WO2017022704A1 - Formable coating film - Google Patents

Formable coating film Download PDF

Info

Publication number
WO2017022704A1
WO2017022704A1 PCT/JP2016/072483 JP2016072483W WO2017022704A1 WO 2017022704 A1 WO2017022704 A1 WO 2017022704A1 JP 2016072483 W JP2016072483 W JP 2016072483W WO 2017022704 A1 WO2017022704 A1 WO 2017022704A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
film
acrylic
resin
coating
Prior art date
Application number
PCT/JP2016/072483
Other languages
French (fr)
Japanese (ja)
Inventor
佳英 渡邉
悟 糸部
英汰 吉川
克己 山口
Original Assignee
日本製紙株式会社
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社, 株式会社カネカ filed Critical 日本製紙株式会社
Priority to JP2017532593A priority Critical patent/JPWO2017022704A1/en
Publication of WO2017022704A1 publication Critical patent/WO2017022704A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention is a resin whose surface is decorated or protected by printing or uneven shape by an in-mold molding method, a film insert molding method, a three-dimensional laminate molding method, a vacuum molding method, a pressure-air molding method, a thermal lamination method, or the like.
  • the present invention relates to a coating film for molding that is suitably used for manufacturing a molded product.
  • Resin molded products are often used for portable information terminal devices such as mobile phones, notebook computers, home appliances, and automobile interior and exterior parts. As products become more commoditized, the need for differentiation in these products is increasing. Conventionally, as a method for decorating a resin molded product, a colored paint is applied or screen printed on the surface of a three-dimensional resin molded product by injection molding or the like. Furthermore, a method of applying a clear coating by spraying or dipping has been performed for the purpose of protecting the surface of the product.
  • the in-mold molding method is a technique in which a decorative film is laminated on the surface of a resin molding by simultaneously performing vacuum molding and injection in an injection mold.
  • the film insert molding method is, for example, after a decorative film is preliminarily heated (preliminary heating) and a preform of the decorative film is obtained by a vacuum molding method, a pressure molding method, hot pressing between molds, or the like.
  • a decorative film preformed in a mold by injection molding is placed, laminated with a resin molding by injection molding, and integrated.
  • the three-dimensional laminate molding is a molding method in which a decorative sheet with an adhesive layer softened by heat is attached to a molded body in a vacuum / pressure state.
  • a backer sheet made of a thermoplastic resin sheet such as ABS resin, or an adhesive layer in advance, as necessary for preforming, maintaining the shape of the sheet during lamination, preventing cracking, and improving adhesion Etc. can also be laminated.
  • the above vacuum forming method heats the decorative film in the mold (preliminary heating), then softens the decorative film, stretches it between the decorative film and closes it to the mold, and molds the mold shape.
  • the compressed air molding method is a method in which a decorative film is heated (preliminarily heated) and softened in a mold as needed, and then the decorative film is brought into close contact with the mold by pressurization with a heated gas as necessary.
  • Hot pressing between molds is a molding method in which a film is sandwiched between a male mold and a female mold, and the film is pressed while applying heat or pressure.
  • the coating film for molding As the coating film for molding is used in various fields, it has sufficient extensibility to follow three-dimensional molding (because it does not crack in the base film layer or coating layer even if it is stretched) Since the coating film for molding on the surface of the resin molded product has many opportunities to come into contact with the human body, chemical resistance is also regarded as important. For example, in a coating film for molding applied to resin molded products such as automobile interior parts, it is resistant to lactic acid components contained in human sebum and sweat, sunscreen cream, lotion, etc. in summer and hot areas Since chemical properties are also regarded as important, high chemical resistance is required in addition to high moldability. In particular, coating films used for decoration by in-mold molding, insert molding, or three-dimensional laminate molding methods require a higher level of chemical resistance because the base film layer and coating layer are stretched and thinned. Has been.
  • an object of the present invention is to provide a coating film for molding which is excellent in moldability (extension) and chemical resistance (particularly chemical resistance in a stretched state after molding).
  • the present inventor is a cause of chemical marks caused by lactic acid components contained in human sebum, sweat, oil components contained in sunscreen creams, lotions, etc. It was found that a coating layer made of a resin containing many hydroxyl groups in the structure is excellent in chemical resistance. In addition, if the weight average molecular weight (Mw) before UV irradiation of a UV (ultraviolet) curable resin containing a hydroxyl group in the structure is 6.0 ⁇ 10 3 or more, high elongation is maintained while maintaining high chemical resistance. I found out that I can do it.
  • Mw weight average molecular weight
  • the configuration of the present invention is as follows.
  • the first invention is an ionizing radiation curable resin composition
  • a polyfunctional acrylate resin having a weight average molecular weight (Mw) of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less having a hydroxyl group in the structure on an acrylic film.
  • Mw weight average molecular weight
  • a molding coated film formed a coating layer, an area of 3200 ⁇ 3500 cm -1 region of the infrared spectrum of the coating layer surface, 1650 ⁇ 1750 cm -1 or 0.3 times the area of the region 1 made. It is a coating film for molding characterized by being 0 times or less.
  • the polyfunctional acrylate resin is a urethane acrylate resin having a urethane resin composition having a main chain and a (meth) acryloyl group in a side chain. It is a coating film for molding.
  • a third invention is the coating film for molding according to the first or second invention, wherein the coating layer has a thickness in the range of 1 ⁇ m to 3 ⁇ m.
  • any one of the first to third inventions after applying the paint containing the ionizing radiation curable resin composition to the acrylic film with a dry coating thickness of 1 to 3 ⁇ m, A test piece having a width of 10 mm and a length of 80 mm cured by electron beam irradiation was prepared, and when the test piece was pulled at a temperature of 120 ° C. and a tensile speed of 50 mm / min and a distance between chucks of 40 mm, the ionizing radiation curing was performed. It is a molding coating film characterized by having an elongation of 200% or more (according to a test method specified in JIS K5600-5-4) until a crack occurs in a coating layer made of a mold resin composition.
  • a fifth invention is the thermoplastic acrylic resin according to any one of the first to fourth inventions, wherein the acrylic film contains 50 to 100% by weight of methyl methacrylate units and 0 to 50% by weight of other units.
  • a molding coating film characterized by molding a resin composition containing 20 to 100 parts by weight.
  • a sixth invention is a coating film for molding according to any one of the first to fifth inventions, wherein the acrylic film contains a rubber component.
  • the rubber component has a single-layer or multi-layer core layer including one or more elastic layers made of a crosslinked polymer mainly composed of an acrylate ester;
  • a molding coating film characterized by being rubber particles having a core-shell structure comprising a shell layer containing an acid ester as a main component.
  • An eighth invention is a molding characterized in that in any of the first to seventh inventions, it is a surface decorative film or a surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding. Coating film.
  • a printed article for surface protection or decoration comprising a printing, coloring or decorative layer on at least one surface of the molding coating film of any one of the first to eighth aspects of the invention. It is a film.
  • a tenth aspect of the present invention is a film for surface protection or decoration of a molded article, characterized in that it has a surface shape having irregularities on at least one surface of the molding coating film of any one of the first to eighth aspects of the invention. .
  • a decorative sheet or decoration for automobile interior in which the film of any one of the first to tenth aspects of the invention is laminated on the surface of a sheet or molded body containing a thermoplastic resin or a thermosetting resin. It is a decorative panel.
  • a portable electronic device, an acoustic device or an electric device in which the film of any one of the first to tenth aspects of the invention is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin. It is a decorative or protective panel for a product casing or surface.
  • an ionizing radiation curable resin composition comprising a polyfunctional acrylate-based resin having a weight average molecular weight (Mw) having a hydroxyl group in the structure of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less on an acrylic film.
  • Mw weight average molecular weight
  • the area of the 3200 to 3500 cm ⁇ 1 region of the infrared spectrum of the coating layer surface is 0.3 to 1.0 times the area of the 1650 to 1750 cm ⁇ 1 region.
  • the polyfunctional acrylate-based resin is preferably a urethane acrylate-based resin having a urethane resin composition having a main chain and a (meth) acryloyl group in a side chain in order to enhance the effects of the present invention.
  • the film thickness of the coating layer is preferably in the range of 1 ⁇ m to 3 ⁇ m from the viewpoint of enhancing the effects of the present invention.
  • the acrylic film may be formed by molding a resin composition containing 20 to 100 parts by weight of a thermoplastic acrylic resin containing 50 to 100% by weight of methyl methacrylate units and 0 to 50% by weight of other units. This is suitable for enhancing the effect of the present invention. Moreover, it is suitable for improving the effect of this invention that the said acrylic film contains a rubber component.
  • the rubber component is composed of a core layer having a single layer or a multilayer structure including one or more elastic layers made of a crosslinked polymer mainly composed of an acrylate ester, and a shell layer mainly composed of a methacrylate ester. It is preferable that the rubber particles have a core-shell structure.
  • the coating film for molding of the present invention is suitable as a surface decorative film or surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding. Moreover, the coating film for molding of the present invention is suitable as a film for protecting the surface of a molded product having a printing, coloring or decorative layer on at least one surface thereof. Further, the molding coating film of the present invention is suitable as a film for protecting the surface of a molded article having a surface shape having irregularities on at least one surface thereof or for decorating.
  • seat or molded object containing a thermoplastic resin or a thermosetting resin is suitable as a decoration sheet or a decoration panel for motor vehicle interior.
  • a laminate in which each of the films according to the present invention is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin is a casing for a portable electronic device, an acoustic device, or an electrical product, Suitable for surface decoration or protective panel.
  • the molding coating film according to one embodiment of the present invention is obtained by forming a coating layer on an acrylic film as a base film, and this coating layer includes a polyfunctional acrylate resin having a hydroxyl group in the structure. It consists of an ionizing radiation curable resin composition.
  • this coating layer includes a polyfunctional acrylate resin having a hydroxyl group in the structure. It consists of an ionizing radiation curable resin composition.
  • an acrylic film can be preferably used for the base film of the coating film for molding of the present invention.
  • the coating film for molding of the present invention has excellent transparency, weather resistance, surface hardness, stretchability during thermoforming, and secondary moldability, and polycarbonate.
  • Resins acrylic resins, ASA resins, ABS resins, AS resins and other styrene resins, saturated or unsaturated polyester resins, vinyl ester resins, epoxy resins, polyamide resins, polyphenylene sulfide resins, polyphenylene oxide resins, polyacetal resins, polylactic acid Decoration made of thermoplastic resin such as resin, cellulose acylate resin, olefin- (meth) acrylic acid derivative copolymer resin or thermosetting resin, and fiber / filler reinforced composite material using these. The adhesion to the substrate is excellent.
  • acrylic resin used in the acrylic film used in the present invention conventionally known ones can be used. From the viewpoint of hardness and moldability, methyl methacrylate units of 50 to 100% by weight and other structural units of 0 to 50 are used. It is preferable to contain 20 to 100 parts by weight of a thermoplastic acrylic polymer consisting of% by weight.
  • Other structural units include, for example, methyl acrylate, butyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, ⁇ -hydroxyethyl acrylate, phenoxyethyl acrylate , Benzyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate, acrylic acid derivatives such as acrylic acid, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, phenyl methacrylate , Benzyl methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, glycidyl methacryl
  • the method for producing the acrylic resin is not particularly limited, and known polymerization methods such as a known suspension polymerization method, bulk polymerization method, solution polymerization method, emulsion polymerization method, and dispersion polymerization method are applicable.
  • a unit having a specific structure may be introduced by copolymerization, functional group modification or modification.
  • a specific structure include a glutarimide structure such as those disclosed in JP-A-62-89705, JP-A-02-178310, WO2005 / 54311, JP-A-2004-168882, and the like.
  • a glutaric anhydride structure a maleic anhydride unit as shown in JP-A-5-119217, and an N-substituted maleimide unit as shown in WO2009 / 84541.
  • the molecular chain becomes more rigid, improving the heat resistance of the molding coating film of the present invention, improving the surface hardness, reducing heat shrinkage, chemical resistance and stain resistance. It can be expected to improve the effect.
  • thermoplastic resin that is at least partially compatible with the acrylic resin may be used in combination with the acrylic resin as long as the object of the present invention is not impaired or reinforced.
  • thermoplastic resins include styrene-acrylonitrile resins, styrene- (meth) acrylic resins, styrene-maleic anhydride resins, styrene-N substituted or unsubstituted maleimide resins, styrene-acrylonitrile-butadiene resins, styrene.
  • -Styrenic resins such as acrylonitrile-acrylic ester resin, polyvinyl chloride resin, polycarbonate resin, amorphous saturated polyester resin, polyamide resin, phenoxy resin, polyarylate resin, olefin- (meth) acrylic acid derivative resin, cellulose
  • cellulose derivatives such as acylate, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acetal resin, polylactic acid resin, and PHBH resin.
  • styrene-based resins and polycarbonate resins have excellent compatibility with acrylic resins, and may improve the bending crack resistance, solvent resistance, low moisture absorption, etc. of the molding coating film of the present invention. Therefore, it is preferable.
  • the acrylic resin used in the present invention is more preferably an acrylic resin composition containing a rubber component.
  • a rubber component can be obtained, for example, by polymerizing vinyl polymerizable units in the presence of particles of an acrylate ester-based cross-linked elastic body [cross-linked elastic body comprising a polymer mainly composed of an acrylate ester]. It is preferable to use a core-shell type graft copolymer having a hard outer layer portion.
  • an acrylic resin composition containing such an acrylic elastomeric graft copolymer the molding coating film of the present invention can be made transparent, heat resistant, surface hardness, bending crack resistance, and bending whitening resistance. And a film having an excellent balance of physical properties such as stretchability and secondary formability during thermoforming.
  • an acrylic ester crosslinked elastomer having a layer structure of one layer or two or more layers containing a layer composed of one or more acrylic ester crosslinked elastomers As the acrylic elastomer graft copolymer preferably used in the present invention, an acrylic ester crosslinked elastomer having a layer structure of one layer or two or more layers containing a layer composed of one or more acrylic ester crosslinked elastomers. Those obtained by copolymerizing a monomer mixture (b) comprising 50 to 100% by weight of a methacrylic acid ester and 0 to 50% by weight of another copolymerizable vinyl monomer in the presence of particles are preferred. .
  • the acrylic ester-based crosslinked elastic particles having a structure of two or more layers the acrylic ester-based crosslinked elastic layer may be present in any layer, but the outermost layer is an acrylate-based crosslinked elastic layer. It is more preferable to improve the bending cracking resistance.
  • the acrylic ester-based crosslinked elastic body has an acrylic ester, other vinyl monomers that can be copolymerized as required, and two or more non-conjugated double bonds per copolymerizable molecule.
  • the monomer mixture (a) which consists of a polyfunctional monomer can be used preferably.
  • Monomers and polyfunctional monomers may all be mixed (one-stage polymerization) and used more than once (two-stage polymerization) by changing the composition of the monomer and polyfunctional monomer. The polymerization may be used separately.
  • an alkyl acrylate is preferable, and an alkyl group having 1 to 12 carbon atoms can be particularly preferably used.
  • preferable monomers include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isobornyl acrylate, acrylic acid Examples include cyclohexyl and dodecyl acrylate. These may be used alone or in combination of two or more.
  • the amount of the acrylate ester in the acrylate ester-based crosslinked elastic body is preferably 50 to 99.9 wt%, more preferably 70 to 99.9 wt%, based on 100 wt% of the monomer mixture (a), and 80 to 99 .9% by weight is most preferred.
  • the amount of acrylic ester is 50 to 99.9% by weight
  • the crosslinked elastic body has good rubber elasticity
  • the molding coating film of the present invention has excellent bending crack resistance and impact resistance, and secondary molding. Elongation tends to be good.
  • Examples of other copolymerizable vinyl monomers in the acrylic ester-based crosslinked elastomer include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-methacrylate -Methacrylic esters such as butyl, phenyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, vinyl halides such as vinyl chloride and vinyl bromide, acrylonitrile, methacrylate.
  • Vinyl cyanides such as ronitrile, vinyl esters such as vinyl formate, vinyl acetate and vinyl propionate, aromatic vinyl derivatives such as styrene, vinyltoluene and ⁇ -methylstyrene, vinylidene chloride, vinylidyl fluoride
  • Vinylidene halides such as acrylic acid, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate and salts thereof, ⁇ -hydroxyethyl acrylate, phenoxyethyl acrylate, benzyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate
  • Acrylic acid derivatives such as acrylamide and N-methylol acrylamide, methacrylic acid and salts thereof such as methacrylic acid, sodium methacrylate, calcium methacrylate, methacrylamide, ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, methacryl And methacrylic acid
  • acrylic acid esters, methacrylic acid esters and aromatic vinyl derivatives are particularly preferable from the viewpoint of weather resistance and transparency.
  • the amount of the other copolymerizable vinyl monomer in the acrylic ester-based crosslinked elastic body is preferably 0 to 49.9% by weight, preferably 0 to 30% by weight, based on 100% by weight of the monomer mixture (a). Is more preferable, and 0 to 20% by weight is most preferable.
  • the amount of the other vinyl monomer exceeds 49.9% by weight, the bending cracking resistance and impact resistance are lowered, the elongation at the time of secondary molding is lowered, and cracks are caused during molding and cutting. May be more likely to occur.
  • the polyfunctional monomer having two or more non-conjugated double bonds per molecule that can be copolymerized in the acrylic ester-based crosslinked elastic body is one that is usually used as a crosslinking agent and / or a graft crossing agent. Good.
  • These polyfunctional monomers may be used alone or in combination of two or more.
  • the amount of the polyfunctional monomer in the acrylate-based crosslinked elastic body is the average particle diameter of the acrylate-based crosslinked elastic body, the whitening property during bending and tensile deformation (stress whitening), and the amount of elongation in secondary molding. , Greatly affects transparency.
  • the blending amount of the polyfunctional monomer in the acrylate-based crosslinked elastic body is preferably 0.1 to 10% by weight, more preferably 1.0 to 4% by weight in 100% by weight of the monomer mixture (a). preferable.
  • a blending amount of the polyfunctional monomer of 0.1 to 10% by weight is preferable from the viewpoint of bending whitening resistance and resin fluidity during molding.
  • the blending amount of the polyfunctional monomer is less than 0.1% by weight, the bending whitening resistance and transparency may be deteriorated. If the blending amount of the polyfunctional monomer is 10% by weight or more, the bending crack resistance, impact resistance, transparency and the like may be lowered.
  • the acrylic elastomer-grafted copolymer is 50 to 100% by weight of methacrylic acid ester and 0 to 50% by weight of other copolymerizable vinyl monomers.
  • a monomer mixture (b) comprising: More preferably, in the presence of 5 to 90 parts by weight of acrylic ester-based crosslinked elastic particles, it consists of 50 to 100% by weight of an alkyl methacrylate and 0 to 50% by weight of another copolymerizable vinyl monomer.
  • the monomer mixture (b) is obtained by graft copolymerization of 95 to 10 parts by weight in at least one stage. However, the total amount of the acrylic ester-based crosslinked elastic particles and the monomer mixture (b) shall satisfy 100 parts by weight.
  • the blending amount of the methacrylic acid alkyl ester in the monomer mixture (b) is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 80% by weight or more in terms of hardness and rigidity.
  • methacrylic acid alkyl ester methyl methacrylate is particularly preferred from the viewpoint of polymerizability and compatibility with acrylic resin.
  • Other vinyl monomers that can be copolymerized include other vinyl monomers that can be copolymerized in the production of the acrylic ester-based crosslinked elastic body, or acrylic monomers having 1 to 12 carbon atoms in the alkyl group. Acid alkyl esters can be used as well.
  • monomers may be used independently and may use 2 or more types together.
  • the grafting of the monomer mixture (b) in the presence of the acrylic ester-based crosslinked elastomeric particles is grafted onto the acrylic ester-based crosslinked elastomeric particles.
  • An unbound polymer component (free polymer) may occur.
  • Such a free polymer can be used as what constitutes a part or all of the acrylic resin constituting the matrix phase of the acrylic resin composition and acrylic film of the present invention.
  • a chain transfer agent may be added to the monomer mixture (b) for the purpose of controlling the molecular weight of the polymer and the amount of the free polymer produced.
  • the chain transfer agent may be selected from those usually used for radical polymerization, and for example, alkyl mercaptan having 2 to 20 carbon atoms, mercapto acids, thiophenol, carbon tetrachloride or a mixture thereof is preferable.
  • the chain transfer agent is used in an amount of 0 to 2 parts by weight, preferably 0 to 0.5 parts by weight, based on 100 parts by weight of the total amount of the monomer mixture (b).
  • the graft ratio of the monomer mixture (b) to the acrylate-based crosslinked elastic particles is preferably 5 to 250%, more preferably 10 to 220%, and more preferably 20 to 200. % Is more preferable. If the graft ratio is less than 5%, the bending whitening resistance, transparency, and elongation at the time of secondary molding are lowered, and cracks tend to occur during molding and cutting. If it exceeds 250%, the melt viscosity at the time of acrylic film molding tends to be high, and the moldability tends to decrease.
  • the average particle diameter d of the acrylic elastic body graft copolymer is preferably 10 nm to 400 nm, more preferably 30 nm to 350 nm, and further preferably 50 nm to 300 nm.
  • the average particle diameter of the acrylic elastic graft copolymer is a value measured using a light scattering method in a latex state using a Nikkiso Co., Ltd. Sakai Microtrac particle size distribution analyzer MT3000.
  • the average particle diameter d (nm) of the acrylic ester-based crosslinked elastic particles and the amount w (% by weight) of the polyfunctional monomer used in the acrylic ester-based crosslinked elastic body are the same as those of the acrylic film or coating film.
  • it preferably satisfies the relational expression: 0.02d ⁇ w ⁇ 0.06d, and 0.02d ⁇ w More preferably, ⁇ 0.05d is satisfied.
  • the amount of the polyfunctional monomer is within the range of the above relational expression, the elongation at the time of secondary molding of the molding coating film of the present invention is less likely to decrease, and cracks are less likely to occur during molding or cutting, It has an advantage that it is excellent in transparency, and stress whitening hardly occurs during bending or tensile deformation.
  • the amount of the polyfunctional monomer used in the acrylate-based crosslinked elastic particles satisfies the above relational expression, and the average particle diameter d is 50 to 50%. 250 nm is preferable, 50 to 200 nm is more preferable, 50 to 150 nm is further preferable, and 60 to 120 nm is particularly preferable. If the average particle diameter d of the acrylic ester-based crosslinked elastic particles is 50 nm or more, the elongation during secondary molding of the coating film for molding of the present invention is unlikely to decrease, and cracks are unlikely to occur during molding or cutting. The If it is 250 nm or less, stress whitening hardly occurs, and transparency, particularly transparency after secondary molding such as vacuum molding, pressure molding, insert molding, etc. (maintaining transparency before and after heating) should be excellent. it can.
  • the method for producing the acrylic elastomer graft copolymer is not particularly limited, and a known emulsion polymerization method, emulsion-suspension polymerization method, suspension polymerization method, bulk polymerization method, solution polymerization method or dispersion polymerization method may be used. Although applicable, the emulsion polymerization method is particularly preferred.
  • initiators such as organic peroxides, inorganic peroxides, and azo compounds can be used.
  • organic peroxides 1,1,3,3-tetramethylbutyl hydroperoxide, succinic acid peroxide, peroxymaleic acid t-butyl ester, cumene hydroperoxide
  • Organic peroxides such as benzoyl peroxide and lauroyl peroxide
  • inorganic peroxides such as potassium persulfate and sodium persulfate
  • azo compounds such as azobisisobutyronitrile are also used. These may be used alone or in combination of two or more.
  • initiators may be used as thermal decomposition type radical polymerization initiators, or alternatively sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, hydroxyacetone acid, ferrous sulfate, sulfuric acid It may be used as a normal redox type polymerization initiator in combination with a reducing agent such as a complex of ferrous iron and ethylenediaminetetraacetic acid-2-sodium.
  • a reducing agent such as a complex of ferrous iron and ethylenediaminetetraacetic acid-2-sodium.
  • inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate are used from the viewpoint of polymerization stability and particle diameter control, or t-butyl hydroperoxide, cumene hydroperoxide, etc. It is more preferable to use a redox initiator in which an organic transition oxide is combined with an inorganic reducing agent such as a divalent iron salt and / or a water-soluble reducing agent such as sodium formaldehyde sulfoxylate, reducing sugar or ascorbic acid. preferable.
  • the above inorganic peroxide or organic peroxide may be added by a known addition method such as a method of directly adding to a polymerization system, a method of adding by dissolving and mixing in a monomer, a method of adding as an aqueous solution or an emulsified dispersion. Can be added.
  • the surfactant used for the emulsion polymerization of the acrylic elastic body graft copolymer is not particularly limited, and a known surfactant can be widely used.
  • anionic surface activity such as sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dioctyl sulfosuccinate, sodium alkyl sulfate, fatty acid sodium, sodium alkyl phosphate, sodium alkyl ether phosphate, sodium alkyl phenyl ether phosphate
  • nonionic surfactants such as reaction products of alkylphenols, aliphatic alcohols with propylene oxide, and ethylene oxide. These surfactants may be used alone or in combination of two or more.
  • the latex of the acrylic elastic graft copolymer obtained by emulsion polymerization can be separated and recovered as a solid from the acrylic elastic graft copolymer by a known method. For example, after adding a water-soluble electrolyte to the latex and coagulating it, the acrylic elastomer graft copolymer powder is separated by washing and drying the solids, or by treatment such as spray drying or freeze drying of the latex. It can be recovered.
  • the latex of the acrylic elastic graft copolymer is previously filtered through a filter or mesh prior to the separation and recovery of the acrylic elastic graft copolymer.
  • a filter or mesh for example, it is sufficient that the mesh is 2 times or more larger than the average particle diameter of the acrylic elastic graft copolymer, and known filters used for filtration of liquid media can be used. It is.
  • the content of the acrylic ester-based crosslinked elastic body in the acrylic resin composition used for the acrylic film is preferably 5 to 70% by weight, more preferably 5 to 45% by weight, and still more preferably 10 to 30% by weight.
  • the total amount of the acrylic resin composition comprising the acrylic elastic graft copolymer and the acrylic resin is 100% by weight.
  • the content of the acrylic ester-based crosslinked elastic body is 5% by weight or more, the elongation at the time of secondary molding of the obtained film is difficult to decrease, and cracks tend not to occur during molding or cutting. .
  • it exceeds 70% the melt fluidity is lowered and the melt processing becomes difficult.
  • the production method of the acrylic film used for the molding coating film of the present invention can be a known molding method.
  • an inflation method that is a melt processing method, a T-die extrusion method, a calendar molding method, or an acrylic resin composition used in the present invention is dissolved and dispersed in a solvent, and then cast into a film on a belt-like substrate. It can be produced satisfactorily by using a solvent casting method for forming a film by volatilizing.
  • a melt extrusion method that does not use a solvent, particularly a T-die extrusion method. According to the melt extrusion method, a film excellent in surface production can be produced with high productivity, and the burden on the global environment and working environment due to production costs and solvents can be reduced.
  • the acrylic resin composition when the acrylic resin composition is processed by a melt processing method or a solvent casting method, an environment in the acrylic resin composition that causes an appearance defect or internal foreign matter of the acrylic film using a filter or a mesh is used.
  • a filter or a mesh In order to improve the appearance quality of the acrylic film, it is preferable to filter and remove foreign substances, polymerization scale, deteriorated resin, and the like.
  • Such a filtration step may be performed, for example, at the stage of blending and pelletizing an acrylic resin, an acrylic elastic graft copolymer, and other blends at the time of melt processing. You may perform before the film forming process by die
  • the solvent casting method When the solvent casting method is used, it may be carried out after the solution mixing of the acrylic resin and the acrylic elastic graft copolymer and before cast film formation.
  • Known filters and meshes can be widely used.
  • a leaf disk type filter in terms of filtration efficiency and productivity.
  • the glass transition temperature of the acrylic resin composition in particular is obtained by simultaneously contacting (sandwiching) both sides of the molten film with a cooling roll or a metal belt when the film is molded. It is also possible to obtain a film having excellent surface smoothness by simultaneously contacting a roll or metal belt maintained at a temperature within Tg-50 ° C, preferably within Tg-30 ° C. More preferably, as a roll for performing such sandwiching, at least one of the rolls is a metal roll having elasticity as disclosed in, for example, Japanese Patent Laid-Open No. 2000-153547, Japanese Patent Laid-Open No. 11-235747, etc. Can be obtained, and a film with less internal strain can be obtained.
  • uniaxial stretching or biaxial stretching subsequent to the film formation can be carried out using a known stretching apparatus.
  • biaxial stretching both simultaneous biaxial stretching and sequential stretching can be used.
  • the coating film for molding of the present invention or the acrylic film used therefor is a surface shape having irregularities on one or both sides of the film, for example, hairline, prism, etc.
  • An arbitrary surface shape such as a wood grain shape, a relief, a geometric pattern, a trademark or a logo, a non-uniform rough surface, or a matte surface may be provided.
  • Such surface shape can be imparted by a known method.
  • a roll on the film surface is obtained by sandwiching both sides of a film in a molten state immediately after melt extrusion or a formed film fed from a feeding device with two rolls or belts having a surface shape on at least one surface.
  • a method of transferring the shape of the surface is mentioned.
  • the surface shape may be imparted to the acrylic film as the base material in advance or after the formation of the coating layer. Moreover, you may perform with respect to any of the coating layer side and the acrylic film layer side.
  • additives used in acrylic resins and acrylic films can be added within a range not impairing the effects of the present invention.
  • additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants, benzotriazole-based, benzophenone-based, triazine-based UV absorbers, hindered amine-based light stabilizers, halogen-based, Flame retardants such as antimony, phosphorus, silicone, and metal (hydroxide) oxides, cross-linked resin particles and functional group-containing resins, light diffusion agents such as inorganic fine particles, matting agents or anti-blocking agents, lubricants, pigments, Examples thereof include, but are not limited to, colorants such as dyes, infrared reflectors composed of metals and metal oxides, plasticizers, and antistatic agents.
  • additives do not interfere with the features of the acrylic film and the coating film for molding of the present invention, in a range that does not impair the adhesion of the acrylic film and the coating layer described later, and contaminate the appearance by bleeding out, Any amount can be used as long as the purpose of the coating film for molding of the present invention such as surface decoration and surface protection is not hindered.
  • the thickness of the acrylic film is not particularly limited, but is in the range of about 25 ⁇ m to 250 ⁇ m due to the processing conditions of the coating layer and the economics, mechanical strength, handling properties, etc. of the base film. It is preferable.
  • the resin contained in the coating layer is an ionizing radiation curable resin containing a polyfunctional acrylate resin having a hydroxyl group in the structure and a weight average molecular weight (Mw) of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less. .
  • Mw weight average molecular weight
  • a polyfunctional acrylate resin with a high elongation ratio that is excellent in moldability with a weight average molecular weight (Mw) of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less sufficient moldability and chemical resistance (especially after molding) (Chemical resistance in a stretched state) is possible.
  • Mw weight average molecular weight
  • a resin having a weight average molecular weight (Mw) of less than 6.0 ⁇ 10 3 is used, the elongation percentage of the coating layer is insufficient.
  • a resin having a weight average molecular weight (Mw) larger than 1.0 ⁇ 10 4 is used, another problem such as poor coating suitability arises.
  • the surface of the coating layer is given hardness (pencil hardness, scratch resistance), and the degree of crosslinking is adjusted by the amount of ultraviolet light exposure. It is possible to adjust the stretchability and surface hardness (pencil hardness, scratch resistance) of the coating layer.
  • the polyfunctional acrylate resin having a hydroxyl group can be obtained by reacting a polyhydric alcohol with an isocyanate monomer or organic polyisocyanate and a polyfunctional acrylate monomer having a hydroxyl group in the absence of a solvent or in an organic solvent.
  • the polyhydric alcohol include acrylic polyols, polyester polyols, polycarbonate polyols, ethylene glycol, and propylene glycol.
  • the isocyanate monomer include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, and the like.
  • organic polyisocyanate examples include adduct type, isocyanurate type and burette type polyisocyanates synthesized from isocyanate monomers.
  • polyfunctional acrylate monomer having a hydroxyl group examples include 2-hydroxy-3-phenoxypropyl acrylate, isocyanuric acid ethylene oxide-modified diacrylate, pentaerythritol tri- and tetraacrylate, and dipentaerythritol pentaacrylate.
  • urethane acrylate resins having a main chain of urethane resin composition and a side chain having a (meth) acryloyl group are known as resins that form high strength, stretched and tough films. It is preferable because the effects of the present invention can be further enhanced.
  • the urethane acrylate resin preferably has a weight average molecular weight (Mw) of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less.
  • the area of the 3200 to 3500 cm ⁇ 1 region of the infrared spectrum on the surface of the coating layer is 0.3 to 1.0 times the area of the 1650 to 1750 cm ⁇ 1 region.
  • the 3200 to 3500 cm ⁇ 1 region of the infrared spectrum (hereinafter sometimes abbreviated as “IR spectrum”) is an absorption region due to OH stretching vibration, and the 1650 to 1750 cm ⁇ 1 region is C ⁇ O. This is an absorption region due to stretching vibration.
  • IR spectrum 3200 ⁇ 3500 cm -1 region area ratio to the area of 1650 ⁇ 1750 cm -1 region of the infrared spectrum, the hydroxyl group for this case relative to the amount of carbonyl groups contained in the resin constituting the coating layer
  • the ratio of the amount of That is, the larger the area ratio value, the greater the amount of hydroxyl groups contained in the resin constituting the coating layer.
  • the infrared spectrum of the coating layer can be measured on the surface of the coating layer after coating on the acrylic film. That is, the infrared spectrum of the coating layer in the present invention means the infrared spectrum of the coating layer surface after coating on the acrylic film.
  • an infrared spectrophotometer is used for the coating layer surface formed by applying a coating layer paint on an acrylic film by a predetermined method and curing the coating layer by UV or EB (electron beam) irradiation.
  • An infrared spectrum (infrared absorption spectrum) is measured by the ATR method (total reflection method). Then, on the spectrum chart in which the obtained horizontal axis is the wave number (cm ⁇ 1 ) and the vertical axis is the absorbance, a base line is drawn to the peak range (the above wave number region) derived from the target functional group. The area surrounded by the line and the spectrum curve can be the peak area (the area of the wave number region).
  • excellent chemical resistance can be obtained by using a polyfunctional acrylate resin having a hydroxyl group in the structure and having a weight average molecular weight (Mw) of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less.
  • Mw weight average molecular weight
  • area of 3200 ⁇ 3500 cm -1 region of the infrared spectrum of the coating layer surface chemical resistance by such a 1.0-fold 0.3-fold or more the area of 1650 ⁇ 1750 cm -1 region, particularly It is possible to improve the chemical resistance against the oil and fat components contained in the aforementioned sunscreen creams and lotions. If the area ratio is less than 0.3 times, chemical resistance cannot be obtained or is insufficient. Moreover, when said area ratio is larger than 1.0 time, another problem will arise, such as it becomes difficult to prepare a coating material and the adhesiveness of a coating film and an acrylic film becomes insufficient.
  • the amount of hydroxyl group contained in the polyfunctional acrylate resin constituting the coating layer is adjusted to a predetermined value depending on the type of polyfunctional acrylate monomer having a hydroxyl group and the blending ratio in the case of the urethane acrylate resin, for example. Is possible.
  • the ionizing radiation curable resin used in the coating layer of the present invention is a phenol resin, a urea resin, an unsaturated polyester, an epoxy, a silicon resin, etc. within a range that does not impair the effects of the present invention, that is, the moldability and chemical resistance.
  • polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (Meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate and other polyol polyacrylates, bisphenol A diglycidyl ether Epoxy (meth) such as diacrylate, dipentyl glycol diglycidyl ether diacrylate, 1,6-hexanediol diglycidyl ether di (meth) acrylate Polyester (meth) acrylate, polyhydric alcohol, polyvalent isocyanate
  • a coating containing the ionizing radiation curable resin composition containing the polyfunctional acrylate resin is applied to the acrylic film with a dry coating thickness of 1 to 3 ⁇ m, and then applied with ultraviolet rays or electron beams.
  • a test piece having a width of 10 mm and a length of 80 mm cured by irradiation is prepared, and when the test piece is pulled at a tensile speed of 50 mm / min at a temperature of 120 ° C., the ionizing radiation curable resin composition is used.
  • the elongation rate until cracks occur in the coating layer is 200% or more (based on the test method specified in JIS K5600-5-4).
  • the required elongation varies depending on the application of the molding coating film of the present invention, it cannot be generally stated. However, as long as the elongation is 200% or more as described above, sufficient moldability is obtained in all applications. Can be provided.
  • photopolymerization initiator for the ionizing radiation curable resin in the coating layer known ones such as acetophenones and phenones containing benzo can be used.
  • an antifoaming agent a surface tension adjusting agent (leveling agent), an antifouling agent, an antioxidant, an antistatic agent, an ultraviolet ray You may contain an absorber, a light stabilizer, etc. as needed.
  • the coating layer comprises a coating material obtained by dissolving and dispersing a photopolymerization initiator and other additives in an appropriate solvent in addition to the ionizing radiation curable resin containing the polyfunctional acrylate resin. It is formed by coating and drying on a film.
  • the solvent can be appropriately selected depending on the solubility of the resin contained therein, and may be any solvent that can uniformly dissolve or disperse at least solids (resin, polymerization initiator, and other additives).
  • Examples of such a solvent include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons ( Cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (methanol, ethanol, isopropanol, Butanol, cyclohexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides, amides and the like.
  • the coating thickness of the coating layer is not particularly limited, but is preferably in the range of 1 to 3 ⁇ m, for example. If the coating thickness is less than 1 ⁇ m, sufficient chemical resistance cannot be obtained, or the required hardness is difficult to obtain. Moreover, when the coating film thickness is thicker than 3 ⁇ m, it becomes difficult to obtain good extensibility.
  • the coating layer coating method is not particularly limited, but it is easy to adjust the coating thickness, such as gravure coating, microgravure coating, fountain bar coating, slide die coating, slot die coating, etc. Coating is possible by the method.
  • the coating film thickness of the applied coating layer can be measured by actually measuring with a micrometer.
  • a decorative layer such as a printing layer or coloring / adhesion is directly or via an appropriate primer layer on the surface opposite to the side on which the coating layer of the base film is provided.
  • a film or the like may be provided.
  • an overcoat layer or the like can be further provided on the coating layer.
  • the decorative layer is composed of, for example, a picture layer and / or a concealing layer, a metal vapor deposition layer, and the like.
  • the pattern layer is a layer provided to express a pattern such as a pattern or characters
  • the concealing layer is a solid layer, and is a layer provided to conceal the coloring of the resin or the like.
  • a metal vapor deposition layer is the layer which vapor-deposited one part or the whole surface, and is provided for the purpose of expressing the layer provided for concealing coloring etc. of resin etc., or a resin layer in a metal tone. Is a layer.
  • the decorative layer (for example, the pattern layer and / or the concealment layer) can be formed by a known printing method such as gravure printing, offset printing, or screen printing.
  • the said metal vapor deposition layer can be formed into a film by methods, such as sputtering.
  • a polyfunctional acrylate resin having a weight average molecular weight (Mw) having a hydroxyl group in the structure of 6.0 ⁇ 10 3 or more and 1.0 ⁇ 10 4 or less is formed on the acrylic film.
  • the coating layer formed of an ionizing radiation curable resin composition comprising forming an area of 3200 ⁇ 3500 cm -1 region of the infrared spectrum of the coating layer surface, 1650 ⁇ 1750 cm -1 or 0.3 times the area of the region
  • the coating film for molding of the present invention is suitable as a surface decorative film or a surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding. Moreover, the coating film for molding of the present invention is suitable as a film for protecting the surface of a molded product having a printing, coloring or decorative layer on at least one surface thereof. Further, the molding coating film of the present invention is suitable as a film for protecting the surface of a molded article having a surface shape having irregularities on at least one surface thereof or for decorating.
  • seat or molded object containing a thermoplastic resin or a thermosetting resin is suitable as a decoration sheet or a decoration panel for motor vehicle interior.
  • a laminate in which each of the films according to the present invention is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin is a casing for a portable electronic device, an acoustic device, or an electrical product, Suitable for surface decoration or protective panel.
  • Example 1 ⁇ Preparation of coating layer paint> 100 parts of a hydroxyl group-containing urethane acrylate UV curable resin having a weight average molecular weight (Mw) of 6.7 ⁇ 10 3 , 5 parts of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator, and bis as a light stabilizer 0.5 parts of (1,1,2,6,6-pentamethyl-4-piperidinyl)-[[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate; 2- [4- [4,6-bis ([1,1′-biphenyl] -4-yl) -1,3,5-triazin-2-yl] -3-hydroxyphenoxy] propane as an ultraviolet absorber 0.5 part of acid isooctyl ester and 0.3 part of fluorosiloxane leveling agent are butyl acetate / n-propy
  • the polymerization conversion rate was 99.5%.
  • Monomer mixture (c1-1a): -Vinyl monomer mixture (butyl acrylate (BA) 90% and methyl methacrylate (MMA) 10%) 100 parts-allyl methacrylate (AlMA) 1 part-cumene hydroperoxide (CHP) 0.2 part then dioctyl After charging 0.05 parts by weight of sodium sulfosuccinate, the internal temperature was adjusted to 60 ° C., 100 parts of a vinyl monomer mixture (BA 10% and MMA 90%), 0.5 parts of tarlead decyl mercaptan (t-DM) And 70 parts of a monomer mixture (c1-1b) consisting of 0.5 parts of CHP was continuously added at a rate of 10 parts / hour, and the polymerization was continued for another hour, whereby an acrylic elastomer graft copolymer (c1 -1) (average particle size 90 nm) was obtained. The polymerization conversion rate was 98.2%. The obtained latex was salted out with
  • the mixture was kneaded and discharged from a T die at a die temperature of 200 to 215 ° C., and both sides of the discharged resin were simultaneously brought into contact with a metal roll and an elastic metal roll to form an acrylic film having a thickness of 75 ⁇ m.
  • Example 2 A molding coating film was produced in the same manner as in Example 1 except that the thickness of the coating layer was changed to 1.8 ⁇ m.
  • Example 3 A molding coating film was produced in the same manner as in Example 1 except that the thickness of the coating layer was changed to 3.0 ⁇ m.
  • Example 1 Molded in the same manner as in Example 1 except that the UV curable resin used for the coating layer paint was changed to an acrylic acrylate UV curable resin containing no hydroxyl group with a weight average molecular weight (Mw) of 2.5 ⁇ 10 6. A coating film was prepared.
  • Mw weight average molecular weight
  • Example 2 A molding coating film was produced in the same manner as in Example 1 except that the ultraviolet curable resin used for the coating layer coating material was changed to a hydroxyl group-containing ultraviolet curable resin hydroxybutyl acrylate.
  • Example 3 The UV curable resin used in the coating layer paint was molded in the same manner as in Example 1 except that the hydroxyl group-containing urethane acrylate UV curable resin having a weight average molecular weight (Mw) of 5.0 ⁇ 10 3 was changed. A coating film was prepared.
  • Example 4 A molding coating film was produced in the same manner as in Example 1 except that the thickness of the coating layer was changed to 0.8 ⁇ m.
  • an infrared spectrum (infrared absorption spectrum) was measured by an infrared spectrophotometer by the ATR method.
  • FT-IR Spectrometer Spectrum 100 (Perkin Elmer Japan Co., Ltd.) was used.
  • the peak ranges derived from the target functional group (the above 3200 to 3500 cm -1 region and the above 1650 to 1750 cm -1 region) ), A base line was drawn, and an area surrounded by the base line and the spectrum curve was defined as a peak area (area of each of the above wavenumber regions). Then, a 3200 ⁇ 3500 cm -1 region area / 1650 ⁇ 1750 cm -1 region value peak area ratio of the area of the.
  • Each coating film for molding is made into a test piece having a sample size width of 10 mm ⁇ length of 80 mm, and the test piece is pulled at a temperature of 120 ° C. with a pulling speed of 50 mm / min and a distance between chucks of 40 mm to coat the surface. The tensile elongation (%) until the layer cracked was measured.
  • the evaluation criteria are as follows. “ ⁇ ” was accepted. ⁇ : Elongation rate is 200% or more. X: Elongation rate is less than 200%.
  • molding which is excellent in both chemical resistance and moldability (elongation property) is obtained.
  • a molding coating film having excellent chemical resistance against the oil and fat components contained in the aforementioned sunscreen creams and lotions can be obtained.
  • the weight average molecular weight of the ultraviolet curable resin used for the coating layer paint is large, the comparative example 1 in which the peak area ratio is less than 0.3 can obtain a certain degree of elongation, but has poor chemical resistance. In either case of unstretched or stretched, and when left in a high temperature environment, chemical resistance cannot be obtained.
  • the peak area ratio is larger than 0.3, but the weight average molecular weight of the ultraviolet curable resin used for the coating layer paint is remarkably small, so that the elongation is small and chemical resistance cannot be obtained. It was.
  • Comparative Example 3 where the peak area ratio is 0.3 or more, but the weight average molecular weight of the ultraviolet curable resin used for the coating layer paint is smaller than 6.0 ⁇ 10 3 , the chemical resistance when unstretched is Although it is good, the elongation rate is insufficient, and it is impossible to achieve both moldability (stretchability) and chemical resistance (especially chemical resistance in a stretched state after molding). Furthermore, when the coating layer coating is usually the same, the peak area of the coating layer does not change only by changing the film thickness, but the coating layer is more susceptible to the influence of the base film as the coating layer becomes thinner.
  • Comparative Example 4 the peak area ratio is less than 0.3 due to the thinning of the coating layer, and the elongation is good, but the chemical resistance is slightly inferior, and in any case after unstretched or stretched. In addition, when left in a high temperature environment, the chemical resistance is insufficient.

Abstract

The present invention provides a formable coating film that is superior in formability (extensibility) and chemical resistance. The formable coating film according to the present invention is obtained by forming, on an acrylic film, a coating layer formed of an ionizing radiation curable resin composition containing a polyfunctional acrylate-based resin that has in the structure thereof a hydroxyl group and of which the weight average molecular weight (Mw) is 6.0×103-1.0×104, wherein the area size of a 3200-3500cm-1 range in an infrared spectrum of the surface of the coating layer is 0.3-1.0 times the area size of a 1650-1750cm-1 range.

Description

成型用コーティングフィルムCoating film for molding
 本発明は、インモールド成型法やフィルムインサート成型法、または3次元ラミネート成型法、真空成型法、圧空成型法、熱ラミネート法等による、表面が印刷や凹凸形状などで加飾もしくは保護された樹脂成型品の製造に好適に用いられる成型用コーティングフィルムに関する。 The present invention is a resin whose surface is decorated or protected by printing or uneven shape by an in-mold molding method, a film insert molding method, a three-dimensional laminate molding method, a vacuum molding method, a pressure-air molding method, a thermal lamination method, or the like. The present invention relates to a coating film for molding that is suitably used for manufacturing a molded product.
 携帯電話機等の携帯情報端末機器、ノート型パソコン、家電製品、自動車内外装部品などには樹脂成型品が多く使用されている。製品のコモディティ化が進む中、これらの製品においては、デザインによる差別化ニーズが高まっている。従来、樹脂成型品への加飾方法としては、射出成型等による3次元形状の樹脂成型品の表面に、着色塗料を塗装、あるいはスクリーン印刷を施していた。さらに製品の表面保護を目的としてスプレーやディッピングによりクリアコーティングを施す手法が行われていた。 Resin molded products are often used for portable information terminal devices such as mobile phones, notebook computers, home appliances, and automobile interior and exterior parts. As products become more commoditized, the need for differentiation in these products is increasing. Conventionally, as a method for decorating a resin molded product, a colored paint is applied or screen printed on the surface of a three-dimensional resin molded product by injection molding or the like. Furthermore, a method of applying a clear coating by spraying or dipping has been performed for the purpose of protecting the surface of the product.
 しかし、このような従来方法は、高いデザイン性の加飾を行うことが困難であり、またスプレー塗装などでは使用する塗料等に含まれる揮発性溶剤などの化学物質による作業環境への影響の懸念がある。そこで代替方法として、印刷を施した基材フィルムにコーティング層を設けたデザイン性の高い加飾フィルムを用いるインモールド成型法やフィルムインサート成型法、3次元ラミネート成型法が提案されている。 However, such conventional methods are difficult to decorate with high design, and there is a concern about the impact on the work environment by chemical substances such as volatile solvents contained in the paint used in spray coating etc. There is. Therefore, as an alternative method, an in-mold molding method, a film insert molding method, or a three-dimensional laminate molding method using a decorative film with high design in which a coating layer is provided on a printed base film has been proposed.
 上記インモールド成型法は、射出成型用金型内で同時に真空成型と射出を行い、加飾フィルムを樹脂成型物表面へ積層する技術である。また、上記フィルムインサート成型法は、たとえば加飾フィルムを予め加熱(予備加熱)して真空成型法や圧空成型法や金型間での熱プレスなどにより加飾フィルムの予備成型物を得てから、次工程として射出成型により金型内に予備成型した加飾フィルムを設置し、射出成型による樹脂成型物と積層し、一体化させる方法である。
 また、上記3次元ラミネート成型は、熱で軟化させた接着層付きの加飾シートを真空圧空状態で成形体に貼り付ける成型方法である。このとき加飾フィルムには、予備成型、積層時のシートの形状維持や割れ防止、接着性向上などの必要に応じて、予めABS樹脂等の熱可塑性樹脂シートからなるバッカーシートや、接着剤層などを積層しておくこともできる。
 また、上記真空成型法は、金型内で加飾フィルムを加熱(予備加熱)軟化させた後、加飾フィルムとの間を真空にして引き伸ばして金型に密着させ、金型形状を賦型する成型方法である。圧空成型法とは、金型内で加飾フィルムを必要に応じて加熱(予備加熱)軟化させた後、加飾フィルムを必要に応じて加熱したガスによる加圧によって金型に密着させ、金型形状を賦型する成型方法である。金型間での熱プレスとは雄型と雌型からなる金型の間にフィルムを挟み、熱や圧力をかけながらフィルムをプレスする成型方法である。
The in-mold molding method is a technique in which a decorative film is laminated on the surface of a resin molding by simultaneously performing vacuum molding and injection in an injection mold. In addition, the film insert molding method is, for example, after a decorative film is preliminarily heated (preliminary heating) and a preform of the decorative film is obtained by a vacuum molding method, a pressure molding method, hot pressing between molds, or the like. In the next process, a decorative film preformed in a mold by injection molding is placed, laminated with a resin molding by injection molding, and integrated.
The three-dimensional laminate molding is a molding method in which a decorative sheet with an adhesive layer softened by heat is attached to a molded body in a vacuum / pressure state. At this time, for the decorative film, a backer sheet made of a thermoplastic resin sheet such as ABS resin, or an adhesive layer in advance, as necessary for preforming, maintaining the shape of the sheet during lamination, preventing cracking, and improving adhesion Etc. can also be laminated.
In addition, the above vacuum forming method heats the decorative film in the mold (preliminary heating), then softens the decorative film, stretches it between the decorative film and closes it to the mold, and molds the mold shape. This is a molding method. The compressed air molding method is a method in which a decorative film is heated (preliminarily heated) and softened in a mold as needed, and then the decorative film is brought into close contact with the mold by pressurization with a heated gas as necessary. This is a molding method for shaping a mold shape. Hot pressing between molds is a molding method in which a film is sandwiched between a male mold and a female mold, and the film is pressed while applying heat or pressure.
 以上のような加飾フィルムを利用した成型方法に用いられる成型用コーティングフィルムとして、従来より種々の構成が提案されている(特許文献1~特許文献4等を参照)。 Conventionally, various configurations have been proposed as a coating film for molding used in a molding method using a decorative film as described above (see Patent Documents 1 to 4, etc.).
特開2009-274378号公報JP 2009-274378 A 特開2012-81628号公報JP 2012-81628 A 特開2012-193265号公報JP 2012-193265 A 特開2012-51247号公報JP 2012-512247 A
 成型用コーティングフィルムは様々な分野に利用されるようになるに伴い、3次元成型に追従する十分な伸長性(引き伸ばされても基材フィルム層やコーティング層にクラック等が入らないこと)の他、樹脂成型品表面の成型用コーティングフィルムは人体に接触する機会が多いため、耐薬品性も重要視されるようになってきている。例えば、自動車内装部品などの樹脂成型品に適用される成型用コーティングフィルムにおいては、人の皮脂、汗に含まれる乳酸成分や、夏場や暑い地域において日焼け止め用のクリーム、ローションなどに対する耐性(耐薬品性)も重要視されるため、高い成型性の他、高い耐薬品性も要求されている。特にインモールド成型、インサート成型あるいは3次元ラミネート成型法による加飾に利用されるコーティングフィルムにおいては、基材フィルム層やコーティング層が引き伸ばされて薄層化されるため、一層高い耐薬品性も要求されている。 As the coating film for molding is used in various fields, it has sufficient extensibility to follow three-dimensional molding (because it does not crack in the base film layer or coating layer even if it is stretched) Since the coating film for molding on the surface of the resin molded product has many opportunities to come into contact with the human body, chemical resistance is also regarded as important. For example, in a coating film for molding applied to resin molded products such as automobile interior parts, it is resistant to lactic acid components contained in human sebum and sweat, sunscreen cream, lotion, etc. in summer and hot areas Since chemical properties are also regarded as important, high chemical resistance is required in addition to high moldability. In particular, coating films used for decoration by in-mold molding, insert molding, or three-dimensional laminate molding methods require a higher level of chemical resistance because the base film layer and coating layer are stretched and thinned. Has been.
 しかしながら、従来技術では、十分な成型性(伸長性)と、成型後の伸張された状態における耐薬品性を両立できるような成型用コーティングフィルムは得られていない。 However, in the prior art, there has not been obtained a coating film for molding that can achieve both sufficient moldability (extensibility) and chemical resistance in a stretched state after molding.
 そこで、本発明は、成型性(伸長性)と耐薬品性(特に成型後の伸張された状態における耐薬品性)に優れる成型用コーティングフィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a coating film for molding which is excellent in moldability (extension) and chemical resistance (particularly chemical resistance in a stretched state after molding).
 本発明者は、上記課題を解決するべく鋭意検討した結果、人の皮脂、汗に含まれる乳酸成分や、日焼け止め用のクリーム、ローションなどに含まれる油脂成分が薬品痕が生じる原因であることを突き止め、構造中に水酸基を多く含む樹脂からなるコーティング層であれば耐薬品性に優れることを見出した。また、構造中に水酸基を含むUV(紫外線)硬化型樹脂のUV照射前の重量平均分子量(Mw)が6.0×103以上であれば、高い耐薬品性を維持しつつ、高い伸び率を維持できることを見出した。そして、このようなコーティング層樹脂の水酸基量のコントロールで耐薬品性を得られるため、成型性に優れる伸び率の高い樹脂を用いることにより、成型性と耐薬品性の両立が可能であり、成型用コーティングフィルムの延伸後の耐薬品性にも優れることを見出した。
 すなわち、本発明者は、以下の構成を有する発明によって上記課題を解決できることを見出した。
 本発明の構成は以下のとおりである。
As a result of intensive studies to solve the above problems, the present inventor is a cause of chemical marks caused by lactic acid components contained in human sebum, sweat, oil components contained in sunscreen creams, lotions, etc. It was found that a coating layer made of a resin containing many hydroxyl groups in the structure is excellent in chemical resistance. In addition, if the weight average molecular weight (Mw) before UV irradiation of a UV (ultraviolet) curable resin containing a hydroxyl group in the structure is 6.0 × 10 3 or more, high elongation is maintained while maintaining high chemical resistance. I found out that I can do it. And since chemical resistance can be obtained by controlling the amount of hydroxyl groups in the coating layer resin, it is possible to achieve both moldability and chemical resistance by using a resin with high moldability and high elongation. Has been found to be excellent in chemical resistance after stretching of the coating film.
That is, the present inventor has found that the above problems can be solved by an invention having the following configuration.
The configuration of the present invention is as follows.
 第1の発明は、アクリルフィルム上に、構造中に水酸基を有する重量平均分子量(Mw)が6.0×103以上1.0×104以下の多官能アクリレート系樹脂を含む電離放射線硬化型樹脂組成物からなるコーティング層を形成した成型用コーティングフィルムであって、前記コーティング層表面の赤外分光スペクトルの3200~3500cm-1領域の面積が、1650~1750cm-1領域の面積の0.3倍以上1.0倍以下であることを特徴とする成型用コーティングフィルムである。 The first invention is an ionizing radiation curable resin composition comprising a polyfunctional acrylate resin having a weight average molecular weight (Mw) of 6.0 × 10 3 or more and 1.0 × 10 4 or less having a hydroxyl group in the structure on an acrylic film. a molding coated film formed a coating layer, an area of 3200 ~ 3500 cm -1 region of the infrared spectrum of the coating layer surface, 1650 ~ 1750 cm -1 or 0.3 times the area of the region 1 made. It is a coating film for molding characterized by being 0 times or less.
 第2の発明は、上記第1の発明において、前記多官能アクリレート系樹脂は、主鎖がウレタン樹脂組成物で側鎖に(メタ)アクリロイル基を有するウレタンアクリレート系樹脂であることを特徴とする成型用コーティングフィルムである。
 第3の発明は、上記第1又は第2の発明において、前記コーティング層の膜厚が、1μm~3μmの範囲であることを特徴とする成型用コーティングフィルムである。
According to a second invention, in the first invention, the polyfunctional acrylate resin is a urethane acrylate resin having a urethane resin composition having a main chain and a (meth) acryloyl group in a side chain. It is a coating film for molding.
A third invention is the coating film for molding according to the first or second invention, wherein the coating layer has a thickness in the range of 1 μm to 3 μm.
 第4の発明は、上記第1乃至第3のいずれかの発明において、前記電離放射線硬化型樹脂組成物を含有する塗料を前記アクリルフィルムに乾燥塗膜厚1~3μmで塗工後、紫外線または電子線照射により硬化させた幅10mm×長さ80mmの試験片を作製し、温度120℃で、当該試験片を引張速度50mm/分、チャック間距離40mmにて引っ張った際に、前記電離放射線硬化型樹脂組成物からなるコーティング層にクラックが入るまでの伸び率が200%以上(JIS K5600-5-4に規定する試験法準拠)であることを特徴とする成型用コーティングフィルムである。 According to a fourth invention, in any one of the first to third inventions, after applying the paint containing the ionizing radiation curable resin composition to the acrylic film with a dry coating thickness of 1 to 3 μm, A test piece having a width of 10 mm and a length of 80 mm cured by electron beam irradiation was prepared, and when the test piece was pulled at a temperature of 120 ° C. and a tensile speed of 50 mm / min and a distance between chucks of 40 mm, the ionizing radiation curing was performed. It is a molding coating film characterized by having an elongation of 200% or more (according to a test method specified in JIS K5600-5-4) until a crack occurs in a coating layer made of a mold resin composition.
 第5の発明は、上記第1乃至第4のいずれかの発明において、前記アクリルフィルムが、メタクリル酸メチル単位を50~100重量%、その他の単位を0~50重量%含む熱可塑性アクリル樹脂を20~100重量部含む樹脂組成物を成型したものであることを特徴とする成型用コーティングフィルムである。 A fifth invention is the thermoplastic acrylic resin according to any one of the first to fourth inventions, wherein the acrylic film contains 50 to 100% by weight of methyl methacrylate units and 0 to 50% by weight of other units. A molding coating film characterized by molding a resin composition containing 20 to 100 parts by weight.
 第6の発明は、上記第1乃至第5のいずれかの発明において、前記アクリルフィルムが、ゴム成分を含むものであることを特徴とする成型用コーティングフィルムである。
 第7の発明は、上記第6の発明において、前記ゴム成分が、アクリル酸エステルを主成分とする架橋重合体からなる弾性体層を1層以上含む単層または多層構造のコア層と、メタクリル酸エステルを主成分とするシェル層からなるコアシェル構造を有するゴム粒子であることを特徴とする成型用コーティングフィルムである。
A sixth invention is a coating film for molding according to any one of the first to fifth inventions, wherein the acrylic film contains a rubber component.
According to a seventh invention, in the sixth invention, the rubber component has a single-layer or multi-layer core layer including one or more elastic layers made of a crosslinked polymer mainly composed of an acrylate ester; A molding coating film characterized by being rubber particles having a core-shell structure comprising a shell layer containing an acid ester as a main component.
 第8の発明は、上記第1乃至第7のいずれかの発明において、インモールド成型用またはインサート成型用あるいは3次元ラミネート成型用の表面加飾フィルム又は表面保護フィルムであることを特徴とする成型用コーティングフィルムである。 An eighth invention is a molding characterized in that in any of the first to seventh inventions, it is a surface decorative film or a surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding. Coating film.
 第9の発明は、上記第1乃至第8のいずれかの発明の成型用コーティングフィルムの少なくとも一面に、印刷、着色あるいは加飾層を有することを特徴とする成形体表面保護あるいは加飾用のフィルムである。
 第10の発明は、上記第1乃至第8のいずれかの発明の成型用コーティングフィルムの少なくとも一面に凹凸を有する表面形状を有することを特徴とする成形体表面保護あるいは加飾用のフィルムである。
According to a ninth aspect of the present invention, there is provided a printed article for surface protection or decoration, comprising a printing, coloring or decorative layer on at least one surface of the molding coating film of any one of the first to eighth aspects of the invention. It is a film.
A tenth aspect of the present invention is a film for surface protection or decoration of a molded article, characterized in that it has a surface shape having irregularities on at least one surface of the molding coating film of any one of the first to eighth aspects of the invention. .
 第11の発明は、上記第1乃至第10のいずれかの発明のフィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した、自動車内装用の加飾シートまたは加飾パネルである。
 第12の発明は、上記第1乃至第10のいずれかの発明のフィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した、携帯用電子機器、音響機器もしくは電機製品用の筐体または表面の加飾あるいは保護パネルである。
In an eleventh aspect of the invention, there is provided a decorative sheet or decoration for automobile interior, in which the film of any one of the first to tenth aspects of the invention is laminated on the surface of a sheet or molded body containing a thermoplastic resin or a thermosetting resin. It is a decorative panel.
According to a twelfth aspect of the present invention, there is provided a portable electronic device, an acoustic device or an electric device in which the film of any one of the first to tenth aspects of the invention is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin. It is a decorative or protective panel for a product casing or surface.
 本発明によれば、アクリルフィルム上に、構造中に水酸基を有する重量平均分子量(Mw)が6.0×103以上1.0×104以下である多官能アクリレート系樹脂を含む電離放射線硬化型樹脂組成物からなるコーティング層を形成し、前記コーティング層表面の赤外分光スペクトルの3200~3500cm-1領域の面積が、1650~1750cm-1領域の面積の0.3倍以上1.0倍以下であることにより、成型性(伸長性)と耐薬品性(特に成型後の伸張された状態における耐薬品性)に優れる成型用コーティングフィルムを提供することができる。とくに前述の日焼け止め用のクリーム、ローションなどに含まれる油脂成分に対する耐薬品性を向上させることができる。 According to the present invention, an ionizing radiation curable resin composition comprising a polyfunctional acrylate-based resin having a weight average molecular weight (Mw) having a hydroxyl group in the structure of 6.0 × 10 3 or more and 1.0 × 10 4 or less on an acrylic film. The area of the 3200 to 3500 cm −1 region of the infrared spectrum of the coating layer surface is 0.3 to 1.0 times the area of the 1650 to 1750 cm −1 region. Thus, it is possible to provide a molding coating film having excellent moldability (extension) and chemical resistance (particularly chemical resistance in a stretched state after molding). In particular, chemical resistance to the oil and fat components contained in the sunscreen creams and lotions described above can be improved.
 また、前記多官能アクリレート系樹脂は、主鎖がウレタン樹脂組成物で側鎖に(メタ)アクリロイル基を有するウレタンアクリレート系樹脂であることが本発明の効果を高める上で好適である。
 また、前記コーティング層の膜厚が、1μm~3μmの範囲であることが本発明の効果を高める上で好適である。
 また、成型用コーティングフィルムの上記伸び率が200%以上であることが本発明の効果を良好に発現する上で好適である。
The polyfunctional acrylate-based resin is preferably a urethane acrylate-based resin having a urethane resin composition having a main chain and a (meth) acryloyl group in a side chain in order to enhance the effects of the present invention.
In addition, the film thickness of the coating layer is preferably in the range of 1 μm to 3 μm from the viewpoint of enhancing the effects of the present invention.
Moreover, it is suitable when the said elongation rate of the coating film for shaping | molding is 200% or more, when expressing the effect of this invention favorably.
 また、前記アクリルフィルムが、メタクリル酸メチル単位を50~100重量%、その他の単位を0~50重量%含む熱可塑性アクリル樹脂を20~100重量部含む樹脂組成物を成型したものであることが本発明の効果を高める上で好適である。
 また、前記アクリルフィルムが、ゴム成分を含むものであることが本発明の効果を高める上で好適である。この場合、上記ゴム成分が、アクリル酸エステルを主成分とする架橋重合体からなる弾性体層を1層以上含む単層または多層構造のコア層と、メタクリル酸エステルを主成分とするシェル層からなるコアシェル構造を有するゴム粒子であることが好ましい。
The acrylic film may be formed by molding a resin composition containing 20 to 100 parts by weight of a thermoplastic acrylic resin containing 50 to 100% by weight of methyl methacrylate units and 0 to 50% by weight of other units. This is suitable for enhancing the effect of the present invention.
Moreover, it is suitable for improving the effect of this invention that the said acrylic film contains a rubber component. In this case, the rubber component is composed of a core layer having a single layer or a multilayer structure including one or more elastic layers made of a crosslinked polymer mainly composed of an acrylate ester, and a shell layer mainly composed of a methacrylate ester. It is preferable that the rubber particles have a core-shell structure.
 本発明の成型用コーティングフィルムは、インモールド成型用またはインサート成型用あるいは3次元ラミネート成型用の表面加飾フィルム又は表面保護フィルムとして好適である。
 また、本発明の成型用コーティングフィルムは、その少なくとも一面に、印刷、着色あるいは加飾層を有する成形体表面保護あるいは加飾用のフィルムとして好適である。
 また、本発明の成型用コーティングフィルムは、その少なくとも一面に凹凸を有する表面形状を有する成形体表面保護あるいは加飾用のフィルムとして好適である。
The coating film for molding of the present invention is suitable as a surface decorative film or surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding.
Moreover, the coating film for molding of the present invention is suitable as a film for protecting the surface of a molded product having a printing, coloring or decorative layer on at least one surface thereof.
Further, the molding coating film of the present invention is suitable as a film for protecting the surface of a molded article having a surface shape having irregularities on at least one surface thereof or for decorating.
 また、本発明に係る上記の各フィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した積層体は、自動車内装用の加飾シートまたは加飾パネルとして好適である。
 また、本発明に係る上記の各フィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した積層体は、携帯用電子機器、音響機器もしくは電機製品用の筐体または表面の加飾あるいは保護パネルとして好適である。
Moreover, the laminated body which laminated | stacked said each film based on this invention on the surface of the sheet | seat or molded object containing a thermoplastic resin or a thermosetting resin is suitable as a decoration sheet or a decoration panel for motor vehicle interior. .
In addition, a laminate in which each of the films according to the present invention is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin is a casing for a portable electronic device, an acoustic device, or an electrical product, Suitable for surface decoration or protective panel.
 以下、本発明を実施するための形態について詳細に説明するが、本発明は以下の実施の形態に限定されるわけではない。
 本発明の一実施の形態の成型用コーティングフィルムは、基材フィルムであるアクリルフィルム上にコーティング層を形成したものであり、このコーティング層は、構造中に水酸基を有する多官能アクリレート系樹脂を含む電離放射線硬化型樹脂組成物からなる。
 以下、構成を詳しく説明する。
Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not necessarily limited to the following embodiment.
The molding coating film according to one embodiment of the present invention is obtained by forming a coating layer on an acrylic film as a base film, and this coating layer includes a polyfunctional acrylate resin having a hydroxyl group in the structure. It consists of an ionizing radiation curable resin composition.
Hereinafter, the configuration will be described in detail.
 [アクリルフィルム]
 まず、上記アクリルフィルムについて説明する。
 本発明の成形用コーティングフィルムの基材フィルムにはアクリルフィルムが好ましく使用できる。基材フィルムにアクリルフィルムを使用することにより、本発明の成形用コーティングフィルムの透明性、耐候性、表面硬度、熱成形時における延伸性、二次成形性が優れたものになり、また、ポリカーボネート樹脂、アクリル系樹脂、ASA樹脂、ABS樹脂、AS樹脂などのスチレン系樹脂、飽和もしくは不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンオキシド樹脂、ポリアセタール樹脂、ポリ乳酸樹脂、セルロースアシレート系樹脂、オレフィン-(メタ)アクリル酸誘導体の共重合体樹脂などの熱可塑性樹脂あるいは熱硬化性樹脂、更にはこれらを用いた繊維/フィラー強化複合材、などからなる加飾基体に対する密着性が優れたものになる。
[Acrylic film]
First, the acrylic film will be described.
An acrylic film can be preferably used for the base film of the coating film for molding of the present invention. By using an acrylic film as the base film, the coating film for molding of the present invention has excellent transparency, weather resistance, surface hardness, stretchability during thermoforming, and secondary moldability, and polycarbonate. Resins, acrylic resins, ASA resins, ABS resins, AS resins and other styrene resins, saturated or unsaturated polyester resins, vinyl ester resins, epoxy resins, polyamide resins, polyphenylene sulfide resins, polyphenylene oxide resins, polyacetal resins, polylactic acid Decoration made of thermoplastic resin such as resin, cellulose acylate resin, olefin- (meth) acrylic acid derivative copolymer resin or thermosetting resin, and fiber / filler reinforced composite material using these. The adhesion to the substrate is excellent.
 本発明に使用されるアクリルフィルムに用いるアクリル樹脂としては、従来公知のものが使用出来るが、硬度、成形性の観点から、メタクリル酸メチル単位50~100重量%、およびその他の構造単位0~50重量%からなる熱可塑性アクリル重合体を20~100重量部含むことが好ましい。その他の構造単位としては、例えば、アクリル酸メチル、アクリル酸ブチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸β-ヒドロキシエチル、アクリル酸フェノキシエチル、アクリル酸ベンジル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、アクリル酸等のアクリル酸誘導体、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸フェノキシエチル、メタクリル酸イソボルニル、メタクリル酸ジシクロペンテニル、メタクリル酸グリシジル、メタクリル酸アダマンチル、メタクリル酸等のメタクリル酸誘導体、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデンなどが挙げられる。これらは単独で使用してもよいし、2種以上が併用されてもよい。 As the acrylic resin used in the acrylic film used in the present invention, conventionally known ones can be used. From the viewpoint of hardness and moldability, methyl methacrylate units of 50 to 100% by weight and other structural units of 0 to 50 are used. It is preferable to contain 20 to 100 parts by weight of a thermoplastic acrylic polymer consisting of% by weight. Other structural units include, for example, methyl acrylate, butyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, β-hydroxyethyl acrylate, phenoxyethyl acrylate , Benzyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate, acrylic acid derivatives such as acrylic acid, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, phenyl methacrylate , Benzyl methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, glycidyl methacrylate, adamantyl methacrylate Examples include methacrylic acid derivatives such as methacrylic acid, vinyl cyanides such as acrylonitrile and methacrylonitrile, aromatic vinyl derivatives such as styrene, vinyltoluene, and α-methylstyrene, and vinylidene halides such as vinylidene chloride and vinylidene fluoride. . These may be used alone or in combination of two or more.
 アクリル樹脂の製造方法は、特に限定されず、公知の懸濁重合法、塊状重合法、溶液重合法、乳化重合法、分散重合法等の公知の重合法が適用可能である。 The method for producing the acrylic resin is not particularly limited, and known polymerization methods such as a known suspension polymerization method, bulk polymerization method, solution polymerization method, emulsion polymerization method, and dispersion polymerization method are applicable.
 また、アクリル樹脂の耐熱性や剛性、表面硬度などを改善するため、特定の構造を有する単位を共重合や官能基修飾、変性などにより導入してもよい。このような特定の構造としては、たとえば、特開昭62-89705号や特開平02-178310号、WO2005/54311号などに示されているような、グルタルイミド構造、特開2004-168882号や特開2006-171464号などに示されているような、ラクトン環構造、特開2004-307834号に示されているような、(メタ)アクリル酸単位や、これが熱的に縮合環化して得られるグルタル酸無水物構造、また特開平5-119217号に示されているようなマレイン酸無水物単位、WO2009/84541号に示されるようなN-置換マレイミド単位などがあげられる。たとえばこれらの構造をアクリル樹脂に導入することで、分子鎖がより剛直となり、本発明の成形用コーティングフィルムの耐熱性の向上、表面硬度の向上、加熱収縮の低減、耐薬品性や耐汚染性の向上などの効果が期待できる。 Also, in order to improve the heat resistance, rigidity, surface hardness and the like of the acrylic resin, a unit having a specific structure may be introduced by copolymerization, functional group modification or modification. Examples of such a specific structure include a glutarimide structure such as those disclosed in JP-A-62-89705, JP-A-02-178310, WO2005 / 54311, JP-A-2004-168882, and the like. A lactone ring structure as shown in JP-A No. 2006-171464, a (meth) acrylic acid unit as shown in JP-A No. 2004-307835, and a product obtained by thermal condensation cyclization thereof. And a glutaric anhydride structure, a maleic anhydride unit as shown in JP-A-5-119217, and an N-substituted maleimide unit as shown in WO2009 / 84541. For example, by introducing these structures into an acrylic resin, the molecular chain becomes more rigid, improving the heat resistance of the molding coating film of the present invention, improving the surface hardness, reducing heat shrinkage, chemical resistance and stain resistance. It can be expected to improve the effect.
 さらに、本発明の目的を損なわないか、もしくは補強する範囲で、アクリル樹脂に対して、アクリル樹脂と少なくとも部分的に相溶性を有する熱可塑性樹脂を併用しても差し支えない。このような熱可塑性樹脂としては、たとえば、スチレン-アクリロニトリル樹脂、スチレン-(メタ)アクリル酸樹脂、スチレン-無水マレイン酸樹脂、スチレン-N置換または非置換マレイミド樹脂、スチレン-アクリロニトリル-ブタジエン樹脂、スチレン-アクリロニトリル-アクリル酸エステル樹脂等のスチレン系樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、非晶質の飽和ポリエステル樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリアリレート樹脂、オレフィン-(メタ)アクリル酸誘導体樹脂、セルロースアシレート等のセルロース誘導体、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリ乳酸樹脂、PHBH樹脂、等が挙げられる。これらの中では、スチレン系樹脂やポリカーボネート樹脂が、アクリル樹脂との相溶性に優れ、本発明の成形用コーティングフィルムの耐折り曲げ割れ性、耐溶剤性、低吸湿性などを向上できる可能性があることから好ましい。 Furthermore, a thermoplastic resin that is at least partially compatible with the acrylic resin may be used in combination with the acrylic resin as long as the object of the present invention is not impaired or reinforced. Examples of such thermoplastic resins include styrene-acrylonitrile resins, styrene- (meth) acrylic resins, styrene-maleic anhydride resins, styrene-N substituted or unsubstituted maleimide resins, styrene-acrylonitrile-butadiene resins, styrene. -Styrenic resins such as acrylonitrile-acrylic ester resin, polyvinyl chloride resin, polycarbonate resin, amorphous saturated polyester resin, polyamide resin, phenoxy resin, polyarylate resin, olefin- (meth) acrylic acid derivative resin, cellulose Examples thereof include cellulose derivatives such as acylate, vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acetal resin, polylactic acid resin, and PHBH resin. Among these, styrene-based resins and polycarbonate resins have excellent compatibility with acrylic resins, and may improve the bending crack resistance, solvent resistance, low moisture absorption, etc. of the molding coating film of the present invention. Therefore, it is preferable.
 本発明に使用されるアクリル樹脂は、ゴム成分を含有したアクリル樹脂組成物であることがより好ましい。このようなゴム成分としては、例えば、アクリル酸エステル系架橋弾性体[アクリル酸エステルを主成分とした重合体からなる架橋弾性体]の粒子の存在下にビニル重合性単位を重合して得られた硬質の外層部を有するコアシェル型グラフト共重合体を用いることが好ましい。 The acrylic resin used in the present invention is more preferably an acrylic resin composition containing a rubber component. Such a rubber component can be obtained, for example, by polymerizing vinyl polymerizable units in the presence of particles of an acrylate ester-based cross-linked elastic body [cross-linked elastic body comprising a polymer mainly composed of an acrylate ester]. It is preferable to use a core-shell type graft copolymer having a hard outer layer portion.
 更に好ましくは、特開2003-73520号に示されているような、特定の粒子径及び架橋密度を有するアクリル酸エステル系架橋弾性体粒子を用いたアクリル系弾性体グラフト共重合体や、あるいは特公昭55-27576号や特許第3563166号などに示されるような、例えば、架橋ゴム粒子の内部に硬質の架橋アクリル粒子を含有する硬質-軟質-硬質の多層構造を有するアクリル系弾性体グラフト共重合体を含有するアクリル樹脂組成物を用いることが好ましい。このようなアクリル系弾性体グラフト共重合体を含有するアクリル樹脂組成物を用いることで、本発明の成形用コーティングフィルムを、透明性、耐熱性、表面硬度、耐折り曲げ割れ性、耐折曲げ白化性、および熱成形時における延伸性、二次成形性などの物性のバランスに優れたフィルムとすることが出来る。 More preferably, as shown in JP-A-2003-73520, an acrylic elastic graft copolymer using acrylic ester-based crosslinked elastic particles having a specific particle diameter and crosslinking density, or a special Acrylic elastic graft copolymer having a hard-soft-hard multilayer structure containing hard crosslinked acrylic particles inside the crosslinked rubber particles, for example, as shown in Japanese Patent Publication No. 55-27576 and Japanese Patent No. 3563166 It is preferable to use an acrylic resin composition containing a coalescence. By using an acrylic resin composition containing such an acrylic elastomeric graft copolymer, the molding coating film of the present invention can be made transparent, heat resistant, surface hardness, bending crack resistance, and bending whitening resistance. And a film having an excellent balance of physical properties such as stretchability and secondary formability during thermoforming.
 本発明に好ましく用いられるアクリル系弾性体グラフト共重合体としては、一層以上のアクリル酸エステル系架橋弾性体からなる層を含有する一層または2層以上の層構造を有するアクリル酸エステル系架橋弾性体粒子の存在下に、メタクリル酸エステル50~100重量%および共重合可能な他のビニル系単量体0~50重量%からなる単量体混合物(b)を共重合して得られるものが好ましい。2層以上の構造を有するアクリル酸エステル系架橋弾性体粒子中で、アクリル酸エステル系架橋弾性体層はいずれの層に存在しても良いが、最外層がアクリル酸エステル系架橋弾性体層である事が、耐折曲げ割れ性の向上のためにより好ましい。 As the acrylic elastomer graft copolymer preferably used in the present invention, an acrylic ester crosslinked elastomer having a layer structure of one layer or two or more layers containing a layer composed of one or more acrylic ester crosslinked elastomers. Those obtained by copolymerizing a monomer mixture (b) comprising 50 to 100% by weight of a methacrylic acid ester and 0 to 50% by weight of another copolymerizable vinyl monomer in the presence of particles are preferred. . In the acrylic ester-based crosslinked elastic particles having a structure of two or more layers, the acrylic ester-based crosslinked elastic layer may be present in any layer, but the outermost layer is an acrylate-based crosslinked elastic layer. It is more preferable to improve the bending cracking resistance.
 アクリル酸エステル系架橋弾性体には、アクリル酸エステル、必要に応じて共重合可能な他のビニル系単量体、および、共重合可能な1分子あたり2個以上の非共役二重結合を有する多官能性単量体からなる単量体混合物(a)を重合させてなるものを好ましく使用できる。単量体および多官能性単量体を全部混合(1段重合)して使用してもよく、また、単量体および多官能性単量体の組成を変化させて2回以上(2段重合以上)に分けて使用してもよい。 The acrylic ester-based crosslinked elastic body has an acrylic ester, other vinyl monomers that can be copolymerized as required, and two or more non-conjugated double bonds per copolymerizable molecule. What polymerized the monomer mixture (a) which consists of a polyfunctional monomer can be used preferably. Monomers and polyfunctional monomers may all be mixed (one-stage polymerization) and used more than once (two-stage polymerization) by changing the composition of the monomer and polyfunctional monomer. The polymerization may be used separately.
 アクリル酸エステル系架橋弾性体に使用するアクリル酸エステルとしては、アクリル酸アルキルエステルが好ましく、アルキル基の炭素数1~12のものを特に好ましく用いることができる。好ましい単量体の具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソボルニル、アクリル酸シクロヘキシル、アクリル酸ドデシル等があげられる。これらは、単独で使用してもよく、2種以上を併用してもよい。アクリル酸エステル系架橋弾性体におけるアクリル酸エステルの量は、単量体混合物(a)100重量%において50~99.9重量%が好ましく、70~99.9重量%がより好ましく、80~99.9重量%が最も好ましい。アクリル酸エステル量が50~99.9重量%であれば、架橋弾性体が良好なゴム弾性を有し、本発明の成形用コーティングフィルムが耐折り曲げ割れ性や耐衝撃性に優れ、二次成形時の伸びが良好になる傾向がある。 As the acrylic ester used in the acrylic ester-based crosslinked elastic body, an alkyl acrylate is preferable, and an alkyl group having 1 to 12 carbon atoms can be particularly preferably used. Specific examples of preferable monomers include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isobornyl acrylate, acrylic acid Examples include cyclohexyl and dodecyl acrylate. These may be used alone or in combination of two or more. The amount of the acrylate ester in the acrylate ester-based crosslinked elastic body is preferably 50 to 99.9 wt%, more preferably 70 to 99.9 wt%, based on 100 wt% of the monomer mixture (a), and 80 to 99 .9% by weight is most preferred. When the amount of acrylic ester is 50 to 99.9% by weight, the crosslinked elastic body has good rubber elasticity, the molding coating film of the present invention has excellent bending crack resistance and impact resistance, and secondary molding. Elongation tends to be good.
 前記アクリル酸エステル系架橋弾性体における共重合可能な他のビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸フェノキシエチル、メタクリル酸イソボルニル、メタクリル酸ジシクロペンテニル等のメタクリル酸エステル、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、アクリル酸β-ヒドロキシエチル、アクリル酸フェノキシエチル、アクリル酸ベンジル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、アクリルアミド、N-メチロ-ルアクリルアミド等のアクリル酸誘導体、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸カルシウム等のメタクリル酸およびその塩、メタクリルアミド、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等のメタクリル酸誘導体、無水マレイン酸、N-アルキルマレイミド、N-フェニルマレイミド等のマレイン酸誘導体などが挙げられる。これらは単独で使用してもよいし、2種以上が併用されてもよい。これらのうちでも、耐候性、透明性の点より、アクリル酸エステル、メタクリル酸エステルおよび芳香族ビニル誘導体が特に好ましい。前記アクリル酸エステル系架橋弾性体における共重合可能な他のビニル系単量体の量は、単量体混合物(a)100重量%において0~49.9重量%が好ましく、0~30重量%がより好ましく、0~20重量%が最も好ましい。他のビニル系単量体の量が49.9重量%を超えると、耐折り曲げ割れ性や耐衝撃性が低下し、二次成形時の伸びが低下し、成形加工や切削の際にクラックが発生しやすくなる場合がある。 Examples of other copolymerizable vinyl monomers in the acrylic ester-based crosslinked elastomer include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-methacrylate -Methacrylic esters such as butyl, phenyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, vinyl halides such as vinyl chloride and vinyl bromide, acrylonitrile, methacrylate. Vinyl cyanides such as ronitrile, vinyl esters such as vinyl formate, vinyl acetate and vinyl propionate, aromatic vinyl derivatives such as styrene, vinyltoluene and α-methylstyrene, vinylidene chloride, vinylidyl fluoride Vinylidene halides such as acrylic acid, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate and salts thereof, β-hydroxyethyl acrylate, phenoxyethyl acrylate, benzyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate Acrylic acid derivatives such as acrylamide and N-methylol acrylamide, methacrylic acid and salts thereof such as methacrylic acid, sodium methacrylate, calcium methacrylate, methacrylamide, β-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, methacryl And methacrylic acid derivatives such as glycidyl acid, and maleic acid derivatives such as maleic anhydride, N-alkylmaleimide, and N-phenylmaleimide. These may be used alone or in combination of two or more. Among these, acrylic acid esters, methacrylic acid esters and aromatic vinyl derivatives are particularly preferable from the viewpoint of weather resistance and transparency. The amount of the other copolymerizable vinyl monomer in the acrylic ester-based crosslinked elastic body is preferably 0 to 49.9% by weight, preferably 0 to 30% by weight, based on 100% by weight of the monomer mixture (a). Is more preferable, and 0 to 20% by weight is most preferable. When the amount of the other vinyl monomer exceeds 49.9% by weight, the bending cracking resistance and impact resistance are lowered, the elongation at the time of secondary molding is lowered, and cracks are caused during molding and cutting. May be more likely to occur.
 アクリル酸エステル系架橋弾性体における共重合可能な1分子あたり2個以上の非共役二重結合を有する多官能性単量体としては、架橋剤及び/又はグラフト交叉剤として通常使用されるものでよい。例えば、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリメチルロールプロパントリメタクリレート、テトロメチロールメタンテトラメタクリレート、ジプロピレングリコールジメタクリレートなどを使用することができる。これらの多官能性単量体は、単独で使用してもよいし、2種以上を併用してもよい。 The polyfunctional monomer having two or more non-conjugated double bonds per molecule that can be copolymerized in the acrylic ester-based crosslinked elastic body is one that is usually used as a crosslinking agent and / or a graft crossing agent. Good. For example, allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate , Trimethylolpropane trimethacrylate, tetromethylolmethane tetramethacrylate, dipropylene glycol dimethacrylate, and the like can be used. These polyfunctional monomers may be used alone or in combination of two or more.
 アクリル酸エステル系架橋弾性体における多官能性単量体の量は、アクリル酸エステル系架橋弾性体の平均粒子径と共に、折り曲げや引張変形時の白化性(応力白化)、二次成形の伸び量、透明性などに大きく影響する。アクリル酸エステル系架橋弾性体における上記多官能性単量体の配合量は、単量体混合物(a)100重量%において0.1~10重量%が好ましく、1.0~4重量%がより好ましい。多官能性単量体の配合量が0.1~10重量%であれば、耐折り曲げ白化性および成形時における樹脂の流動性の観点から好ましい。多官能性単量体の配合量が0.1重量%未満では、耐折り曲げ白化性や透明性が悪化する可能性がある。多官能性単量体の配合量が10重量%以上では耐折り曲げ割れ性や耐衝撃性、透明性等が低下する場合がある。 The amount of the polyfunctional monomer in the acrylate-based crosslinked elastic body is the average particle diameter of the acrylate-based crosslinked elastic body, the whitening property during bending and tensile deformation (stress whitening), and the amount of elongation in secondary molding. , Greatly affects transparency. The blending amount of the polyfunctional monomer in the acrylate-based crosslinked elastic body is preferably 0.1 to 10% by weight, more preferably 1.0 to 4% by weight in 100% by weight of the monomer mixture (a). preferable. A blending amount of the polyfunctional monomer of 0.1 to 10% by weight is preferable from the viewpoint of bending whitening resistance and resin fluidity during molding. If the blending amount of the polyfunctional monomer is less than 0.1% by weight, the bending whitening resistance and transparency may be deteriorated. If the blending amount of the polyfunctional monomer is 10% by weight or more, the bending crack resistance, impact resistance, transparency and the like may be lowered.
 前記アクリル系弾性体グラフト共重合体は、前記アクリル酸エステル系架橋弾性体粒子の存在下に、メタクリル酸エステル50~100重量%および共重合可能な他のビニル系単量体0~50重量%からなる単量体混合物(b)をグラフト共重合させて得られるものが好ましい。より好ましくは、アクリル酸エステル系架橋弾性体粒子5~90重量部の存在下に、メタクリル酸アルキルエステル50~100重量%および共重合可能な他のビニル系単量体0~50重量%からなる単量体混合物(b)95~10重量部を少なくとも1段階以上でグラフト共重合させることにより得られるものである。ただし、アクリル酸エステル系架橋弾性体粒子および単量体混合物(b)の合計量が100重量部を満たすものとする。 In the presence of the acrylic ester-based crosslinked elastic particles, the acrylic elastomer-grafted copolymer is 50 to 100% by weight of methacrylic acid ester and 0 to 50% by weight of other copolymerizable vinyl monomers. Those obtained by graft copolymerization of a monomer mixture (b) comprising: More preferably, in the presence of 5 to 90 parts by weight of acrylic ester-based crosslinked elastic particles, it consists of 50 to 100% by weight of an alkyl methacrylate and 0 to 50% by weight of another copolymerizable vinyl monomer. The monomer mixture (b) is obtained by graft copolymerization of 95 to 10 parts by weight in at least one stage. However, the total amount of the acrylic ester-based crosslinked elastic particles and the monomer mixture (b) shall satisfy 100 parts by weight.
 単量体混合物(b)中のメタクリル酸アルキルエステルの配合量は、硬度、剛性の点で、50重量%以上が好ましく、60重量%以上がより好ましく、80重量%以上がさらに好ましい。メタクリル酸アルキルエステルとしては、メタクリル酸メチルが重合性、アクリル樹脂との相溶性の点で特に好ましい。共重合可能な他のビニル系単量体としては、前記アクリル酸エステル系架橋弾性体の製造において共重合可能な他のビニル系単量体、あるいはアルキル基の炭素数が1~12であるアクリル酸アルキルエステルが同様に使用可能である。具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸n-オクチル、スチレン、アクリロニトリル、(メタ)アクリル酸、N-置換マレイミド類等があげられる。これらの単量体は、単独で使用してもよく、2種以上を併用してもよい。 The blending amount of the methacrylic acid alkyl ester in the monomer mixture (b) is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 80% by weight or more in terms of hardness and rigidity. As the methacrylic acid alkyl ester, methyl methacrylate is particularly preferred from the viewpoint of polymerizability and compatibility with acrylic resin. Other vinyl monomers that can be copolymerized include other vinyl monomers that can be copolymerized in the production of the acrylic ester-based crosslinked elastic body, or acrylic monomers having 1 to 12 carbon atoms in the alkyl group. Acid alkyl esters can be used as well. Specific examples include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, styrene, acrylonitrile, (Meth) acrylic acid, N-substituted maleimides and the like. These monomers may be used independently and may use 2 or more types together.
 アクリル系弾性体グラフト共重合体の製造においては、アクリル酸エステル系架橋弾性体粒子の存在下における単量体混合物(b)のグラフト共重合に際して、アクリル酸エステル系架橋弾性体粒子に対してグラフト結合していない重合体成分(フリーポリマー)が生じる場合がある。このようなフリーポリマーは、本発明のアクリル樹脂組成物及びアクリルフィルムのマトリクス相を構成するアクリル樹脂の一部または全部を構成するものとして使用できる。 In the production of the acrylic elastomeric graft copolymer, the grafting of the monomer mixture (b) in the presence of the acrylic ester-based crosslinked elastomeric particles is grafted onto the acrylic ester-based crosslinked elastomeric particles. An unbound polymer component (free polymer) may occur. Such a free polymer can be used as what constitutes a part or all of the acrylic resin constituting the matrix phase of the acrylic resin composition and acrylic film of the present invention.
 単量体混合物(b)には、重合体の分子量の制御および、上記のフリーポリマーの生成量を制御する目的で、連鎖移動剤を加えても良い。連鎖移動剤は、通常ラジカル重合に用いられるものの中から選択して用いればよいが、たとえば炭素数2~20のアルキルメルカプタン、メルカプト酸類、チオフェノール、四塩化炭素あるいはそれらの混合物などが好ましい。連鎖移動剤の使用量は、単量体混合物(b)の総量100重量部に対して、0~2重量部、好ましくは0~0.5重量部を使用する。 A chain transfer agent may be added to the monomer mixture (b) for the purpose of controlling the molecular weight of the polymer and the amount of the free polymer produced. The chain transfer agent may be selected from those usually used for radical polymerization, and for example, alkyl mercaptan having 2 to 20 carbon atoms, mercapto acids, thiophenol, carbon tetrachloride or a mixture thereof is preferable. The chain transfer agent is used in an amount of 0 to 2 parts by weight, preferably 0 to 0.5 parts by weight, based on 100 parts by weight of the total amount of the monomer mixture (b).
 アクリル系弾性体グラフト共重合体の製造におけるアクリル酸エステル系架橋弾性体粒子に対する単量体混合物(b)のグラフト率は、5~250%が好ましく、10~220%がより好ましく、20~200%がさらに好ましい。グラフト率が5%未満では耐折曲げ白化性、透明性、二次成形時の伸びが低下し、成形加工や切削の際にクラックが発生しやすくなる傾向がある。250%を超えると、アクリルフィルム成形時の溶融粘度が高くなり、成形性が低下する傾向がある。 In the production of the acrylic elastic graft copolymer, the graft ratio of the monomer mixture (b) to the acrylate-based crosslinked elastic particles is preferably 5 to 250%, more preferably 10 to 220%, and more preferably 20 to 200. % Is more preferable. If the graft ratio is less than 5%, the bending whitening resistance, transparency, and elongation at the time of secondary molding are lowered, and cracks tend to occur during molding and cutting. If it exceeds 250%, the melt viscosity at the time of acrylic film molding tends to be high, and the moldability tends to decrease.
 アクリル系弾性体グラフト共重合体の平均粒子径dは10nm~400nmが好ましく、30nm~350nmがより好ましく、50nm~300nmがさらに好ましい。アクリル系弾性体グラフト共重合体の平均粒子径が10nm未満では、耐折曲げ割れ性や耐衝撃性が低下する傾向がある。400nmを超えるとフィルムの透明性や耐折り曲げ白化性が悪化する傾向にある。ここでのアクリル系弾性体グラフト共重合体の平均粒子径は、日機装株式会社製 Microtrac粒度分布測定装置MT3000を使用し、ラテックス状態で光散乱法を用いて測定した値である。 The average particle diameter d of the acrylic elastic body graft copolymer is preferably 10 nm to 400 nm, more preferably 30 nm to 350 nm, and further preferably 50 nm to 300 nm. When the average particle diameter of the acrylic elastic graft copolymer is less than 10 nm, the bending crack resistance and impact resistance tend to decrease. If it exceeds 400 nm, the transparency of the film and the bending whitening resistance tend to deteriorate. The average particle diameter of the acrylic elastic graft copolymer here is a value measured using a light scattering method in a latex state using a Nikkiso Co., Ltd. Sakai Microtrac particle size distribution analyzer MT3000.
 アクリル酸エステル系架橋弾性体粒子の平均粒子径d(nm)と、アクリル酸エステル系架橋弾性体に用いられる多官能性単量体の量w(重量%)とは、アクリルフィルムやコーティングフィルムの耐折り曲げ白化性(応力白化)、引張破断時の伸び、あるいは透明性に大きく影響する為、関係式:0.02d≦w≦0.06dを満たすものであることが好ましく、0.02d≦w≦0.05dを満たすものであることがより好ましい。多官能性単量体の量が、上記関係式の範囲であれば、本発明の成形用コーティングフィルムの二次成形時の伸びが低下しにくく、成形加工や切削の際にクラックが生じにくく、透明性に優れ、かつ折り曲げや引張変形の際に応力白化が生じ難い、といった利点を有する。 The average particle diameter d (nm) of the acrylic ester-based crosslinked elastic particles and the amount w (% by weight) of the polyfunctional monomer used in the acrylic ester-based crosslinked elastic body are the same as those of the acrylic film or coating film. In order to greatly affect the bending whitening resistance (stress whitening), the elongation at the time of tensile rupture, or the transparency, it preferably satisfies the relational expression: 0.02d ≦ w ≦ 0.06d, and 0.02d ≦ w More preferably, ≦ 0.05d is satisfied. If the amount of the polyfunctional monomer is within the range of the above relational expression, the elongation at the time of secondary molding of the molding coating film of the present invention is less likely to decrease, and cracks are less likely to occur during molding or cutting, It has an advantage that it is excellent in transparency, and stress whitening hardly occurs during bending or tensile deformation.
 アクリルフィルムにこのような利点を付与する場合には、アクリル酸エステル系架橋弾性体粒子は、使用する多官能性単量体の量が上記の関係式を満たすとともに、平均粒子径dは50~250nmが好ましく、50~200nmがより好ましく、50~150nmがさらに好ましく、60~120nmが特に好ましい。アクリル酸エステル系架橋弾性体粒子の平均粒子径dが50nm以上であれば、本発明の成形用コーティングフィルムの二次成形時の伸びが低下しにくく、成形加工や切削の際にクラックが生じにくくる。また250nm以下であれば、応力白化が生じ難く、透明性、特に真空成形、圧空成形、インサート成形等の二次成形後の透明性(加熱前後の透明性保持)を優れたものにすることができる。 When such an advantage is imparted to the acrylic film, the amount of the polyfunctional monomer used in the acrylate-based crosslinked elastic particles satisfies the above relational expression, and the average particle diameter d is 50 to 50%. 250 nm is preferable, 50 to 200 nm is more preferable, 50 to 150 nm is further preferable, and 60 to 120 nm is particularly preferable. If the average particle diameter d of the acrylic ester-based crosslinked elastic particles is 50 nm or more, the elongation during secondary molding of the coating film for molding of the present invention is unlikely to decrease, and cracks are unlikely to occur during molding or cutting. The If it is 250 nm or less, stress whitening hardly occurs, and transparency, particularly transparency after secondary molding such as vacuum molding, pressure molding, insert molding, etc. (maintaining transparency before and after heating) should be excellent. it can.
 前記アクリル系弾性体グラフト共重合体の製造方法は、特に限定されず、公知の乳化重合法、乳化-懸濁重合法、懸濁重合法、塊状重合法、溶液重合法または分散重合法等が適用可能であるが、乳化重合法が特に好ましい。 The method for producing the acrylic elastomer graft copolymer is not particularly limited, and a known emulsion polymerization method, emulsion-suspension polymerization method, suspension polymerization method, bulk polymerization method, solution polymerization method or dispersion polymerization method may be used. Although applicable, the emulsion polymerization method is particularly preferred.
 アクリル系弾性体グラフト共重合体の重合における開始剤としては、公知の有機系過酸化物、無機系過酸化物、アゾ化合物などの開始剤を使用することができる。具体的には、t-ブチルハイドロパ-オキサイド、1,1,3,3-テトラメチルブチルハイドロパ-オキサイド、スクシン酸パ-オキサイド、パ-オキシマレイン酸t-ブチルエステル、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等の有機系過酸化物や、過硫酸カリウム、過硫酸ナトリウム等の無機系過酸化物、さらにアゾビスイソブチロニトリル等のアゾ化合物も使用される。これらは単独で用いてもよく、2種以上併用してもよい。これらの開始剤は、熱分解型のラジカル重合開始剤として使用してもよく、またあるいは亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、アスコルビン酸、ヒドロキシアセトン酸、硫酸第一鉄、硫酸第一鉄とエチレンジアミン四酢酸-2-ナトリウムの錯体などの還元剤と組み合わせた通常のレドックス型重合開始剤として使用してもよい。これらの中でも、重合安定性、粒子径制御の点から、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機系過酸化物を用いるか、もしくは、t-ブチルハイドロパーオキサイドやクメンハイドロパーオキサイド等の有機経過酸化物を2価の鉄塩等の無機系還元剤および/またはホルムアルデヒドスルホキシル酸ナトリウム、還元糖、アスコルビン酸等の水溶性還元剤と組み合わせたレドックス系開始剤を使用するのがより好ましい。上記の無機過酸化物あるいは有機系過酸化物は、重合系に直接添加する方法、単量体に溶解混合して添加する方法、水溶液または乳化分散液として添加する方法など、公知の添加法で添加することができる。 As an initiator in the polymerization of the acrylic elastic body graft copolymer, known initiators such as organic peroxides, inorganic peroxides, and azo compounds can be used. Specifically, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, succinic acid peroxide, peroxymaleic acid t-butyl ester, cumene hydroperoxide, Organic peroxides such as benzoyl peroxide and lauroyl peroxide, inorganic peroxides such as potassium persulfate and sodium persulfate, and azo compounds such as azobisisobutyronitrile are also used. These may be used alone or in combination of two or more. These initiators may be used as thermal decomposition type radical polymerization initiators, or alternatively sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, hydroxyacetone acid, ferrous sulfate, sulfuric acid It may be used as a normal redox type polymerization initiator in combination with a reducing agent such as a complex of ferrous iron and ethylenediaminetetraacetic acid-2-sodium. Among these, inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate are used from the viewpoint of polymerization stability and particle diameter control, or t-butyl hydroperoxide, cumene hydroperoxide, etc. It is more preferable to use a redox initiator in which an organic transition oxide is combined with an inorganic reducing agent such as a divalent iron salt and / or a water-soluble reducing agent such as sodium formaldehyde sulfoxylate, reducing sugar or ascorbic acid. preferable. The above inorganic peroxide or organic peroxide may be added by a known addition method such as a method of directly adding to a polymerization system, a method of adding by dissolving and mixing in a monomer, a method of adding as an aqueous solution or an emulsified dispersion. Can be added.
 前記アクリル系弾性体グラフト共重合体の乳化重合に使用される界面活性剤には特に限定はなく、公知の界面活性剤が広く使用できる。例えば、アルキルスルフォン酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム、アルキル硫酸ナトリウム、脂肪酸ナトリウム、アルキルリン酸ナトリウム、アルキルエーテルリン酸ナトリウム、アルキルフェニルエーテルリン酸ナトリウム等の陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物等の非イオン性界面活性剤等が挙げられる。これらの界面活性剤は単独で用いてもよく、2種以上併用してもよい。 The surfactant used for the emulsion polymerization of the acrylic elastic body graft copolymer is not particularly limited, and a known surfactant can be widely used. For example, anionic surface activity such as sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dioctyl sulfosuccinate, sodium alkyl sulfate, fatty acid sodium, sodium alkyl phosphate, sodium alkyl ether phosphate, sodium alkyl phenyl ether phosphate And nonionic surfactants such as reaction products of alkylphenols, aliphatic alcohols with propylene oxide, and ethylene oxide. These surfactants may be used alone or in combination of two or more.
 乳化重合により得られたアクリル系弾性体グラフト共重合体のラテックスは、公知の方法によりアクリル系弾性体グラフト共重合体を固体として分離、回収することができる。たとえばラテックスに水溶性電解質を添加して凝固後、固形分の洗浄および乾燥の操作により、または、ラテックスの噴霧乾燥、凍結乾燥などによる処理により、アクリル系弾性体グラフト共重合体のパウダーを分離、回収することができる。 The latex of the acrylic elastic graft copolymer obtained by emulsion polymerization can be separated and recovered as a solid from the acrylic elastic graft copolymer by a known method. For example, after adding a water-soluble electrolyte to the latex and coagulating it, the acrylic elastomer graft copolymer powder is separated by washing and drying the solids, or by treatment such as spray drying or freeze drying of the latex. It can be recovered.
 より好ましくは、アクリルフィルムの外観欠陥や内部異物を低減する目的で、アクリル系弾性体グラフト共重合体の分離、回収に先立ち、予めアクリル系弾性体グラフト共重合体のラテックスをフィルターやメッシュでろ過して、環境異物や、重合スケールなどの、異物欠陥原因となる物質を除去することが、アクリルフィルムの外観品質を向上させるために好ましい。このようなフィルターやメッシュとしては、たとえば目開きがアクリル系弾性体グラフト共重合体の平均粒子径よりも2倍以上大きいものであれば良く、液状媒体のろ過に用いられる公知のものが使用可能である。 More preferably, for the purpose of reducing the appearance defects and internal foreign matter of the acrylic film, the latex of the acrylic elastic graft copolymer is previously filtered through a filter or mesh prior to the separation and recovery of the acrylic elastic graft copolymer. In order to improve the appearance quality of the acrylic film, it is preferable to remove substances that cause foreign matter defects such as environmental foreign matter and polymerization scale. As such a filter or mesh, for example, it is sufficient that the mesh is 2 times or more larger than the average particle diameter of the acrylic elastic graft copolymer, and known filters used for filtration of liquid media can be used. It is.
 アクリルフィルムに用いられるアクリル樹脂組成物中のアクリル酸系エステル架橋弾性体の含有量は、5~70重量%が好ましく、5~45重量%がより好ましく、10~30重量%がさらに好ましい。ただし、アクリルフィルム中で、アクリル系弾性体グラフト共重合体およびアクリル樹脂からなるアクリル樹脂組成物の合計量が100重量%であるものとする。アクリル酸系エステル架橋弾性体の含有量が5重量%以上であれば、得られるフィルムの二次成形時の伸びが低下し難く、成形加工や切削の際にクラックが発生し難くなる傾向がある。また70%を超えると溶融流動性が低下し、溶融加工が困難になる。 The content of the acrylic ester-based crosslinked elastic body in the acrylic resin composition used for the acrylic film is preferably 5 to 70% by weight, more preferably 5 to 45% by weight, and still more preferably 10 to 30% by weight. However, in the acrylic film, the total amount of the acrylic resin composition comprising the acrylic elastic graft copolymer and the acrylic resin is 100% by weight. When the content of the acrylic ester-based crosslinked elastic body is 5% by weight or more, the elongation at the time of secondary molding of the obtained film is difficult to decrease, and cracks tend not to occur during molding or cutting. . On the other hand, if it exceeds 70%, the melt fluidity is lowered and the melt processing becomes difficult.
 本発明の成形用コーティングフィルムに使用されるアクリルフィルムの製造方法は、公知の成形加工法が使用できる。例えば、溶融加工法であるインフレーション法やTダイ押出法、あるいはカレンダー成形法、あるいは本発明に使用するアクリル樹脂組成物を溶剤に溶解分散後、ベルト状基材上にフィルム状に流延し溶剤を揮発させることで製膜する溶剤キャスト法等を用いることにより良好に製造される。この中でも、溶剤を使用しない溶融押出法、特にTダイ押出法を用いることが好ましい。溶融押出法によれば、表面製に優れたフィルムを高い生産性で製造でき、さらに製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。 The production method of the acrylic film used for the molding coating film of the present invention can be a known molding method. For example, an inflation method that is a melt processing method, a T-die extrusion method, a calendar molding method, or an acrylic resin composition used in the present invention is dissolved and dispersed in a solvent, and then cast into a film on a belt-like substrate. It can be produced satisfactorily by using a solvent casting method for forming a film by volatilizing. Among these, it is preferable to use a melt extrusion method that does not use a solvent, particularly a T-die extrusion method. According to the melt extrusion method, a film excellent in surface production can be produced with high productivity, and the burden on the global environment and working environment due to production costs and solvents can be reduced.
 より好ましくは、アクリル樹脂組成物を溶融加工法あるいは溶剤キャスト法で加工する際に、フィルター又はメッシュを用いて、アクリルフィルムの外観欠陥や内部異物等の原因となる、アクリル樹脂組成物中の環境異物や重合スケール、劣化樹脂などをろ過し、除去することが、アクリルフィルムの外観品質を向上させる上で好ましい。このようなろ過工程は、たとえば溶融加工時にアクリル樹脂とアクリル系弾性体グラフト共重合体、その他配合物の配合・ペレット化の段階で行っても良く、Tダイ押出法を用いる場合には、Tダイによるフィルム製膜工程の前に行っても良く、その両方を行っても良い。また溶剤キャスト法を用いる場合には、アクリル樹脂とアクリル系弾性体グラフト共重合体の溶液混合後、キャスト製膜を行う前に実施すればよい。このようなフィルターやメッシュとしては、公知のものが広く利用可能である。特に高品質のアクリルフィルムを溶融加工により製造する場合には、リーフディスク型フィルターを用いることが、ろ過効率や生産性の上で好ましい。 More preferably, when the acrylic resin composition is processed by a melt processing method or a solvent casting method, an environment in the acrylic resin composition that causes an appearance defect or internal foreign matter of the acrylic film using a filter or a mesh is used. In order to improve the appearance quality of the acrylic film, it is preferable to filter and remove foreign substances, polymerization scale, deteriorated resin, and the like. Such a filtration step may be performed, for example, at the stage of blending and pelletizing an acrylic resin, an acrylic elastic graft copolymer, and other blends at the time of melt processing. You may perform before the film forming process by die | dye, and you may perform both. When the solvent casting method is used, it may be carried out after the solution mixing of the acrylic resin and the acrylic elastic graft copolymer and before cast film formation. Known filters and meshes can be widely used. In particular, when a high-quality acrylic film is produced by melt processing, it is preferable to use a leaf disk type filter in terms of filtration efficiency and productivity.
 本発明において使用されるアクリルフィルムの製造においては、フィルムを成形加工する際、溶融状態のフィルム両面を冷却ロールまたは金属ベルトに同時に接触させる(挟み込む)ことにより、特にアクリル樹脂組成物のガラス転移温度Tg-50℃以内、好ましくはTg-30℃以内の温度に維持したロールまたは金属ベルトに同時に接触させることにより、表面平滑性の優れたフィルムを得ることも可能である。より好ましくは、このような挟み込みを行うためのロールとして、少なくとも一方をたとえば特開2000-153547号や特開平11-235747号等に開示されたような弾性を有する金属ロールを用いることで、フィルムの残留歪を軽減し、内部歪のより少ないフィルムを得ることが出来る。 In the production of the acrylic film used in the present invention, the glass transition temperature of the acrylic resin composition in particular is obtained by simultaneously contacting (sandwiching) both sides of the molten film with a cooling roll or a metal belt when the film is molded. It is also possible to obtain a film having excellent surface smoothness by simultaneously contacting a roll or metal belt maintained at a temperature within Tg-50 ° C, preferably within Tg-30 ° C. More preferably, as a roll for performing such sandwiching, at least one of the rolls is a metal roll having elasticity as disclosed in, for example, Japanese Patent Laid-Open No. 2000-153547, Japanese Patent Laid-Open No. 11-235747, etc. Can be obtained, and a film with less internal strain can be obtained.
 また、フィルムの剛性の向上などの目的に応じて、フィルムの成形に引続いて、一軸延伸あるいは二軸延伸を行うことも可能である。一軸あるいは二軸延伸は、公知の延伸装置を用いて実施することができる。二軸延伸は、同時二軸延伸、逐次延伸のいずれも用いることが出来る。 Also, depending on the purpose such as improving the rigidity of the film, it is possible to carry out uniaxial stretching or biaxial stretching subsequent to the film formation. Uniaxial or biaxial stretching can be carried out using a known stretching apparatus. For biaxial stretching, both simultaneous biaxial stretching and sequential stretching can be used.
 更に、本発明の成型用コーティングフィルムもしくはこれに使用されるアクリルフィルムは、表面加飾や保護用途の上の必要に応じて、フィルムの片面あるいは両面に、凹凸を有する表面形状、たとえばヘアライン、プリズム、木目調形状、レリーフ、幾何学模様、商標やロゴ、不均一粗面、艶消し表面等の任意の表面形状を付与していても良い。このような表面形状の付与は、公知の方法で実施することが出来る。たとえば、溶融押出直後の溶融状態のフィルム、あるいは繰り出し装置から繰り出された成形済みのフィルムの両面を、少なくとも一方の表面に表面形状を有する2本のロールまたはベルトで挟み込むことにより、フィルム表面にロール表面の形状を転写する方法が挙げられる。表面形状の付与は、基材であるアクリルフィルムに予め行っても良いし、コーティング層の形成後に行っても良い。またコーティング層側、アクリルフィルム層側のいずれに対して行っても良い。 Furthermore, the coating film for molding of the present invention or the acrylic film used therefor is a surface shape having irregularities on one or both sides of the film, for example, hairline, prism, etc. An arbitrary surface shape such as a wood grain shape, a relief, a geometric pattern, a trademark or a logo, a non-uniform rough surface, or a matte surface may be provided. Such surface shape can be imparted by a known method. For example, a roll on the film surface is obtained by sandwiching both sides of a film in a molten state immediately after melt extrusion or a formed film fed from a feeding device with two rolls or belts having a surface shape on at least one surface. A method of transferring the shape of the surface is mentioned. The surface shape may be imparted to the acrylic film as the base material in advance or after the formation of the coating layer. Moreover, you may perform with respect to any of the coating layer side and the acrylic film layer side.
 本発明に使用されるアクリルフィルムには、本発明の効果を損なわない範囲で、アクリル樹脂及びアクリルフィルムに使用される従来公知の添加剤を添加することが出来る。このような添加剤としては、ヒンダードフェノール系、リン系、硫黄系などの酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系などの紫外線吸収剤、ヒンダードアミン系などの光安定剤、ハロゲン系、アンチモン系、リン系、シリコーン系、金属(水)酸化物系などの難燃剤、架橋樹脂粒子や官能基含有樹脂、無機微粒子などの光拡散剤、艶消し剤もしくはアンチブロッキング剤、滑剤、顔料や染料等の着色料、金属や金属酸化物からなる赤外線反射剤、可塑剤、帯電防止剤等が挙げられるが、これに限定されるものではない。これらの添加剤は、アクリルフィルム及び本発明の成形用コーティングフィルムの特長を妨げず、アクリルフィルムと、後述するコーティング層の接着性を阻害しない範囲で、またブリードアウト等により外観を汚染したり、表面加飾や表面保護等の本発明の成形用コーティングフィルムの目的を妨げる事のない範囲で、任意の量を使用することが出来る。 In the acrylic film used in the present invention, conventionally known additives used in acrylic resins and acrylic films can be added within a range not impairing the effects of the present invention. Examples of such additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants, benzotriazole-based, benzophenone-based, triazine-based UV absorbers, hindered amine-based light stabilizers, halogen-based, Flame retardants such as antimony, phosphorus, silicone, and metal (hydroxide) oxides, cross-linked resin particles and functional group-containing resins, light diffusion agents such as inorganic fine particles, matting agents or anti-blocking agents, lubricants, pigments, Examples thereof include, but are not limited to, colorants such as dyes, infrared reflectors composed of metals and metal oxides, plasticizers, and antistatic agents. These additives do not interfere with the features of the acrylic film and the coating film for molding of the present invention, in a range that does not impair the adhesion of the acrylic film and the coating layer described later, and contaminate the appearance by bleeding out, Any amount can be used as long as the purpose of the coating film for molding of the present invention such as surface decoration and surface protection is not hindered.
 本発明において、アクリルフィルムの厚みについては、特に制限はないが、コーティング層の加工条件、及び基材フィルムの経済性、機械的強度、ハンドリング性等の関係から、25μm~250μm程度の範囲であることが好ましい。 In the present invention, the thickness of the acrylic film is not particularly limited, but is in the range of about 25 μm to 250 μm due to the processing conditions of the coating layer and the economics, mechanical strength, handling properties, etc. of the base film. It is preferable.
 アクリルフィルムの表面に対してコロナ処理や低温プラズマ処理等の表面処理、フィルムの走行性の改善を目的とした滑材の添加、アクリルフィルムの成膜時或いは成膜後に熱可塑性樹脂或いは熱硬化性樹脂を用いた易接着処理を行うこともできる。また、帯電防止性を付与する目的で静防処理等も行うことができる。 Surface treatment such as corona treatment and low-temperature plasma treatment on the surface of acrylic film, addition of lubricant for the purpose of improving film runnability, thermoplastic resin or thermosetting during or after acrylic film formation An easy adhesion treatment using a resin can also be performed. In addition, for the purpose of imparting antistatic properties, antistatic treatment and the like can also be performed.
 [コーティング層]
 次に、上記コーティング層について説明する。
 本発明において、コーティング層に含まれる樹脂は、構造中に水酸基を有する重量平均分子量(Mw)が6.0×103以上1.0×104以下の多官能アクリレート系樹脂を含む電離放射線硬化型樹脂である。
 構造中に水酸基を含む樹脂を用いることにより、耐薬品性が得られ、この水酸基間の水素結合のために耐薬品性を向上させることができる。また、重量平均分子量(Mw)が6.0×103以上1.0×104以下の成型性に優れる伸び率の高い多官能アクリレート系樹脂を用いることにより、十分な成型性と耐薬品性(特に成型後の伸張された状態における耐薬品性)の両立が可能である。なお、重量平均分子量(Mw)が6.0×103未満の樹脂を用いると、コーティング層の伸び率が不足する。また、重量平均分子量(Mw)が1.0×104よりも大きな樹脂を用いると、塗工適正が悪くなるなど別の問題が生じる。
[Coating layer]
Next, the coating layer will be described.
In the present invention, the resin contained in the coating layer is an ionizing radiation curable resin containing a polyfunctional acrylate resin having a hydroxyl group in the structure and a weight average molecular weight (Mw) of 6.0 × 10 3 or more and 1.0 × 10 4 or less. .
By using a resin containing a hydroxyl group in the structure, chemical resistance can be obtained, and chemical resistance can be improved due to hydrogen bonding between the hydroxyl groups. In addition, by using a polyfunctional acrylate resin with a high elongation ratio that is excellent in moldability with a weight average molecular weight (Mw) of 6.0 × 10 3 or more and 1.0 × 10 4 or less, sufficient moldability and chemical resistance (especially after molding) (Chemical resistance in a stretched state) is possible. When a resin having a weight average molecular weight (Mw) of less than 6.0 × 10 3 is used, the elongation percentage of the coating layer is insufficient. Further, when a resin having a weight average molecular weight (Mw) larger than 1.0 × 10 4 is used, another problem such as poor coating suitability arises.
 また、多官能アクリレート系樹脂を含む電離放射線硬化型樹脂を用いることにより、特にコーティング層表面に硬度(鉛筆硬度、耐擦傷性)を付与し、また、紫外線の露光量によって架橋度合を調節することが可能であり、コーティング層の伸長性と表面硬度(鉛筆硬度、耐擦傷性)の調節が可能になる。 Also, by using an ionizing radiation curable resin containing a polyfunctional acrylate resin, in particular, the surface of the coating layer is given hardness (pencil hardness, scratch resistance), and the degree of crosslinking is adjusted by the amount of ultraviolet light exposure. It is possible to adjust the stretchability and surface hardness (pencil hardness, scratch resistance) of the coating layer.
 水酸基を有する多官能アクリレート系樹脂は、多価アルコールとイソシアネートモノマーあるいは有機ポリイソシアネート、および水酸基を有する多官能アクリレートモノマーを無溶剤または有機溶剤下で反応させて得ることができる。多価アルコールとしてはアクリルポリオール類、ポリエステルポリオール類、ポリカーボネートポリオール類、エチレングリコール、プロピレングリコールなどが挙げられる。イソシアネートモノマーとしてはトリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートなどが挙げられる。有機ポリイソシアネートとしてはイソシアネートモノマーから合成されるアダクトタイプ、イソシアヌレートタイプ、ビュレットタイプのポリイソシアネートなどが挙げられる。水酸基を有する多官能アクリレートモノマーとしては2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソシアヌル酸エチレンオキシド変性ジアクリレート、ペンタエリスリトールトリ及びテトラアクリレート、ジペンタエリスリトールペンタアクリレートなどが挙げられる。 The polyfunctional acrylate resin having a hydroxyl group can be obtained by reacting a polyhydric alcohol with an isocyanate monomer or organic polyisocyanate and a polyfunctional acrylate monomer having a hydroxyl group in the absence of a solvent or in an organic solvent. Examples of the polyhydric alcohol include acrylic polyols, polyester polyols, polycarbonate polyols, ethylene glycol, and propylene glycol. Examples of the isocyanate monomer include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, and the like. Examples of the organic polyisocyanate include adduct type, isocyanurate type and burette type polyisocyanates synthesized from isocyanate monomers. Examples of the polyfunctional acrylate monomer having a hydroxyl group include 2-hydroxy-3-phenoxypropyl acrylate, isocyanuric acid ethylene oxide-modified diacrylate, pentaerythritol tri- and tetraacrylate, and dipentaerythritol pentaacrylate.
 上記多官能アクリレート系樹脂の中でも、主鎖がウレタン樹脂組成物で側鎖に(メタ)アクリロイル基を有するウレタンアクリレート系樹脂は、高強度で伸びのある強靭性の高い皮膜を形成する樹脂として知られ、本発明の効果をより高めることができるため好適である。また、このウレタンアクリレート系樹脂の重量平均分子量(Mw)は、6.0×103以上1.0×104以下であることが好ましい。 Among the above polyfunctional acrylate resins, urethane acrylate resins having a main chain of urethane resin composition and a side chain having a (meth) acryloyl group are known as resins that form high strength, stretched and tough films. It is preferable because the effects of the present invention can be further enhanced. The urethane acrylate resin preferably has a weight average molecular weight (Mw) of 6.0 × 10 3 or more and 1.0 × 10 4 or less.
 本発明においては、上記コーティング層表面の赤外分光スペクトルの3200~3500cm-1領域の面積が、1650~1750cm-1領域の面積の0.3倍以上1.0倍以下である。 In the present invention, the area of the 3200 to 3500 cm −1 region of the infrared spectrum on the surface of the coating layer is 0.3 to 1.0 times the area of the 1650 to 1750 cm −1 region.
 赤外分光スペクトル(以下、「IRスペクトル」と略記することもある。)の3200~3500cm-1領域は、O-H伸縮振動による吸収領域であり、1650~1750cm-1領域は、C=O伸縮振動による吸収領域である。従って、赤外分光スペクトルの1650~1750cm-1領域の面積に対する3200~3500cm-1領域の面積比は、上記コーティング層を構成する樹脂に含まれるカルボニル基の量を基準とした場合のこれに対する水酸基の量の比を示すことになる。つまり、上記の面積比の値が大きいほど、上記コーティング層を構成する樹脂に含まれる水酸基の量が多いことになる。 The 3200 to 3500 cm −1 region of the infrared spectrum (hereinafter sometimes abbreviated as “IR spectrum”) is an absorption region due to OH stretching vibration, and the 1650 to 1750 cm −1 region is C═O. This is an absorption region due to stretching vibration. Thus, 3200 ~ 3500 cm -1 region area ratio to the area of 1650 ~ 1750 cm -1 region of the infrared spectrum, the hydroxyl group for this case relative to the amount of carbonyl groups contained in the resin constituting the coating layer The ratio of the amount of That is, the larger the area ratio value, the greater the amount of hydroxyl groups contained in the resin constituting the coating layer.
 本発明において、コーティング層の赤外分光スペクトルの測定は、アクリルフィルム上に塗工した後のコーティング層表面に対して行うことができる。すなわち、本発明におけるコーティング層の赤外分光スペクトルは、アクリルフィルム上に塗工した後のコーティング層表面の赤外分光スペクトルを意味する。 In the present invention, the infrared spectrum of the coating layer can be measured on the surface of the coating layer after coating on the acrylic film. That is, the infrared spectrum of the coating layer in the present invention means the infrared spectrum of the coating layer surface after coating on the acrylic film.
 例えば、アクリルフィルム上にコーティング層用塗料を所定の方法にて塗工し、UVまたはEB(電子線)照射により硬化させて形成されたコーティング層表面に対して、赤外分光光度計を用い、ATR法(全反射法)によって赤外分光スペクトル(赤外吸収スペクトル)を測定する。そして、得られた横軸を波数(cm-1)とし、縦軸を吸光度としたスペクトルチャート上において、目的とする官能基由来のピーク範囲(上記の波数領域)にベースラインを引き、このベースラインとスペクトル曲線とで囲まれる面積をピーク面積(上記の波数領域の面積)とすることができる。 For example, an infrared spectrophotometer is used for the coating layer surface formed by applying a coating layer paint on an acrylic film by a predetermined method and curing the coating layer by UV or EB (electron beam) irradiation. An infrared spectrum (infrared absorption spectrum) is measured by the ATR method (total reflection method). Then, on the spectrum chart in which the obtained horizontal axis is the wave number (cm −1 ) and the vertical axis is the absorbance, a base line is drawn to the peak range (the above wave number region) derived from the target functional group. The area surrounded by the line and the spectrum curve can be the peak area (the area of the wave number region).
 本発明では、構造中に水酸基を含む、重量平均分子量(Mw)が6.0×103以上1.0×104以下の多官能アクリレート系樹脂を用いることにより、優れた耐薬品性が得られるが、特にコーティング層表面の赤外分光スペクトルの3200~3500cm-1領域の面積が、1650~1750cm-1領域の面積の0.3倍以上1.0倍以下となるようにすることで耐薬品性、とくに前述の日焼け止め用のクリーム、ローションなどに含まれる油脂成分に対する耐薬品性を向上させることができる。なお、上記の面積比が0.3倍未満であると、耐薬品性が得られないか、あるいは不十分である。また、上記の面積比が1.0倍より大きいと、塗料が調製しにくくなる、塗膜とアクリルフィルムの密着性が不足するなど別の問題が生じる。 In the present invention, excellent chemical resistance can be obtained by using a polyfunctional acrylate resin having a hydroxyl group in the structure and having a weight average molecular weight (Mw) of 6.0 × 10 3 or more and 1.0 × 10 4 or less. area of 3200 ~ 3500 cm -1 region of the infrared spectrum of the coating layer surface, chemical resistance by such a 1.0-fold 0.3-fold or more the area of 1650 ~ 1750 cm -1 region, particularly It is possible to improve the chemical resistance against the oil and fat components contained in the aforementioned sunscreen creams and lotions. If the area ratio is less than 0.3 times, chemical resistance cannot be obtained or is insufficient. Moreover, when said area ratio is larger than 1.0 time, another problem will arise, such as it becomes difficult to prepare a coating material and the adhesiveness of a coating film and an acrylic film becomes insufficient.
 なお、上記コーティング層を構成する上記の多官能アクリレート系樹脂に含まれる水酸基量は、例えば上記のウレタンアクリレート系樹脂の場合、水酸基を有する多官能アクリレートモノマー種や配合比量によって所定に調節することが可能である。 The amount of hydroxyl group contained in the polyfunctional acrylate resin constituting the coating layer is adjusted to a predetermined value depending on the type of polyfunctional acrylate monomer having a hydroxyl group and the blending ratio in the case of the urethane acrylate resin, for example. Is possible.
 本発明のコーティング層に用いられる電離放射線硬化型樹脂は、本発明の効果、すなわち成型性と耐薬品性の効果を阻害しない範囲で、フェノール樹脂、ウレア樹脂、不飽和ポリエステル、エポキシ、ケイ素樹脂等の熱硬化性樹脂、分子内に2個以上の(メタ)アクリロイル基を有する多官能アクリレートなどの電離放射線硬化型樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリエステル等の熱可塑性樹脂を併用することができる。 The ionizing radiation curable resin used in the coating layer of the present invention is a phenol resin, a urea resin, an unsaturated polyester, an epoxy, a silicon resin, etc. within a range that does not impair the effects of the present invention, that is, the moldability and chemical resistance. A thermosetting resin, an ionizing radiation curable resin such as a polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule, and a thermoplastic resin such as polyethylene, polypropylene, polystyrene, polycarbonate, and polyester. it can.
 上記の分子内に2個以上の(メタ)アクリロイル基を有する多官能アクリレートの具体例としては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート、ビスフェノールA ジグリシジルエーテルのジアクリレート、ネオペンチルグリコールジグリシジルエーテルのジアクリレート、1,6-ヘキサンジオールジグリシジルエーテルのジ(メタ)アクリレートなどのエポキシ(メタ)アクリレート、多価アルコールと多価カルボン酸及び/またはその無水物とアクリル酸とをエステル化することによって得ることができるポリエステル(メタ)アクリレート、多価アルコール、多価イソシアネート及び水酸基含有(メタ)アクリレートを反応させることによって得られるウレタン(メタ)アクリレート、ポリシロキサンポリ(メタ)アクリレート等を挙げることができる。 Specific examples of the polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (Meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate and other polyol polyacrylates, bisphenol A diglycidyl ether Epoxy (meth) such as diacrylate, dipentyl glycol diglycidyl ether diacrylate, 1,6-hexanediol diglycidyl ether di (meth) acrylate Polyester (meth) acrylate, polyhydric alcohol, polyvalent isocyanate and hydroxyl group-containing (meth) acrylate obtained by esterifying acrylate, polyhydric alcohol and polyhydric carboxylic acid and / or anhydride thereof and acrylic acid The urethane (meth) acrylate obtained by making this react, polysiloxane poly (meth) acrylate, etc. can be mentioned.
 本発明の成型用コーティングフィルムにおいては、上記多官能アクリレート系樹脂を含む電離放射線硬化型樹脂組成物を含有する塗料を前記アクリルフィルムに乾燥塗膜厚1~3μmで塗工後、紫外線または電子線照射により硬化させた幅10mm×長さ80mmの試験片を作製し、温度120℃下で、当該試験片を引張速度50mm/分にて引っ張った際に、前記電離放射線硬化型樹脂組成物からなるコーティング層にクラックが入るまでの伸び率が200%以上(JIS K5600-5-4に規定する試験法準拠)であることが好ましい。
 ただし、本発明の成型用コーティングフィルムの用途によって、要求される伸び率が異なるので、一概には言えないが、上記のように伸び率が200%以上であれば、あらゆる用途において十分な成型性を備えることができる。
In the molding coating film of the present invention, a coating containing the ionizing radiation curable resin composition containing the polyfunctional acrylate resin is applied to the acrylic film with a dry coating thickness of 1 to 3 μm, and then applied with ultraviolet rays or electron beams. A test piece having a width of 10 mm and a length of 80 mm cured by irradiation is prepared, and when the test piece is pulled at a tensile speed of 50 mm / min at a temperature of 120 ° C., the ionizing radiation curable resin composition is used. It is preferable that the elongation rate until cracks occur in the coating layer is 200% or more (based on the test method specified in JIS K5600-5-4).
However, since the required elongation varies depending on the application of the molding coating film of the present invention, it cannot be generally stated. However, as long as the elongation is 200% or more as described above, sufficient moldability is obtained in all applications. Can be provided.
 また、上記コーティング層に電離放射線硬化型樹脂の光重合開始剤としては、アセトフェノン類、ベンゾ含まれるフェノン類などの公知のものが使用できる。 As the photopolymerization initiator for the ionizing radiation curable resin in the coating layer, known ones such as acetophenones and phenones containing benzo can be used.
 また、上記コーティング層に添加するその他の添加剤として、本発明の効果を損なわない範囲で、消泡剤、表面張力調整剤(レベリング剤)、防汚剤、酸化防止剤、帯電防止剤、紫外線吸収剤、光安定剤等を必要に応じて含有してもよい。 Further, as other additives added to the coating layer, as long as the effects of the present invention are not impaired, an antifoaming agent, a surface tension adjusting agent (leveling agent), an antifouling agent, an antioxidant, an antistatic agent, an ultraviolet ray You may contain an absorber, a light stabilizer, etc. as needed.
 本発明における上記コーティング層は、上述の多官能アクリレート系樹脂を含む電離放射線硬化型樹脂の他に、光重合開始剤、その他の添加剤等を適当な溶媒に溶解、分散した塗料を上記基材フィルム上に塗工、乾燥して形成される。溶媒としては、含有される前記樹脂の溶解性に応じて適宜選択でき、少なくとも固形分(樹脂、重合開始剤、その他添加剤)を均一に溶解あるいは分散できる溶媒であればよい。そのような溶媒としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類( ジクロロメタン、ジクロロエタン等) 、エステル類( 酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類、アミド類などが例示できる。また、溶媒は単独で使用しても2種類以上を混合して使用してもよい。 In the present invention, the coating layer comprises a coating material obtained by dissolving and dispersing a photopolymerization initiator and other additives in an appropriate solvent in addition to the ionizing radiation curable resin containing the polyfunctional acrylate resin. It is formed by coating and drying on a film. The solvent can be appropriately selected depending on the solubility of the resin contained therein, and may be any solvent that can uniformly dissolve or disperse at least solids (resin, polymerization initiator, and other additives). Examples of such a solvent include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons ( Cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (methanol, ethanol, isopropanol, Butanol, cyclohexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides, amides and the like. Moreover, a solvent may be used individually or may be used in mixture of 2 or more types.
 本発明において、上記コーティング層の塗膜厚さは、特に制約されるわけではないが、例えば1~3μmの範囲であることが好適である。塗膜厚さが1μmよりも薄いと十分な耐薬品性が得られなかったり、必要な硬度が得られ難くなる。また、塗膜厚さが3μmよりも厚いと良好な伸長性が得られ難くなる。 In the present invention, the coating thickness of the coating layer is not particularly limited, but is preferably in the range of 1 to 3 μm, for example. If the coating thickness is less than 1 μm, sufficient chemical resistance cannot be obtained, or the required hardness is difficult to obtain. Moreover, when the coating film thickness is thicker than 3 μm, it becomes difficult to obtain good extensibility.
 上記コーティング層の塗工方法については、特に限定はないが、グラビア塗工、マイクログラビア塗工、ファウンテンバー塗工、スライドダイ塗工、スロットダイ塗工など、塗膜厚さの調整が容易な方式で塗工が可能である。なお、塗工したコーティング層の塗膜厚さは、マイクロメーターで実測することにより測定可能である。 The coating layer coating method is not particularly limited, but it is easy to adjust the coating thickness, such as gravure coating, microgravure coating, fountain bar coating, slide die coating, slot die coating, etc. Coating is possible by the method. In addition, the coating film thickness of the applied coating layer can be measured by actually measuring with a micrometer.
 また、本発明の成型用コーティングフィルムにおいては、上記基材フィルムのコーティング層を設けた側とは反対面に、直接あるいは適当なプライマー層を介して印刷層などの加飾層や、着色・接着フィルムなどを設けてもよい。また、コーティング層の上に更にオーバーコート層などを設けることも可能である。 Moreover, in the coating film for molding of the present invention, a decorative layer such as a printing layer or coloring / adhesion is directly or via an appropriate primer layer on the surface opposite to the side on which the coating layer of the base film is provided. A film or the like may be provided. Further, an overcoat layer or the like can be further provided on the coating layer.
 上記加飾層は、例えば絵柄層及び/又は隠蔽層、金属蒸着層等により構成される。ここで、絵柄層は、模様や文字等とパターン状の絵柄を表現するために設けられる層であり、隠蔽層は全面ベタ層であり樹脂等の着色等を隠蔽するために設けられる層である。また、金属蒸着層は、一部或いは全面を金属調に蒸着した層であり、樹脂等の着色等を隠蔽するために設けられる層、或いは樹脂層を金属調に表現することを目的に設けられる層である。 The decorative layer is composed of, for example, a picture layer and / or a concealing layer, a metal vapor deposition layer, and the like. Here, the pattern layer is a layer provided to express a pattern such as a pattern or characters, and the concealing layer is a solid layer, and is a layer provided to conceal the coloring of the resin or the like. . Moreover, a metal vapor deposition layer is the layer which vapor-deposited one part or the whole surface, and is provided for the purpose of expressing the layer provided for concealing coloring etc. of resin etc., or a resin layer in a metal tone. Is a layer.
 上記加飾層(例えば絵柄層及び/又は隠蔽層)は、例えばグラビア印刷、オフセット印刷、スクリーン印刷等の公知の印刷法により形成することができる。また、上記金属蒸着層は、スパッタリングなどの方法で成膜することができる。 The decorative layer (for example, the pattern layer and / or the concealment layer) can be formed by a known printing method such as gravure printing, offset printing, or screen printing. Moreover, the said metal vapor deposition layer can be formed into a film by methods, such as sputtering.
 以上説明したように、本発明の成型用コーティングフィルムでは、アクリルフィルム上に、構造中に水酸基を有する重量平均分子量(Mw)が6.0×103以上1.0×104以下の多官能アクリレート系樹脂を含む電離放射線硬化型樹脂組成物からなるコーティング層を形成し、当該コーティング層表面の赤外分光スペクトルの3200~3500cm-1領域の面積が、1650~1750cm-1領域の面積の0.3倍以上1.0倍以下であることにより、成型性(伸長性)と耐薬品性(特に成型後の伸張された状態における耐薬品性)のいずれにも優れる成型用コーティングフィルムを提供することができる。とくに前述の日焼け止め用のクリーム、ローションなどに含まれる油脂成分に対する耐薬品性を向上させることができる。 As described above, in the molding coating film of the present invention, a polyfunctional acrylate resin having a weight average molecular weight (Mw) having a hydroxyl group in the structure of 6.0 × 10 3 or more and 1.0 × 10 4 or less is formed on the acrylic film. the coating layer formed of an ionizing radiation curable resin composition comprising forming an area of 3200 ~ 3500 cm -1 region of the infrared spectrum of the coating layer surface, 1650 ~ 1750 cm -1 or 0.3 times the area of the region By being 1.0 times or less, it is possible to provide a coating film for molding which is excellent in both moldability (extensibility) and chemical resistance (especially chemical resistance in a stretched state after molding). In particular, chemical resistance to the oil and fat components contained in the sunscreen creams and lotions described above can be improved.
 また、本発明の成型用コーティングフィルムは、インモールド成型用またはインサート成型用あるいは3次元ラミネート成型用の表面加飾フィルム又は表面保護フィルムとして好適である。
 また、本発明の成型用コーティングフィルムは、その少なくとも一面に、印刷、着色あるいは加飾層を有する成形体表面保護あるいは加飾用のフィルムとして好適である。
 また、本発明の成型用コーティングフィルムは、その少なくとも一面に凹凸を有する表面形状を有する成形体表面保護あるいは加飾用のフィルムとして好適である。
Moreover, the coating film for molding of the present invention is suitable as a surface decorative film or a surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding.
Moreover, the coating film for molding of the present invention is suitable as a film for protecting the surface of a molded product having a printing, coloring or decorative layer on at least one surface thereof.
Further, the molding coating film of the present invention is suitable as a film for protecting the surface of a molded article having a surface shape having irregularities on at least one surface thereof or for decorating.
 また、本発明に係る上記の各フィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した積層体は、自動車内装用の加飾シートまたは加飾パネルとして好適である。
 また、本発明に係る上記の各フィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した積層体は、携帯用電子機器、音響機器もしくは電機製品用の筐体または表面の加飾あるいは保護パネルとして好適である。
Moreover, the laminated body which laminated | stacked said each film based on this invention on the surface of the sheet | seat or molded object containing a thermoplastic resin or a thermosetting resin is suitable as a decoration sheet or a decoration panel for motor vehicle interior. .
In addition, a laminate in which each of the films according to the present invention is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin is a casing for a portable electronic device, an acoustic device, or an electrical product, Suitable for surface decoration or protective panel.
 以下、実施例にて本発明を例証するが、本発明を限定することを意図するものではない。
 なお、特に断らない限り、以下に記載する「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。
The following examples illustrate the invention, but are not intended to limit the invention.
Unless otherwise specified, “parts” and “%” described below represent “parts by weight” and “% by weight”, respectively.
[実施例1]
<コーティング層塗料の調製>
 重量平均分子量(Mw)が6.7×103である水酸基含有ウレタンアクリレート系紫外線硬化型樹脂100部、光重合開始剤として1-ヒドロキシ-シクロヘキシル-フェニル-ケトン5部と、光安定化剤として、ビス(1、1、2,6,6-ペンタメチル-4-ピペリジニル)-[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート0.5部と、紫外線吸収剤として、2-[4-[4,6-ビス([1、1‘-ビフェニル]-4-イル)-1,3,5-トリアジン-2-イル]-3-ヒドロキシフェノキシ]プロパン酸イソオクチルエステル0.5部と、フッ素シロキサン系レベリング剤0.3部を酢酸ブチル/n-プロピルアルコール=50/50(重量部)で紫外線硬化型樹脂の塗料中の固形分濃度が20%となるまで希釈し十分攪拌してコーティング層塗料を調製した。
[Example 1]
<Preparation of coating layer paint>
100 parts of a hydroxyl group-containing urethane acrylate UV curable resin having a weight average molecular weight (Mw) of 6.7 × 10 3 , 5 parts of 1-hydroxy-cyclohexyl-phenyl-ketone as a photopolymerization initiator, and bis as a light stabilizer 0.5 parts of (1,1,2,6,6-pentamethyl-4-piperidinyl)-[[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate; 2- [4- [4,6-bis ([1,1′-biphenyl] -4-yl) -1,3,5-triazin-2-yl] -3-hydroxyphenoxy] propane as an ultraviolet absorber 0.5 part of acid isooctyl ester and 0.3 part of fluorosiloxane leveling agent are butyl acetate / n-propyl alcohol = 50/50 (parts by weight) and the solid content concentration in the coating of UV curable resin is 20%. And To prepare a coating layer coating was sufficiently stirred and diluted to.
<成型用アクリルフィルムの作製>
(アクリル系弾性体グラフト共重合体(c1-1)の製造)
 攪拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 200部
・ジオクチルスルフォコハク酸ナトリウム 0.33部
・ソディウムホルムアルデヒドスルフォキシレ-ト 0.15部
・エチレンジアミン四酢酸-2-ナトリウム 0.001部
・硫酸第一鉄 0.00025部
 重合装置内を攪拌しつつ、窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を60℃にし、下記単量体混合物(c1-1a)30部を10重量部/時間の割合で連続的に添加し、添加終了後、さらに0.5時間重合を継続し、アクリル酸エステル系架橋弾性体粒子(平均粒子径d=80nm)を得た。重合転化率は99.5%であった。
 単量体混合物(c1-1a):
・ビニル単量体混合物(アクリル酸ブチル(BA)90%およびメタクリル酸メチル(MMA)10%) 100部
・アリルメタクリレート(AlMA) 1部
・クメンハイドロパーオキサイド(CHP) 0.2部
 その後、ジオクチルスルフォコハク酸ナトリウム0.05重量部を仕込んだ後、内温を60℃にし、ビニル単量体混合物(BA10%およびMMA90%)100部、ターシャリードデシルメルカプタン(t-DM)0.5部およびCHP0.5部からなる単量体混合物(c1-1b)70部を10部/時間の割合で連続的に添加し、さらに1時間重合を継続し、アクリル系弾性体グラフト共重合体(c1-1)(平均粒子径=90nm)を得た。重合転化率は98.2%であった。得られたラテックスを塩化カルシウムで塩析、凝固し、水洗、乾燥してアクリル系弾性体グラフト共重合体の樹脂粉末(c1-1)を得た。
<Production of acrylic film for molding>
(Production of acrylic elastic graft copolymer (c1-1))
The following substances were charged into an 8 L polymerization apparatus equipped with a stirrer.
・ Deionized water 200 parts ・ Dioctyl sodium sulfosuccinate 0.33 parts ・ Sodium formaldehyde sulfoxylate 0.15 parts ・ Ethylenediaminetetraacetic acid-2-sodium 0.001 parts ・ Ferrous sulfate 0.00025 Part While stirring in the polymerization apparatus and sufficiently replacing with nitrogen gas to make it substantially free of oxygen, the internal temperature was set to 60 ° C., and 30 parts of the following monomer mixture (c1-1a) was added to 10 parts by weight. The polymer was continuously added at a rate of / hour, and after completion of the addition, the polymerization was further continued for 0.5 hour to obtain acrylate ester-based crosslinked elastic particles (average particle diameter d = 80 nm). The polymerization conversion rate was 99.5%.
Monomer mixture (c1-1a):
-Vinyl monomer mixture (butyl acrylate (BA) 90% and methyl methacrylate (MMA) 10%) 100 parts-allyl methacrylate (AlMA) 1 part-cumene hydroperoxide (CHP) 0.2 part then dioctyl After charging 0.05 parts by weight of sodium sulfosuccinate, the internal temperature was adjusted to 60 ° C., 100 parts of a vinyl monomer mixture (BA 10% and MMA 90%), 0.5 parts of tarlead decyl mercaptan (t-DM) And 70 parts of a monomer mixture (c1-1b) consisting of 0.5 parts of CHP was continuously added at a rate of 10 parts / hour, and the polymerization was continued for another hour, whereby an acrylic elastomer graft copolymer (c1 -1) (average particle size = 90 nm) was obtained. The polymerization conversion rate was 98.2%. The obtained latex was salted out with calcium chloride, coagulated, washed with water and dried to obtain a resin powder (c1-1) of an acrylic elastic graft copolymer.
(アクリルフィルムの製膜化)
 アクリル系弾性体グラフト共重合体(c1-1)70部およびメタクリル系重合体(住友化学(株)製、スミペックスMM)30部を、ヘンシェルミキサーを用いて混合した後、シリンダ温度を150℃~220℃に温度調整した90mmφ L/D=36 ベント付単軸押出機を使用し、スクリュー回転数90rpm、吐出量190kg/hrにて溶融混練を行い、ストランド状に引き取り、水槽にて冷却後、ペレタイザーを用いて切断して、アクリル系樹脂(C-1)の樹脂ペレットを得た。
 得られたアクリル系樹脂の樹脂ペレット(C-1)を、Tダイ付90mmφ L/D=29 単軸押出機を用いて、シリンダ設定温度170~210℃にて吐出量100kg/hrにて溶融混練し、ダイス温度200-215℃にてTダイより吐出し、吐出された樹脂の両面を金属ロールと弾性金属ロールに同時に接触させて成形し、厚み75μmのアクリルフィルムを得た。
(Making acrylic film)
70 parts of an acrylic elastic graft copolymer (c1-1) and 30 parts of a methacrylic polymer (Sumitex MM, manufactured by Sumitomo Chemical Co., Ltd.) were mixed using a Henschel mixer, and the cylinder temperature was changed from 150 ° C. Using a 90 mmφ L / D = 36 vented single screw extruder adjusted to a temperature of 220 ° C., melt kneading at a screw rotation speed of 90 rpm and a discharge rate of 190 kg / hr, taken into a strand shape, cooled in a water bath, Cutting with a pelletizer gave resin pellets of acrylic resin (C-1).
The obtained acrylic resin resin pellet (C-1) was melted at a cylinder set temperature of 170 to 210 ° C. and a discharge rate of 100 kg / hr using a 90 mmφ L / D = 29 single screw extruder with a T-die. The mixture was kneaded and discharged from a T die at a die temperature of 200 to 215 ° C., and both sides of the discharged resin were simultaneously brought into contact with a metal roll and an elastic metal roll to form an acrylic film having a thickness of 75 μm.
<成型用コーティングフィルムの作製>
 得られた厚さ75μmのアクリルフィルムの片面に上記のコーティング層塗料をバーコーターで塗工し、80℃で1分間熱風乾燥した後、紫外線光量450mJ/m2で硬化させ、膜厚1.4μmのコーティング層を形成し、本実施例の成型用コーティングフィルムを作製した。
<Production of coating film for molding>
The above-mentioned coating layer paint was applied to one side of the obtained 75 μm thick acrylic film with a bar coater, dried with hot air at 80 ° C. for 1 minute, and then cured with an ultraviolet light amount of 450 mJ / m 2 to obtain a film thickness of 1.4 μm. A coating film for molding of this example was produced.
[実施例2]
 コーティング層の膜厚を1.8μmに変更したこと以外は、実施例1と同様にして成型用コーティングフィルムを作製した。
[Example 2]
A molding coating film was produced in the same manner as in Example 1 except that the thickness of the coating layer was changed to 1.8 μm.
[実施例3]
 コーティング層の膜厚を3.0μmに変更したこと以外は、実施例1と同様にして成型用コーティングフィルムを作製した。
[Example 3]
A molding coating film was produced in the same manner as in Example 1 except that the thickness of the coating layer was changed to 3.0 μm.
[比較例1]
 コーティング層塗料に用いた紫外線硬化型樹脂を、重量平均分子量(Mw)が2.5×106の水酸基を含有しないアクリルアクリレート系紫外線硬化型樹脂に変更したこと以外は、実施例1と同様にして成型用コーティングフィルムを作製した。
[Comparative Example 1]
Molded in the same manner as in Example 1 except that the UV curable resin used for the coating layer paint was changed to an acrylic acrylate UV curable resin containing no hydroxyl group with a weight average molecular weight (Mw) of 2.5 × 10 6. A coating film was prepared.
[比較例2]
 コーティング層塗料に用いた紫外線硬化型樹脂を、水酸基含有紫外線硬化型樹脂ヒドロキシブチルアクリレートに変更したこと以外は、実施例1と同様にして成型用コーティングフィルムを作製した。
[Comparative Example 2]
A molding coating film was produced in the same manner as in Example 1 except that the ultraviolet curable resin used for the coating layer coating material was changed to a hydroxyl group-containing ultraviolet curable resin hydroxybutyl acrylate.
[比較例3]
 コーティング層塗料に用いた紫外線硬化型樹脂を、重量平均分子量(Mw)が5.0×103である水酸基含有ウレタンアクリレート系紫外線硬化型樹脂を変更したこと以外は、実施例1と同様にして成型用コーティングフィルムを作製した。
[Comparative Example 3]
The UV curable resin used in the coating layer paint was molded in the same manner as in Example 1 except that the hydroxyl group-containing urethane acrylate UV curable resin having a weight average molecular weight (Mw) of 5.0 × 10 3 was changed. A coating film was prepared.
[比較例4]
 コーティング層の膜厚を0.8μmに変更したこと以外は、実施例1と同様にして成型用コーティングフィルムを作製した。
[Comparative Example 4]
A molding coating film was produced in the same manner as in Example 1 except that the thickness of the coating layer was changed to 0.8 μm.
 以上のようにして作製した実施例及び比較例の各成型用コーティングフィルムを次の項目について評価し、その結果を纏めて後記表1に示した。また、各成型用コーティングフィツムのコーティング層塗料に用いた紫外線硬化型樹脂の重量平均分子量(Mw)及びコーティング層の塗工膜厚についても併せて後記表1に示した。 Each of the molding coating films of Examples and Comparative Examples produced as described above was evaluated for the following items, and the results are summarized in Table 1 below. The weight average molecular weight (Mw) of the ultraviolet curable resin used for the coating layer paint of each molding coating film and the coating film thickness of the coating layer are also shown in Table 1 below.
(1)IR測定及びピーク面積比
 各成型用コーティングフィルムのコーティング層表面に対して、ATR法により赤外分光光度計によって赤外分光スペクトル(赤外吸収スペクトル)を測定した。赤外分光光度計は、FT-IR Spectrometer Spectrum100(株式会社パーキンエルマージャパン)を使用した。得られた横軸を波数(cm-1)とし、縦軸を吸光度としたスペクトルチャート上において、目的とする官能基由来のピーク範囲(上記の3200~3500cm-1領域及び1650~1750cm-1領域)にそれぞれベースラインを引き、このベースラインとスペクトル曲線とで囲まれる面積をピーク面積(上記の各波数領域の面積)とした。そして、3200~3500cm-1領域の面積/1650~1750cm-1領域の面積の値をピーク面積比とした。
(1) IR measurement and peak area ratio With respect to the coating layer surface of each molding coating film, an infrared spectrum (infrared absorption spectrum) was measured by an infrared spectrophotometer by the ATR method. As the infrared spectrophotometer, FT-IR Spectrometer Spectrum 100 (Perkin Elmer Japan Co., Ltd.) was used. On the spectrum chart where the obtained horizontal axis is the wave number (cm -1 ) and the vertical axis is the absorbance, the peak ranges derived from the target functional group (the above 3200 to 3500 cm -1 region and the above 1650 to 1750 cm -1 region) ), A base line was drawn, and an area surrounded by the base line and the spectrum curve was defined as a peak area (area of each of the above wavenumber regions). Then, a 3200 ~ 3500 cm -1 region area / 1650 ~ 1750 cm -1 region value peak area ratio of the area of the.
(2)伸び率
 各成型用コーティングフィルムを、サンプルサイズ幅10mm×長さ80mmの試験片とし、温度120℃で、当該試験片を引張速度50mm/分、チャック間距離40mmで引張り、表面のコーティング層にクラックが入るまでの引張伸度(%)を測定した。
 評価基準は以下のとおりである。「○」を合格とした。
 ○:伸び率が200%以上である。
 ×:伸び率が200%未満である。
(2) Elongation rate Each coating film for molding is made into a test piece having a sample size width of 10 mm × length of 80 mm, and the test piece is pulled at a temperature of 120 ° C. with a pulling speed of 50 mm / min and a distance between chucks of 40 mm to coat the surface. The tensile elongation (%) until the layer cracked was measured.
The evaluation criteria are as follows. “○” was accepted.
○: Elongation rate is 200% or more.
X: Elongation rate is less than 200%.
(3)耐薬品性(未延伸)
 実施例および比較例で得られた各成型用コーティングフィルムから、サンプルサイズ幅10mm×長さ80mmの試験片を採取した。その試験片を未延伸状態のまま、その表面に市販の日焼け止めクリーム「コパトーン(登録商標)を塗布した。その後、80℃環境下で24時間放置してから日焼け止めクリームをふき取り、薬品痕を目視で観察した。
 評価基準は以下のとおりである。「○」を合格とした。
 ○:薬品痕が全く見られない。
 △:薬品痕が若干見られる。
 ×:薬品痕がはっきりと見られる。
(3) Chemical resistance (unstretched)
A test piece having a sample size width of 10 mm and a length of 80 mm was collected from each molding coating film obtained in the examples and comparative examples. The test piece was left unstretched, and a commercially available sunscreen cream “COPATONE (registered trademark)” was applied to the surface. Then, the sample was allowed to stand in an 80 ° C. environment for 24 hours, and then the sunscreen cream was wiped off. It was observed visually.
The evaluation criteria are as follows. “○” was accepted.
○: No chemical marks are seen.
Δ: Some chemical marks are seen.
X: A chemical mark is clearly seen.
(4)耐薬品性(延伸後)
 実施例および比較例で得られた各成型用コーティングフィルムから、上記(3)の場合と同様にサンプルサイズ幅10mm×長さ80mmの試験片を採取した。その試験片を上記(2)の方法で200%(元の長さの3倍)まで延伸してから、上記と同じ方法で日焼け止めクリームを塗布し、80℃環境下で24時間放置した後、日焼け止めクリームをふき取り、薬品痕を目視で観察した。
 評価基準は上記(3)の場合と同様である。
 なお、伸び率200%が得られないサンプルについては、試験を実施しなかった。
(4) Chemical resistance (after stretching)
A test piece having a sample size width of 10 mm × length of 80 mm was collected from each of the molding coating films obtained in Examples and Comparative Examples in the same manner as in the case of (3) above. After the test piece was stretched to 200% (three times the original length) by the method (2) above, sunscreen cream was applied by the same method as described above and allowed to stand in an 80 ° C. environment for 24 hours. The sunscreen cream was wiped off and the chemical marks were visually observed.
The evaluation criteria are the same as in (3) above.
In addition, the test was not implemented about the sample from which the elongation rate of 200% is not obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から明らかなように、本発明の実施例によれば、未延伸、延伸後のいずれの場合においても、また、高温環境下に放置した場合においても、良好な耐薬品性を備えている。したがって、本発明の実施例によれば、耐薬品性と成型性(伸長性)のいずれにも優れる成型用コーティングフィルムが得られる。とくに前述の日焼け止め用のクリーム、ローションなどに含まれる油脂成分に対する耐薬品性に優れる成型用コーティングフィルムが得られる。 As is apparent from the results of Table 1 above, according to the examples of the present invention, good chemical resistance can be obtained both in the unstretched state and after the stretched state, and when left in a high temperature environment. I have. Therefore, according to the Example of this invention, the coating film for shaping | molding which is excellent in both chemical resistance and moldability (elongation property) is obtained. In particular, a molding coating film having excellent chemical resistance against the oil and fat components contained in the aforementioned sunscreen creams and lotions can be obtained.
 これに対し、コーティング層塗料に用いた紫外線硬化型樹脂の重量平均分子量は大きいが、ピーク面積比が0.3未満である比較例1では、伸び率はある程度得られるものの、耐薬品性が劣り、未延伸、延伸後のいずれの場合においても、また高温環境下に放置した場合においては、耐薬品性は得られない。
 また、比較例2では、ピーク面積比が0.3より大きいが、コーティング層塗料に用いた紫外線硬化型樹脂の重量平均分子量が著しく小さいため、伸び率も小さく、また耐薬品性も得られなかった。また、ピーク面積比が0.3以上であるが、コーティング層塗料に用いた紫外線硬化型樹脂の重量平均分子量が6.0×103より小さい比較例3では、未延伸時の耐薬品性は良好だが、伸び率が不足しており、成型性(伸長性)と耐薬品性(特に成型後の伸張された状態における耐薬品性)を両立できない。
 さらに、通常コーティング層塗料が同一である場合、膜厚の変化のみではコーティング層のピーク面積は変化しないが、コーティング層が薄膜化するほど基材フィルムの影響を受けやすくなる。上記比較例4では、コーティング層の薄膜化により、ピーク面積比が0.3未満を示し、伸び率は良好であるものの、耐薬品性がやや劣り、未延伸、延伸後のいずれの場合においても、また高温環境下に放置した場合においては、耐薬品性が不足している。
On the other hand, although the weight average molecular weight of the ultraviolet curable resin used for the coating layer paint is large, the comparative example 1 in which the peak area ratio is less than 0.3 can obtain a certain degree of elongation, but has poor chemical resistance. In either case of unstretched or stretched, and when left in a high temperature environment, chemical resistance cannot be obtained.
In Comparative Example 2, the peak area ratio is larger than 0.3, but the weight average molecular weight of the ultraviolet curable resin used for the coating layer paint is remarkably small, so that the elongation is small and chemical resistance cannot be obtained. It was. Further, in Comparative Example 3 where the peak area ratio is 0.3 or more, but the weight average molecular weight of the ultraviolet curable resin used for the coating layer paint is smaller than 6.0 × 10 3 , the chemical resistance when unstretched is Although it is good, the elongation rate is insufficient, and it is impossible to achieve both moldability (stretchability) and chemical resistance (especially chemical resistance in a stretched state after molding).
Furthermore, when the coating layer coating is usually the same, the peak area of the coating layer does not change only by changing the film thickness, but the coating layer is more susceptible to the influence of the base film as the coating layer becomes thinner. In Comparative Example 4, the peak area ratio is less than 0.3 due to the thinning of the coating layer, and the elongation is good, but the chemical resistance is slightly inferior, and in any case after unstretched or stretched. In addition, when left in a high temperature environment, the chemical resistance is insufficient.

Claims (12)

  1.  アクリルフィルム上に、構造中に水酸基を有する重量平均分子量(Mw)が6.0×103以上1.0×104以下の多官能アクリレート系樹脂を含む電離放射線硬化型樹脂組成物からなるコーティング層を形成した成型用コーティングフィルムであって、前記コーティング層表面の赤外分光スペクトルの3200~3500cm-1領域の面積が、1650~1750cm-1領域の面積の0.3倍以上1.0倍以下であることを特徴とする成型用コーティングフィルム。 On the acrylic film, a coating layer made of an ionizing radiation curable resin composition containing a polyfunctional acrylate resin having a weight average molecular weight (Mw) having a hydroxyl group in the structure of 6.0 × 10 3 or more and 1.0 × 10 4 or less was formed. a molding coated film, said area of 3200 ~ 3500 cm -1 region of the infrared spectrum of the coating layer surface is not more than 1.0 times 0.3 times or more the area of 1650 ~ 1750 cm -1 region A coating film for molding characterized by
  2.  前記多官能アクリレート系樹脂は、主鎖がウレタン樹脂組成物で側鎖に(メタ)アクリロイル基を有するウレタンアクリレート系樹脂であることを特徴とする請求項1に記載の成型用コーティングフィルム。 2. The molding coating film according to claim 1, wherein the polyfunctional acrylate resin is a urethane acrylate resin having a urethane resin composition as a main chain and a (meth) acryloyl group as a side chain.
  3.  前記コーティング層の膜厚が、1μm~3μmの範囲であることを特徴とする請求項1又は2に記載の成型用コーティングフィルム。 The molding coating film according to claim 1 or 2, wherein the coating layer has a thickness in the range of 1 µm to 3 µm.
  4.  前記電離放射線硬化型樹脂組成物を含有する塗料を前記アクリルフィルムに乾燥塗膜厚1~3μmで塗工後、紫外線または電子線照射により硬化させた幅10mm×長さ80mmの試験片を作製し、温度120℃で、当該試験片を引張速度50mm/分、チャック間距離40mmにて引っ張った際に、前記電離放射線硬化型樹脂組成物からなるコーティング層にクラックが入るまでの伸び率が200%以上(JIS K5600-5-4に規定する試験法準拠)であることを特徴とする請求項1乃至3のいずれかに記載の成型用コーティングフィルム。 A coating containing the ionizing radiation curable resin composition was applied to the acrylic film with a dry coating thickness of 1 to 3 μm, and then a test piece having a width of 10 mm and a length of 80 mm was cured by irradiation with ultraviolet rays or electron beams. When the test piece is pulled at a temperature of 120 ° C. at a tensile speed of 50 mm / min and a distance between chucks of 40 mm, the elongation until the coating layer made of the ionizing radiation curable resin composition cracks is 200%. The molding coating film according to any one of claims 1 to 3, which is as described above (based on the test method specified in JIS K5600-5-4).
  5.  前記アクリルフィルムが、メタクリル酸メチル単位を50~100重量%、その他の単位を0~50重量%含む熱可塑性アクリル樹脂を20~100重量部含む樹脂組成物を成型したものであることを特徴とする請求項1乃至4のいずれかに記載の成型用コーティングフィルム。 The acrylic film is obtained by molding a resin composition containing 20 to 100 parts by weight of a thermoplastic acrylic resin containing 50 to 100% by weight of methyl methacrylate units and 0 to 50% by weight of other units. The molding coating film according to any one of claims 1 to 4.
  6.  前記アクリルフィルムが、ゴム成分を含むものであることを特徴とする請求項1乃至5のいずれかに記載の成型用コーティングフィルム。 6. The molding coating film according to claim 1, wherein the acrylic film contains a rubber component.
  7.  前記ゴム成分が、アクリル酸エステルを主成分とする架橋重合体からなる弾性体層を1層以上含む単層または多層構造のコア層と、メタクリル酸エステルを主成分とするシェル層からなるコアシェル構造を有するゴム粒子であることを特徴とする請求項6に記載の成型用コーティングフィルム。 A core-shell structure in which the rubber component is composed of a single-layer or multi-layer core layer including one or more elastic layers made of a crosslinked polymer mainly composed of an acrylate ester, and a shell layer mainly composed of a methacrylate ester. The molding coating film according to claim 6, wherein the molding film is a rubber particle.
  8.  インモールド成型用またはインサート成型用あるいは3次元ラミネート成型用の表面加飾フィルム又は表面保護フィルムであることを特徴とする請求項1乃至7のいずれかに記載の成型用コーティングフィルム。 The molding coating film according to any one of claims 1 to 7, which is a surface decorative film or a surface protective film for in-mold molding, insert molding, or three-dimensional laminate molding.
  9.  請求項1乃至8のいずれかに記載の成型用コーティングフィルムの少なくとも一面に、印刷、着色あるいは加飾層を有することを特徴とする成形体表面保護あるいは加飾用のフィルム。 A film for surface protection or decoration of a molded body, comprising a printed, colored or decorative layer on at least one surface of the coating film for molding according to any one of claims 1 to 8.
  10.  請求項1乃至8のいずれかに記載の成型用コーティングフィルムの少なくとも一面に凹凸を有する表面形状を有することを特徴とする成形体表面保護あるいは加飾用のフィルム。 A film for surface protection or decoration of a molded body, wherein the molding coating film according to any one of claims 1 to 8 has a surface shape having irregularities on at least one surface thereof.
  11.  請求項1乃至10のいずれかに記載のフィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した、自動車内装用の加飾シートまたは加飾パネル。 A decorative sheet or decorative panel for automobile interior, in which the film according to any one of claims 1 to 10 is laminated on the surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin.
  12.  請求項1乃至10にいずれか記載のフィルムを、熱可塑性樹脂または熱硬化性樹脂を含むシートまたは成形体の表面に積層した、携帯用電子機器、音響機器もしくは電機製品用の筐体または表面の加飾あるいは保護パネル。 A casing or a surface for a portable electronic device, an acoustic device, or an electrical product in which the film according to any one of claims 1 to 10 is laminated on a surface of a sheet or a molded body containing a thermoplastic resin or a thermosetting resin. Decorative or protective panel.
PCT/JP2016/072483 2015-08-05 2016-08-01 Formable coating film WO2017022704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017532593A JPWO2017022704A1 (en) 2015-08-05 2016-08-01 Coating film for molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-154795 2015-08-05
JP2015154795 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022704A1 true WO2017022704A1 (en) 2017-02-09

Family

ID=57943202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072483 WO2017022704A1 (en) 2015-08-05 2016-08-01 Formable coating film

Country Status (2)

Country Link
JP (1) JPWO2017022704A1 (en)
WO (1) WO2017022704A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019214200A (en) * 2018-06-08 2019-12-19 三菱ケミカル株式会社 Substrate for inkjet printing, acrylic resin laminate, key holder, strap, and acryl stand
JPWO2019065878A1 (en) * 2017-09-28 2020-11-26 日本製紙株式会社 Hard coat film
WO2022131365A1 (en) * 2020-12-17 2022-06-23 株式会社カネカ Graft copolymer and resin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109773A (en) * 1998-10-01 2000-04-18 Nissha Printing Co Ltd Production of molded product having excellent resistance to weather, abrasion and chemicals
JP2008049524A (en) * 2006-08-23 2008-03-06 Kaneka Corp Laminated film
JP2015038173A (en) * 2013-08-19 2015-02-26 三菱レイヨン株式会社 Photocurable resin composition, laminate sheet, laminate molded article, and method for manufacturing laminate molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109773A (en) * 1998-10-01 2000-04-18 Nissha Printing Co Ltd Production of molded product having excellent resistance to weather, abrasion and chemicals
JP2008049524A (en) * 2006-08-23 2008-03-06 Kaneka Corp Laminated film
JP2015038173A (en) * 2013-08-19 2015-02-26 三菱レイヨン株式会社 Photocurable resin composition, laminate sheet, laminate molded article, and method for manufacturing laminate molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019065878A1 (en) * 2017-09-28 2020-11-26 日本製紙株式会社 Hard coat film
JP7257725B2 (en) 2017-09-28 2023-04-14 日本製紙株式会社 hard coat film
JP2019214200A (en) * 2018-06-08 2019-12-19 三菱ケミカル株式会社 Substrate for inkjet printing, acrylic resin laminate, key holder, strap, and acryl stand
JP7358753B2 (en) 2018-06-08 2023-10-11 三菱ケミカル株式会社 Inkjet printing substrates, acrylic resin laminates, key chains, straps and acrylic stands
WO2022131365A1 (en) * 2020-12-17 2022-06-23 株式会社カネカ Graft copolymer and resin film

Also Published As

Publication number Publication date
JPWO2017022704A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
EP1582538B1 (en) Multilayer structure polymer and resin composition together with acrylic resin film material, acrylic resin laminate film, photocurable acrylic resin film or sheet, laminate film or sheet and laminate molding obtained by laminating thereof
KR101228690B1 (en) Fluororesin film and fluororesin-laminated acrylic resin film
JP7142090B2 (en) GLASS LAMINATE, MANUFACTURING METHOD THEREOF, AND FRONT PLATE OF DISPLAY DEVICE USING THE SAME
JP4406304B2 (en) MULTILAYER STRUCTURE POLYMER AND RESIN COMPOSITION CONTAINING THE SAME, AND Acrylic Resin Film, Acrylic Resin Laminated Film, Photocurable Acrylic Resin Film or Sheet, Laminated Film or Sheet, and Laminated Molded Product Laying These
WO2014041803A1 (en) Acrylic resin film
JP4695561B2 (en) Acrylic resin film, acrylic resin laminated film, photocurable acrylic resin film or sheet, laminated film or sheet, and laminated molded product obtained by laminating them
JP5158852B2 (en) Acrylic resin composition, acrylic resin film, matte acrylic resin film for thermoforming, photocurable acrylic resin film, and laminate obtained by laminating these
JPWO2016199847A1 (en) Laminated film
JP2007283665A (en) Matted acrylic resin film material for thermoforming, production method thereof and laminate including matted acrylic resin film material for thermoforming
JP4307242B2 (en) Acrylic resin film, acrylic resin laminated film, photocurable acrylic resin film or sheet, laminated film or sheet, and laminated molded product obtained by laminating them
WO2017022704A1 (en) Formable coating film
JP4979221B2 (en) Matte acrylic resin film for thermoforming, method for producing the same, and laminate
US11760855B2 (en) Acrylic resin film, laminated film, production method for laminated film, and molded article
JP2006327173A (en) Matt acrylic resin film, manufacturing method thereof and laminated body
US20230416556A1 (en) Laminate and method for producing same
US20230340218A1 (en) Laminate and use thereof
JP7245082B2 (en) ACRYLIC RESIN COMPOSITION FOR FILM AND ACRYLIC RESIN FILM
JP2007062194A (en) Frosted acrylic resin film
JP7477281B2 (en) Laminated film, molded body, and front panel for in-vehicle display
KR102585620B1 (en) Composite sheet having matt metallic surface properties and preparation method thereof
JP2023145141A (en) Functional film for coating resin molding, method for manufacturing the same, resin molding, and method for manufacturing the same
JP2023145140A (en) Functional film for coating resin molding, method for manufacturing the same, resin molding, and method for manufacturing the same
CN116963907A (en) Laminate and method for producing same
JP2007100017A (en) Process for producing matte acrylic resin film, matte acrylic resin film and its laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832983

Country of ref document: EP

Kind code of ref document: A1