WO2017020873A1 - 外力驱动机械关节中运动件的方法 - Google Patents

外力驱动机械关节中运动件的方法 Download PDF

Info

Publication number
WO2017020873A1
WO2017020873A1 PCT/CN2016/100692 CN2016100692W WO2017020873A1 WO 2017020873 A1 WO2017020873 A1 WO 2017020873A1 CN 2016100692 W CN2016100692 W CN 2016100692W WO 2017020873 A1 WO2017020873 A1 WO 2017020873A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
servo motor
moving member
output
moving
Prior art date
Application number
PCT/CN2016/100692
Other languages
English (en)
French (fr)
Inventor
林中尉
Original Assignee
苏州阿福机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州阿福机器人有限公司 filed Critical 苏州阿福机器人有限公司
Priority to US15/742,591 priority Critical patent/US10668632B2/en
Publication of WO2017020873A1 publication Critical patent/WO2017020873A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • B25J19/0029Means for supplying energy to the end effector arranged within the different robot elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39325External force control, additional loop comparing forces corrects position

Definitions

  • the present invention relates to a method of externally driving a moving member in a mechanical joint.
  • the mechanical joint includes a stationary member and a moving member, and a driving mechanism for driving the moving member to move relative to the stationary member;
  • the driving mechanism generally includes an electric motor, and the output shaft of the motor is directly connected to the moving member or indirectly connected to the moving member through a transmission mechanism (such as a speed reducer).
  • the action of the motor directly drives the moving member or drives the moving member to move relative to the stationary member through the transmission mechanism to realize the joint motion.
  • Modern industrial robots generally have at least one mechanical joint that is repeatedly operated by an electric motor. However, for some special purposes, such as to teach the robot, manual movement of the moving member relative to the stationary member is required.
  • the bearings used on the motor, the transmission mechanism (such as the reducer), the resistance of the seal oil seal, the magnetic resistance of the motor itself, and the pre-existing pre-existing of the motor, the transmission mechanism (such as the reducer) Tight force and other reasons cause the system joint itself to have resistance r.
  • the motor and the moving member are decelerated by the speed reducer, assuming that the reduction ratio is i, the resistance to be overcome by driving the moving member is enlarged by a factor of i, so that the moving member is required to move relative to the stationary member by manpower.
  • the great strength can make the moving parts move, or the human beings can make the moving parts move, especially when the mechanical joints are large mechanical joints or mechanical joints with high power.
  • the joint includes a stationary member and a moving member, and a driving mechanism for driving the moving member to move relative to the stationary member;
  • the driving mechanism includes a servo motor, a driver electrically connected to the servo motor to control the servo motor, and an encoder; an output shaft and a moving member of the servo motor Connected
  • the mechanical joint is in a static state
  • the servo motor is in the torque mode
  • the output torque of the servo motor changes with time, so that the moving member has a positive direction or a reverse direction with respect to the stationary member, and the movement
  • the positive and negative directions of the trend change over time
  • the external force drives the moving member to move the moving member relative to the stationary member; the driver determines the moving direction of the moving member according to the output of the encoder; if the moving member moves in the positive direction relative to the stationary member, the servo motor is controlled to stop the output and reduce the resistance through the driver. Torque or output causes the moving member to have a positive torque in the forward direction; if the moving member is relative to When the stationary member moves in the opposite direction, the servo motor is controlled by the driver to stop outputting the drag reducing torque or outputting the assisting torque that causes the moving member to have a tendency to move in the opposite direction.
  • the invention has the beneficial effects that the direction of the movement tendency of the moving member relative to the stationary member is repeatedly changed due to the repeatedly decreasing torque of the output direction of the servo motor.
  • the external force causes the moving member to move in the same direction as the drag reducing torque so that the moving member moves in the same direction, only a small external force is required to cause the moving member to move.
  • static friction is formed between the parts of the mechanical joint; after the moving parts start to move, dynamic friction is formed between the parts of the mechanical joint; since the static frictional force is greater than the dynamic frictional force, the external force required to maintain the moving parts is maintained. Less than the force required to cause the moving member to begin moving.
  • step a The method of driving the moving part in the mechanical joint by the external force, in step a, the torque reducing torque of the servo motor output direction and magnitude changing with time by the driver.
  • the external force drives the moving part in the mechanical joint.
  • the servo motor outputs a boosting torque through a driver, and the assisting torque has a magnitude equal to or smaller than The value of the resistance reduction torque at the moment when the moving member starts moving relative to the stationary member.
  • step a The method of driving the moving part in the mechanical joint by the external force, in step a, the torque reducing torque of the servo motor output direction and the size continuously changing with time by the driver.
  • the external force drives the moving part in the mechanical joint
  • the driving mechanism further comprises a transmission mechanism
  • the power input part of the transmission mechanism is connected with the output shaft of the servo motor
  • the power output part of the transmission mechanism is connected with the moving part.
  • the transmission mechanism includes a speed reducer, and an output shaft of the servo motor is connected to a power input member of the reducer, and a power output member of the speed reducer is connected to the moving member.
  • the speed reducer is including but not limited to a cycloidal pinwheel reducer.
  • the external force drives a method of moving a member in a mechanical joint, the external force being a human hand force.
  • the external force drives the moving part in the mechanical joint.
  • the maximum drag reducing torque in the step a is a maximum value that the moving piece has a positive direction of movement or a direction of movement in the opposite direction with respect to the stationary part but does not move.
  • the external force drives a moving part in the mechanical joint, and the servo motor performs steps a and b on the basis of outputting the balance torque for maintaining the mechanical joint in an equilibrium state; that is, the output torque of the servo motor in the step a It is the combined torque of the balance torque and the drag reduction torque; the output torque of the servo motor in step b is the balance torque or the combined torque of the balance torque and the assist torque.
  • the balance torque is the torque that the mechanical joint loads to maintain equilibrium.
  • the moving member in order to prevent the moving member from moving relative to the stationary member under the action of gravity, the moving member is generally loaded with a balancing torque by the servo motor.
  • the balance torque and the torque direction generated by gravity On the contrary, the size is basically the same, so that the balance torque is balanced with the torque generated by gravity (the algebraic sum of the two is zero), preventing the moving member from moving in the vertical plane under the action of gravity.
  • the servo motor output balance torque is generally not required, or the balance of the servo motor output is not required. The torque is zero.
  • step a the servo motor outputs both the balance torque and the resistance reduction torque.
  • the final output torque of the servo motor is the combined torque of the balance torque and the drag reduction torque.
  • step b while the servo motor outputs the balance torque, the servo motor stops outputting the drag torque or the output assist torque; in other words, step b has both states, one state is that the final output torque of the servo motor is the balance torque. In another state, the final output torque of the servo motor is the combined torque of the balance torque and the assist torque.
  • Figure 1 is a schematic view showing the structure of a robot joint
  • Figure 2 is a schematic block diagram of the robot master, servo motor, etc.
  • Figure 3 is a schematic diagram of the robot joint when the timing is started (the robot is not operating);
  • Figure 5 is a schematic diagram of the robot joint after the robot is operated
  • Figure 7 is a schematic structural view of a mechanical joint
  • Figure 8 is a schematic block diagram of a servo motor of a mechanical joint
  • Figure 9 is a schematic diagram of a robot joint when starting timing (the mechanical joint is not moving).
  • Fig. 10 is a schematic plan view of the mechanical joint after the action.
  • a total of three joints of joints 1-3 are included.
  • the joint 1 includes a fixed seat as the arm 11, an arm 12, a drive mechanism 13 that drives the arm 12 to rotate relative to the fixed seat, a flange 14, and the like.
  • the drive mechanism 13 includes a servo motor 131, a driver 132 electrically connected to the servo motor to control the servo motor, an encoder 133 connected to the servo motor 131, and a speed reducer 134.
  • the flange 14 is fixed to the arm (fixing seat) 11, and the servo motor 131 and the reducer 134 housing are both fixed to the flange 14.
  • the input shaft of the speed reducer 134 is coupled to the output shaft of the servo motor 131; the output shaft of the speed reducer 134 is coupled to the arm 12 by bolts 15.
  • the servo motor 131 operates to drive the arm 12 to rotate in the horizontal plane about the axis 16 with respect to the fixed seat 11 via the speed reducer 134.
  • the stationary part of arm 11 and arm 12 are moving parts.
  • the balance torque n11 output from the servo motor 131 is zero.
  • the joint 2 includes an arm 12, an arm 22, a drive mechanism 23 for driving the arm 12 and the arm 22 to rotate relative to each other, a flange 24, and the like.
  • the drive mechanism 23 includes a servo motor 231, a driver 232 electrically connected to the servo motor to control the servo motor, an encoder 233 connected to the servo motor 231, and a speed reducer 234.
  • the flange 24 is fixed to the arm 22, and the servo motor 231 and the reducer 234 housing are both fixed to the flange 24.
  • the input shaft of the speed reducer 234 is coupled to the output shaft of the servo motor 231; the output shaft of the speed reducer 234 is coupled to the arm 12 by bolts 25.
  • the servo motor 231 operates to rotate the arm 22 relative to the arm 12 about the axis 26 in a horizontal plane by the speed reducer 234.
  • the stationary part of arm 12 arm 22 is a moving piece.
  • the balance torque n21 output from the servo motor 231 is zero.
  • the joint 3 includes an arm 22, an arm 32, a drive mechanism 33 that drives the arm 32 to move up and down with respect to the arm 22, a motor bracket 34, a wire rail, and the like.
  • the drive mechanism 33 includes a servo motor 331, a driver 332 electrically connected to the servo motor to control the servo motor, an encoder 333 connected to the servo motor 331, a coupling 335, a nut screw mechanism, and the like.
  • the nut screw mechanism includes a screw 336 that is rotatably disposed on the screw base 337, a slider holder 338 that is fixed to the arm 22, a nut 339 that is engaged with the screw and fixed to the slider holder 338, and the like.
  • the line rail includes a line rail slider 37 disposed on the slider seat, and a rail 38 slidably engaged with the line rail slider.
  • the motor bracket 34 and the screw seat are both fixed to the arm 32, and the arm 32 is fixed to the rail.
  • the servo motor 331 operates to drive the screw to rotate by the coupling, and since the nut is fixed to the arm 22 through the slider holder, the screw moves up and down with respect to the nut while rotating.
  • the lead screw moves up and down
  • the lead screw holder, the servo motor 333, the arm 32, the guide rail, and the like move up and down with respect to the slider holder (and the arm 22).
  • the line rail is disposed between the slider seat and the arm 32 to guide the up and down movement of the arm.
  • the stationary member of arm 22, arm 32 is a moving member.
  • the servo motor 331 In order to prevent the arm 32, the servo motor 331, the coupling 335, and the like from moving downward with respect to the arm 22 due to gravity, the servo motor 331 outputs a balance torque n31 to cancel the arm 32, the servo motor 331, the coupling 335, and the like.
  • the gravity of the component causes torque to prevent the arm 32 from moving downward under gravity.
  • the main controller 6 is electrically connected to the respective drivers 132, 232, 332, and the outputs of the respective encoders 133, 233, 333 are connected to the main controller.
  • the method of manually driving a moving part in a mechanical joint is as follows:
  • the mechanical joints of the robot are in a static state, and each servo motor is in the torque mode by each driver. It is assumed that the servo motors 131, 231, and 331 output the balance torque while the output magnitude and direction continuously change with the sine law.
  • the resistance torques n12, n22, and n32 have a period of 0.2 s. That is, the final output torques of the servo motors 131, 231, 331 are the combined torques of the balance torques n11, n21, n31 and the drag reduction torques n12, n22, n32.
  • the maximum value of the drag reducing torque n12 is a maximum value such that the arm 22 has a counterclockwise movement tendency (or a clockwise movement tendency) with respect to the arm 12 but does not move.
  • the maximum value of the drag reduction torque n22 is a maximum value that causes the arm 12 to have a counterclockwise movement tendency (or a clockwise movement tendency) with respect to the arm 11, but does not move.
  • the maximum value of the drag reducing torque n32 is the maximum value that causes the arm 32 to have a downward motion with respect to the arm 22 but does not move.
  • the arm 12 Since the direction of the drag reducing torque n12 changes with time, the arm 12 has an alternating horizontal plane with respect to the arm 11. The changing counterclockwise rotation trend and the clockwise rotation trend. Since the direction of the drag reducing torque n22 changes with time, the arm 22 has an alternating clockwise rotation trend and a counterclockwise rotation direction with respect to the arm 12; since the direction of the drag reducing torque n32 changes with time, the arm 32 is opposed to the arm 32 The arm 22 has alternating upward and downward movement trends on the vertical plane. The robot is at rest.
  • the timing is started, and the main controller records the output values of the encoders at every time every 0.01 s.
  • the angle between the arm 12 and the vertical plane 7 is 0° and the angle between the arm 22 and the arm 12 in the horizontal plane is Y0 during the period from 0s to 0.53s.
  • the height of the top of the arm 32 above the level of the arm 22 is H0.
  • the angle between the arm 12 and the vertical plane 7 is X1
  • the angle between the arm 22 and the arm 12 in the horizontal plane is Y1
  • the tip of the arm 32 is higher than the horizontal plane of the arm 22.
  • the height is H1. That is to say, at 0.53 s, joints 1, 2, and 3 begin to move (meaning that the two arms in a joint produce relative motion).
  • the master judges that the arm 12 rotates clockwise with respect to the vertical plane 7 based on the output value of the encoder 133 at 0.53 s.
  • the main controller controls the servo motor 131 through the driver 132 so that the servo motor 131 stops outputting the drag reducing torque n12 from 0.53 s (but the balance torque continues to output), and the output causes the arm 12 to have a clockwise rotation with respect to the arm 11 in the horizontal plane.
  • the boosting torque n13 enables the opponent to operate the robot.
  • the magnitude of the assist torque n13 may be equal to or slightly less than the maximum value of the drag reducing torque n12 that changes sinusally before 0.53 s.
  • the final output torque of the servo motor 131 is the combined torque of the balance torque n11 and the assist torque n13. However, before 0.53 s, the final output torque of the servo motor 131 is the combined torque of the balance torque n11 and the drag reduction torque n12.
  • the master judges that the arm 22 rotates clockwise with respect to the arm 12 based on the output value of the encoder 233 at 0.53 s.
  • the main controller controls the servo motor 231 through the driver 232 so that the servo motor 231 stops outputting the drag reducing torque n22 from 0.53 s (but the balance torque continues to output), and the output causes the arm 22 to have a clockwise rotation with respect to the arm 12 at the horizontal plane.
  • the boosting torque n23 enables the opponent to operate the robot.
  • the assist torque n23 may be equal to or slightly smaller than the maximum value of the drag reducing torque n22 that changes sinusoidally before 0.53 s.
  • the final output torque of the servo motor 231 is the combined torque of the balance torque n21 and the assist torque n23. However, before 0.53 s, the final output torque of the servo motor 231 is the combined torque of the balance torque n11 and the drag reduction torque n22.
  • the main controller judges that the position of the arm 32 with respect to the arm 22 is lowered according to the output value of the encoder 333 at 0.53 s.
  • the main controller controls the servo motor 331 through the driver 332 such that the servo motor 331 stops outputting the drag reducing torque n32 from 0.53 s (but the balance torque continues to output), and the output causes the arm 32 to have a downward direction with respect to the arm 22 on the vertical plane.
  • the driving torque of the moving trend is n33, which enables the opponent to operate the robot.
  • the assist torque n33 may be equal to or slightly smaller than the maximum value of the reduced resistance torque n32 that changes sinusoidally before 0.53 s.
  • the servo motor 331 Due to the balance torque n31 It is always present in steps a, b, that is, the servo motor 331 starts from 0.53 s, and the final output torque of the servo motor 331 is the combined torque of the balance torque n31 and the assist torque n33. However, before 0.53 s, the final output torque of the servo motor 331 is the combined torque of the balance torque n31 and the drag reduction torque n32.
  • a fixed seat as the arm 11, an arm 12, a drive mechanism 13 for rotating the drive arm 12 with respect to the fixed seat, a flange 14, and the like are included.
  • the drive mechanism 13 includes a servo motor 131, a driver 132 electrically connected to the servo motor to control the servo motor, an encoder 133 connected to the servo motor 131, and a speed reducer 134.
  • the output of the encoder 133 is connected to the driver.
  • the flange 14 is fixed to the arm (fixing seat) 11, and the servo motor 131 and the reducer 134 housing are both fixed to the flange 14.
  • the input shaft of the speed reducer 134 is coupled to the output shaft of the servo motor 131; the output shaft of the speed reducer 134 is coupled to the arm 12 by bolts 15.
  • the servo motor 131 operates to drive the arm 12 to rotate in the horizontal plane about the axis 16 with respect to the fixed seat 11 via the speed reducer 134.
  • the stationary part of the arm 11 and the arm 12 are moving parts. Since the balance torque output from the servo motor 131 is zero, it is no longer considered.
  • the method of manually driving a moving part in a mechanical joint is as follows:
  • the drive causes the servo motor to be in the torque mode. It is assumed that the servo motor 131 outputs a resistance reduction torque n12 whose magnitude and direction continuously change with cosine law over time, and the period is 0.4 s. Since the direction of the drag reducing torque n12 changes with time, the arm 12 has an alternating counterclockwise rotation tendency and a clockwise rotation tendency with respect to the arm 11 in the horizontal plane. The joint is at rest.
  • the timing is started, and the driver records the output value of the encoder at every time every 0.01 s.
  • the angle between the arm 12 and the vertical plane 7 is zero during the period from 0 s until the start of 2.40 s.
  • the angle between the arm 12 and the vertical plane 7 is X1. That is to say, at 2.40 s, joint 1 starts to move.
  • the driver judges that the arm 12 is rotated clockwise with respect to the vertical plane 7 based on the output value of the encoder 133 at 2.40 s.
  • the driver 132 controls the servo motor 131 such that the servo motor 131 stops outputting the drag torque n12 from 2.40 s, and outputs a boosting torque n13 that causes the arm 12 to have a clockwise rotation tendency with respect to the arm 11 in the horizontal plane, so as to assist the opponent to operate the joint.
  • the assist torque n13 is equal to the maximum value of the drag reducing torque n12 which is a cosine law change before 2.40 s. That is, the servo motor 131 starts from 2.40 s, and the servo motor 131 outputs the assist torque n13. However, before 2.40 s, the servo motor 131 outputs a drag reducing torque.

Abstract

一种外力驱动机械关节中运动件的方法,能够以较小的力驱动机械关节中的运动件,其中的关节包括静止件、运动件和驱动机构(13);驱动机构包括伺服电机(131)、驱动器(132)、编码器(133);伺服电机与运动件相连;驱动方法为,当关节处于静止状态,伺服电机处于转矩模式,伺服电机输出一方向随时间变化的降阻扭矩;以外力驱动运动件,使得运动件相对于静止件运动;驱动器根据编码器的输出判断运动件运动方向;若运动件相对于静止件是正方向运动,控制伺服电机停止输出降阻扭矩或者输出使得运动件具有正方向运动趋势的助力扭矩;若运动件相对于静止件是反向运动,控制伺服电机停止输出降阻扭矩或者输出使得运动件具有反向运动趋势的助力扭矩。

Description

外力驱动机械关节中运动件的方法 技术领域
本发明涉及外力驱动机械关节中运动件的方法。
背景技术
机械关节包括静止件和运动件、驱动运动件相对静止件运动的驱动机构;驱动机构一般包括电动机,电动机的输出轴直接与运动件相连或者通过传动机构(如减速器)间接与运动件相连。电动机动作,直接带动运动件或者通过传动机构带动运动件相对于静止件运动,实现关节动作。
现代工业用机器人一般至少具有一个机械关节,通过电动机,使得所述机械关节进行重复动作。但为了一些特殊目的,例如为了实现机器人的示教,需要人力操作运动件相对于静止件运动。
但是电动机上、传动机构(如减速器)上等各处使用的轴承、密封油封存在的阻力,电机本身的磁阻,以及电动机上、传动机构(如减速器)上等各处可能存在的预紧力等等各种原因,造成机械关节本身存在系统阻力r。另外,由于电动机、通过减速器带动运动件减速运动,假定减速比是i,那么驱动运动件运动需要克服的阻力就会放大i倍,所以通过人力使得运动件相对于静止件运动时,需要很大的力气才能使得运动件运动,或者尽靠人力根本使得无法运动件运动,尤其是在机械关节是大型机械关节或者功率很大的机械关节时。
发明内容
本发明的目的是提供一种能够以较小的力驱动机械关节中运动件的外力驱动机械关节中运动件的方法。
本发明所述的外力驱动机械关节中运动件的方法,
所述关节包括静止件和运动件、驱动运动件相对静止件运动的驱动机构;驱动机构包括伺服电机、与伺服电机电连接以控制伺服电机的驱动器、编码器;伺服电机的输出轴与运动件相连;
所述外力驱动机械关节中运动件的方法为,
a、机械关节处于静止状态,伺服电机处于转矩模式,通过驱动器使得伺服电机输出方向随时间变化的降阻扭矩,使得运动件相对于静止件具有正方向运动趋势或反方向运动趋势,并且运动趋势的正方向和反方向随时间变化;
b、以外力驱动运动件,使得运动件相对于静止件运动;驱动器根据编码器的输出判断运动件运动方向;如果运动件相对于静止件是正方向运动,则通过驱动器控制伺服电机停止输出降阻扭矩或者输出使得运动件具有正方向运动趋势的助力扭矩;如果运动件相对于 静止件是反方向运动,则通过驱动器控制伺服电机停止输出降阻扭矩或者输出使得运动件具有反方向运动趋势的助力扭矩。
本发明的有益效果:由于伺服电机输出方向反复变化的降阻扭矩,使得运动件相对于静止件的运动趋势的方向也反复变化。当外力使得运动件运动的方向与降阻扭矩使得运动件运动趋势的方向相同时,只需要较小的外力即可使得运动件实现运动。运动件开始运动前,机械关节的各零部件之间形成静摩擦;运动件开始运动后,机械关节的各零部件之间形成动摩擦;由于静摩擦力大于动摩擦力,所以维持运动件运动所需的外力小于使得运动件开始运动所需要的力。因而,在运动件运动后,既使伺服电机停止输出降阻扭矩,仍然只需要较小的外力就能使得运动件保持运动。当然,如果在运动件运动后,伺服电机输出助力扭矩,由于该助力扭矩使得运动件运动趋势的方向与外力使得运动件运动的方向相同,则可进一步减小维持运动件运行所需要的外力。
所述的外力驱动机械关节中运动件的方法,步骤a中,通过驱动器使得伺服电机输出方向和大小随时间变化的降阻扭矩。
所述的外力驱动机械关节中运动件的方法,步骤b中,不管运动件相对于静止件是正方向运动还是反方向运动,均通过驱动器控制伺服电机输出助力扭矩,该助力扭矩的大小等于或小于在运动件相对于静止件开始运动的那一时刻的降阻扭矩值。
所述的外力驱动机械关节中运动件的方法,步骤a中,通过驱动器使得伺服电机输出方向和大小随时间连续变化的降阻扭矩。
所述的外力驱动机械关节中运动件的方法,驱动机构还包括传动机构,传动机构的动力输入件与伺服电机的输出轴相连,传动机构的动力输出件与运动件相连。传动机构包括减速器,伺服电机的输出轴与减速器的动力输入件相连,减速器的动力输出件与运动件相连。减速器为包括但不限于摆线针轮减速器。
所述的外力驱动机械关节中运动件的方法,所述外力为人的手力。
所述的外力驱动机械关节中运动件的方法,步骤a中的降阻扭矩最大值为,使得运动件相对于静止件具有正方向运动趋势或反方向运动趋势但不会运动的最大值。
所述的外力驱动机械关节中运动件的方法,伺服电机在输出维持所述机械关节处于平衡状态的平衡扭矩的基础上,进行步骤a、b;也就是说,步骤a中伺服电机的输出扭矩是平衡扭矩与降阻扭矩的合成扭矩;步骤b中伺服电机的输出扭矩是平衡扭矩或者是平衡扭矩与助力扭矩的合成扭矩。
平衡扭矩是机械关节为了保持平衡状态而加载的扭矩。例如:当一个机械关节中的运动件相对于静止件在竖直面内运动时,为了防止运动件在重力的作用下相对于静止件产生运动,一般通过伺服电机对运动件加载一个平衡扭矩,该平衡扭矩与重力产生的扭矩方向 相反,大小基本相同,这样平衡扭矩与重力产生的扭矩相平衡(两者的代数和为零),防止运动件在重力的作用下在竖直面内运动。当一个机械关节中的运动件相对于静止件在水平面内运动时,因重力不会对于运动件在水平面的移动产生影响,所以一般不需要伺服电机输出平衡扭矩,或者说,伺服电机输出的平衡扭矩为零。
本技术是在伺服电机输出平衡扭矩的基础上,进行步骤a、b。也就是说,步骤a中,伺服电机既输出平衡扭矩,也输出降阻扭矩,换句话说,伺服电机最终的输出扭矩是平衡扭矩与降阻扭矩的合成扭矩。步骤b中,伺服电机在输出平衡扭矩的同时,伺服电机停止输出降阻扭矩或者输出助力扭矩;换句话说,步骤b存在两者状态,一种状态是,伺服电机最终的输出扭矩是平衡扭矩,另一种状态是,伺服电机最终的输出扭矩是平衡扭矩与助力扭矩的合成扭矩。
附图说明
图1是机器人关节的结构示意图;
图2是机器人主控器、伺服电机等原理框图;
图3是开始计时时(机器人未动作)的机器人关节的原理图;
图4是开始计时时(机器人未动作)的关节1、2的俯视原理图;
图5是机器人动作后的机器人关节的原理图;
图6是机器人动作后的关节1、2的俯视原理图;
图7是机械关节的结构示意图;
图8是机械关节的伺服电机等原理框图;
图9是开始计时时(机械关节未动作)的机器人关节的原理图;
图10是机械关节动作后的俯视原理图。
具体实施方式
实施例1:
参见图1所示的机器人包括关节1-3共3个关节。
关节1包括作为手臂11的固定座、手臂12、驱动手臂12相对于固定座转动的驱动机构13、法兰盘14等。驱动机构13包括伺服电机131、与伺服电机电连接以控制伺服电机的驱动器132、与伺服电机131相连的编码器133、减速器134。法兰盘14固定在手臂(固定座)11上,伺服电机131和减速器134壳体均固定在法兰盘14上。减速器134的输入轴与伺服电机131的输出轴相连;减速器134输出轴与手臂12通过螺栓15相连。伺服电机131动作,通过减速器134带动手臂12相对于固定座11绕轴线16在水平面内转动。对于关节1来说,手臂11的静止件,手臂12是运动件。伺服电机131输出的平衡扭矩n11为零。
关节2包括手臂12、手臂22、驱动手臂12和手臂22相对转动的驱动机构23、法兰盘24等。驱动机构23包括伺服电机231、与伺服电机电连接以控制伺服电机的驱动器232、与伺服电机231相连的编码器233、减速器234。法兰盘24固定在手臂22上,伺服电机231和减速器234壳体均固定在法兰盘24上。减速器234的输入轴与伺服电机231的输出轴相连;减速器234输出轴与手臂12通过螺栓25相连。伺服电机231动作,通过减速器234带动手臂22相对于手臂12绕轴线26在水平面内转动。对于关节2来说,手臂12的静止件,手臂22是运动件。伺服电机231输出的平衡扭矩n21为零。
关节3包括手臂22、手臂32、驱动手臂32相对于手臂22上下移动的驱动机构33、电机支架34、线轨等。驱动机构33包括伺服电机331、与伺服电机电连接以控制伺服电机的驱动器332、与伺服电机331相连的编码器333、联轴器335、螺母丝杆机构等。螺母丝杆机构包括转动设置在丝杠座337上的丝杠336、固定在手臂22上的滑块座338、与丝杠配合并固定在滑块座338上的螺母339等。线轨包括设置在滑块座上的线轨滑块37、与线轨滑块上下滑动配合的导轨38。电机支架34和丝杠座均固定在手臂32上,手臂32与导轨固定。伺服电机331动作,通过联轴器驱动丝杠转动,由于螺母通过滑块座固定在手臂22上,所以丝杠在转动的同时相对于螺母上下移动。丝杠上下移动时,丝杠座、伺服电机333、手臂32、导轨等一起相对于滑块座(和手臂22)上下移动。线轨设置在滑块座与手臂32之间,对手臂的上下移动起到导向作用。对于关节2来说,手臂22的静止件,手臂32是运动件。为了防止手臂32、伺服电机331、联轴器335等因重力使得手臂32相对于手臂22向下运动,伺服电机331要输出平衡扭矩n31,以抵消手臂32、伺服电机331、联轴器335等零部件的重力造成扭矩,防止手臂32等在重力下向下移动。
参见图2,主控器6与各驱动器132、232、332电连接,各编码器133、233、333的输出接主控器。
手力驱动机械关节中运动件的方法如下:
a、机器人的各机械关节处于静止状态,通过各驱动器使得各伺服电机处于转矩模式,假定伺服电机131、231、331在输出平衡扭矩的同时输出大小和方向随时间呈正弦规律连续变化的降阻扭矩n12、n22、n32,降阻扭矩的周期均为0.2s。也就是说,伺服电机131、231、331的最终输出扭矩是平衡扭矩n11、n21、n31和降阻扭矩n12、n22、n32的合成扭矩。降阻扭矩n12的最大值为使得手臂22相对于手臂12具有逆时针运动趋势(或顺时针运动趋势)但不会运动的最大值。降阻扭矩n22的最大值为使得手臂12相对于手臂11具有逆时针运动趋势(或顺时针运动趋势)但不会运动的最大值。降阻扭矩n32的最大值为使得手臂32相对于手臂22具有向下运动趋势但不会运动的最大值。
由于降阻扭矩n12的方向随时间变化,所以手臂12相对于手臂11在水平面具有交替 变化的逆时针转动趋势和顺时针转动趋势。由于降阻扭矩n22的方向随时间变化,所以手臂22相对于手臂12在水平面具有交替变化的顺时针转动趋势和逆时针转动趋势;由于降阻扭矩n32的方向随时间变化,所以手臂32相对于手臂22在竖直面具有交替变化的向上移动趋势和向下移动趋势。机器人处于静止状态。
b、以手驱动机器人的手臂32时,开始计时,主控器记录各编码器在每隔0.01s的各时刻时的输出值。参见图3、4,在开始计时的0s直到0.53s之前的这段时间,手臂12与竖直面7之间的夹角为0°,手臂22与手臂12在水平面内的夹角为Y0,手臂32顶端高出手臂22所在水平面的高度为H0。参见图5、6,在0.53s时,手臂12与竖直面7之间的夹角为X1,手臂22与手臂12在水平面内的夹角为Y1,手臂32顶端高出手臂22所在水平面的高度为H1。也就是说,在0.53s时,关节1、2、3开始动作(指某个关节中的两个手臂产生了相对运动)。
对于关节1,主控器根据编码器133在0.53s时的输出值判断,手臂12相对于竖直面7顺时针转动。主控器则通过驱动器132控制伺服电机131,使得伺服电机131从0.53s开始停止输出降阻扭矩n12(但平衡扭矩继续输出),并输出使得手臂12相对于手臂11在水平面具有顺时针转动趋势的助力扭矩n13,做到对手操作机器人的助力。助力扭矩n13大小可以等于或略小于在0.53s之前成正弦规律变化的降阻扭矩n12的最大值。由于平衡扭矩n11(尽管为零)在步骤a、b中均始终存在,也就是说,伺服电机131从0.53s开始,伺服电机131的最终输出扭矩是平衡扭矩n11和助力扭矩n13的合成扭矩。但在0.53s之前,伺服电机131的最终输出扭矩是平衡扭矩n11和降阻扭矩n12的合成扭矩。
对于关节2,主控器根据编码器233在0.53s时的输出值判断,手臂22相对于手臂12顺时针转动。主控器则通过驱动器232控制伺服电机231,使得伺服电机231从0.53s开始停止输出降阻扭矩n22(但平衡扭矩继续输出),并输出使得手臂22相对于手臂12在水平面具有顺时针转动趋势的助力扭矩n23,做到对手操作机器人的助力。助力扭矩n23大小可以等于或略小于在0.53s之前成正弦规律变化的降阻扭矩n22的最大值。由于平衡扭矩n21(尽管为零)在步骤a、b中均始终存在,也就是说,伺服电机231从0.53s开始,伺服电机231的最终输出扭矩是平衡扭矩n21和助力扭矩n23的合成扭矩。但在0.53s之前,伺服电机231的最终输出扭矩是平衡扭矩n11和降阻扭矩n22的合成扭矩。
对于关节3,主控器根据编码器333在0.53s时的输出值判断,手臂32相对于手臂22位置降低。主控器则通过驱动器332控制伺服电机331,使得伺服电机331从0.53s开始停止输出降阻扭矩n32(但平衡扭矩继续输出),并输出使得手臂32相对于手臂22在竖直面具有向下移动趋势的助力扭矩n33,做到对手操作机器人的助力。助力扭矩n33大小可以等于或略小于在0.53s之前成正弦规律变化的降阻扭矩n32的最大值。由于平衡扭矩n31 在步骤a、b中均始终存在,也就是说,伺服电机331从0.53s开始,伺服电机331的最终输出扭矩是平衡扭矩n31和助力扭矩n33的合成扭矩。但在0.53s之前,伺服电机331的最终输出扭矩是平衡扭矩n31和降阻扭矩n32的合成扭矩。
实施例2:
参见图7、8所示的关节1,包括作为手臂11的固定座、手臂12、驱动手臂12相对于固定座转动的驱动机构13、法兰盘14等。驱动机构13包括伺服电机131、与伺服电机电连接以控制伺服电机的驱动器132、与伺服电机131相连的编码器133、减速器134。编码器133的输出接驱动器。法兰盘14固定在手臂(固定座)11上,伺服电机131和减速器134壳体均固定在法兰盘14上。减速器134的输入轴与伺服电机131的输出轴相连;减速器134输出轴与手臂12通过螺栓15相连。伺服电机131动作,通过减速器134带动手臂12相对于固定座11绕轴线16在水平面内转动。手臂11的静止件,手臂12是运动件。因伺服电机131输出的平衡扭矩为零,不再考虑。
手力驱动机械关节中运动件的方法如下:
a、驱动器使得伺服电机处于转矩模式,假定伺服电机131输出大小和方向随时间呈余弦规律连续变化的降阻扭矩n12,其周期均为0.4s。由于降阻扭矩n12的方向随时间变化,所以手臂12相对于手臂11在水平面具有交替变化的逆时针转动趋势和顺时针转动趋势。关节处于静止状态。
b、以手驱动手臂12时,开始计时,驱动器记录编码器在每隔0.01s的各时刻时的输出值。参见图9,在开始计时的0s直到2.40s之前的这段时间,手臂12与竖直面7之间的夹角为0。参见图10,在2.40s时,手臂12与竖直面7之间的夹角为X1。也就是说,在2.40s时,关节1开始动作。
驱动器根据编码器133在2.40s时的输出值判断,手臂12相对于竖直面7顺时针转动。驱动器132控制伺服电机131,使得伺服电机131从2.40s开始停止输出降阻扭矩n12,并输出使得手臂12相对于手臂11在水平面具有顺时针转动趋势的助力扭矩n13,做到对手操作关节的助力。助力扭矩n13大小等于在2.40s之前成余弦规律变化的降阻扭矩n12的最大值。也就是说,伺服电机131从2.40s开始,伺服电机131输出助力扭矩n13。但在2.40s之前,伺服电机131输出降阻扭矩。

Claims (10)

  1. 外力驱动机械关节中运动件的方法,
    所述关节包括静止件和运动件、驱动运动件相对静止件运动的驱动机构;驱动机构包括伺服电机、与伺服电机电连接以控制伺服电机的驱动器、编码器;伺服电机的输出轴与运动件相连;
    其特征是:所述外力驱动机械关节中运动件的方法为,
    a、机械关节处于静止状态,伺服电机处于转矩模式,通过驱动器使得伺服电机输出方向随时间变化的降阻扭矩,使得运动件相对于静止件具有正方向运动趋势或反方向运动趋势,并且运动趋势的正方向和反方向随时间变化;
    b、以外力驱动运动件,使得运动件相对于静止件运动;驱动器根据编码器的输出判断运动件运动方向;如果运动件相对于静止件是正方向运动,则通过驱动器控制伺服电机停止输出降阻扭矩或者输出使得运动件具有正方向运动趋势的助力扭矩;如果运动件相对于静止件是反方向运动,则通过驱动器控制伺服电机停止输出降阻扭矩或者输出使得运动件具有反方向运动趋势的助力扭矩。
  2. 如权利要求1所述的外力驱动机械关节中运动件的方法,其特征是:步骤a中,通过驱动器使得伺服电机输出方向和大小随时间变化的降阻扭矩。
  3. 如权利要求2所述的外力驱动机械关节中运动件的方法,其特征是:步骤b中,不管运动件相对于静止件是正方向运动还是反方向运动,均通过驱动器控制伺服电机输出助力扭矩,该助力扭矩的大小等于或小于在运动件相对于静止件开始运动的那一时刻的降阻扭矩值。
  4. 如权利要求1所述的外力驱动机械关节中运动件的方法,其特征是:步骤a中,通过驱动器使得伺服电机输出方向和大小随时间连续变化的降阻扭矩。
  5. 如权利要求1所述的外力驱动机械关节中运动件的方法,其特征是:驱动机构还包括传动机构,传动机构的动力输入件与伺服电机的输出轴相连,传动机构的动力输出件与运动件相连。
  6. 如权利要求5所述的外力驱动机械关节中运动件的方法,其特征是:传动机构包括减速器,伺服电机的输出轴与减速器的动力输入件相连,减速器的动力输出件与运动件相连。
  7. 如权利要求6所述的外力驱动机械关节中运动件的方法,其特征是:减速器为摆线针轮减速器。
  8. 如权利要求1所述的外力驱动机械关节中运动件的方法,其特征是:所述外力为人的手力。
  9. 如权利要求1所述的外力驱动机械关节中运动件的方法,其特征是:步骤a中的 降阻扭矩最大值为,使得运动件相对于静止件具有正方向运动趋势或反方向运动趋势但不会运动的最大值。
  10. 如权利要求1所述的外力驱动机械关节中运动件的方法,其特征是:伺服电机在输出维持所述机械关节处于平衡状态的平衡扭矩的基础上,进行步骤a、b;也就是说,步骤a中伺服电机的输出扭矩是平衡扭矩与降阻扭矩的合成扭矩,步骤b中伺服电机的输出扭矩是平衡扭矩或者是平衡扭矩与助力扭矩的合成扭矩。
PCT/CN2016/100692 2015-08-04 2016-09-28 外力驱动机械关节中运动件的方法 WO2017020873A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/742,591 US10668632B2 (en) 2015-08-04 2016-09-28 Method for external force to drive moving piece in mechanical joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510471069.7 2015-08-04
CN201510471069.7A CN105058411B (zh) 2015-08-04 2015-08-04 外力驱动机械关节中运动件的方法

Publications (1)

Publication Number Publication Date
WO2017020873A1 true WO2017020873A1 (zh) 2017-02-09

Family

ID=54488035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100692 WO2017020873A1 (zh) 2015-08-04 2016-09-28 外力驱动机械关节中运动件的方法

Country Status (3)

Country Link
US (1) US10668632B2 (zh)
CN (1) CN105058411B (zh)
WO (1) WO2017020873A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322632A (zh) * 2017-07-27 2017-11-07 董旺建 一体化智能集成机械关节

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105058411B (zh) * 2015-08-04 2017-01-25 苏州阿福机器人有限公司 外力驱动机械关节中运动件的方法
CN107538486B (zh) * 2016-06-29 2020-12-01 沈阳新松机器人自动化股份有限公司 一种关节力控制平台装置、方法及相关装置
US11618163B2 (en) * 2018-12-27 2023-04-04 Fanuc Corporation Industrial robot system
CN112405531B (zh) * 2020-11-06 2022-03-29 广东电网有限责任公司电力科学研究院 位置域阻抗控制方法、装置、存储介质及作业机器人
CN113070881B (zh) * 2021-04-02 2022-11-11 深圳市优必选科技股份有限公司 机器人运动控制方法、装置和机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011121A (ja) * 1996-06-20 1998-01-16 Tokico Ltd ロボット制御装置及びその制御方法
CN103025492A (zh) * 2010-12-08 2013-04-03 松下电器产业株式会社 机器人的控制装置以及控制方法、机器人、以及控制程序
US20130278196A1 (en) * 2012-04-20 2013-10-24 Linestream Technologies Method for automatically estimating inertia in a mechanical system
CN104162890A (zh) * 2014-07-04 2014-11-26 倪立新 一种基于电机助力的手把手示教机器人及其控制方法
CN204471402U (zh) * 2015-02-15 2015-07-15 南京阿福汽车控制系统有限公司 机器人转臂结构
CN105058411A (zh) * 2015-08-04 2015-11-18 林中尉 外力驱动机械关节中运动件的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188953B2 (ja) * 1999-10-13 2001-07-16 経済産業省産業技術総合研究所長 パワーアシスト装置およびその制御方法
US20060180647A1 (en) * 2005-02-11 2006-08-17 Hansen Scott R RFID applications
EP2600789B1 (en) * 2010-08-02 2015-11-18 The Johns Hopkins University Micro-force guided cooperative control for manipulation of delicate tissue
US9544967B2 (en) * 2011-04-15 2017-01-10 Wireless Environment, Llc Lighting device capable of maintaining light intensity in demand response applications
US10670028B2 (en) * 2011-10-21 2020-06-02 Prime Datum Development Company, Llc Load bearing direct drive fan system with variable process control
US10340692B2 (en) * 2012-04-19 2019-07-02 Pass & Seymour, Inc. Universal power control device
CN103425100B (zh) * 2013-07-23 2015-10-21 南京航空航天大学 基于力矩平衡的机器人直接示教控制方法
CN103640022A (zh) * 2013-11-13 2014-03-19 北京卫星环境工程研究所 航天器机械臂柔性随动控制方法
US20170331177A1 (en) * 2016-01-22 2017-11-16 World View Enterprises Inc. High altitude balloon antenna systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011121A (ja) * 1996-06-20 1998-01-16 Tokico Ltd ロボット制御装置及びその制御方法
CN103025492A (zh) * 2010-12-08 2013-04-03 松下电器产业株式会社 机器人的控制装置以及控制方法、机器人、以及控制程序
US20130278196A1 (en) * 2012-04-20 2013-10-24 Linestream Technologies Method for automatically estimating inertia in a mechanical system
CN104162890A (zh) * 2014-07-04 2014-11-26 倪立新 一种基于电机助力的手把手示教机器人及其控制方法
CN204471402U (zh) * 2015-02-15 2015-07-15 南京阿福汽车控制系统有限公司 机器人转臂结构
CN105058411A (zh) * 2015-08-04 2015-11-18 林中尉 外力驱动机械关节中运动件的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322632A (zh) * 2017-07-27 2017-11-07 董旺建 一体化智能集成机械关节

Also Published As

Publication number Publication date
CN105058411A (zh) 2015-11-18
CN105058411B (zh) 2017-01-25
US20180207813A1 (en) 2018-07-26
US10668632B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2017020873A1 (zh) 外力驱动机械关节中运动件的方法
CN101987633B (zh) 电动动力转向装置
CN106627748B (zh) 一种具有摩擦识别的电动助力转向系统
JP5698777B2 (ja) モータの加速度に応じたプリロードトルク値を生成するモータ制御装置
US9164495B2 (en) Motor controller controlling two motors for driving single driven object
CN104440912B (zh) 一种机械式控制舵机转向的机构
CN108247622B (zh) 七自由度模块化绳驱机械臂
CN106828077A (zh) 一种全向驱动轮
JP2016168650A5 (zh)
CN106514638A (zh) 一种五轴机器人
CN104734415A (zh) 一种减速电机
JP2017024096A (ja) 産業用ロボットおよび産業用ロボットの制御方法
US10035265B2 (en) Manipulator
JP2010236603A (ja) バックラッシュ除去制御装置
CN208592849U (zh) 一种基于空心驱动器的七轴关节机器人
EP3878716A1 (en) Steering controller
WO2016188409A1 (zh) 手执示教机器人及机器人手执示教方法
WO2020124943A1 (zh) 一种机械臂绘图装置
CN108356805A (zh) 一种节能单驱动三自由度机械臂
CN208179528U (zh) 一种节能单驱动三自由度机械臂
JPWO2018061283A1 (ja) ロボットの制御方法及び溶接方法
JP6191305B2 (ja) 車両用操舵装置
CN202895227U (zh) 一种机器人机械手
CN203012521U (zh) 大推力直线运动定位控制系统
CN104669294A (zh) 同侧同向双轴联动反馈控制伺服装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15742591

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16832361

Country of ref document: EP

Kind code of ref document: A1