WO2017020267A1 - 一种水力压裂微地震事件的解释方法 - Google Patents

一种水力压裂微地震事件的解释方法 Download PDF

Info

Publication number
WO2017020267A1
WO2017020267A1 PCT/CN2015/086087 CN2015086087W WO2017020267A1 WO 2017020267 A1 WO2017020267 A1 WO 2017020267A1 CN 2015086087 W CN2015086087 W CN 2015086087W WO 2017020267 A1 WO2017020267 A1 WO 2017020267A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
data
seismic
hydraulic fracturing
microseismic
Prior art date
Application number
PCT/CN2015/086087
Other languages
English (en)
French (fr)
Inventor
赵龙
Original Assignee
深圳朝伟达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳朝伟达科技有限公司 filed Critical 深圳朝伟达科技有限公司
Priority to PCT/CN2015/086087 priority Critical patent/WO2017020267A1/zh
Priority to PCT/CN2015/096463 priority patent/WO2017020461A1/zh
Publication of WO2017020267A1 publication Critical patent/WO2017020267A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection

Definitions

  • the invention relates to the field of petroleum geophysical exploration, in particular to an explanation technique for a hydraulic fracturing microseismic event, and in particular to an explanation method of a hydraulic fracturing microseismic event.
  • microseismic fracturing monitoring technology realizes the location of artificial cracks by monitoring the microseismic events, and clarifies the crack extension direction, crack length, crack width and crack height, and guides the subsequent exploration and development of oil and gas fields.
  • the idea of microseismic originated from mining, mainly to avoid causing corresponding geological disasters in mining.
  • microseismic monitoring had been successfully applied several times in the geothermal industry, mainly for the purpose of identifying wells and assisting the description of fracture layers. Subsequently, in the verification of other countries in the world, the superiority of microseismic monitoring technology is also well reflected. Every year, SEG and SPE annual conferences have launched special topics to discuss microseismic fracturing monitoring technology.
  • microseismic fracturing monitoring technology is used in the development of low porosity and low permeability oil and gas reservoirs.
  • Application prospects In recent years, domestic microseismic monitoring technology has achieved good results in theory, instrument manufacturing and actual production.
  • Dongfang Geophysical Co., Ltd. In actual production, Dongfang Geophysical Co., Ltd., through cooperation with foreign companies, adheres to the technology development ideas of introduction, absorption and re-innovation, and forms a well-fractured micro-seismic monitoring and interpretation software with independent intellectual property rights, which has been applied to actual production. It involves 9 shale gas, coalbed methane and tight sandstone gas, serving 9 oil and gas fields such as Southwest, Tuha, Jilin and Changqing, completing 51 fracturing monitoring and 150-story well fracturing monitoring mission.
  • microseismic interpretation technology is relatively backward, only staying in the large number of microseismic earthquakes indicates that the area may be fractured, and the microseismic events are prone to generate near the faults, but only the microseismic events are generated and regions. The fault is linked.
  • the hydraulic fracturing micro-seismic events are affected by many factors, such as ground stress, natural fractures, geological structures, reservoir characteristics, etc., and the multiple integrated effects lead to the multi-directional distribution of micro-seismic events, bringing interpretation challenge. Therefore, in the microseismic interpretation, it is urgent to provide more information to reasonably analyze the distribution characteristics of microseismic events and guide the subsequent evaluation of reservoir fracturing.
  • the present invention provides a hydraulic fracturing microseismic Interpretation method and system of events, combining seismic information with microseismic events, using the attributes of seismic data reflecting natural fracture characteristics and reflecting reservoir characteristic parameters combined with microseismic event characteristics, so that the interpretation results of microseismic event distribution characteristics More convincing, better evaluation of reservoir transformation effects, and guide the subsequent horizontal well layout.
  • One of the objectives of the present invention is to provide an explanation method for a hydraulic fracturing microseismic event, including: collecting regional geological structure data of a target reservoir; collecting seismic fracture data of a destination reservoir; and acquiring hydraulic fracturing of a destination reservoir. a microseismic event; extracting attribute data from the seismic fracture data; determining a reservoir characteristic parameter according to the seismic fracture data; and performing the hydraulic force according to the regional geological structure data, the attribute data, and the reservoir characteristic parameter
  • the fracturing microseismic events are explained and the interpretation results are obtained.
  • One of the objects of the present invention is to provide an explanation system for hydraulic fracturing microseismic events, including: a geological structure data collecting device for collecting regional geological structure data of a target reservoir; and an earthquake crack data collecting device for Collecting seismic fracture data of the target reservoir; microseismic event acquisition device for collecting hydraulic fracturing microseismic events of the target reservoir; attribute data extraction device for extracting attribute data from the seismic fracture data; reservoir a characteristic parameter determining device, configured to determine a reservoir property parameter according to the seismic crack data; a microseismic event interpretation device, configured to perform the hydraulic pressure according to the regional geological structure data, the attribute data, and the reservoir property parameter Intermittent microseismic events are explained and the results are explained.
  • the invention has the beneficial effects of providing an explanation method and system for hydraulic fracturing micro-seismic events, and is an interpretation technique combining seismic and hydraulic fracturing micro-seismic events, and using seismic data to reflect the characteristics of natural cracks.
  • Coherence, curvature properties and brittleness, Young's modulus reflecting the characteristics of reservoirs and micro-seismic event characteristics are combined to analyze the distribution characteristics of micro-seismic events, evaluate the effect of reservoir fracturing and reform, guide the subsequent well pattern layout, and overcome the existing technology.
  • the microseismic interpretation technology in China only stays in the relatively backward micro-seismic interpretation technology caused by the connection between the generation of microseismic events and regional faults.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for explaining a hydraulic fracturing microseismic event according to an embodiment of the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for explaining a hydraulic fracturing microseismic event according to an embodiment of the present invention
  • FIG. 3 is a specific flowchart of step S206 in FIG. 2;
  • step S207 in FIG. 2 is a specific flowchart of step S207 in FIG. 2;
  • FIG. 5 is a structural block diagram of Embodiment 1 of an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention
  • Embodiment 6 is a structural block diagram of Embodiment 2 of an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing a specific structure of a reservoir characteristic parameter determining apparatus 500 in an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention
  • FIG. 8 is a block diagram showing a specific structure of a microseismic event interpretation apparatus 600 in an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram showing a feature of coherent attribute distribution of a target layer segment in a specific embodiment provided by the present invention.
  • Figure 10 is a structural view of a target layer segment in a specific embodiment provided by the present invention.
  • FIG. 11 is a schematic diagram showing a minimum curvature distribution characteristic of a target interval in a specific embodiment provided by the present invention.
  • FIG. 12 is a schematic diagram showing a maximum curvature distribution characteristic of a target interval in a specific embodiment provided by the present invention.
  • FIG. 13 is a first display diagram obtained by jointly explaining the microseismic events and coherent attributes of the target interval in the specific embodiment provided by the present invention.
  • FIG. 14 is a second display diagram of a joint interpretation and distribution of microseismic events and curvature attributes of a target interval in a specific embodiment provided by the present invention.
  • 15 is a third display diagram obtained by jointly explaining the microseismic event and the brittleness index of the target interval in the specific embodiment provided by the present invention.
  • FIG. 16 is a fourth display diagram obtained by jointly explaining the microseismic event of the target interval and the Poisson's ratio in the specific embodiment provided by the present invention.
  • the invention relates to a hydraulic fracturing micro-seismic event interpretation technology, which is a combination of micro-seismic and seismic, using coherence and curvature properties of natural fracture characteristics in seismic data and brittleness and Young's modulus reflecting reservoir characteristics.
  • the Poisson's ratio is combined with the characteristics of microseismic events to comprehensively analyze the interpretation techniques of the distribution characteristics of microseismic events.
  • FIG. 1 is a specific flowchart of Embodiment 1 of a method for explaining a hydraulic fracturing microseismic event according to the present invention. As shown in FIG. 1, in the first embodiment, the method includes:
  • S101 Collect regional geological structure data of the target reservoir.
  • the regional geological structure has a great influence on the direction of microseismic events.
  • the regional geological structure may lead to the diversity of the direction of microseismic events, resulting in multiple micro-seismic events in the secondary direction.
  • S103 Collecting a hydraulic fracturing microseismic event of the target reservoir.
  • the attribute data includes coherent attribute data and curvature attribute data
  • the microseismic events tend to extend along the natural crack direction
  • the coherence attribute and the curvature attribute have been proved to describe the natural
  • the curvature property can be used to understand the tectonic stress development in the work area.
  • the coherence and curvature properties can be extracted by seismic crack data.
  • FIG. 3 is a specific flow chart of the step.
  • the shale gas reservoir belongs to the ultra-low porosity and low permeability reservoir.
  • the fracture induced by the hydraulic fracturing microseismic event can transform the reservoir and improve its permeability.
  • the earthquake and hydraulic fracturing microseismic proposed by the present invention Interpretation techniques combined with events can be used to evaluate the effects of shale gas reservoir fracturing and transformation, and guide the subsequent well pattern deployment.
  • the fracture direction of the microseismic event is parallel to the direction of the maximum horizontal principal stress, and perpendicular to the direction of the minimum horizontal principal stress, and the actual worksite geological structure has a great influence on the direction of the microseismic event, especially in the case of complex geological structures.
  • the direction of the crack generated by the earthquake is uncertain.
  • the fracture direction of microseismic events is also related to the distribution of natural fractures. Hydraulic fracturing is easy to activate natural fractures, and microseismic events are always easy to propagate along the existing fracture direction.
  • M. Haege et al. introduced a new seismic attribute, namely rock fabric structure, which links the location of the hydraulic fracturing microseismic event with the rock fabric.
  • the degree of rock fabric affects the spatial distribution of microseismic events and the degree of rock organization is large.
  • the artificial cracks in the local area are complex, and the cracks excited in the small rock fabric are mainly in a plane, indicating the importance of combining microseisms with ground earthquakes to describe the characteristics of shale gas reservoirs. Since the distribution characteristics of microseismic events are affected by many factors, when considering the effect of reservoir fracturing, simply considering one factor does not give a reasonable explanation for microseismic events.
  • the coherence and curvature properties can well describe the distribution characteristics of natural faults and fractures.
  • the reservoir parameters reflecting the brittleness characteristics of rocks can be obtained by seismic AVO inversion, and then serve the interpretation of subsequent microseismic events.
  • the present invention proposes an interpretation technique combining seismic and hydraulic fracturing microseismic events, using the coherence and curvature properties of the natural fracture characteristics in the seismic data and the brittleness reflecting the reservoir characteristics, Yang's
  • the modulus is combined with the characteristics of microseismic events to comprehensively analyze the distribution characteristics of microseismic events, evaluate the effect of reservoir fracturing and reform, and guide the subsequent well pattern layout.
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for explaining a hydraulic fracturing microseismic event according to an embodiment of the present invention. As shown in FIG. 2, in Embodiment 2, the method specifically includes:
  • S201 Collecting regional geological structure data of the target reservoir.
  • the regional geological structure has a great influence on the direction of microseismic events.
  • the regional geological structure may lead to the diversity of the direction of microseismic events, resulting in multiple micro-seismic events in the secondary direction.
  • the regional geological structure diagram of the target interval in the specific embodiment provided by the present invention is caused by the two sets of tectonic stress fields in the work area, so that the main direction of the micro-ground event direction is northeast and northwest. (shown by the solid arrow in the figure).
  • S203 Collecting a hydraulic fracturing microseismic event of the target reservoir.
  • the attribute data includes coherent attribute data and curvature attribute data
  • the microseismic events tend to extend along the natural crack direction
  • the coherence attribute and the curvature attribute have been proved to describe the natural
  • the curvature property can be used to understand the tectonic stress development in the work area.
  • the coherence and curvature properties can be extracted by seismic crack data.
  • FIG. 11 is a schematic diagram showing a minimum curvature distribution characteristic of a target layer segment according to a specific embodiment of the present invention
  • FIG. 12 is a schematic diagram showing a maximum curvature distribution characteristic of a target layer segment according to a specific embodiment of the present invention.
  • the reservoir property parameter includes a Poisson's ratio, a reservoir brittleness, and a Young's modulus of elasticity.
  • FIG. 3 is a specific flow chart of the step. The lower the Poisson's ratio, the greater the brittleness of the rock. As the Young's modulus increases, the brittleness of the rock increases, and the place where the brittleness of the rock is large is always prone to cracking. Among them, the reservoir brittleness parameter can be obtained by seismic AVO (Amplitude Versus Offset).
  • FIG. 3 is a specific flowchart of step S206 in FIG. 2. As shown in FIG. 3, the step specifically includes:
  • S301 extract longitudinal wave velocity and transverse wave velocity from the seismic crack data
  • V p longitudinal wave velocity
  • V s shear wave velocity
  • YM Young's modulus of elasticity
  • I S longitudinal wave impedance
  • RHOB density
  • BRIT reservoir fragility
  • FIG. 4 is a specific flowchart of step S207 in FIG. 2. As shown in FIG. 4, the step specifically includes:
  • S402 jointly display the hydraulic fracturing microseismic event and the curvature attribute data to obtain a second display image, as shown in FIG. 14;
  • S405 comprehensively analyzing the main direction, the secondary direction, the first display image, the second display image, the third display image, and The fourth display shows the results of the explanation.
  • micro-seismic events induced by hydraulic fracturing are affected by many factors such as ground stress, natural fractures, geological structures, and reservoir characteristics. (such as mineral components), combining seismic information with microseismic events, using coherence and curvature properties reflecting natural fracture characteristics in seismic data and brittleness, Young's modulus, Poisson's ratio and microseismic reflecting reservoir characteristics.
  • the combination of event characteristics makes the distribution characteristics of microseismic events more convincing, used to evaluate the effect of reservoir reconstruction and guide the subsequent horizontal well pattern layout.
  • the invention relates to a hydraulic fracturing micro-seismic event interpretation technology, which is a combination of micro-seismic and seismic, using coherence and curvature properties of natural fracture characteristics in seismic data and brittleness and Young's modulus reflecting reservoir characteristics.
  • the Poisson's ratio is combined with the characteristics of microseismic events to comprehensively analyze the interpretation techniques of the distribution characteristics of microseismic events.
  • FIG. 5 is a structural block diagram of Embodiment 1 of an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention. As shown in FIG. 5, in the first embodiment, the system includes:
  • the geological structure data collecting device 100 is configured to collect regional geological structure data of the target reservoir.
  • the regional geological structure has a great influence on the direction of microseismic events.
  • the regional geological structure may lead to the diversity of the direction of microseismic events, resulting in multiple micro-seismic events in the secondary direction.
  • the seismic crack data collecting device 200 is configured to collect seismic crack data of the target reservoir
  • the microseismic event collecting device 300 is configured to collect hydraulic fracturing microseismic events of the target reservoir.
  • the attribute data extracting device 400 is configured to extract attribute data from the seismic crack data, the attribute data includes coherent attribute data and curvature attribute data, and the microseismic events tend to extend along the natural crack direction, and the coherent attribute and the curvature attribute have been proved. It can better describe the natural crack distribution characteristics, and understand the tectonic stress development in the work area by curvature properties.
  • the coherence and curvature properties can be extracted by seismic crack data.
  • the reservoir characteristic parameter determining device 500 is configured to determine a reservoir characteristic parameter according to the seismic crack data, the reservoir property parameter includes a Poisson's ratio, a reservoir brittleness, and a Young's modulus of elasticity, and FIG. 7 is a specific structure of the device. block diagram.
  • the microseismic event interpretation device 600 is configured to interpret the hydraulic fracturing microseismic event according to the regional geological structure data, the attribute data, and the reservoir characteristic parameter, and obtain an interpretation result.
  • Figure 8 is a block diagram showing the specific structure of the device.
  • the shale gas reservoir belongs to the ultra-low porosity and low permeability reservoir.
  • the fracture induced by the hydraulic fracturing microseismic event can transform the reservoir and improve its permeability.
  • the earthquake and hydraulic fracturing microseismic proposed by the present invention Interpretation techniques combined with events can be used to evaluate the effects of shale gas reservoir fracturing and transformation, and guide the subsequent well pattern deployment.
  • FIG. 6 is a structural block diagram of Embodiment 2 of an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention.
  • FIG. 6 shows that, in Embodiment 2, the system specifically includes:
  • the geological structure data collecting device 100 is configured to collect regional geological structure data of the target reservoir.
  • Regional geological structures have a great influence on the direction of microseismic events, and regional geological structures may lead to microseismic events. There are diversity of directions, resulting in multiple micro-seismic events in the secondary direction.
  • the regional geological structure diagram of the target interval in the specific embodiment provided by the present invention is caused by the two sets of tectonic stress fields in the work area, so that the main direction of the micro-ground event direction is northeast and northwest. (shown by the solid arrow in the figure).
  • the seismic crack data collecting device 200 is configured to collect seismic crack data of the target reservoir
  • the microseismic event collecting device 300 is configured to collect hydraulic fracturing microseismic events of the target reservoir.
  • the attribute data extracting device 400 is configured to extract attribute data from the seismic crack data, the attribute data includes coherent attribute data and curvature attribute data, and the microseismic events tend to extend along the natural crack direction, and the coherent attribute and the curvature attribute have been proved. It can better describe the natural crack distribution characteristics, and understand the tectonic stress development in the work area by curvature properties.
  • the coherence and curvature properties can be extracted by seismic crack data.
  • the direction determining device 700 is configured to determine a main direction and a secondary direction of the hydraulic fracturing microseismic event according to the regional geological structure data and the curvature attribute data.
  • FIG. 11 is a schematic diagram showing a minimum curvature distribution characteristic of a target layer segment according to a specific embodiment of the present invention
  • FIG. 12 is a schematic diagram showing a maximum curvature distribution characteristic of a target layer segment according to a specific embodiment of the present invention.
  • the secondary direction of the microseismic event (shown by the dotted arrow in the figure) is mainly caused by the regional geological structure, and the microseismic event is the main The direction and the secondary direction are also consistent with the direction of the main crack zone of the work area.
  • the reservoir property parameter determining device 500 is configured to determine a reservoir property parameter according to the seismic fracture data, and the reservoir property parameter includes a Poisson's ratio, a reservoir brittleness, and a Young's modulus of elasticity.
  • the lower the Poisson's ratio the greater the brittleness of the rock.
  • the Young's modulus increases, the brittleness of the rock increases, and the place where the brittleness of the rock is large is always prone to cracking.
  • the reservoir brittleness parameter can be obtained by seismic AVO (Amplitude Versus Offset).
  • the microseismic event interpretation device 600 is configured to interpret the hydraulic fracturing microseismic event according to the regional geological structure data, the attribute data, and the reservoir characteristic parameter, and obtain an interpretation result.
  • FIG. 7 is a block diagram showing a specific structure of a reservoir characteristic parameter determining apparatus 500 in an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention.
  • the reservoir characteristic parameter determining apparatus specifically includes:
  • a speed extraction module 501 configured to extract longitudinal wave velocity and transverse wave velocity from the seismic crack data
  • the Poisson's ratio determination module 502 is configured to determine a Poisson's ratio according to the longitudinal wave velocity and the shear wave velocity, and is specifically determined by the following formula:
  • a density extraction module 503, configured to extract longitudinal wave impedance and density from the seismic crack data
  • the elastic modulus determining module 504 is configured to determine the Young's modulus of elasticity according to the longitudinal wave impedance, the density, and the Poisson's ratio, and specifically, determined by the following formula:
  • the reservoir fragility determining module 505 is configured to determine the reservoir brittleness according to the Young's modulus of elasticity and the Poisson's ratio, and specifically, determined by the following formula:
  • V p longitudinal wave velocity
  • V s shear wave velocity
  • YM Young's modulus of elasticity
  • I S longitudinal wave impedance
  • RHOB density
  • BRIT reservoir fragility
  • FIG. 8 is a block diagram showing a specific structure of a microseismic event interpretation apparatus 600 in an explanation system for a hydraulic fracturing microseismic event according to an embodiment of the present invention. As shown in FIG. 8, the microseismic event interpretation apparatus 600 specifically includes:
  • the first display map determining module 601 is configured to jointly display the hydraulic fracturing microseismic event and the coherent attribute data to obtain a first display map, as shown in FIG.
  • a second display map determining module 602 configured to jointly display the hydraulic fracturing microseismic event and the curvature attribute data to obtain a second display image, as shown in FIG. 14;
  • the third display map determining module 603 is configured to jointly display the hydraulic fracturing microseismic event and the reservoir fragility to obtain a third display map, as shown in FIG.
  • the fourth display map determining module 604 is configured to display the hydraulic fracturing microseismic event in association with the Poisson's ratio to obtain a fourth display map, as shown in FIG.
  • the interpretation result determining module 605 is configured to comprehensively analyze the main direction, the secondary direction, the first display image, the second display image, the third display image, and the fourth display image to obtain an interpretation result.
  • micro-seismic events induced by hydraulic fracturing are affected by many factors such as ground stress, natural fractures, geological structures, and reservoir characteristics. (such as mineral components), combining seismic information with microseismic events, using coherence and curvature properties reflecting natural fracture characteristics in seismic data and brittleness, Young's modulus, Poisson's ratio and microseismic reflecting reservoir characteristics.
  • the combination of event characteristics makes the distribution characteristics of microseismic events more convincing, used to evaluate the effect of reservoir reconstruction and guide the subsequent horizontal well pattern layout.
  • Microseismic events induced by hydraulic fracturing are affected by many factors, such as ground stress, natural fractures, geological structures, and reservoir characteristics (such as mineral components).
  • the coherence and curvature properties have been proven to better describe the natural crack propagation characteristics, and microseismic events tend to extend along the natural crack direction.
  • the reservoir characteristics also have an impact on the distribution of microseismic events, and the rock brittleness is always prone to rupture.
  • Coherence, curvature and reservoir properties can be obtained from seismic data. Combine coherence, curvature, reservoir characteristics and microseismic event information, and comprehensively consider a variety of information, which will be more conducive to evaluating the effect of reservoir fracturing and rational interpretation of microseismic Distribution characteristics.
  • FIG. 9 is a schematic diagram showing a feature of a coherent attribute distribution of a target layer in a specific embodiment of the present invention
  • FIG. 10 is a structural diagram of a target layer in a specific embodiment of the present invention
  • FIG. 11 is a specific embodiment of the present invention
  • FIG. 12 is a schematic diagram of a maximum curvature distribution characteristic of a target interval in a specific embodiment provided by the present invention.
  • Figures 9 to 12 show the distribution characteristics of the fracture of the target interval. Because the work area is affected by two sets of tectonic stress fields, the main direction of the micro-ground event direction is the northeast and northwest direction (shown by the solid arrow in the figure). After analyzing the reflection structure map and the seismic coherence curvature property, it is very It is easy to understand that the secondary direction of the microseismic event (shown by the dotted arrow in the figure) is mainly due to the regional geological structure, and the main direction and the secondary direction of the microseismic event are also consistent with the direction of the main crack zone of the work area.
  • FIG. 13 is a first display diagram obtained by jointly explaining the microseismic events and coherent attributes of the target interval in the specific embodiment provided by the present invention
  • FIG. 14 is a microseismic event of the target interval in the specific embodiment provided by the present invention.
  • FIG. 15 is a third display diagram obtained by jointly explaining the microseismic event and the brittleness index of the target interval in the specific embodiment provided by the present invention, FIG.
  • the microscopic seismic event of the target interval is combined with the Poisson's ratio to interpret the fourth display.
  • the brittleness index in the vicinity of B, C and D is relatively high (Fig. 15), especially in the vicinity of B and C.
  • Figure 16 shows the combined display of microseismic events and Poisson's ratio. The lower the Poisson's ratio, the better the gas content, and the Poisson's ratio can be used as an indication of gas.
  • microseismic interpretation regional structural features, fracture systems, and reservoir properties (cracking) should be fully considered. Sex, Poisson's ratio, etc.), comprehensive analysis of the distribution characteristics of microseismic events, evaluation of the effect of reservoir fracturing and transformation, and guidance of the subsequent well network layout.
  • the microseismic events induced by hydraulic fracturing are affected by many factors, such as ground stress, natural fractures, geological structures, reservoir characteristics (such as mineral components), etc.
  • This patent method combines coherence, curvature, reservoir properties and microseismic. The combination of event information takes into account a variety of information.
  • the method and system for interpreting a hydraulic fracturing microseismic event proposed by the present invention is an interpretation technique combining seismic and hydraulic fracturing microseismic events, and using seismic data to reflect the characteristics of natural fractures.
  • Coherence, curvature properties and brittleness, Young's modulus reflecting the characteristics of reservoirs and micro-seismic event characteristics are combined to analyze the distribution characteristics of micro-seismic events, evaluate the effect of reservoir fracturing and reform, guide the subsequent well pattern layout, and overcome the existing technology.
  • the microseismic interpretation technology in China only stays in the relatively backward micro-seismic interpretation technology caused by the connection between the generation of microseismic events and regional faults.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种水力压裂微地震事件的解释方法,所述方法包括:采集目的储层的区域地质构造数据(S101);采集目的储层的地震裂缝数据(S102);采集目的储层的水力压裂微地震事件(S103);从所述的地震裂缝数据中提取属性资料(S104);根据所述的地震裂缝数据确定储层特性参数(S105);根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果(S106)。通过运用地震数据中反映天然裂缝特征的属性及反映储层特性参数与微地震事件特征相结合,使得微地震事件分布特征的解释结果更具说服力,能更好的评估储层改造效果,以指导后续水平井网布局。

Description

一种水力压裂微地震事件的解释方法 技术领域
本发明关于石油地球物理勘探领域,特别是关于水力压裂微地震事件的解释技术,具体的讲是一种水力压裂微地震事件的解释方法。
背景技术
微地震压裂监测技术是通过监测微震事件来实现对人工裂缝进行定位,明确裂缝延伸方向、裂缝长度、裂缝宽度、裂缝高度,指导油气田后续勘探开发。微地震的思想最初起源于矿藏开采,主要是用了避免在矿山开采中造成相应的地质灾害。到80年代初,微地震监测在地热行业中已经成功应用多次,主要用于开发井的目标确认及辅助断裂层描述。随后,在世界其它国家的验证中,微地震监测技术的优越性也得到很好的体现。每年SEG、SPE年会都展开专门专题对微地震压裂监测技术进行探讨,特别是北美页岩气勘探开发的成功实例再一次证明了微地震压裂监测技术在低孔低渗油气藏开发中的应用前景。最近几年,国内微地震监测技术在理论、仪器制造及实际生产上都取得了较好的成效。
在理论研究中,文成哲从瑞雷波频散曲线正演及反演、微震观测及频散曲线提取等几个阶段入手,提出全局优化的遗传算法和局域搜索技术的联合思想、微震观测和人工波观测的配合方法等,提升了空间自相关法的精度。为了解决波场的有效识别和速度模型的有效建立两个技术难点,刘军对多种微地震模型进行了正演模拟,通过正演模拟的多波纪录,分析各种波的特点,指导微地震资料处理和速度模型修改。陈伟通过Radon变换把直达波从复杂的多波场中分离出来,拾取准确的初至,提高了微地震反演的精度。
在实际生产中,东方地球物理公司通过与国外公司合作,坚持引进、吸收、再创新的技术发展思路,形成具有自主知识产权的井中压裂微地震监测处理解释软件,并已应用于实际生产,涉及页岩气、煤层气、致密砂岩气,服务西南、吐哈、吉林、长庆等9个油气田,完成51口压裂监测,150多层段的井中压裂监测任务。
然而,微地震解释技术相对比较落后,仅仅是停留在微地震震级大数量多的地方表明该区域可能被压裂、断层附近易于产生微地震事件的思路上,只是将微地震事件的产生与区域断层相联系。然而,水力压裂微地震事件受多种因素的影响,如地应力、天然裂缝、地质构造、储层特征等,多种综合效应导致微地震事件的分布特征具有多向性,给解释带来挑战。因此,在微地震解释中,迫切需要提供更多的信息来合理分析微地震事件分布特征,指导后续评价储层压裂改造。
发明内容
为了克服现有技术中的微地震解释技术仅停留在将微地震事件的产生与区域断层相联系上而造成的微地震解释技术相对比较落后的问题,本发明提供了一种水力压裂微地震事件的解释方法及系统,将地震信息与微地震事件相结合,运用地震数据中反映天然裂缝特征的属性及反映储层特性参数与微地震事件特征相结合,使得微地震事件分布特征的解释结果更具说服力,更好的评估储层改造效果,指导后续水平井网布局。
本发明的目的之一是,提供一种水力压裂微地震事件的解释方法,包括:采集目的储层的区域地质构造数据;采集目的储层的地震裂缝数据;采集目的储层的水力压裂微地震事件;从所述的地震裂缝数据中提取属性资料;根据所述的地震裂缝数据确定储层特性参数;根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。
本发明的目的之一是,提供了一种水力压裂微地震事件的解释系统,包括:地质构造数据采集装置,用于采集目的储层的区域地质构造数据;地震裂缝数据采集装置,用于采集目的储层的地震裂缝数据;微地震事件采集装置,用于采集目的储层的水力压裂微地震事件;属性资料提取装置,用于从所述的地震裂缝数据中提取属性资料;储层特性参数确定装置,用于根据所述的地震裂缝数据确定储层特性参数;微地震事件解释装置,用于根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。
本发明的有益效果在于,提供了一种水力压裂微地震事件的解释方法及系统,是一种将地震与水力压裂微地震事件相结合的解释技术,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量与微地震事件特征相结合,综合分析微地震事件分布特征,评价储层压裂改造效果,指导后续井网布设,克服现有技术中的微地震解释技术仅停留在将微地震事件的产生与区域断层相联系上而造成的微地震解释技术相对比较落后的问题。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种水力压裂微地震事件的解释方法的实施方式一的流程图;
图2为本发明实施例提供的一种水力压裂微地震事件的解释方法的实施方式二的流程图;
图3为图2中的步骤S206的具体流程图;
图4为图2中的步骤S207的具体流程图;
图5为本发明实施例提供的一种水力压裂微地震事件的解释系统的实施方式一的结构框图;
图6为本发明实施例提供的一种水力压裂微地震事件的解释系统的实施方式二的结构框图;
图7为本发明实施例提供的一种水力压裂微地震事件的解释系统中的储层特性参数确定装置500的具体结构框图;
图8为本发明实施例提供的一种水力压裂微地震事件的解释系统中的微地震事件解释装置600的具体结构框图;
图9为本发明提供的具体实施例中目的层段的相干属性分布特征示意图;
图10为本发明提供的具体实施例中目的层段的构造图;
图11为本发明提供的具体实施例中目的层段的最小曲率分布特征示意图;
图12为本发明提供的具体实施例中目的层段的最大曲率分布特征示意图;
图13为本发明提供的具体实施例中目的层段的微地震事件与相干属性联合解释展布得到的第一显示图;
图14为本发明提供的具体实施例中目的层段的微地震事件与曲率属性联合解释展布得到的第二显示图;
图15为本发明提供的具体实施例中目的层段的微地震事件与脆性指数联合解释展布得到的第三显示图;
图16为本发明提供的具体实施例中目的层段的微地震事件与泊松比联合解释展布得到的第四显示图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明涉及到水力压裂微地震事件解释技术,是一种将微地震与地震相结合,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量、泊松比与微地震事件特征相结合,综合分析微地震事件分布特征的解释技术。
图1为本发明提出的一种水力压裂微地震事件的解释方法的实施方式一的具体流程图,由图1可知,在实施方式一中,所述的方法包括:
S101:采集目的储层的区域地质构造数据。
区域地质构造对微地震事件的方向存在较大影响,区域地质构造可能导致微地震事件的方向存在多样性,产生多个次方向的微地震事件。
S102:采集目的储层的地震裂缝数据;
S103:采集目的储层的水力压裂微地震事件。
S104:从所述的地震裂缝数据中提取属性资料,属性资料包括相干属性资料、曲率属性资料,微地震事件趋于沿天然裂缝方向延伸,相干属性、曲率属性已经被证明能够较好的描述天然裂缝展布特征,通过曲率属性了解工区构造应力发育情况,相干、曲率属性均可通过地震裂缝数据提取。
S105:根据所述的地震裂缝数据确定储层特性参数,储层特性参数包括泊松比、储层脆性以及杨氏弹性模量,图3为该步骤的具体流程图。
S106:根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。图4为该步骤的具体流程图。
页岩气储层属于超低孔低渗储集层,水力压裂微地震事件诱发的裂缝能够对储层进行改造,提高其渗透率,本发明提出的一种将地震与水力压裂微地震事件相结合的解释技术能够用于评价页岩气储层压裂改造效果,指导后续井网布设。
微地震事件的裂缝方向平行于最大水平主应力方向,而垂直于最小水平主应力方向,而实际工区地质构造又对微地震事件的方向产生很大影响,特别是在地质构造复杂情况下,微地震产生的裂缝方向具有不确定性。根据摩尔-库伦理论,微地震事件的裂缝方向与天然裂缝分布也存在关系,水力压裂易于将天然裂缝激活,微地震事件总是易于沿着已有裂缝方向进行传播。为了理解岩石和矿物的力学性质页岩气储层开发的影响,Rickman将来自众多页岩气区块的岩心数据及测井数据进行标定分析,其岩石物理实验研究表明,水力压裂微地震事件 还与储层特性(如泊松比、杨氏模量)有关,泊松比越低,岩石脆性越大,随着杨氏模量的增加,岩石脆性将增加,并构建了基于弹性参数特征的岩石脆性指数。在水力压裂过程中,岩石组构、应力各向异性、断层对人工裂缝的传播影响极大。
M.Haege等引入一个新的地震属性,即岩石组构特性,将水力压裂微地震事件的位置与岩石组构相联系,岩石组构程度影响微地震事件的空间分布,岩石组构程度大的地方人工裂缝的发育复杂,岩石组构程度小的地方被激发的裂缝主要在一个平面延伸,表明将微震与地面地震相结合在描述页岩气储层特征中的重要性。由于微地震事件分布特征受多种因素的影响,因此,在评价储层压裂改造效果时,单纯的考虑一种因素并不能对微地震事件给出合理的解释。相干、曲率属性能够很好的刻画天然断层、裂缝的分布特征,反映岩石脆性特征的储层参数可由地震AVO反演获取,进而为后续微地震事件解释服务。
本发明正是基于此种思路,提出一种将地震与水力压裂微地震事件相结合的解释技术,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量与微地震事件特征相结合,综合分析微地震事件分布特征,评价储层压裂改造效果,指导后续井网布设。
图2为本发明实施例提供的一种水力压裂微地震事件的解释方法的实施方式二的流程图,由图2可知,在实施方式二中,该方法具体包括:
S201:采集目的储层的区域地质构造数据。
区域地质构造对微地震事件的方向存在较大影响,区域地质构造可能导致微地震事件的方向存在多样性,产生多个次方向的微地震事件。如图10所示,为本发明提供的具体实施例中目的层段的区域地质构造图,由于工区内受两组构造应力场的作用,使得微地事件方向的主方向为北东、北西方向(图中实线箭头所示)。
S202:采集目的储层的地震裂缝数据;
S203:采集目的储层的水力压裂微地震事件。
S204:从所述的地震裂缝数据中提取属性资料,属性资料包括相干属性资料、曲率属性资料,微地震事件趋于沿天然裂缝方向延伸,相干属性、曲率属性已经被证明能够较好的描述天然裂缝展布特征,通过曲率属性了解工区构造应力发育情况,相干、曲率属性均可通过地震裂缝数据提取。
S205:根据所述的区域地质构造数据以及所述的曲率属性资料确定出所述水力压裂微地震事件的主方向以及次生方向。图11为本发明提供的具体实施例中目的层段的最小曲率分布特征示意图,图12为本发明提供的具体实施例中目的层段的最大曲率分布特征示意图。在分析图10至图12所示的反射构造图及地震相干曲率属性后,很容易理解微地震事件次生方向 (图中虚线箭头所示)主要是由于区域地质构造造成的,微地震事件主方向及次方向与工区主裂缝带方向也具有一致性。
S206:根据所述的地震裂缝数据确定储层特性参数,储层特性参数包括泊松比、储层脆性以及杨氏弹性模量,图3为该步骤的具体流程图。泊松比越低,岩石脆性越大,随着杨氏模量的增加,岩石脆性将增加,岩石脆性强度大的地方总是易于破裂。其中,储层脆性参数可由地震AVO(Amplitude Versus Offset,振幅随偏移距的变化)求取。
S207:根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。图4为该步骤的具体流程图。
图3为图2中的步骤S206的具体流程图,由图3可知,该步骤具体包括:
S301:从所述的地震裂缝数据中提取纵波速度、横波速度;
S302:根据所述的纵波速度、横波速度确定泊松比,具体的,通过如下公式确定:
PR=[(Vp/Vs)2-2]/[2*(Vp/Vs)2-2]
S303:从所述的地震裂缝数据中提取纵波阻抗、密度;
S304:根据所述的纵波阻抗、密度以及泊松比确定杨氏弹性模量,具体的,通过如下公式确定:
YM=2*IS*(1+PR)/RHOB;
S305:根据所述的杨氏弹性模量、泊松比确定储层脆性,具体的,通过如下公式确定:
BRIT={[YM-1/7]+[(PR-0.4)/(-0.25)]}*50
其中,PR为泊松比,Vp为纵波速度,Vs为横波速度,YM为杨氏弹性模量,IS为纵波阻抗,RHOB为密度,BRIT为储层脆性。
图4为图2中的步骤S207的具体流程图,由图4可知,该步骤具体包括:
S401:将所述的水力压裂微地震事件与所述的相干属性资料联合显示,得到第一显示图,如图13所示。
S402:将所述的水力压裂微地震事件与所述的曲率属性资料联合显示,得到第二显示图,如图14所示;
S403:将所述的水力压裂微地震事件与所述的储层脆性联合显示,得到第三显示图,如图15所示。
S404:将所述的水力压裂微地震事件与所述的泊松比联合显示,得到第四显示图,如图16所示。
S405:综合分析所述的主方向、次生方向、第一显示图、第二显示图、第三显示图以及 第四显示图,得到解释结果。
如上所述,即为本发明提供的一种水力压裂微地震事件的解释方法,水力压裂诱发的微地震事件与受很多因素的影响,如地应力、天然裂缝、地质构造、储层特征(如矿物组份)等,将地震信息与微地震事件相结合,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量、泊松比与微地震事件特征相结合,使得微地震事件分布特征更具说服力,用于评估储层改造效果,指导后续水平井网布局。
本发明涉及到水力压裂微地震事件解释技术,是一种将微地震与地震相结合,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量、泊松比与微地震事件特征相结合,综合分析微地震事件分布特征的解释技术。
图5为本发明实施例提供的一种水力压裂微地震事件的解释系统的实施方式一的结构框图,由图5可知,在实施方式一中,所述的系统包括:
地质构造数据采集装置100,用于采集目的储层的区域地质构造数据。
区域地质构造对微地震事件的方向存在较大影响,区域地质构造可能导致微地震事件的方向存在多样性,产生多个次方向的微地震事件。
地震裂缝数据采集装置200,用于采集目的储层的地震裂缝数据;
微地震事件采集装置300,用于采集目的储层的水力压裂微地震事件。
属性资料提取装置400,用于从所述的地震裂缝数据中提取属性资料,属性资料包括相干属性资料、曲率属性资料,微地震事件趋于沿天然裂缝方向延伸,相干属性、曲率属性已经被证明能够较好的描述天然裂缝展布特征,通过曲率属性了解工区构造应力发育情况,相干、曲率属性均可通过地震裂缝数据提取。
储层特性参数确定装置500,用于根据所述的地震裂缝数据确定储层特性参数,储层特性参数包括泊松比、储层脆性以及杨氏弹性模量,图7为该装置的具体结构框图。
微地震事件解释装置600,用于根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。图8为该装置的具体结构框图。
页岩气储层属于超低孔低渗储集层,水力压裂微地震事件诱发的裂缝能够对储层进行改造,提高其渗透率,本发明提出的一种将地震与水力压裂微地震事件相结合的解释技术能够用于评价页岩气储层压裂改造效果,指导后续井网布设。
图6为本发明实施例提供的一种水力压裂微地震事件的解释系统的实施方式二的结构框图,由图6可知,在实施方式二中,该系统具体包括:
地质构造数据采集装置100,用于采集目的储层的区域地质构造数据。
区域地质构造对微地震事件的方向存在较大影响,区域地质构造可能导致微地震事件的 方向存在多样性,产生多个次方向的微地震事件。如图10所示,为本发明提供的具体实施例中目的层段的区域地质构造图,由于工区内受两组构造应力场的作用,使得微地事件方向的主方向为北东、北西方向(图中实线箭头所示)。
地震裂缝数据采集装置200,用于采集目的储层的地震裂缝数据;
微地震事件采集装置300,用于采集目的储层的水力压裂微地震事件。
属性资料提取装置400,用于从所述的地震裂缝数据中提取属性资料,属性资料包括相干属性资料、曲率属性资料,微地震事件趋于沿天然裂缝方向延伸,相干属性、曲率属性已经被证明能够较好的描述天然裂缝展布特征,通过曲率属性了解工区构造应力发育情况,相干、曲率属性均可通过地震裂缝数据提取。
方向确定装置700,用于根据所述的区域地质构造数据以及所述的曲率属性资料确定出所述水力压裂微地震事件的主方向以及次生方向。图11为本发明提供的具体实施例中目的层段的最小曲率分布特征示意图,图12为本发明提供的具体实施例中目的层段的最大曲率分布特征示意图。在分析图10至图12所示的反射构造图及地震相干曲率属性后,很容易理解微地震事件次生方向(图中虚线箭头所示)主要是由于区域地质构造造成的,微地震事件主方向及次方向与工区主裂缝带方向也具有一致性。
储层特性参数确定装置500,用于根据所述的地震裂缝数据确定储层特性参数,储层特性参数包括泊松比、储层脆性以及杨氏弹性模量。泊松比越低,岩石脆性越大,随着杨氏模量的增加,岩石脆性将增加,岩石脆性强度大的地方总是易于破裂。其中,储层脆性参数可由地震AVO(Amplitude Versus Offset,振幅随偏移距的变化)求取。
微地震事件解释装置600,用于根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。
图7为本发明实施例提供的一种水力压裂微地震事件的解释系统中的储层特性参数确定装置500的具体结构框图,由图7可知,储层特性参数确定装置具体包括:
速度提取模块501,用于从所述的地震裂缝数据中提取纵波速度、横波速度;
泊松比确定模块502,用于根据所述的纵波速度、横波速度确定泊松比,具体的,通过如下公式确定:
PR=[(Vp/Vs)2-2]/[2(Vp/Vs)2-2]
密度提取模块503,用于从所述的地震裂缝数据中提取纵波阻抗、密度;
弹性模量确定模块504,用于根据所述的纵波阻抗、密度以及泊松比确定杨氏弹性模量,具体的,通过如下公式确定:
YM=2*IS*(1+PR)/RHOB;
储层脆性确定模块505,用于根据所述的杨氏弹性模量、泊松比确定储层脆性,具体的,通过如下公式确定:
BRIT={[YM-1/7]+[(PR-0.4)/(-0.25)]}*50
其中,PR为泊松比,Vp为纵波速度,Vs为横波速度,YM为杨氏弹性模量,IS为纵波阻抗,RHOB为密度,BRIT为储层脆性。
图8为本发明实施例提供的一种水力压裂微地震事件的解释系统中的微地震事件解释装置600的具体结构框图,由图8可知,微地震事件解释装置600具体包括:
第一显示图确定模块601,用于将所述的水力压裂微地震事件与所述的相干属性资料联合显示,得到第一显示图,如图13所示。
第二显示图确定模块602,用于将所述的水力压裂微地震事件与所述的曲率属性资料联合显示,得到第二显示图,如图14所示;
第三显示图确定模块603,用于将所述的水力压裂微地震事件与所述的储层脆性联合显示,得到第三显示图,如图15所示。
第四显示图确定模块604,用于将所述的水力压裂微地震事件与所述的泊松比联合显示,得到第四显示图,如图16所示。
解释结果确定模块605,用于综合分析所述的主方向、次生方向、第一显示图、第二显示图、第三显示图以及第四显示图,得到解释结果。
如上所述,即为本发明提供的一种水力压裂微地震事件的解释系统,水力压裂诱发的微地震事件与受很多因素的影响,如地应力、天然裂缝、地质构造、储层特征(如矿物组份)等,将地震信息与微地震事件相结合,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量、泊松比与微地震事件特征相结合,使得微地震事件分布特征更具说服力,用于评估储层改造效果,指导后续水平井网布局。
下面结合具体的实施例,详细介绍本发明的技术方案。
水力压裂诱发的微地震事件与受很多因素的影响,如地应力、天然裂缝、地质构造、储层特征(如矿物组份)等。相干、曲率属性已经被证明能够较好的描述天然裂缝展布特征,微地震事件趋于沿天然裂缝方向延伸。同时,储层特性也对微地震事件分布产生影响,岩石脆性强度大的地方总是易于破裂。
相干、曲率及储层特性均可从地震数据中获取。将相干、曲率、储层特性与微地震事件信息相结合,综合考虑多种信息,这将更有利于评估储层压裂改造效果,合理的解释微地震 分布特征。
图9为本发明提供的具体实施例中目的层段的相干属性分布特征示意图,图10为本发明提供的具体实施例中目的层段的构造图,图11为本发明提供的具体实施例中目的层段的最小曲率分布特征示意图,图12为本发明提供的具体实施例中目的层段的最大曲率分布特征示意图。
图9至图12为目的层段断裂分布特征。由于工区内受两组构造应力场的作用,使得微地事件方向的主方向为北东、北西方向(图中实线箭头所示),在分析前述反射构造图及地震相干曲率属性后,很容易理解微地震事件次生方向(图中虚线箭头所示)主要是由于区域地质构造造成的,微地震事件主方向及次方向与工区主裂缝带方向也具有一致性。
在A区域附近,产生大量微地震事件,并且微事件震级相对比较高,从相干、曲率属性可知,这主要是由于A区域存在微小断层带,水力压裂激活这些微小裂缝,所以微地震事件易于沿着这些裂缝带发生。然而,从相干、曲率属性来看,B、C、D区域附近并不像A那样存在微小断层带,但是其附近区域也产生了大量且震级相对较大微地震事件,尤其是C区域最为明显。单纯的考虑相干、曲率属性无法给出合理的解释。
微地震事件的分布还受储层特性的影响,岩石脆性越大,其越容易破裂。图13为本发明提供的具体实施例中目的层段的微地震事件与相干属性联合解释展布得到的第一显示图,图14为本发明提供的具体实施例中目的层段的微地震事件与曲率属性联合解释展布得到的第二显示图,图15为本发明提供的具体实施例中目的层段的微地震事件与脆性指数联合解释展布得到的第三显示图,图16为本发明提供的具体实施例中目的层段的微地震事件与泊松比联合解释展布得到的第四显示图。B、C、D附近区域脆性指数相对较高(图15),尤以B、C附近区域更为明显,在水力压裂过程中,由于B、C附近区域储层脆性相对较大,故大量的微地震事件易于在其附近产生。图16为微地震事件与泊松比联合显示。泊松比越低,表明其含气量越好,泊松比可间接作为一种含气指示。而大量微地震事件并未在泊松比最低的区域发生,由此表明水力压裂诱导的微裂缝并未实现对页岩气层缝网沟通,这也可能是该水平井产量不理想的一个原因。
从泊松比及脆性指数可以发现,这些数量较多、震级相对较大的微地震事件区域也正好位于脆性指数从高到低、泊松比从高到低的突变区域。变化越大,微地震事件越多,震级也越大。矿物组分的不同导致储层内部存在的物弥合带(相当于矿物分界面),在水力压裂时,这些弥合带更易激活,触发微地震事件。从这点上讲,B、C附近区域聚集大量微地震事件不仅与前述岩石脆性有关,而且矿物弥合带的存在也促使大量微地震事件产生。
因此,在进行微地震解释时,应充分结合考虑区域构造特征、裂缝体系、储层特性(脆 性、泊松比等),综合分析微地震事件分布特征,评价储层压裂改造效果,指导后续井网布设。水力压裂诱发的微地震事件与受很多因素的影响,如地应力、天然裂缝、地质构造、储层特征(如矿物组份)等,本专利方法将相干、曲率、储层特性与微地震事件信息相结合,综合考虑多种信息。通过从地震资料中提取反映目的层段断裂分布特征(图9至图12),为后微地震事件的解释奠定基础,使解释更具说服力。同时,也考虑到储层特性对微地震事件的影响,通过地震AVO反演,提取储层脆性指数、泊松比,将微地震事件分布特征与储层特性相系(图13至图16),合理的解释了微地震分布特征。充分显示了本发明提供的方案在微地震事件解释中的应用前景。
综上所述,本发明提出的一种水力压裂微地震事件的解释方法及系统,是一种将地震与水力压裂微地震事件相结合的解释技术,运用地震数据中反映天然裂缝特征的相干、曲率属性及反映储层特性的脆性、杨氏模量与微地震事件特征相结合,综合分析微地震事件分布特征,评价储层压裂改造效果,指导后续井网布设,克服现有技术中的微地震解释技术仅停留在将微地震事件的产生与区域断层相联系上而造成的微地震解释技术相对比较落后的问题。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一般计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本领域技术人员还可以了解到本发明实施例列出的各种功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

  1. 一种水力压裂微地震事件的解释方法,其特征是,所述的方法具体包括:
    采集目的储层的区域地质构造数据;
    采集目的储层的地震裂缝数据;
    采集目的储层的水力压裂微地震事件;
    从所述的地震裂缝数据中提取属性资料;
    根据所述的地震裂缝数据确定储层特性参数;
    根据所述的区域地质构造数据、属性资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果。
  2. 根据权利要求1所述的方法,其特征是,所述的属性资料包括相干属性资料、曲率属性资料。
  3. 根据权利要求2所述的方法,其特征是,在提取属性资料之后所述的方法还包括:
    根据所述的区域地质构造数据以及所述的曲率属性资料确定出所述水力压裂微地震事件的主方向以及次生方向。
  4. 根据权利要求3所述的方法,其特征是,根据所述的地震裂缝数据确定储层特性参数具体包括:
    从所述的地震裂缝数据中提取纵波速度、横波速度;
    根据所述的纵波速度、横波速度确定泊松比;
    从所述的地震裂缝数据中提取纵波阻抗、密度;
    根据所述的纵波阻抗、密度以及泊松比确定杨氏弹性模量;
    根据所述的杨氏弹性模量、泊松比确定储层脆性。
  5. 根据权利要求4所述的方法,其特征是:
    所述的泊松比通过如下公式确定:
    PR=[(Vp/Vs)2-2]/[2*(Vp/Vs)2-2]
    所述的杨氏弹性模量通过如下公式确定:
    YM=2*IS*(1+PR)/RHOB
    所述的储层脆性通过如下公式确定:
    BRIT={[YM-1/7]+[(PR-0.4)/(-0.25)]}*50
    其中,PR为泊松比,Vp为纵波速度,Vs为横波速度,YM为杨氏弹性模量,IS为纵波阻抗,RHOB为密度,BRIT为储层脆性。
  6. 根据权利要求4或5所述的方法,其特征是,根据所述的区域地质构造数据、属性 资料以及储层特性参数对所述的水力压裂微地震事件进行解释,得到解释结果具体包括:
    将所述的水力压裂微地震事件与所述的相干属性资料联合显示,得到第一显示图;
    将所述的水力压裂微地震事件与所述的曲率属性资料联合显示,得到第二显示图;
    将所述的水力压裂微地震事件与所述的储层脆性联合显示,得到第三显示图;
    将所述的水力压裂微地震事件与所述的泊松比联合显示,得到第四显示图;
    综合分析所述的主方向、次生方向、第一显示图、第二显示图、第三显示图以及第四显示图,得到解释结果。
PCT/CN2015/086087 2015-08-05 2015-08-05 一种水力压裂微地震事件的解释方法 WO2017020267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/086087 WO2017020267A1 (zh) 2015-08-05 2015-08-05 一种水力压裂微地震事件的解释方法
PCT/CN2015/096463 WO2017020461A1 (zh) 2015-08-05 2015-12-04 一种水力压裂微地震事件的解释系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086087 WO2017020267A1 (zh) 2015-08-05 2015-08-05 一种水力压裂微地震事件的解释方法

Publications (1)

Publication Number Publication Date
WO2017020267A1 true WO2017020267A1 (zh) 2017-02-09

Family

ID=57942211

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/086087 WO2017020267A1 (zh) 2015-08-05 2015-08-05 一种水力压裂微地震事件的解释方法
PCT/CN2015/096463 WO2017020461A1 (zh) 2015-08-05 2015-12-04 一种水力压裂微地震事件的解释系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096463 WO2017020461A1 (zh) 2015-08-05 2015-12-04 一种水力压裂微地震事件的解释系统

Country Status (1)

Country Link
WO (2) WO2017020267A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051608A (zh) * 2019-06-05 2020-12-08 中国石油化工股份有限公司 一种多路微地震数据实时合并方法及存储介质
CN112302640A (zh) * 2020-10-28 2021-02-02 中国石油天然气集团有限公司 水平井压裂工程风险预测方法及装置
CN113009578A (zh) * 2019-12-19 2021-06-22 新奥科技发展有限公司 生产井的井身轨迹获取方法及生产井的连通方法
CN113589380A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 地震资料断层储层信息空间融合方法
CN113687411A (zh) * 2021-09-03 2021-11-23 西南石油大学 一种基于微地震的地应力方位预测方法
CN114594518A (zh) * 2020-12-04 2022-06-07 中国石油化工股份有限公司 基于井震交替的开发后期复杂断块精细地层对比方法
CN114781424A (zh) * 2022-02-11 2022-07-22 中国石油大学(北京) 一种基于小波分解的水力压裂信号分析方法、装置和设备
CN117211764A (zh) * 2023-10-18 2023-12-12 西南石油大学 一种致密气层裂缝宽度随钻录井解释方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376692B (zh) * 2020-03-10 2023-05-26 中国石油天然气集团有限公司 致密砂岩气水平井压裂改造方案优化方法及装置
CN113447979B (zh) * 2020-03-26 2023-11-17 中国石油化工股份有限公司 一种断缝体发育区的识别方法、断缝体的刻画方法
CN111751885A (zh) * 2020-08-12 2020-10-09 重庆地质矿产研究院 一种页岩气体积压裂微地震监测方法
CN114075974B (zh) * 2020-08-20 2023-07-25 中国石油天然气股份有限公司 暂堵转向压裂方法、装置、控制设备以及存储介质
CN112505752B (zh) * 2020-10-23 2021-11-16 中国石油集团工程咨询有限责任公司 基于剪切破裂共轭准则的叠后裂缝储层表征方法
CN112379441A (zh) * 2020-11-02 2021-02-19 中国石油天然气集团有限公司 计算水力压裂微地震监测数据的背景噪音的方法及装置
CN113253343B (zh) * 2021-05-12 2022-05-31 中油奥博(成都)科技有限公司 基于微地震监测技术识别地下储气库断层活动的方法
CN115616659B (zh) * 2022-10-10 2023-06-30 中国矿业大学(北京) 微地震事件的类型确定方法、装置和电子设备
CN117233836B (zh) * 2023-09-18 2024-04-16 北京戎彩科技有限公司 通过微地震辐射能量确定压裂主裂缝网络几何属性的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157730A1 (en) * 2008-12-23 2010-06-24 Schlumberger Technology Corporation Method of subsurface imaging using microseismic data
US20100262372A1 (en) * 2009-04-09 2010-10-14 Schlumberger Technology Corporation Microseismic event monitoring technical field
CN103256046A (zh) * 2013-04-28 2013-08-21 北京大学 非常规油气藏水平井全缝长压裂参数模拟的方法及装置
CN103760602A (zh) * 2014-01-27 2014-04-30 中国石油天然气集团公司 一种三维水力压裂及微地震事件正演模拟的方法及系统
CN104297783A (zh) * 2014-06-30 2015-01-21 中国石油天然气集团公司 一种水力压裂微地震事件的解释方法以及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455437B (zh) * 2010-10-14 2014-06-18 中国石油天然气集团公司 一种确定储层和流体的方法
US9261614B2 (en) * 2012-06-18 2016-02-16 Halliburton Energy Services, Inc. Statistics-based seismic event detection
GB2508159B (en) * 2012-11-21 2015-03-25 Geco Technology Bv Processing microseismic data
CN104459775B (zh) * 2014-11-28 2017-02-22 中国石油集团川庆钻探工程有限公司地球物理勘探公司 基于微地震监测数据的页岩气藏裂缝建模方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157730A1 (en) * 2008-12-23 2010-06-24 Schlumberger Technology Corporation Method of subsurface imaging using microseismic data
US20100262372A1 (en) * 2009-04-09 2010-10-14 Schlumberger Technology Corporation Microseismic event monitoring technical field
CN103256046A (zh) * 2013-04-28 2013-08-21 北京大学 非常规油气藏水平井全缝长压裂参数模拟的方法及装置
CN103760602A (zh) * 2014-01-27 2014-04-30 中国石油天然气集团公司 一种三维水力压裂及微地震事件正演模拟的方法及系统
CN104297783A (zh) * 2014-06-30 2015-01-21 中国石油天然气集团公司 一种水力压裂微地震事件的解释方法以及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, WEI ET AL.: "Comprehensive Analysis of Micro-Seismic Event Characteristics of Hydraulic Fracturing Using Seismic Information", CHINA PETROLEUM INSTITUTE GEOPHYSICAL TECHNOLOGY SYMPOSIUM 2015, 30 April 2015 (2015-04-30), pages 803 - 806 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112051608A (zh) * 2019-06-05 2020-12-08 中国石油化工股份有限公司 一种多路微地震数据实时合并方法及存储介质
CN112051608B (zh) * 2019-06-05 2023-01-03 中国石油化工股份有限公司 一种多路微地震数据实时合并方法及存储介质
CN113009578A (zh) * 2019-12-19 2021-06-22 新奥科技发展有限公司 生产井的井身轨迹获取方法及生产井的连通方法
CN113589380A (zh) * 2020-04-30 2021-11-02 中国石油化工股份有限公司 地震资料断层储层信息空间融合方法
CN112302640A (zh) * 2020-10-28 2021-02-02 中国石油天然气集团有限公司 水平井压裂工程风险预测方法及装置
CN114594518A (zh) * 2020-12-04 2022-06-07 中国石油化工股份有限公司 基于井震交替的开发后期复杂断块精细地层对比方法
CN114594518B (zh) * 2020-12-04 2023-04-07 中国石油化工股份有限公司 基于井震交替的开发后期复杂断块精细地层对比方法
CN113687411A (zh) * 2021-09-03 2021-11-23 西南石油大学 一种基于微地震的地应力方位预测方法
CN114781424A (zh) * 2022-02-11 2022-07-22 中国石油大学(北京) 一种基于小波分解的水力压裂信号分析方法、装置和设备
CN114781424B (zh) * 2022-02-11 2023-04-18 中国石油大学(北京) 一种基于小波分解的水力压裂信号分析方法、装置和设备
CN117211764A (zh) * 2023-10-18 2023-12-12 西南石油大学 一种致密气层裂缝宽度随钻录井解释方法
CN117211764B (zh) * 2023-10-18 2024-04-05 西南石油大学 一种致密气层裂缝宽度随钻录井解释方法

Also Published As

Publication number Publication date
WO2017020461A1 (zh) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2017020267A1 (zh) 一种水力压裂微地震事件的解释方法
CN104297783B (zh) 一种水力压裂微地震事件的解释方法以及系统
Verdon et al. Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations
Guo et al. A new method for evaluation of fracture network formation capacity of rock
CN109100790B (zh) 一种人工裂缝的模拟方法及装置
Van Der Baan et al. Microseismic monitoring developments in hydraulic fracture stimulation
Xu et al. Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China
Liu et al. Influence of natural fractures on propagation of hydraulic fractures in tight reservoirs during hydraulic fracturing
Verdon et al. A comparison of passive seismic monitoring of fracture stimulation from water and CO 2 injection
CN103914620B (zh) 一种计算断层破裂带裂缝张开空间分布的方法
Gong et al. Quantitative prediction of sub-seismic faults and their impact on waterflood performance: Bozhong 34 oilfield case study
KR20200027264A (ko) 셰일가스 스윗 스팟 도출 방법
CN106483579B (zh) 一种用于获取断裂活动情况的方法
Hu A review of mechanical mechanism and prediction of natural fracture in shale
Ou et al. 3D visualization of hydraulic fractures using micro-seismic monitoring: Methodology and application
Liu et al. Geomechanical modeling and inversion analysis of the in-situ stress field in deep marine shale formations: A case study of the Longmaxi formation, Dingshan area, China
Li et al. Effect analysis of borehole microseismic monitoring technology on shale gas fracturing in western Hubei
Zhang et al. Architecture characteristics and characterization methods of fault-controlled karst reservoirs: A case study of the Shunbei 5 fault zone in the Tarim Basin, China
CN112748476B (zh) 基于应力场与微地震联合反演的注入流体前缘识别方法
Wang et al. Numerical modeling of low-frequency distributed acoustic sensing signals for mixed-mode reactivation
CN110879681B (zh) 断层断裂强度的展示方法及装置
Ezati et al. Evaluation of faults reactivation tenacity in one of the low-pressure SW Iranian carbonate reservoirs: an IOR viewpoint
Dai et al. Regional characteristics of seismicity associated with hydraulic fracturing in the southern sichuan basin of china
Li et al. Prediction of fracture opening pressure in a reservoir based on finite element numerical simulation: A case study of the second member of the lower Triassic Jialingjiang Formation in Puguang Area, Sichuan Basin, China
Hampton et al. Extended-term monitoring of acoustic emissions post-laboratory hydraulic fracturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900042

Country of ref document: EP

Kind code of ref document: A1