 1.0 part by weight of azobisbutyronitrile were added to 82.5 parts by weight of bromobutylstyrene to prepare a crosslinked polymer. And a quaternized crosslinked polymer and a gas diffusion electrode were prepared. Table 1 shows the solubility test results, heat resistance test results, ion exchange capacity and water content of the resulting quaternized crosslinked polymer. In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2. In addition, the divinylbenzene crosslinking degree in a table
  • surface is the ratio (weight%) of divinylbenzene to the total monomer weight in a preparation stage.
  • a styrenic polymer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is extended is quaternized and crosslinked in a solution containing the diamine compound, so that the crosslinked structure is crosslinked with the diamine compound. It was confirmed that it is possible to form a catalyst electrode layer containing an ion conductivity-imparting agent having an excellent fuel cell output characteristic.
  • Example 1 and Comparative Example 1 show that the styrenic polymer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is extended has a poor resin dispersibility when the catalyst electrode layer is produced. This also suggests that it has sufficient ionic conductivity to exhibit good battery characteristics. Further, in Comparative Example 1, since the alkyl chain length between the ion exchange group and the aromatic ring is short, the heat resistance of the ion exchanger is low, and the operating temperature is 90 ° C. compared to the case where the operating temperature of the fuel cell is 50 ° C. The power generation durability is low.
  • the voltage value at the initial stage of power generation is low, and the fuel cell output characteristics are limited.
  • the durability test of the anion exchanger good results were obtained even at 90 ° C., but in the power generation test at 90 ° C., the voltage after 100 hours decreased.
  • the effect of high heat resistance can be obtained by extending the alkyl chain length between the exchange group and the aromatic ring.
  • drying proceeds by adding a hydrophobic cross-linking site, and heat is generated. It was confirmed that the decomposition reaction was promoted.
  • a catalyst electrode layer using the anion exchanger of the present invention When forming a catalyst electrode layer using the anion exchanger of the present invention, it has high heat resistance, and by introducing a cross-linked structure with a diamine compound and imparting ion exchange capacity, excellent performance and excellent catalyst electrode layer performance The fuel cell output characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Conductive Materials (AREA)

Abstract

[Problem] To provide an anion exchanger which is able to be used as an ion conductivity-imparting agent that is used in a fuel cell and a water electrolysis apparatus that use an anion exchange membrane, and which is capable of achieving a good balance among heat resistance, and insolubilization and ion exchange capacity increase of the ion conductivity-imparting agent. [Solution] Heat resistance is imparted by using a styrene polymer wherein the chain length of an alkyl group between an ion exchange group and an aromatic ring is extended, and a good balance between insolubilization and high ion exchange capacity is able to be achieved by using a crosslinked structure that has a quaternary ammonium group as an ion exchange group.

Description

陰イオン交換体、イオン伝導性付与剤、触媒電極層、膜-電極接合体、陰イオン交換膜型燃料電池および陰イオン交換膜型水電解装置Anion exchanger, ion conductivity imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell, and anion exchange membrane water electrolysis device
 本発明は、耐熱性を有する陰イオン交換体、イオン伝導性付与剤、触媒電極層に関する。また、本発明は、該触媒電極層を有する新規な積層体、並びに該積層体を含む新規な固体高分子型燃料電池および水電解装置に関する。 The present invention relates to an anion exchanger having heat resistance, an ion conductivity imparting agent, and a catalyst electrode layer. The present invention also relates to a novel laminate having the catalyst electrode layer, a novel polymer electrolyte fuel cell and a water electrolysis apparatus including the laminate.
 燃料電池は、燃料の化学エネルギーを電力として取り出す発電システムであり、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型など、幾つかの形式の燃料電池が提案、検討されている。これらの中でも、固体高分子型燃料電池は、特に作動温度が低いため、定置型電源や車載用途などの中小型の低温作動型燃料電池として期待されている。 A fuel cell is a power generation system that takes out chemical energy of fuel as electric power, and several types of fuel cells such as alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, and solid polymer type have been proposed and studied. Has been. Among these, the polymer electrolyte fuel cell is expected to be a small and medium-sized low-temperature operation fuel cell such as a stationary power source and an in-vehicle application because the operation temperature is particularly low.
 固体高分子型燃料電池は、イオン交換樹脂等の固体高分子を電解質として用いた燃料電池である。固体高分子型燃料電池は、図1に示されるように、それぞれ外部と連通する燃料流通孔2および酸化剤ガス流通孔3を有する電池隔壁1内の空間を、固体高分子電解質膜8の燃料室9側に燃料室側ガス拡散層4及び燃料室側触媒電極層5を、酸化剤室10側に酸化剤室側触媒電極層7及び酸化剤室側ガス拡散層6が接合した接合体で仕切って、燃料流通孔2を通して外部と連通する燃料室9、および酸化剤ガス流通孔3を通して外部と連通する酸化剤室10が形成された基本構造を有している。そして、このような基本構造の固体高分子型燃料電池では、前記燃料室9に燃料流通孔2を通して水素ガスあるいはアルコール等の液体からなる燃料を供給すると共に酸化剤室10に酸化剤ガス流通孔3を通して酸化剤となる純酸素や空気等の酸素含有ガスを供給し、更に燃料室側触媒電極層5と酸化剤室側触媒電極層7間に外部負荷回路を接続することにより、次のような機構により電気エネルギーを発生させている。 The solid polymer fuel cell is a fuel cell using a solid polymer such as an ion exchange resin as an electrolyte. As shown in FIG. 1, the polymer electrolyte fuel cell is configured such that the space in the cell partition wall 1 having the fuel circulation hole 2 and the oxidant gas circulation hole 3 communicating with the outside is used as the fuel for the solid polymer electrolyte membrane 8. A joined body in which the fuel chamber side gas diffusion layer 4 and the fuel chamber side catalyst electrode layer 5 are joined to the chamber 9 side, and the oxidant chamber side catalyst electrode layer 7 and the oxidant chamber side gas diffusion layer 6 are joined to the oxidant chamber 10 side. It has a basic structure in which a fuel chamber 9 that communicates with the outside through the fuel circulation hole 2 and an oxidant chamber 10 that communicates with the outside through the oxidant gas circulation hole 3 are formed. In the polymer electrolyte fuel cell having such a basic structure, fuel made of a liquid such as hydrogen gas or alcohol is supplied to the fuel chamber 9 through the fuel flow hole 2 and the oxidant gas flow hole is supplied to the oxidant chamber 10. 3 is supplied with oxygen-containing gas such as pure oxygen or air as an oxidant, and an external load circuit is connected between the fuel chamber side catalyst electrode layer 5 and the oxidant chamber side catalyst electrode layer 7 as follows. Electric energy is generated by a simple mechanism.
 固体高分子電解質膜8としては、反応場がアルカリ性となり貴金属以外の金属が使用できるという点で、陰イオン交換膜を用いることが検討されている。この場合、燃料室9に水素あるいはアルコール等を供給し、酸化剤室10に酸素および水を供給することにより、酸化剤室側触媒電極層7において該電極内に含まれる触媒と該酸素および水とが接触して水酸化物イオンが生成する。この水酸化物イオンは、上記陰イオン交換膜からなる固体高分子電解質膜8内を伝導して燃料室9に移動し、燃料室側触媒電極層5で燃料と反応して水を生成することになる。これに伴って燃料室側触媒電極層5で生成した電子を、外部負荷回路を通じて酸化剤室側触媒電極層7へと移動させて、この反応のエネルギーを電気エネルギーとして利用する。 As the solid polymer electrolyte membrane 8, use of an anion exchange membrane has been studied in that the reaction field becomes alkaline and a metal other than a noble metal can be used. In this case, hydrogen or alcohol or the like is supplied to the fuel chamber 9 and oxygen and water are supplied to the oxidant chamber 10, so that the catalyst contained in the electrode and the oxygen and water are contained in the oxidant chamber side catalyst electrode layer 7. To form hydroxide ions. The hydroxide ions are transferred to the fuel chamber 9 through the solid polymer electrolyte membrane 8 made of the anion exchange membrane, and react with the fuel in the fuel chamber side catalyst electrode layer 5 to generate water. become. Along with this, electrons generated in the fuel chamber side catalyst electrode layer 5 are moved to the oxidant chamber side catalyst electrode layer 7 through an external load circuit, and the energy of this reaction is used as electric energy.
 このような陰イオン交換膜を用いた固体高分子型燃料電池が広く一般的に使用されるには、高い出力を発揮し、耐久性をより一層向上させる必要がある。高い出力を得るためには、固体高分子型燃料電池の動作温度を高くすることが考えられる。しかし、動作温度を高くすると、触媒電極層を形成している陰イオン交換体であるイオン伝導性付与剤のイオン交換基の劣化、触媒電極層からの陰イオン交換体の溶出による触媒電極層の剥がれなどが生じ易くなる。その結果、固体高分子型燃料電池としての耐久性が低下してしまう場合があった。 In order for a polymer electrolyte fuel cell using such an anion exchange membrane to be widely used in general, it is necessary to exhibit a high output and further improve the durability. In order to obtain a high output, it is conceivable to increase the operating temperature of the polymer electrolyte fuel cell. However, when the operating temperature is increased, the deterioration of the ion exchange group of the ion conductivity-imparting agent that is the anion exchanger forming the catalyst electrode layer, and the elution of the anion exchanger from the catalyst electrode layer Peeling easily occurs. As a result, the durability of the polymer electrolyte fuel cell may be lowered.
 これまでの陰イオン交換体としては、芳香族ポリエーテルスルホンと芳香族ポリチオエーテルスルホンの共重合体のクロロメチル化物をポリアミンでアミノ化するとともに架橋して得られるもの(特許文献1)、(クロロメチル)スチレン/ジビニルベンゼン共重合体をアミンで四級化したもの(特許文献2)、またはクロロメチル化スチレンを有するブロックコポリマーをアミンで四級化したポリマー(特許文献3)などをあげることができる。特許文献1では、架橋構造を導入する目的としてメタノールクロスリークを低減するためであるとしている。 Conventional anion exchangers are those obtained by amination and crosslinking of chloromethylated products of aromatic polyethersulfone and aromatic polythioethersulfone copolymers with polyamine (Patent Document 1), Methyl) styrene / divinylbenzene copolymer quaternized with amine (Patent Document 2), or a block copolymer having chloromethylated styrene quaternized with amine (Patent Document 3). it can. In Patent Document 1, the purpose of introducing a cross-linked structure is to reduce methanol cross leak.
 ここで、これらの陰イオン交換体において、その陰イオン交換基である4級アンモニウム基に着目すると、何れの場合においても実質的にクロロメチル基をアミノ化して導入されており、その陰イオン交換基は芳香環に対してベンジル位で結合している。一般的にベンジル位は反応性が高いため、求核攻撃を受け易いことが知られている。これに対して、四級アンモニウム塩基と芳香環との間のアルキル基の鎖長を伸ばすことで、上記四級アンモニウム塩の反応性を格段に抑えられ、交換基の化学的安定性を高められることが知られている(特許文献4)。 Here, in these anion exchangers, focusing on the quaternary ammonium group that is the anion exchange group, in any case, the chloromethyl group is substantially aminated and introduced. The group is attached at the benzylic position relative to the aromatic ring. Generally, the benzyl position is known to be susceptible to nucleophilic attack because of its high reactivity. On the other hand, by extending the chain length of the alkyl group between the quaternary ammonium base and the aromatic ring, the reactivity of the quaternary ammonium salt can be remarkably suppressed, and the chemical stability of the exchange group can be enhanced. It is known (Patent Document 4).
特開平11-273695号公報Japanese Patent Laid-Open No. 11-273695 特開平11-135137号公報Japanese Patent Laid-Open No. 11-135137 特開2008-226614号公報JP 2008-226614 A 特開平04-349941号公報Japanese Patent Laid-Open No. 04-349941
 特許文献4は、四級アンモニウム基と芳香環との間のアルキル基の鎖長を伸ばしたスチレンモノマーと不飽和炭化水素含有架橋性モノマーとの重合体から成る耐熱性に優れた架橋アニオン交換体に関する。しかし、交換基を含まない架橋性モノマーを導入することで不溶化しているため、架橋構造の導入によりイオン交換成分の比率が低下してしまうという問題があった。 Patent Document 4 discloses a crosslinked anion exchanger excellent in heat resistance, comprising a polymer of a styrene monomer and an unsaturated hydrocarbon-containing crosslinkable monomer in which the chain length of an alkyl group between a quaternary ammonium group and an aromatic ring is extended. About. However, since it is insolubilized by introducing a crosslinkable monomer that does not contain an exchange group, there is a problem in that the ratio of ion exchange components decreases due to the introduction of a crosslinked structure.
 固体高分子型燃料電池の作動温度を高くした際のイオン交換基の劣化を抑制するために、触媒電極層を形成しているイオン伝導性付与剤として特許文献4に記載の架橋陰イオン交換体を用いた場合、イオン交換基の劣化は抑制される。しかし、作動温度を高くしたことによる触媒電極層からの該陰イオン交換体の溶出を防ぐためには、イオン交換成分の比率を減らして架橋成分の比率を高める必要があり、イオン伝導性樹脂の不溶化と高イオン交換容量の両立が難しいという問題があった。 In order to suppress the deterioration of ion exchange groups when the operating temperature of the polymer electrolyte fuel cell is increased, a crosslinked anion exchanger described in Patent Document 4 as an ion conductivity imparting agent forming a catalyst electrode layer When is used, the deterioration of the ion exchange group is suppressed. However, in order to prevent elution of the anion exchanger from the catalyst electrode layer due to a higher operating temperature, it is necessary to reduce the ratio of the ion exchange component and increase the ratio of the crosslinking component, so that the ion conductive resin is insolubilized. And high ion exchange capacity are difficult to achieve.
 本発明者等は、耐熱性とともに不溶化と高交換容量の両立を果たすべく、鋭意検討を行った。その結果、イオン交換基と芳香環との間のアルキル基の鎖長を伸ばしたスチレンモノマーを重合したスチレン系共重合体を用いることで耐熱性を付与するとともに、イオン交換基として機能する四級アンモニウム基を有する架橋構造を導入することで、不溶化と高イオン交換容量の両立が可能であることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to achieve both heat resistance and insolubilization and high exchange capacity. As a result, the use of a styrene copolymer obtained by polymerizing a styrene monomer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is increased, and the quaternary functioning as an ion exchange group. By introducing a crosslinked structure having an ammonium group, it was found that both insolubilization and high ion exchange capacity can be achieved, and the present invention has been completed.
 すなわち、第一の本発明は、下記式(1)で示される架橋構造を有する構成単位を含有する陰イオン交換体である。 That is, the first present invention is an anion exchanger containing a structural unit having a crosslinked structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)は2つの芳香環が架橋された構成単位を示し、aは3~10の整数であり、bは2~8の整数であり、R、R、RおよびRは、それぞれ独立にメチル基またはエチル基から選択される。Xは、OH、HCO 、CO 2-、Cl、Br、Iからなる群から選択される一種以上の対イオンである。)
 第一の本発明の陰イオン交換体は、イオン伝導性付与剤としての優れた特性を発揮し、燃料電池あるいは水電解装置に使用した際に優れた特性と耐久性を得るために、式(1)で示される架橋構造を有する構成単位をその重合体の70質量%以上含むことが好ましい。
 第二の本発明は、式(1)で示される架橋構造を有する構成単位をその重合体の70質量%以上含む第一の本発明の陰イオン交換体からなるイオン伝導性付与剤である。
(Formula (1) represents a structural unit in which two aromatic rings are bridged, a is an integer of 3 to 10, b is an integer of 2 to 8, R 1 , R 2 , R 3 and R 4 Are each independently selected from a methyl group or an ethyl group, X is one or more pairs selected from the group consisting of OH , HCO 3 , CO 3 2− , Cl , Br and I . Ion.)
The anion exchanger of the first aspect of the present invention exhibits excellent characteristics as an ion conductivity imparting agent, and in order to obtain excellent characteristics and durability when used in a fuel cell or a water electrolysis device, It is preferable that 70% by mass or more of the polymer is included in the structural unit having the crosslinked structure represented by 1).
The second aspect of the present invention is an ion conductivity-imparting agent comprising the anion exchanger of the first aspect of the present invention containing 70% by mass or more of the polymer having a cross-linking structure represented by the formula (1).
 第三の本発明は、第二の本発明のイオン伝導性付与剤及び電極触媒を含有する触媒電極層である。 The third aspect of the present invention is a catalyst electrode layer containing the ion conductivity-imparting agent of the second aspect of the present invention and an electrode catalyst.
 第四の本発明は、第三の本発明の触媒電極層を含んでなる膜-電極接合体である。 The fourth invention is a membrane-electrode assembly comprising the catalyst electrode layer of the third invention.
 第五の本発明は、第四の本発明の膜-電極接合体を含んでなる陰イオン交換膜型燃料電池である。 The fifth aspect of the present invention is an anion exchange membrane fuel cell comprising the membrane-electrode assembly of the fourth aspect of the present invention.
 第六の本発明は、第四の本発明の膜-電極接合体を含んでなる水電解装置である。 The sixth aspect of the present invention is a water electrolysis apparatus comprising the membrane-electrode assembly of the fourth aspect of the present invention.
 第七の本発明は、芳香環にハロゲン化アルキル基を有するスチレン系重合体と電極触媒とを含む触媒電極層形成用組成物をガス拡散電極、陰イオン交換膜、又は陰イオン交換膜の前駆体に塗布、乾燥し、触媒電極前駆体層を形成した後、ジアミン化合物と接触させて芳香環にハロゲン化アルキル基を有するスチレン系重合体の四級化及び架橋反応を行うことにより第三の本発明に記載の触媒電極層を形成することを特徴とする触媒電極層の製造方法である。 The seventh aspect of the present invention provides a catalyst electrode layer-forming composition comprising a styrenic polymer having a halogenated alkyl group on an aromatic ring and an electrode catalyst, as a gas diffusion electrode, an anion exchange membrane, or a precursor of an anion exchange membrane. After applying to the body and drying to form the catalyst electrode precursor layer, the third phase is obtained by contacting with the diamine compound and performing quaternization and crosslinking reaction of the styrenic polymer having a halogenated alkyl group on the aromatic ring. It is a manufacturing method of the catalyst electrode layer characterized by forming the catalyst electrode layer as described in this invention.
 本発明の陰イオン交換体は、イオン交換基と芳香環との間のアルキル基の鎖長を伸ばしたスチレン系重合体を用いることでイオン交換基の耐熱性を付与し、更に該イオン交換基として四級アンモニウム基を有する架橋構造体を用いることで、陰イオン交換体への架橋構造の導入による架橋比率の上昇と高イオン交換容量化とを両立している。 The anion exchanger of the present invention provides heat resistance of the ion exchange group by using a styrenic polymer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is extended. By using a cross-linked structure having a quaternary ammonium group, the increase in the cross-linking ratio by introduction of the cross-linked structure into the anion exchanger and the high ion exchange capacity are compatible.
 また、本発明のイオン交換体をイオン伝導性付与剤として用い、該イオン伝導性付与剤と電極触媒とを含有する触媒電極層を陰イオン交換膜型燃料電池や水電解装置の触媒電極層として用いることにより、燃料電池や水電解装置の作動温度の高温化に伴う該イオン伝導性付与剤の溶出を、架橋比率を上げることで防ぐことが可能となり、かつ架橋比率を上げたとしても、架橋部位にイオン交換基が導入されているのでイオン伝導性を高く維持できる。更に、陰イオン交換基の耐熱性も向上したものとなる。 Further, the ion exchanger of the present invention is used as an ion conductivity-imparting agent, and a catalyst electrode layer containing the ion conductivity-imparting agent and an electrode catalyst is used as a catalyst electrode layer for an anion exchange membrane fuel cell or a water electrolysis device. By using it, it becomes possible to prevent elution of the ion conductivity-imparting agent accompanying the increase in the operating temperature of the fuel cell or water electrolysis apparatus by increasing the crosslinking ratio, and even if the crosslinking ratio is increased, Since an ion exchange group is introduced at the site, ion conductivity can be maintained high. Furthermore, the heat resistance of the anion exchange group is also improved.
陰イオン交換膜型燃料電池の構造の一例を示す図である。It is a figure which shows an example of the structure of an anion exchange membrane type fuel cell. 水電解装置の概略図である。It is the schematic of a water electrolysis apparatus.
 (陰イオン交換体)
 先ず、本発明の陰イオン交換体について説明する。
(Anion exchanger)
First, the anion exchanger of the present invention will be described.
 本発明の陰イオン交換体は、陰イオン交換膜型燃料電池や水電解装置に用いる触媒電極層の形成用のイオン伝導性付与剤として用いることができる。ここで、触媒電極層とは水素などの燃料ガスが反応するアノードおよび酸素や空気などの酸化剤ガスが反応するカソードの両方を意味し、その使用が特に一方の電極に限定されるものではなく、アノードおよびカソードの両方の触媒電極層の製造に好適に使用することができる。 The anion exchanger of the present invention can be used as an ion conductivity imparting agent for forming a catalyst electrode layer used in an anion exchange membrane fuel cell or a water electrolysis apparatus. Here, the catalyst electrode layer means both an anode to which a fuel gas such as hydrogen reacts and a cathode to which an oxidant gas such as oxygen and air reacts, and its use is not particularly limited to one electrode. It can be suitably used for the production of both anode and cathode catalyst electrode layers.
 本発明の陰イオン交換体は、下記式(1)で示される架橋構造を有する構成単位を含有する。 The anion exchanger of the present invention contains a structural unit having a crosslinked structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(ただし、aは3~10の整数であり、bは2~8の整数であり、R、R、RおよびRは、それぞれ独立にメチル基またはエチル基から選択される。Xは、OH、HCO 、CO 2-、Cl、Br、Iからなる群から選択される一種以上の対イオンである。)
 式(1)で示される構成単位は、-(CH(X)R(CH(X)R(CH-で示される、2つの芳香環を架橋し、2つの四級アンモニウム塩を含む基を有する。
(Wherein a is an integer of 3 to 10, b is an integer of 2 to 8, and R 1 , R 2 , R 3 and R 4 are each independently selected from a methyl group or an ethyl group. X Is one or more counter ions selected from the group consisting of OH , HCO 3 , CO 3 2− , Cl , Br and I .
The structural unit represented by the formula (1) is represented by — (CH 2 ) a N + (X ) R 1 R 2 (CH 2 ) b N + (X ) R 3 R 4 (CH 2 ) a −. Having two groups that bridge two aromatic rings and contain two quaternary ammonium salts.
 aは3~10、bは2~8で表わされる整数である。aは芳香環と近接する四級アンモニウム塩の窒素原子とを結合するメチレン鎖長を示し、bは2つの四級アンモニウム塩の窒素を結合するメチレン鎖長を示す。aが3未満であるときは化学的耐久性が不十分であり、aが10を超えるとメチレン鎖の疎水性が増大し陰イオン伝導性に劣るものとなる。aは3~6の範囲にあることが好ましい。 A is an integer represented by 3 to 10 and b is 2 to 8. a represents a methylene chain length for bonding an aromatic ring and a nitrogen atom of a quaternary ammonium salt adjacent thereto, and b represents a methylene chain length for bonding two quaternary ammonium salt nitrogens. When a is less than 3, chemical durability is insufficient, and when a exceeds 10, the hydrophobicity of the methylene chain increases and the anion conductivity becomes poor. a is preferably in the range of 3-6.
 式(1)で示される構成単位が有する架橋構造は2つの四級アンモニウム塩を含むことから、それ自体がイオン交換基として機能する。-(CH(X)R(CH(X)R(CH-によって架橋されていることは、架橋構造の導入によりイオン伝導性付与剤の寸法安定性や化学的耐久性の向上に寄与しつつ優れたイオン伝導性を発現するためには重要な要素である。そのため、-(CH(X)R(CH(X)R(CH-は単なる架橋部位ではなく、イオン伝導性に寄与すべく設計する必要がある。2つの四級アンモニウム塩基を結合するメチレン鎖長については、長すぎる場合には疎水性が高まり、イオン伝導性に悪影響を与えるが、他方、短すぎる場合には、2つの四級アンモニウム塩の窒素が近接して、化学的に不安定な構造となってしまうため、短すぎる場合にも問題がある。そのため2つの四級アンモニウム塩を結合するメチレン鎖長であるbは2~8の範囲であり、2~6の範囲であることが好ましい。 Since the cross-linked structure of the structural unit represented by the formula (1) contains two quaternary ammonium salts, it itself functions as an ion exchange group. -(CH 2 ) a N + (X ) R 1 R 2 (CH 2 ) b N + (X ) R 3 R 4 (CH 2 ) a − This is an important element for developing excellent ionic conductivity while contributing to improvement in dimensional stability and chemical durability of the ion conductivity-imparting agent. Therefore, — (CH 2 ) a N + (X ) R 1 R 2 (CH 2 ) b N + (X ) R 3 R 4 (CH 2 ) a − is not a mere cross-linked site, but has ion conductivity. It needs to be designed to contribute. For methylene chain lengths that bind two quaternary ammonium bases, if too long, the hydrophobicity increases and adversely affects ionic conductivity, while if too short, the nitrogen of the two quaternary ammonium salts However, if they are too short, there is a problem. Therefore, b, which is the methylene chain length for bonding two quaternary ammonium salts, is in the range of 2 to 8, and preferably in the range of 2 to 6.
 R、R、RおよびRは、それぞれ独立にメチル基またはエチル基から選択される。 R 1 , R 2 , R 3 and R 4 are each independently selected from a methyl group or an ethyl group.
 Xは四級塩基型陰イオン交換基の対イオンであり、OH、HCO 、CO 2-、Cl、Br、Iから選択される対イオンであり、一種類であっても良く、また二以上の対イオンが混在していてもよい。 X is a counter ion of a quaternary base type anion exchange group, which is a counter ion selected from OH , HCO 3 , CO 3 2− , Cl , Br and I , and is one kind. Alternatively, two or more counter ions may be mixed.
 本発明の陰イオン交換体は、陰イオン交換膜型燃料電池用や水電解用の触媒電極層のイオン伝導性付与剤として用いることができる。本発明の陰イオン交換体をイオン伝導性付与剤として用いた場合、式(1)示される架橋構造を有する構成単位は、前記したように架橋構造およびイオン交換基を有する基であるため、イオン伝導性付与剤の化学的安定性や寸法安定性を高めると同時にイオン伝導性の発現に関与する。特に燃料電池や水電解装置の作動温度が70℃以上の高温においては架橋構造の導入量が高いほど耐久性が高くなる傾向を示すことが分かった。この理由としてはまだ明らかになってはいないが、架橋による不溶化および機械的強度の増加が耐久性に寄与しているためであると推測している。一般に、作動温度が高温になるほど触媒電極層中のイオン伝導性付与剤としての陰イオン交換体の溶出および触媒電極層中のイオン伝導性付与剤の膨潤収縮による触媒電極層の構造変化が顕著になるが、架橋構造の導入により溶出および構造変化が抑制されたと考えられる。また、高温化による触媒活性の向上およびイオン伝導度の向上の効果により、該架橋構造の導入量が多くても、高い電池出力を維持することが可能である。さらに、該イオン伝導性付与剤としての陰イオン交換体は架橋構造中のイオン交換基と芳香環との間のアルキル基によりイオン交換基の周りにイオン伝導性を発現するのに十分な量の水が存在できるスペースが確保されており、架橋構造の導入量を増やしてもイオン伝導性が損なわれない。そのため、燃料電池の運転条件や目的とする耐久性と電池出力、あるいは水電解装置の運転条件等を考慮して、本発明の陰イオン交換体への架橋構造の導入量を決定すれば良いが、該陰イオン交換体の膨潤収縮による体積変化を抑えるためには、式(1)で示される架橋構造を有する構成単位の割合が、陰イオン交換体の70質量%以上であることが好ましく、70℃以上の高温で使用する際には、式(1)で示される構成単位の割合が、80質量%以上であるむことがより好ましい。 The anion exchanger of the present invention can be used as an ion conductivity-imparting agent for catalyst electrode layers for anion exchange membrane fuel cells and water electrolysis. When the anion exchanger of the present invention is used as an ion conductivity-imparting agent, the structural unit having a crosslinked structure represented by the formula (1) is a group having a crosslinked structure and an ion exchange group as described above. It contributes to the expression of ionic conductivity while improving the chemical stability and dimensional stability of the conductivity-imparting agent. In particular, it has been found that the durability tends to increase as the amount of the crosslinked structure introduced increases at a high temperature of 70 ° C. or higher for the operating temperature of the fuel cell or the water electrolysis apparatus. The reason for this is not yet clarified, but it is presumed that the insolubilization due to crosslinking and the increase in mechanical strength contribute to durability. In general, the higher the operating temperature, the more noticeably changes in the structure of the catalyst electrode layer due to the elution of the anion exchanger as the ion conductivity imparting agent in the catalyst electrode layer and the swelling and shrinkage of the ion conductivity imparting agent in the catalyst electrode layer. However, it is considered that elution and structural change were suppressed by the introduction of the crosslinked structure. Moreover, high battery output can be maintained even if the amount of introduction of the crosslinked structure is large due to the effect of improving the catalytic activity and the ionic conductivity by increasing the temperature. Further, the anion exchanger as the ion conductivity-imparting agent has a sufficient amount of ion conductivity around the ion exchange group due to the alkyl group between the ion exchange group and the aromatic ring in the crosslinked structure. A space where water can exist is secured, and the ionic conductivity is not impaired even if the introduction amount of the crosslinked structure is increased. Therefore, the amount of the crosslinked structure introduced into the anion exchanger of the present invention may be determined in consideration of the operating conditions of the fuel cell, the intended durability and battery output, or the operating conditions of the water electrolysis apparatus. In order to suppress the volume change due to swelling and shrinkage of the anion exchanger, the proportion of the structural unit having a crosslinked structure represented by the formula (1) is preferably 70% by mass or more of the anion exchanger, When used at a high temperature of 70 ° C. or higher, the proportion of the structural unit represented by the formula (1) is more preferably 80% by mass or more.
 式(1)で示される構成単位の含有率が70質量%以上である本発明の陰イオン交換体は、イオン交換基に耐熱性が付与され、且つ水への不溶化および高イオン交換容量化が両立する。このため陰イオン交換体は、陰イオン交換膜型燃料電池や水電解装置の触媒電極層で用いられる本発明のイオン伝導性付与剤として好適に用いることができる。 In the anion exchanger according to the present invention in which the content of the structural unit represented by the formula (1) is 70% by mass or more, heat resistance is imparted to the ion exchange group, and water insolubilization and high ion exchange capacity increase are achieved. compatible. Therefore, the anion exchanger can be suitably used as the ion conductivity-imparting agent of the present invention used in the catalyst electrode layer of an anion exchange membrane fuel cell or a water electrolysis device.
 本発明の陰イオン交換体は、式(1)で示される架橋構造を有する構成単位を含有すれば、どのような重合体からなるものでも良い。重合の容易さ、ジアミン化合物による架橋、四級化反応の容易さ、ジアミン化合物による架橋、四級化後の良好な物理的特性の点から、芳香族ビニル化合物の重合体(以下、「スチレン系重合体」ともいう)の芳香環から伸びるアルキル基の末端同士が4級アンモニウム塩型陰イオン交換基で結合して、式(1)で示される架橋構造を有する構成単位となっているものが好ましい。なお、本明細書では、重合体は、単独重合体および共重合体を包含した意味で用いる。 The anion exchanger of the present invention may be composed of any polymer as long as it contains a structural unit having a crosslinked structure represented by the formula (1). From the viewpoint of ease of polymerization, crosslinking with a diamine compound, ease of quaternization reaction, crosslinking with a diamine compound, and good physical properties after quaternization, a polymer of an aromatic vinyl compound (hereinafter referred to as “styrene-based polymer”). A polymer having a crosslinked structure represented by the formula (1) in which the ends of the alkyl group extending from the aromatic ring of the polymer are bonded with a quaternary ammonium salt type anion exchange group. preferable. In this specification, a polymer is used in the meaning including a homopolymer and a copolymer.
 本発明の陰イオン交換体には、式(1)で示される架橋構造を有する構成単位のほかに、下記式(2)で示される第1の非架橋の四級アンモニウム塩型陰イオン交換基を有する構成単位(以下、単に第1の非架橋の構成単位ともいう。)を含んでいても良い。 The anion exchanger of the present invention includes a first non-crosslinked quaternary ammonium salt type anion exchange group represented by the following formula (2) in addition to the structural unit having a crosslinked structure represented by the formula (1). (Hereinafter, also simply referred to as a first non-crosslinked structural unit).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)において、cは3~10、好ましくは3~6の整数であり、R及びRはそれぞれ独立にメチル基又はエチル基であり、Rは炭素数1~8の直鎖状アルキル基である。Xは、OH、HCO 、CO 2-、Cl、Br、Iからなる群から選択される一種以上の対イオンである。)
 上記式(2)で示される第1の非架橋の構成単位を導入することで、親水性と疎水性のバランスを制御することができ、本発明の陰イオン交換体をイオン伝導性付与剤として用いた場合、例えば、燃料電池を作動温度が低い条件で運転しても、高いイオン伝導性を維持することが可能である。作動温度が低いと、イオン伝導度が低くなるが、上記式(2)で示される第1の非架橋の構成単位を導入することで陰イオン交換体の親水性が増して含水率が高くなり、イオン伝導度を高くすることができる。また、作動温度が低い場合には、膨潤収縮による影響も小さく、イオン伝導性付与剤を含有する触媒電極層の耐久性の低下も少ない。
(In the formula (2), c is an integer of 3 to 10, preferably 3 to 6, R 5 and R 6 are each independently a methyl group or an ethyl group, and R 7 is a straight chain having 1 to 8 carbon atoms. A chain alkyl group, X is at least one counter ion selected from the group consisting of OH , HCO 3 , CO 3 2− , Cl , Br and I )
By introducing the first non-crosslinked structural unit represented by the above formula (2), the balance between hydrophilicity and hydrophobicity can be controlled, and the anion exchanger of the present invention can be used as an ion conductivity-imparting agent. When used, for example, high ionic conductivity can be maintained even when the fuel cell is operated at a low operating temperature. When the operating temperature is low, the ionic conductivity is low, but by introducing the first non-crosslinked constituent unit represented by the above formula (2), the hydrophilicity of the anion exchanger is increased and the water content is increased. The ion conductivity can be increased. In addition, when the operating temperature is low, the influence of swelling and shrinkage is small, and the durability of the catalyst electrode layer containing the ion conductivity-imparting agent is hardly lowered.
 本発明の陰イオン交換体における式(2)で示される第1の非架橋の構成単位の含有率は、該陰イオン交換体をイオン伝導性付与剤として用いたときの、作動温度の高温化によるイオン伝導性付与剤の溶出を防ぐ観点から、好ましくは0~20質量%、より好ましくは0~10質量%である。 The content of the first non-crosslinked constituent unit represented by the formula (2) in the anion exchanger of the present invention is such that the operating temperature is increased when the anion exchanger is used as an ion conductivity-imparting agent. From the viewpoint of preventing the elution of the ion conductivity-imparting agent due to, preferably 0 to 20% by mass, more preferably 0 to 10% by mass.
 本発明の陰イオン交換体は、反応性や陰イオン交換体の物理特性等を調整するために、本発明の目的に反しない限度内で必要に応じてその他の成分が共重合されていてもよい。このような任意の成分としては、スチレン、α-メチルスチレン、ビニルナフタレン、アセナフチレン等の芳香族ビニル化合物が例示される。その他の成分に由来する構成単位の含有率は特に限定されないが、好ましくは0~10質量%であり、特に好ましくは0~5質量%である。 The anion exchanger of the present invention may be copolymerized with other components as necessary within the limits that do not violate the purpose of the present invention in order to adjust the reactivity and physical properties of the anion exchanger. Good. Examples of such optional components include aromatic vinyl compounds such as styrene, α-methylstyrene, vinylnaphthalene, and acenaphthylene. The content of the structural unit derived from other components is not particularly limited, but is preferably 0 to 10% by mass, and particularly preferably 0 to 5% by mass.
 本発明の陰イオン交換体は、式(1)で示される架橋構造を有する構成単位のほかに、下記式(3)で示される第2の非架橋の四級アンモニウム塩基を含む場合がある。 The anion exchanger of the present invention may contain a second non-crosslinked quaternary ammonium base represented by the following formula (3) in addition to the structural unit having a crosslinked structure represented by the formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の陰イオン交換体は、後述するように芳香環にハロゲン化アルキル基を有するスチレン系重合体がジアミン化合物により架橋されたものである。芳香環にハロゲン化アルキル基を有するスチレン系重合体とジアミン化合物とが接触する際、ジアミン化合物が2つのハロゲン化アルキル基と反応した場合には、式(1)で示される構成単位を形成するが、1つのハロゲン化アルキル基のみと反応する場合には、式(3)で示される第2の非架橋の四級アンモニウム塩基が形成される。式(3)の構成単位は、-(CH(X)R(CHNR で示される四級アンモニウム塩基を有する。aは3~10の整数であり、bは2~8の整数であり、R、R、RおよびRはそれぞれ独立にメチル基またはエチル基である。Xは、OH、HCO 、CO 2-、Cl、Br、Iからなる群から選択される一種以上の対イオンである。a、bの好ましい範囲は式(1)と同様である。 The anion exchanger of the present invention is obtained by crosslinking a styrene polymer having a halogenated alkyl group on an aromatic ring with a diamine compound, as will be described later. When the styrene polymer having a halogenated alkyl group on the aromatic ring and the diamine compound come into contact with each other, when the diamine compound reacts with two halogenated alkyl groups, a structural unit represented by the formula (1) is formed. However, when it reacts with only one halogenated alkyl group, a second non-bridged quaternary ammonium base of formula (3) is formed. The structural unit of the formula (3) has a quaternary ammonium base represented by — (CH 2 ) a N + (X ) R 1 R 2 (CH 2 ) b NR 3 R 4 . a is an integer of 3 to 10, b is an integer of 2 to 8, and R 1 , R 2 , R 3 and R 4 are each independently a methyl group or an ethyl group. X is one or more counter ions selected from the group consisting of OH , HCO 3 , CO 3 2− , Cl , Br and I . The preferable range of a and b is the same as that of Formula (1).
 式(3)で示される第2の非架橋の四級アンモニウム塩基を有する構成単位は四級アンモニウム塩構造であるため、生成したとしても、イオン伝導性等のイオン伝導性付与剤としての性能に与える影響は非常に小さい。詳細な理由は不明であるが、非架橋の芳香環にハロゲン化アルキル基を有するスチレン系重合体に対して、ジアミン化合物による架橋反応を行うため、式(3)の生成量は非常に小さく抑制され、反応に関与するジアミン化合物のうち、式(3)の構造をとる割合は、多い場合でも10%モル程度であることがわかっている。これは一般に知られるC13固体NMR法や滴定法により知ることができる。 Since the structural unit having the second non-crosslinked quaternary ammonium base represented by the formula (3) has a quaternary ammonium salt structure, even if it is formed, the performance as an ion conductivity-imparting agent such as ion conductivity is improved. The impact is very small. Although the detailed reason is unknown, since the styrene polymer having a halogenated alkyl group on the non-crosslinked aromatic ring is subjected to a crosslinking reaction with a diamine compound, the amount of formula (3) produced is very small and suppressed. Of the diamine compounds involved in the reaction, the proportion of the structure of formula (3) is known to be about 10% mol even when there are many. This can be known by a generally known C 13 solid state NMR method or titration method.
 本発明の陰イオン交換体の重合様式は特に限定されず、共重合体の場合には、ランダム共重合体でも、ブロック共重合体であってもよい。 The polymerization mode of the anion exchanger of the present invention is not particularly limited, and in the case of a copolymer, it may be a random copolymer or a block copolymer.
 スチレン系重合体の数平均分子量は5000~30万が好ましく、5000~20万がより好ましい。 The number average molecular weight of the styrene polymer is preferably 5000 to 300,000, and more preferably 5000 to 200,000.
 本発明の陰イオン交換体は、式(4)で示される構成単位を含む芳香環にハロゲン化アルキル基を有するスチレン系重合体とジアミン化合物とを反応させることで得られる。 The anion exchanger of the present invention can be obtained by reacting a styrene polymer having a halogenated alkyl group with an aromatic ring containing a structural unit represented by the formula (4) and a diamine compound.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(4)において、aは3~10、好ましくは3~6の整数であり、Yは、Cl、Br、Iのいずれかである。) (In the formula (4), a is an integer of 3 to 10, preferably 3 to 6, and Y is any one of Cl, Br, and I.)
 (芳香環にハロゲン化アルキル基を有するスチレン系重合体)
 芳香環にハロゲン化アルキル基を有するスチレン系重合体の合成方法は特に限定されないが、予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物を含む重合性組成物を重合する方法、もしくは重合後にハロゲン化アルキル基が導入可能な芳香族ビニル化合物を重合して得られるスチレン系重合体の芳香環に、ハロゲン化アルキル基を導入する方法などが例示される。
(Styrenic polymer having a halogenated alkyl group in the aromatic ring)
The method for synthesizing the styrenic polymer having a halogenated alkyl group in the aromatic ring is not particularly limited, but a method of polymerizing a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, or after polymerization Examples thereof include a method of introducing a halogenated alkyl group into an aromatic ring of a styrene polymer obtained by polymerizing an aromatic vinyl compound into which a halogenated alkyl group can be introduced.
 予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物を含む重合性組成物を重合する場合、予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物を含む重合性組成物を公知の方法で重合する。予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物は単独で重合してもよく、その他の芳香族ビニル化合物と共重合してもよい。 When polymerizing a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance is a known method. Polymerize. The aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance may be polymerized alone or may be copolymerized with other aromatic vinyl compounds.
 予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物としては、芳香環とハロゲン原子とを結合するメチレン鎖の炭素数が3~10のものを用いる。好ましい芳香族ビニル化合物として、クロロプロピルスチレン、クロロブチルスチレン、クロロペンチルスチレン、クロロヘキシルスチレン、ブロモプロピルスチレン、ブロモブチルスチレン、ブロモペンチルスチレン、ブロモヘキシルスチレン、ヨードプロピルスチレン、ヨードブチルスチレン、ヨードペンチルスチレン、ヨードヘキシルスチレンなど、芳香環とハロゲン原子とを結合するメチレン鎖の炭素数が3~6のハロアルキルスチレンが例示される。 As the aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, those having 3 to 10 carbon atoms in the methylene chain for bonding the aromatic ring and the halogen atom are used. Preferred aromatic vinyl compounds include chloropropyl styrene, chlorobutyl styrene, chloropentyl styrene, chlorohexyl styrene, bromopropyl styrene, bromobutyl styrene, bromopentyl styrene, bromohexyl styrene, iodopropyl styrene, iodobutyl styrene, iodopentyl styrene. And haloalkylstyrene having 3 to 6 carbon atoms in the methylene chain connecting the aromatic ring and the halogen atom, such as iodohexylstyrene.
 予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物としては、入手の容易さや大きな重合速度が得られることなどから、クロロプロピルスチレン、クロロブチルスチレン、ブロモプロピルスチレン、ブロモブチルスチレンを用いることが好ましい。 As an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, chloropropyl styrene, chlorobutyl styrene, bromopropyl styrene, bromobutyl styrene may be used because of easy availability and high polymerization rate. preferable.
 その他の芳香族ビニル化合物としては、スチレン、α-メチルスチレン、ビニルナフタレン、アセナフチレン、ビニルピリジン、ビニルイミダゾール、ビニルオキサゾリンなどが挙げられる。 Other aromatic vinyl compounds include styrene, α-methylstyrene, vinyl naphthalene, acenaphthylene, vinyl pyridine, vinyl imidazole, and vinyl oxazoline.
 なお、上記で例示されていないメチレン鎖の炭素数が7以上のハロアルキルスチレンは、重合速度も遅く、重合中にゲル化を生じやすいこと等から、本発明で好ましい範囲とする分子量範囲の共重合体を得るのが困難であるため、芳香環にメチレン鎖の炭素数が7以上のハロゲン化アルキル基を有するスチレン系重合体は、次に説明する、重合後にハロゲン化アルキル基が導入可能な芳香族ビニル化合物を重合して得られるスチレン系重合体の芳香環に、ハロゲン化アルキル基を導入する方法により合成することが好ましい。 In addition, haloalkylstyrenes having 7 or more carbon atoms in the methylene chain, which are not exemplified above, have a low polymerization rate and are likely to cause gelation during the polymerization. Since it is difficult to obtain a polymer, a styrenic polymer having a halogenated alkyl group having 7 or more carbon atoms in the methylene chain in the aromatic ring is a fragrance that can be introduced with a halogenated alkyl group after polymerization. It is preferable to synthesize by a method in which a halogenated alkyl group is introduced into an aromatic ring of a styrene polymer obtained by polymerizing an aromatic vinyl compound.
 芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物を含む重合性組成物は、芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物の含有率が、70~100質量%が好ましく、90~100質量%であることがより好ましい。 In the polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring, the content of the aromatic vinyl compound having a halogenated alkyl group in the aromatic ring is preferably from 70 to 100% by mass, and from 90 to 100%. More preferably, it is mass%.
 次に、重合後にハロゲン化アルキル基が導入可能な芳香族ビニル化合物を重合して得られるスチレン系重合体の芳香環に、ハロゲン化アルキル基を導入する方法を説明する。この方法ではハロゲン化アルキル基を導入できる構造を有する芳香族ビニル化合物を重合する。重合後に、該構造にハロゲン化アルキル基を導入して、芳香環にハロゲン化アルキル基を有するスチレン系重合体を得る。 Next, a method for introducing a halogenated alkyl group into an aromatic ring of a styrene polymer obtained by polymerizing an aromatic vinyl compound into which a halogenated alkyl group can be introduced after polymerization will be described. In this method, an aromatic vinyl compound having a structure capable of introducing a halogenated alkyl group is polymerized. After the polymerization, a halogenated alkyl group is introduced into the structure to obtain a styrene polymer having a halogenated alkyl group on the aromatic ring.
 ハロゲン化アルキル基を導入可能なスチレン系重合体として、スチレンを単独で重合したもの、またはスチレン以外の芳香族ビニル化合物と共重合したものを用いることが可能である。スチレン以外の芳香族ビニル化合物として、α-メチルスチレン、ビニルナフタレン、アセナフチレン、ビニルピリジン、ビニルイミダゾール、ビニルオキサゾリンなどが挙げられる。重合の容易さ、ジアミン化合物による架橋反応および四級化の容易さから芳香族ビニル化合物を単独で重合したスチレン系重合体を用いることが好ましい。重合後のスチレン系重合体にハロゲン化アルキル基を導入する方法は、特に制限されるものではなく、公知の方法を採用すればよい。具体的には、重合後にハロゲン化アルキル基が導入可能な芳香族ビニル化合物としてスチレンを用いた場合、スチレン由来の芳香環をホルムアルデヒドと反応させた後にハロゲン化する方法、スチレン由来の芳香環をハロゲン化した後にグリニア反応によりアルキル基を与え、さらにアルキル鎖末端をハロゲン化する方法等である。 As the styrenic polymer capable of introducing a halogenated alkyl group, a polymer obtained by polymerizing styrene alone or a copolymerized with an aromatic vinyl compound other than styrene can be used. Examples of aromatic vinyl compounds other than styrene include α-methylstyrene, vinyl naphthalene, acenaphthylene, vinyl pyridine, vinyl imidazole, and vinyl oxazoline. In view of ease of polymerization, crosslinking reaction with a diamine compound, and ease of quaternization, it is preferable to use a styrene polymer obtained by polymerizing an aromatic vinyl compound alone. The method for introducing a halogenated alkyl group into the styrene polymer after polymerization is not particularly limited, and a known method may be employed. Specifically, when styrene is used as an aromatic vinyl compound into which a halogenated alkyl group can be introduced after polymerization, a method in which an aromatic ring derived from styrene is reacted with formaldehyde and then halogenated, and an aromatic ring derived from styrene is halogenated. For example, a method in which an alkyl group is given by a Grineer reaction after the formation of the alkyl chain, and the alkyl chain terminal is halogenated.
 予め芳香環にハロゲン化アルキル基を有する芳香族ビニル化合物を含む重合性組成物、もしくは重合後にハロゲン化アルキル基を導入可能な単量体を含む重合性組成物を重合する方法としては、溶液重合、懸濁重合、乳化重合等の公知の重合法が採用される。重合法は、重合性組成物の単量体組成等によって左右されるものであり、特に限定されるものではなく適宜選択すればよい。 As a method for polymerizing a polymerizable composition containing an aromatic vinyl compound having a halogenated alkyl group in the aromatic ring in advance, or a polymerizable composition containing a monomer capable of introducing a halogenated alkyl group after polymerization, solution polymerization is used. Well-known polymerization methods such as suspension polymerization and emulsion polymerization are employed. The polymerization method depends on the monomer composition of the polymerizable composition and the like, and is not particularly limited and may be appropriately selected.
 (イオン交換基の導入方法)
 本発明の陰イオン交換体は前記芳香環にハロゲン化アルキル基を有するスチレン系重合体とジアミン化合物とを反応させることにより製造できる。つまり、芳香環にハロゲン化アルキル基を有するスチレン系重合体のハロゲン化アルキル基とジアミン化合物とが反応し、4級アンモニウム塩型陰イオン交換基による架橋構造を形成した式(1)で示される架橋構造を有する構成単位を含有する本発明の陰イオン交換体を得ることができる。
(Ion exchange group introduction method)
The anion exchanger of the present invention can be produced by reacting a styrene polymer having a halogenated alkyl group on the aromatic ring with a diamine compound. That is, it is represented by the formula (1) in which a halogenated alkyl group of a styrene polymer having a halogenated alkyl group on an aromatic ring reacts with a diamine compound to form a crosslinked structure by a quaternary ammonium salt type anion exchange group. The anion exchanger of the present invention containing a structural unit having a crosslinked structure can be obtained.
 ここで使用されるジアミン化合物とは、四級化および架橋反応した後に式(1)で示される架橋構造を有する構成単位の架橋構造を得ることのできるジアミン化合物を適宜選択すればよい。 As the diamine compound used here, a diamine compound capable of obtaining a crosslinked structure of a structural unit having a crosslinked structure represented by the formula (1) after quaternization and crosslinking reaction may be appropriately selected.
 式(1)で示される架橋構造を有する構成単位を得ることのできるアルキルジアミン化合物としては、下記式(5)で示される両末端に3級のアミンを有するアルキルジアミン化合物が好適である。アルキルジアミンは反応後に形成される架橋構造が四級アンモニウム塩となるため、本発明の陰イオン交換体をイオン伝導性付与剤に用いる場合に必要なイオン伝導性の向上に寄与することができる。 As the alkyldiamine compound capable of obtaining a structural unit having a crosslinked structure represented by the formula (1), an alkyldiamine compound having a tertiary amine at both ends represented by the following formula (5) is preferable. Since alkyldiamine has a quaternary ammonium salt as a cross-linked structure formed after the reaction, it can contribute to improvement of ion conductivity required when the anion exchanger of the present invention is used as an ion conductivity-imparting agent.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)中のb、R、R、RおよびR同様、式(2)中、2つの窒素原子を結合するメチレン鎖長を示すbは、2~8の整数であり、2~6の範囲であることが好ましく、R、R、RおよびRはそれぞれ独立にメチル基またはエチル基から選択される。 Like b, R 1 , R 2 , R 3 and R 4 in formula (1), in formula (2), b indicating the length of a methylene chain connecting two nitrogen atoms is an integer of 2 to 8, A range of 2 to 6 is preferred, and R 1 , R 2 , R 3 and R 4 are each independently selected from a methyl group or an ethyl group.
 ここで使用されるアルキルジアミン化合物として、エチレンジアミン、プロパンジアミン、ブタンジアミン、ペンタンジアミン、ヘキサンジアミン、ヘプタンジアミン、オクタンジアミンが例示される。 Examples of the alkyl diamine compound used here include ethylene diamine, propane diamine, butane diamine, pentane diamine, hexane diamine, heptane diamine, and octane diamine.
 具体的には、エチレンジアミンとして、N,N,N',N'-テトラメチルエチレンジアミン、N,N,N',N'-テトラエチルエチレンジアミン、N,N-ジメチル-N',N'-ジエチルエチレンジアミンが例示され、プロパンジアミンとして、N,N,N',N'-テトラメチルプロパンジアミン、N,N,N',N'-テトラエチルプロパンジアミン、N,N-ジメチル-N',N'-ジエチルプロパンジアミンが例示され、ブタンジアミンとして、N,N,N',N'-テトラメチルブタンジアミン、N,N,N',N'-テトラエチルブタンジアミン、N,N-ジメチル-N',N'-ジエチルブタンジアミンが例示され、ペンタンジアミンとして、N,N,N',N'-テトラメチルペンタンジアミン、N,N,N',N'-テトラエチルペンタンジアミン、N,N-ジメチル-N',N'-ジエチルペンタンジアミンが例示され、ヘキサンジアミンとして、N,N,N',N'-テトラメチルヘキサンジアミン、N-エチルヘキサンジアミン、N,N,N',N'-テトラエチルヘキサンジアミン、N,N-ジメチル-N',N'-ジエチルヘキサンジアミンが例示され、ヘプタンジアミンとして、N,N,N',N'-テトラメチルヘプタンジアミン、N,N,N',N'-テトラエチルヘプタンジアミン、N,N-ジメチル-N',N'-ジエチルヘプタンジアミンが例示され、オクタンジアミンとして、N,N,N',N'-テトラメチルオクタンジアミン、N,N,N',N'-テトラエチルオクタンジアミン、N,N-ジメチル-N',N'-ジエチルオクタンジアミンが例示される。 Specifically, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, N, N-dimethyl-N ′, N′-diethylethylenediamine is used as the ethylenediamine. Examples of the propanediamine include N, N, N ′, N′-tetramethylpropanediamine, N, N, N ′, N′-tetraethylpropanediamine, N, N-dimethyl-N ′, N′-diethylpropane Examples of diamines include N, N, N ′, N′-tetramethylbutanediamine, N, N, N ′, N′-tetraethylbutanediamine, and N, N-dimethyl-N ′, N′—. Diethylbutanediamine is exemplified, and as pentanediamine, N, N, N ′, N′-tetramethylpentanediamine, N, N, N ′, N′-tetraethylpentanediamine And N, N-dimethyl-N ′, N′-diethylpentanediamine, and examples of hexanediamine include N, N, N ′, N′-tetramethylhexanediamine, N-ethylhexanediamine, N, N, N ', N'-tetraethylhexanediamine, N, N-dimethyl-N', N'-diethylhexanediamine are exemplified, and as heptanediamine, N, N, N ', N'-tetramethylheptanediamine, N, N, N ′, N′-tetraethylheptanediamine, N, N-dimethyl-N ′, N′-diethylheptanediamine are exemplified, and as octanediamine, N, N, N ′, N′-tetramethyloctanediamine, Examples thereof include N, N, N ′, N′-tetraethyloctanediamine and N, N-dimethyl-N ′, N′-diethyloctanediamine.
 これらの化合物のうち、反応の容易さ、反応後に形成される架橋構造の化学的耐久性やイオン伝導性の高さの観点から、特にN,N,N',N'-テトラメチルブタンジアミン、N,N,N',N'-テトラメチルヘキサンジアミン、N,N,N',N'-テトラメチルオクタンジアミンを好適に用いることができる。 Among these compounds, N, N, N ′, N′-tetramethylbutanediamine is particularly preferable from the viewpoint of easy reaction, chemical durability of the crosslinked structure formed after the reaction and high ion conductivity. N, N, N ′, N′-tetramethylhexanediamine and N, N, N ′, N′-tetramethyloctanediamine can be preferably used.
 式(5)で示されるジアミン化合物は前記した芳香環にハロゲン化アルキル基を有するスチレン系重合体の持つ2つのハロゲン化アルキルと反応して2つの四級アンモニウム塩を持つ架橋構造を形成する。下記式(6)は架橋構造の形成反応を模式的に示しており、(CHYで示される2つのハロゲン化アルキル(Yはハロゲン原子であり、Cl、Br、Iのいずれか)がそれぞれジアミン化合物末端の3級アミンと四級アンモニウム塩形成反応を行い、架橋構造が形成される。 The diamine compound represented by the formula (5) reacts with two halogenated alkyls of the styrenic polymer having a halogenated alkyl group on the aromatic ring to form a crosslinked structure having two quaternary ammonium salts. The following formula (6) schematically shows a reaction for forming a crosslinked structure, and two halogenated alkyls represented by (CH 2 ) a Y (Y is a halogen atom, and one of Cl, Br, and I) Each undergoes a quaternary ammonium salt forming reaction with a tertiary amine at the terminal of the diamine compound to form a crosslinked structure.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記方法において、ジアミン化合物と芳香環にハロゲン化アルキル基を有するスチレン系重合体の接触の方法については、特に限定されないが、芳香環にハロゲン化アルキル基を有する乾燥させたスチレン系重合体をジアミン化合物と接触させる方法、芳香環にハロゲン化アルキル基を有するスチレン系重合体を溶液化したのち、溶液中でジアミン化合物と接触させる方法が挙げられる。反応温度は、15℃から40℃の温度で行うことが好ましく、反応時間は、前者の場合5時間から48時間であることが好ましく、後者の場合、長時間の反応によりポリマーがゲル化してしまうことから30分から1時間であることが好ましい。 In the above method, the method for contacting the diamine compound and the styrene polymer having a halogenated alkyl group on the aromatic ring is not particularly limited, but the dried styrene polymer having a halogenated alkyl group on the aromatic ring is converted to the diamine. Examples thereof include a method of contacting with a compound and a method of bringing a styrenic polymer having a halogenated alkyl group into an aromatic ring into a solution and then contacting with a diamine compound in the solution. The reaction temperature is preferably 15 to 40 ° C., and the reaction time is preferably 5 to 48 hours in the former case. In the latter case, the polymer gels due to the long-time reaction. Therefore, it is preferably 30 minutes to 1 hour.
 芳香環にハロゲン化アルキル基を有するスチレン系重合体とジアミン化合物とを接触させた後は、洗浄操作により、過剰のジアミン化合物を除去すればよい。さらに、対イオンがハロゲンイオンの場合には、水酸イオン、重炭酸イオン、炭酸イオン等にイオン交換することもできる。イオン交換の方法は特に制限されるものではなく、公知の方法を採用することができる。対イオンの交換後は、洗浄により過剰のイオンを除去すればよい。 After contacting the styrene polymer having a halogenated alkyl group on the aromatic ring with the diamine compound, the excess diamine compound may be removed by a washing operation. Further, when the counter ion is a halogen ion, it can be ion-exchanged to a hydroxide ion, a bicarbonate ion, a carbonate ion or the like. The ion exchange method is not particularly limited, and a known method can be employed. After exchanging the counter ions, excess ions may be removed by washing.
 (触媒電極層)
 本発明の触媒電極層は、式(1)で示される構成単位の含有率が70質量%以上である陰イオン交換体からなるイオン伝導性付与剤及び電極触媒を含んでなり、陰イオン交換膜型燃料電池や水電解装置の触媒電極層として好適に用いることができる。
(Catalyst electrode layer)
The catalyst electrode layer of the present invention comprises an ion conductivity imparting agent and an electrode catalyst comprising an anion exchanger in which the content of the structural unit represented by the formula (1) is 70% by mass or more, and an anion exchange membrane. It can be suitably used as a catalyst electrode layer of a fuel cell or water electrolysis apparatus.
 式(1)で示される構成単位の含有率が70質量%以上である陰イオン交換体からなるイオン伝導性付与剤は、燃料電池や水電解装置の触媒電極層に用いた際に、高温で作動させても、イオン交換基が劣化することなく、また、燃料電池や水電解装置の内部においても水に溶出せず且つイオン伝導性を高く維持し、長期の運転期間にわたって良好な物理的特性を有するため、良好な燃料電池出力及び耐久性並びに水電解性能を実現することができる。 An ion conductivity-imparting agent comprising an anion exchanger having a constitutional unit content represented by formula (1) of 70% by mass or more is used at a high temperature when used in a catalyst electrode layer of a fuel cell or a water electrolysis device. Even if it is operated, the ion exchange group does not deteriorate, and it does not elute into water inside the fuel cell or water electrolysis device and maintains high ionic conductivity, and has good physical properties over a long period of operation. Therefore, good fuel cell output and durability and water electrolysis performance can be realized.
 本発明のイオン伝導性付与剤は、式(1)で示される構成単位のほかに、式(2)で示される第1の非架橋の構成単位、式(3)で示される第2の非架橋の構成単位を含んでいてもよい。更に、後述する、ハロゲン化アルキル基を有するイオン交換膜の前駆体上に触媒電極層の前駆体を形成する触媒電極層の製造方法においては、触媒電極層とイオン交換膜との界面で、触媒電極層の前駆体中の芳香環にハロゲン化アルキル基を有するスチレン系重合体とイオン交換膜の前駆体とのハロゲン化アルキル基がジアミンによって架橋され、本発明のイオン伝導性付与剤とイオン交換膜とが式(1)で示される構成単位で一体化された構造も含んでいる。 In addition to the structural unit represented by the formula (1), the ion conductivity-imparting agent of the present invention includes the first non-crosslinked structural unit represented by the formula (2) and the second non-crosslinked structural unit represented by the formula (3). A structural unit of cross-linking may be included. Furthermore, in the method for producing a catalyst electrode layer in which the precursor of the catalyst electrode layer is formed on the precursor of the ion exchange membrane having an alkyl halide group, which will be described later, the catalyst is formed at the interface between the catalyst electrode layer and the ion exchange membrane. The alkyl halide group of the styrene polymer having an alkyl halide group on the aromatic ring in the precursor of the electrode layer and the precursor of the ion exchange membrane is cross-linked by a diamine, and the ion conductivity-imparting agent of the present invention is exchanged with the ion exchange membrane. It also includes a structure in which the membrane is integrated with the structural unit represented by the formula (1).
 本発明のイオン伝導性付与剤の式(1)で示される構成単位の含有率は70質量%以上であり、高いイオン交換容量を保ちつつ水への溶解性および膨潤収縮による体積変化を小さくするために、80質量%以上であることが好ましい。 The content of the structural unit represented by the formula (1) of the ion conductivity-imparting agent of the present invention is 70% by mass or more, and the solubility in water and the volume change due to swelling shrinkage are reduced while maintaining a high ion exchange capacity. Therefore, it is preferable that it is 80 mass% or more.
 また、イオン伝導性付与剤のイオン交換容量は、優れた陰イオン伝導性、保水性などの特性を達成できるため、2.8~5.0mmol/gであることが好ましい。含水率は、40℃、90%RHの条件下で測定した値として、10~100%であることが好ましい。このような範囲のイオン交換容量および含水率を有することにより、本発明のイオン伝導性付与剤は、後述のように、燃料電池または水電解装置の触媒電極層に用いた際に、水に溶解することにより溶出したりせず、長期の運転期間にわたって良好な耐久性を実現することができる。 Also, the ion exchange capacity of the ion conductivity-imparting agent is preferably 2.8 to 5.0 mmol / g because it can achieve excellent anion conductivity and water retention properties. The water content is preferably 10 to 100% as a value measured under the conditions of 40 ° C. and 90% RH. By having an ion exchange capacity and water content in such a range, the ion conductivity-imparting agent of the present invention dissolves in water when used in a catalyst electrode layer of a fuel cell or a water electrolysis device as described later. By doing so, it does not elute and good durability can be realized over a long operation period.
 本発明の触媒電極層は、イオン伝導性付与剤のほかに、電極触媒を含有する。触媒電極層に含有される触媒には、公知の触媒を使用することができる。例えば、水素の酸化反応または水素の発生反応及び酸素の還元反応または酸素の発生反応を促進する、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、スズ、鉄、コバルト、ニッケル、モリブデン、タングステン、バナジウム、ランタン系金属あるいはそれらの合金等の金属粒子が制限なく使用できるが、触媒活性が優れていることから白金族触媒を用いるのが好適である。 The catalyst electrode layer of the present invention contains an electrode catalyst in addition to the ion conductivity-imparting agent. A known catalyst can be used as the catalyst contained in the catalyst electrode layer. For example, platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, which promote hydrogen oxidation reaction or hydrogen generation reaction and oxygen reduction reaction or oxygen generation reaction Metal particles such as vanadium, lanthanum-based metals, or alloys thereof can be used without limitation, but a platinum group catalyst is preferably used because of its excellent catalytic activity.
 なお、これら触媒となる金属粒子の粒径は、通常、0.1~100nm、より好ましくは0.5~10nmである。粒径が小さいほど触媒性能は高くなるが、0.5nm未満のものは、作製が困難であり、100nmより大きいと十分な触媒性能が得にくくなる。また、これら触媒は、予め導電剤に担持させてから使用してもよい。導電剤としては、電子導電性物質であれば特に限定されるものではないが、例えば、ファーネスブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛等を単独または混合して使用するのが一般的である。これら触媒の含有量は、触媒電極層をシート状とした状態における単位面積当たりの金属重量で、通常0.01~10mg/cm、より好ましくは0.1~5.0mg/cmである。 The particle size of the metal particles used as the catalyst is usually 0.1 to 100 nm, more preferably 0.5 to 10 nm. The smaller the particle size, the higher the catalyst performance. However, it is difficult to produce a material having a particle size of less than 0.5 nm. These catalysts may be used after being supported on a conductive agent in advance. The conductive agent is not particularly limited as long as it is an electronic conductive material. For example, carbon black such as furnace black and acetylene black, activated carbon, graphite and the like are generally used alone or in combination. is there. The content of these catalysts is usually 0.01 to 10 mg / cm 2 , more preferably 0.1 to 5.0 mg / cm 2 in terms of metal weight per unit area when the catalyst electrode layer is in a sheet form. .
 本発明の触媒電極層は、電子伝導性を高め、優れた特性を得る目的で電子伝導性付与剤を含有していてもよい。電子伝導性付与剤としてはカーボンブラック、グラファイト、カーボンナノチューブ、カーボンナノホーン、炭素繊維等が例示される。 The catalyst electrode layer of the present invention may contain an electron conductivity-imparting agent for the purpose of increasing electron conductivity and obtaining excellent characteristics. Examples of the electron conductivity-imparting agent include carbon black, graphite, carbon nanotube, carbon nanohorn, and carbon fiber.
 触媒電極層におけるイオン伝導性付与剤と電極触媒との含有量およびその量比は、触媒電極層の構造を反映しており、触媒電極層の電気化学特性に直接影響する。該イオン伝導性付与剤が少なすぎる場合には触媒電極層中におけるイオン伝導性が不十分となり、好ましくなく、反対に多すぎる場合には、個々の電極触媒粒子がイオン伝導性付与剤により厚く被覆されてしまう結果、触媒粒子同士の接触が悪くなり電子伝導性が低いものとなり、好ましくない。そのため、触媒電極層中のイオン伝導性、電子伝導性をともに適切な範囲に調節することが非常に重要である。その観点から、使用する電極触媒の粒径や比表面積等の構造やイオン伝導性付与剤の構造により異なるが、電極触媒とイオン伝導性付与剤との質量比(電極触媒質量/イオン伝導性付与剤質量)は、99/1~30/70の範囲であることが好ましく、95/5~50/50の範囲であることがより好ましい。 The content of the ion conductivity-imparting agent and the electrode catalyst in the catalyst electrode layer and the amount ratio thereof reflect the structure of the catalyst electrode layer and directly affect the electrochemical characteristics of the catalyst electrode layer. When the ion conductivity imparting agent is too small, the ion conductivity in the catalyst electrode layer becomes insufficient, which is not preferable. On the other hand, when the ion conductivity imparting agent is too large, the individual electrode catalyst particles are thickly coated with the ion conductivity imparting agent. As a result, the contact between the catalyst particles deteriorates and the electron conductivity becomes low, which is not preferable. Therefore, it is very important to adjust both ionic conductivity and electronic conductivity in the catalyst electrode layer to appropriate ranges. From this point of view, the mass ratio of the electrode catalyst to the ion conductivity imparting agent (mass of electrode catalyst / ion conductivity imparted) varies depending on the structure of the electrode catalyst used such as particle size and specific surface area and the structure of the ion conductivity imparting agent. The mass of the agent is preferably in the range of 99/1 to 30/70, and more preferably in the range of 95/5 to 50/50.
 本発明の触媒電極層は必要に応じて結着剤を含有してもよい。必要に応じて添加する結着剤としては、各種熱可塑性樹脂が一般的に用いられるが、好適に使用できる熱可塑性樹脂を例示すれば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリエーテルエーテルケトン、ポリエーテルスルホン、スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体等が挙げられる。結着剤を使用する場合、その含有率は、触媒電極層の5~25重量%であることが好ましい。また、結着剤は、単独で使用してもよいし、2種類以上を混合して使用してもよい。 The catalyst electrode layer of the present invention may contain a binder as necessary. Various types of thermoplastic resins are generally used as the binder to be added as necessary. Examples of thermoplastic resins that can be suitably used include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-par Fluoroalkyl vinyl ether copolymers, polyether ether ketones, polyether sulfones, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, and the like. When the binder is used, the content is preferably 5 to 25% by weight of the catalyst electrode layer. Moreover, a binder may be used independently and may mix and use 2 or more types.
 触媒電極層の厚みは、特に制限されるものではなく、使用する用途に応じて適宜決定すればよい。一般的には、0.1~50μmであることが好ましく、0.5~20μmであることがより好ましい。 The thickness of the catalyst electrode layer is not particularly limited, and may be appropriately determined according to the intended use. In general, the thickness is preferably 0.1 to 50 μm, more preferably 0.5 to 20 μm.
 (触媒電極層の製造方法)
 本発明の触媒電極層は、芳香環にハロゲン化アルキル基を有するスチレン系重合体(以下、イオン伝導性付与剤前駆体ともいう。)と電極触媒とを含む触媒電極層形成用組成物をガス拡散層、陰イオン交換膜、又は陰イオン交換膜の前駆体に塗布、乾燥し、触媒電極前駆体層を形成した後、ジアミン化合物を含む溶液中でジアミン化合物と接触させてイオン伝導性付与剤前駆体を四級化および架橋することにより製造することができる。
(Method for producing catalyst electrode layer)
The catalyst electrode layer of the present invention uses a composition for forming a catalyst electrode layer containing a styrene polymer having an alkyl halide group on an aromatic ring (hereinafter also referred to as an ion conductivity-imparting agent precursor) and an electrode catalyst. After applying to the diffusion layer, the anion exchange membrane, or the precursor of the anion exchange membrane and drying to form a catalyst electrode precursor layer, the ion conductivity imparting agent is brought into contact with the diamine compound in a solution containing the diamine compound. It can be produced by quaternizing and crosslinking the precursor.
 本発明の触媒電極層の製造方法によれば、イオン伝導性付与剤前駆体を含む触媒電極層の前駆体を、ジアミン化合物を含む溶液中で四級化および架橋反応に供する際、反応前後における触媒電極層自体の寸法変化率、および触媒電極層の前駆体において形成されていた内部の微細構造の変化を著しく微小なものとできるため、非常に優れた特性の触媒電極層を製造することができる。これは、すなわち、本発明の触媒電極層の製造方法によれば、反応前のイオン伝導性付与剤前駆体と、反応により得られるイオン伝導性付与剤との間で、架橋反応前後における寸法変化率が非常に小さいためである。その理由としては、四級化および架橋反応に供するジアミンの比率が高いため、イオン伝導性付与剤の膨潤が極小に抑制されるためと考えられる。 According to the method for producing a catalyst electrode layer of the present invention, when the catalyst electrode layer precursor containing an ion conductivity-imparting agent precursor is subjected to quaternization and crosslinking reaction in a solution containing a diamine compound, before and after the reaction. Since the change in the dimensional change of the catalyst electrode layer itself and the internal microstructure formed in the precursor of the catalyst electrode layer can be made extremely small, it is possible to produce a catalyst electrode layer with very excellent characteristics. it can. That is, according to the method for producing a catalyst electrode layer of the present invention, the dimensional change before and after the crosslinking reaction between the ion conductivity imparting agent precursor before the reaction and the ion conductivity imparting agent obtained by the reaction. This is because the rate is very small. The reason for this is considered that the swelling of the ion conductivity-imparting agent is suppressed to a minimum because the ratio of the diamine used for the quaternization and the crosslinking reaction is high.
 一般に触媒電極層の特性に影響を与える因子として、触媒電極層中の電子伝導性、触媒粒子とイオン伝導性付与剤によって形成される内部細孔の存在やイオン伝導性付与剤中のガス拡散性、イオン伝導性付与剤中におけるイオン伝導性が知られている。触媒電極層中の電子伝導性やイオン伝導性付与剤中のガス拡散性、イオン伝導性付与剤中におけるイオン伝導性が高いほど良好な触媒電極層の特性が達成される。 In general, factors affecting the characteristics of the catalyst electrode layer include electronic conductivity in the catalyst electrode layer, presence of internal pores formed by the catalyst particles and the ion conductivity imparting agent, and gas diffusivity in the ion conductivity imparting agent. The ion conductivity in the ion conductivity-imparting agent is known. The higher the electron conductivity in the catalyst electrode layer, the gas diffusibility in the ion conductivity-imparting agent, and the ion conductivity in the ion conductivity-imparting agent, the better the characteristics of the catalyst electrode layer are achieved.
 触媒電極層の製造方法において、架橋反応中にイオン伝導性付与剤が大きく膨潤した場合、前駆体の状態において触媒粒子や炭素微粒子等の電子伝導性付与剤を被覆もしくは接触していたイオン伝導性付与剤が、膨潤することにより、電子伝導を担う触媒粒子や電子伝導付与剤間の接触を悪化させ、電子伝導性が低下して、触媒電極層の特性を低下させる。更に、イオン伝導性付与剤の膨潤は触媒電極前駆体層の内部で形成されていた内部細孔を閉塞するため、ガス拡散性も低下する。このような理由により、触媒電極層中のイオン伝導性付与剤が大きく膨潤すると、触媒電極層の特性は不十分なものとなる。 In the method for producing a catalyst electrode layer, when the ion conductivity-imparting agent is greatly swollen during the crosslinking reaction, the ion conductivity was coated or contacted with the electron conductivity-imparting agent such as catalyst particles and carbon fine particles in the precursor state. When the imparting agent swells, the contact between the catalyst particles responsible for electron conduction and the electron conduction imparting agent is deteriorated, the electron conductivity is lowered, and the characteristics of the catalyst electrode layer are lowered. Furthermore, since the swelling of the ion conductivity-imparting agent closes the internal pores formed inside the catalyst electrode precursor layer, the gas diffusibility also decreases. For these reasons, when the ion conductivity-imparting agent in the catalyst electrode layer swells greatly, the characteristics of the catalyst electrode layer become insufficient.
 また、イオン伝導性付与剤の膨潤が大きい場合には、触媒電極層自体の寸法が増大する。すなわち、前駆体の状態での寸法が四級化および架橋反応の後には、大きくなるため、発電を行う際に用いる燃料セルの寸法との不一致が生じやすくなる。触媒電極層の面積が、用いる燃料電池セルに最適な寸法より大きい場合には、多くの場合、セル内部の気密を保つことが困難となり、ガスリーク等の原因となり、燃料電池の効率を低下させるのみならず、水素ガス等の燃料を用いる場合には危険ですらある。このように架橋および四級化の反応中に触媒電極層の寸法変化が大きいことは、生産性の問題だけではなく、発電効率や安全においても影響を与える。 In addition, when the swell of the ion conductivity-imparting agent is large, the dimensions of the catalyst electrode layer itself increase. That is, since the size in the state of the precursor becomes larger after the quaternization and the crosslinking reaction, a mismatch with the size of the fuel cell used for power generation tends to occur. If the area of the catalyst electrode layer is larger than the optimum size for the fuel cell to be used, in many cases, it becomes difficult to keep the inside of the cell airtight, causing gas leaks, etc., only reducing the efficiency of the fuel cell. It is even dangerous when using fuel such as hydrogen gas. Thus, the large dimensional change of the catalyst electrode layer during the crosslinking and quaternization reaction affects not only productivity but also power generation efficiency and safety.
 水電解装置に用いる場合においても、触媒電極層が直接液体と接触するためイオン伝導性付与剤の吸水による膨潤の影響が大きく、触媒電極層の寸法変化による触媒の脱落および、電極反応により発生したガスの触媒電極層内での滞留により電解効率が著しく低下する。また、ガスの滞留による電解セル内の圧力の上昇はガスリーク等の原因となり、電解効率を低下させるのみならず、発生するガスは水素ガスであるため危険ですらある。このように架橋および四級化の反応中に触媒電極層の寸法変化が大きいことは、電解効率の低下や安全においても影響を与える。 Even when used in a water electrolysis device, the catalyst electrode layer is in direct contact with the liquid, so the effect of swelling of the ionic conductivity imparting agent due to water absorption is large, and it occurs due to catalyst dropping due to dimensional change of the catalyst electrode layer and electrode reaction. Electrolysis efficiency is significantly reduced due to the retention of gas in the catalyst electrode layer. In addition, an increase in pressure in the electrolysis cell due to gas stagnation causes gas leakage and the like, which not only lowers electrolysis efficiency, but is also dangerous because the generated gas is hydrogen gas. The large dimensional change of the catalyst electrode layer during the cross-linking and quaternization reaction as described above also affects the reduction in electrolysis efficiency and safety.
 本発明により、優れた特性を有する触媒電極層が得られるだけでなく、触媒電極層の生産性やそれを用いた燃料電池の発電効率または水電解装置の電解効率、および安全の点において優れた効果を享受することができる。 According to the present invention, not only a catalyst electrode layer having excellent characteristics is obtained, but also excellent in terms of productivity of the catalyst electrode layer, power generation efficiency of a fuel cell using the catalyst electrode layer, electrolysis efficiency of a water electrolysis apparatus, and safety. You can enjoy the effect.
 以下、触媒電極層の製造方法について説明する。
(触媒電極層形成用組成物)
 触媒電極層の形成にあたっては電極触媒、イオン伝導性付与剤前駆体などからなる分散液を調製し、これを陰イオン交換膜やガス拡散層上に塗布して形成することができる。(以下、電極触媒、イオン伝導性付与剤前駆体を含む分散液を触媒電極層形成用組成物、これを塗布して形成された層を触媒電極前駆体層と称する。)
 触媒電極層形成用組成物は、イオン伝導性付与剤前駆体と電極触媒を含んでなり、必要に応じてさらに、溶媒、電子電導性付与剤を含んでいてもよい。
Hereinafter, the manufacturing method of a catalyst electrode layer is demonstrated.
(Composition for forming catalyst electrode layer)
In forming the catalyst electrode layer, a dispersion liquid comprising an electrode catalyst, an ion conductivity-imparting agent precursor and the like can be prepared and applied to an anion exchange membrane or a gas diffusion layer. (Hereinafter, a dispersion containing an electrode catalyst and an ion conductivity-imparting agent precursor is referred to as a composition for forming a catalyst electrode layer, and a layer formed by applying this is referred to as a catalyst electrode precursor layer.)
The composition for forming a catalyst electrode layer includes an ion conductivity imparting agent precursor and an electrode catalyst, and may further include a solvent and an electron conductivity imparting agent as necessary.
 イオン伝導性付与剤前駆体は触媒電極層形成用組成物中で固体であっても、溶解した状態でもよく、特に限定されない。ここで、触媒電極層において個々の触媒粒子が四級化および架橋された後のイオン伝導性付与剤により均一に被覆されていれば、触媒が有する電気化学的機能が発揮され、触媒電極層が高活性化する。そこで、イオン伝導性付与剤前駆体に溶媒を加え、イオン伝導性付与剤前駆体の溶液化を行うと、分散液中で電極触媒が均一に分散し、その表面が十分にイオン伝導性付与剤前駆体により被覆されることにより、優れた特性の触媒電極層を得ることができる。 The ion conductivity-imparting agent precursor is not particularly limited, and may be solid or dissolved in the catalyst electrode layer forming composition. Here, if the catalyst particles are uniformly coated with the ionic conductivity-imparting agent after the individual catalyst particles are quaternized and crosslinked, the electrochemical function of the catalyst is exhibited, and the catalyst electrode layer Highly active. Therefore, when a solvent is added to the ion conductivity-imparting agent precursor and the ion conductivity-imparting agent precursor is made into a solution, the electrode catalyst is uniformly dispersed in the dispersion, and the surface has a sufficient ion-conductivity imparting agent. By covering with a precursor, a catalyst electrode layer having excellent characteristics can be obtained.
 イオン伝導性付与剤前駆体の溶液化に用いる溶媒は特に限定されないが、イオン伝導性付与剤前駆体自体がよく溶解すること、また触媒微粒子とのなじみを良くし、高い分散状態を得る目的から極性溶剤を用いることが望ましい。このような溶媒としてはテトラヒドロフランやジオキサンなどの環状エーテル系有機溶剤、メタノール、エタノール、プロパノール、イソプロピルアルコールなどのアルコール類、水、酢酸エチルなどのエステル類、シクロヘキサンなどの環状炭化水素などが例示される。また、これらの混合溶媒を用いてもよい。 The solvent used for the solution of the ion conductivity-imparting agent precursor is not particularly limited, but the ion conductivity-imparting agent precursor itself dissolves well, and it has good compatibility with the catalyst fine particles to obtain a high dispersion state. It is desirable to use a polar solvent. Examples of such solvents include cyclic ether organic solvents such as tetrahydrofuran and dioxane, alcohols such as methanol, ethanol, propanol and isopropyl alcohol, esters such as water and ethyl acetate, and cyclic hydrocarbons such as cyclohexane. . Moreover, you may use these mixed solvents.
 溶液化の方法は特に限定されないが、単純にイオン伝導性付与剤前駆体を溶媒中に加えて攪拌する方法が簡便である。イオン伝導性付与剤前駆体の構成や溶媒組成によっては、加熱を行うことで溶解が促進される。溶解は、15℃以上、用いる溶媒の沸点以下で実施することが好ましい。 The method of making the solution is not particularly limited, but a method of simply adding the ion conductivity-imparting agent precursor to the solvent and stirring it is simple. Depending on the composition and solvent composition of the ion conductivity-imparting agent precursor, dissolution is promoted by heating. The dissolution is preferably carried out at 15 ° C. or higher and below the boiling point of the solvent used.
 イオン伝導性付与剤前駆体溶液の濃度は特に限定されないが、溶液の濃度が高すぎる場合には一般に溶液の粘度が著しく高くなってしまい、触媒電極層を形成する際のハンドリングに問題が生じること、溶液化に時間を要してしまうことなどから、溶液の粘度が比較的低くなる濃度とすることが好ましく、溶液全体に占めるイオン伝導性付与剤前駆体の濃度は1~20質量%の濃度であることが好ましい。 The concentration of the ion conductivity-imparting agent precursor solution is not particularly limited. However, when the concentration of the solution is too high, the viscosity of the solution is generally extremely high, which causes a problem in handling when forming the catalyst electrode layer. In view of the fact that it takes time to form a solution, the concentration of the solution is preferably set to a relatively low concentration. The concentration of the ion conductivity-imparting agent precursor in the entire solution is 1 to 20% by mass. It is preferable that
 (触媒電極層用の触媒)
 本発明の触媒電極層の製造法において使用される電極触媒について説明する。触媒電極層用の触媒には、前記したように、公知の触媒を使用することができる。例えば、水素の酸化反応及び酸素の還元反応を促進する白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、スズ、鉄、コバルト、ニッケル、モリブデン、タングステン、バナジウム、あるいはそれらの合金等の金属粒子が制限なく使用できるが、触媒活性が優れていることから白金族触媒を用いるのが好適である。
(Catalyst for catalyst electrode layer)
The electrode catalyst used in the method for producing the catalyst electrode layer of the present invention will be described. As the catalyst for the catalyst electrode layer, a known catalyst can be used as described above. For example, metal particles such as platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, vanadium, or alloys thereof that promote hydrogen oxidation reaction and oxygen reduction reaction However, it is preferable to use a platinum group catalyst because of its excellent catalytic activity.
 なお、これら触媒となる金属粒子の粒径は、通常、0.1~100nm、より好ましくは0.5~10nmである。粒径が小さいほど触媒性能は高くなるが、0.5nm未満のものは、作製が困難であり、100nmより大きいと十分な触媒性能が得にくくなる。また、これら触媒は、予め導電剤に担持させてから使用してもよい。導電剤としては、電子導電性物質であれば特に限定されるものではないが、例えば、ファーネスブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛等を単独または混合して使用するのが一般的である。これら触媒の含有量は、触媒電極層をシート状とした状態における単位面積当たりの金属重量で、通常0.01~10mg/cm、より好ましくは0.1~5.0mg/cmである。 The particle size of the metal particles used as the catalyst is usually 0.1 to 100 nm, more preferably 0.5 to 10 nm. The smaller the particle size, the higher the catalyst performance. However, it is difficult to produce a material having a particle size of less than 0.5 nm. These catalysts may be used after being supported on a conductive agent in advance. The conductive agent is not particularly limited as long as it is an electronic conductive material. For example, carbon black such as furnace black and acetylene black, activated carbon, graphite and the like are generally used alone or in combination. is there. The content of these catalysts is usually 0.01 to 10 mg / cm 2 , more preferably 0.1 to 5.0 mg / cm 2 in terms of metal weight per unit area when the catalyst electrode layer is in a sheet form. .
 該組成物には触媒電極層の電子伝導性を高め、優れた特性を得る目的で電子伝導性付与剤を添加してもよい。電子伝導性付与剤としてはカーボンブラック、グラファイト、カーボンナノチューブ、カーボンナノホーン、炭素繊維等が例示される。 An electron conductivity-imparting agent may be added to the composition for the purpose of increasing the electron conductivity of the catalyst electrode layer and obtaining excellent properties. Examples of the electron conductivity-imparting agent include carbon black, graphite, carbon nanotube, carbon nanohorn, and carbon fiber.
 触媒電極層形成用組成物における、イオン伝導性付与剤前駆体と電極触媒との添加量およびその量比は、得られる触媒電極前駆体層の構造に大きく影響するため、その選定は触媒電極層の電気化学特性に直接影響する。該イオン伝導性付与剤前駆体が少なすぎる場合には触媒電極層としたときにイオン伝導性が不十分となり、好ましくなく、反対に多すぎる場合には、個々の電極触媒粒子がイオン伝導性付与剤により厚く被覆されてしまうこととなるため、粒子同士の接触が悪くなり電子伝導性が低いものとなり、好ましくない。そのため、触媒電極層中のイオン伝導性、電子伝導性をともに適切な範囲に調節することが非常に重要である。その観点から、使用する電極触媒の粒径や比表面積等の構造やイオン伝導性付与剤の構造により異なるが、電極触媒とイオン伝導性付与剤前駆体の質量比(電極触媒質量/イオン伝導性付与剤前駆体質量)は、99/1~40/60の範囲であることが好ましく、95/5~50/50の範囲であることがより好ましい。 In the composition for forming a catalyst electrode layer, the addition amount and the ratio of the ion conductivity-imparting agent precursor and the electrode catalyst greatly affect the structure of the resulting catalyst electrode precursor layer. Directly affects the electrochemical properties of If the ion conductivity imparting agent precursor is too small, the ion conductivity becomes insufficient when the catalyst electrode layer is formed, which is not preferable. On the contrary, if the amount is too large, the individual electrode catalyst particles impart ion conductivity. Since it will be thickly coated with the agent, the contact between the particles becomes poor and the electron conductivity becomes low, which is not preferable. Therefore, it is very important to adjust both ionic conductivity and electronic conductivity in the catalyst electrode layer to appropriate ranges. From this point of view, the mass ratio of electrode catalyst to ion conductivity-imparting agent precursor (mass of electrode catalyst / ion conductivity) varies depending on the structure of the electrode catalyst used, such as particle size and specific surface area, and the structure of the ion conductivity-imparting agent. The mass of the imparting agent precursor) is preferably in the range of 99/1 to 40/60, and more preferably in the range of 95/5 to 50/50.
 本発明の触媒電極層形成用組成物は必要に応じて結着剤を含有してもよい。必要に応じて添加する結着剤としては、各種熱可塑性樹脂が一般的に用いられるが、好適に使用できる熱可塑性樹脂を例示すれば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリエーテルエーテルケトン、ポリエーテルスルホン、スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体等が挙げられる。該結着剤の触媒電極層形成用組成物中の含有量は、上記触媒電極層の5~25重量%となる量であることが好ましい。また、結着剤は、単独で使用してもよいし、2種類以上を混合して使用してもよい。 The catalyst electrode layer forming composition of the present invention may contain a binder as necessary. Various types of thermoplastic resins are generally used as the binder to be added as necessary. Examples of thermoplastic resins that can be suitably used include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-par Fluoroalkyl vinyl ether copolymers, polyether ether ketones, polyether sulfones, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, and the like. The content of the binder in the composition for forming a catalyst electrode layer is preferably an amount that is 5 to 25% by weight of the catalyst electrode layer. Moreover, a binder may be used independently and may mix and use 2 or more types.
 触媒電極層形成用組成物は少なくともイオン伝導性付与剤前駆体、電極触媒、及び必要に応じて電子伝導性付与剤を溶媒中で混合して得られる。高性能な触媒電極層を得るためには電極触媒が該組成物中で高分散状態であることが好ましいため、混合の方法としては電極触媒の高い分散状態が得られる手法が好ましく採用される。分散装置としては、ビーズミル、ボールミル、高圧衝突式分散装置、超音波分散機等が例示され、用いる電極触媒の凝集状態と、その分散に必要なエネルギーに応じて選定すれば良く、時間や温度等の混合条件も同様に決定すれば良い。 The composition for forming a catalyst electrode layer is obtained by mixing at least an ion conductivity-imparting agent precursor, an electrode catalyst, and, if necessary, an electron conductivity-imparting agent in a solvent. In order to obtain a high-performance catalyst electrode layer, it is preferable that the electrode catalyst is in a highly dispersed state in the composition. Therefore, a method of obtaining a highly dispersed state of the electrode catalyst is preferably employed as a mixing method. Examples of the dispersing device include a bead mill, a ball mill, a high-pressure collision type dispersing device, an ultrasonic dispersing device, etc., and may be selected according to the aggregation state of the electrode catalyst to be used and the energy required for the dispersion, such as time and temperature. The mixing conditions may be determined in the same manner.
 また、触媒電極層形成用組成物の粘度は後述する塗布方法に適したものとすれば良く、特に限定されない。粘度は電極触媒の分散状態および該組成物に添加される溶媒の量に強く依存する。溶媒の添加量としてはイオン伝導性付与剤前駆体と電極触媒の質量がそれぞれ0.1~10質量%となるように添加量が決定されるのが一般的である。 The viscosity of the composition for forming a catalyst electrode layer is not particularly limited as long as it is suitable for a coating method described later. The viscosity is strongly dependent on the electrode catalyst dispersion and the amount of solvent added to the composition. In general, the amount of the solvent added is determined so that the masses of the ion conductivity-imparting agent precursor and the electrode catalyst are 0.1 to 10% by mass, respectively.
 (触媒電極前駆体層の形成方法)
 本発明における触媒電極層の製造方法では、前記した触媒電極層形成用組成物をガス拡散層もしくは陰イオン交換膜に塗布し、触媒電極前駆体層を形成したのちに触媒電極層とする場合と、ハロゲン化アルキル基を有するイオン交換膜の前駆体上に塗布し、触媒電極前駆体層を形成したのちに触媒電極層とする場合とがある。
(Method for forming catalyst electrode precursor layer)
In the method for producing a catalyst electrode layer in the present invention, the above-mentioned catalyst electrode layer forming composition is applied to a gas diffusion layer or an anion exchange membrane to form a catalyst electrode precursor layer and then a catalyst electrode layer. In some cases, a catalyst electrode layer is formed after coating on a precursor of an ion exchange membrane having a halogenated alkyl group to form a catalyst electrode precursor layer.
 触媒電極層形成用組成物の塗布方法は特に限定されず塗布する対象により、所望する触媒電極層の厚み等の特性に応じて決定すれば良い。その方法として、スプレーコート、バーコート、ロールコート、グラビア印刷法、スクリーン印刷法等が例示される。 The method for applying the composition for forming a catalyst electrode layer is not particularly limited, and may be determined according to characteristics to be applied, such as a desired thickness of the catalyst electrode layer. Examples of the method include spray coating, bar coating, roll coating, gravure printing, and screen printing.
 塗布後の触媒電極前駆体層は適切な温度で乾燥される。乾燥条件は特に制限されず、乾燥中に触媒電極前駆体層にクラックやピンホール等が生じない範囲で、用いた溶媒の量や沸点等に応じて決定すれば良い。一般的には15~70℃の温度条件下、5~48時間乾燥を行うことが好ましい。 The applied catalyst electrode precursor layer is dried at an appropriate temperature. The drying conditions are not particularly limited, and may be determined according to the amount of solvent used, the boiling point, etc., as long as cracks, pinholes, etc. do not occur in the catalyst electrode precursor layer during drying. In general, drying is preferably performed at a temperature of 15 to 70 ° C. for 5 to 48 hours.
 塗布する対象上に形成される触媒電極前駆体層の厚みは、特に制限されるものではなく、使用する用途に応じて適宜決定すればよい。一般的には、0.1~50μmであることが好ましく、さらに、0.5~20μmであることが好ましい。 The thickness of the catalyst electrode precursor layer formed on the object to be applied is not particularly limited, and may be determined as appropriate according to the intended use. In general, the thickness is preferably 0.1 to 50 μm, and more preferably 0.5 to 20 μm.
 前記したように、本発明における触媒電極層の製造方法は、前記した触媒電極層形成用組成物をガス拡散層もしくは陰イオン交換膜に触媒電極層形成用組成物を塗布する場合と、ハロゲン化アルキル基を有するイオン交換膜の前駆体上に触媒電極層形成用組成物を塗布する場合とがある。 As described above, the method for producing a catalyst electrode layer according to the present invention includes the case where the above-mentioned composition for forming a catalyst electrode layer is applied to the gas diffusion layer or the anion exchange membrane, and the case of halogenation. In some cases, a composition for forming a catalyst electrode layer is applied onto a precursor of an ion exchange membrane having an alkyl group.
 はじめにガス拡散層、もしくは陰イオン交換膜上に触媒電極層形成用組成物を塗布して、触媒電極層を製造する方法について説明する。 First, a method for producing a catalyst electrode layer by applying a composition for forming a catalyst electrode layer on a gas diffusion layer or an anion exchange membrane will be described.
 (ガス拡散層もしくは陰イオン交換膜上に形成された触媒電極前駆体層の場合)
 ガス拡散層もしくは陰イオン交換膜上に形成された触媒電極前駆体層を、ジアミン化合物を含む溶液中で四級化および架橋すればよい。
(In the case of a catalyst electrode precursor layer formed on a gas diffusion layer or an anion exchange membrane)
The catalyst electrode precursor layer formed on the gas diffusion layer or the anion exchange membrane may be quaternized and crosslinked in a solution containing a diamine compound.
 触媒電極前駆体層を形成する際の方法については、触媒電極層形成用組成物を塗布する対象により制限されず、前記した手法を用いれば良い。 About the method at the time of forming a catalyst electrode precursor layer, it does not restrict | limit by the object which apply | coats the composition for catalyst electrode layer formation, What is necessary is just to use the above-mentioned method.
 ガス拡散層としては、カーボンペーパー、カーボンクロス、ニッケルフォームやチタンフォーム、発泡金属等、多孔グラファイト等が例示され、特に制限なく使用することができる。一般に燃料電池に用いる場合には、カーボンペーパー、カーボンクロスが好ましく選択される。一般に水電解に用いる場合には、ニッケルフォームやチタンフォームが好ましく選択される。また、ガス拡散層は、燃料電池に用いる場合には発電で生成された水を系外に排出しやすくする目的や、乾燥ガス等を使用した際に膜-電極接合体の乾燥を抑制する目的のために、カーボンブラックとポリテトラフルオロエチレン等の結着剤とからなるミクロポーラス層を有することもあるが、本発明では特に制限なく使用することができる。水電解装置に用いる場合も同様に、電解により生成した水素を系外に排出しやすくする目的のために、ミクロポーラス層を有するガス拡散層を使用することができる。このガス拡散層は、特に制限されるものではないが、カーボン製の多孔質膜が好ましく、例えば、カーボン繊維織布、カーボンペーパー等が使用できる。このガス拡散層の厚みは、50~300μmが好ましく、その空隙率は50~90%であることが好ましい。本発明において、後架橋により触媒電極層を形成する場合には、このカーボン製多孔質膜を使用することが好ましい。その理由としては、触媒電極前駆体層を形成した後、該触媒電極前駆体層とジアミン化合物とを接触させるが、その際に、カーボン製多孔質膜は膨潤等の変形を起こすことがないためである。 Examples of the gas diffusion layer include carbon paper, carbon cloth, nickel foam, titanium foam, foamed metal, and the like, and porous graphite. In general, when used in a fuel cell, carbon paper and carbon cloth are preferably selected. In general, when used for water electrolysis, nickel foam or titanium foam is preferably selected. In addition, the gas diffusion layer is used for the purpose of facilitating the discharge of water generated by power generation outside the system when used in a fuel cell, and the purpose of suppressing the drying of the membrane-electrode assembly when using a dry gas or the like. Therefore, it may have a microporous layer composed of carbon black and a binder such as polytetrafluoroethylene, but can be used without any particular limitation in the present invention. Similarly, when used in a water electrolysis apparatus, a gas diffusion layer having a microporous layer can be used for the purpose of easily discharging hydrogen generated by electrolysis out of the system. The gas diffusion layer is not particularly limited, but is preferably a carbon porous membrane. For example, carbon fiber woven fabric, carbon paper, or the like can be used. The thickness of the gas diffusion layer is preferably 50 to 300 μm, and the porosity is preferably 50 to 90%. In the present invention, this carbon porous membrane is preferably used when the catalyst electrode layer is formed by post-crosslinking. The reason is that after the catalyst electrode precursor layer is formed, the catalyst electrode precursor layer and the diamine compound are brought into contact with each other, but the carbon porous membrane does not undergo deformation such as swelling. It is.
 また、触媒電極層を陰イオン交換膜上に形成する場合、陰イオン交換膜としては特に制限なく公知の陰イオン交換膜を使用することができる。中でも、炭化水素系陰イオン交換膜を使用することが好ましい。具体的には、クロロメチルスチレン-ジビニルベンゼン共重合体、ビニルピリジン-ジビニルベンゼン共重合体等をアミノ化、アルキル化等の処理により所望の陰イオン交換基を導入したイオン交換樹脂を充填した膜が挙げられる。これらの陰イオン交換膜は、一般的には、熱可塑性樹脂製の織布、不織布、多孔膜等の基材により支持されているが、ガス透過性が低く、薄膜化が可能であることから該基材としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン樹脂、ポリテトラフルオロエチレン、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)、ポリフッ化ビニリデン等のフッ素系樹脂等の熱可塑性樹脂製多孔膜からなる基材を用いるのが好適である。また、これら炭化水素系陰イオン交換膜の膜厚は、電気抵抗を低く抑える観点及び支持膜として必要な機械的強度を付与する観点から、通常5~200μmの厚みを有するものが好ましく、より好ましくは8~150μmの厚みを有するものである。 Further, when the catalyst electrode layer is formed on the anion exchange membrane, a known anion exchange membrane can be used without any particular limitation as the anion exchange membrane. Among these, it is preferable to use a hydrocarbon-based anion exchange membrane. Specifically, a membrane filled with an ion exchange resin into which a desired anion exchange group has been introduced by amination, alkylation or the like of a chloromethylstyrene-divinylbenzene copolymer, vinylpyridine-divinylbenzene copolymer or the like. Is mentioned. These anion exchange membranes are generally supported by a base material such as a woven fabric, a nonwoven fabric, or a porous membrane made of a thermoplastic resin, but have low gas permeability and can be thinned. Examples of the base material include a porous film made of a thermoplastic resin such as a polyolefin resin such as polyethylene, polypropylene, and polymethylpentene, and a fluorine resin such as polytetrafluoroethylene, poly (tetrafluoroethylene-hexafluoropropylene), and polyvinylidene fluoride. It is preferable to use a substrate made of Further, the film thickness of these hydrocarbon-based anion exchange membranes is preferably from 5 to 200 μm, more preferably from the viewpoint of keeping electric resistance low and imparting mechanical strength necessary as a support membrane. Has a thickness of 8 to 150 μm.
 (架橋および四級化反応の方法)
 次いでガス拡散層もしくは陰イオン交換膜上に形成された触媒電極前駆体層を、ジアミン化合物を含む溶液中で四級化および架橋する。触媒電極前駆体層中のイオン伝導性付与剤前駆体のハロゲン化アルキル基は、ジアミン化合物による架橋反応が容易に進行するため、ジアミン化合物を含む溶液中で四級化および架橋することが可能である。
(Method of crosslinking and quaternization reaction)
Next, the catalyst electrode precursor layer formed on the gas diffusion layer or the anion exchange membrane is quaternized and crosslinked in a solution containing a diamine compound. The halogenated alkyl group of the ion conductivity-imparting agent precursor in the catalyst electrode precursor layer can be quaternized and crosslinked in a solution containing the diamine compound because the crosslinking reaction with the diamine compound proceeds easily. is there.
 イオン伝導性付与剤前駆体をジアミン化合物で四級化および架橋する場合、四級化および架橋反応の進行前後におけるイオン伝導性付与剤の寸法変化を微小に抑制できるという特徴がある。これは、ジアミン化合物を含む溶液中でイオン伝導性付与剤前駆体が四級化と共に架橋され、架橋構造を有するイオン伝導性付与剤となることにより、膨潤収縮が抑制されることによる。この特徴は触媒電極層の製造過程における寸法変化を抑制する機能を発現し、非常に高性能な触媒電極層を得るために有効に機能する。 When the ion conductivity imparting agent precursor is quaternized and crosslinked with a diamine compound, there is a feature that the dimensional change of the ion conductivity imparting agent before and after the progress of the quaternization and crosslinking reaction can be suppressed minutely. This is because the ionic conductivity-imparting agent precursor is cross-linked with the quaternization in the solution containing the diamine compound to become an ionic conductivity-imparting agent having a cross-linked structure, thereby suppressing swelling and shrinkage. This feature expresses the function of suppressing dimensional changes in the manufacturing process of the catalyst electrode layer, and functions effectively to obtain a very high performance catalyst electrode layer.
 ここで使用されるジアミン化合物とは、四級化および架橋反応した後に式(1)で示される架橋構造を有する構成単位を形成することのできる、先述した本発明の陰イオン交換体の製造で用いる式(5)のジアミン化合物を適宜選択すればよい。 The diamine compound used here refers to the production of the anion exchanger of the present invention described above, which can form a structural unit having a crosslinked structure represented by the formula (1) after quaternization and crosslinking reaction. What is necessary is just to select suitably the diamine compound of Formula (5) to be used.
 ジアミン化合物と触媒電極前駆体層の接触の方法については、架橋構造を有するイオン伝導性付与剤を含んでなる触媒電極層の製造に適した方法を用いれば良い。具体的には、必要に応じて溶媒に希釈したジアミン化合物を含む溶液に前記触媒電極前駆体層を浸漬させる方法、ジアミン化合物を含む溶液を前記触媒電極前駆体層にスプレーする方法等が挙げられる。中でも、浸漬させる方法を採用することが好ましい。 As a method for contacting the diamine compound and the catalyst electrode precursor layer, a method suitable for manufacturing a catalyst electrode layer containing an ion conductivity-imparting agent having a crosslinked structure may be used. Specifically, a method of immersing the catalyst electrode precursor layer in a solution containing a diamine compound diluted in a solvent as necessary, a method of spraying a solution containing a diamine compound on the catalyst electrode precursor layer, and the like are included. . Among these, it is preferable to employ a method of dipping.
 架橋構造形成に用いるジアミン化合物の使用量は、ジアミン化合物、イオン伝導性付与剤前駆体に含まれるハロゲン化アルキル基の種類、所望とする架橋の程度、イオン交換容量等に応じて適宜決定すればよい。具体的にはイオン伝導性付与剤前駆体に含まれるハロゲン化アルキル基の総モル数をn1とすると、ジアミン化合物の使用量はn1の0.7モル倍以上であることが好ましく、さらに、等モル倍以上であることが好ましい。 The amount of the diamine compound used for forming the crosslinked structure may be appropriately determined according to the diamine compound, the type of halogenated alkyl group contained in the ion conductivity-imparting agent precursor, the desired degree of crosslinking, the ion exchange capacity, and the like. Good. Specifically, when the total number of moles of halogenated alkyl groups contained in the ion conductivity-imparting agent precursor is n1, the amount of the diamine compound used is preferably 0.7 mole times or more of n1, and so on. It is preferable that it is more than mol times.
 触媒電極前駆体層とジアミン化合物を反応させて本発明の触媒電極層を製造する際、3級アミンを併用することで、イオン伝導性付与剤の必須構成成分である、式(1)で示される架橋構造を有する構成単位のほかに、下記式(2)で示される第1の非架橋の構成単位を導入することができる。下記式(2)で示される第1の非架橋の構成単位を導入することで、本発明の触媒電極層の親水性と疎水性のバランスを制御することができる。作動温度が低いと、イオン伝導度が低くなるが、上記式(2)で示される第1の非架橋の構成単位を導入することで触媒電極層の親水性が増して含水率が高くなり、イオン伝導度を高くすることができる。また、作動温度が低い場合には、膨潤収縮による影響も小さく、触媒電極層の耐久性の低下も少ない。式(2)で示される第1の非架橋の構成単位の含有率は、作動温度の高温化によるイオン伝導性付与剤の溶出を防ぐには、好ましくは0~20質量%、より好ましくは0~10質量%である。 When the catalyst electrode layer of the present invention is produced by reacting the catalyst electrode precursor layer with the diamine compound, a tertiary amine is used in combination, which is an essential component of the ion conductivity-imparting agent, represented by the formula (1). In addition to the structural unit having a crosslinked structure, the first non-crosslinked structural unit represented by the following formula (2) can be introduced. By introducing the first non-crosslinked structural unit represented by the following formula (2), the balance between hydrophilicity and hydrophobicity of the catalyst electrode layer of the present invention can be controlled. When the operating temperature is low, the ionic conductivity is low, but by introducing the first non-crosslinked structural unit represented by the above formula (2), the hydrophilicity of the catalyst electrode layer is increased and the water content is increased. Ionic conductivity can be increased. In addition, when the operating temperature is low, the influence of swelling and shrinkage is small, and the durability of the catalyst electrode layer is hardly lowered. The content of the first non-crosslinked constituent unit represented by the formula (2) is preferably 0 to 20% by mass, more preferably 0, in order to prevent elution of the ion conductivity-imparting agent due to an increase in operating temperature. ~ 10% by mass.
Figure JPOXMLDOC01-appb-C000009
(式(2)において、cは3~10、好ましくは3~6の整数であり、R及びRはそれぞれ独立にメチル基又はエチル基であり、Rは炭素数1~8の直鎖状アルキル基である。Xは、OH、HCO 、CO 2-、Cl、Br、Iからなる群から選択される一種以上の対イオンである。)
Figure JPOXMLDOC01-appb-C000009
(In the formula (2), c is an integer of 3 to 10, preferably 3 to 6, R 5 and R 6 are each independently a methyl group or an ethyl group, and R 7 is a straight chain having 1 to 8 carbon atoms. A chain alkyl group, X is at least one counter ion selected from the group consisting of OH , HCO 3 , CO 3 2− , Cl , Br and I )
 3級アミンとしては、導入後に式(2)で示される構造を得ることのできる3級アミンを適宜選択すればよい。具体的には、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルペンチルアミン、ジメチルヘキシルアミン、ジメチルヘプチルアミン、ジメチルオクチルアミン、ジエチルメチルアミン、ジエチルプロピルアミン、ジエチルブチルアミン、ジエチルペンチルアミン、ジエチルヘキシルアミン、ジエチルヘプチルアミン、ジエチルオクチルアミン、エチルメチルプロピルアミン、エチルメチルブチルアミン、エチルメチルペンチルアミン、エチルメチルヘキシルアミン、エチルメチルヘプチルアミン、エチルメチルオクチルアミンなどが例示される。 As the tertiary amine, a tertiary amine capable of obtaining a structure represented by the formula (2) after introduction may be appropriately selected. Specifically, trimethylamine, triethylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylamine, dimethylpentylamine, dimethylhexylamine, dimethylheptylamine, dimethyloctylamine, diethylmethylamine, diethylpropylamine, diethylbutylamine, diethylpentylamine, Examples include diethylhexylamine, diethylheptylamine, diethyloctylamine, ethylmethylpropylamine, ethylmethylbutylamine, ethylmethylpentylamine, ethylmethylhexylamine, ethylmethylheptylamine, ethylmethyloctylamine and the like.
 3級のアミンとしては反応性の高さや入手の容易さ等の理由から、トリメチルアミン、トリエチルアミン、ジメチルブチルアミン、ジメチルヘキシルアミン、ジメチルオクチルアミン、ジエチルブチルアミン、ジエチルヘキシルアミン、ジエチルオクチルアミンを用いるのが好ましい。 As the tertiary amine, it is preferable to use trimethylamine, triethylamine, dimethylbutylamine, dimethylhexylamine, dimethyloctylamine, diethylbutylamine, diethylhexylamine, diethyloctylamine for reasons of high reactivity and availability. .
 3級アミンを併用する場合には、本発明の触媒電極前駆体層にジアミン化合物と3級アミンとの混合物を接触させる方法、3級アミンを接触させた後、ジアミン化合物を接触させる方法、及びジアミン化合物を接触させた後、3級アミンを接触させる方法の何れの方法を採用してもよい。 When a tertiary amine is used in combination, a method of bringing the catalyst electrode precursor layer of the present invention into contact with a mixture of a diamine compound and a tertiary amine, a method in which a tertiary amine is brought into contact, and a method in which a diamine compound is brought into contact, and Any method of contacting the tertiary amine after contacting the diamine compound may be adopted.
 3級アミンの使用量は、所望する架橋度の程度により、共に用いるジアミン化合物との比率を考慮して決定すればよい。ハロゲン化アルキルに対して単官能性の四級化剤(3級アミン)が多く反応してしまうと、前述したとおり、後架橋反応中におけるイオン伝導性付与剤の膨潤が大きくなってしまい、本発明のイオン伝導性付与剤のもつ、架橋反応中の膨潤抑制効果が発揮されないため、本発明の特徴が発揮されず好ましくない。そのため、3級アミンとジアミン化合物を同時に、もしくは段階的に併用するに当たっては、触媒電極前駆体層に含まれるイオン伝導性付与剤の持つハロゲン化アルキル基1モルに対して反応に関与する3級アミンは0.3モル以下が好ましく、0.2モル以下であることがより好ましい。また、0.01モル以上であることが好ましい。 The amount of tertiary amine used may be determined in consideration of the ratio with the diamine compound used together depending on the desired degree of crosslinking. If a large amount of monofunctional quaternizing agent (tertiary amine) reacts with the alkyl halide, as described above, the swelling of the ion conductivity-imparting agent during the post-crosslinking reaction becomes large. Since the ionic conductivity imparting agent of the invention does not exhibit the effect of suppressing swelling during the crosslinking reaction, the characteristics of the present invention are not exhibited, which is not preferable. Therefore, when the tertiary amine and the diamine compound are used simultaneously or stepwise, the tertiary involved in the reaction with respect to 1 mole of the alkyl halide group of the ion conductivity-imparting agent contained in the catalyst electrode precursor layer. The amine is preferably 0.3 mol or less, and more preferably 0.2 mol or less. Moreover, it is preferable that it is 0.01 mol or more.
 ただし、ジアミン化合物、及び必要に応じて使用する3級アミンの使用量は、その合計量が、イオン伝導性付与剤前駆体が有するハロゲン化アルキル基に対して、等量モル以上とすることが好ましい。 However, the total amount of the diamine compound and the tertiary amine used as required may be equal to or greater than the equivalent mole of the halogenated alkyl group of the ion conductivity-imparting agent precursor. preferable.
 また、ジアミン化合物を含む溶液には溶媒が含まれていても良い。しかし、3級アミンを用いない、すなわちジアミン化合物単独を該反応に用いる場合には、反応中のジアミン濃度に変化が無く、反応速度に影響を与えないことから、溶媒を用いないことが好ましい。 Further, the solution containing the diamine compound may contain a solvent. However, when a tertiary amine is not used, that is, when a diamine compound alone is used in the reaction, it is preferable not to use a solvent because the diamine concentration during the reaction does not change and does not affect the reaction rate.
 用いる溶媒は触媒電極前駆体層の構成成分が溶解しない範囲で特に制限なく選択することができ、水、メタノール、エタノール、プロパノール等のアルコール、アセトン等のケトン類等が好ましく使用される。 The solvent to be used can be selected without particular limitation as long as the components of the catalyst electrode precursor layer are not dissolved, and water, alcohols such as methanol, ethanol and propanol, ketones such as acetone and the like are preferably used.
 反応温度は、15℃から40℃の温度で行うことが好ましく、反応時間は5時間から48時間であることが好ましく、生産性を高める観点からは5時間から24時間であることがより好ましい。 The reaction temperature is preferably 15 to 40 ° C., the reaction time is preferably 5 to 48 hours, and more preferably 5 to 24 hours from the viewpoint of increasing productivity.
 触媒電極前駆体層とジアミン化合物とを接触させた後は、洗浄操作により、過剰のジアミン化合物を除去すればよい。 After contacting the catalyst electrode precursor layer and the diamine compound, the excess diamine compound may be removed by a washing operation.
 さらに、対イオンがハロゲンイオンの場合には、水酸イオン、重炭酸イオン、炭酸イオン等にイオン交換することもできる。イオン交換方法は特に制限されるものではなく、公知の方法を採用することができる。対イオンの交換後は、洗浄により過剰のイオンを除去すればよい。 Furthermore, when the counter ion is a halogen ion, it can be ion-exchanged to a hydroxide ion, a bicarbonate ion, a carbonate ion, or the like. The ion exchange method is not particularly limited, and a known method can be employed. After exchanging the counter ions, excess ions may be removed by washing.
 次にイオン交換膜の前駆体上に形成される触媒電極層の製造方法について説明する。 Next, a method for producing the catalyst electrode layer formed on the precursor of the ion exchange membrane will be described.
 (陰イオン交換膜の前駆体上に形成された触媒電極前駆体層の場合)
 本発明ではハロゲン化アルキル基を有するイオン交換膜の前駆体上に触媒電極前駆体層を形成して、ジアミン化合物を含む溶液中で四級化および架橋反応を行うことにより触媒電極層を形成することもできる。
(In the case of the catalyst electrode precursor layer formed on the anion exchange membrane precursor)
In the present invention, a catalyst electrode precursor layer is formed on an ion exchange membrane precursor having a halogenated alkyl group, and the catalyst electrode layer is formed by performing quaternization and a crosslinking reaction in a solution containing a diamine compound. You can also
 上記製造方法では、触媒電極前駆体層中のイオン伝導性付与剤前駆体の持つハロゲン化アルキル基同士だけでなく、触媒電極前駆体層に含まれるイオン伝導性付与剤前駆体が有するハロゲン化アルキル基と、イオン交換膜前駆体が有するハロゲン化アルキル基との間でもジアミンによって架橋反応を生じるため、触媒電極層と陰イオン交換膜とが架橋されてなる膜-電極接合体が得られる。 In the above production method, not only the halogenated alkyl groups of the ion conductivity imparting agent precursor in the catalyst electrode precursor layer but also the alkyl halide possessed by the ion conductivity imparting agent precursor contained in the catalyst electrode precursor layer. Since a crosslinking reaction is caused by the diamine even between the group and the halogenated alkyl group of the ion exchange membrane precursor, a membrane-electrode assembly in which the catalyst electrode layer and the anion exchange membrane are crosslinked is obtained.
 ハロゲン化アルキル基を有する陰イオン交換膜の前駆体とは、公知の陰イオン交換膜の製造方法において製造される、イオン交換基が導入可能な官能基を持つイオン交換膜の前駆体を意味する。例えば、炭化水素系陰イオン交換膜の前駆体が例示され、具体的には、クロロメチルスチレン-ジビニルベンゼン共重合体、ブロモブチルスチレン-ジビニルベンゼン共重合体等を充填した膜が挙げられる。これらの陰イオン交換膜の前駆体に含まれる共重合体は、一般的には、熱可塑性樹脂製の織布、不織布、多孔膜等の基材により支持されているが、ガス透過性が低く、薄膜化が可能であることから該基材としては、ポリオクタン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン樹脂、ポリテトラフルオロオクタン、ポリ(テトラフルオロオクタンヘキサフルオロプロピレン)、ポリフッ化ビニリデン等のフッ素系樹脂等の熱可塑性樹脂製多孔膜からなる基材を用いるのが好適である。また、これら炭化水素系陰イオン交換膜の膜厚は、電気抵抗を低く抑える観点及び支持膜として必要な機械的強度を付与する観点から、通常5~200μmの厚みを有するものが好ましく、より好ましくは8~150μmの厚みを有するものである。 The precursor of an anion exchange membrane having a halogenated alkyl group means a precursor of an ion exchange membrane having a functional group into which an ion exchange group can be introduced, which is produced by a known method for producing an anion exchange membrane. . Examples include precursors of hydrocarbon-based anion exchange membranes, and specific examples include membranes filled with chloromethylstyrene-divinylbenzene copolymer, bromobutylstyrene-divinylbenzene copolymer, and the like. The copolymers contained in the precursors of these anion exchange membranes are generally supported by a base material such as a woven fabric, a nonwoven fabric, or a porous membrane made of a thermoplastic resin, but the gas permeability is low. Since the substrate can be thinned, the base material includes polyolefin resins such as polyoctane, polypropylene and polymethylpentene, and fluorine-based resins such as polytetrafluorooctane, poly (tetrafluorooctanehexafluoropropylene) and polyvinylidene fluoride. It is preferable to use a base material made of a porous film made of a thermoplastic resin such as. Further, the film thickness of these hydrocarbon-based anion exchange membranes is preferably from 5 to 200 μm, more preferably from the viewpoint of keeping electric resistance low and imparting mechanical strength necessary as a support membrane. Has a thickness of 8 to 150 μm.
 本発明において、陰イオン交換膜の前駆体上に形成された触媒電極前駆体層の四級化および架橋反応は、前記したガス拡散層もしくは陰イオン交換膜上に形成された触媒電極前駆体層の四級化および架橋反応と同一の条件で行うことが好ましい。 In the present invention, the quaternization and crosslinking reaction of the catalyst electrode precursor layer formed on the anion exchange membrane precursor is performed by the above-described gas diffusion layer or catalyst electrode precursor layer formed on the anion exchange membrane. The quaternization and crosslinking reaction are preferably performed under the same conditions.
 (膜-電極接合体)
 本発明の触媒電極層と陰イオン交換膜とが積層してなる、膜-電極接合体は、陰イオン交換膜型燃料電池や水電解装置に好適に用いることができる。上記したように、本発明の膜-電極接合体は、イオン伝導性付与剤前駆体と触媒とを含む触媒電極層形成用組成物を陰イオン交換膜、又は陰イオン交換膜の前駆体上に塗布、乾燥し、触媒電極前駆体層を形成し、ジアミン化合物と接触させて四級化および架橋反応を行うことで得ることができる。
(Membrane-electrode assembly)
The membrane-electrode assembly formed by laminating the catalyst electrode layer and the anion exchange membrane of the present invention can be suitably used for an anion exchange membrane fuel cell and a water electrolysis apparatus. As described above, in the membrane-electrode assembly of the present invention, the composition for forming a catalyst electrode layer containing an ion conductivity-imparting agent precursor and a catalyst is placed on the anion exchange membrane or the precursor of the anion exchange membrane. It can be obtained by coating, drying, forming a catalyst electrode precursor layer, contacting with a diamine compound, and performing a quaternization and a crosslinking reaction.
 また、本発明の触媒電極層とガス拡散層とが積層してなるガス拡散電極は、陰イオン交換膜型燃料電池や水電解装置に好適に用いることができる。上記したように、本発明のガス拡散電極は、イオン伝導性付与剤前駆体と触媒とを含む触媒電極層形成用組成物をガス拡散層上に塗布、乾燥し、触媒電極前駆体層を形成し、ジアミン化合物と接触させて四級化および架橋反応を行うことで得ることができる。 Further, the gas diffusion electrode formed by laminating the catalyst electrode layer and the gas diffusion layer of the present invention can be suitably used for an anion exchange membrane fuel cell and a water electrolysis device. As described above, the gas diffusion electrode of the present invention forms a catalyst electrode precursor layer by applying a catalyst electrode layer forming composition containing an ion conductivity-imparting agent precursor and a catalyst onto the gas diffusion layer and drying it. It can be obtained by contacting with a diamine compound to carry out a quaternization and a crosslinking reaction.
 (陰イオン交換膜型燃料電池)
 上記したガス拡散電極又は膜-電極接合体を用いれば、例えば図1に示す構成にて陰イオン交換膜型燃料電池を組み立てることができる。即ち、ガス拡散層上に触媒電極層を形成させた場合には、これを2枚用いて、触媒電極層が形成された側にて陰イオン交換膜を挟む。これにより図1の4、5、6、7、8が組み合わされた状態を実現できる。あるいは、陰イオン交換膜、もしくはその前駆体の両面に直接触媒電極層前駆体を形成させ、架橋、四級化の後に触媒電極層とした場合には、それをそのまま燃料電池として使用することができる。また、ガスの拡散性を良好にするためにガス拡散層として機能する支持体(カーボン製多孔質膜)を触媒電極層上に重ねることにより、燃料電池を構成することができる。
(Anion exchange membrane fuel cell)
If the gas diffusion electrode or the membrane-electrode assembly described above is used, an anion exchange membrane fuel cell can be assembled with the configuration shown in FIG. 1, for example. That is, when the catalyst electrode layer is formed on the gas diffusion layer, two of them are used to sandwich the anion exchange membrane on the side where the catalyst electrode layer is formed. Thereby, the state where 4, 5, 6, 7, and 8 in FIG. 1 are combined can be realized. Alternatively, when the catalyst electrode layer precursor is directly formed on both sides of the anion exchange membrane or its precursor and the catalyst electrode layer is formed after crosslinking and quaternization, it can be used as a fuel cell as it is. it can. In addition, a fuel cell can be configured by stacking a support (carbon porous membrane) functioning as a gas diffusion layer on the catalyst electrode layer in order to improve gas diffusibility.
 上記の陰イオン交換膜型燃料電池は、水素を燃料とした場合、燃料室側に加湿した水素ガスを、酸化剤室側に加湿した酸素又は空気を供給することにより、発電することができる。 The above-described anion exchange membrane fuel cell can generate electric power by supplying humidified hydrogen gas to the fuel chamber side and humidified oxygen or air to the oxidizer chamber side when hydrogen is used as the fuel.
 本発明の陰イオン交換膜型燃料電池は、陰イオン交換基の耐熱性が向上しており、更に、作動温度の高温化に伴う触媒電極層からのイオン伝導性付与剤の溶出を防ぐとともにイオン伝導性を高く維持できるので、良好な燃料電池の発電性能を長期間に渡って維持することが可能である。 In the anion exchange membrane fuel cell of the present invention, the heat resistance of the anion exchange group is improved, and further, the elution of the ion conductivity imparting agent from the catalyst electrode layer accompanying the increase in the operating temperature is prevented and the ion Since conductivity can be maintained high, it is possible to maintain good power generation performance of the fuel cell over a long period of time.
 (水電解装置)
 また、上記したガス拡散電極又は膜-電極接合体を用いれば、水電解装置を組み立てることができる。即ち、ガス拡散層上に触媒電極層を形成させ、架橋、四級化の後にガス拡散電極とした場合には、陰イオン交換膜の両側をガス拡散電極で挟んだものをそのまま水電解装置として使用することができる。あるいは、陰イオン交換膜、もしくはその前駆体の両面に直接触媒電極層前駆体を形成させ、架橋、四級化の後に触媒電極層とした場合には、それをそのまま水電解装置として使用することができる。また、ガスの拡散性を良好にするためにガス拡散層として機能する支持体(カーボン製多孔質体、あるいは金属製多孔質体)を触媒電極層上に重ねることにより、水電解装置を構成することができる。
(Water electrolysis device)
Further, if the gas diffusion electrode or the membrane-electrode assembly described above is used, a water electrolysis apparatus can be assembled. That is, when the catalyst electrode layer is formed on the gas diffusion layer and the gas diffusion electrode is formed after cross-linking and quaternization, the one in which both sides of the anion exchange membrane are sandwiched between the gas diffusion electrodes is used as the water electrolysis apparatus. Can be used. Alternatively, if the catalyst electrode layer precursor is formed directly on both sides of the anion exchange membrane or its precursor and the catalyst electrode layer is formed after crosslinking and quaternization, it should be used as it is as a water electrolysis device. Can do. Further, a water electrolysis apparatus is configured by stacking a support (carbon porous body or metal porous body) functioning as a gas diffusion layer on the catalyst electrode layer in order to improve gas diffusibility. be able to.
 このような水電解装置の簡略な構成例を図2に示すが、本発明の水電解装置は図2の構造に限定されるものではない。図2では、陰イオン交換膜8を使用した水電解装置20の例を示した。陰イオン交換膜8の片面には陰極側触媒電極層11、他面には陽極側触媒電極層12が設けられている。各触媒電極層の表面にはガス拡散層が設けられていてもよいが、本図では省略している。陰極側触媒電極層11および陽極側触媒電極層12は、少なくとも一方が、本発明の触媒電極層であれば良いが、好ましくは両者とも本発明の触媒電極層で形成されている。各触媒電極層は、それぞれ導線31、32を介して外部電源30に接続されている。電解槽には原水を供給する原水供給管13、14が設けられている。原水としては、電解効率の観点から希薄アルカリ水溶液が好ましく用いられ、たとえばKOHの希薄水溶液が用いられる。原水を供給して外部電源から通電することで、水の電気分解が開始する。陰極側および陽極側の反応は以下のとおりである。 FIG. 2 shows a simple configuration example of such a water electrolysis apparatus, but the water electrolysis apparatus of the present invention is not limited to the structure of FIG. In FIG. 2, the example of the water electrolysis apparatus 20 using the anion exchange membrane 8 was shown. A cathode side catalyst electrode layer 11 is provided on one side of the anion exchange membrane 8, and an anode side catalyst electrode layer 12 is provided on the other side. Although a gas diffusion layer may be provided on the surface of each catalyst electrode layer, it is omitted in this figure. At least one of the cathode side catalyst electrode layer 11 and the anode side catalyst electrode layer 12 may be the catalyst electrode layer of the present invention, but preferably both are formed of the catalyst electrode layer of the present invention. Each catalyst electrode layer is connected to an external power source 30 via conductors 31 and 32, respectively. The electrolytic cell is provided with raw water supply pipes 13 and 14 for supplying raw water. As the raw water, a dilute alkaline aqueous solution is preferably used from the viewpoint of electrolysis efficiency, and for example, a dilute aqueous solution of KOH is used. By supplying raw water and energizing from an external power source, water electrolysis starts. The reaction on the cathode side and the anode side is as follows.
(陰極側)2HO+2e → H+2OH
(陽極側)2OH → 1/2O+HO+2e
(Cathode side) 2H 2 O + 2e → H 2 + 2OH
(Anode side) 2OH → 1 / 2O 2 + H 2 O + 2e
 陰極側では水の電気分解により水素および水酸化物イオンが発生する。水酸化物イオンは積層イオン交換膜8を経て陽極側に到達し、酸素、水および電子を生成する。陰極側で発生した水素はガス回収管15を経て回収され、陽極側で発生した酸素はガス回収管16を経て回収される。 On the cathode side, hydrogen and hydroxide ions are generated by electrolysis of water. The hydroxide ions reach the anode side through the laminated ion exchange membrane 8, and generate oxygen, water, and electrons. Hydrogen generated on the cathode side is recovered through the gas recovery tube 15, and oxygen generated on the anode side is recovered through the gas recovery tube 16.
 本発明の水電解装置は、陰イオン交換基の耐熱性が向上しており、更に、作動温度の高温化に伴う触媒電極層からのイオン伝導性付与剤の溶出を防ぐとともにイオン伝導性を高く維持できるので、高い電解効率での運転を長期間に渡って維持することが可能である。 In the water electrolysis apparatus of the present invention, the heat resistance of the anion exchange group is improved, and further, the elution of the ion conductivity-imparting agent from the catalyst electrode layer accompanying the increase in the operating temperature is prevented and the ion conductivity is increased. Therefore, it is possible to maintain the operation with high electrolytic efficiency over a long period of time.
 以下に実施例を用いて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、実施例及び比較例に示す陰イオン交換体及び燃料電池の特性は、以下の方法により測定した値を示す。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples. In addition, the characteristic of the anion exchanger shown in an Example and a comparative example and a fuel cell shows the value measured with the following method.
 (陰イオン交換体のイオン交換容量)
 四級化・架橋反応前のスチレン系イオン交換体の前駆体が溶解した溶液(濃度5.0質量%、溶液量2.5g)をポリテトラフルオロエチレン製のシャーレ上にキャストし、キャストフィルムを作製した。キャストフィルムを、ジアミンを含む溶液と反応させてイオン交換基を導入した。得られた陰イオン交換体のキャストフィルムをイオン交換水でよく洗浄した後にヴィスキンチューブ内に、イオン交換水と共に詰め込み、両端を縛った。なおヴィスキングチューブは、セルロース製であり、分画分子量は8,000であり、50℃で3時間減圧乾燥させた後の質量(Dv(g))を予め測定した。キャストフィルムを収容したヴィスキングチューブを0.5mol/L-HCl水溶液(50mL)に30分間浸漬する操作を3回繰り返し、中のキャストフィルムを塩化物イオン型とした。更にイオン交換水(50mL)に10分浸漬させ洗浄した(10回)。これを0.2mol/L-NaNO水溶液(50mL)に30分以上浸漬させ、硝酸イオン型に置換させ遊離した塩化物イオンを抽出した(4回)。更にイオン交換水(50mL)に30分以上浸漬して抽出した塩化物イオンを回収した(2回)。これら塩化物イオンを抽出した溶液を全て集め、硝酸銀水溶液を用いて電位差滴定装置(COMTITE-900、平沼産業株式会社製)で定量した(Amol)。次に、滴定後の膜を0.5mol/L-NaCl水溶液(50g)に30分以上浸漬し(3回)、イオン交換水で洗浄液に塩化物イオンが検出されなくなるまで十分に透析を行った後にチューブを取り出し、50℃の乾燥機に15時間保持してチューブ内の水分を除いた後、50℃で3時間減圧乾燥させその質量を測定した(Dt(g))。上記測定値に基づいて、イオン交換容量を次式により求めた。
 イオン交換容量=A×1000/(Dt-Dv)[mmol/g-乾燥質量]
(Ion exchange capacity of anion exchanger)
A solution (concentration 5.0 mass%, solution amount 2.5 g) in which the precursor of the styrene ion exchanger before the quaternization / crosslinking reaction was dissolved was cast on a Petri-tetrafluoroethylene petri dish, Produced. The cast film was reacted with a solution containing diamine to introduce ion exchange groups. The anion exchanger cast film thus obtained was thoroughly washed with ion-exchanged water, and then packed in a Vyskin tube together with ion-exchanged water, and both ends were tied up. The Visking tube was made of cellulose, the molecular weight cut off was 8,000, and the mass (Dv (g)) after drying under reduced pressure at 50 ° C. for 3 hours was measured in advance. The operation of immersing the Visking tube containing the cast film in a 0.5 mol / L-HCl aqueous solution (50 mL) for 30 minutes was repeated three times, and the cast film inside was made a chloride ion type. Furthermore, it was immersed in ion exchange water (50 mL) for 10 minutes and washed (10 times). This was immersed in a 0.2 mol / L-NaNO 3 aqueous solution (50 mL) for 30 minutes or more, substituted with a nitrate ion type, and extracted free chloride ions (four times). Further, chloride ions extracted by immersion in ion-exchanged water (50 mL) for 30 minutes or more were collected (twice). All the solutions from which these chloride ions were extracted were collected and quantified with a potentiometric titrator (COMMITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) using an aqueous silver nitrate solution (Amol). Next, the membrane after titration was immersed in a 0.5 mol / L-NaCl aqueous solution (50 g) for 30 minutes or more (three times), and sufficiently dialyzed with ion-exchanged water until chloride ions were not detected in the washing solution. Thereafter, the tube was taken out, held in a dryer at 50 ° C. for 15 hours to remove moisture in the tube, and then dried under reduced pressure at 50 ° C. for 3 hours to measure its mass (Dt (g)). Based on the measured value, the ion exchange capacity was determined by the following equation.
Ion exchange capacity = A × 1000 / (Dt−Dv) [mmol / g−dry mass]
 (陰イオン交換体中の式(1)で示す架橋構造を有する構成単位の含有率の決定方法)
 まず、ジアミン化合物のみで架橋、四級化する場合には、固体NMRにより陰イオン交換体中に含まれる式(1)で示す構成単位の量を定量することができる。
(Method for determining the content of the structural unit having a crosslinked structure represented by formula (1) in the anion exchanger)
First, in the case of crosslinking and quaternization only with a diamine compound, the amount of the structural unit represented by the formula (1) contained in the anion exchanger can be quantified by solid NMR.
 ジアミン化合物のみ用いて作製したキャストフィルムから得られたH-NMRスペクトルより式(1)で示す構成単位のピーク面積と式(3)で示す構成単位のピーク面積、式(4)で示す構成単位のピーク面積のそれぞれの比を求め、各構成単位の存在比から式(1)含有率を算出した。得られた式(1)の含有率を表1に併せて示した。 From the 1 H-NMR spectrum obtained from the cast film prepared using only the diamine compound, the peak area of the structural unit represented by formula (1), the peak area of the structural unit represented by formula (3), and the structure represented by formula (4) Each ratio of the peak area of the unit was obtained, and the content rate of the formula (1) was calculated from the abundance ratio of each structural unit. The content of the obtained formula (1) is also shown in Table 1.
 ジアミン化合物と3級アミンを併用する場合には、分子内に13C同位体を含む3級アミンを使用し、13C-NMRスペクトルにより含有される3級アミンの量を定量することができる。 When a diamine compound and a tertiary amine are used in combination, a tertiary amine containing a 13 C isotope in the molecule can be used, and the amount of the tertiary amine contained by the 13 C-NMR spectrum can be quantified.
 トリメチルアミン(13C同位体)のみを用いて作製したキャストフィルムから得られたトリメチルアミンの13C-NMRスペクトルのピーク面積を1とし、任意の割合で混合したジアミン化合物とトリメチルアミンの混合液で架橋、四級化したキャストフィルムを13C-NMRスペクトルで測定した時に得られたピーク面積のトリメチルアミンのピーク面積に対する割合をPとし、架橋度=1-Pを算出した(他の炭素原子に由来する13Cは微量であるため、ここでは0とした)。得られた架橋度に基づいて式(1)の含有率を次式より求めた。
含有率=架橋度×式(1)の分子量/[架橋度×式(1)の分子量+P×式(2)の分子量]
 得られた式(1)の構造の含有率を表1に併せて示した。
The peak area of the 13 C-NMR spectrum of trimethylamine obtained from a cast film prepared using only trimethylamine ( 13 C isotope) was set to 1, and the mixture was crosslinked with a mixed solution of diamine compound and trimethylamine mixed at an arbitrary ratio. The ratio of the peak area obtained when the graded cast film was measured with a 13 C-NMR spectrum to the peak area of trimethylamine was P, and the degree of crosslinking = 1-P was calculated ( 13 C derived from other carbon atoms). Is 0 because it is a very small amount). Based on the obtained degree of crosslinking, the content of formula (1) was determined from the following formula.
Content = crosslinking degree × molecular weight of formula (1) / [crosslinking degree × molecular weight of formula (1) + P × molecular weight of formula (2)]
The content of the structure of the obtained formula (1) is also shown in Table 1.
 (陰イオン交換体の耐熱性)
 対イオンを水酸化物イオン型にした後の陰イオン交換体を、ポリテトラフルオロエチレン製容器に入れたものを二つ用意し、それぞれ50℃または90℃のオーブン中、イオン交換水中で500時間保持した後、それぞれの陰イオン交換容量を測定した。処理前の陰イオン交換体の陰イオン交換容量に対する処理後の陰イオン交換体の陰イオン交換容量の割合から陰イオン交換容量保持率を求め、陰イオン交換基の耐熱性として評価した。
(Heat resistance of anion exchanger)
Prepare two anion exchangers in a polytetrafluoroethylene container after converting the counter ion to hydroxide ion type, in an oven at 50 ° C or 90 ° C for 500 hours in ion-exchanged water, respectively. After holding, each anion exchange capacity was measured. The anion exchange capacity retention was determined from the ratio of the anion exchange capacity of the anion exchanger after treatment to the anion exchange capacity of the anion exchanger before treatment, and evaluated as the heat resistance of the anion exchange group.
 (陰イオン交換体の含水率の測定方法)
 上記と同様の方法で作製した、膜厚が50~70μm程度のキャストフィルムを、磁気浮遊式天秤を備えた恒温恒湿槽を有する測定装置(日本ベル社製、「MSB-AD-V-FC」)内にセットした。まず、50℃で3時間減圧乾燥した後の膜質量(Ddry(g))を測定した。次いで、恒温槽の温度を40℃として、槽内の相対湿度を90%に保持し、膜の質量変化が0.02%/60秒以下となった時点で膜質量(D(g))を測定した。上記測定値に基づいて、含水率を次式により求めた。
 相対湿度90%の含水率=((D-Ddry)/Ddry)×100[%]
(Measurement method of moisture content of anion exchanger)
A measuring device (“MSB-AD-V-FC”, manufactured by Nippon Bell Co., Ltd.) comprising a cast film having a film thickness of about 50 to 70 μm produced by the same method as described above and having a thermo-hygrostat equipped with a magnetic floating balance. )). First, the film mass (Ddry (g)) after drying under reduced pressure at 50 ° C. for 3 hours was measured. Next, the temperature of the thermostatic bath is set to 40 ° C., the relative humidity in the bath is maintained at 90%, and when the mass change of the membrane becomes 0.02% / 60 seconds or less, the membrane mass (D (g)) is set. It was measured. Based on the measured value, the moisture content was determined by the following equation.
Water content at 90% relative humidity = ((D−Ddry) / Ddry) × 100 [%]
 (水への溶解性の測定方法)
 陰イオン交換体10gを80℃のイオン交換水100ml中に、マグネチックスターラーを用いて撹拌しながら1時間浸漬し、減圧濾過によりイオン交換水中から、溶解していない陰イオン交換体を取り除いた。残ったイオン交換水をナス型フラスコに入れ、減圧濃縮した後、50℃で3時間真空乾燥を行い、残渣の重量を測定した。上記測定値に基づいて、陰イオン交換体が水に溶解した重量%を算出し、その値が0.5重量%以下であれば耐水性が良好であると評価した。
(Method for measuring solubility in water)
10 g of the anion exchanger was immersed in 100 ml of ion exchange water at 80 ° C. for 1 hour with stirring using a magnetic stirrer, and the undissolved anion exchanger was removed from the ion exchange water by vacuum filtration. The remaining ion-exchanged water was put into an eggplant-shaped flask and concentrated under reduced pressure, followed by vacuum drying at 50 ° C. for 3 hours, and the weight of the residue was measured. Based on the above measured value, the weight% of the anion exchanger dissolved in water was calculated, and if the value was 0.5% by weight or less, the water resistance was evaluated as good.
 (燃料電池セルの組み立て方法)
 触媒電極層をガス拡散層上に形成して、ガス拡散電極を形成した場合には、23mm角(約5cm)に切断したガス拡散電極を、イオン交換膜(陰イオン交換容量が1.8mmol/g-乾燥質量、25℃における含水率が25質量%、乾燥膜厚は28μm、外寸40mm角)の両面にガス拡散電極の触媒電極層が接するようにして1枚ずつ設置し、これを図1に示す燃料電池セルに組み込んだ。また、触媒電極層をイオン交換膜もしくはその前駆体上に形成した場合、すなわち、膜-電極接合体を形成した場合には、23mm角(約5cm)に切断したガス拡散層(東レ株式会社製 HGP-H-060、厚みは200μm)を2枚用いて、上記膜-電極接合体の両面にある触媒電極層に一枚ずつ積層し、図1に示す燃料電池セルに組み込んだ。
(Fuel cell assembly method)
When the catalyst electrode layer is formed on the gas diffusion layer and the gas diffusion electrode is formed, the gas diffusion electrode cut into 23 mm square (about 5 cm 2 ) is converted into an ion exchange membrane (anion exchange capacity of 1.8 mmol). / G-dry mass, water content at 25 ° C. is 25% by mass, dry film thickness is 28 μm, outer dimension 40 mm square), and the gas diffusion electrode catalyst electrode layers are placed one by one, The fuel cell shown in FIG. 1 was incorporated. When the catalyst electrode layer is formed on an ion exchange membrane or a precursor thereof, that is, when a membrane-electrode assembly is formed, a gas diffusion layer (Toray Industries, Inc.) cut into 23 mm square (about 5 cm 2 ) Two sheets of HGP-H-060 (thickness: 200 μm) were used and laminated one by one on the catalyst electrode layers on both sides of the membrane-electrode assembly, and assembled into the fuel cell shown in FIG.
 (発電耐久試験方法)
 燃料ガスとして、セル温度に対して90%RHに加湿した水素 100ml/minを、酸化剤ガスとしてセル温度に対して90%RHに加湿した空気 200ml/minを、燃料電池セルに供給した。燃料電池セルの温度は50℃または90℃とした。このセルから500mAcm-2の電流を取り出したときのセル電圧値(V)を測定した。また、この状態における100時間後の電圧値を測定した。
(Power generation durability test method)
As fuel gas, 100 ml / min of hydrogen humidified to 90% RH with respect to the cell temperature and 200 ml / min of air humidified to 90% RH with respect to the cell temperature as oxidant gas were supplied to the fuel cell. The temperature of the fuel cell was 50 ° C. or 90 ° C. The cell voltage value (V) when a current of 500 mAcm −2 was taken out from this cell was measured. Moreover, the voltage value after 100 hours in this state was measured.
 実施例1
 ブロモブチルスチレン30gをトルエン溶媒中、2,2’アゾビスイソブチロニトリルによりラジカル重合を行い、ポリブロモブチルスチレンを得た(数平均分子量80,000)。得られたポリブロモブチルスチレンのキャストフィルムを作製し、50gのジアミン化合物(N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン)に浸漬した。24時間後に取り出し、洗浄することにより陰イオン交換体のキャストフィルムを得た。
Example 1
30 g of bromobutylstyrene was subjected to radical polymerization with 2,2′azobisisobutyronitrile in a toluene solvent to obtain polybromobutylstyrene (number average molecular weight 80,000). A cast film of the obtained polybromobutylstyrene was prepared and immersed in 50 g of a diamine compound (N, N, N ′, N′-tetramethyl-1,6-hexanediamine). The cast film of the anion exchanger was obtained by taking out after 24 hours, and wash | cleaning.
 得られた陰イオン交換体のキャストフィルムの式(1)で示される架橋構造を有する構成単位の含有率、溶解性試験結果、耐熱性試験結果、イオン交換容量及び含水率を表1に示した。 Table 1 shows the content, the solubility test result, the heat resistance test result, the ion exchange capacity, and the moisture content of the structural unit having the crosslinked structure represented by the formula (1) of the cast film of the obtained anion exchanger. .
 次にポリブロモブチルスチレンを酢酸エチルに溶解し、5wt%の溶液を調製した。この溶液2gに触媒(一次粒径30~50nmのカーボン粒子状に、粒径2~10nmの白金粒子が担持されたもの)1gを加えて分散させ、触媒電極層形成用組成物を調製した。これを、ガス拡散層(SGLカーボン社製カーボンペーパー、GDL25BC、厚み190μm)の上に23mm四方(約5cm)のサイズで白金が0.5mgcm-2となるように塗布後、乾燥させ、ガス拡散層上に触媒電極前駆体層を得た。該触媒電極前駆体層を、20gのジアミン化合物(N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン)に浸漬した。24時間後に取り出し、洗浄することにより、ガス拡散電極を得た。得られたガス拡散電極は、1mol/Lの重炭酸カリウム水溶液中に15分間ずつ5回浸漬し、対イオンを重炭酸イオンに交換して、イオン交換水により洗浄した後、室温で24時間乾燥させた。乾燥後のガス拡散電極において、触媒電極層の厚みは、5μmであった。得られたガス拡散電極を用い、発電耐久試験を実施した。結果を表2に示した。 Next, polybromobutylstyrene was dissolved in ethyl acetate to prepare a 5 wt% solution. To 2 g of this solution, 1 g of a catalyst (a carbon particle having a primary particle size of 30 to 50 nm and platinum particles having a particle size of 2 to 10 nm supported) was added and dispersed to prepare a composition for forming a catalyst electrode layer. This was applied on a gas diffusion layer (carbon paper manufactured by SGL Carbon, GDL25BC, thickness 190 μm) in a size of 23 mm square (about 5 cm 2 ) so that platinum would be 0.5 mgcm −2 , dried, and then dried. A catalyst electrode precursor layer was obtained on the diffusion layer. The catalyst electrode precursor layer was immersed in 20 g of a diamine compound (N, N, N ′, N′-tetramethyl-1,6-hexanediamine). The gas diffusion electrode was obtained by removing after 24 hours and washing. The obtained gas diffusion electrode was immersed in a 1 mol / L potassium bicarbonate aqueous solution 5 times for 15 minutes, exchanged counter ions with bicarbonate ions, washed with ion exchange water, and then dried at room temperature for 24 hours. I let you. In the gas diffusion electrode after drying, the thickness of the catalyst electrode layer was 5 μm. A power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
 実施例2
 四級化・架橋反応の試薬としてトリメチルアミンとN,N,N’,N’-テトラメチル-1,6-ヘキサンジアミンの2:8の混合モル比の溶液を用いる他は実施例1と同様の操作を行い、陰イオン交換体のキャストフィルムおよびガス拡散電極を調製した。得られた陰イオン交換体のキャストフィルムの式(1)で示される架橋構造を有する構成単位の含有率、溶解性試験結果、イオン交換容量及び含水率を表1に示した。また、得られたガス拡散電極を用い、発電耐久試験を実施した。その結果を表2に示した。
Example 2
The same as in Example 1 except that a solution having a molar ratio of 2: 8 of trimethylamine and N, N, N ′, N′-tetramethyl-1,6-hexanediamine was used as a reagent for quaternization / crosslinking reaction. The operation was carried out to prepare an anion exchanger cast film and a gas diffusion electrode. Table 1 shows the content, the solubility test result, the ion exchange capacity, and the water content of the structural unit having the crosslinked structure represented by the formula (1) of the cast film of the obtained anion exchanger. In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
 実施例3
 ポリブロモブチルスチレンの代わりにポリブロモプロピルスチレンを用いた以外は実施例1と同様の操作を行い、陰イオン交換体のキャストフィルムおよびガス拡散電極を調製した。得られた陰イオン交換体のキャストフィルムの式(1)で示される架橋構造を有する構成単位の含有率、溶解性試験結果、耐熱性試験結果、イオン交換容量及び含水率を表1に示した。また、得られたガス拡散電極を用い、発電耐久試験を実施した。その結果を表2に示した。
Example 3
An anion exchanger cast film and a gas diffusion electrode were prepared in the same manner as in Example 1 except that polybromopropylstyrene was used instead of polybromobutylstyrene. Table 1 shows the content, the solubility test result, the heat resistance test result, the ion exchange capacity, and the moisture content of the structural unit having the crosslinked structure represented by the formula (1) of the cast film of the obtained anion exchanger. . In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
 比較例1
 ポリブロモブチルスチレンの代わりに市販のポリクロロメチルスチレン(数平均分子量55,000)を用いた以外は実施例1と同様の操作を行い、陰イオン交換体のキャストフィルムおよびガス拡散電極を調製した。得られた陰イオン交換体のキャストフィルムの溶解性試験結果、イオン交換容量及び含水率を表1に示した。また、得られたガス拡散電極を用い、発電耐久試験を実施した。その結果を表2に示した。
Comparative Example 1
An anion exchanger cast film and a gas diffusion electrode were prepared in the same manner as in Example 1 except that commercially available polychloromethylstyrene (number average molecular weight 55,000) was used instead of polybromobutylstyrene. . Table 1 shows the solubility test results, ion exchange capacity, and moisture content of the cast film of the obtained anion exchanger. In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
 比較例2
 ポリブロモブチルスチレンの代わりに市販のポリクロロメチルスチレンを用いた以外は実施例2と同様の操作を行い、陰イオン交換体のキャストフィルムおよびガス拡散電極を調製した。得られた陰イオン交換体のキャストフィルムの溶解性試験結果、耐熱性試験結果、イオン交換容量及び含水率を表1に示した。また、得られたガス拡散電極を用い、発電耐久試験を実施した。その結果を表2に示した。
Comparative Example 2
An anion exchanger cast film and a gas diffusion electrode were prepared in the same manner as in Example 2 except that commercially available polychloromethylstyrene was used instead of polybromobutylstyrene. Table 1 shows the solubility test results, heat resistance test results, ion exchange capacity and water content of the cast film of the obtained anion exchanger. In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
 比較例3
 ブロモブチルスチレンに98.25重量部にジビニルベンゼン(純度57%)1.75重量部、アゾビスブチロニトリル1.0重量部を加え、窒素雰囲気下、70℃で24時間保持することで架橋ポリマーを得た。得られた架橋ポリマーをジオキサン中に懸濁させ、次いで、ブロモ基に対して3モル当量のトリメチルアミンを滴下し、懸濁液を50℃で10時間反応させた。得られた四級化架橋ポリマーをイオン交換水でよく洗浄した。得られた四級化架橋ポリマーの溶解性試験結果、耐熱性試験結果、イオン交換容量測定および含水率測定を実施した。その結果を表1に示した。また、得られた四級化架橋ポリマーとPt/C触媒をプロパノール溶媒中で分散させ、触媒電極層形成用組成物を調製した。これを、ガス拡散層上に塗布後、乾燥させ、ガス拡散電極を得た。得られたガス拡散電極を用い、発電耐久試験を実施した。その結果を表2に示した。
Comparative Example 3
Crosslink by adding 1.75 parts by weight of divinylbenzene (purity 57%) and 1.0 part by weight of azobisbutyronitrile to 98.25 parts by weight of bromobutylstyrene and maintaining at 70 ° C. for 24 hours in a nitrogen atmosphere. A polymer was obtained. The obtained crosslinked polymer was suspended in dioxane, then, 3 molar equivalents of trimethylamine with respect to the bromo group were added dropwise, and the suspension was reacted at 50 ° C. for 10 hours. The resulting quaternized crosslinked polymer was washed thoroughly with ion exchange water. The resulting quaternized crosslinked polymer was subjected to solubility test results, heat resistance test results, ion exchange capacity measurement, and moisture content measurement. The results are shown in Table 1. Further, the obtained quaternized crosslinked polymer and Pt / C catalyst were dispersed in a propanol solvent to prepare a composition for forming a catalyst electrode layer. This was applied onto the gas diffusion layer and then dried to obtain a gas diffusion electrode. A power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
 比較例4
 ブロモブチルスチレン82.5重量部にジビニルベンゼン(純度57%)17.5重量部、アゾビスブチロニトリル1.0重量部を加えて架橋ポリマーを調製する以外は比較例3と同様の操作を行い、四級化架橋ポリマーおよびガス拡散電極を調製した。得られた四級化架橋ポリマーの溶解性試験結果、耐熱性試験結果、イオン交換容量と含水率を表1に示した。また、得られたガス拡散電極を用い、発電耐久試験を実施した。その結果を表2に示した。
 なお、表中のジビニルベンゼン架橋度とは、仕込み段階における全モノマー重量に占めるジビニルベンゼンの割合(重量%)である。
Comparative Example 4
The same operation as in Comparative Example 3 was performed except that 17.5 parts by weight of divinylbenzene (purity 57%) and 1.0 part by weight of azobisbutyronitrile were added to 82.5 parts by weight of bromobutylstyrene to prepare a crosslinked polymer. And a quaternized crosslinked polymer and a gas diffusion electrode were prepared. Table 1 shows the solubility test results, heat resistance test results, ion exchange capacity and water content of the resulting quaternized crosslinked polymer. In addition, a power generation durability test was performed using the obtained gas diffusion electrode. The results are shown in Table 2.
In addition, the divinylbenzene crosslinking degree in a table | surface is the ratio (weight%) of divinylbenzene to the total monomer weight in a preparation stage.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 これら実施例1~3の結果から以下のことが確認された。 From the results of Examples 1 to 3, the following was confirmed.
 先ず、イオン交換基と芳香環との間のアルキル基の鎖長を伸ばしたスチレン系重合体を、ジアミン化合物を含む溶液中で四級化および架橋することにより、ジアミン化合物で架橋された架橋構造を有するイオン伝導性付与剤を含む触媒電極層を形成可能となり、優れた燃料電池出力特性が得られることが確認された。 First, a styrenic polymer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is extended is quaternized and crosslinked in a solution containing the diamine compound, so that the crosslinked structure is crosslinked with the diamine compound. It was confirmed that it is possible to form a catalyst electrode layer containing an ion conductivity-imparting agent having an excellent fuel cell output characteristic.
 比較例1のように、イオン交換基と芳香環との間のアルキル基の鎖長が短いポリスチレンを用いた場合には、イオン交換容量および含水率の結果から分かるように、ジアミン化合物による架橋・四級化がほとんど進行せず、非常に疎水的で低いイオン伝導性を示すようになってしまう。その結果、燃料電池出力特性が非常に制限されたものとなる。また、キャスト膜の物性評価の結果は、触媒電極層中のイオン伝導性付与剤前駆体の分散状態が悪く、該イオン伝導性付与剤前駆体が固まって存在する場合には、架橋反応が進行せずイオン伝導性が発現しないことを意味している。実施例1と比較例1の結果は、イオン交換基と芳香環との間のアルキル基の鎖長を伸ばしたスチレン系重合体は、触媒電極層を作製する際の樹脂の分散性が悪くても良好な電池特性を発現するに十分なイオン伝導性を有することを示唆している。また、比較例1ではイオン交換基と芳香環との間のアルキル鎖長が短いために、イオン交換体の耐熱性が低く、燃料電池の作動温度50℃の場合に比べて、作動温度90℃における発電耐久性は低いものとなっている。 As in Comparative Example 1, when polystyrene having a short chain length of the alkyl group between the ion exchange group and the aromatic ring was used, as can be seen from the results of the ion exchange capacity and water content, Quaternization hardly proceeds, and it becomes very hydrophobic and shows low ionic conductivity. As a result, the fuel cell output characteristics are very limited. Moreover, as a result of the physical property evaluation of the cast film, the dispersion state of the ion conductivity-imparting agent precursor in the catalyst electrode layer is poor, and when the ion conductivity-imparting agent precursor is solidified, the crosslinking reaction proceeds. This means that the ionic conductivity is not expressed. The results of Example 1 and Comparative Example 1 show that the styrenic polymer in which the chain length of the alkyl group between the ion exchange group and the aromatic ring is extended has a poor resin dispersibility when the catalyst electrode layer is produced. This also suggests that it has sufficient ionic conductivity to exhibit good battery characteristics. Further, in Comparative Example 1, since the alkyl chain length between the ion exchange group and the aromatic ring is short, the heat resistance of the ion exchanger is low, and the operating temperature is 90 ° C. compared to the case where the operating temperature of the fuel cell is 50 ° C. The power generation durability is low.
 比較例2のように、イオン交換基と芳香環との間のアルキル基の鎖長が短いポリスチレンを用いた場合には、3級アミンとジアミン化合物を併用することによって、ある程度架橋・四級化が進行しており、50℃における陰イオン交換体の耐熱性および発電試験の結果は比較的良好である。しかし、イオン交換基と芳香環との間のアルキル鎖長が短いため、90℃における陰イオン交換体の耐熱性および発電試験結果は低い値となっている。 As in Comparative Example 2, when polystyrene having a short chain length of the alkyl group between the ion exchange group and the aromatic ring is used, by using a tertiary amine and a diamine compound in combination, crosslinking and quaternization to some extent are possible. The heat resistance of the anion exchanger at 50 ° C. and the results of the power generation test are relatively good. However, since the alkyl chain length between the ion exchange group and the aromatic ring is short, the heat resistance and power generation test results of the anion exchanger at 90 ° C. are low values.
 比較例3,4のように架橋部位にイオン交換能をもたない架橋の場合、架橋度が低い比較例3では、イオン伝導性付与剤の水への溶解性が上がり、イオン伝導性付与剤の溶出に伴い触媒電極層の性能が低下し、燃料電池出力特性は制限されたものになっている。比較例4のように架橋度を上げると、イオン伝導性付与剤の水への溶解性は改善されるが、架橋比率を上げたことによるイオン伝導性の低下により、触媒電極層の性能が低下し、発電初期の電圧値が低く、燃料電池出力特性は制限されたものになっている。また、陰イオン交換体の耐久性試験では90℃においても良好な結果が得られているにも関わらず、90℃における発電試験では、100時間後の電圧が低下していることから、水に浸漬した条件では交換基と芳香環との間のアルキル鎖長を伸ばしたことによる高耐熱性の効果が得られるが、発電条件では、疎水的な架橋部位を入れることにより乾燥が進行し、熱分解反応が促進されることが確認された。 In the case of the crosslinking having no ion exchange ability at the crosslinking site as in Comparative Examples 3 and 4, in Comparative Example 3 having a low degree of crosslinking, the solubility of the ion conductivity-imparting agent in water increases, and the ion conductivity-imparting agent With the elution of the catalyst, the performance of the catalyst electrode layer decreases, and the fuel cell output characteristics are limited. Increasing the degree of crosslinking as in Comparative Example 4 improves the solubility of the ion conductivity-imparting agent in water, but the performance of the catalyst electrode layer decreases due to a decrease in ion conductivity due to an increased crosslinking ratio. However, the voltage value at the initial stage of power generation is low, and the fuel cell output characteristics are limited. In addition, in the durability test of the anion exchanger, good results were obtained even at 90 ° C., but in the power generation test at 90 ° C., the voltage after 100 hours decreased, Under the immersed condition, the effect of high heat resistance can be obtained by extending the alkyl chain length between the exchange group and the aromatic ring. However, under the power generation condition, drying proceeds by adding a hydrophobic cross-linking site, and heat is generated. It was confirmed that the decomposition reaction was promoted.
 本発明の陰イオン交換体を用いた触媒電極層を形成する場合には、高耐熱性を有し、ジアミン化合物による架橋構造の導入とイオン交換能付与により、優れた触媒電極層の性能および優れた燃料電池出力特性を得ることができる。
When forming a catalyst electrode layer using the anion exchanger of the present invention, it has high heat resistance, and by introducing a cross-linked structure with a diamine compound and imparting ion exchange capacity, excellent performance and excellent catalyst electrode layer performance The fuel cell output characteristics can be obtained.
1;電池隔壁
2;燃料流通孔
3;酸化剤ガス流通孔
4;燃料室側ガス拡散層
5;燃料室側触媒電極層
6;酸化剤室側ガス拡散層
7;酸化剤室側触媒電極層
8;固体高分子電解質膜(陰イオン交換膜)
9;燃料室
10;酸化剤室
11;陰極側触媒電極層
12;陽極側触媒電極層
13、14;原水供給管
15、16;ガス回収管
20;電解槽
30;外部電源
31、32;導線
DESCRIPTION OF SYMBOLS 1; Battery partition 2; Fuel flow hole 3; Oxidant gas flow hole 4; Fuel chamber side gas diffusion layer 5; Fuel chamber side catalyst electrode layer 6; Oxidant chamber side gas diffusion layer 7; 8; Solid polymer electrolyte membrane (anion exchange membrane)
9; Fuel chamber 10; Oxidant chamber 11; Cathode side catalyst electrode layer 12; Anode side catalyst electrode layers 13 and 14; Raw water supply pipes 15 and 16; Gas recovery pipe 20;

Claims (8)

  1.  下記式(1)で示される架橋構造を有する構成単位
    Figure JPOXMLDOC01-appb-C000001
    (ただし、aは3~10の整数であり、bは2~8の整数であり、R、R、RおよびRは、それぞれ独立にメチル基またはエチル基から選択される。Xは、OH、HCO 、CO 2-、Cl、Br、Iからなる群から選択される一種以上の対イオンである。)を含有する陰イオン交換体。
    A structural unit having a crosslinked structure represented by the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein a is an integer of 3 to 10, b is an integer of 2 to 8, and R 1 , R 2 , R 3 and R 4 are each independently selected from a methyl group or an ethyl group. X Is one or more counter ions selected from the group consisting of OH , HCO 3 , CO 3 2− , Cl , Br and I ).
  2.  式(1)で示される構成単位の含有率が70質量%以上である、請求項1に記載の陰イオン交換体。 The anion exchanger according to claim 1, wherein the content of the structural unit represented by the formula (1) is 70% by mass or more.
  3.  請求項2に記載の陰イオン交換体からなるイオン伝導性付与剤。 An ion conductivity-imparting agent comprising the anion exchanger according to claim 2.
  4.  請求項3に記載のイオン伝導性付与剤及び電極触媒を含有する触媒電極層。 A catalyst electrode layer containing the ion conductivity-imparting agent according to claim 3 and an electrode catalyst.
  5.  請求項4に記載の触媒電極層を含んでなる膜-電極接合体。 A membrane-electrode assembly comprising the catalyst electrode layer according to claim 4.
  6.  請求項5に記載の膜-電極接合体を含んでなる陰イオン交換膜型燃料電池 An anion exchange membrane fuel cell comprising the membrane-electrode assembly according to claim 5.
  7.  請求項5に記載の膜-電極接合体を含んでなる水電解装置。 A water electrolysis apparatus comprising the membrane-electrode assembly according to claim 5.
  8.  芳香環にハロゲン化アルキル基を有するスチレン系重合体と電極触媒とを含む触媒電極層形成用組成物をガス拡散層、陰イオン交換膜、又は陰イオン交換膜の前駆体に塗布、乾燥し、触媒電極前駆体層を形成した後、ジアミン化合物と接触させて芳香環にハロゲン化アルキル基を有するスチレン系重合体の四級化及び架橋反応を行うことにより請求項4に記載の触媒電極層を形成することを特徴とする触媒電極層の製造方法。 A composition for forming a catalyst electrode layer containing a styrenic polymer having an alkyl halide group on an aromatic ring and an electrode catalyst is applied to a gas diffusion layer, an anion exchange membrane, or a precursor of an anion exchange membrane, and dried. After forming the catalyst electrode precursor layer, the catalyst electrode layer according to claim 4 is subjected to quaternization and crosslinking reaction of a styrene polymer having a halogenated alkyl group on an aromatic ring by contacting with a diamine compound. A method for producing a catalyst electrode layer, comprising: forming a catalyst electrode layer.
PCT/JP2016/072701 2015-08-04 2016-08-02 Anion exchanger, ion conductivity-imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis apparatus WO2017022775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017533095A JPWO2017022775A1 (en) 2015-08-04 2016-08-02 Anion exchanger, ion conductivity imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015153997 2015-08-04
JP2015-153997 2015-08-04

Publications (1)

Publication Number Publication Date
WO2017022775A1 true WO2017022775A1 (en) 2017-02-09

Family

ID=57943097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072701 WO2017022775A1 (en) 2015-08-04 2016-08-02 Anion exchanger, ion conductivity-imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis apparatus

Country Status (3)

Country Link
JP (1) JPWO2017022775A1 (en)
TW (1) TW201716232A (en)
WO (1) WO2017022775A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793235A (en) * 2020-06-08 2020-10-20 金华市金秋环保水处理有限公司 Preparation method of cation exchange membrane with IPN structure
CN114391052A (en) * 2019-06-27 2022-04-22 因纳普特公司 Hydrogen production plant
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
WO2023190590A1 (en) * 2022-03-28 2023-10-05 学校法人加計学園 Anion exchange resin, anion exchange membrane, anion-exchange-group-containing monomer, and quaternary-imidazole-group-containing monomer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864970A (en) * 2022-06-01 2022-08-05 合肥工业大学 Preparation method of low-interface transmission impedance membrane electrode for alkaline anion exchange membrane fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337190A (en) * 1976-08-19 1978-04-06 Allied Chem Manufacture of novel amphoteric membranes
JP2000212306A (en) * 1999-01-21 2000-08-02 Mitsubishi Chemicals Corp Anion exchange membrane
JP2009173898A (en) * 2007-12-25 2009-08-06 Tokuyama Corp Hydrocarbon anion exchange membrane, and manufacturing method therefor
WO2015122320A1 (en) * 2014-02-14 2015-08-20 株式会社トクヤマ Partially quaternized styrene-based copolymer, ionic-conductivity imparter, catalytic electrode layer, membrane/electrode assembly and process for producing same, gas diffusion electrode and process for producing same, and fuel cell of anion exchange membrane type

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337190A (en) * 1976-08-19 1978-04-06 Allied Chem Manufacture of novel amphoteric membranes
JP2000212306A (en) * 1999-01-21 2000-08-02 Mitsubishi Chemicals Corp Anion exchange membrane
JP2009173898A (en) * 2007-12-25 2009-08-06 Tokuyama Corp Hydrocarbon anion exchange membrane, and manufacturing method therefor
WO2015122320A1 (en) * 2014-02-14 2015-08-20 株式会社トクヤマ Partially quaternized styrene-based copolymer, ionic-conductivity imparter, catalytic electrode layer, membrane/electrode assembly and process for producing same, gas diffusion electrode and process for producing same, and fuel cell of anion exchange membrane type

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114391052A (en) * 2019-06-27 2022-04-22 因纳普特公司 Hydrogen production plant
JP2022541385A (en) * 2019-06-27 2022-09-26 エナプター エス.アール.エル. Apparatus for the production of hydrogen
JP7475072B2 (en) 2019-06-27 2024-04-26 エナプター エス.アール.エル. Equipment for the production of hydrogen
CN111793235A (en) * 2020-06-08 2020-10-20 金华市金秋环保水处理有限公司 Preparation method of cation exchange membrane with IPN structure
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
WO2023190590A1 (en) * 2022-03-28 2023-10-05 学校法人加計学園 Anion exchange resin, anion exchange membrane, anion-exchange-group-containing monomer, and quaternary-imidazole-group-containing monomer

Also Published As

Publication number Publication date
TW201716232A (en) 2017-05-16
JPWO2017022775A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2015122320A1 (en) Partially quaternized styrene-based copolymer, ionic-conductivity imparter, catalytic electrode layer, membrane/electrode assembly and process for producing same, gas diffusion electrode and process for producing same, and fuel cell of anion exchange membrane type
WO2017022775A1 (en) Anion exchanger, ion conductivity-imparting agent, catalyst electrode layer, membrane-electrode assembly, anion exchange membrane fuel cell and anion exchange membrane water electrolysis apparatus
JP6077774B2 (en) Ion conductivity imparting agent, cathode catalyst layer, membrane-electrode assembly formed using the catalyst layer, anion exchange membrane fuel cell, and method of operating the same
JP6066989B2 (en) Catalyst electrode layer and manufacturing method thereof
JP5566021B2 (en) Membrane for an anionic fuel cell and method for producing the same
WO2010055889A1 (en) Anion-exchange membrane and method for producing same
JP7368853B2 (en) Multifunctional electrode additive
Ran et al. A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers
WO2007007767A1 (en) Electrolyte membrane for use in solid polymer-type fuel cell, process for production of the membrane and membrane electrode assembly for use in solid polymer-type fuel cell
CN109789386A (en) Carrier, electrode for fuel cell, membrane electrode assembly and the fuel cell comprising the component
CN111244512B (en) Ultrathin cross-linked composite enhanced polymer anion exchange membrane and preparation method and application thereof
EP3923389A1 (en) Composite ion-exchange membrane, method of preparing the same, and use thereof
Li et al. Polybenzimidazole membranes for direct methanol fuel cell: acid-doped or alkali-doped?
JP2007188788A (en) Quaterinizing agent for anion exchange resin film formation, gas diffusion electrode film, solid electrolyte membrane, and solid polymer fuel cell equipped with same
JP5770163B2 (en) Method for producing a membrane for a polymer electrolyte fuel cell
WO2009148051A1 (en) Method for producing ion conductivity-imparting agent for catalyst electrode layer of anion-exchange membrane fuel cell
JP2013149462A (en) Membrane-electrode assembly
JP5535724B2 (en) Electrolyte material for catalyst electrode layer and electrolyte membrane-catalyst electrode layer assembly
EP2568524A2 (en) Electrolyte material, and proton conductive polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2014044940A (en) Ion conductivity-imparting agent, anode catalyst layer, membrane-electrode assembly formed using the catalyst layer, anion exchange membrane fuel cell, and method of operating the same
US20230123137A1 (en) Polyelectrolyte multilayer coated proton exchange membrane for electrolysis and fuel cell applications
JP2009187799A (en) Membrane-electrode assembly and fuel cell
JP2024060125A (en) Ion exchange membrane, electrodialysis device, and water electrolysis device
JP2004273408A (en) Polymer electrolyte membrane, its manufacturing method, and fuel cell using it
CN115785506A (en) Preparation and application of cross-linking type quaternized polybenzimidazole anion exchange membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833054

Country of ref document: EP

Kind code of ref document: A1