WO2017020836A1 - 一种虚化处理深度图像的装置和方法 - Google Patents

一种虚化处理深度图像的装置和方法 Download PDF

Info

Publication number
WO2017020836A1
WO2017020836A1 PCT/CN2016/093087 CN2016093087W WO2017020836A1 WO 2017020836 A1 WO2017020836 A1 WO 2017020836A1 CN 2016093087 W CN2016093087 W CN 2016093087W WO 2017020836 A1 WO2017020836 A1 WO 2017020836A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth
distance
blur
pixel
module
Prior art date
Application number
PCT/CN2016/093087
Other languages
English (en)
French (fr)
Inventor
戴向东
Original Assignee
努比亚技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 努比亚技术有限公司 filed Critical 努比亚技术有限公司
Publication of WO2017020836A1 publication Critical patent/WO2017020836A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects

Definitions

  • This document relates to, but is not limited to, image processing technology, and more particularly to an apparatus and method for blurring a depth image.
  • the related mobile terminal cannot produce a layered background blur effect on the photosensitive element compared with the SLR camera. This is because the physical hardware structure of the mobile terminal is difficult to be similar to the physical hardware structure of the SLR camera.
  • the related background blur model algorithm applied to the mobile terminal does not fully utilize the image model of the SLR, the degree of background blur is not true, and the physical background blur effect without the SLR is good.
  • the embodiment of the invention provides an apparatus and a method for blurring a depth image, which can improve the shooting effect without changing the physical hardware structure of the related mobile terminal.
  • An embodiment of the present invention provides an apparatus for processing a depth image, including: an acquisition module, a calculation module, a determination module, a correction module, and a blur processing module;
  • Get module set to obtain aperture value, focal length, focus distance and allowable circle diameter
  • a calculation module configured to calculate a depth of field range according to the obtained aperture value, focal length, focusing distance, and allowable circle diameter
  • a determining module configured to obtain an object distance of a focus point and determine a degree of blurring corresponding to different object distances according to the object distance, the aperture value, and the focal length of the obtained focus point;
  • a correction module configured to correct a radius corresponding to the Gaussian blur according to the determined degree of blurring of the different object distances
  • the blur processing module is configured to blur and process the pixels of the depth image that needs to be blurred outside the depth of field range according to the radius corresponding to the corrected Gaussian blur.
  • the correction module is configured to correct the radius corresponding to the Gaussian blur according to the following formula:
  • R i is the pixel i
  • B i is the degree of blurring of pixel i
  • Bmax is the maximum value of B i
  • Bmin the minimum value B i
  • Rmax is the maximum radius of the Gaussian blur
  • Rmin is the minimum of the Gaussian blur radius.
  • a diagonal length of the film, a conversion factor [alpha], [alpha] is equal to the product of A and the focal length f, F min is the minimum aperture value, L min is the minimum focus distance.
  • the determining module is configured to determine a degree of blurring corresponding to different object distances by using the following formula:
  • B i is the degree of blur of the pixel point i
  • u 0 is the object distance of the focus point
  • u i is the object distance of the pixel point i
  • F is the aperture value
  • A is the film diagonal length
  • is the conversion coefficient;
  • i is a positive integer and the product of A and ⁇ is equal to the focal length f.
  • the calculation module is configured to calculate a depth of field range by the following formula:
  • ⁇ L is the depth of field range
  • f is the focal length
  • F is the aperture value
  • is the allowable circle diameter
  • L is the focusing distance
  • ⁇ i is the diameter of the circle of the circle point i
  • v i is the image distance of the pixel point i
  • v 0 is the image distance of the focus point
  • D is the effective aperture of the lens, where i is a positive integer.
  • the blur processing module is configured to perform blurring on the pixel points of the depth image that needs to be blurred outside the depth of field range according to the radius corresponding to the modified Gaussian blur by:
  • the blur processing module is further configured to set the degree of blur of each pixel within the depth of field range to 0, and the radius corresponding to the Gaussian blur to be set to zero.
  • L is the hyperfocal distance.
  • the device is applied to mobile terminals and digital products.
  • the embodiment of the invention further discloses a method for blurring a depth image, comprising:
  • the depth of field range is calculated based on the obtained aperture value, focal length, focusing distance, and allowable circle diameter;
  • the pixels of the depth image outside the depth of field range that need to be blurred are in accordance with the corrected Gaussian Blur the corresponding radius for blurring and shooting.
  • the correcting the radius corresponding to the Gaussian blur according to the determined degree of blurring of the different object distances includes:
  • R i is the pixel i
  • B i is the degree of blurring of pixel i
  • Bmax is the maximum value of B i
  • Bmin the minimum value B i
  • Rmax is the maximum radius of the Gaussian blur
  • Rmin is the minimum of the Gaussian blur radius.
  • a diagonal length of the film, a conversion factor [alpha], [alpha] is equal to the product of A and the focal length f, F min is the minimum aperture value, L min is the minimum focus distance.
  • the determining the degree of blurring corresponding to the object distance according to the object distance, the aperture value, and the focal length of the obtained focus point includes:
  • B i is the degree of blur of the pixel point i
  • u 0 is the object distance of the focus point
  • u i is the object distance of the pixel point i
  • F is the aperture value
  • A is the film diagonal length
  • is the conversion coefficient;
  • i is a positive integer and the product of A and ⁇ is equal to the focal length f.
  • calculating the depth of field range according to the obtained aperture value, focal length, focusing distance, and allowable circle diameter includes:
  • ⁇ L is the depth of field range
  • f is the focal length
  • F is the aperture value
  • is the allowable circle diameter
  • L is the focus distance
  • ⁇ i is the diameter of the circle of the circle point i
  • v i is the image distance of the pixel point i
  • v 0 is the image distance of the focus point
  • D is the effective aperture of the lens, where i is a positive integer.
  • the pixel points of the depth image outside the depth of field range that need to be blurred are blurred according to the radius corresponding to the modified Gaussian blur, including:
  • the method further includes:
  • L is the hyperfocal distance.
  • the method is applied to mobile terminals and digital products.
  • the technical solution of the embodiment of the present invention includes: an obtaining module, a calculating module, a determining module, a correcting module, and a blur processing module; wherein the acquiring module is configured to acquire an aperture value, a focal length, a focusing distance, and an allowable circle diameter; and the calculating module is set to Determining the depth of field range according to the obtained aperture value, focal length, focusing distance, and allowable circle diameter; the determining module is configured to obtain the object distance of the focus point and determine different object distances according to the obtained object distance, aperture value, and focal length of the focus point The degree of blurring; the correction module is configured to correct the radius corresponding to the Gaussian blur according to the determined degree of blurring of different object distances; the blur processing module is set to a pixel point of the depth image outside the depth of field range that needs to be blurred Blurring and shooting according to the radius corresponding to the corrected Gaussian blur.
  • the present invention The technical solution of the embodiment realizes that the shooting effect is improved without changing the
  • FIG. 1 is a schematic structural diagram of hardware of a mobile terminal that implements various embodiments of the present invention
  • FIG. 2 is a schematic diagram of a communication system supporting communication between mobile terminals according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for blur processing a depth image according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for blur processing a depth image according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of convex mirror imaging according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a range of depth of field according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a relationship between a depth of field range and an aperture value according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a relationship between a depth of field range and a focus distance according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of correspondence between a degree of blur and a radius corresponding to Gaussian blur according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 1 of correspondence between different object distances and ambiguities according to an embodiment of the present invention.
  • FIG. 11 is a second schematic diagram of correspondence between different object distances and ambiguities according to an embodiment of the present invention.
  • module A mobile terminal embodying various embodiments of the present invention will now be described with reference to the accompanying drawings.
  • suffixes such as “module,” “component,” or “unit” used to denote an element are merely illustrative of the embodiments of the present invention, and do not have a specific meaning per se. Therefore, “module” and “component” can be used in combination.
  • the mobile terminal can be implemented in various forms.
  • the terminal described in the embodiments of the present invention may include, for example, a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a PDA (Personal Digital Assistant), a PAD (Tablet), a PMP (Portable Multimedia Player), a navigation device Mobile terminals of the like and fixed terminals such as digital TVs, desktop computers, and the like.
  • PDA Personal Digital Assistant
  • PAD Tablett
  • PMP Portable Multimedia Player
  • FIG. 1 is a schematic diagram showing the hardware structure of a mobile terminal that implements various embodiments of the present invention.
  • the mobile terminal 100 may include a wireless communication unit 110, an A/V (Audio/Video) input unit 120, a user input unit 130, a sensing unit 140, an output unit 150, a memory 160, an interface unit 170, a controller 180, and a power supply unit 190. and many more.
  • Figure 1 illustrates a mobile terminal having various components, but it should be understood that not all illustrated components are required to be implemented. More or fewer components can be implemented instead. The elements of the mobile terminal will be described in detail below.
  • Wireless communication unit 110 typically includes one or more components that permit radio communication between mobile terminal 100 and a wireless communication system or network.
  • the wireless communication unit may include at least one of a broadcast receiving module 111, a mobile communication module 112, a wireless internet module 113, a short-range communication module 114, and a location information module 115.
  • the broadcast receiving module 111 is configured to receive a broadcast signal and/or broadcast associated information from an external broadcast management server via a broadcast channel.
  • the broadcast channel can include a satellite channel and/or a terrestrial channel.
  • the broadcast management server may be a server that generates and transmits a broadcast signal and/or broadcast associated information or a server that receives a previously generated broadcast signal and/or broadcast associated information and transmits it to the terminal.
  • the broadcast signal may include a TV broadcast signal, a radio broadcast signal, a data broadcast signal, and the like.
  • the broadcast signal may further include a broadcast signal combined with a TV or radio broadcast signal.
  • the broadcast associated information may also be provided via a mobile communication network, and in this case, the broadcast associated information may be received by the mobile communication module 112.
  • the broadcast signal may exist in various forms, for example, it may exist in the form of Digital Multimedia Broadcasting (DMB) Electronic Program Guide (EPG), Digital Video Broadcasting Handheld (DVB-H) Electronic Service Guide (ESG), and the like.
  • the broadcast receiving module 111 can receive a signal broadcast by using various types of broadcast systems.
  • the broadcast receiving module 111 can use forward link media (MediaFLO) by using, for example, multimedia broadcast-terrestrial (DMB-T), digital multimedia broadcast-satellite (DMB-S), digital video broadcast-handheld (DVB-H)
  • MediaFLO forward link media
  • the digital broadcasting system of the @ ) data broadcasting system, the terrestrial digital broadcasting integrated service (ISDB-T), and the like receives digital broadcasting.
  • the broadcast receiving module 111 can be constructed as various broadcast systems suitable for providing broadcast signals as well as the above-described digital broadcast system.
  • the broadcast signal and/or broadcast associated information received via the broadcast receiving module 111 may be stored in the memory 160 (or other type of
  • the mobile communication module 112 is configured to transmit radio signals to and/or receive radio signals from at least one of a base station (e.g., an access point, a Node B, etc.), an external terminal, and a server.
  • a base station e.g., an access point, a Node B, etc.
  • Such radio signals may include voice call signals, video call signals, or various types of data transmitted and/or received in accordance with text and/or multimedia messages.
  • the wireless internet module 113 is configured to support wireless internet access of the mobile terminal.
  • the module can be internally or externally coupled to the terminal.
  • the wireless Internet access technologies involved in the module may include WLAN (Wireless LAN) (Wi-Fi), Wibro (Wireless Broadband), Wimax (Worldwide Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), etc. .
  • the short range communication module 114 is a module that is configured to support short range communication.
  • Some examples of short-range communication technology include Bluetooth TM, a radio frequency identification (RFID), infrared data association (IrDA), ultra wideband (UWB), ZigBee, etc. TM.
  • the location information module 115 is a module configured to check or acquire location information of the mobile terminal.
  • a typical example of a location information module is GPS (Global Positioning System).
  • the GPS module 115 is arranged to calculate distance information and accurate time information from three or more satellites and apply triangulation to the calculated information to accurately calculate three-dimensional current position information from longitude, latitude and altitude. .
  • the method for calculating position and time information uses three satellites and corrects the calculated position and time information errors by using another satellite.
  • the GPS module 115 is capable of calculating speed information by continuously calculating current position information in real time.
  • the A/V input unit 120 is arranged to receive an audio or video signal.
  • the A/V input unit 120 may include a camera 121 and a microphone 1220 that is arranged to process image data of still pictures or video obtained by the image capturing device in a video capturing mode or an image capturing mode.
  • the processed image frame can be displayed on the display unit 151.
  • the image frames processed by the camera 121 may be stored in the memory 160 (or other storage medium) or transmitted via the wireless communication unit 110, and two or more cameras 1210 may be provided according to the configuration of the mobile terminal.
  • the microphone 122 is set to receive sound (audio data) via a microphone in an operation mode of a telephone call mode, a recording mode, a voice recognition mode, and the like, and is capable of processing such sound as audio data.
  • the processed audio (voice) data can be converted to a format output that can be transmitted to the mobile communication base station via the mobile communication module 112 in the case of a telephone call mode.
  • the microphone 122 can implement various types of noise cancellation (or suppression) algorithms to cancel (or suppress) noise or interference generated during the process of receiving and transmitting audio signals.
  • the user input unit 130 is set to generate key input data according to a command input by the user to control various operations of the mobile terminal.
  • the user input unit 130 allows the user to input various types of information, and may include a keyboard, a pot, a touch pad (eg, a touch sensitive component that detects changes in resistance, pressure, capacitance, etc. due to contact), a scroll wheel , rocker, etc.
  • a touch screen can be formed.
  • the sensing unit 140 is configured to detect a current state of the mobile terminal 100 (eg, an open or closed state of the mobile terminal 100), a location of the mobile terminal 100, a user's contact with the mobile terminal 100 (ie, a touch input), The orientation of the mobile terminal 100, the acceleration or deceleration movement and direction of the mobile terminal 100, and the like, and generates a command or signal for controlling the operation of the mobile terminal 100.
  • a current state of the mobile terminal 100 eg, an open or closed state of the mobile terminal 100
  • a location of the mobile terminal 100 e.g., a user's contact with the mobile terminal 100 (ie, a touch input)
  • the orientation of the mobile terminal 100 ie, a touch input
  • the orientation of the mobile terminal 100 ie, the acceleration or deceleration movement and direction of the mobile terminal 100, and the like
  • the sensing unit 140 can sense whether the slide type phone is turned on or off.
  • the sensing unit 140 can detect whether the power supply unit 190
  • the interface unit 170 serves as an interface through which at least one external device can connect with the mobile terminal 100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port configured to connect a device having an identification module, and an audio input/output. (I/O) port, video I/O port, headphone port, and more.
  • the identification module may be stored to verify various information used by the user using the mobile terminal 100 and may include a User Identification Module (UIM), a Customer Identification Module (SIM), a Universal Customer Identity Module (USIM), and the like.
  • the device having the identification module may take the form of a smart card, and thus the identification device may be connected to the mobile terminal 100 via a port or other connection device.
  • the interface unit 170 may be arranged to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more components within the mobile terminal 100 or may be used at the mobile terminal and external device Transfer data between.
  • the interface unit 170 may function as a path through which power is supplied from the base to the mobile terminal 100 or may be used as a transmission of various command signals allowing input from the base to the mobile terminal 100 The path to the terminal.
  • Various command signals or power input from the base can be used as signals for identifying whether the mobile terminal is accurately mounted on the base.
  • Output unit 150 is configured to provide an output signal (eg, an audio signal, a video signal, an alarm signal, a vibration signal, etc.) in a visual, audio, and/or tactile manner.
  • the output unit 150 can include a display list Element 151, audio output module 152, alarm unit 153, and the like.
  • the display unit 151 can be set to display information processed in the mobile terminal 100.
  • the display unit 151 can be configured to display a user interface (UI) or graphical user interface (GUI) related to a call or other communication (eg, text messaging, multimedia file download, etc.) ).
  • UI user interface
  • GUI graphical user interface
  • the display unit 151 may be configured to display a captured image and/or a received image, a UI or GUI showing a video or image and related functions, and the like.
  • the display unit 151 may be provided to function as an input device and an output device.
  • the display unit 151 may include at least one of a liquid crystal display (LCD), a thin film transistor LCD (TFT-LCD), an organic light emitting diode (OLED) display, a flexible display, a three-dimensional (3D) display, and the like.
  • LCD liquid crystal display
  • TFT-LCD thin film transistor LCD
  • OLED organic light emitting diode
  • a flexible display a three-dimensional (3D) display, and the like.
  • 3D three-dimensional
  • Some of these displays may be configured to be transparent to allow a user to view from the outside, which may be referred to as a transparent display, and a typical transparent display may be, for example, a TOLED (Transparent Organic Light Emitting Diode) display or the like.
  • TOLED Transparent Organic Light Emitting Diode
  • the mobile terminal 100 may include two or more display units (or other display devices), for example, the mobile terminal may include an external display unit (not shown) and an internal display unit (not shown) .
  • the touch screen can be set to detect touch input pressure as well as touch input position and touch input area.
  • the audio output module 152 may be configured to set audio received by the wireless communication unit 110 or stored in the memory 160 when the mobile terminal is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, and the like. The data is converted into an audio signal and output as a sound. Moreover, the audio output module 152 can be arranged to provide an audio output (eg, a call signal receiving sound, a message receiving sound, etc.) associated with a particular function performed by the mobile terminal 100.
  • the audio output module 152 can include a speaker, a buzzer, and the like.
  • the alert unit 153 can be arranged to provide an output to notify the mobile terminal 100 of the occurrence of an event. Typical events may include call reception, message reception, key signal input, touch input, and the like. In addition to audio or video output, the alert unit 153 can provide an output in a different manner to notify of the occurrence of an event.
  • the alarm unit 153 can be configured to provide an output in the form of vibrations, and when a call, message, or some other incoming communication is received, the alarm unit 153 can be configured to provide a haptic output (ie, vibration) to notify it To the user. By providing such a tactile output, the user can recognize even when the user's mobile phone is in the user's pocket. Don't make a variety of incidents happen.
  • the alarm unit 153 can also provide an output of the notification event occurrence via the display unit 151 or the audio output module 152.
  • the memory 160 may be provided as a software program or the like that stores processing and control operations performed by the controller 180, or may temporarily store data that has been output or is to be output (for example, a phone book, a message, a still image, a video, etc.) . Moreover, the memory 160 can store data regarding vibrations and audio signals of various manners that are output when a touch is applied to the touch screen.
  • the memory 160 may include at least one type of storage medium including a flash memory, a hard disk, a multimedia card, a card type memory (eg, SD or DX memory, etc.), a random access memory (RAM), a static random access memory ( SRAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), programmable read only memory (PROM), magnetic memory, magnetic disk, optical disk, and the like.
  • the mobile terminal 100 can cooperate with a network storage device that performs a storage function of the memory 160 through a network connection.
  • the controller 180 is typically arranged to control the overall operation of the mobile terminal.
  • the controller 180 performs the control and processing associated with voice calls, data communications, video calls, and the like.
  • the controller 180 can include a multimedia module 1810 that is configured to reproduce (or play back) multimedia data, and the multimedia module 1810 can be constructed within the controller 180 or can be configured to be separate from the controller 180.
  • the controller 180 may be configured to perform a pattern recognition process to recognize a handwriting input or a picture drawing input performed on the touch screen as a character or an image.
  • the power supply unit 190 is arranged to receive external power or internal power under the control of the controller 180 and to provide appropriate power required to operate the various components and components.
  • the various embodiments described herein can be implemented in a computer readable medium using, for example, computer software, hardware, or any combination thereof.
  • the embodiments described herein may be through the use of application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays ( An FPGA, a processor, a controller, a microcontroller, a microprocessor, at least one of the electronic units designed to perform the functions described herein, in some cases, such an embodiment may be at the controller 180 Implemented in the middle.
  • implementations such as procedures or functions may be implemented with separate software modules that permit the execution of at least one function or operation.
  • the software code can be implemented by a software application (or program) written in any suitable programming language, and the software code can be stored in storage.
  • the mobile terminal has been described in terms of its function.
  • a slide type mobile terminal among various types of mobile terminals such as a folding type, a bar type, a swing type, a slide type mobile terminal, and the like will be described as an example. Therefore, the embodiment of the present invention can be applied to any type of mobile terminal, and is not limited to a slide type mobile terminal.
  • the mobile terminal 100 as shown in FIG. 1 may be configured to operate using a communication system such as a wired and wireless communication system and a satellite-based communication system that transmits data via frames or packets.
  • a communication system such as a wired and wireless communication system and a satellite-based communication system that transmits data via frames or packets.
  • a communication system in which a mobile terminal is operable according to an embodiment of the present invention will now be described with reference to FIG.
  • Such communication systems may use different air interfaces and/or physical layers.
  • air interfaces used by communication systems include, for example, Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), and Universal Mobile Telecommunications System (UMTS) (in particular, Long Term Evolution (LTE)). ), Global System for Mobile Communications (GSM), etc.
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • the following description relates to a CDMA communication system, but such teachings are equally applicable to other types of systems.
  • a CDMA wireless communication system can include a plurality of mobile terminals 100, a plurality of base stations (BS) 270, a base station controller (BSC) 275, and a mobile switching center (MSC) 280.
  • the MSC 280 is configured to interface with a public switched telephone network (PSTN) 290.
  • PSTN public switched telephone network
  • the MSC 280 is also configured to interface with a BSC 275 that can be coupled to the base station 270 via a backhaul line.
  • the backhaul line can be constructed in accordance with any of a number of well known interfaces including, for example, E1/T1, ATM, IP, PPP, Frame Relay, HDSL, ADSL, or xDSL. It will be appreciated that the system as shown in FIG. 2 may include multiple BSC 2750s.
  • Each BS 270 can serve one or more partitions (or regions), each of which is covered by a multi-directional antenna or an antenna directed to a particular direction radially away from the BS 270. Alternatively, each partition may be covered by two or more antennas for diversity reception. Each BS 270 can be configured to support multiple frequency allocations, and each frequency allocation has a particular frequency spectrum (eg, 1.25 MHz, 5 MHz, etc.).
  • BS 270 may also be referred to as a Base Transceiver Subsystem (BTS) or other equivalent terminology.
  • BTS Base Transceiver Subsystem
  • the term "base station” can be used to generally refer to a single BSC 275 and at least one BS 270.
  • a base station can also be referred to as a "cell station.”
  • each partition of a particular BS 270 may be referred to as a plurality of cellular stations.
  • a broadcast transmitter (BT) 295 transmits a broadcast signal to the mobile terminal 100 operating within the system.
  • a broadcast receiving module 111 as shown in FIG. 1 is provided at the mobile terminal 100 to receive a broadcast signal transmitted by the BT 295.
  • GPS Global Positioning System
  • the satellite 300 helps locate at least one of the plurality of mobile terminals 100.
  • a plurality of satellites 300 are depicted, but it is understood that useful positioning information can be obtained using any number of satellites.
  • the GPS module 115 as shown in Figure 1 is typically configured to cooperate with the satellite 300 to obtain desired positioning information. Instead of GPS tracking technology or in addition to GPS tracking technology, other techniques that can track the location of the mobile terminal can be used. Additionally, at least one GPS satellite 300 can selectively or additionally process satellite DMB transmissions.
  • BS 270 receives reverse link signals from various mobile terminals 100.
  • Mobile terminal 100 typically participates in calls, messaging, and other types of communications.
  • Each reverse link signal received by a particular base station 270 is processed within a particular BS 270.
  • the obtained data is forwarded to the relevant BSC 275.
  • the BSC provides call resource allocation and coordinated mobility management functions including a soft handoff procedure between the BSs 270.
  • the BSC 275 also routes the received data to the MSC 280, which provides additional routing services for interfacing with the PSTN 290.
  • PSTN 290 interfaces with MSC 280, which forms an interface with BSC 275, and BSC 275 controls BS 270 accordingly to transmit forward link signals to mobile terminal 100.
  • FIG. 3 is a schematic diagram of a device for processing a depth image according to an embodiment of the present invention. As shown in FIG. 3, the method includes: an acquisition module, a calculation module, a determination module, a correction module, and a blur processing module. among them,
  • Get module set to get the aperture value, focal length, focus distance and allowable circle diameter.
  • the calculation module is configured to calculate the depth of field range based on the obtained aperture value, focal length, focus distance, and allowable circle diameter.
  • the calculation module is configured to calculate a depth of field range by the following formula:
  • ⁇ L is the depth of field range
  • f is the focal length
  • F is the aperture value
  • is the allowable circle diameter
  • L is the focus distance
  • the determining module is configured to obtain the object distance of the focus point and determine the degree of blurring of the different object distances according to the object distance, the aperture value and the focal length of the obtained focus point.
  • the determining module is configured to determine a degree of blurring corresponding to different object distances by using the following formula:
  • B i is the degree of blur of the pixel point i
  • u 0 is the object distance of the focus point
  • u i is the object distance of the pixel point i
  • F is the aperture value
  • A is the diagonal length of the film
  • is the conversion coefficient.
  • is an absolute value; where i is a positive integer, and the product of A and ⁇ is equal to the focal length f.
  • the correction module is configured to correct the radius corresponding to the Gaussian blur according to the determined degree of blurring of the different object distances.
  • the correction module corrects the radius corresponding to the Gaussian blur according to the following formula:
  • R i is the pixel i
  • B i is the degree of blurring of pixel i
  • Bmax is the maximum value of B i
  • Bmin the minimum value B i
  • Rmax is the maximum radius of the Gaussian blur
  • Rmin is the minimum of the Gaussian blur radius.
  • the blur processing module is configured to blur and process the pixels of the depth image that needs to be blurred outside the depth of field range according to the radius corresponding to the corrected Gaussian blur.
  • the blur processing module is configured to perform blur processing on the pixel points of the depth image that needs to be blurred outside the depth of field range according to the radius corresponding to the modified Gaussian blur by: obtaining the object distance of each pixel point; Whether the obtained object distance of each pixel point is outside the depth of field range; the pixel corresponding to the object distance outside the depth of field range is determined to be blurred according to the radius corresponding to the corrected Gaussian blur.
  • the above device may be disposed in a mobile terminal or a digital product.
  • the acquisition module in the apparatus may be disposed in the A/V input unit 130 in FIG. 1, the calculation module, the determination module, the correction module, and The fuzzy processing modules can all be arranged in the controller 180 in FIG.
  • FIG. 4 is a schematic diagram of a method for processing a depth image according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step 401 Acquire aperture value, focal length, focus distance, and allowable circle diameter.
  • Step 402 Calculate the depth of field range according to the obtained aperture value, focal length, focusing distance, and allowable circle diameter.
  • the depth of field range is calculated by formula (1):
  • ⁇ L is the depth of field range
  • f is the focal length
  • F is the aperture value
  • is the allowable circle diameter
  • L is the focus distance
  • a focus point is selected, the distance from the focus point to the lens is the object distance u 0 , and the distance from the focus point to the lens is the image distance v 0 , the lens
  • the focal length is f, the distance from the other object to the lens is u, and the image distance is v.
  • the image point outside the focus plane will form a spot on the imaging plane.
  • This spot is called a circle of confusion.
  • the diameter range does not exceed a certain range, and the human eye can not distinguish the image from being blurred, so that a clear imaging range can be formed, which is called the depth of field.
  • the maximum diameter of the circle of confusion is also called the diameter of the allowable circle, as shown in FIG.
  • the shooting distance (or called the focusing distance) is L, the foreground depth is ⁇ L1, and the back depth of field is ⁇ L2, and the depth of field range is ⁇ L.
  • the diameter is ⁇
  • the depth of field range ⁇ L and the hyperfocal distance LF can be calculated using the depth of field formula.
  • the foreground depth and the back depth of field are calculated by the formulas (5) and (6), respectively.
  • the above depth of field calculation formulas (5) to (7) give the depth of field range, so that it can be determined that the degree of blur of each pixel in the depth of field is 0, and the radius corresponding to Gaussian blur is 0.
  • Step 403 Acquire an object distance of a focus point and determine a degree of blurring corresponding to different object distances according to the object distance, the aperture value, and the focal length of the obtained focus point.
  • B i is the degree of blur of the pixel point i
  • u 0 is the object distance (focus distance) of the focus point
  • u i is the object distance of the pixel point i
  • F is the aperture value
  • A is the diagonal length of the film
  • the depth of field range of different apertures under the same focusing distance is shown, that is, the depth of field of the large aperture is small, and the degree of blurring of the depth of field is large, wherein the depth of field is equivalent to the foreground shown in FIG. 6 .
  • the depth of field is equivalent to the depth of field shown in Figure 6.
  • adjusting the focusing distance L will blur the different subject backgrounds, and different focusing distances can be seen, and the depth of field range is also different, and the analysis of the aperture F to B i is similar, under different object distances.
  • the degree of pixel blur is also different.
  • k1 and k2 are distance limit parameters, and the degree of blurring of a distance exceeding a certain range is the maximum value.
  • ⁇ i is the diameter of the circle of the circle point i
  • v i is the image distance of the pixel point i
  • v 0 is the image distance of the focus point
  • D is the effective aperture of the lens, where i is a positive integer.
  • the derivation process is shown in the formula (10):
  • Step 404 Correct the radius corresponding to the Gaussian blur according to the determined degree of blurring of the different object distances.
  • R i is the pixel i
  • B i is the degree of blurring of pixel i
  • Bmax is the maximum value of B i
  • Bmin the minimum value B i
  • Rmax is the maximum radius of the Gaussian blur
  • Rmin is the minimum of the Gaussian blur radius.
  • Bmax and Bmin can be obtained by formula (12):
  • the corresponding schematic diagram of the determined radius of the different object distances corresponding to the modified Gaussian blur is shown in FIG. 9.
  • the unit of B in the figure is m, and the unit of R is the number of pixels.
  • Step 405 Perform blur processing on the pixel points of the depth image outside the depth of field range that need to be blurred, according to the radius corresponding to the modified Gaussian blur, and take a picture.
  • the blurring processing on the pixel points of the depth image that needs to be blurred outside the depth of field range according to the radius corresponding to the modified Gaussian blur includes: acquiring the object distance of each pixel point; determining whether the obtained object distance of each pixel point is Outside the depth of field range; the pixel corresponding to the object distance outside the depth of field is judged to be blurred according to the radius corresponding to the corrected Gaussian blur.
  • the method further includes: each pixel point within the depth of field range has a degree of blur of 0, and the Gaussian blur corresponds to a radius of 0.
  • the physical hardware structure of the relevant mobile terminal is not changed. In the case, the shooting effect is improved.
  • R is the radius of the Gaussian blur of the pixel point, and the larger the value, the greater the degree of blurring.
  • Dist is the real physical distance of the pixel in the camera scene
  • L is the focusing distance of the image.
  • F focal length
  • F focal length
  • Lp the near depth threshold
  • Ln is the deep critical point of the horizon.
  • RFL curve shown in Fig. 10 inside the depth of field range, R is 0, indicating that the images of these focal plane ranges are clearly imaged and do not need to be blurred.
  • the above technical solution realizes that the shooting effect is improved without changing the physical hardware structure of the related mobile terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种虚化处理深度图像的装置和方法,包括:获取模块,设置为获取光圈数值、焦距、对焦距离和容许弥散圆直径;计算模块,设置为根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围;确定模块,设置为获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度;修正模块,设置为根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径;模糊处理模块,设置为对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。上述技术方案实现了在不对相关移动终端的物理硬件结构做出改变的情况下,提高了拍摄效果。

Description

一种虚化处理深度图像的装置和方法 技术领域
本文涉及但不限于图像处理技术,尤指一种虚化处理深度图像的装置和方法。
背景技术
相关的移动终端在感光元件上面无法和单反相机相比,不能拍出层次感分明的背景虚化效果,这是因为移动终端的物理硬件结构很难做到和单反相机的物理硬件结构相近。另外,应用在移动终端上的相关的背景虚化模型算法没有充分利用单反的成像模型,背景虚化程度不真实,没有单反的物理背景虚化效果好。
因此,如何对相关的移动终端不做物理硬件结构改变的情况下,实现和单反拍摄效果相同的图片,成为当前亟需解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种虚化处理深度图像的装置和方法,能够实现在不对相关移动终端的物理硬件结构做出改变的情况下,提高拍摄效果。
本发明实施例提供了一种虚化处理深度图像的装置,包括:获取模块、计算模块、确定模块、修正模块和模糊处理模块;其中,
获取模块,设置为获取光圈数值、焦距、对焦距离和容许弥散圆直径;
计算模块,设置为根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围;
确定模块,设置为获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度;
修正模块,设置为根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径;
模糊处理模块,设置为对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。
可选地,所述修正模块是设置为按照以下公式修正高斯模糊对应的半径:
Figure PCTCN2016093087-appb-000001
其中,Ri为像素点i的高斯模糊对应的半径,Bi为像素点i的虚化程度,Bmax为Bi的最大值,Bmin为Bi的最小值,Rmax为高斯模糊半径的最大值,Rmin为高斯模糊半径的最小值。
可选地,其中,
Figure PCTCN2016093087-appb-000002
A为胶片对角线长度,α为转换系数,A和α的乘积等于焦距f,Fmin为光圈数值的最小值,Lmin为对焦距离的最小值。
可选地,所述确定模块是设置为通过以下公式确定不同物距对应的虚化程度:
Figure PCTCN2016093087-appb-000003
其中,Bi为像素点i的虚化程度,u0为对焦点的物距,ui为像素点i的物距,F为光圈数值,A为胶片对角线长度,α为转换系数;其中,i为正整数,A和α的乘积等于焦距f。
可选地,所述计算模块是设置为通过以下公式计算景深范围:
Figure PCTCN2016093087-appb-000004
其中,ΔL为景深范围,f为焦距,F为光圈数值,σ为容许弥散圆直径, L为对焦距离。
可选地,其中,
Figure PCTCN2016093087-appb-000005
σi为像素点i的弥散圆直径,vi为像素点i的像距,v0为对焦点的像距,D为镜头的有效口径,其中i为正整数。
可选地,其中,模糊处理模块是设置为通过如下方式实现对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理:
获取各个像素点的物距;判断获得的各个像素点的物距是否在景深范围之外;对判断出在景深范围之外的物距对应的像素点按照修正后的高斯模糊对应的半径进行模糊处理。
可选地,
模糊处理模块,还设置为将景深范围之内的各个像素点的虚化度设置为0,高斯模糊对应的半径设置为0。
可选地,
其中,
当L满足f*f–F*σ*L=0时,L为超焦距距离。
可选地,
所述装置应用于移动终端、数码产品。
本发明实施例还公开了一种虚化处理深度图像的方法,包括:
获取光圈数值、焦距、对焦距离和容许弥散圆直径;
根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围;
获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度;
根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径;
对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯 模糊对应的半径进行模糊处理并拍摄。
可选地,其中,根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径包括:
按照以下公式修正高斯模糊对应的半径:
Figure PCTCN2016093087-appb-000006
其中,Ri为像素点i的高斯模糊对应的半径,Bi为像素点i的虚化程度,Bmax为Bi的最大值,Bmin为Bi的最小值,Rmax为高斯模糊半径的最大值,Rmin为高斯模糊半径的最小值。
可选地,其中,
Figure PCTCN2016093087-appb-000007
A为胶片对角线长度,α为转换系数,A和α的乘积等于焦距f,Fmin为光圈数值的最小值,Lmin为对焦距离的最小值。
可选地,其中,根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度包括:
通过以下公式确定不同物距对应的虚化程度:
Figure PCTCN2016093087-appb-000008
其中,Bi为像素点i的虚化程度,u0为对焦点的物距,ui为像素点i的物距,F为光圈数值,A为胶片对角线长度,α为转换系数;其中,i为正整数,A和α的乘积等于焦距f。
可选地,其中,根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围包括:
通过以下公式计算景深范围:
Figure PCTCN2016093087-appb-000009
其中,ΔL为景深范围,f为焦距,F为光圈数值,σ为容许弥散圆直径,L为对焦距离。
可选地,其中,
Figure PCTCN2016093087-appb-000010
σi为像素点i的弥散圆直径,vi为像素点i的像距,v0为对焦点的像距,D为镜头的有效口径,其中i为正整数。
可选地,其中,
对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理,包括:
获取各个像素点的物距;判断获得的各个像素点的物距是否在景深范围之外;对判断出在景深范围之外的物距对应的像素点按照修正后的高斯模糊对应的半径进行模糊处理。
可选地,所述方法还包括:
将景深范围之内的各个像素点的虚化度设置为0,高斯模糊对应的半径设置为0。
可选地,其中,
当L满足f*f–F*σ*L=0时,L为超焦距距离。
可选地,其中,
所述方法应用于移动终端、数码产品。
本发明实施例技术方案包括:获取模块、计算模块、确定模块、修正模块和模糊处理模块;其中,获取模块,设置为获取光圈数值、焦距、对焦距离和容许弥散圆直径;计算模块,设置为根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围;确定模块,设置为获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度;修正模块,设置为根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径;模糊处理模块,设置为对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。本发明实 施例技术方案实现了在不对相关移动终端的物理硬件结构做出改变的情况下,提高了拍摄效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为实现本发明各个实施例的移动终端的硬件结构示意;
图2为支持本发明实施例移动终端之间进行通信的通信系统的示意图;
图3为本发明实施例虚化处理深度图像的装置的结构示意图;
图4为本发明实施例虚化处理深度图像的方法的流程图;
图5为本发明实施例凸镜成像的示意图;
图6为本发明实施例景深范围的示例图;
图7为本发明实施例景深范围与光圈数值的关系的示例图;
图8为本发明实施例景深范围与对焦距离的关系的示例图;
图9为本发明实施例虚化程度与高斯模糊对应的半径的对应示意图;
图10为本发明实施例不同物距与模糊度的对应示意图一;
图11为本发明实施例不同物距与模糊度的对应示意图二。
本发明的实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
现在将参考附图描述实现本发明各个实施例的移动终端。在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明实施例的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
移动终端可以以各种形式来实施。例如,本发明实施例中描述的终端可以包括诸如移动电话、智能电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。下面,假 设终端是移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明实施例的实施方式的构造也能够应用于固定类型的终端。
图1为实现本发明各个实施例的移动终端的硬件结构示意图。
移动终端100可以包括无线通信单元110、A/V(音频/视频)输入单元120、用户输入单元130、感测单元140、输出单元150、存储器160、接口单元170、控制器180和电源单元190等等。图1示出了具有各种组件的移动终端,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。将在下面详细描述移动终端的元件。
无线通信单元110通常包括一个或多个组件,其允许移动终端100与无线通信系统或网络之间的无线电通信。例如,无线通信单元可以包括广播接收模块111、移动通信模块112、无线互联网模块113、短程通信模块114和位置信息模块115中的至少一个。
广播接收模块111设置为经由广播信道从外部广播管理服务器接收广播信号和/或广播相关信息。广播信道可以包括卫星信道和/或地面信道。广播管理服务器可以是生成并发送广播信号和/或广播相关信息的服务器或者接收之前生成的广播信号和/或广播相关信息并且将其发送给终端的服务器。广播信号可以包括TV广播信号、无线电广播信号、数据广播信号等等。而且,广播信号可以进一步包括与TV或无线电广播信号组合的广播信号。广播相关信息也可以经由移动通信网络提供,并且在该情况下,广播相关信息可以由移动通信模块112来接收。广播信号可以以各种形式存在,例如,其可以以数字多媒体广播(DMB)的电子节目指南(EPG)、数字视频广播手持(DVB-H)的电子服务指南(ESG)等等的形式而存在。广播接收模块111可以通过使用各种类型的广播系统接收信号广播。特别地,广播接收模块111可以通过使用诸如多媒体广播-地面(DMB-T)、数字多媒体广播-卫星(DMB-S)、数字视频广播-手持(DVB-H),前向链路媒体(MediaFLO@)的数据广播系统、地面数字广播综合服务(ISDB-T)等等的数字广播系统接收数字广播。广播接收模块111可以被构造为适合提供广播信号的各种广播系统以及上述数字广播系统。经由广播接收模块111接收的广播信号和/或广播相关信息可以存储在存储器160(或者其它类型的存储介质)中。
移动通信模块112设置为将无线电信号发送到基站(例如,接入点、节点B等等)、外部终端以及服务器中的至少一个和/或从其接收无线电信号。这样的无线电信号可以包括语音通话信号、视频通话信号、或者根据文本和/或多媒体消息发送和/或接收的各种类型的数据。
无线互联网模块113设置为支持移动终端的无线互联网接入。该模块可以内部或外部地耦接到终端。该模块所涉及的无线互联网接入技术可以包括WLAN(无线LAN)(Wi-Fi)、Wibro(无线宽带)、Wimax(全球微波互联接入)、HSDPA(高速下行链路分组接入)等等。
短程通信模块114是设置为支持短程通信的模块。短程通信技术的一些示例包括蓝牙TM、射频识别(RFID)、红外数据协会(IrDA)、超宽带(UWB)、紫蜂TM等等。
位置信息模块115是设置为检查或获取移动终端的位置信息的模块。位置信息模块的典型示例是GPS(全球定位系统)。根据当前的技术,GPS模块115设置为计算来自三个或更多卫星的距离信息和准确的时间信息并且对于计算的信息应用三角测量法,从而根据经度、纬度和高度准确地计算三维当前位置信息。当前,用于计算位置和时间信息的方法使用三颗卫星并且通过使用另外的一颗卫星校正计算出的位置和时间信息的误差。此外,GPS模块115能够通过实时地连续计算当前位置信息来计算速度信息。
A/V输入单元120设置为接收音频或视频信号。A/V输入单元120可以包括相机121和麦克风1220,相机121设置为对在视频捕获模式或图像捕获模式中由图像捕获装置获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元151上。经相机121处理后的图像帧可以存储在存储器160(或其它存储介质)中或者经由无线通信单元110进行发送,可以根据移动终端的构造提供两个或更多相机1210。麦克风122设置为可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由移动通信模块112发送到移动通信基站的格式输出。麦克风122可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
用户输入单元130设置为可以根据用户输入的命令生成键输入数据以控制移动终端的各种操作。用户输入单元130允许用户输入各种类型的信息,并且可以包括键盘、锅仔片、触摸板(例如,检测由于被接触而导致的电阻、压力、电容等等的变化的触敏组件)、滚轮、摇杆等等。特别地,当触摸板以层的形式叠加在显示单元151上时,可以形成触摸屏。
感测单元140设置为检测移动终端100的当前状态,(例如,移动终端100的打开或关闭状态)、移动终端100的位置、用户对于移动终端100的接触(即,触摸输入)的有无、移动终端100的取向、移动终端100的加速或减速移动和方向等等,并且生成用于控制移动终端100的操作的命令或信号。例如,当移动终端100实施为滑动型移动电话时,感测单元140可以感测该滑动型电话是打开还是关闭。另外,感测单元140能够检测电源单元190是否提供电力或者接口单元170是否与外部装置耦接。感测单元140可以包括接近传感器1410将在下面结合触摸屏来对此进行描述。
接口单元170用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、设置为连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。识别模块可以是存储用于验证用户使用移动终端100的各种信息并且可以包括用户识别模块(UIM)、客户识别模块(SIM)、通用客户识别模块(USIM)等等。另外,具有识别模块的装置(下面称为"识别装置")可以采取智能卡的形式,因此,识别装置可以经由端口或其它连接装置与移动终端100连接。接口单元170可以设置为接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端和外部装置之间传输数据。
另外,当移动终端100与外部底座连接时,接口单元170可以用作允许通过其将电力从底座提供到移动终端100的路径或者可以用作允许从底座输入的各种命令信号通过其传输到移动终端的路径。从底座输入的各种命令信号或电力可以用作用于识别移动终端是否准确地安装在底座上的信号。输出单元150被构造为以视觉、音频和/或触觉方式提供输出信号(例如,音频信号、视频信号、警报信号、振动信号等等)。输出单元150可以包括显示单 元151、音频输出模块152、警报单元153等等。
显示单元151可以设置为显示在移动终端100中处理的信息。例如,当移动终端100处于电话通话模式时,显示单元151可以设置为显示与通话或其它通信(例如,文本消息收发、多媒体文件下载等等)相关的用户界面(UI)或图形用户界面(GUI)。当移动终端100处于视频通话模式或者图像捕获模式时,显示单元151可以设置为显示捕获的图像和/或接收的图像、示出视频或图像以及相关功能的UI或GUI等等。
同时,当显示单元151和触摸板以层的形式彼此叠加以形成触摸屏时,显示单元151可以设置为用作输入装置和输出装置。显示单元151可以包括液晶显示器(LCD)、薄膜晶体管LCD(TFT-LCD)、有机发光二极管(OLED)显示器、柔性显示器、三维(3D)显示器等等中的至少一种。这些显示器中的一些可以被构造为透明状以允许用户从外部观看,这可以称为透明显示器,典型的透明显示器可以例如为TOLED(透明有机发光二极管)显示器等等。根据特定想要的实施方式,移动终端100可以包括两个或更多显示单元(或其它显示装置),例如,移动终端可以包括外部显示单元(未示出)和内部显示单元(未示出)。触摸屏可设置为检测触摸输入压力以及触摸输入位置和触摸输入面积。
音频输出模块152可以设置为在移动终端处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将无线通信单元110接收的或者在存储器160中存储的音频数据转换音频信号并且输出为声音。而且,音频输出模块152可以设置为提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出模块152可以包括扬声器、蜂鸣器等等。
警报单元153可以设置为提供输出以将事件的发生通知给移动终端100。典型的事件可以包括呼叫接收、消息接收、键信号输入、触摸输入等等。除了音频或视频输出之外,警报单元153可以以不同的方式提供输出以通知事件的发生。例如,警报单元153可以设置为以振动的形式提供输出,当接收到呼叫、消息或一些其它进入通信(incoming communication)时,警报单元153可以设置为提供触觉输出(即,振动)以将其通知给用户。通过提供这样的触觉输出,即使在用户的移动电话处于用户的口袋中时,用户也能够识 别出各种事件的发生。警报单元153也可以经由显示单元151或音频输出模块152提供通知事件的发生的输出。
存储器160可以设置为存储由控制器180执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据(例如,电话簿、消息、静态图像、视频等等)。而且,存储器160可以存储关于当触摸施加到触摸屏时输出的各种方式的振动和音频信号的数据。
存储器160可以包括至少一种类型的存储介质,所述存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等等。而且,移动终端100可以与通过网络连接执行存储器160的存储功能的网络存储装置协作。
控制器180通常设置为控制移动终端的总体操作。例如,控制器180执行与语音通话、数据通信、视频通话等等相关的控制和处理。另外,控制器180可以包括设置为再现(或回放)多媒体数据的多媒体模块1810,多媒体模块1810可以构造在控制器180内,或者可以构造为与控制器180分离。控制器180可以设置为执行模式识别处理,以将在触摸屏上执行的手写输入或者图片绘制输入识别为字符或图像。
电源单元190设置为在控制器180的控制下接收外部电力或内部电力并且提供操作各元件和组件所需的适当的电力。
这里描述的各种实施方式可以以使用例如计算机软件、硬件或其任何组合的计算机可读介质来实施。对于硬件实施,这里描述的实施方式可以通过使用特定用途集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、被设计为执行这里描述的功能的电子单元中的至少一种来实施,在一些情况下,这样的实施方式可以在控制器180中实施。对于软件实施,诸如过程或功能的实施方式可以与允许执行至少一种功能或操作的单独的软件模块来实施。软件代码可以由以任何适当的编程语言编写的软件应用程序(或程序)来实施,软件代码可以存储在存储 器160中并且由控制器180执行。
至此,己经按照其功能描述了移动终端。下面,为了简要起见,将描述诸如折叠型、直板型、摆动型、滑动型移动终端等等的各种类型的移动终端中的滑动型移动终端作为示例。因此,本发明实施例能够应用于任何类型的移动终端,并且不限于滑动型移动终端。
如图1中所示的移动终端100可以被构造为利用经由帧或分组发送数据的诸如有线和无线通信系统以及基于卫星的通信系统来操作。
现在将参考图2描述其中根据本发明实施例的移动终端能够操作的通信系统。
这样的通信系统可以使用不同的空中接口和/或物理层。例如,由通信系统使用的空中接口包括例如频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)和通用移动通信系统(UMTS)(特别地,长期演进(LTE))、全球移动通信系统(GSM)等等。作为非限制性示例,下面的描述涉及CDMA通信系统,但是这样的教导同样适用于其它类型的系统。
参考图2,CDMA无线通信系统可以包括多个移动终端100、多个基站(BS)270、基站控制器(BSC)275和移动交换中心(MSC)280。MSC280被构造为与公共电话交换网络(PSTN)290形成接口。MSC280还被构造为与可以经由回程线路耦接到基站270的BSC275形成接口。回程线路可以根据若干己知的接口中的任一种来构造,所述接口包括例如E1/T1、ATM,IP、PPP、帧中继、HDSL、ADSL或xDSL。将理解的是,如图2中所示的系统可以包括多个BSC2750。
每个BS270可以服务一个或多个分区(或区域),由多向天线或指向特定方向的天线覆盖的每个分区放射状地远离BS270。或者,每个分区可以由用于分集接收的两个或更多天线覆盖。每个BS270可以被构造为支持多个频率分配,并且每个频率分配具有特定频谱(例如,1.25MHz,5MHz等等)。
分区与频率分配的交叉可以被称为CDMA信道。BS270也可以被称为基站收发器子系统(BTS)或者其它等效术语。在这样的情况下,术语"基站"可以用于笼统地表示单个BSC275和至少一个BS270。基站也可以被称为"蜂窝站"。或者,特定BS270的各分区可以被称为多个蜂窝站。
如图2中所示,广播发射器(BT)295将广播信号发送给在系统内操作的移动终端100。如图1中所示的广播接收模块111被设置在移动终端100处以接收由BT295发送的广播信号。在图2中,示出了几个全球定位系统(GPS)卫星300。卫星300帮助定位多个移动终端100中的至少一个。
在图2中,描绘了多个卫星300,但是理解的是,可以利用任何数目的卫星获得有用的定位信息。如图1中所示的GPS模块115通常被构造为与卫星300配合以获得想要的定位信息。替代GPS跟踪技术或者在GPS跟踪技术之外,可以使用可以跟踪移动终端的位置的其它技术。另外,至少一个GPS卫星300可以选择性地或者额外地处理卫星DMB传输。
作为无线通信系统的一个典型操作,BS270接收来自各种移动终端100的反向链路信号。移动终端100通常参与通话、消息收发和其它类型的通信。特定基站270接收的每个反向链路信号被在特定BS270内进行处理。获得的数据被转发给相关的BSC275。BSC提供通话资源分配和包括BS270之间的软切换过程的协调的移动管理功能。BSC275还将接收到的数据路由到MSC280,其提供用于与PSTN290形成接口的额外的路由服务。类似地,PSTN290与MSC280形成接口,MSC与BSC275形成接口,并且BSC275相应地控制BS270以将正向链路信号发送到移动终端100。
基于上述移动终端硬件结构以及通信系统,提出本发明方法各个实施例。
图3为本发明实施例虚化处理深度图像的装置,如图3所示,包括:获取模块、计算模块、确定模块、修正模块和模糊处理模块。其中,
获取模块,设置为获取光圈数值、焦距、对焦距离和容许弥散圆直径。
计算模块,设置为根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围。
其中,所述计算模块是设置为通过以下公式计算景深范围:
Figure PCTCN2016093087-appb-000011
其中,ΔL为景深范围,f为焦距,F为光圈数值,σ为容许弥散圆直径,L为对焦距离。
确定模块,设置为获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度。
其中,所述确定模块是设置为通过以下公式确定不同物距对应的虚化程度:
Figure PCTCN2016093087-appb-000012
其中,Bi为像素点i的虚化程度,u0为对焦点的物距,ui为像素点i的物距,F为光圈数值,A为胶片对角线长度,α为转换系数,||为取绝对值;其中,i为正整数,A和α的乘积等于焦距f。
修正模块,设置为根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径。
其中,所述修正模块按照以下公式修正高斯模糊对应的半径:
Figure PCTCN2016093087-appb-000013
其中,Ri为像素点i的高斯模糊对应的半径,Bi为像素点i的虚化程度,Bmax为Bi的最大值,Bmin为Bi的最小值,Rmax为高斯模糊半径的最大值,Rmin为高斯模糊半径的最小值。
模糊处理模块,设置为对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。
其中,模糊处理模块是设置为通过如下方式实现对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理:获取各个像素点的物距;判断获得的各个像素点的物距是否在景深范围之外;对判断出在景深范围之外的物距对应的像素点按照修正后的高斯模糊对应的半径进行模糊处理。
可选地,上述装置可以设置移动终端、数码产品中。
需要说明的是,如上述装置设置在终端中时,可以将该装置中的获取模块设置在图1中的A/V输入单元130中,计算模块、确定模块、修正模块和 模糊处理模块均可以设置在图1中的控制器180中。
图4为本发明实施例虚化处理深度图像的方法,如图4所示,包括:
步骤401:获取光圈数值、焦距、对焦距离和容许弥散圆直径。
步骤402:根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围。
其中,通过公式(1)计算景深范围:
Figure PCTCN2016093087-appb-000014
其中,ΔL为景深范围,f为焦距,F为光圈数值,σ为容许弥散圆直径,L为对焦距离。
需要说明的是,根据凸透镜成像模型,如图5所示,选定一个对焦点,对焦点到镜头的距离为物距u0,对焦点的像点到镜头的距离为像距v0,镜头焦距为f,另外一物点到镜头距离为u,像距为v,根据像距、物距以及焦距的关系即公式(2)所示,
Figure PCTCN2016093087-appb-000015
则有可以得到公式(3)和公式(4)。
v0=fu0/(u0-f)        (3)
v=fu/(u-f)          (4)
由图5可以看到,处于对焦平面之外的像点,在成像平面会形成光斑,这个光斑称之为弥散圆,半径越大,图像越模糊,但是人眼的分辨率有限,弥散圆的直径范围不超过一定的范围,人眼分辨不出来图像变模糊,这样可以形成一段清晰的成像范围,称为景深,这个弥散圆的最大直径也称之为容许弥散圆直径,如图6所示,拍摄距离(或称之为对焦距离)为L,前景深为ΔL1,后景深为ΔL2,则景深范围为ΔL。设定光圈数值为F,容许弥散圆直 径为σ,利用景深公式可以计算出景深范围ΔL和超焦距距离LF。其中,前景深和后景深分别通过公式(5)和(6)计算获得。
Figure PCTCN2016093087-appb-000016
Figure PCTCN2016093087-appb-000017
则景深范围为公式(7)。
Figure PCTCN2016093087-appb-000018
上面的景深计算公式(5)到(7),给出了景深范围,从而可以确定景深范围内的各个像素点的虚化度均为0,高斯模糊对应的半径即为0。
步骤403:获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度。
其中,通过公式(8)确定不同物距对应的虚化程度:
Figure PCTCN2016093087-appb-000019
其中,Bi为像素点i的虚化程度,u0为对焦点的物距(对焦距离),ui为像素点i的物距,F为光圈数值,A为胶片对角线长度,α为转换系数;其中,i为正整数,A和α的乘积等于焦距f。
需要说明的是,由公式(8)可知,在相机的其它参数保持不变,如对焦距离u0和像素点的物距ui等一定的情况下,可以看到,光圈值F和Bi是成反比的关系,也就是说,光圈值F越大,Bi的数值越小,模糊程度越小,此外由公式(7),也可以看到F的变化也会引起景深范围ΔL的变化,做同样的分析,可以看到,F越大,ΔL也就越大。如图7所示,展示了相同对焦距离下面,不同光圈的景深范围,即大光圈的景深范围小,且景深范围外部模糊程度要大,其中,近景深相当于图6所示的前景深,远景深相当于图6所示的后景深。另外,如图8所示,调整对焦距离L,将对不同的主体背景虚化, 可以看到不同的对焦距离,景深范围也不同,和光圈F对Bi的分析类似,不同物距下的像素模糊程度也不同。其中,k1与k2为距离限制参数,超过一定范围的距离的模糊程度都为最大值。
需要说明的是,根据光圈的定义,有F=f D,其中,F为光圈数值,f为焦距,本领域技术人员可以根据相似三角形推导出计算出弥散圆直径的公式(9):
Figure PCTCN2016093087-appb-000020
其中,σi为像素点i的弥散圆直径,vi为像素点i的像距,v0为对焦点的像距,D为镜头的有效口径,其中i为正整数。另外,因为不同幅面感光元件,其容许弥散圆的大小(或者说是直径)是不一样的,因此可以设等效全幅图像胶片对角线长度A,若要等效焦距相同,则焦距与对角线长度之间的比例是固定的,不妨设f=αA可以通过公式(9)最终推导出公式(8),推导过程见公式(10):
Figure PCTCN2016093087-appb-000021
步骤404:根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径。
其中,按照公式(11)修正高斯模糊对应的半径:
Figure PCTCN2016093087-appb-000022
其中,Ri为像素点i的高斯模糊对应的半径,Bi为像素点i的虚化程度,Bmax为Bi的最大值,Bmin为Bi的最小值,Rmax为高斯模糊半径的最大值,Rmin为高斯模糊半径的最小值。
其中,通过公式(12)可以求得Bmax和Bmin:
Figure PCTCN2016093087-appb-000023
由公式(12)可以求得Bmin=0,
Figure PCTCN2016093087-appb-000024
其中,Fmin为光圈数值的最小值,Lmin为对焦距离的最小值。
其中,确定出的不同物距对应的虚化程度修正高斯模糊对应的半径的对应示意图如图9所示,图中B的单位是m,R的单位是像素的个数。
步骤405:对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。
其中,对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理包括:获取各个像素点的物距;判断获得的各个像素点的物距是否在景深范围之外;对判断出在景深范围之外的物距对应的像素点按照修正后的高斯模糊对应的半径进行模糊处理。
可选地,该方法还包括:景深范围之内的各个像素点的虚化度为0,高斯模糊对应的半径也为0。
本发明实施例方法中,通过对景深范围外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理,实现了在不对相关移动终端的物理硬件结构做出改变的情况下,提高了拍摄效果。
需要说明的是,如图10所示,R为像素点高斯模糊的半径大小,值越大,模糊程度越大。dist为摄像机场景中的像素点真实物理距离,L为图像的对焦距离,在一定的光圈值F,焦距f,最大容许弥散圆直径的条件下,可以计算出景深范围,Lp为近景深临界点,Ln为远景深临界点。在如图10所示的RFL曲线中,在景深范围内部,R为0,表示这些焦平面范围的图像成像清晰,不需要模糊。在景深范围外,图像距离景深范围越远,R的值越大,模糊程度越大。当L满足f*f–F*σ*L=0时,Ln趋近于无穷大,景深范围扩展到无穷远处,此时的L为超焦距距离LF,对应的模糊程度曲线如图11所示。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
上述技术方案实现了在不对相关移动终端的物理硬件结构做出改变的情况下,提高了拍摄效果。

Claims (20)

  1. 一种虚化处理深度图像的装置,包括:获取模块、计算模块、确定模块、修正模块和模糊处理模块;其中,
    获取模块,设置为获取光圈数值、焦距、对焦距离和容许弥散圆直径;
    计算模块,设置为根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围;
    确定模块,设置为获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度;
    修正模块,设置为根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径;
    模糊处理模块,设置为对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。
  2. 根据权利要求1所述的装置,其中,所述修正模块是设置为按照以下公式修正高斯模糊对应的半径:
    Figure PCTCN2016093087-appb-100001
    其中,Ri为像素点i的高斯模糊对应的半径,Bi为像素点i的虚化程度,B max为Bi的最大值,B min为Bi的最小值,R max为高斯模糊半径的最大值,R min为高斯模糊半径的最小值。
  3. 根据权利要求2所述的装置,其中,
    Figure PCTCN2016093087-appb-100002
    A为胶片对角线长度,α为转换系数,A和α的乘积等于焦距f,Fmin为光圈数值的最小值,Lmin为对焦距离的最小值。
  4. 根据权利要求2所述的装置,其中,所述确定模块是设置为通过以下公式确定不同物距对应的虚化程度:
    Figure PCTCN2016093087-appb-100003
    其中,Bi为像素点i的虚化程度,u0为对焦点的物距,ui为像素点i的物距,F为光圈数值,A为胶片对角线长度,α为转换系数;其中,i为正整数,A和α的乘积等于焦距f。
  5. 根据权利要求1所述的装置,其中,所述计算模块是设置为通过以下公式计算景深范围:
    Figure PCTCN2016093087-appb-100004
    其中,ΔL为景深范围,f为焦距,F为光圈数值,σ为容许弥散圆直径,L为对焦距离。
  6. 根据权利要求5所述的装置,其中,
    Figure PCTCN2016093087-appb-100005
    σi为像素点i的弥散圆直径,vi为像素点i的像距,v0为对焦点的像距,D为镜头的有效口径,其中i为正整数。
  7. 根据权利要求1至6中任一项所述的装置,其中,模糊处理模块是设置为通过如下方式实现对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理:
    获取各个像素点的物距;判断获得的各个像素点的物距是否在景深范围之外;对判断出在景深范围之外的物距对应的像素点按照修正后的高斯模糊对应的半径进行模糊处理。
  8. 根据权利要求1所述的装置,
    模糊处理模块,还设置为将景深范围之内的各个像素点的虚化度设置为0,高斯模糊对应的半径设置为0。
  9. 根据权利要求5所述的装置,其中,
    当L满足f*f–F*σ*L=0时,L为超焦距距离。
  10. 根据权利要求1所述的装置,其中,
    所述装置应用于移动终端、数码产品。
  11. 一种虚化处理深度图像的方法,包括:
    获取光圈数值、焦距、对焦距离和容许弥散圆直径;
    根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围;
    获取对焦点的物距并根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度;
    根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径;
    对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理并拍摄。
  12. 根据权利要求11所述的方法,其中,根据确定出的不同物距对应的虚化程度修正高斯模糊对应的半径包括:
    按照以下公式修正高斯模糊对应的半径:
    Figure PCTCN2016093087-appb-100006
    其中,Ri为像素点i的高斯模糊对应的半径,Bi为像素点i的虚化程度,B max为Bi的最大值,B min为Bi的最小值,R max为高斯模糊半径的最大值,R min为高斯模糊半径的最小值。
  13. 根据权利要求12所述的方法,其中,
    Figure PCTCN2016093087-appb-100007
    A为胶片对角线长度,α为转换系数,A和α的乘积等于焦距f,Fmin为光圈数值的最小值,Lmin为对焦距离的最小值。
  14. 根据权利要求12所述的方法,其中,根据获得的对焦点的物距、光圈数值、焦距确定不同物距对应的虚化程度包括:
    通过以下公式确定不同物距对应的虚化程度:
    Figure PCTCN2016093087-appb-100008
    其中,Bi为像素点i的虚化程度,u0为对焦点的物距,ui为像素点i的物距,F为光圈数值,A为胶片对角线长度,α为转换系数;其中,i为正整数,A和α的乘积等于焦距f。
  15. 根据权利要求11所述的方法,其中,根据获得的光圈数值、焦距、对焦距离和容许弥散圆直径计算景深范围包括:
    通过以下公式计算景深范围:
    Figure PCTCN2016093087-appb-100009
    其中,ΔL为景深范围,f为焦距,F为光圈数值,σ为容许弥散圆直径,L为对焦距离。
  16. 根据权利要求15所述的方法,其中,
    Figure PCTCN2016093087-appb-100010
    σi为像素点i的弥散圆直径,vi为像素点i的像距,v0为对焦点的像距,D为镜头的有效口径,其中i为正整数。
  17. 根据权利要求11至16中任一项所述的方法,其中,对景深范围之外的需要虚化处理的深度图像的像素点按照修正后的高斯模糊对应的半径进行模糊处理,包括:
    获取各个像素点的物距;判断获得的各个像素点的物距是否在景深范围之外;对判断出在景深范围之外的物距对应的像素点按照修正后的高斯模糊对应的半径进行模糊处理。
  18. 根据权利要求11所述的方法,还包括:
    将景深范围之内的各个像素点的虚化度设置为0,高斯模糊对应的半径设置为0。
  19. 根据权利要求15所述的方法,其中,
    当L满足f*f–F*σ*L=0时,L为超焦距距离。
  20. 根据权利要求11所述的方法,其中,
    所述方法应用于移动终端、数码产品。
PCT/CN2016/093087 2015-08-03 2016-08-03 一种虚化处理深度图像的装置和方法 WO2017020836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510481927.6 2015-08-03
CN201510481927.6A CN105163042B (zh) 2015-08-03 2015-08-03 一种虚化处理深度图像的装置和方法

Publications (1)

Publication Number Publication Date
WO2017020836A1 true WO2017020836A1 (zh) 2017-02-09

Family

ID=54803784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093087 WO2017020836A1 (zh) 2015-08-03 2016-08-03 一种虚化处理深度图像的装置和方法

Country Status (2)

Country Link
CN (1) CN105163042B (zh)
WO (1) WO2017020836A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111209782A (zh) * 2018-11-22 2020-05-29 中国银联股份有限公司 一种机房设备异常灯的识别方法以及识别系统
CN114979472A (zh) * 2022-05-13 2022-08-30 杭州联吉技术有限公司 一种自动对焦方法、装置、设备及可读存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105163042B (zh) * 2015-08-03 2017-11-03 努比亚技术有限公司 一种虚化处理深度图像的装置和方法
CN106060423B (zh) * 2016-06-02 2017-10-20 广东欧珀移动通信有限公司 虚化照片生成方法、装置和移动终端
CN105979165B (zh) * 2016-06-02 2019-02-05 Oppo广东移动通信有限公司 虚化照片生成方法、装置和移动终端
JP6714791B2 (ja) * 2016-07-13 2020-07-01 株式会社バンダイナムコエンターテインメント シミュレーションシステム及びプログラム
CN106530241B (zh) * 2016-10-31 2020-08-11 努比亚技术有限公司 一种图像虚化处理方法和装置
CN106600529A (zh) * 2016-11-28 2017-04-26 北京暴风魔镜科技有限公司 一种全焦全景图像的获取方法和装置
CN107133982B (zh) * 2017-04-28 2020-05-15 Oppo广东移动通信有限公司 深度图构建方法、装置及拍摄设备、终端设备
CN108234858B (zh) * 2017-05-19 2020-05-01 深圳市商汤科技有限公司 图像虚化处理方法、装置、存储介质及电子设备
CN108701361A (zh) * 2017-11-30 2018-10-23 深圳市大疆创新科技有限公司 深度值确定方法和装置
CN108234865A (zh) 2017-12-20 2018-06-29 深圳市商汤科技有限公司 图像处理方法、装置、计算机可读存储介质和电子设备
CN108335323B (zh) * 2018-03-20 2020-12-29 厦门美图之家科技有限公司 一种图像背景的虚化方法及移动终端
CN108337434B (zh) * 2018-03-27 2020-05-22 中国人民解放军国防科技大学 一种针对光场阵列相机的焦外虚化重聚焦方法
CN108765271B (zh) * 2018-05-30 2022-06-03 北京小米移动软件有限公司 图像处理方法及设备
EP3744088A1 (en) 2019-04-01 2020-12-02 Google LLC Techniques to capture and edit dynamic depth images

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039307A1 (en) * 1998-02-03 1999-08-05 Micrografx, Inc. System for simulating the depth of field of an image in two-dimensional space and method of operation
CN102812496A (zh) * 2010-03-22 2012-12-05 索尼公司 用于景深渲染的模糊函数建模
CN103945118A (zh) * 2014-03-14 2014-07-23 华为技术有限公司 图像虚化方法、装置及电子设备
CN104424640A (zh) * 2013-09-06 2015-03-18 格科微电子(上海)有限公司 对图像进行虚化处理的方法和装置
CN105163042A (zh) * 2015-08-03 2015-12-16 努比亚技术有限公司 一种虚化处理深度图像的装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764925B (zh) * 2008-12-25 2011-07-13 华晶科技股份有限公司 数字图像的浅景深模拟方法
CN102158648B (zh) * 2011-01-27 2014-09-10 明基电通有限公司 影像截取装置及影像处理方法
CN103945210B (zh) * 2014-05-09 2015-08-05 长江水利委员会长江科学院 一种实现浅景深效果的多摄像头拍摄方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039307A1 (en) * 1998-02-03 1999-08-05 Micrografx, Inc. System for simulating the depth of field of an image in two-dimensional space and method of operation
CN102812496A (zh) * 2010-03-22 2012-12-05 索尼公司 用于景深渲染的模糊函数建模
CN104424640A (zh) * 2013-09-06 2015-03-18 格科微电子(上海)有限公司 对图像进行虚化处理的方法和装置
CN103945118A (zh) * 2014-03-14 2014-07-23 华为技术有限公司 图像虚化方法、装置及电子设备
CN105163042A (zh) * 2015-08-03 2015-12-16 努比亚技术有限公司 一种虚化处理深度图像的装置和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111209782A (zh) * 2018-11-22 2020-05-29 中国银联股份有限公司 一种机房设备异常灯的识别方法以及识别系统
CN111209782B (zh) * 2018-11-22 2024-04-16 中国银联股份有限公司 一种机房设备异常灯的识别方法以及识别系统
CN114979472A (zh) * 2022-05-13 2022-08-30 杭州联吉技术有限公司 一种自动对焦方法、装置、设备及可读存储介质
CN114979472B (zh) * 2022-05-13 2023-11-24 杭州联吉技术有限公司 一种自动对焦方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN105163042B (zh) 2017-11-03
CN105163042A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017020836A1 (zh) 一种虚化处理深度图像的装置和方法
WO2018019124A1 (zh) 一种图像处理方法及电子设备、存储介质
WO2018076935A1 (zh) 图像虚化处理方法、装置、移动终端和计算机存储介质
WO2017067526A1 (zh) 图像增强方法及移动终端
WO2017050115A1 (zh) 一种图像合成方法和装置
CN106454121B (zh) 双摄像头拍照方法及装置
WO2016180325A1 (zh) 图像处理方法及装置
CN106909274B (zh) 一种图像显示方法和装置
WO2017045650A1 (zh) 一种图片处理方法及终端
WO2018019128A1 (zh) 一种夜景图像的处理方法和移动终端
US8780258B2 (en) Mobile terminal and method for generating an out-of-focus image
CN107483777B (zh) 一种成像方法、装置及移动终端
WO2017071481A1 (zh) 一种移动终端及其实现分屏的方法
WO2018050014A1 (zh) 对焦方法及拍照设备、存储介质
WO2017041714A1 (zh) 一种获取rgb数据的方法和装置
WO2017071532A1 (zh) 一种自拍合影的方法和装置
WO2017071476A1 (zh) 一种图像合成方法和装置、存储介质
WO2017067523A1 (zh) 图像处理方法、装置及移动终端
CN106657782B (zh) 一种图片处理方法和终端
CN106482641B (zh) 一种尺寸测量装置和方法
WO2017071542A1 (zh) 图像处理方法及装置
WO2017071592A1 (zh) 一种实现对焦的方法和装置、实现拍照的方法和装置
CN106911881B (zh) 一种基于双摄像头的动态照片拍摄装置、方法和终端
CN105959551A (zh) 一种拍摄装置及方法、移动终端
WO2018032917A1 (zh) 一种移动终端、获取对焦值的方法以及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM XXXX DATED 14.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16832324

Country of ref document: EP

Kind code of ref document: A1