WO2017019440A1 - Methods for detecting and treating low-virulence infections - Google Patents

Methods for detecting and treating low-virulence infections Download PDF

Info

Publication number
WO2017019440A1
WO2017019440A1 PCT/US2016/043295 US2016043295W WO2017019440A1 WO 2017019440 A1 WO2017019440 A1 WO 2017019440A1 US 2016043295 W US2016043295 W US 2016043295W WO 2017019440 A1 WO2017019440 A1 WO 2017019440A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
hsa
sample
surgery
rnas
Prior art date
Application number
PCT/US2016/043295
Other languages
French (fr)
Inventor
Manu CAPOOR
Ondrej SLABY
Original Assignee
Discitisdx, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Discitisdx, Inc. filed Critical Discitisdx, Inc.
Priority to CN201680049681.8A priority Critical patent/CN108138178A/en
Priority to CA2993180A priority patent/CA2993180A1/en
Priority to US15/746,666 priority patent/US20180223337A1/en
Priority to EP16831094.4A priority patent/EP3325624B1/en
Priority to JP2018523366A priority patent/JP2018523492A/en
Publication of WO2017019440A1 publication Critical patent/WO2017019440A1/en
Priority to IL256972A priority patent/IL256972A/en
Priority to US16/804,173 priority patent/US20200224250A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • A61K31/546Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the human body is a superorganism in which thousands of microbial species continually interact with the human body.
  • the Genomes Online database lists 2,723 completed and published bacterial genomes detected in the human body with at least 14,867 in progress.
  • Studies have revealed the presence of thousands of previously unknown microbes in human tissue and blood.
  • polybacterial and chronic pathogens have even been detected in environments that were previously thought to be sterile.
  • a range of physical and neurological inflammatory diseases are now thought to be associated with shifts in microbiome composition.
  • commensal bacteria such as Propionibacterium acnes (P. acnes)
  • P. acnes a normal inhabitant of the human skin, may be responsible for low-virulence infections, including low-virulence infections associated with chronic low back pain and intervertebral disc disease.
  • pathogens including commensal pathogens
  • the vast majority of the microorganisms cannot be cultured under standard conditions used for diagnostic purposes.
  • the suspected pathogen is a commensal microorganism that is ubiquitous in certain host tissues, there will be an unacceptably high rate of false positives due to sample contamination, particularly when using molecular detection assays.
  • the present invention provides methods for identifying low-virulence infections (e.g., infections by commensal pathogens), including by distinguishing true infections from false positives, to thereby support responsible and cost-effective medical care.
  • the invention further provides methods for treating low-virulence infections, including infections associated with intervertebral disc disease or chronic low back pain.
  • the invention provides methods for identifying low virulence infections, by determining the presence of commensal pathogens in a patient sample, and by discriminating instances of chronic infection by commensal microorganisms from false positives (e.g., distinguish infection from contamination of the sample by commensal microflora).
  • the invention in these embodiments is useful for the diagnosis of a low virulence infection, such as an infection of the intervertebral disc.
  • a sample that tests positive for the commensal microflora by one or more of microbiology culture, DNA analysis, immunochemistry, and microscopy is evaluated for a host cell RNA signature to rule out false positives (thereby confirming a low virulence infection).
  • the surgeon or treating physician may then administer an appropriate treatment for patients identified as having a low-virulence infection.
  • the invention provides miRNA signatures that distinguish (with high sensitivity and specificity) samples that are positive for a low virulence infection (e.g., by P. acnes) from samples that are negative for a low virulence infection.
  • These tests can be combined with analysis from molecular assays, microbial culture, and sample microscopy, to discriminate false positives, or in some embodiments can be used independently to identify positive samples.
  • An exemplary miRNA score for P. acnes infection can be determined by scoring the relative expression levels of miR-29a-3p and miR-574-3p.
  • DMS diagnostic miRNA score
  • RNA signatures can be trained from RNA profiles of samples that are positive or abundant for P. acnes (or other commensal microorganism) and samples that test negative (or non-abundant) for P. acnes.
  • samples can be binned based on detection (or detection level) of the commensal microorganism by quantitative PCR and at least one other technique, such as microbial culture, immunochemistry, or spectroscopy.
  • the diagnostic test uses a profile of coding and/or non-coding RNAs of the host cells in the sample, to discriminate low virulence infection from non-infected samples (and, in some embodiments, from false positives).
  • RNA profiles e.g., mRNA or miRNA profile
  • mRNA or miRNA profile of host tissue are able to discriminate chronic low virulence infections, even though these low-grade infections cause only minor inflammatory responses on the local level.
  • the invention can be applied to surgical samples, to guide medical care post- surgery, or can be applied to biopsy samples, to guide treatment pre-surgery, and/or to potentially reduce the need for more invasive procedures by treating low virulence infections.
  • the invention provides methods for treating low virulence infections.
  • the method comprises treating a low-virulence infection with an antibiotic that is administered systemically, or with an antibiotic or antiseptic that is locally administered.
  • Low virulence infections can be identified according to the methods described herein.
  • FIGURE 1 provides an illustration of Degenerative Disc Disease.
  • FIGURE 2 is a flow chart for embodiments of the invention, where patients are scheduled for Intervertebral Disc Surgery, and an Intervertebral Disc Sample is taken from the surgical site. Diagnostic tests (such as a PCR assay) are conducted on the sample to detect the presence or absence, or to quantify, commensal pathogens in the sample. Where the sample is positive for commensal pathogens, miRNA profiles are conducted to discriminate true infections from false positives (contamination). Where a low-virulent infection is confirmed, further treatment is recommended for the patient, such as oral, intravenous, or intervertebral antibiotic, local antiseptic treatment, or further surgical treatment.
  • Diagnostic tests such as a PCR assay
  • FIGURE 3 is a schematic drawing of a human vertebra and intervertebral disc (IVD).
  • IVD Transversal view of a lumbar vertebra
  • IVD viewed from an anterior angle with partially removed AF lamellae
  • c Spinal segment consisting of two adjacent vertebrae and the interjacent IVD in a coordinate system indicating typical motions.
  • FIGURE 4 shows the normalized expression levels of microRNAs differently expressed in P. acnes positive and negative disc tissue: miR-574-3p, miR-29a-3p, miR-497-5p, miR-29c-3p, and miR-99b-5p.
  • FIGURE 5 shows Diagnostic miRNA score (DMS) values calculated for reference P. acnes positive and negative cases. Cut-off DMS value for P. acnes positivity is -0.01 (Left panel). ROC analysis of DMS values shows strong ability of DMS to distinguish cases with abundant P. acnes (culture and real-time PCR) and negative cases (Right panel).
  • DMS Diagnostic miRNA score
  • FIGURE 6 shows DMS values calculated for independent validation with reference P. acnes positive and negative cases (Left panel). ROC analysis of DMS values shows strong ability of DMS to distinguish cases with abundant P. acnes (culture and real-time PCR) and negative cases (Right panel).
  • FIGURE 7 shows that disc tissue with positive culture for coagulase- negative staphylococci have DMS values characteristic for P. acnes negative samples (DMS > -0.01).
  • FIGURE 8 shows sequences of miRNAs deregulated in disc tissues with abundant P. acnes. DETAILED DESCRIPTION OF THE INVENTION
  • the invention provides a method for detecting a low-virulence infection in a patient, for example, by distinguishing true infections from non- infected samples, including from false positives and false negatives.
  • the method comprises testing for the presence or amount of commensal microorganism(s) in a patient sample. Since testing for commensal microorganisms will lead to a large number of false-positives due to frequent sample contamination, the sample is also tested to discriminate true chronic infection from these false positives.
  • RNA profile (either of coding RNAs or non-coding RNAs) from the sample, such as an mRNA or small RNA (e.g., miRNA) profile.
  • RNA profiles of host tissue/cells are able to discriminate chronic low virulent infections, even though these low-grade infections cause only minor inflammatory responses on the local level.
  • a low- virulence infection is a chronic, low-grade, infection that is associated with a commensal microorganism.
  • Exemplary commensal microorganisms include any of the commensal organisms that can be molecularly detected in host tissue samples, or determined by laboratory culture and include without limitation, Propionibacterium sp. (P. acnes) Staphylococcus sp. (e.g., coagulase negative staphylococcus, or Staphylococcus aureus or Staphylococcus epidermidis), Corynebacterium, Lactobacillus sp. , Pseudomonas sp. (e.g., Pseudomonas aeruginosa), Enterococcus sp. , Streptococcus sp. (e.g., S.
  • Propionibacterium sp. P. acnes
  • Staphylococcus sp. e.g., coagulase negative staphylococcus, or Staphylococcus aureus or Staphylococcus epidermidi
  • the commensal microorganism is poorly- culturable, or is non-culturable.
  • the microorganism has a biofilm forming phenotype.
  • the methods comprise detection or quantification of Propionibacterium acnes (P. acnes) in patient samples.
  • P. acnes is a gram-positive aerotolerant anaerobe that forms part of the normal resident microbiota of the skin, oral cavity and the gastrointestinal and genito-urinary tracts. It is an opportunistic pathogen that has been linked to a wide range of infections and conditions, including implant infections, discitis, musculoskeletal conditions (e.g., osteitis, osteomyelitis, synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome), sarcoidosis, chronic prostatitis, and prostate cancer.
  • implant infections e.g., osteitis, osteomyelitis, synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome
  • SAPHO synovitis-acne-pus
  • the method comprises determining the microbiome composition of a sample, including determining the relative or absolute abundance of commensal and/or pathogenic microorganisms in the sample.
  • the microbiome composition of a sample can be determined, for example, by rRNA sequencing (e.g., 16S rRNA sequencing).
  • Low-virulence infection can be causative or a factor in any of a number of chronic conditions.
  • the invention is applicable to any chronic condition in which a low-virulence infection is suspected.
  • the patient has a condition selected from chronic low back pain (CLBP), joint or cartilage inflammation, inflammation associated with an implant or prosthetic, endocarditis, potentially infected intravenous port system, or gastric ulcer.
  • CLBP chronic low back pain
  • the patient may be a human or animal patient.
  • the sample is a surgical sample or biopsy of the inflamed or damaged tissue, where a low-virulence infection is suspected.
  • the sample is from a site susceptible to colonization or infection by anaerobic commensal bacteria.
  • the patient has chronic low back pain, and which is consistent with structural intervertebral disc damage and/or a low- virulence infection.
  • the patient may be a candidate for, and may be scheduled for, intervertebral disc surgery.
  • Patients that have a low-virulence infection may be at increased risk of developing CLBP and/or may become "failed back surgery" patients, unless diagnosed correctly and treated appropriately.
  • some patients that undergo disc surgery will also suffer from CLBP prior to the acute condition necessitating their surgery.
  • a certain proportion (around 5 to 10%) of patients undergoing disc surgery will develop CLBP in the follow-up, which are sometimes referred to as "failed back surgery" patients or "post- discectomy syndrome". These conditions are statistically associated with a low- virulence infection.
  • Discitis could either very rapidly become clinically apparent and be diagnosed rather easily by the appropriate diagnostic measures or turn into a "lowgrade", "smoldering" infection, which can be extremely difficult to distinguish from certain degenerative processes that also can cause spinal pain.
  • a so-called "pyogenic infection” with clear local and systemic symptoms would result.
  • Such a "high-grade” infection will frequently result in sepsis and even septic shock if left untreated.
  • the clinical features can be comparatively mild and unspecific such as local pain without a systemic reaction.
  • Such phenomena are known also in the context of periprosthetic infections after arthroplasties of the shoulder, hip and knee j oints.
  • the patient has intervertebral disc disease.
  • the sample can be an intervertebral discectomy, which is obtained during surgery.
  • the patient is scheduled for disc surgery, and a fine needle biopsy is isolated for testing prior to surgery.
  • Exemplary disc surgeries include surgery to repair a disc herniation, primary lumbar fusion surgery, or primary disc arthroplasty.
  • the invention involves analysis of disc tissue for the presence of one or more commensal pathogens (e.g., P. acnes), and/or for the presence of an RNA signature indicative of a low- virulence infection.
  • commensal pathogens e.g., P. acnes
  • the invention involves detecting or quantifying commensal pathogen(s) (e.g., P acnes) in the disc tissue sample by microbiological cultivation or by genetic, immunochemical, or spectroscopic analysis.
  • the invention further comprises evaluating the RNA (e.g., miRNA) to classify the profile as being indicative of low virulence infection, or not being indicative of a low virulence infection.
  • RNA profile is evaluated independently to determine the presence of a low virulent infection, that is, without the use of other techniques such as PCR, culture, or microscopy.
  • the presence of the commensal microorganisms is evaluated by culture, including aerobic and/or anaerobic cultivation and subsequent biochemical and spectroscopic (e.g., MALDI-TOF MS) identification of species.
  • tissue samples are processed under sterile conditions, and can be processed by homogenizing (e.g., in sterile saline).
  • homogenizing e.g., in sterile saline.
  • homogenizing e.g., in sterile saline.
  • homogenizing e.g., in sterile saline
  • homogenizing e.g., in sterile saline
  • Various homogenization techniques can be used, including sterilized sea sand to aid grinding in a laboratory mortar or Stomacher (Seward, UK). Homogenized samples are inoculated on agar surface for aerobic and anaerobic culture.
  • an aerobic culture can use Columbia Blood Agar (Oxoid) with 7% of sheep blood (CBA), and the anaerobic culture can employ Wilkins Chalgren Anaerobic Agar (Hi Media) with 7% of sheep blood and vitamin K (WCHA).
  • Inoculated WCHA plates are incubated anaerobically (80% nitrogen, 10% C0 2 and 10% H 2 ) at 37°C for a minimum of 14 days.
  • CBA plates are incubated aerobically at 37°C for about 7 days.
  • portions of the homogenized tissues are transferred into test tubes containing broth (e.g., 10 ml VL broth (Merck)) and subsequently overlaid with sterile paraffin oil to prevent access of oxygen and incubated at 37°C for about 7 days, and inoculated on WCHA in anaerobic conditions at 37°C for a minimum of 7 days.
  • broth e.g. 10 ml VL broth (Merck)
  • sterile paraffin oil e.g., 10 ml VL broth (Merck)
  • Obtained isolates can be sub-cultured on WCHA plates (incubation for 7 days, anaerobic atmosphere) and on CBA (incubation for 1 day, aerobic atmosphere) to obtain distinct colonies for further analysis. Isolates can be characterized by growth characteristics, by colony morphology, by Gram staining and by test catalase. Presumptive P. acnes isolates can be identified by biochemical analysis, for example, using the RapidID ANA II System (Remel) or by MALDI-TOF MS (microflexTM LT MALDI-TOF MS System + software + bacterial spectra library, Bruker Corp).
  • the sample may be a fresh tissue sample, or may be preserved, such as an FFPE sample or other preservation technique.
  • the sample is preserved or processed for molecular analysis by about 24 hours post-surgery or post-biopsy, or by about 48 hours, or by about 72 hours, or by about 96 hours post-surgery or post-biopsy.
  • nucleic acids are isolated from the sample for analysis.
  • the sample comprises large amounts of cartilage (e.g., joint or disc tissue)
  • the sample is processed by digestion with collagenase (e.g., Collagenase A) and/or proteinase (e.g., Proteinase K), or other enzymes useful for degrading the extracellular matrix.
  • immunochemistry e.g., immunohistochemistry or ELISA
  • Immunohistochemistry can be conducted on preserved or fresh tissue samples.
  • monoclonal antibodies against P. acnes can be used, such as antibodies specific for epitopes of cell-membrane-bound lipoteichoic acid (PAB antibody) and ribosome-bound trigger factor protein (TIG antibody).
  • microscopy can be used to identify positive samples, and may employ any appropriate staining reagent (e.g., gram stain or fluorescent in situ hybridization (FISH)) or other immunoreagents specific for the commensal microorganism of interest.
  • FISH fluorescent in situ hybridization
  • microscopy is used to identify intracellular bacteria.
  • FISH for visualization of P. acnes in tissue is described in Alexeyev OA, et al. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay. J Clin Microbiol. 2007 Nov; 45(11):3721-8.
  • nucleic acids are isolated from intervertebral disc (IVD) tissue, which may include nucleic acids of intracellular bacteria.
  • IVDs are the major mobile joints of the spine. They appear kidney shaped in the transversal plane and consist of three distinct structures: the central gelatinous nucleus pulposus (NP), the collagenous annulus fibrosus (AF), which surrounds the NP circumferentially, and the cartilage endplates (CEP), which separate the AF and NP from the vertebral bodies ( Figure 3B and B).
  • the IVD sided limits of the vertebral bodies are referred to as vertebral or bony endplates.
  • the IVD is comprised of an extensive extracellular matrix (ECM), which is maintained by cells with a tissue specific phenotype. They occupy less than 0.5% of the tissue volume.
  • ECM extracellular matrix
  • the extracellular matrix comprises 99.5% of the IVD.
  • the basic biochemical components of the NP, the AF and the CEP are the same, namely water, proteoglycans (PG) and collagens, but their relative proportions vary.
  • the major PG of the IVD is aggrecan. It consists of a core protein to which up to 100 keratin and chondroitin sulfates are covalently bound. These are highly negatively charged glycosaminoglycans (GAG), which imbibe water and confer a viscoelastic behavior to the tissue, in particular to the highly hydrated NP.
  • GAG glycosaminoglycans
  • Collagen type I and II make up approximately 90% of total IVD collagen.
  • collagen fibers are irregularly oriented; in the AF, they are organized into 10-25 uni-directionally aligned lamellae, which encircle the NP and attach to the CEP in the inner zone and to the vertebral endplates in the outer zone ( Figure 3B).
  • MMPs matrixmetalloproteinases
  • ADAMTS A Disintegrin and Metalloproteinase with Thrombospondin Motifs. These are zinc- dependent proteinases, which can cleave almost all components of the ECM.
  • NCs are remnants from the embryonic notochord and build the primary NP.
  • NP cells are replaced by NP cells.
  • the AF and NP cells are of mesenchymal origin. According to their gene expression profile, AF cells are fibrocytic and NP cells chondrocytic. AF cells synthesize collagen I as the main structural protein, NP cells aggrecan and collagen II. All three cell types sustain a pericellular matrix, similar to the chondron of chondrocytes, with a composition distinct from the intercellular matrix.
  • commensal pathogens are cultured from cells of the NP, or nucleic acids are isolated for genetic analysis, or the cells of the NP are evaluated for bacterial antigens.
  • the presence of the commensal pathogen is detected in cells from inflamed tissue.
  • intracellular presence of P. acnes supports its long-term persistency in the host, which could result in a chronic inflammatory state.
  • tuberculosis tuberculosis
  • cultures are discarded too early, given the appearance of being sterile, in the microbiological lab and are not incubated for sufficient periods of time in search of the anaerobic germs.
  • the presence or level of commensal pathogens is determined (alternatively or in addition to culturing) by hybridization or amplification of microbial nucleic acids.
  • detection assays include realtime or endpoint polymerase chain reaction (PCR), nucleic acid hybridization to microarrays, or nucleic acid sequencing. Detection assays can involve detection of genomic DNA, or RNA, including after reverse transcription in some embodiments.
  • the sample is subjected to "deep sequencing" to prepare an absolute or relative abundance of microbes present in the sample.
  • molecular detection assays are conducted alongside culturing.
  • Molecular assays while capable of identifying a causative agent, do not necessarily provide data on the specific susceptibility or resistance of the causative agent to different antimicrobial drugs. Thus, culturing can provide additional information that is useful to initiate the optimal therapy.
  • techniques such as microbial culture, PCR, microscopy and others, are used on a cohort of samples to identify commensal pathogens (such as P. acnes or others), and to identify an RNA signature in the cohort that correlates to abundant levels of P. acnes (or other commensal pathogen).
  • the RNA signature can be used independently on other samples as a substitute for other methods of commensal pathogen detection, that is, without conducting microbial culture, PCR or other technique.
  • the less virulent the ongoing infection the more challenging the infection is to diagnose. These so-called low-grade infections cause significantly less inflammatory response on a local level and none or only very minor ones on a systemic level.
  • the molecular detection assay detects microbial ribosomal RNA (rRNA) genes, such as 16S and/or 23 S rRNA genes, and particularly the variable regions of 16S.
  • rRNA ribosomal RNA
  • 16S rRNA sequencing can be used to characterize the complexity of microbial communities at body sites. 16S rRNA sequencing facilitates the recognition of microorganism taxa, e.g. species or higher taxonomic levels, and in cases of previously unknown microorganisms, allows for their general classification (e.g. families, phyla). Metagenomic whole genome shotgun (WGS) sequencing provides insights into the functions and pathways present in the microbial communities.
  • WGS whole genome shotgun
  • the 16S rRNA sequence contains both highly conserved and variable regions. These variable regions, nine in number (VI through V9), are used to classify organisms according to phylogeny, making 16S rRNA sequencing particularly useful in metagenomics to help identify taxonomic groups present in a sample. These sequences can be interrogated using chip technologies, RT-PCR, or deep sequencing.
  • the presence of a commensal pathogen is determined by hybridization-based assay, such as a microarray.
  • the PhyloChip approach in particular is a microarray-based method that identifies and measures the relative abundance of more than 50,000 individual microbial taxa. This approach relies on the analysis of the entire 16S ribosomal RNA gene sequence, which is present in every bacterial genome but varies in a way that provides a fingerprint for specific microbial types.
  • the microarray-based hybridization approach ensures that measurements on important low abundance bacteria are not overwhelmed by commonplace, dominant microbial community members.
  • the detection assay enables the typing of key commensal organisms, such as P. acnes, to help differentiate potential contamination, or to identify potential therapeutic agents that would likely be effective against the infection.
  • the method comprises typing of commensal pathogen strains (e.g., P. acnes) in tissue samples (e.g., disc tissue) by PCR or other molecular technique, and in derived P. acnes colonies. Where the P. acnes is not a result of contamination, the strain should be the same in both. Thus, cases that are positive with high levels of the same P. acnes strain by both cultivation and PCR will be considered a good reference and indicative as true positive for microRNA profiling.
  • Table 1 Exemplary Probes and Primers for P. acne detection RealTime PCR Assay
  • Fic family (Type (SEQ ID NO: 11)
  • the molecular detection assay uses RealTime PCR to provide an absolute quantification of P. acnes (or other commensal pathogen) gene copies, based on a calibration curve.
  • the detection of one or more commensal pathogens is positive, whether conducted by one or more of culture, PCR, hybridization, microscopy, or immunochemistry, there is generally an unacceptably high rate of false positives, most likely due to frequent sample contamination by microflora.
  • an RNA profile for the sample is evaluated for the presence of an RNA signature (e.g., mRNA or miRNA signature) that is indicative of a low- grade or low-virulence infection.
  • an RNA signature e.g., mRNA or miRNA signature
  • RNA can be isolated from host cells in the sample, and the relative abundance of (for example) the miRNAs evaluated by any of several available miRNA detection platforms. These include Real-Time PCR (e.g., Exiqon; TaqMan Low-Density Arrays (TLDA) Human MicroRNA Panel; Life Technologies; QIAGEN SYBR® Green-based, real-time PCR profiling of miRNAs using the miScript PCR System), Microarray based platforms (e.g., Affymetrix GeneChip MiRNA; Agilent SurePrint Human miRNA Microarrays; Exiqon miRCURY LNATM microRNA Arrays), Next-generation sequencing-based platforms (e.g., Illumina small RNA sequencing; IonTorrent small RNA sequencing), and in-situ microRNA hybridization in FFPE tissues. Generally, RNA profiles can be determined by amplification, hybridization, and/or sequencing technologies.
  • Real-Time PCR e.g., Exiqon; TaqMan Low-Dens
  • RNA signature may be correlative of a low- virulence infection, without regard to the bacterial species, or may be specific for a bacterial species or strain, such as P. acnes, coagulase negative staph, E. coli, or Corynebacterium, etc.
  • an RNA signature is determined by training a classifier algorithm with RNA profiles from infected cells and non- infected cells.
  • the cells may be infected in vitro, or may be in vivo infected cells (infected cells from clinical samples). In some embodiments, cells are infected with clinical isolates of P. acnes or other commensal pathogen in vitro.
  • infected cultures are maintained for at least one day, at least one week, or at least two weeks, prior to determining the RNA profiles, to closely model chronic infection.
  • Cells infected with a range of commensal pathogens may be used to prepare bacteria-specific and bacteria-non-specific signatures.
  • NP cells are cultured in vitro, and infected with commensal pathogens such as P. acnes, and the resulting RNA profile used to train a classifier algorithm that distinguishes P. acwes-infected cells from non-infected cells. Classifiers can be trained using P. acnes positive cells vs P.
  • acnes negative cells coagulase-neg Staphylococcus-positive cells vs. coagulase-negative Staphylococcus negative cells; and P. acnes and coagulase-neg. staph positive cells vs. cells negative for both.
  • the RNA signature is trained using infected cells (e.g., P acnes -infected NP cells) and contaminated cells, to distinguish true chronic infection from acute "infection" due to contamination.
  • RNA signatures can be trained to differentiate organisms, such as bacteria, virus, fungi, and parasites, and in some embodiments, to differentiate gram positive vs. negative bacteria, and/or bacterial species or strains.
  • RNA signatures are trained using samples that test positive or abundant, versus negative or non-abundant, for the level of the commensal microorganism.
  • positive samples are abundant for the commensal microorganism (e.g., in at least the top 50%, 60%, 70%, 75%, 80%, or 90% of samples in a cohort) by at least one molecular technique (e.g., quantitative PCR) and optionally also by culture or microscopy.
  • positive samples produce at least about 10 3 CFU per mL, or more than about 10 4 CFU per mL by culture.
  • Negative samples are generally negative by a molecular technique, such as quantitative PCR, or are in at least the bottom quartile, bottom 20% or bottom 10% quantitatively.
  • negative samples are substantially negative by culture or microscopy.
  • negative samples produce less than about 10 3 CFU per mL by culture, or less than about 10 2 CFU per mL, or less than about 10 CFU per mL.
  • the culturing method may employ the process shown in Example 3.
  • the negative samples are in the bottom quartile, or bottom 20%, or bottom 10%, with regard to CFU/mL established by culture.
  • RNA signatures from infected clinical samples will be trained from the results of metagenomic analysis, that is, using the absolute or relative abundance of microbes identified by deep sequencing or hybridization array.
  • Exemplary computational tools for distinguishing or classifying mRNA or miRNA signatures include Principal Components Analysis, Naive Bayes, Support Vector Machines, Nearest Neighbors, Decision Trees, Logistic, Artificial Neural Networks, and Rule-based schemes.
  • the computer system may employ a classification algorithm or "class predictor" as described in R. Simon, Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarrav data. British Journal of Cancer (2003) 89, 1599-1604, which is hereby incorporated by reference in its entirety.
  • the classifier algorithm may be supervised, unsupervised, or semi-supervised.
  • the classifier uses 1, 2, 3, 4, or 5 features (e.g., mRNAs or miRNAs), not including expression controls.
  • the algorithm uses from 2 to about 100 features (mRNAs or miRNAs) to comprise the signature.
  • the algorithm uses from 2 to about 50 features, or from 2 to about 30 features, or from 2 to about 20 features, or from 2 to about 10 features to comprise the signature.
  • the classifier is based on from 5 to 50 features, or from 10 to 50 features, or from 20 to 50 features. Exemplary human miRNAs are shown in Tables 2 and 8.
  • MicroRNAs are important regulators of gene expression comprising an abundant class of endogenous, small noncoding RNAs (18-25 nucleotides in length). They are capable of either promoting mRNA degradation or attenuating protein translation. Bioinformatic studies have estimated that microRNAs may regulate more than 50% of all human genes and each miRNA can control hundreds of gene targets. Some miRNAs are expressed in a cell specific, tissue-specific and/or developmental stage-specific manner, while others are expressed ubiquitously. The number of verified miRNAs is still growing - the latest version of web-based database miRBase has annotated over 1800 precursor and 2342 mature sequences in the human genome.
  • MiRNAs may serve as master regulators of many fundamental biological processes, such as embryogenesis, organ development, cellular differentiation, proliferation, apoptosis, etc., affecting such major biological systems as sternness and immunity.
  • Other small non-coding RNAs e.g. piRNAs, snRNAs, snoRNAs, and circRNAs
  • long non-coding RNAs e.g. IncRNAs, lincRNAs, T-UCRs
  • miRNA response to bacterial pathogens has been less explored.
  • the levels of from 2 to about 1000 RNAs are detected in the RNA isolated from patient samples.
  • RNAs e.g., mRNAs or miRNAs
  • from about 2 to about 500, or from 2 to about 300, or from 2 to about 200, or from 2 to about 100, or 2 to 10 mRNAs or miRNAs are detected.
  • at least 50 mRNAs or miRNAs are detected.
  • no more than 500, 300, or 100 or 10 or mRNAs or miRNAs are detected.
  • from 2 to about 5 or from 2 to about 10 miRNAs are individually detected, and the relative abundance determined with respect to controls.
  • miRNA signatures can be trained based on miRNA profiles for the miRNAs in Table 2, Table 4, Table 5, or the human miRNAs in Figure 2 or Figure 8.
  • two or more of the following miRNAs are detected in patient samples (e.g., disc tissue): miR-574-3p, miR-29a-3p, miR-497-5p, miR-29c- 3p, and miR-99b-5p.
  • miR-29a-3p and miR-574-3p are detected (e.g., in disc tissue).
  • Expression may be quantified relative to the expression of one or more control genes, such as RNU38B and/or RNU48.
  • Control RNAs can be selected to control for variation in the amount of starting material, sample collection, RNA preparation and quality, and reverse transcription (RT) efficiency. Normalization to endogenous control genes is an accurate method to correct for potential RNA input or RT efficiency biases.
  • RNA score is established based on the relative levels of expression for the miRNA features in positive and negative samples within the cohort, with the score distinguishing independent positive and negative samples.
  • DMS diagnostic miRNA score
  • the patient is recommended for treatment.
  • the patient is not recommended for treatment of a chronic infection.
  • a local antibiotic or antiseptic rinse can be applied at the time of surgery.
  • an oral, intravenous, or local antibiotic regimen can be administered prior to surgery.
  • an oral, intravenous, or intervertebral antibiotic regimen can be administered during the days, weeks, or months post-surgery.
  • the patient is determined to have a low virulence infection based on a biopsy sample.
  • the patient is then administered an antibiotic regimen, and where the low back pain is reduced or eliminated, surgery such as a discectomy or other invasive procedure may be avoided, for example, in favor of a less invasive procedure.
  • antibiotic treatment is provided, optionally guided by sensitivity testing when available and close clinical as well as imaging follow-up (MRI). Should the patient suffer from persistent or increasing low back pain and possibly even exhibit signs of progressive disc space inflammation after a microdiscectomy, the treating specialist could indicate for a complete discectomy and intervertebral arthrodesis in order to treat both, the infection and the back pain. Should the patient improve under antibiotic treatment, the antibiotic will be discontinued after a certain period of time with further clinical and imaging follow-up.
  • MRI imaging follow-up
  • the tissue sample obtained by means of a percutaneous biopsy prior to a planned surgery yields a positive test
  • a targeted antibiotic pretreatment could be performed prior to the planned procedure.
  • a planned surgery could be changed to a less invasive procedure or to conservative treatment.
  • topical antiseptics or antibiotics could be used in an attempt to increase the chances of resolving the infection and hence of a good clinical outcome.
  • degenerative disc disease is often idiopathic, and there is growing evidence that a subset of patients undergoing intervertebral disc surgeries have a low virulence infection, potentially attributable to Propionibacterium acnes as well as Corynebacterium and Staphylococcus. It is believed that low virulence infection is a causative or compounding factor for some cases of degenerative disc, and/or a factor in the 25% of disc surgeries that fail to return a patient to a state of wellness.
  • a low virulence infection is an infection that evades the immune system and can contribute to a chronic degenerative condition.
  • NP cells derived from 3 samples of native disc tissue are infected by P. acnes (PA) (ATCC 6919, derived from facial acne), or PA derived directly from infected disc tissues, and with other bacterial species (e.g., E. coli, Staphylococcus, Corynebacterium).
  • PA P. acnes
  • a first profile is the profile common for all bacterial species
  • a second profile is the profile specific for P. acnes, or E. coli etc., for detection of contamination in tissue samples.
  • RNA profiles (Profile la and Profile lb) in different time points after infection of NP cell cultures. 30-60 minutes may be used as a model for acute infection, to identify profiles indicative of contamination which occur prior to sample fixation (e.g., in-vitro contamination signal). Long-term incubation (e.g., 1, 7 and 21 days) will be used to model chronic infection, and identify profiles indicative of chronic infection.
  • Global microRNA expression profiling (754 microRNAs) will be performed with Exiqon microRNA Human panel V3.0.
  • DNA is stored at -80°C immediately after extraction.
  • RNA is collected with stabilizing solution (RNAlater).
  • tissue will be transported at room temperature to Microbiology department as soon as possible.
  • blood plasma and urine are also collected and stored at -
  • Sample 1 will be used for DNA purification and in all samples will be quantified for P. acnes DNA by qPCR. In addition, other bacterial species, such as staphylococci, can be quantified.
  • PA strain will be identified in colonies and disc tissue by multiplex PCR and/or sequencing. To rule out contamination the same strain should be identified. Samples which are positive by cultivation and qPCR for the same strain will be considered as reference positive for microRNA profiling.
  • Samples negative by cultivation and negative (or low level positive in case of no negative samples) by qPCR (e.g., PA, staphylococci) will be considered as reference negative for microRNA profiling.
  • 20 PA-positive, 10 staphylococci-positive, and 30 negative will be used for microRNA profiling.
  • Example 3 Cross-Validation of Positivitv in the Whole Cohort
  • N patients positive by cultivation and Nl positive by qPCR.
  • a diagnostic algorithm based on identified microRNA signatures will be developed.
  • N3 patients will be positive by miRNA signature.
  • N4 will be positive for PA-specific miRNA signature
  • N5 will be positive for Staph-specific miRNA signature
  • N6 will be negative for both.
  • N6 will be subjected to metagenomic analysis.
  • P. acnes samples 326 patients (186 males and 140 females) were prospectively enrolled with an average age of 44 ⁇ 13 years. None of the patients developed clinically evident post-operative discitis.
  • quantitative bacterial culture was performed to determine P. acnes counts, and real-time PCR was performed to detect genome counts in disc tissue specimens. Procedures used for bacterial culture and real-time PCR are described in detail in Methods.
  • One hundred thirty cases (40%) were P. acnes positive by culture.
  • P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml.
  • real-time PCR P. acnes genomes were undetectable in 98 cases (30%). The number of P.
  • acnes genomes in the 228 P. acftes-positive disc tissues ranged from 2 to 4531 with a median of 256 genomes per 500 ng of total DNA.
  • Disc tissue samples characterized by abundant P. acnes by both, culture (> 10 3 CFU/ml; 75 th percentile) and by real-time PCR (> 500 genomes in 500 ng of DNA; 75 th percentile), were considered as reference P. acnes positive cases (N 45, 14%).
  • MicroRNAs identified to be differentially expressed in disc tissues with abundant P. acnes by culture and real-time PCR p-value ⁇ 0.1 and adj. p- value ⁇ 0.15).
  • miRNA Fold change P-value Adjusted p-value hsa-miR-125b-2-3p 1.66 0.002 0.056 hsa-miR-99a-5p 1.5 0.003 0.056 hsa-miR-29a-3p 1.45 0.009 0.076 hsa-miR-99b-5p 1.49 0.009 0.076 hsa-miR-125b-5p 0.78 0.017 0. 105 hsa-miR-28-3p 1.41 0.020 0. 105 hsa-miR-92b-3p** 1.46 0.023 0. 107 hsa-miR-29c-3p 1.58 0.039 0.
  • DMS Diagnostic MicroRNA Score
  • microRNA expression assays By use of individual microRNA expression assays (Life Technologies) and assays for 2 reference genes we determined expression levels of 16 candidate miRNAs from discovery phase and RNU38B and RNU48 in 35 disc tissue samples (15 reference P. acnes positive cases, and 20 reference negative cases) as described in the Methods. MicroRNA expression levels were quantified relatively to the average of two reference genes (RNU38B and RNU48). All samples passed quality control with Ct(RNU38B) ⁇ 34 and/or Ct(RNU48) ⁇ 31. Five microRNAs were confirmed to have significantly different expression levels in P. acnes positive and negative disc tissue samples, two of them remain significant even after adjustment of P-value for multiple hypothesis testing (Table 5, Figure 4).
  • ROC analysis of DMS values shows strong ability to ;uish cases with abundant P. acnes (culture and real-time PCR) and negative Validation phase - independent validation of DMS and its application in positive cases with non-abundant P. acnes (inconclusive by standard methods)
  • PPV- positive predictive value NPV - negative predictive value DMS calculations are exemplified as follows.
  • miR-29a-3p 2 ' - 35.5062
  • P. acnes infection of the disc is used for clinical decision making and standard methods applied for its diagnosis (bacterial culture and/or real-time PCR), more than one third of patients will receive potentially harmful antibiotic treatment without being infected.
  • DMS with its analytical performance could fully substitute standard diagnostic techniques, which are time-consuming and highly vulnerable for contamination, and so provide solution how to prevent these unnecessary harmful treatments in patients with spinal diseases.
  • Exclusion criteria included: coexistent infection or immunologically compromised conditions; corticosteroid or antibiotics use in the month before surgery; trauma; unknown radiographic mass; diagnosis of inflammatory arthritis or other rheumatologic diseases.
  • the following epidemiological and clinical data were collected: Gender, age, intervertebral segment involved, type of herniation, prevalence of previous spinal surgeries, prior epidural steroid injections, and development of post-operative discitis.
  • a written informed consent was obtained from each patient. The study was approved by the Institutional Review Board.
  • the disc herniation was exposed by gentle retraction of the traversing nerve root and then removed together with the remnant loose fragments of the nucleus pulposus in the disc space near the annular defect. All tissue samples were handled in such a way as to minimize their contamination, retained in a closed sterile sample cup, and then passed off to the field for labeling and transport to the laboratory, where the disc tissue samples were further analyzed. The sample sizes were approximately 3x3x5-10x5x5 mm and not measured accurately as we attempted to obtain as much material as possible from the surgical specimen. Samples were not frozen prior to processing and culture was established within 2 to 4 hours post-surgery. Microbiological culture.
  • Fresh disc tissue samples were cut into smaller fragments using a sterile, individually packaged, gamma-irradiated scalpel; and, a sterile, gamma-irradiated petri dish.
  • One of these fragments was placed into a 2 mL microcentrifuge DNA-free tube and stored at -80°C until processed for P. acnes DNA analysis.
  • Tissue processing and homogenization was carried out in a sterile pestle and mortar with sterile quartz sand (size particle 0.1-0.5 mm; Penta, Czech Republic) and saline solution in aseptic conditions, in a class 2 biological safety cabinet.
  • the homogenized tissue samples were inoculated onto Wilkins Chalgren Anaerobic Agar (Hi Media Laboratories, India) with 7% of sheep's blood and vitamin K. Inoculated plates were incubated anaerobically (80% nitrogen, 10% CO2 and 10% H 2 ) in an Anaerobic Work Station (Ruskinn Technology, UK) at 37°C for 14 days and assessed for bacterial growth. The quantity of bacteria in the sample was expressed as colony forming units (CFU) in 1 ml of the homogenate. Identification of bacteria was carried out biochemically using the Rapid ANA II System (Remel, USA) and by MALDI-TOF (microflexTM LT MALDI-TOF System + software + bacterial spectra library, Bruker Corp.).
  • Frozen tissue samples were thawed (median wet weight was 130 mg, range 20 - 180 mg), cut into small fragments and transferred to a sterile 2 mL microcentrifuge tube by use of newly opened sterile sets of needle, scalpel and tweezers. Small fragments of the tissue samples were further suspended in 500 ⁇ of ATL buffer (Qiagen, Germany) with 50 ⁇ of proteinase K (20 mg/ml) (Qiagen) and digested at 56°C and 650 rpm in a thermomixer overnight.
  • ATL buffer Qiagen, Germany
  • a tube with sterile water was used as a laboratory contamination control to follow the entire laboratory process from digestion of the tissue and DNA isolation to real-time PCR analysis.
  • DNA was extracted by use of the QIAamp UCP Pathogen Mini Kit (Qiagen) as described in the manufacturer's instructions. Concentration of DNA were measured spectrophotometrically using a Nanodrop 2000 (Thermofischer, USA); or with fluorescent dye and a Qubit 3.0 fluorometer (Life Technologies, USA) for samples with DNA concentrations less than 5ng ⁇ l.
  • P. acnes quantification by real-time PCR was performed using primers to amplify a 131-bp region of the 16S rRNA gene of P. acnes: forward primer 5'- GCGTGAGTGACGGTAATGGGTA - 3' (SEQ ID NO: l), reverse primer 5'-TTCCGACGCGATCAACCA-3' (SEQ ID NO:2) and TaqMan probe 5 ' -AGCGTTGTCCGGATTTATTGGGCG-3 ' (SEQ ID NO:20).
  • the 15- ⁇ 1 PCR reaction mixture contained 6,75 ⁇ of DNA sample, 5 pmol of each primer and 2 pmol of TaqMan probe, and IX TaqMan Gene Expression Master Mix (Life Technologies, USA).
  • the QuantStudio 12K Flex system (Life Technologies, USA) was used with the thermal cycling profile of 50°C for 2 min, 95°C for 10 min and 50 cycles of 95°C for 15 s and 60°C for 1 min.
  • the P. acnes genome equivalents in samples were estimated with an internal standard curve prepared with five replicates of six concentrations (10— 10 6 copies) of synthesized P. acnes amplicon (131 bp) (Integrated DNA Technologies, USA). Laboratory contamination controls described above and PCR negative controls were included in every PCR reaction.
  • RNA samples were thawed (median wet weight was 100 mg, range 20 - 145 mg), cut into small fragments and transferred to a sterile 2 mL microcentrifuge tube by use of sterile sets of needle, scalpel and tweezers. Small fragments of the tissue samples were further suspended in 500 ⁇ of ATL buffer (Qiagen, Germany) with 50 ⁇ of proteinase K (20 mg/ml) (Qiagen) and digested at 56°C and 650 rpm in a thermomixer overnight. Total RNA, including microRNAs and other small RNAs, was extracted by use of miRNeasy Mini Kit (Qiagen) as described in the manufacturer's instructions. Concentration of RNA were measured spectrophotometrically using a Nanodrop 2000 (Thermofischer, USA); or with fluorescent dye and a Qubit 3.0 fluorometer (Life Technologies, USA) for samples with RNA concentrations less than 5ng ⁇ l.
  • MicroRNA expression profiling Expression profiling of miRNAs was performed using microRNA Ready-to-Use PCR Panels (Exiqon, Vedbaek, Denmark). A set of two cards (Human Panel I+II, V4.M) enabling quantification of 752 human miRNAs and 6 endogenous controls for data normalization was used. First-strand cDNA synthesis was performed according to the standard protocol using Universal cDNA Synthesis Kit (Exiqon, Vedbaek, Denmark) and 100 ng of total RNA.
  • RNA sample was synthesized from total RNA using gene-specific primers according to the TaqMan MicroRNA Assay protocol (Applied Biosystems, Foster City, CA, USA).
  • RNA sample 50 nM of stem-loop RT primer, 1 ⁇ RT buffer, 0.25 mM each of dNTPs, 3.33 ⁇ ⁇ 1 MultiScribe reverse transcriptase and 0.25 ⁇ ⁇ 1 RNase inhibitor (all from TaqMan MicroRNA Reverse Transcription kit, Applied Biosystems, Foster City, CA, USA) were used.
  • Reaction mixtures (10 ⁇ ) were incubated for 30 min at 16 °C, 30 min at 42 °C, 5 min at 85 °C and then held at 4 °C (T100TM Thermal Cycler; Bio-Rad, Hercules, CA, USA).
  • Real-time PCR was performed using the QuantStudio 12K Flex Real-Time PCR system (Applied Biosystems, Foster City, CA, USA).
  • the 20- ⁇ 1 PCR reaction mixture included 1.33 ⁇ of RT product, 1 x TaqMan (NoUmpErase UNG) Universal PCR Master Mix and 1 ⁇ of primer and probe mix of the TaqMan
  • MicroRNA Assay kit (Applied Biosystems, Foster City, CA, USA). Reactions were incubated in a 96-well optical plate at 95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min.
  • miR-574- 3p (ID: 002349), miR-29a-3p (ID: 0021 12 ), miR-497-5p (ID: 001043), miR-29c-3p (ID: 000587), miR-99b-5p (ID: 000436), miR-195-5p (ID: 000494), miR-28-5p (ID: 000411), miR-30a-3p (ID: 000416), miR-146b-5p (ID: 001097), miR-34a-3p (ID: 002316), miR-140-3p (ID: 002234), miR-125a-5p (ID: 002198), miR-423-5p (ID: 002340), miR-125b-5p (ID: 000449), miR-28-3p (ID: 002446), miR-125b-2-3p (ID: 002158).
  • Two assays were used for quantification of reference genes: RNU38B
  • the threshold cycle data were calculated by SDS 2.0.1 software (Applied Biosystems, Foster City, CA, USA). All individual microRNA real-time PCR reactions were run in triplicates. The average expression levels of all measured miRNAs were normalized using RNU38B in cases global microRNA expression profiling and average of RNU38B and RNU48 in individual microRNA measurements. Expression levels were subsequently analyzed by the 2 "ACt method.
  • RNU38B (SNORD38B) was selected as an endogenous control through combination of standard geneNorm and NormFinder algorithms from 6 possible genes included on Exiqon microRNA Ready-to-Use PCR Panels. Only miRNA with average Ct (threshold cycle) lower than 35 in one group were statically evaluated.

Abstract

The invention provides a method for detecting a low-virulence infection in a patient, by distinguishing true infections from false positives. The method comprises testing for the presence or amount of commensal microorganism(s) in a patient sample, and in particular, the commensal microorganism is one that may be causative of a low-virulence infection. Since testing for commensal microorganisms will lead to a large number of false-positives due to frequent sample contamination, the sample is also tested to discriminate true chronic infection from these false positives. In accordance with the invention, false positives are discriminated by evaluating a nucleic acid profile from the sample.

Description

METHODS FOR DETECTING AND TREATING LOW- VIRULENCE
INFECTIONS
PRIORITY
This application claims the benefit of priority of U.S. Provisional
Application No. 62/196,508 filed July 24, 2015, which is hereby incorporated by reference in its entirety.
BACKGROUND The human body is a superorganism in which thousands of microbial species continually interact with the human body. As of March 2014, the Genomes Online database lists 2,723 completed and published bacterial genomes detected in the human body with at least 14,867 in progress. Studies have revealed the presence of thousands of previously unknown microbes in human tissue and blood. In fact, polybacterial and chronic pathogens have even been detected in environments that were previously thought to be sterile. As a consequence, a range of physical and neurological inflammatory diseases are now thought to be associated with shifts in microbiome composition. For example, evidence suggests that commensal bacteria, such as Propionibacterium acnes (P. acnes), a normal inhabitant of the human skin, may be responsible for low-virulence infections, including low-virulence infections associated with chronic low back pain and intervertebral disc disease.
Some pathogens, including commensal pathogens, can be detected in biological tissue by culture or molecular techniques such as PCR. However, the vast majority of the microorganisms cannot be cultured under standard conditions used for diagnostic purposes. Further, if the suspected pathogen is a commensal microorganism that is ubiquitous in certain host tissues, there will be an unacceptably high rate of false positives due to sample contamination, particularly when using molecular detection assays.
The present invention provides methods for identifying low-virulence infections (e.g., infections by commensal pathogens), including by distinguishing true infections from false positives, to thereby support responsible and cost-effective medical care. The invention further provides methods for treating low-virulence infections, including infections associated with intervertebral disc disease or chronic low back pain. Other objectives of the present invention will be apparent from the following detailed description. SUMMARY OF THE INVENTION
In one aspect, the invention provides methods for identifying low virulence infections, by determining the presence of commensal pathogens in a patient sample, and by discriminating instances of chronic infection by commensal microorganisms from false positives (e.g., distinguish infection from contamination of the sample by commensal microflora). The invention in these embodiments is useful for the diagnosis of a low virulence infection, such as an infection of the intervertebral disc. For example, a sample that tests positive for the commensal microflora by one or more of microbiology culture, DNA analysis, immunochemistry, and microscopy, is evaluated for a host cell RNA signature to rule out false positives (thereby confirming a low virulence infection). The surgeon or treating physician may then administer an appropriate treatment for patients identified as having a low-virulence infection.
In other aspects, the invention provides miRNA signatures that distinguish (with high sensitivity and specificity) samples that are positive for a low virulence infection (e.g., by P. acnes) from samples that are negative for a low virulence infection. These tests can be combined with analysis from molecular assays, microbial culture, and sample microscopy, to discriminate false positives, or in some embodiments can be used independently to identify positive samples. An exemplary miRNA score for P. acnes infection can be determined by scoring the relative expression levels of miR-29a-3p and miR-574-3p. A diagnostic miRNA score (DMS) based on the following formula resulted in 95% accuracy in a validation study, with positive samples having a score of less than or equal to -0.01 : DMS = 18.71 - 11.24 * logl O (miR-29a-3p) + 10.4 * logl O (miR-574-3p).
Other RNA signatures can be trained from RNA profiles of samples that are positive or abundant for P. acnes (or other commensal microorganism) and samples that test negative (or non-abundant) for P. acnes. For example, samples can be binned based on detection (or detection level) of the commensal microorganism by quantitative PCR and at least one other technique, such as microbial culture, immunochemistry, or spectroscopy.
In various embodiments the diagnostic test uses a profile of coding and/or non-coding RNAs of the host cells in the sample, to discriminate low virulence infection from non-infected samples (and, in some embodiments, from false positives). RNA profiles (e.g., mRNA or miRNA profile) of host tissue are able to discriminate chronic low virulence infections, even though these low-grade infections cause only minor inflammatory responses on the local level.
The invention can be applied to surgical samples, to guide medical care post- surgery, or can be applied to biopsy samples, to guide treatment pre-surgery, and/or to potentially reduce the need for more invasive procedures by treating low virulence infections.
In another aspect, the invention provides methods for treating low virulence infections. In various embodiments, the method comprises treating a low-virulence infection with an antibiotic that is administered systemically, or with an antibiotic or antiseptic that is locally administered. Low virulence infections can be identified according to the methods described herein.
Other aspects and embodiments of the invention will be apparent from the following detailed description. DESCRIPTION OF THE FIGURES
FIGURE 1 provides an illustration of Degenerative Disc Disease.
FIGURE 2 is a flow chart for embodiments of the invention, where patients are scheduled for Intervertebral Disc Surgery, and an Intervertebral Disc Sample is taken from the surgical site. Diagnostic tests (such as a PCR assay) are conducted on the sample to detect the presence or absence, or to quantify, commensal pathogens in the sample. Where the sample is positive for commensal pathogens, miRNA profiles are conducted to discriminate true infections from false positives (contamination). Where a low-virulent infection is confirmed, further treatment is recommended for the patient, such as oral, intravenous, or intervertebral antibiotic, local antiseptic treatment, or further surgical treatment.
FIGURE 3 is a schematic drawing of a human vertebra and intervertebral disc (IVD). (a) Transversal view of a lumbar vertebra, (b) IVD viewed from an anterior angle with partially removed AF lamellae, (c) Spinal segment consisting of two adjacent vertebrae and the interjacent IVD in a coordinate system indicating typical motions.
FIGURE 4 shows the normalized expression levels of microRNAs differently expressed in P. acnes positive and negative disc tissue: miR-574-3p, miR-29a-3p, miR-497-5p, miR-29c-3p, and miR-99b-5p.
FIGURE 5 shows Diagnostic miRNA score (DMS) values calculated for reference P. acnes positive and negative cases. Cut-off DMS value for P. acnes positivity is -0.01 (Left panel). ROC analysis of DMS values shows strong ability of DMS to distinguish cases with abundant P. acnes (culture and real-time PCR) and negative cases (Right panel).
FIGURE 6 shows DMS values calculated for independent validation with reference P. acnes positive and negative cases (Left panel). ROC analysis of DMS values shows strong ability of DMS to distinguish cases with abundant P. acnes (culture and real-time PCR) and negative cases (Right panel). FIGURE 7 shows that disc tissue with positive culture for coagulase- negative staphylococci have DMS values characteristic for P. acnes negative samples (DMS > -0.01).
FIGURE 8 shows sequences of miRNAs deregulated in disc tissues with abundant P. acnes. DETAILED DESCRIPTION OF THE INVENTION
In one aspect, the invention provides a method for detecting a low-virulence infection in a patient, for example, by distinguishing true infections from non- infected samples, including from false positives and false negatives. In some embodiments, the method comprises testing for the presence or amount of commensal microorganism(s) in a patient sample. Since testing for commensal microorganisms will lead to a large number of false-positives due to frequent sample contamination, the sample is also tested to discriminate true chronic infection from these false positives. In accordance with the invention, false positives are discriminated by evaluating an RNA profile (either of coding RNAs or non-coding RNAs) from the sample, such as an mRNA or small RNA (e.g., miRNA) profile. As described herein, RNA profiles of host tissue/cells are able to discriminate chronic low virulent infections, even though these low-grade infections cause only minor inflammatory responses on the local level. As the term is used herein, a low- virulence infection is a chronic, low-grade, infection that is associated with a commensal microorganism. Exemplary commensal microorganisms include any of the commensal organisms that can be molecularly detected in host tissue samples, or determined by laboratory culture and include without limitation, Propionibacterium sp. (P. acnes) Staphylococcus sp. (e.g., coagulase negative staphylococcus, or Staphylococcus aureus or Staphylococcus epidermidis), Corynebacterium, Lactobacillus sp. , Pseudomonas sp. (e.g., Pseudomonas aeruginosa), Enterococcus sp. , Streptococcus sp. (e.g., S. pneumoniae), Bacillus sp. (e.g., Bacillus cereus), Citrobacter sp. , E. coli, Moraxella sp., Haemophilus sp., Neisseria sp., Clostridium sp., Enterobacter sp., and Klebsiella sp. In some embodiments, the commensal microorganism is poorly- culturable, or is non-culturable. In some embodiments, the microorganism has a biofilm forming phenotype.
In some embodiments, the methods comprise detection or quantification of Propionibacterium acnes (P. acnes) in patient samples. P. acnes is a gram-positive aerotolerant anaerobe that forms part of the normal resident microbiota of the skin, oral cavity and the gastrointestinal and genito-urinary tracts. It is an opportunistic pathogen that has been linked to a wide range of infections and conditions, including implant infections, discitis, musculoskeletal conditions (e.g., osteitis, osteomyelitis, synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome), sarcoidosis, chronic prostatitis, and prostate cancer.
In some embodiments, the method comprises determining the microbiome composition of a sample, including determining the relative or absolute abundance of commensal and/or pathogenic microorganisms in the sample. The microbiome composition of a sample can be determined, for example, by rRNA sequencing (e.g., 16S rRNA sequencing).
Low-virulence infection can be causative or a factor in any of a number of chronic conditions. The invention is applicable to any chronic condition in which a low-virulence infection is suspected. Thus, in some embodiments, the patient has a condition selected from chronic low back pain (CLBP), joint or cartilage inflammation, inflammation associated with an implant or prosthetic, endocarditis, potentially infected intravenous port system, or gastric ulcer. The patient may be a human or animal patient. Generally, the sample is a surgical sample or biopsy of the inflamed or damaged tissue, where a low-virulence infection is suspected. In some embodiments, the sample is from a site susceptible to colonization or infection by anaerobic commensal bacteria.
In some embodiments, the patient has chronic low back pain, and which is consistent with structural intervertebral disc damage and/or a low- virulence infection. In some embodiments, the patient may be a candidate for, and may be scheduled for, intervertebral disc surgery. Patients that have a low-virulence infection may be at increased risk of developing CLBP and/or may become "failed back surgery" patients, unless diagnosed correctly and treated appropriately. For example, some patients that undergo disc surgery will also suffer from CLBP prior to the acute condition necessitating their surgery. Also, a certain proportion (around 5 to 10%) of patients undergoing disc surgery will develop CLBP in the follow-up, which are sometimes referred to as "failed back surgery" patients or "post- discectomy syndrome". These conditions are statistically associated with a low- virulence infection.
Discitis could either very rapidly become clinically apparent and be diagnosed rather easily by the appropriate diagnostic measures or turn into a "lowgrade", "smoldering" infection, which can be extremely difficult to distinguish from certain degenerative processes that also can cause spinal pain. In the first case, a so-called "pyogenic infection" with clear local and systemic symptoms would result. Such a "high-grade" infection will frequently result in sepsis and even septic shock if left untreated. In the second case, the clinical features can be comparatively mild and unspecific such as local pain without a systemic reaction. Such phenomena are known also in the context of periprosthetic infections after arthroplasties of the shoulder, hip and knee j oints. Specifically with such low-grade infections, the symptoms and complaints of the affected patients tend to be much more like those of degenerative or mechanical spinal problems than those typically associated with infection. This is especially so, because IVDs with preexisting degenerative changes such as nucleus dehydration and annular fissures would be more prone to colonization with a low-virulence infective agent as opposed to healthy IVDs. Thus, in some embodiments, the patient has intervertebral disc disease. For example, the sample can be an intervertebral discectomy, which is obtained during surgery. In still other embodiments, the patient is scheduled for disc surgery, and a fine needle biopsy is isolated for testing prior to surgery. Exemplary disc surgeries include surgery to repair a disc herniation, primary lumbar fusion surgery, or primary disc arthroplasty. In these embodiments, the invention involves analysis of disc tissue for the presence of one or more commensal pathogens (e.g., P. acnes), and/or for the presence of an RNA signature indicative of a low- virulence infection.
In some embodiments, the invention involves detecting or quantifying commensal pathogen(s) (e.g., P acnes) in the disc tissue sample by microbiological cultivation or by genetic, immunochemical, or spectroscopic analysis. The invention further comprises evaluating the RNA (e.g., miRNA) to classify the profile as being indicative of low virulence infection, or not being indicative of a low virulence infection. In some embodiments, an RNA profile is evaluated independently to determine the presence of a low virulent infection, that is, without the use of other techniques such as PCR, culture, or microscopy.
In some embodiments, the presence of the commensal microorganisms is evaluated by culture, including aerobic and/or anaerobic cultivation and subsequent biochemical and spectroscopic (e.g., MALDI-TOF MS) identification of species. For example, tissue samples are processed under sterile conditions, and can be processed by homogenizing (e.g., in sterile saline). Various homogenization techniques can be used, including sterilized sea sand to aid grinding in a laboratory mortar or Stomacher (Seward, UK). Homogenized samples are inoculated on agar surface for aerobic and anaerobic culture. For example, an aerobic culture can use Columbia Blood Agar (Oxoid) with 7% of sheep blood (CBA), and the anaerobic culture can employ Wilkins Chalgren Anaerobic Agar (Hi Media) with 7% of sheep blood and vitamin K (WCHA). Inoculated WCHA plates are incubated anaerobically (80% nitrogen, 10% C02 and 10% H2) at 37°C for a minimum of 14 days. CBA plates are incubated aerobically at 37°C for about 7 days. In some embodiments, portions of the homogenized tissues are transferred into test tubes containing broth (e.g., 10 ml VL broth (Merck)) and subsequently overlaid with sterile paraffin oil to prevent access of oxygen and incubated at 37°C for about 7 days, and inoculated on WCHA in anaerobic conditions at 37°C for a minimum of 7 days. When the signs of microbial growth appear, the content of such tube is inoculated on CBA and WCHA and incubated as described above.
Obtained isolates can be sub-cultured on WCHA plates (incubation for 7 days, anaerobic atmosphere) and on CBA (incubation for 1 day, aerobic atmosphere) to obtain distinct colonies for further analysis. Isolates can be characterized by growth characteristics, by colony morphology, by Gram staining and by test catalase. Presumptive P. acnes isolates can be identified by biochemical analysis, for example, using the RapidID ANA II System (Remel) or by MALDI-TOF MS (microflex™ LT MALDI-TOF MS System + software + bacterial spectra library, Bruker Corp).
For molecular analysis, the sample may be a fresh tissue sample, or may be preserved, such as an FFPE sample or other preservation technique. In some embodiments, the sample is preserved or processed for molecular analysis by about 24 hours post-surgery or post-biopsy, or by about 48 hours, or by about 72 hours, or by about 96 hours post-surgery or post-biopsy.
For genetic analysis, nucleic acids (e.g., DNA and/or RNA) are isolated from the sample for analysis. In some embodiments where the sample comprises large amounts of cartilage (e.g., joint or disc tissue), the sample is processed by digestion with collagenase (e.g., Collagenase A) and/or proteinase (e.g., Proteinase K), or other enzymes useful for degrading the extracellular matrix. In still other embodiments, immunochemistry (e.g., immunohistochemistry or ELISA) can be used to detect protein epitopes of commensal organisms. Immunohistochemistry can be conducted on preserved or fresh tissue samples. For instance, without limitation, monoclonal antibodies against P. acnes can be used, such as antibodies specific for epitopes of cell-membrane-bound lipoteichoic acid (PAB antibody) and ribosome-bound trigger factor protein (TIG antibody).
Other techniques such as microscopy on tissue samples can be used to identify positive samples, and may employ any appropriate staining reagent (e.g., gram stain or fluorescent in situ hybridization (FISH)) or other immunoreagents specific for the commensal microorganism of interest. In some embodiments, microscopy is used to identify intracellular bacteria. Application of FISH for visualization of P. acnes in tissue is described in Alexeyev OA, et al. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay. J Clin Microbiol. 2007 Nov; 45(11):3721-8.
In some embodiments, nucleic acids are isolated from intervertebral disc (IVD) tissue, which may include nucleic acids of intracellular bacteria. The IVDs are the major mobile joints of the spine. They appear kidney shaped in the transversal plane and consist of three distinct structures: the central gelatinous nucleus pulposus (NP), the collagenous annulus fibrosus (AF), which surrounds the NP circumferentially, and the cartilage endplates (CEP), which separate the AF and NP from the vertebral bodies (Figure 3B and B). The IVD sided limits of the vertebral bodies are referred to as vertebral or bony endplates. They are composed of a layer of semi-porous thickened cancellous bone and form together with the CEPs the endplates (EPs). The IVD is comprised of an extensive extracellular matrix (ECM), which is maintained by cells with a tissue specific phenotype. They occupy less than 0.5% of the tissue volume.
The extracellular matrix comprises 99.5% of the IVD. The basic biochemical components of the NP, the AF and the CEP are the same, namely water, proteoglycans (PG) and collagens, but their relative proportions vary. The major PG of the IVD is aggrecan. It consists of a core protein to which up to 100 keratin and chondroitin sulfates are covalently bound. These are highly negatively charged glycosaminoglycans (GAG), which imbibe water and confer a viscoelastic behavior to the tissue, in particular to the highly hydrated NP. Collagen type I and II make up approximately 90% of total IVD collagen. In the NP, collagen fibers are irregularly oriented; in the AF, they are organized into 10-25 uni-directionally aligned lamellae, which encircle the NP and attach to the CEP in the inner zone and to the vertebral endplates in the outer zone (Figure 3B). The most abundant non-structural proteins in the IVD are the families of MMPs (matrixmetalloproteinases) and ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs). These are zinc- dependent proteinases, which can cleave almost all components of the ECM.
The cells of the IVD synthesize and maintain the extracellular matrix ("ECM"). They control the homeostasis between ECM synthesis and degradation. Compared to other tissues, relatively few cells have to maintain an extensive ECM. Consequently, the turnover of ECM proteins takes years. Three main types of cells are distinguished in the NP and AF: notochordal cells (NCs), NP and AF cells. NCs are remnants from the embryonic notochord and build the primary NP. In early childhood, NCs are replaced by NP cells. The AF and NP cells are of mesenchymal origin. According to their gene expression profile, AF cells are fibrocytic and NP cells chondrocytic. AF cells synthesize collagen I as the main structural protein, NP cells aggrecan and collagen II. All three cell types sustain a pericellular matrix, similar to the chondron of chondrocytes, with a composition distinct from the intercellular matrix.
In accordance with embodiments of the invention, commensal pathogens are cultured from cells of the NP, or nucleic acids are isolated for genetic analysis, or the cells of the NP are evaluated for bacterial antigens.
In some embodiments, the presence of the commensal pathogen is detected in cells from inflamed tissue. For example, intracellular presence of P. acnes supports its long-term persistency in the host, which could result in a chronic inflammatory state.
In some cases and for various reasons, attempts to establish a bacterial culture may be unsuccessful. Typical reasons for this are: (1) biofilm based orthopedic related infections are often culture negative [Achermann Y, et al. Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 2014;27:419-40]; (2) start of an antimicrobial therapy prior to the acquisition of the specimen; (3) biopsy did not yield enough tissue / colony-forming units (CFU); (4) biopsy was taken from the periphery / a non-representative area of the lesion; (5) culture media are inappropriate for the specific infectious agent (as is often the case with tuberculosis, other intracellular pathogens and certain anaerobic germs or fungi); (6) inappropriate transport conditions and delays until the specimen is processed in the lab; (7) reproduction rate under the laboratory conditions is very low (e.g. : tuberculosis); and (8) cultures are discarded too early, given the appearance of being sterile, in the microbiological lab and are not incubated for sufficient periods of time in search of the anaerobic germs. Many other potential reasons exist for the failure to establish a microbiological diagnosis, especially with low-grade disc infections, which often are caused by anaerobic germs.
In some embodiments, the presence or level of commensal pathogens is determined (alternatively or in addition to culturing) by hybridization or amplification of microbial nucleic acids. For example, detection assays include realtime or endpoint polymerase chain reaction (PCR), nucleic acid hybridization to microarrays, or nucleic acid sequencing. Detection assays can involve detection of genomic DNA, or RNA, including after reverse transcription in some embodiments. In some embodiments, the sample is subjected to "deep sequencing" to prepare an absolute or relative abundance of microbes present in the sample. Various sequencing strategies are known, including pyrosequencing (e.g., as available from 454 Life Sciences), nanopore sequencing, electronic sequencing (Genapsys, Inc., Redwood City, CA), and Sanger sequencing. These molecular techniques are very sensitive and specific and do not suffer from many of the above-mentioned problems associated with classic microbiological culturing. However, because these techniques are very sensitive and because many commensal bacteria are ubiquitous, potential sample contamination is always a concern, and this can lead to an unacceptable rate of false positive results. Moreover, it was shown that P. acnes DNA is a frequent contaminant of commercial Taq polymerases and PCR solutions. See Lupan I, et al. The evidence of contaminant bacterial DNA in several commercial Tag polymerases. Rom Biotech Lett 2013; 18: 8007-12.
In some embodiments, molecular detection assays are conducted alongside culturing. Molecular assays, while capable of identifying a causative agent, do not necessarily provide data on the specific susceptibility or resistance of the causative agent to different antimicrobial drugs. Thus, culturing can provide additional information that is useful to initiate the optimal therapy.
In some embodiments, techniques such as microbial culture, PCR, microscopy and others, are used on a cohort of samples to identify commensal pathogens (such as P. acnes or others), and to identify an RNA signature in the cohort that correlates to abundant levels of P. acnes (or other commensal pathogen). The RNA signature can be used independently on other samples as a substitute for other methods of commensal pathogen detection, that is, without conducting microbial culture, PCR or other technique. The less virulent the ongoing infection, the more challenging the infection is to diagnose. These so-called low-grade infections cause significantly less inflammatory response on a local level and none or only very minor ones on a systemic level. This in turn negatively affects not only the capacity of imaging studies and laboratory tests to correctly diagnose such an infection, but more importantly, may already suppress the primary clinical suspicion of such an infection being present and the cause of a patient's symptoms. For example, the features of disc infections on MRI, the most commonly used advanced diagnostic imaging study beyond CR for low back pain, are often mild and non-specific. The most commonly observed changes would be a more or less pronounced bone marrow edema (equivalent to type 1 -Modic changes) in the vertebral end plates adjacent to an infected disc, which is what can also be seen with certain common degenerative conditions such as activated osteochondrosis.
In some embodiments, the molecular detection assay detects microbial ribosomal RNA (rRNA) genes, such as 16S and/or 23 S rRNA genes, and particularly the variable regions of 16S. For example, 16S rRNA sequencing can be used to characterize the complexity of microbial communities at body sites. 16S rRNA sequencing facilitates the recognition of microorganism taxa, e.g. species or higher taxonomic levels, and in cases of previously unknown microorganisms, allows for their general classification (e.g. families, phyla). Metagenomic whole genome shotgun (WGS) sequencing provides insights into the functions and pathways present in the microbial communities.
The 16S rRNA sequence contains both highly conserved and variable regions. These variable regions, nine in number (VI through V9), are used to classify organisms according to phylogeny, making 16S rRNA sequencing particularly useful in metagenomics to help identify taxonomic groups present in a sample. These sequences can be interrogated using chip technologies, RT-PCR, or deep sequencing.
In some embodiments, the presence of a commensal pathogen is determined by hybridization-based assay, such as a microarray. For example, the PhyloChip approach in particular is a microarray-based method that identifies and measures the relative abundance of more than 50,000 individual microbial taxa. This approach relies on the analysis of the entire 16S ribosomal RNA gene sequence, which is present in every bacterial genome but varies in a way that provides a fingerprint for specific microbial types. The microarray-based hybridization approach ensures that measurements on important low abundance bacteria are not overwhelmed by commonplace, dominant microbial community members.
In some embodiments, the detection assay enables the typing of key commensal organisms, such as P. acnes, to help differentiate potential contamination, or to identify potential therapeutic agents that would likely be effective against the infection. In some embodiments, the method comprises typing of commensal pathogen strains (e.g., P. acnes) in tissue samples (e.g., disc tissue) by PCR or other molecular technique, and in derived P. acnes colonies. Where the P. acnes is not a result of contamination, the strain should be the same in both. Thus, cases that are positive with high levels of the same P. acnes strain by both cultivation and PCR will be considered a good reference and indicative as true positive for microRNA profiling.
Table 1 : Exemplary Probes and Primers for P. acne detection RealTime PCR Assay
131-bp portion of P. Forward:
acnes 16S rRNA GCGTGAGTGACGGTAATGGGTA (SEQ ID NO: l)
Reverse:
TTCCGACGCGATCAACCA (SEQ ID NO: 2)
EndPoint PCR Assay
a 600bp region of 16S Forward:
rRNA gene GGGTTGTAAACCGCTTTCGCCT (SEQ ID NO:3)
Reverse:
GGCACACCCATCTCTGAGCAC (SEQ ID NO:4)
Multiplex PCR for typing of P. acnes strains
16S rRNA (All .ao?i¾) Forward: AAGCGTGAGTGACGGTAATGGGTA
(SEQ ID NO:5)
Reverse: CCACCATAACGTGCTGGCAACAGT
(SEQ ID NO: 6)
ATPase (Type Forward: GCGTTGACCAAGTCCGCCGA
IA1/IA2/IC) (SEQ ID NO:7)
Reverse: GCAAATTCGCACCGCGGAGC
(SEQ ID NO: 8)
Forward: CGGAACCATCAACAAACTCGAA sodA (Type IA2/IB ) (SEQ ID NO: 9)
Reverse: GAAGAACTCGTCAATCGCAGCA
(SEQ ID NO: 10)
Forward: AGGGCGAGGTCCTCTTCTACCAGCG
Toxin, Fic family (Type (SEQ ID NO: 11)
IC )
Reverse: ACCCTCCAACTGCAACTCTCCGCCT
(SEQ ID NO: 12)
Forward: TCCATCTGGCCGAATACCAGG (SEQ ID
NO: 13)
atpD (Type II)
Reverse: TCTTAACGCCGATCCCTCCAT (SEQ ID
NO: 14)
Forward: GCGCCCTCAAGTTCTACTCA (SEQ ID
NO: 15)
recA (Type III)
Reverse: CGGATTTGGTGATAATGCCA (SEQ ID
NO: 16)
Sequencing (recA to differentiate P. acnes strains)
1201 bp amplicon AGCTCGGTGGGGTTCTCTCATC (-96 to -75)
Figure imgf000016_0001
In some embodiments, the molecular detection assay uses RealTime PCR to provide an absolute quantification of P. acnes (or other commensal pathogen) gene copies, based on a calibration curve. Where the detection of one or more commensal pathogens is positive, whether conducted by one or more of culture, PCR, hybridization, microscopy, or immunochemistry, there is generally an unacceptably high rate of false positives, most likely due to frequent sample contamination by microflora. To discriminate these false positives, an RNA profile for the sample is evaluated for the presence of an RNA signature (e.g., mRNA or miRNA signature) that is indicative of a low- grade or low-virulence infection. For example, RNA can be isolated from host cells in the sample, and the relative abundance of (for example) the miRNAs evaluated by any of several available miRNA detection platforms. These include Real-Time PCR (e.g., Exiqon; TaqMan Low-Density Arrays (TLDA) Human MicroRNA Panel; Life Technologies; QIAGEN SYBR® Green-based, real-time PCR profiling of miRNAs using the miScript PCR System), Microarray based platforms (e.g., Affymetrix GeneChip MiRNA; Agilent SurePrint Human miRNA Microarrays; Exiqon miRCURY LNA™ microRNA Arrays), Next-generation sequencing-based platforms (e.g., Illumina small RNA sequencing; IonTorrent small RNA sequencing), and in-situ microRNA hybridization in FFPE tissues. Generally, RNA profiles can be determined by amplification, hybridization, and/or sequencing technologies.
The RNA (e.g., miRNA) signature may be correlative of a low- virulence infection, without regard to the bacterial species, or may be specific for a bacterial species or strain, such as P. acnes, coagulase negative staph, E. coli, or Corynebacterium, etc. In some embodiments, an RNA signature is determined by training a classifier algorithm with RNA profiles from infected cells and non- infected cells. The cells may be infected in vitro, or may be in vivo infected cells (infected cells from clinical samples). In some embodiments, cells are infected with clinical isolates of P. acnes or other commensal pathogen in vitro. In some embodiments, infected cultures are maintained for at least one day, at least one week, or at least two weeks, prior to determining the RNA profiles, to closely model chronic infection. Cells infected with a range of commensal pathogens may be used to prepare bacteria-specific and bacteria-non-specific signatures. In some embodiments, NP cells are cultured in vitro, and infected with commensal pathogens such as P. acnes, and the resulting RNA profile used to train a classifier algorithm that distinguishes P. acwes-infected cells from non-infected cells. Classifiers can be trained using P. acnes positive cells vs P. acnes negative cells; coagulase-neg Staphylococcus-positive cells vs. coagulase-negative Staphylococcus negative cells; and P. acnes and coagulase-neg. staph positive cells vs. cells negative for both.
In some embodiments, the RNA signature is trained using infected cells (e.g., P acnes -infected NP cells) and contaminated cells, to distinguish true chronic infection from acute "infection" due to contamination. Similarly, RNA signatures can be trained to differentiate organisms, such as bacteria, virus, fungi, and parasites, and in some embodiments, to differentiate gram positive vs. negative bacteria, and/or bacterial species or strains.
In some embodiments, RNA signatures are trained using samples that test positive or abundant, versus negative or non-abundant, for the level of the commensal microorganism. In some embodiments, positive samples are abundant for the commensal microorganism (e.g., in at least the top 50%, 60%, 70%, 75%, 80%, or 90% of samples in a cohort) by at least one molecular technique (e.g., quantitative PCR) and optionally also by culture or microscopy. In some embodiments, positive samples produce at least about 103 CFU per mL, or more than about 104 CFU per mL by culture. Negative samples are generally negative by a molecular technique, such as quantitative PCR, or are in at least the bottom quartile, bottom 20% or bottom 10% quantitatively. Generally, negative samples are substantially negative by culture or microscopy. For example, in some embodiments, negative samples produce less than about 103 CFU per mL by culture, or less than about 102 CFU per mL, or less than about 10 CFU per mL. In this context, the culturing method may employ the process shown in Example 3. In some embodiments, the negative samples are in the bottom quartile, or bottom 20%, or bottom 10%, with regard to CFU/mL established by culture.
In some embodiments, RNA signatures from infected clinical samples will be trained from the results of metagenomic analysis, that is, using the absolute or relative abundance of microbes identified by deep sequencing or hybridization array.
Exemplary computational tools for distinguishing or classifying mRNA or miRNA signatures include Principal Components Analysis, Naive Bayes, Support Vector Machines, Nearest Neighbors, Decision Trees, Logistic, Artificial Neural Networks, and Rule-based schemes. The computer system may employ a classification algorithm or "class predictor" as described in R. Simon, Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarrav data. British Journal of Cancer (2003) 89, 1599-1604, which is hereby incorporated by reference in its entirety. The classifier algorithm may be supervised, unsupervised, or semi-supervised.
In some embodiments, the classifier uses 1, 2, 3, 4, or 5 features (e.g., mRNAs or miRNAs), not including expression controls. In some embodiments, the algorithm uses from 2 to about 100 features (mRNAs or miRNAs) to comprise the signature. In some embodiments, the algorithm uses from 2 to about 50 features, or from 2 to about 30 features, or from 2 to about 20 features, or from 2 to about 10 features to comprise the signature. In some embodiments, the classifier is based on from 5 to 50 features, or from 10 to 50 features, or from 20 to 50 features. Exemplary human miRNAs are shown in Tables 2 and 8.
MicroRNAs (miRNAs) are important regulators of gene expression comprising an abundant class of endogenous, small noncoding RNAs (18-25 nucleotides in length). They are capable of either promoting mRNA degradation or attenuating protein translation. Bioinformatic studies have estimated that microRNAs may regulate more than 50% of all human genes and each miRNA can control hundreds of gene targets. Some miRNAs are expressed in a cell specific, tissue-specific and/or developmental stage-specific manner, while others are expressed ubiquitously. The number of verified miRNAs is still growing - the latest version of web-based database miRBase has annotated over 1800 precursor and 2342 mature sequences in the human genome. Based on the annotations for the genomic position of miRNAs which indicated that a vast majority of miRNAs are located in intergenic regions (>1 kb away from annotated or predicted genes), it has been postulated that most miRNA genes are transcribed as autonomous transcription units. MiRNAs may serve as master regulators of many fundamental biological processes, such as embryogenesis, organ development, cellular differentiation, proliferation, apoptosis, etc., affecting such major biological systems as sternness and immunity. Other small non-coding RNAs (e.g. piRNAs, snRNAs, snoRNAs, and circRNAs) or long non-coding RNAs (e.g. IncRNAs, lincRNAs, T-UCRs) may be used for detection of low virulent infections in accordance with the disclosure.
As a consequence, specific patterns of miRNA deregulation have been identified in variety of human cancers as well as pathologies of cardiovascular, urinary and other organ systems. In comparison to viral infections, miRNA response to bacterial pathogens has been less explored.
In some embodiments, the levels of from 2 to about 1000 RNAs (e.g., mRNAs or miRNAs) are detected in the RNA isolated from patient samples. For example, from about 2 to about 500, or from 2 to about 300, or from 2 to about 200, or from 2 to about 100, or 2 to 10 mRNAs or miRNAs are detected. In some embodiments at least 50 mRNAs or miRNAs are detected. In these or other embodiments, no more than 500, 300, or 100 or 10 or mRNAs or miRNAs are detected. In some embodiments, from 2 to about 5 or from 2 to about 10 miRNAs are individually detected, and the relative abundance determined with respect to controls. For example, miRNA signatures can be trained based on miRNA profiles for the miRNAs in Table 2, Table 4, Table 5, or the human miRNAs in Figure 2 or Figure 8.
In some embodiments, two or more of the following miRNAs are detected in patient samples (e.g., disc tissue): miR-574-3p, miR-29a-3p, miR-497-5p, miR-29c- 3p, and miR-99b-5p. In some embodiments, miR-29a-3p and miR-574-3p are detected (e.g., in disc tissue). Expression may be quantified relative to the expression of one or more control genes, such as RNU38B and/or RNU48. Control RNAs can be selected to control for variation in the amount of starting material, sample collection, RNA preparation and quality, and reverse transcription (RT) efficiency. Normalization to endogenous control genes is an accurate method to correct for potential RNA input or RT efficiency biases. Other potential controls include housekeeping genes, such as ACTB (β-Actin) and GAPDH4. The endogenous control in some embodiments demonstrates gene expression that is relatively constant and highly abundant across tissues and cell types of interest. In some embodiments, a miRNA score is established based on the relative levels of expression for the miRNA features in positive and negative samples within the cohort, with the score distinguishing independent positive and negative samples. An exemplary diagnostic miRNA score (DMS) for distinguishing P. acnes positive disc tissue samples from P. acnes negative disc tissue samples is: DMS = 18.71 - 11.24 * loglO (miR-29a-3p) + 10.4 * loglO (miR-574-3p), where the cut-off is set within the range of 0.0 to -0.4 or 0.0 to -0.3 or 0.0 to -0.2 (less than or equal to the cut-off is P. acnes positive). For example, in some embodiments the cut-off is set at -0.01. In some embodiments, this score can substitute for microbial culture, and/or PCR (or other molecular assay). In some embodiments, the score is used to identify false positives identified through, for example, PCR or other molecular assay. In cases where the diagnostic tests described herein confirm a low-virulence infection, the patient is recommended for treatment. In cases where a low-virulence infection is not confirmed (including false-positives detected by culture of molecular analysis), the patient is not recommended for treatment of a chronic infection.
In particular, where samples are positive for a low-virulence infection using a biopsy in advance of surgery, a local antibiotic or antiseptic rinse can be applied at the time of surgery. Alternatively, an oral, intravenous, or local antibiotic regimen can be administered prior to surgery.
When the sample is isolated during the surgery, and tests positive for a low- virulence infection, an oral, intravenous, or intervertebral antibiotic regimen can be administered during the days, weeks, or months post-surgery. In some embodiments, the patient is determined to have a low virulence infection based on a biopsy sample. The patient is then administered an antibiotic regimen, and where the low back pain is reduced or eliminated, surgery such as a discectomy or other invasive procedure may be avoided, for example, in favor of a less invasive procedure.
In some embodiments, where a tissue sample obtained during a routine disc surgery (discectomy) yields a positive test, antibiotic treatment is provided, optionally guided by sensitivity testing when available and close clinical as well as imaging follow-up (MRI). Should the patient suffer from persistent or increasing low back pain and possibly even exhibit signs of progressive disc space inflammation after a microdiscectomy, the treating specialist could indicate for a complete discectomy and intervertebral arthrodesis in order to treat both, the infection and the back pain. Should the patient improve under antibiotic treatment, the antibiotic will be discontinued after a certain period of time with further clinical and imaging follow-up.
In some embodiments, the tissue sample obtained by means of a percutaneous biopsy prior to a planned surgery yields a positive test, a targeted antibiotic pretreatment could be performed prior to the planned procedure. Depending on a potential clinical improvement under such treatment, a planned surgery could be changed to a less invasive procedure or to conservative treatment. During a surgery and with the knowledge of a lowgrade infection being present, topical antiseptics or antibiotics could be used in an attempt to increase the chances of resolving the infection and hence of a good clinical outcome.
Embodiments of the invention will now be described through the following examples.
EXAMPLES
Approximately 800,000 individuals undergo intervertebral disc surgeries in the U. S. each year to relieve intractable radicular (neuropathic) pain. The procedure involves removal of a portion of the disc causing inflammation of the nerve. The vast majority of these individuals have underlying degenerative disc disease, a condition that predisposes patients to chronic lower back pain, intervertebral disc herniation, sciatica, and other conditions causing significant disability and morbidity in our society. However, about 25% of these surgeries fail to return the patient to a healthy condition. The cause of degenerative disc disease is often idiopathic, and there is growing evidence that a subset of patients undergoing intervertebral disc surgeries have a low virulence infection, potentially attributable to Propionibacterium acnes as well as Corynebacterium and Staphylococcus. It is believed that low virulence infection is a causative or compounding factor for some cases of degenerative disc, and/or a factor in the 25% of disc surgeries that fail to return a patient to a state of wellness. A low virulence infection is an infection that evades the immune system and can contribute to a chronic degenerative condition.
Example 1. microRNA (miRNA) in vitro Profiling
(1) NP cells derived from 3 samples of native disc tissue are infected by P. acnes (PA) (ATCC 6919, derived from facial acne), or PA derived directly from infected disc tissues, and with other bacterial species (e.g., E. coli, Staphylococcus, Corynebacterium).
(2) Bacterial intracellular occurrence is evaluated by cytokine response and DAPI staining at various time-points. (3) Identify microRNA profile induced by bacteria in intracellular space. A first profile (Profile la) is the profile common for all bacterial species, and a second profile (Profile lb) is the profile specific for P. acnes, or E. coli etc., for detection of contamination in tissue samples.
(4) Identify microRNA profiles (Profile la and Profile lb) in different time points after infection of NP cell cultures. 30-60 minutes may be used as a model for acute infection, to identify profiles indicative of contamination which occur prior to sample fixation (e.g., in-vitro contamination signal). Long-term incubation (e.g., 1, 7 and 21 days) will be used to model chronic infection, and identify profiles indicative of chronic infection. Global microRNA expression profiling (754 microRNAs) will be performed with Exiqon microRNA Human panel V3.0.
Example 2. miRNA Fresh Intervertebral Disc Tissue Profiling
(1) Enrollment of -500 patients undergoing disc surgery in Czech Republic, with clinical data collection at the time of surgery and follow-up in 6 weeks, and 6 and 12 months.
(2) Divide each tissue sample into 3 portions:
1. For DNA purification and qPCR evaluation of bacterial DNA event. For Metagenomic approach, DNA is stored at -80°C immediately after extraction.
2. For RNA purification and qPCR evaluation of microRNA profiles. RNA is collected with stabilizing solution (RNAlater).
3. For microbiological evaluation, tissue will be transported at room temperature to Microbiology department as soon as possible. For future research, blood plasma and urine are also collected and stored at -
80° C.
(3) Sample 1 will be used for DNA purification and in all samples will be quantified for P. acnes DNA by qPCR. In addition, other bacterial species, such as staphylococci, can be quantified. (4) In samples positive by both cultivation and qPCR, PA strain will be identified in colonies and disc tissue by multiplex PCR and/or sequencing. To rule out contamination the same strain should be identified. Samples which are positive by cultivation and qPCR for the same strain will be considered as reference positive for microRNA profiling. (5) Samples negative by cultivation and negative (or low level positive in case of no negative samples) by qPCR (e.g., PA, staphylococci) will be considered as reference negative for microRNA profiling. (6) 20 PA-positive, 10 staphylococci-positive, and 30 negative will be used for microRNA profiling.
(7) By comparison of microRNA profiles from 20 PA together with 10 staph, versus 30 negative samples, a common microRNA profile associated with occurrence of bacteria in disc tissue is identified. By comparison of 20 PA+ and 10 staph+ versus negative samples separately, bacteria-specific profiles are determined.
(8) Comparison will be performed between in vitro microRNA signatures and in vivo microRNA signatures.
Example 3. Cross-Validation of Positivitv in the Whole Cohort In 500 samples there will be: N patients positive by cultivation, and Nl positive by qPCR. A diagnostic algorithm based on identified microRNA signatures will be developed. N3 patients will be positive by miRNA signature.
In cases positive for common miRNA signature, PA-specific and staph- specific miRNA signatures will be evaluated. From N3 positive for common signature: N4 will be positive for PA-specific miRNA signature; N5 will be positive for Staph-specific miRNA signature; N6 will be negative for both. N6 will be subjected to metagenomic analysis.
The following observations are expected: a higher frequency of true positivity in patients undergoing surgery with history of CLBP, and higher frequency of true positivity in patients with failed back surgery and especially in those who will suffer with CLBP (after evaluation of clinical outcome at 6 and 12 months).
Example 4. Establishment of Diagnostic microRNA Score (DMS)
Patient cohort and definition of reference P. acnes samples 326 patients (186 males and 140 females) were prospectively enrolled with an average age of 44 ± 13 years. None of the patients developed clinically evident post-operative discitis. As gold standard, quantitative bacterial culture was performed to determine P. acnes counts, and real-time PCR was performed to detect genome counts in disc tissue specimens. Procedures used for bacterial culture and real-time PCR are described in detail in Methods. One hundred thirty cases (40%) were P. acnes positive by culture. P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml. By real-time PCR, P. acnes genomes were undetectable in 98 cases (30%). The number of P. acnes genomes in the 228 P. acftes-positive disc tissues ranged from 2 to 4531 with a median of 256 genomes per 500 ng of total DNA. Disc tissue samples characterized by abundant P. acnes by both, culture (> 103 CFU/ml; 75th percentile) and by real-time PCR (> 500 genomes in 500 ng of DNA; 75th percentile), were considered as reference P. acnes positive cases (N=45, 14%). On other hand, samples negative by both bacterial culture and real-time PCR were used as reference P. acnes negative cases (N=72, 22%). These P. acnes reference cases were used for global microRNA expression profiling, identification of diagnostic microRNAs, as well as validation and development of Diagnostic MicroRNA Score (DMS) in the 3-phase biomarker study. Reference samples (45 positive, 72 negative) were further divided into discovery, training and validation sets proportionally to their P. acnes status. As there is a high-risk of contamination-based false positivity in non-abundant P. acnes positive cases, in the validation cohort also the samples (N=44) with non-abundant P. acnes (<103 CFU/ml) and/or various genome counts by real-time PCR (inconclusive results by standard method) were included to be evaluated by implementation of newly developed DMS. Patient's characteristics in studied cohorts are summarized in Table 3. In addition to these 161 patients, another 10 cases with positive disc culture for coagulase-negative staphylococci (CoNS) were included as a specificity control group in the validation part of the study. Table 3. Patient characteristics (N=l 61)
Parameters Discovery set Training set Validation set
N=24 N=35 N=102
Gender
Male 16 (66 %) 21 (60 %) 64 (63 %) Female 8 (34 %) 14 (40 %) 38 (37 %)
Age
Mean ± SD 43 ± 14 y 45 ± 13 y 46 ± 12 y
Previous spinal surgery
Yes 2 (8 %) 5 (13 %) 9 (9 %) No 22 (92 %) 30 (87 %) 93 (91 %)
Prior epidural injection
Yes 0 (0 %) 4 (11 %) 2 (2 %) No 100 (100 %) 31 (89 %) 100 (98 %)
Type of herniation
Protrusion 2 (8 %) 3 (9 %) 3 (3 %) Extrusion 10 (42 %) 14 (40 %) 38 (37 %) Sequestration 12 (50 %) 18 (51 %) 61 (60 %) Intervertebral level
L2/L3 0 (0 %) 0 (0 %) 1 (1 %)
L3/L4 1 (4 %) 1 (3 %) 2 (2 %)
L4/L5 8 (34 %) 16 (46 %) 40 (39 %)
L5/S1 15 (62 %) 18 (51 %) 59 (58 %) P. acnes culture
results*
> 103 CFU/ml 12 (50 %) 15 (43 %) 18 (18 %)
< 103 CFU/ml 0 0 39 (38 %) negative 12 (50 %) 20 (57 %) 45 (44 %)
P. acnes genome counts
> 500 in 500ng DNA 12 (50 %) 15 (43 %) 27 (26 %)
< 500 in 500ng DNA 0 0 13 (13 %) negative 12 (50 %) 15 (57 %) 62 (61 %)
*There was no co-infection observed in any case by culture.
Discovery phase - miRNA deregulated in P. acnes positive and negative samples
Expression profiling of 754 microRNAs in 12 reference P. acnes positive disc tissues and 12 P. acnes negative samples was carried out by use of Exiqon realtime PCR based technology. Only miRNA with average Ct (threshold cycle) lower than 35 in one group were statistically evaluated. MicroRNA expression levels were normalized to RNU38B. 20 microRNAs were differentially expressed in P. acnes positive and negative disc tissue samples (summarized in Table 4) as described in the Methods.
Table 4. MicroRNAs identified to be differentially expressed in disc tissues with abundant P. acnes by culture and real-time PCR (p-value<0.1 and adj. p- value<0.15).
miRNA Fold change P-value Adjusted p-value hsa-miR-125b-2-3p 1.66 0.002 0.056 hsa-miR-99a-5p 1.5 0.003 0.056 hsa-miR-29a-3p 1.45 0.009 0.076 hsa-miR-99b-5p 1.49 0.009 0.076 hsa-miR-125b-5p 0.78 0.017 0. 105 hsa-miR-28-3p 1.41 0.020 0. 105 hsa-miR-92b-3p** 1.46 0.023 0. 107 hsa-miR-29c-3p 1.58 0.039 0. 112 hsa-miR-497-5p 1.82 0.039 0. 112 hsa-miR-28-5p 1.35 0.039 0. 112 hsa-miR-125a-5p 0.48 0.043 0. 120 hsa-miR-140-3p 1.52 0.045 0. 121 hsa-miR-574-3p 0.54 0.053 0. 130 hsa-miR-16-2-3p** 1.38 0.061 0. 131 hsa-miR-30a-3p 1.44 0.061 0. 131 hsa-miR-146b-5p 0.62 0.071 0. 139 hsa-miR-195-5p 1.86 0.082 0. 140 hsa-let-7f-2-3p** 1.44 0.098 0. 141 hsa-miR-34a-3p** 1.8 0.099 0. 145 hsa-miR-423-5p 2.05 0. 100 0. 149
* Benj amimi-Hochberg correction for multiple hypothesis testing
** MicroRNAs not selected for validation due to extremely low expression levels (Ct >33 in both groups)
Training phase - validation and establishment of Diagnostic MicroRNA Score (DMS)
By use of individual microRNA expression assays (Life Technologies) and assays for 2 reference genes we determined expression levels of 16 candidate miRNAs from discovery phase and RNU38B and RNU48 in 35 disc tissue samples (15 reference P. acnes positive cases, and 20 reference negative cases) as described in the Methods. MicroRNA expression levels were quantified relatively to the average of two reference genes (RNU38B and RNU48). All samples passed quality control with Ct(RNU38B)<34 and/or Ct(RNU48)<31. Five microRNAs were confirmed to have significantly different expression levels in P. acnes positive and negative disc tissue samples, two of them remain significant even after adjustment of P-value for multiple hypothesis testing (Table 5, Figure 4).
Table 5. Independent validation of candidate microRNAs identified in discovery phase. miRNA Fold change P-value Adjusted p-value* miR-574-3p 0.51 0.002 0.024 miR-29a-3p 1.87 0.002 0.031 miR-497-5p 2.79 0.005 0.063 miR-29c-3p 1.57 0.029 0.322 miR-99b-5p 1.37 0.047 0.437 miR-195-5p 1.85 0.100 0.687 miR-28-5p 1.48 0.105 0.687 miR-30a-3p 1.36 0.112 0.687 miR-146b-5p 1.50 0.184 0.803 miR-34a-3p 1.36 0.303 0.920 miR-140-3p 1.29 0.331 0.920 miR-125a-5p 0.74 0.387 0.920 miR-423-5p 1.46 0.389 0.920 miR-125b-5p 1.25 0.397 0.920 miR-28-3p 1.30 0.461 0.920 miR-125b-2-3p 0.90 0.625 0.920
Benjamimi-Hochberg correction for multiple hypothesis testing
Two microRNAs (miR-29a-3p and miR-547-3p) were used for establishment of diagnostic microRNA score (DMS) (Formula 1). When applied to ROC analysis the cut-off value -0.01 was identified as the best discriminator between reference P. acnes positive and negative cases (Figure 5, AUC=0.9833). miR-29a-3p and miR-547-3p expression levels are expressed relatively to the average of two reference genes (RNU38B and RNU48):
= -(Ct(miR-29a-3p)-average(Ct(RNU48) and Ct(RNU38B)))
•D c - - -(Ct(miR-574-3p)-average(Ct(RNU48) and Ct(RNU38B))) miR-574-3p— 2
Formula 1 :
DMS = 18.71 - 11.24 * loglO (miR-29a-3p) + 10.4 * loglO (miR-574-3p)
As shown in Figure 5, ROC analysis of DMS values shows strong ability to ;uish cases with abundant P. acnes (culture and real-time PCR) and negative Validation phase - independent validation of DMS and its application in positive cases with non-abundant P. acnes (inconclusive by standard methods)
By use of individual microRNA expression assays (Life Technologies) and assays for reference genes, expression levels of miR-29a-3p and miR-574-3p were determined, constituting DMS and RNU38B and RNU48 similarly to the training phase. Application of DMS in 58 independent cases (18 reference P. acnes positive cases, 40 reference negative cases) confirmed its high analytical performance showing 95% accuracy in classification of the samples accordingly to their P. acnes status (Tables 6 and 7, Figure 6). Moreover, 10 disc tissue samples with coagulase- negative staphylococci (CoNS) positive culture were DMS-negative indicating specificity of DMS for P. acnes, or at least showing that DMS is not affected by the presence of the second most frequently observed microorganism (CoNS) in the disc tissue (Figure 7).
Addition of DMS to standard diagnostic methods (culture and real-time PCR) shows that almost 60% of the disc samples evaluated as positive with non- abundant P. acnes by culture and various genome counts by real-time PCR are false positives (Table 6).
Table 7. Diagnostic performance of 2-miRNA based DMS.
Training set Validation set
AUC 0.98 0.97
Sensitivity 0.93 0.89
Specificity 1.00 0.98
Accuracy 0.97 0.95
PPV# 1.00 0.94
NPV## 0.95 0.95
PPV- positive predictive value, NPV - negative predictive value DMS calculations are exemplified as follows.
Sample ID 4 - POSITIVE
Ct (miR-29a-3p) =25.02; Ct (miR-574-3p) =31.35; Ct(RNU38B) =31.58; Ct (RNU48) =28.76 Quality control: Ct (RNU38B) < 34 and Ct (RNU48) < 31 => RNA sample is VALID!
„ „-(25.02-(28.76+31.58)/2) _ ^
miR-29a-3p = 2 ' - 35.5062
■ -(31.35-(28.76+31.58)/2) η Λ Λ Ί Λ
miR-574-3p = 2 ' - 0.4414
DMS (id 4) = 18.71 - 11.24 * logl0(35.5062) + 10.4 * logl 0(0.4414) = -
2.41
DMS (id 4) = -2.41 < DMS (positivity cut-off) = -0.01 = > sample is P. acnes POSITIVE
Sample ID 30 - NEGATIVE
Ct (miR-29a-3p) =26.49; Ct (miR-574-3p) =31.73; Ct(RNU38B) =32.43; Ct (RNU48) =30.07
Quality control: Ct (RNU38B) < 34 and Ct (RNU48) < 31 => RNA sample is VALID!
ΜΛ-29&-3ρ = 2-(26·49-(30 07+32·43)/2) = 27.0959
ΜΛ-574-3ρ = 2-(3 1·73-(30 07+32·43)/2) = 0.7170 DMS (id 30) = 18.71 - 11.24 * logl0(27.0959) + 10.4 * logl0(0.7170) = 1.1
DMS (id 30) = 1.1 > DMS (positivity cut-off) = -0.01 = > sample is P. acnes NEGATIVE As shown in Table 6, 23 (59 %) out of 39 cases POSITIVE by culture with non-abundant P. acnes were evaluated as P. acnes NEGATIVE by implementation of DMS.
Four of 5 cases (80%) negative by culture but strongly POSITIVE by realtime PCR were assessed as NEGATIVE by DMS, one case (20%) was positive by DMS.
Potential clinical implications
If P. acnes infection of the disc is used for clinical decision making and standard methods applied for its diagnosis (bacterial culture and/or real-time PCR), more than one third of patients will receive potentially harmful antibiotic treatment without being infected. DMS with its analytical performance could fully substitute standard diagnostic techniques, which are time-consuming and highly vulnerable for contamination, and so provide solution how to prevent these unnecessary harmful treatments in patients with spinal diseases.
Methods Patients: Inclusion criteria included: lumbar or lumbosacral radiculopathy with or without sensory deficits but with either a matching, clinically relevant motor deficit in correlating lumbar or sacral nerve root distributions (see imaging criteria) or with radicular pain (sciatica or femoralgia) that was intractable by conservative means; matching physical examination findings including positive straight leg raise test, dermatomal sensory deficits, myotomal motor deficits and/or a diminished deep tendon reflexes; current magnetic resonance imaging or computed tomography imaging of the lumbosacral spine showing a free nucleus pulposus sequestration or a disc herniation / protrusion in a distribution correlating with the clinically affected nerve roots and with the physical examination. Exclusion criteria included: coexistent infection or immunologically compromised conditions; corticosteroid or antibiotics use in the month before surgery; trauma; unknown radiographic mass; diagnosis of inflammatory arthritis or other rheumatologic diseases. The following epidemiological and clinical data were collected: Gender, age, intervertebral segment involved, type of herniation, prevalence of previous spinal surgeries, prior epidural steroid injections, and development of post-operative discitis. A written informed consent was obtained from each patient. The study was approved by the Institutional Review Board.
Collection of intraoperative samples. The surgical site was scrubbed with triple preparation of povidone iodine and draped using standard sterile technique. Standard perioperative antibiotics were given before the skin incision in all cases. Cefazolin was the standard antibiotic given in most cases. In penicillin-allergic patients, either vancomycin or clindamycin was administered. The precise location for the skin incision was guided by intraoperative fluoroscopy and a posterior midline approach using sharp dissection and electrocautery was performed. After placement of a self-retaining retractor (Caspar type) and under an operating microscope, ligamentum flavum was resected as required by means of Penfield dissectors and Kerrison rongeurs. The disc herniation was exposed by gentle retraction of the traversing nerve root and then removed together with the remnant loose fragments of the nucleus pulposus in the disc space near the annular defect. All tissue samples were handled in such a way as to minimize their contamination, retained in a closed sterile sample cup, and then passed off to the field for labeling and transport to the laboratory, where the disc tissue samples were further analyzed. The sample sizes were approximately 3x3x5-10x5x5 mm and not measured accurately as we attempted to obtain as much material as possible from the surgical specimen. Samples were not frozen prior to processing and culture was established within 2 to 4 hours post-surgery. Microbiological culture. Fresh disc tissue samples were cut into smaller fragments using a sterile, individually packaged, gamma-irradiated scalpel; and, a sterile, gamma-irradiated petri dish. One of these fragments was placed into a 2 mL microcentrifuge DNA-free tube and stored at -80°C until processed for P. acnes DNA analysis. Tissue processing and homogenization was carried out in a sterile pestle and mortar with sterile quartz sand (size particle 0.1-0.5 mm; Penta, Czech Republic) and saline solution in aseptic conditions, in a class 2 biological safety cabinet. The homogenized tissue samples were inoculated onto Wilkins Chalgren Anaerobic Agar (Hi Media Laboratories, India) with 7% of sheep's blood and vitamin K. Inoculated plates were incubated anaerobically (80% nitrogen, 10% CO2 and 10% H2) in an Anaerobic Work Station (Ruskinn Technology, UK) at 37°C for 14 days and assessed for bacterial growth. The quantity of bacteria in the sample was expressed as colony forming units (CFU) in 1 ml of the homogenate. Identification of bacteria was carried out biochemically using the Rapid ANA II System (Remel, USA) and by MALDI-TOF (microflex™ LT MALDI-TOF System + software + bacterial spectra library, Bruker Corp.).
DNA isolation. Frozen tissue samples were thawed (median wet weight was 130 mg, range 20 - 180 mg), cut into small fragments and transferred to a sterile 2 mL microcentrifuge tube by use of newly opened sterile sets of needle, scalpel and tweezers. Small fragments of the tissue samples were further suspended in 500 μΐ of ATL buffer (Qiagen, Germany) with 50 μΐ of proteinase K (20 mg/ml) (Qiagen) and digested at 56°C and 650 rpm in a thermomixer overnight. To each set of the samples that were processed in parallel, a tube with sterile water was used as a laboratory contamination control to follow the entire laboratory process from digestion of the tissue and DNA isolation to real-time PCR analysis. DNA was extracted by use of the QIAamp UCP Pathogen Mini Kit (Qiagen) as described in the manufacturer's instructions. Concentration of DNA were measured spectrophotometrically using a Nanodrop 2000 (Thermofischer, USA); or with fluorescent dye and a Qubit 3.0 fluorometer (Life Technologies, USA) for samples with DNA concentrations less than 5ng^l.
P. acnes quantification by real-time PCR. A previously described real-time PCR assay was performed using primers to amplify a 131-bp region of the 16S rRNA gene of P. acnes: forward primer 5'- GCGTGAGTGACGGTAATGGGTA - 3' (SEQ ID NO: l), reverse primer 5'-TTCCGACGCGATCAACCA-3' (SEQ ID NO:2) and TaqMan probe 5 ' -AGCGTTGTCCGGATTTATTGGGCG-3 ' (SEQ ID NO:20). The 15-μ1 PCR reaction mixture contained 6,75 μΐ of DNA sample, 5 pmol of each primer and 2 pmol of TaqMan probe, and IX TaqMan Gene Expression Master Mix (Life Technologies, USA). The QuantStudio 12K Flex system (Life Technologies, USA) was used with the thermal cycling profile of 50°C for 2 min, 95°C for 10 min and 50 cycles of 95°C for 15 s and 60°C for 1 min. The P. acnes genome equivalents in samples were estimated with an internal standard curve prepared with five replicates of six concentrations (10— 106 copies) of synthesized P. acnes amplicon (131 bp) (Integrated DNA Technologies, USA). Laboratory contamination controls described above and PCR negative controls were included in every PCR reaction. Assays were done in duplicate for each sample, and the mean number of the 16S rRNA gene copies was calculated. To eliminate laboratory contamination, 16S rRNA counts detected in laboratory contamination control were subtracted from the copies number in the tissue samples. The number of bacterial genomes in each sample was finally calculated using the known number of copies of the 16S rRNA operon (3 copies/cell) in P. acnes and represented as the number of bacterial genomes in 500 ng of total DNA extracted from the disc tissue sample. Human β-globin gene was included as an internal control to allow assessment of the specimen quality and the nucleic acid extraction as well as the inhibition amplification process. RNA isolation. Frozen tissue samples were thawed (median wet weight was 100 mg, range 20 - 145 mg), cut into small fragments and transferred to a sterile 2 mL microcentrifuge tube by use of sterile sets of needle, scalpel and tweezers. Small fragments of the tissue samples were further suspended in 500 μΐ of ATL buffer (Qiagen, Germany) with 50 μΐ of proteinase K (20 mg/ml) (Qiagen) and digested at 56°C and 650 rpm in a thermomixer overnight. Total RNA, including microRNAs and other small RNAs, was extracted by use of miRNeasy Mini Kit (Qiagen) as described in the manufacturer's instructions. Concentration of RNA were measured spectrophotometrically using a Nanodrop 2000 (Thermofischer, USA); or with fluorescent dye and a Qubit 3.0 fluorometer (Life Technologies, USA) for samples with RNA concentrations less than 5ng^l.
MicroRNA expression profiling. Expression profiling of miRNAs was performed using microRNA Ready-to-Use PCR Panels (Exiqon, Vedbaek, Denmark). A set of two cards (Human Panel I+II, V4.M) enabling quantification of 752 human miRNAs and 6 endogenous controls for data normalization was used. First-strand cDNA synthesis was performed according to the standard protocol using Universal cDNA Synthesis Kit (Exiqon, Vedbaek, Denmark) and 100 ng of total RNA. Subsequently, real-time PCR amplification was carried out using ExiLENT SYBR Green master mix and PCR amplification primers that are microRNA specific and optimized with LNA™ (Exiqon, Vedbaek, Denmark). The final measurement was performed using a QuantStudio 12K Flex system (Life Technologies, USA).
Individual microRNA expression analysis. Complementary DNA was synthesized from total RNA using gene-specific primers according to the TaqMan MicroRNA Assay protocol (Applied Biosystems, Foster City, CA, USA). For reverse transcriptase reactions 10 ng of RNA sample, 50 nM of stem-loop RT primer, 1 χ RT buffer, 0.25 mM each of dNTPs, 3.33 υ μΓ1 MultiScribe reverse transcriptase and 0.25 υ μ 1 RNase inhibitor (all from TaqMan MicroRNA Reverse Transcription kit, Applied Biosystems, Foster City, CA, USA) were used. Reaction mixtures (10 μΐ) were incubated for 30 min at 16 °C, 30 min at 42 °C, 5 min at 85 °C and then held at 4 °C (T100™ Thermal Cycler; Bio-Rad, Hercules, CA, USA). Real-time PCR was performed using the QuantStudio 12K Flex Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). The 20-μ1 PCR reaction mixture included 1.33 μΐ of RT product, 1 x TaqMan (NoUmpErase UNG) Universal PCR Master Mix and 1 μΐ of primer and probe mix of the TaqMan
MicroRNA Assay kit (Applied Biosystems, Foster City, CA, USA). Reactions were incubated in a 96-well optical plate at 95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. Following microRNA assays were used: miR-574- 3p (ID: 002349), miR-29a-3p (ID: 0021 12 ), miR-497-5p (ID: 001043), miR-29c-3p (ID: 000587), miR-99b-5p (ID: 000436), miR-195-5p (ID: 000494), miR-28-5p (ID: 000411), miR-30a-3p (ID: 000416), miR-146b-5p (ID: 001097), miR-34a-3p (ID: 002316), miR-140-3p (ID: 002234), miR-125a-5p (ID: 002198), miR-423-5p (ID: 002340), miR-125b-5p (ID: 000449), miR-28-3p (ID: 002446), miR-125b-2-3p (ID: 002158). Two assays were used for quantification of reference genes: RNU38B (ID: 001004) and RNU48 (ID: 001006).
Data analysis. The threshold cycle data were calculated by SDS 2.0.1 software (Applied Biosystems, Foster City, CA, USA). All individual microRNA real-time PCR reactions were run in triplicates. The average expression levels of all measured miRNAs were normalized using RNU38B in cases global microRNA expression profiling and average of RNU38B and RNU48 in individual microRNA measurements. Expression levels were subsequently analyzed by the 2"ACt method. RNU38B (SNORD38B) was selected as an endogenous control through combination of standard geneNorm and NormFinder algorithms from 6 possible genes included on Exiqon microRNA Ready-to-Use PCR Panels. Only miRNA with average Ct (threshold cycle) lower than 35 in one group were statically evaluated. Statistical differences between the levels of analyzed miRNAs in P. acnes positive and P. acnes negative cases were evaluated by non-parametric Mann-Whitney test with Benjamimi-Hochberg correction for multiple hypothesis testing. Individual microRNA expression levels were quantified relatively to the average of two reference genes (RNU38B and RNU48). Samples with Ct(RNU38B)>34 and/or Ct(RNU48)>31 were excluded from the study. Diagnostic MicroRNA Score (DMS) formula was developed based on a linear combination of the miR-29a-3p and miR- 574-3p expression levels. Optimal cut-off value to discriminate P. acnes positive and P. acnes negative cases was obtained through ROC analysis. Calculations were performed using GraphPad Prism version 7.00 (GraphPad Software, San Diego, CA, USA). P-values of less than 0.05 were considered statistically significant.
TABLE 2: miRNAs
hsa-miR-369-5p hsa-miR-302c-3p hsa-miR-7-5p hsa-miR-425-5p hsa-miR-625-3p hsa-miR-217 hsa-miR-590-5p hsa-miR-339-5p hsa-miR-337-5p hsa-miR-760 hsa-miR-873-5p hsa-miR-328-3p hsa-miR-574-3p hsa-miR-323a-3p hsa-miR-374b-3p hsa-miR-130b-3p hsa-miR-181d-5p hsa-miR-143-3p hsa-miR-30c-5p hsa-miR-125a-5p hsa-miR-623 hsa-miR-133b hsa-miR-129-5p hsa-miR-520c-3p hsa-miR-524-5p hsa-miR-492 hsa-miR-557 hsa-miR-23a-3p hsa-miR-20a-5p hsa-miR-218-5p hsa-miR-193b-3p hsa-miR-374b-5p hsa-miR-136-5p hsa-miR-501-5p hsa-miR-302d-3p hsa-miR-127-5p hsa-miR-518c-5p hsa-miR-346 hsa-miR-140-5p hsa-miR-130a-3p hsa-miR-151a-3p hsa-miR-31-3p hsa-miR-933 hsa-miR-493-3p hsa-miR-20b-3p hsa-miR-379-5p hsa-miR-122-5p hsa-miR-325 hsa-miR-452-5p hsa-miR-99a-3p hsa-miR-509-3-5p hsa-miR-589-5p hsa-miR-361-5p hsa-miR-210-3p hsa-miR-141-3p hsa-miR-202-3p hsa-miR-199b-5p hsa-miR-342-3p hsa-miR-125b-5p hsa-miR-194-5p hsa-miR-668-3p hsa-miR-503-5p hsa-let-7g-5p hsa-miR-934 hsa-miR-204-5p hsa-miR-203a hsa-miR-101-3p hsa-miR-30d-5p hsa-miR-181a-3p hsa-miR-539-5p hsa-miR-301a-3p hsa-miR-137 hsa-miR-331-3p hsa-miR-362-5p hsa-miR-551b-3p hsa-miR-499a-5p hsa-miR-30b-3p hsa-miR-524-3p hsa-miR-196a-5p hsa-miR-654-5p hsa-miR-486-5p hsa-miR-888-5p hsa-miR-545-3p hsa-miR-329-3p hsa-miR-330-3p hsa-miR-29b-2-5p hsa-miR-487b-3p hsa-miR-570-3p hsa-miR-491-5p cel-miR-39-3p hsa-miR-518c-3p hsa-miR-92b-3p hsa-miR-138-5p hsa-miR-200a-3p hsa-miR-665 hsa-miR-191-5p hsa-miR-188-5p hsa-miR-506-3p mmu-miR-378a-3p hsa-miR-26a-5p hsa-miR-363-3p hsa-miR-103a-3p hsa-miR-99b-5p hsa-miR-132-3p hsa-miR-890 hsa-miR-431-5p hsa-miR-651-5p hsa-miR-423-5p hsa-miR-23b-3p hsa-miR-628-3p hsa-miR-221-3p hsa-miR-367-3p hsa-miR-432-5p hsa-miR-301b hsa-miR-505-3p hsa-miR-154-3p hsa-miR-550a-5p hsa-miR-18a-5p hsa-miR-27a-3p hsa-miR-532-5p hsa-miR-92a-3p hsa-miR-376c-3p hsa-miR-99a-5p hsa-miR-500a-5p hsa-miR-940 hsa-miR-16-5p hsa-miR-887-3p hsa-miR-22-5p hsa-miR-98-5p hsa-miR-491-3p hsa-miR-224-5p hsa-miR-185-5p hsa-miR-423-3p hsa-miR-885-5p hsa-miR-25-3p hsa-miR-126-3p hsa-miR-320a hsa-miR-765 hsa-miR-421 hsa-miR-18b-5p hsa-miR-24-3p hsa-miR-376b-3p hsa-miR-187-3p Table 2 (continued) hsa-miR-516b-5p hsa-miR-129-2-3p hsa-miR-512-5p hsa-miR-302c-5p hsa-miR-26b-5p hsa-miR-449a hsa-miR-548b-3p hsa-miR-214-3p hsa-miR-498 hsa-miR- 186-5p hsa-miR-32-5p hsa-miR- 148b-3p hsa-miR-199a-5p hsa-miR-324-3p hsa-miR- 127-3p hsa-miR-155-5p hsa-miR-488-3p hsa-miR-598-3p hsa-miR-107 hsa-miR-371 a-5p hsa-miR-96-5p hsa-miR-302b-3p hsa-miR-455-5p hsa-let-7d-5p hsa-miR-662 hsa-miR-891 a-5p hsa-miR- 135b-5p hsa-miR-519d-3p hsa-miR-549a hsa-miR-495-3p hsa-miR-485-3p hsa-miR-205-5p hsa-miR-299-5p hsa-miR-200b-3p hsa-miR-518b hsa-miR-34c-3p hsa-miR-337-3p hsa-miR-19a-3p hsa-miR-596 hsa-miR-494-3p hsa-miR- 150-5p hsa-miR-744-5p hsa-miR-371a-3p hsa-miR- 15a-5p hsa-miR- 145-5p hsa-miR-637 hsa-let-7d-3p hsa-miR-622 hsa-miR-144-3p hsa-miR-608 hsa-miR-516a-5p hsa-miR-16-l -3p hsa-miR-671 -5p hsa-let-7a-5p hsa-miR-631 hsa-miR-497-5p hsa-miR-96-3p hsa-miR-34c-5p hsa-miR-877-5p hsa-miR- 185-3p hsa-miR-21 1-5p hsa-miR-187-5p hsa-miR-615-3p hsa-miR-454-3p hsa-miR-10b-5p hsa-miR- 128-3p hsa-let-7f-5p hsa-let-7i-5p hsa-miR-766-3p hsa-miR-30e-5p hsa-miR-202-5p hsa-miR-206 hsa-miR-34a-5p hsa-miR-652-3p hsa-miR-298 hsa-miR-663a hsa-miR-126-5p hsa-miR- 193a-5p hsa-miR-518e-3p hsa-miR-30e-3p hsa-miR-449b-5p hsa-miR-29b-3p hsa-miR-181 c-5p hsa-miR-520d-5p hsa-miR-658 hsa-miR-9-3p hsa-miR- 192-5p hsa-miR-572 hsa-miR-548c-3p hsa-miR-29a-3p hsa-miR-802 hsa-miR-152-3p hsa-miR- 18a-3p hsa-miR-521 hsa-miR-93-5p hsa-miR-383-5p hsa-miR-433-3p hsa-miR-365a-3p hsa-miR-9-5p hsa-miR-660-5p hsa-miR-29c-3p hsa-miR- 142-5p hsa-let-7c-5p hsa-miR-372-3p hsa-miR-363-5p hsa-miR-28-5p hsa-miR-133a-3p hsa-miR- 147b hsa-miR-324-5p hsa-miR-124-3p hsa-miR- 197-3p hsa-miR-219a-5p hsa-miR-190a-5p hsa-miR-597-5p hsa-miR- 19b-3p hsa-miR-302a-3p hsa-miR-326 hsa-miR-526b-5p hsa-miR-595 hsa-miR- 15b-5p hsa-miR-215-5p hsa-miR-602 hsa-miR- 105-5p hsa-miR-30b-5p hsa-miR-223-3p hsa-miR-196b-5p hsa-miR-184 hsa-miR-627-5p hsa-miR-296-5p hsa-miR-422a hsa-miR-34b-3p hsa-miR-20b-5p hsa-miR-199a-3p hsa-miR-410-3p hsa-miR- 147a hsa-miR-335-5p hsa-miR-17-5p hsa-miR- 198 hsa-miR-519a-3p hsa-miR-376a-3p hsa-miR-375 hsa-miR-21 -5p hsa-miR-514a-3p hsa-miR-517a-3p Table 2 (continued) hsa-miR-361 -3p hsa-miR-216b-5p hsa-miR-25-5p hsa-miR-21 -3p hsa-miR- 106b-5p hsa-miR-922 hsa-miR-373-3p hsa-miR-22-3p hsa-miR- 124-5p hsa-miR-518f-3p hsa-miR-510-5p hsa-miR- 1264 hsa-miR-222-3p hsa-miR-212-3p hsa-miR-504-5p hsa-miR-617 hsa-miR-525-5p hsa-miR- 138- l-3p hsa-miR-154-5p hsa-miR-542-5p hsa-miR-502-3p hsa-miR-708-5p hsa-miR-576-3p hsa-miR-490-5p hsa-let-7b-5p hsa-miR-583 hsa-miR-567 hsa-miR-95-3p hsa-miR-483-3p hsa-miR- 18b-3p hsa-miR-517c-3p hsa-miR-582-5p hsa-miR- 125a-3p hsa-miR-151 a-5p hsa-miR-183-5p hsa-miR-653-5p hsa-miR-502-5p hsa-miR-33b-5p hsa-miR-891b hsa-miR-345-5p hsa-miR- 193 a-3p hsa-miR- 144-5p hsa-miR-509-3p hsa-miR- 153-3p hsa-miR- 1538 hsa-miR-134-5p hsa-let-7e-5p hsa-miR-384 hsa-miR-382-5p hsa-miR-409-3p hsa-miR- 196b-3p hsa-miR-490-3p hsa-miR- 100-5p hsa-miR-649 hsa-miR-200c-3p hsa-miR-629-5p hsa-miR- 143-5p hsa-miR-30a-5p hsa-miR-484 hsa-miR- 1207-5p hsa-miR-181b-5p hsa-miR-429 hsa-miR-943 hsa-miR-33a-5p hsa-miR-30c-2-3p hsa-miR-675-3p hsa-miR-195-5p hsa-miR-518a-3p hsa-miR-200b-5p hsa-miR-874-3p hsa-miR-340-5p hsa-miR-519e-5p hsa-miR-135a-5p hsa-miR-508-3p hsa-miR-942-5p hsa-miR-26a-2-3p hsa-miR-381 -3p hsa-miR-450b-3p hsa-miR-146b-5p hsa-miR- 148a-3p hsa-miR-553 hsa-miR-412-3p hsa-miR- 146a-5p hsa-miR-605-5p hsa-miR- 1 hsa-miR- 139-5p hsa-miR-24-2-5p hsa-miR-299-3p hsa-miR-373-5p hsa-miR-23a-5p hsa-miR- 142-3p hsa-miR-149-5p hsa-miR-27b-5p hsa-miR-338-3p hsa-miR-642a-5p hsa-miR-759 hsa-miR-584-5p hsa-miR-31 -5p hsa-miR-770-5p hsa-miR-377-3p hsa-miR-451 a hsa-miR-585-3p hsa-miR-216a-5p hsa-miR-620 hsa-miR-376a-5p hsa-miR-424-5p hsa-miR-27b-3p hsa-miR-507 hsa-miR-921 hsa-miR-523-3p hsa-miR-520b hsa-miR-513a-5p hsa-miR-374a-5p hsa-miR-302f hsa-miR- 140-3p hsa-miR-92a-l -5p hsa-miR-28-3p hsa-miR- 18 la-5p hsa-miR-219a-l-3p hsa-miR-875-5p hsa-miR- 10a-5p hsa-miR-1913 hsa-miR-219a-2-3p hsa-miR- 106a-5p hsa-miR-1245a hsa-miR- 1 183 hsa-miR- 182-5p hsa-miR-522-3p hsa-miR-758-3p hsa-miR-370-3p hsa-miR-571 hsa-miR- 1244 hsa-miR-576-5p hsa-miR-323a-5p hsa-miR-566 hsa-miR-425-3p hsa-miR-592 hsa-miR- 1256 hsa-miR-450a-5p hsa-miR-487a-3p hsa-miR-516a-3p hsa-miR-41 l -5p hsa-miR- 1249 hsa-miR-548c-5p Table 2 (continued) hsa-miR-621 hsa-miR- 1260a hsa-miR-496 hsa-miR-556-5p hsa-miR- 182-3p hsa-miR-876-3p hsa-miR-1267 hsa-miR-365b-5p hsa-miR-532-3p hsa-miR- 141 -5p hsa-miR-508-5p hsa-miR-654-3p hsa-miR- 1269a hsa-miR-671-3p hsa-miR-659-3p hsa-miR-501 -3p hsa-miR-941 hsa-miR-135b-3p hsa-miR- 15b-3p hsa-miR-23b-5p hsa-miR-641 hsa-miR- 146b-3p hsa-miR-591 hsa-miR-21 13 hsa-miR-222-5p hsa-miR-26b-3p hsa-miR-1254 hsa-miR-601 hsa-miR-519b-3p hsa-miR-661 hsa-miR-924 hsa-miR-30d-3p hsa-miR-892a hsa-miR-29a-5p hsa-miR-518d-5p hsa-miR-10b-3p hsa-let-7a-2-3p hsa-miR-212-5p hsa-miR- 122-3p hsa-miR-520f-3p hsa-miR-520e hsa-miR-100-3p hsa-miR- 10 l -5p hsa-miR-646 hsa-miR-769-3p hsa-miR-520a-3p hsa-miR-519e-3p hsa-miR-300 hsa-miR-548m hsa-miR-626 hsa-miR-518e-5p hsa-miR-517-5p hsa-miR-26a-l -3p hsa-miR-489-3p hsa-miR-448 hsa-miR- 190b hsa-miR-937-3p hsa-miR- 1296-5p hsa-miR- 1471 hsa-miR-381-5p hsa-miR- 1537-3p hsa-miR-5481 hsa-miR-640 hsa-miR-920 hsa-miR-586 hsa-miR-148b-5p hsa-miR- 1247-5p hsa-miR- 103b hsa-miR-29c-5p hsa-miR- 19b-2-5p hsa-miR-488-5p hsa-miR-499a-3p hsa-miR-558 hsa-miR- 129- l-3p hsa-let-7f-l -3p hsa-miR- 106b-3p hsa-miR- 192-3p hsa-miR-382-3p hsa-miR- 1258 hsa-miR-632 hsa-miR-609 hsa-miR-619-3p hsa-miR-181 a-2-3p hsa-miR- 10a-3p hsa-miR-208a-3p hsa-miR- 1909-3p hsa-miR-106a-3p hsa-miR- 17-3p hsa-miR-573 hsa-let-7e-3p hsa-miR-136-3p hsa-miR-302d-5p hsa-miR-580-3p hsa-miR-877-3p hsa-miR- 194-3p hsa-miR-761 hsa-miR-935 hsa-miR-302b-5p hsa-miR-643 hsa-miR-224-3p hsa-miR-551b-5p hsa-miR-618 hsa-miR-624-3p hsa-miR-635 hsa-miR-221-5p hsa-miR-767-5p hsa-miR-518d-3p hsa-miR-513b-5p hsa-miR-559 hsa-miR-569 hsa-miR-41 l -3p hsa-miR-449b-3p hsa-miR-125b-l -3p hsa-miR- 19a-5p hsa-miR-205-3p hsa-miR-218-2-3p hsa-miR-338-5p hsa-miR-604 hsa-miR-519c-3p hsa-miR-1914-3p hsa-miR- 130b-5p hsa-miR-554 hsa-miR-323b-5p hsa-miR-149-3p hsa-miR-938 hsa-miR-548i hsa-miR- 127 l -5p hsa-miR- 1243 hsa-miR-541-3p hsa-miR-520h hsa-miR-708-3p hsa-miR-1272 hsa-miR-769-5p hsa-miR- 1 185-5p hsa-miR-1205 hsa-miR-612 hsa-miR-512-3p hsa-miR-544a hsa-miR- 1237-3p hsa-miR-587 hsa-miR-431 -3p hsa-miR- 1908-5p hsa-miR-603 Table 2 (continued) hsa-miR- 1 184 hsa-miR- 1255b-5p hsa-miR- 1200 hsa-miR-20a-3p hsa-miR-330-5p hsa-miR- 1911 -5p hsa-miR-588 hsa-miR-1238-3p hsa-miR-33b-3p hsa-miR-455-3p hsa-miR-188-3p hsa-miR-223-5p hsa-miR-582-3p hsa-miR-589-3p hsa-miR-34b-5p hsa-miR-409-5p hsa-miR- 125b-2-3p hsa-miR-888-3p hsa-miR-452-3p hsa-miR- 16-2-3p hsa-miR-424-3p hsa-miR-19b-l-5p hsa-miR-515-5p hsa-miR-339-3p hsa-miR-610 hsa-miR-340-3p hsa-miR-380-5p hsa-miR-51 l -5p hsa-miR-513a-3p hsa-miR-647 hsa-miR-200c-5p hsa-miR-34a-3p hsa-miR-518f-5p hsa-let-7a-3p hsa-miR-342-5p hsa-miR-92b-5p hsa-miR-135a-3p hsa-miR-639 hsa-miR-551a hsa-miR-520a-5p hsa-let-7i-3p hsa-miR-146a-3p hsa-miR-1468-5p hsa-miR-543 hsa-miR-218-l -3p hsa-miR-628-5p hsa-miR-645 hsa-miR-593-5p hsa-miR-552-3p hsa-miR-548d-5p hsa-miR-561-3p hsa-miR-145-3p hsa-miR-33a-3p hsa-miR-767-3p hsa-miR-378a-5p hsa-miR-664a-3p hsa-miR-526b-3p hsa-miR-7-l -3p hsa-miR-379-3p hsa-miR-24-l -5p hsa-miR-181 c-3p hsa-miR-556-3p hsa-let-7b-3p hsa-miR- 195-3p hsa-miR-614 hsa-miR- 193b-5p hsa-miR-578 hsa-miR-616-5p hsa-miR-335-3p hsa-miR-505-5p hsa-miR-93-3p hsa-miR-541-5p hsa-miR-875-3p hsa-miR-1972 hsa-miR-30c-l -3p hsa-miR-450b-5p hsa-miR-616-3p hsa-miR-629-3p hsa-miR-876-5p hsa-miR-369-3p hsa-miR-377-5p hsa-miR-362-3p hsa-miR-21 10 hsa-miR-630 hsa-miR-624-5p hsa-miR-548a-3p hsa-miR-548d-3p hsa-miR-27a-5p hsa-miR-634 hsa-miR-885-3p hsa-miR-744-3p hsa-miR-320c hsa-miR-320d hsa-miR- 139-3p hsa-miR-636 hsa-miR-2053 hsa-miR- 138-2-3p hsa-miR-606 hsa-miR-675-5p hsa-miR-655-3p hsa-miR-208b-3p hsa-miR-1252-5p hsa-miR-99b-3p hsa-miR-367-5p hsa-miR-548e-3p hsa-miR-581 hsa-miR-520d-3p hsa-miR-1914-5p hsa-miR- 191-3p hsa-miR- 1265 hsa-miR-513c-5p hsa-miR-32-3p hsa-miR- 1203 hsa-miR-331-5p hsa-miR-1204 hsa-miR-548k hsa-miR-1 182 hsa-miR-548j-5p hsa-miR-548a-5p hsa-miR-61 1 hsa-miR-555 hsa-miR-1253 hsa-miR-1 181 hsa-miR-1224-3p hsa-miR-615-5p hsa-miR-638 hsa-miR- 1539 hsa-miR-607 hsa-miR-515-3p hsa-miR-663b hsa-miR-1208 hsa-miR-650 hsa-miR-1248 hsa-miR-302e hsa-miR-1 178-3p hsa-miR-889-3p hsa-miR-1206 hsa-miR-600 hsa-miR-1227-3p hsa-miR-1270 hsa-miR-599 hsa-miR-548h-5p hsa-miR-525-3p hsa-miR-520g-3p Table 2 (continued) hsa-miR-564 hsa-miR-7-2-3p hsa- miR- 183-3p hsa-miR-132-5p hsa-miR-550a-3p hsa- miR- 1179 hsa-miR-577 hsa-miR-380-3p hsa- miR- 562 hsa-miR-1911 -3p hsa-miR-593-3p hsa- miR- 579-3p hsa-let-7f-2-3p hsa-miR-1912 hsa- miR- 590-3p hsa-miR-155-3p hsa-miR-493-5p hsa- miR- 130a-5p hsa-miR-105-3p hsa-miR-432-3p hsa- miR- 563 hsa-miR-486-3p hsa-miR-454-5p hsa- miR- 200a-5p hsa-miR-320b hsa-miR-936 hsa- miR- 483-5p hsa-miR-296-3p hsa-miR-30a-3p hsa- miR- 15a-3p hsa-let-7g-3p hsa- miR- 944 hsa-miR-214-5p hsa- miR- 92a-2-5p hsa- miR- 548 n
TABLE 6: Application of DMS in cases with non-abundant P. acnes by culture and various levels of P. acnes genomes by PCR (inconclusive by standard methods)
PCR [P.
acnes
P. acnes genomes / PCR - P. acnes diagnosis
culture Culture 500ng result DMS DMS- All after DMS
ID fCFU/mll -result DNA1 * value result results correction
1 800 + 194 + -0.31 + +/+/+ POSITIVE
2 800 + 0 - 1.20 - +1-1- FALSE POSITIVE
3 800 + 1301 ++ 2.88 - +I++I- FALSE POSITIVE
4 700 + 618 ++ -2.41 + +/++/+ POSITIVE
5 600 + 392 + -0.43 + +/+/+ POSITIVE
6 600 + 0 - -3.62 + +/-/+ POSITIVE
7 600 + 193 + -0.49 + +/+/+ POSITIVE
8 500 + 1155 ++ -39.68 + +/++/+ POSITIVE
9 500 + 348 + -4.83 + +/+/+ POSITIVE
10 500 + 2361 ++ 0.36 - +/++/- FALSE POSITIVE
11 500 + 0 - 3.42 - +1-1- FALSE POSITIVE
12 500 + 17 + 0.37 - +1+1- FALSE POSITIVE
13 300 + 294 + -1.84 + +1+1+ POSITIVE
14 300 + 0 - 6.26 - +1-1- FALSE POSITIVE
15 300 + 0 - -0.93 + +1-1+ POSITIVE
16 300 + 0 - 6.05 - +1-1- FALSE POSITIVE
17 300 + 0 - -0.44 + +1-1+ POSITIVE
18 200 + 271 + 0.07 + +1+1+ POSITIVE
19 200 + 191 + -2.2 + +1+1+ POSITIVE
20 200 + 64 + -2.86 + +1+1+ POSITIVE
21 200 + 0 - 6.57 - +1-1- FALSE POSITIVE
22 200 + 0 - 2.52 - +1-1- FALSE POSITIVE
23 200 + 0 - 4.18 - +1-1- FALSE POSITIVE
24 200 + 0 - -1.63 + +1-1+ POSITIVE
25 200 + 0 - 2.41 - +1-1- FALSE POSITIVE
PCR [P.
acnes
P. acnes genomes / PCR - P. acnes diagnosis culture Culture 500ng result DMS DMS- All after DMS
ID fCFU/mll -result DNA1 * value result results correction
26 200 + 0 - 5.24 - +1-1- FALSE POSITIVE
27 200 + 48 + 11.97 - +1+1- FALSE POSITIVE
28 100 + 0 - 2.04 - +1-1- FALSE POSITIVE
29 100 + 0 - -1.08 + +1-1+ POSITIVE
30 100 + 213 + 1.1 - +1+1- FALSE POSITIVE
31 100 + 0 - -0.24 - +1-1- FALSE POSITIVE
32 100 + 0 - 5.73 - +1-1- FALSE POSITIVE
33 100 + 0 - 5.92 - +1-1- FALSE POSITIVE
34 100 + 249 + 2.42 - +1+1- FALSE POSITIVE
35 100 + 0 - 1.64 - +1-1- FALSE POSITIVE
36 100 + 80 + 4.97 - +1+1- FALSE POSITIVE
37 100 + 0 - 2.55 - +1-1- FALSE POSITIVE
38 100 + 0 - 0.12 - +1-1- FALSE POSITIVE
39 100 + 0 - -0.35 + +1-1+ POSITIVE
FALSE PCR
40 0 - 1500 ++ 12.34 - -I++I- POSITIVE
FALSE PCR
41 0 - 995 ++ 3.84 - -I++I- POSITIVE
++ FALSE PCR
42 0 - 555 8.39 - -I++I- POSITIVE
FALSE PCR
43 0 - 572 ++ 4.78 - -I++I- POSITIVE
++ FALSE NEGATIVE
44 0 - 2046 -2.26 + -I++I+
CULTURE
++ means CFU/ml > 103; ** ++ means number of P. acnes genomes higher than 500

Claims

CLAIMS:
1. A method for detecting a low- virulence infection in a patient, comprising: testing for the presence or level of a commensal microorganism in a patient sample, the commensal microorganism being causative of low- virulence infections, evaluating an RNA profile from the sample for an RNA signature indicative of a low-virulence infection to discriminate false positives and/or false negatives from true low-virulence infections.
2. The method of claim 1 , wherein the patient has symptoms of an inflammatory condition.
3. The method of claim 2, wherein the symptoms of an inflammatory condition are selected from degenerative disc disease (DDD), chronic lower back pain (CLBP), j oint or cartilage inflammation, inflammation-associated with an implant or prosthetic, endocarditis, suspected infected intravenous port system, or gastric ulcer, prostatitis, prostate cancer.
4. The method of claim 2 or 3, wherein the sample comprises cartilage, or tissue or cells from an anaerobic environment.
5. The method of any one of claims 1 to 4, wherein the sample is intervertebral disc tissue.
6. The method of claim 5, wherein the patient is scheduled for disc surgery.
7. The method of claim 6, wherein the disc surgery is to repair a disc herniation, primary lumbar fusion surgery, or primary disc arthroplasty.
8. The method of any one of claims 1 to 7, wherein the patient has a history of chronic low back pain (CLBP) and/or failed back surgery.
9. The method of any one of claims 1 to 7, wherein the patient has a history of pseudoarthrosis.
10. The method of any one of claims 5 to 9, wherein the sample is taken at the time of surgery.
1 1. The method of any one of claims 5 to 9, wherein the sample is taken by biopsy prior to surgery.
12. The method of any one of claims 1 to 11 , wherein a portion of the sample is tested for the presence or level of Propionibacterium acne.
13. The method of any one of claims 1 to 1 1, wherein the sample is tested for the presence of level of one or more of Staphylococcus sp., Corynebacterium sp., Lactobacillus sp., Pseudomonas sp., Enterococcus sp., Streptococcus sp., Bacillus sp., Citrobacter sp., E. coli, Moraxella sp., Haemophilus sp., Neisseria sp., Clostridium sp., Entrobacter sp., and Klebsiella sp.
14. The method of claim 12 or 13, wherein at least a portion of the sample is digested, and DNA is isolated.
15. The method of claim 14, wherein DNA of the commensal microorganism is amplified.
16. The method of any one of claims 1 to 15, wherein the commensal microorganism(s) are detected or quantified in the sample by PCR, culture, immunochemistry, spectroscopy, in situ hybridization, or metagenomic analysis.
17. The method of any one of claims 1 to 16, wherein the RNA signature is trained with RNA profiles from infected clinical samples, and RNA profiles from uninfected clinical samples.
18. The method of any one of claims 1 to 16, wherein the RNA signature is trained with RNA profiles from clinical samples that test positive for the presence or abundance of the commensal microorganism, and clinical samples that test negative or non-abundant for the presence of the commensal microorganism.
19. The method of claim 18, wherein the presence of the commensal microorganism is determined by at least two detection methods, optionally selected from quantitative PCR or sequencing, with at least one of culture, immunochemistry, spectroscopy, or in situ hybridization.
20. The method of any one of claims 1 to 16, wherein the RNA signature employs a classifier algorithm trained with RNA profiles from cell cultures infected with a commensal microorganism and uninfected cells.
21. The method of claim 20, wherein the cell cultures are NP cells.
22. The method of any one of claims 1 to 21, wherein the RNA signature is a microRNA signature.
23. The method of any one of claims 1 to 21, wherein the RNA signature is a long non-coding RNA signature, which optionally comprises one or more of IncRNAs, lincRNAs, or T-UCRs.
24. The method of any one of claims 1 to 21 , wherein the RNA signature comprises small non-coding RNAs, optionally comprising one or more of piRNAs, snRNAs, snoRNAs, and circRNAs.
25. The method of any one of claims 1 to 21, wherein the RNA signature is an mRNA signature.
26. The method of claim 20 or 21, wherein the cells are infected in vitro with a commensal pathogen.
27. The method of claim 26, wherein the cells are infected in vitro for at least one week to model chronic infection.
28. The method of any one of claims 1 to 27, wherein the RNA signature employs a supervised, unsupervised, or semi-supervised classifier algorithm.
29. The method of any one of claims 1 to 28, wherein the RNA signature includes the relative expression of no more than 100 RNAs, or no more than 75 RNAs, or no more than 50 RNAs, or no more than 25 RNAs, or no more than 10 RNAs, or no more than 5 RNAs, or no more than 4 RNAs.
30. The method of claim 29, wherein the RNA signature includes the relative expression of two or three RNAs.
31. The method of claim 29 or 30, wherein the RNAs are miRNAs selected from Table 2.
32. The method of claim 29 or 30, wherein the RNAs are miRNAs selected from Table 4, Table 5, or Figure 8.
33. The method of any one of claims 29 to 32, wherein the RNA signature includes the relative expression level of one or both of miR-29a-3p and miR-574-3p.
34. The method of claim 11, wherein for positive samples, a local antibiotic or antiseptic rinse is applied at time of surgery.
35. The method of claim 11, wherein for positive samples, an oral or local antibiotic regimen is administered prior to surgery.
36. The method of claim 10, wherein for positive samples, an oral, IV, or intervertebral antibiotic regimen is administered post-surgery.
37. A method for detecting a low-virulence infection of a commensal microorganism in a clinical tissue sample, the method comprising:
detecting a miRNA profile in the tissue, and evaluating the miRNA profile for a miRNA signature indicative of a low-virulence infection, the miRNA signature trained with miRNA profiles from tissue samples that are positive for the presence or abundance of the commensal microorganism by at least two detection methods, and from tissue samples that are negative for the presence or abundance of the commensal microorganism by the at least two methods.
38. The method of claim 37, wherein the detection methods are selected from nucleic acid amplification, DNA sequencing, microbial culture, immunochemistry, spectroscopy, and in situ hybridization.
39. The method of claim 38, wherein the detection methods are quantitative PCR and microbial culture.
40. The method of any one of claims 37 to 39, wherein the RNA signature employs a supervised, unsupervised, or semi-supervised classifier algorithm.
41. The method of any one of claims 37 to 40, wherein the RNA signature includes the relative expression of no more than 10 RNAs, or no more than 5 RNAs, or no more than 4 RNAs.
42. The method of claim 41, wherein the RNA signature includes the relative expression of two or three RNAs.
43. The method of claim 41 or 42, wherein the RNAs are miRNAs selected from Table 2.
44. The method of claim 41 or 42, wherein the RNAs are miRNAs selected from Table 4 or Table 5.
45. The method of claim 37, wherein the RNA signature includes the relative expression level of one or both of miR-29a-3p and miR-574-3p.
46. The method of any one of claims 37 to 45, wherein the patient has an inflammatory condition selected from chronic lower back pain (CLBP), joint or cartilage inflammation, inflammation-associated with an implant or prosthetic, endocarditis, suspected infected intravenous port system, or gastric ulcer.
47. The method of claim 46, wherein the sample comprises cartilage, or tissue or cells from an anaerobic environment.
48. The method of claim 47, wherein the sample is intervertebral disc tissue.
49. The method of claim 48, wherein the patient is scheduled for disc surgery.
50. The method of claim 49, wherein the disc surgery is to repair a disc herniation, primary lumbar fusion surgery, or primary disc arthroplasty.
51. The method of any one of claims 46 to 50, wherein the patient has a history of chronic low back pain (CLBP) and/or failed back surgery.
52. The method of any one of claims 46 to 50, wherein the patient has a history of pseudoarthrosis.
53. The method of any one of claims 37 to 52, wherein the sample is taken at the time of surgery.
54. The method of any one of claims 37 to 52, wherein the sample is taken by biopsy prior to surgery.
55. The method of any one of claims 37 to 54, wherein the sample is further tested for the presence or level of Propionibacterium acne.
56. The method of any one of claims 37 to 54, wherein the sample is tested for the presence of level of one or more of Staphylococcus sp., Corynebacterium sp., Lactobacillus sp., Pseudomonas sp., Enterococcus sp., Streptococcus sp., Bacillus sp., Citrobacter sp., E. coli, Moraxella sp., Haemophilus sp., Neisseria sp., Clostridium sp., Entrobacter sp., and Klebsiella sp.
57. The method of claim 47 or 48, wherein a portion of the sample is digested, and DNA is isolated.
58. The method of claim 57, wherein DNA is amplified.
59. The method of any one of claims 55 to 58, wherein the commensal microorganism(s) are detected or quantified in the sample by one or more of PCR, culture, immunochemistry, spectroscopy, in situ hybridization, microarray, and metagenomic analysis.
60. The method of claim 37, wherein the sample is not tested for the presence of the commensal pathogen by other technique.
61. The method of claim 37, wherein the sample is not tested for the presence of the commensal pathogen by PCR and/or culture.
62. The method of claim 37, wherein for positive samples, a local antibiotic or antiseptic rinse is applied at time of surgery.
63. The method of claim 37, wherein for positive samples, an oral or local antibiotic regimen is administered prior to surgery.
64. The method of claim 37, wherein for positive samples, an oral, IV, or intervertebral antibiotic regimen is administered post-surgery.
65. A method for treating a low- virulence infection, comprising:
administering an antibiotic to a patient determined to have a low-virulence infection, the low-virulence infection detected by the presence of an RNA signature in cells from the location, the RNA signature indicative of low- virulence infections.
66. The method of claim 65, wherein the presence of the commensal microorganism in the patient is detected in a sample from a location exhibiting symptoms of a low-virulence infection, optionally by one or more of PCR, culture, or microscopy.
67. The method of claim 65, wherein the antibiotic is administered locally to the location.
68. The method of claim 67, wherein the antibiotic is administered systemically.
69. The method of any one of claims 65 to 68, wherein the RNA signature is trained with RNA profiles from tissue samples that are positive for the commensal microorganism by at least two detection methods, and from tissue samples that are negative for the commensal microorganism by the at least two methods.
70. The method of claim 69, wherein the detection methods are selected from nucleic acid amplification, DNA sequencing, microbial culture, immunochemistry, spectroscopy, and in situ hybridization.
71. The method of claim 70, wherein the detection methods are quantitative PCR and microbial culture.
72. The method of any one of claims 65 to 71, wherein the RNA signature employs a supervised, unsupervised, or semi-supervised classifier algorithm.
73. The method of any one of claims 65 to 71, wherein the RNA signature includes the relative expression of no more than 10 RNAs, or no more than 5 RNAs, or no more than 4 RNAs.
74. The method of claim 73, wherein the RNA signature includes the relative expression of two or three RNAs.
75. The method of claim 73 or 74, wherein the RNAs are miRNAs selected from Table 2.
76. The method of claim 73 or 74, wherein the RNAs are miRNAs selected from Table 4 or Table 5.
77. The method of claim 65, wherein the nucleic acid signature includes the relative expression level of one or both of miR-29a-3p and miR-574-3p.
78. The method of any one of claims 65 to 77, wherein the patient has symptoms of an inflammatory condition selected from chronic lower back pain (CLBP), joint or cartilage inflammation, inflammation-associated with an implant or prosthetic, endocarditis, suspected infected intravenous port system, or gastric ulcer.
79. The method of claim 78, wherein the sample comprises cartilage, or tissue or cells from an anaerobic environment.
80. The method of claim 65, wherein the sample is intervertebral disc tissue.
81. The method of claim 80, wherein the patient is scheduled for disc surgery.
82. The method of claim 81, wherein the disc surgery is to repair a disc herniation, primary lumbar fusion surgery, or primary disc arthroplasty.
83. The method of any one of claims 78 to 82, wherein the patient has a history of chronic low back pain (CLBP) and/or failed back surgery.
84. The method of any one of claims 78 to 83, wherein the patient has a history of pseudoarthrosis.
85. The method of any one of claims 78 to 83, wherein the sample is taken at the time of surgery.
86. The method of any one of claims 78 to 83, wherein the sample is taken by biopsy prior to surgery.
87. The method of any one of claims 65 to 86, wherein the sample is further tested for the presence or level of Propionibacterium acne.
88. The method of any one of claims 65 to 87, wherein the sample is tested for the presence of level of one or more of Staphylococcus sp., Corynebacterium sp., Lactobacillus sp., Pseudomonas sp., Enterococcus sp., Streptococcus sp. , Bacillus sp., Citrobacter sp., E. coli, Moraxella sp., Haemophilus sp., Neisseria sp., Clostridium sp., Entrobacter sp., and Klebsiella sp.
89. The method of claim 87 or 88, wherein a portion of the sample is digested, and DNA isolated.
90. The method of claim 89, wherein DNA of the commensal microorganism is amplified.
91. The method of any one of claims 87 to 90, wherein the commensal microorganism(s) are detected or quantified in the sample by one or more of PCR, culture, immunochemistry, spectroscopy, in situ hybridization, microarray, and metagenomic analysis.
92. The method of claim 65, wherein for positive samples, a local antibiotic is applied at time of surgery.
93. The method of claim 65, wherein for positive samples, an oral or local antibiotic regimen is administered prior to surgery.
94. The method of claim 65, wherein for positive samples, an oral, IV, or intervertebral antibiotic regimen is administered post-surgery.
PCT/US2016/043295 2015-07-24 2016-07-21 Methods for detecting and treating low-virulence infections WO2017019440A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680049681.8A CN108138178A (en) 2015-07-24 2016-07-21 For detecting and treating the method for less toxic power infection
CA2993180A CA2993180A1 (en) 2015-07-24 2016-07-21 Methods for detecting and treating low-virulence infections
US15/746,666 US20180223337A1 (en) 2015-07-24 2016-07-21 Methods for detecting and treating low-virulence infections
EP16831094.4A EP3325624B1 (en) 2015-07-24 2016-07-21 Methods for detecting and treating low-virulence infections
JP2018523366A JP2018523492A (en) 2015-07-24 2016-07-21 Method for detection and treatment of low toxicity infection
IL256972A IL256972A (en) 2015-07-24 2018-01-17 Methods for detecting and treating low-virulence infections
US16/804,173 US20200224250A1 (en) 2015-07-24 2020-02-28 Methods for detecting and treating low-virulence infections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562196508P 2015-07-24 2015-07-24
US62/196,508 2015-07-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/746,666 A-371-Of-International US20180223337A1 (en) 2015-07-24 2016-07-21 Methods for detecting and treating low-virulence infections
US16/804,173 Continuation US20200224250A1 (en) 2015-07-24 2020-02-28 Methods for detecting and treating low-virulence infections

Publications (1)

Publication Number Publication Date
WO2017019440A1 true WO2017019440A1 (en) 2017-02-02

Family

ID=57885264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/043295 WO2017019440A1 (en) 2015-07-24 2016-07-21 Methods for detecting and treating low-virulence infections

Country Status (7)

Country Link
US (2) US20180223337A1 (en)
EP (1) EP3325624B1 (en)
JP (1) JP2018523492A (en)
CN (1) CN108138178A (en)
CA (1) CA2993180A1 (en)
IL (1) IL256972A (en)
WO (1) WO2017019440A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103199A (en) * 2018-02-13 2018-06-01 朱伟 A kind of Xun Huan miRNA marker relevant with oophoroma auxiliary diagnosis and its application
CN108410977A (en) * 2018-05-22 2018-08-17 陈镇秋 Alcoholic Femoral Head Necrosis patients serum's miRNAs extreme early detection kits
WO2019022605A1 (en) * 2017-07-25 2019-01-31 Stichting Vumc Micro rna-based methods and compositions for detection of hpv-induced invasive cancers, and their high-grade precursor lesions
WO2019060869A1 (en) * 2017-09-25 2019-03-28 Discitisdx, Inc. Methods for treating degenerative disc disease and chronic lower back pain
KR20200023267A (en) * 2017-03-21 2020-03-04 콰드런트 바이오사이언시즈 인코포레이티드 Analysis of Autism Spectrum Disorders
US11517574B2 (en) 2017-11-16 2022-12-06 Persica Pharmaceuticals Ltd. Linezolid formulations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278701B (en) * 2021-06-18 2022-04-08 杭州昱鼎生物科技有限公司 Application of miRNAs in exosomes in preparation of renal cell carcinoma markers and kit thereof
CN113838009B (en) * 2021-09-08 2023-10-31 江苏迪赛特医疗科技有限公司 Abnormal cell detection false positive inhibition method based on semi-supervision mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070065844A1 (en) * 2005-06-08 2007-03-22 Massachusetts Institute Of Technology Solution-based methods for RNA expression profiling
US20090150084A1 (en) * 2007-11-21 2009-06-11 Cosmosid Inc. Genome identification system
US20130225440A1 (en) * 2010-09-27 2013-08-29 The Children's Hospital Of Philadelphia Compositions and Methods Useful for the Treatment and Diagnosis of Inflammatory Bowel Disease
US20140377278A1 (en) * 2012-01-10 2014-12-25 Yale University Compositions and Methods for Assessing and Treating Inflammatory Diseases and Disorders

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070065844A1 (en) * 2005-06-08 2007-03-22 Massachusetts Institute Of Technology Solution-based methods for RNA expression profiling
US20090150084A1 (en) * 2007-11-21 2009-06-11 Cosmosid Inc. Genome identification system
US20130225440A1 (en) * 2010-09-27 2013-08-29 The Children's Hospital Of Philadelphia Compositions and Methods Useful for the Treatment and Diagnosis of Inflammatory Bowel Disease
US20140377278A1 (en) * 2012-01-10 2014-12-25 Yale University Compositions and Methods for Assessing and Treating Inflammatory Diseases and Disorders

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ACHERMANN Y ET AL.: "Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen", CLIN MICROBIOL REV, vol. 27, 2014, pages 419 - 40
ALBERT ET AL.: "Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy", EUR SPINE J., vol. 22, no. 4, 13 February 2013 (2013-02-13), pages 697 - 707, XP002725607 *
ALBERT ET AL.: "Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae?", EUR SPINE J., vol. 22, no. 4, 10 February 2013 (2013-02-10), pages 690 - 696, XP055163142 *
ALEXEYEV OA ET AL.: "Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay", J CLIN MICROBIOL., vol. 45, no. 11, November 2007 (2007-11-01), pages 3721 - 8
HEIKKINEN ET AL.: "Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map", BIOINFORMATICS, vol. 27, no. 9, 21 March 2011 (2011-03-21), pages 1247 - 1254, XP055350530 *
LUPAN I ET AL.: "The evidence of contaminant bacterial DNA in several commercial Tag polymerases", ROM BIOTECH LETT, vol. 18, 2013, pages 8007 - 12
R. SIMON: "Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data", BRITISH JOURNAL OF CANCER, vol. 89, 2003, pages 1599 - 1604, XP002661447, DOI: 10.1038/sj.bjc.6601326
ROLLASON ET AL., GENOTYPIC ANTIMICROBIAL CHARACTERIZATION OF PROPIONIBACTERIUM ACNES ISOLATES FROM SURGICALLY EXCISED LUMBAR DISC HERNIATIONS, 2013

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023267A (en) * 2017-03-21 2020-03-04 콰드런트 바이오사이언시즈 인코포레이티드 Analysis of Autism Spectrum Disorders
KR102359013B1 (en) * 2017-03-21 2022-02-04 콰드런트 바이오사이언시즈 인코포레이티드 Analysis of Autism Spectrum Disorders
US11242563B2 (en) 2017-03-21 2022-02-08 Quadrant Biosciences Inc. Analysis of autism spectrum disorder
WO2019022605A1 (en) * 2017-07-25 2019-01-31 Stichting Vumc Micro rna-based methods and compositions for detection of hpv-induced invasive cancers, and their high-grade precursor lesions
WO2019060869A1 (en) * 2017-09-25 2019-03-28 Discitisdx, Inc. Methods for treating degenerative disc disease and chronic lower back pain
US10966997B2 (en) 2017-09-25 2021-04-06 Ecm Diagnostics, Inc. Methods for treating degenerative disc disease and chronic lower back pain
EP3687456A4 (en) * 2017-09-25 2021-07-21 ECM Diagnostics, Inc. Methods for treating degenerative disc disease and chronic lower back pain
US11517574B2 (en) 2017-11-16 2022-12-06 Persica Pharmaceuticals Ltd. Linezolid formulations
CN108103199A (en) * 2018-02-13 2018-06-01 朱伟 A kind of Xun Huan miRNA marker relevant with oophoroma auxiliary diagnosis and its application
CN108103199B (en) * 2018-02-13 2021-08-10 朱伟 Circulating miRNA marker related to ovarian cancer auxiliary diagnosis and application thereof
CN108410977A (en) * 2018-05-22 2018-08-17 陈镇秋 Alcoholic Femoral Head Necrosis patients serum's miRNAs extreme early detection kits
CN108410977B (en) * 2018-05-22 2022-03-15 陈镇秋 Ultra-early detection kit for serum miRNAs of alcoholic femoral head necrosis patient

Also Published As

Publication number Publication date
EP3325624A1 (en) 2018-05-30
CN108138178A (en) 2018-06-08
EP3325624A4 (en) 2019-02-27
IL256972A (en) 2018-03-29
CA2993180A1 (en) 2017-02-02
EP3325624B1 (en) 2021-03-31
US20200224250A1 (en) 2020-07-16
JP2018523492A (en) 2018-08-23
US20180223337A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US20200224250A1 (en) Methods for detecting and treating low-virulence infections
Capoor et al. Prevalence of Propionibacterium acnes in intervertebral discs of patients undergoing lumbar microdiscectomy: a prospective cross-sectional study
Ribeiro et al. Phenotypic and molecular detection of the bla KPC gene in clinical isolates from inpatients at hospitals in São Luis, MA, Brazil
Alouache et al. Characterization of ESBLs and associated quinolone resistance in Escherichia coli and Klebsiella pneumoniae isolates from an urban wastewater treatment plant in Algeria
US20060172330A1 (en) Categorization of microbial communities
Beaume et al. Orientation and expression of methicillin-resistant Staphylococcus aureus small RNAs by direct multiplexed measurements using the nCounter of NanoString technology
Kuo et al. Comparison of molecular diagnosis with serum markers and synovial fluid analysis in patients with prosthetic joint infection
Clark et al. Evaluation of low-copy genetic targets for waterborne bacterial pathogen detection via qPCR
ES2698964T3 (en) Method and detection kit for the absence of microorganisms
US20190032115A1 (en) Genetic testing for predicting resistance of gram-negative proteus against antimicrobial agents
CN1942592B (en) Neisseria gonorrhoeae detection
Hrbacek et al. Alpha-diversity and microbial community structure of the male urinary microbiota depend on urine sampling method
Berneking et al. Evaluation of a syndromic panel polymerase chain reaction (spPCR) assay for the diagnosis of device‐associated bone and joint infections (BJI)
US20230183818A1 (en) Antibiotic susceptibility of microorganisms and related markers, compositions, methods and systems
US20140193824A1 (en) High-Resolution Clonal Typing of Escherichia coli
WO2016020081A1 (en) Identification of vaginal bacteria
WO2017016600A1 (en) Genetic testing for predicting resistance of enterobacter species against antimicrobial agents
US11898210B2 (en) Tools for assessing FimH blockers therapeutic efficiency
KR20130098669A (en) Serum mirna as a marker for the diagnosis of lymph node metastasis of gastric cancer
Paudel Emergence of Candida auris infection: A review
EP2723891B1 (en) Diagnostic methods for detecting clostridium difficile
CN113789289B (en) Intestinal microorganism combination for evaluating systemic lupus erythematosus disease risk and detection reagent thereof
RU2527069C2 (en) METHOD OF SPECIES AND STRAIN IDENTIFICATION OF BIFIDOBACTERIA OF PHYLOTYPE Bifidobacterium longum
Hrbacek et al. First-Catch, Mid-Stream and Catheterised urine: A Comparative Study of Male Urinary Microbiome by Expanded Quantitative Urine Culture and Next-Generation Sequencing
CN116286423A (en) Cervical and vaginal microorganism combination related to cervical intraepithelial neoplasia and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16831094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 256972

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2993180

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018523366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE