WO2017018655A1 - Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same - Google Patents
Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same Download PDFInfo
- Publication number
- WO2017018655A1 WO2017018655A1 PCT/KR2016/006007 KR2016006007W WO2017018655A1 WO 2017018655 A1 WO2017018655 A1 WO 2017018655A1 KR 2016006007 W KR2016006007 W KR 2016006007W WO 2017018655 A1 WO2017018655 A1 WO 2017018655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- lithium secondary
- electrolytic copper
- secondary battery
- curl
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrolytic copper foil for a lithium secondary battery and a lithium secondary battery including the same. More specifically, a curl indicator (curl indicator) as a variable which is a main factor for generating curl of copper foil is limited to a certain range, thereby generating curl. It relates to an electrolytic copper foil for a minimized lithium secondary battery and a lithium secondary battery comprising the same.
- This application claims the priority based on Korean Patent Application No. 10-2015-0104779 filed on July 24, 2015 and Korean Patent Application No. 10-2016-0063598 filed on May 24, 2016, All content disclosed in the specification and drawings of an application is incorporated in this application.
- wrinkles may occur in a battery manufacturing process, and when wrinkles are intensified, overlap may occur. Such wrinkles and overlap may occur in lithium. It may become a fatal defect in manufacture of the electrolytic copper foil for secondary batteries.
- the cause of the curl is the difference between the stress and surface characteristics generated on the shiny surface (shiny surface) having a relatively high glossiness and the matte surface having a relatively low gloss of both surfaces of the copper foil Is generated accordingly.
- M surface curl is generated when compressive stress is applied toward the mat surface
- S surface curl is generated when compressive stress is applied to the shiny surface
- the present invention has been made in view of the above technical problem, and finds factors influencing the curl characteristics of an electrolytic copper foil for a lithium secondary battery and controls the values thereof within a predetermined range to curl the manufacturing process of the electrolytic copper foil for a lithium secondary battery. It is an object of the present invention to minimize the generation amount.
- the present inventors have conducted studies to achieve the above technical problem, and found that several factors have a great influence on the curl characteristics of the electrolytic copper foil for lithium secondary batteries, and the curl indicator using these factors as variables. It was found that the amount of curl change of the electrolytic copper foil for a lithium secondary battery can be controlled to a desired level by limiting) to a certain range.
- the electrolytic copper foil for lithium secondary batteries is an electrolytic copper foil for lithium secondary batteries, wherein a Curl index (C) value defined as 1.21 ⁇ R + 1.12 ⁇ Cr + 0.01 ⁇ G is 0 or more and 4.0 or less, and the ⁇ R is the lithium. It corresponds to an absolute value of the difference in roughness measured on the first surface and the second surface of the electrolytic copper foil for secondary batteries, wherein ⁇ Cr is the electrodeposition amount of chromium forming a chromium layer formed on the first surface of the lithium secondary battery electrolytic copper foil.
- C Curl index
- the roughness measured on each of both surfaces of the copper secondary battery foil may be 0.2 ⁇ m to 2.5 ⁇ m.
- Each electrodeposition amount of chromium forming a chromium layer formed on both surfaces of the copper secondary battery foil may be 1.0 mg / m 2 or more.
- Glossiness measured on each of both surfaces of the copper secondary battery foil may be 10GU to 450GU.
- the ⁇ R may be 0 or more and 2.0 ⁇ m or less.
- the ⁇ Cr may be 0 or more and 3.5 mg / m 2 or less.
- the ⁇ G may be 0 or more and 350GU or less.
- the lithium secondary battery copper foil may have a thickness of about 4 ⁇ m to about 35 ⁇ m.
- the lithium secondary battery according to an embodiment of the present invention the lithium secondary battery electrolytic copper foil according to an embodiment of the present invention is applied as a negative electrode current collector.
- the amount of curl generated in the copper foil in the manufacturing process of the electrolytic copper foil for lithium secondary battery can be suppressed to below the reference value, thereby preventing the occurrence of wrinkles and overlap in the copper foil in the manufacturing process of the lithium secondary battery. It becomes possible.
- FIG. 1 is a cross-sectional view showing an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a state in which chromium layers are formed on both surfaces of an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
- FIG. 3 and 4 are photographs showing a curl measurement method for an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
- Figure 1 is a cross-sectional view showing an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention
- Figure 2 is a cross-sectional view showing a state in which antirust layers are formed on both sides of the electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
- the electrolytic copper foil 1 for a lithium secondary battery has a thickness of about 4 ⁇ m to 35 ⁇ m, and is preferably used as a negative electrode current collector of a lithium secondary battery. That is, it is preferable that an electrolytic copper foil is used as a negative electrode collector couple
- a foil made of aluminum (Al) is generally used as a positive electrode current collector combined with the positive electrode active material.
- the case where the said electrolytic copper foil 1 for lithium secondary batteries corresponds to the negative electrode electrical power collector applied to a lithium secondary battery is demonstrated as an example.
- the stress applied to the electrolytic copper foil 1 for lithium secondary batteries is determined by the surface shape, glossiness, and chromium electrodeposition amount of the copper foil.
- Surface shape and glossiness are closely related to the crystal structure and grain size of copper foil.
- the surface of the electrolytic copper foil for lithium secondary batteries 1 has low roughness and high gloss.
- the grain size is large and has a columnar structure, relatively high roughness and low gloss are achieved. You have a degree.
- compressive stress is applied to the side having the low roughness and high glossiness in both surfaces of the electrolytic copper foil 1 for lithium secondary battery, and curl occurs in the compressive stress side.
- curling occurs in the electrolytic copper foil 1 for lithium secondary batteries due to the difference in electrodeposition amount of chromium constituting the rustproof layer 2 formed on both surfaces. That is, the compressive stress is applied to the greater amount of chromium deposition on both surfaces of the electrolytic copper foil 1 for lithium secondary battery, and curling occurs on the surface.
- rust preventives are formed on both surfaces of the copper foil for rust prevention as well as surface roughness and glossiness related to grain size and crystal structure of the lithium secondary battery electrolytic copper foil 1. Even the amount of chromium deposited in the layer 2 should be taken into account.
- the Curl index (C) is an average roughness measured on both sides of the lithium secondary battery electrolytic copper foil (1), that is, the difference in surface roughness, rustproof layer formed on both sides of the lithium secondary battery electrolytic copper foil (1) for rust prevention ( 2)
- the index corresponds to the difference in electrodeposition amount of chromium (Cr) and the difference in glossiness measured on both sides of the electrolytic copper foil for lithium secondary batteries (1).
- the curl indicator C is defined as follows:
- the curl index (C) value indicating curl characteristics is limited to 0 or more and 4.0 or less in order to minimize curl generation.
- the three parameters constituting the Curl Index (C) formula are different in units, but in terms of surface roughness difference ( ⁇ R), in ⁇ m units, in case of chromium deposition amount ( ⁇ Cr), in mg / m 2 units, and in glossiness difference.
- ⁇ R surface roughness difference
- ⁇ Cr chromium deposition amount
- ⁇ G glossiness difference
- the Curl index (C) value is obtained by calculating values based on GU (Glossy Unit) units and adding the values together except for units.
- the value of the curl index (C) can be limited within a certain range, preferably, each parameter constituting the curl index (C) ( ⁇ R, ⁇ Cr, ⁇ G) may also be limited within a range.
- ⁇ R which is the absolute value of the difference in surface roughness measured on both surfaces (first surface and second surface) of the electrolytic copper foil 1 for lithium secondary batteries is 0 or more and 2.0 ⁇ m or less.
- ⁇ R exceeds 2.0 ⁇ m, curling in excess of the reference value occurs toward the side where the roughness of both sides of the copper foil is lower, making it difficult to commercialize.
- ⁇ Cr which is the absolute value of the difference in the electrodeposition amount of chromium forming the rustproof layer 2 formed on both surfaces (first and second surfaces), is 0 to 3.5 mg / it is preferably not more than 2 m.
- ⁇ Cr exceeds 3.5 mg / m 2 , curling occurs at a level exceeding a reference value toward the side where the amount of electrodeposition is greater among both sides of the copper foil, making it difficult to commercialize.
- ⁇ G which is the absolute value of the difference in glossiness measured on both surfaces (first and second surfaces) of the electrolytic copper foil 1 for lithium secondary batteries, becomes 0 or more and 350GU or less.
- ⁇ G exceeds 350GU, curls exceeding the reference value are generated toward the surface showing higher glossiness of both surfaces of the electrolytic copper foil, making it difficult to commercialize.
- the lithium secondary battery electrolytic copper foil (1) it is preferable that the roughness (that is, both surface roughness) measured on the first surface and the second surface, respectively, is approximately 0.2 ⁇ m to 2.5 ⁇ m on the basis of Rz (ten point average roughness). .
- the uniformity of the active material may not be uniformly applied to the surface 1a of the electrolytic copper foil due to the high roughness, and thus the adhesion may be lowered. If not, the discharge capacity retention rate of the manufactured lithium secondary battery may decrease.
- the lithium secondary battery electrolytic copper foil 1 it is preferable that the glossiness (that is, both sides glossiness) measured on each of the first and second surfaces is approximately 10GU or more and 450GU or less. Do.
- the first surface and the that the rust-preventive layer (2) Cr deposition amount is 1.0mg / m 2 or less than 4.5mg / m 2 of which is coated on the second surface desirable.
- An electrolytic copper foil for a lithium secondary battery according to an embodiment and a comparative example is manufactured by using a milling machine having a structure including a positive electrode plate positioned at a predetermined interval with respect to a rotating drum and a drum in an electrolytic cell.
- Electrolytic copper foil according to an embodiment of the present invention is added to the additive consisting of 2 ⁇ 16mg / L gelatin and 2 ⁇ 16mg / L HEC in copper sulfate containing 50 ⁇ 100g / L copper, 50 ⁇ 150g / L sulfuric acid It can be produced by electrodepositing copper foil on the drum of the above-mentioned machine by applying a current density of approximately 10 ASD to 80 ASD to one electrolyte.
- the current density of the initial plating is preferably set to approximately 1.5 times or more higher than the current density of the final plating.
- the current density of the initial plating refers to the current density applied for 2 to 5 seconds, which is the time when the core of the copper plating is generated during the pulverization process
- the current density of the final plating refers to the current density of the initial plating except for the current density. It means the current density at the time of plating.
- discontinuous control is made so that the current density of the initial plating is 1.5 times larger than the current density of the final plating. That is, the current control is performed by the current density of the initial plating, and when the final plating time is reached, the current control is performed so that the current density drops continuously to 1.5 times or less.
- the concentration of the pre-treated electrolytic copper foil (ie, the raw foil) prepared by the above-described raw foil manufacturing process is 0.5 to 1.5 g / L
- the concentration of the additive for example, 2-deoxyribose, etc.
- the rust preventive layer 2 of FIG. 2 is formed by immersing the rust preventive solution at a liquid temperature of 20 ° C. to 35 ° C. for 0.5 seconds to 2 seconds to apply chromium rust preventive solution on both sides of the pretreated electrolytic copper foil.
- the difference in the amount of chromium deposits of the rust-preventing layer 2 is minimized by appropriately adjusting the concentration of Cr and the concentration of the additive (for example, 2-deoxyribose, etc.) and / or the surface roughness and surface shape of the raw foil. can do.
- the concentration of gelatin and HEC in copper sulfate containing 50 ⁇ 100g / L copper, 50 ⁇ 150g / L sulfuric acid is different from the embodiment as shown in Table 1 below, and applied to the electrolyte solution
- the current density of the current to be in the range of 10ASD to 80ASD, but as shown in Table 1 below, by adjusting the difference between the current density of the initial plating and the current density of the final plating is less than 1.5 times to electrodeposit the copper foil on the drum of the machine I was.
- composition, electrolytic conditions and antirust layer formation conditions of a specific electrolyte solution for milling the electrolytic copper foil according to these Examples and Comparative Examples are as follows.
- Additive (2-deoxyribose) concentration of rust preventive solution See Table 1 below.
- Liquid temperature 20 °C ⁇ 35 °C
- Example 1 2.1 2.3 75 40 1.0 1.2
- Example 2 2.2 15.9 75 40 1.0 1.2
- Example 3 7.5 2.2 65 40 1.0 1.2
- Example 4 7.8 15.8 65 40 1.0 1.2
- Example 5 15.8 2.3 80
- Example 6 15.8 15.8 80 40 1.0 1.2
- Example 7 3.7 4.9 70 40 1.0 1.2 Comparative Example 1 1.9 7.6 75 40 1.0 1.2 Comparative Example 2 16.5 7.4 75 40 1.0 1.2 Comparative Example 3 7.5 1.8 80 40 1.0 1.2 Comparative Example 4 7.4 16.8 80 40 1.0 1.2 Comparative Example 5 7.5 7.6 55 40 1.0 1.2 Comparative Example 6 7.5 7.6 45 40 1.0 1.2 Comparative Example 7 2.1 2.3 65 40 1.0 0 Comparative Example 8 2.1
- the chromium electrodeposition amount was measured by dissolving the electrolytic copper foil samples of Examples and Comparative Examples with nitric acid having a concentration of 20% by mass and performing quantitative analysis by atomic absorption method using an atomic absorption spectrophotometer (model: AA240FS) manufactured by VARIAN Corporation.
- the incidence angle was measured at 60 degrees using Nippon Denshoku Industries Co., Ltd. glossimeter handy gloss meter PG-1 based on JISZ8741.
- ⁇ R is 2.0 ⁇ m or less
- ⁇ Cr is 3.5 mg / m 2 or less
- ⁇ G is 350 GU or less.
- the lithium secondary battery copper foil according to an embodiment of the present invention as well as the curl indicator (curl indicator) as a variable to the main factors that generate the curl of the copper foil is limited to a certain range, and constitutes the curl indicator Each variable is also limited to a certain range to minimize the occurrence of curl.
- the present invention relates to an electrolytic copper foil for a lithium secondary battery, which is a negative electrode current collector material applied to a lithium secondary battery, and a lithium secondary battery including the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
An electrolytic copper foil for a lithium secondary battery, according to one embodiment of the present invention, has a curl indicator (C) value of zero to 4.0, the curl indicator (C) value defined as 1.21ΔR+1.12ΔCr+0.01ΔG, wherein the ΔR corresponds to an absolute value of a difference between luminance measured on a first surface of the electrolytic copper foil for a lithium secondary battery and luminance measured on a second surface of the electrolytic copper foil for a lithium secondary battery, the ΔCr corresponds to an absolute value of a difference between an electrodeposit amount of chrome forming an anti-corrosion layer formed on the first surface of the electrolytic copper foil for a lithium secondary battery and an electrodeposit amount of chrome forming an anti-corrosion layer formed on the second surface of the electrolytic copper foil for a lithium secondary battery, and the ΔG corresponds to an absolute value of a difference between a gloss level measured on the first surface of the electrolytic copper foil for a lithium secondary battery and a gloss level measured on the second surface of the electrolytic copper foil for a lithium secondary battery.
Description
본 발명은 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 좀 더 구체적으로는 동박의 컬을 발생시키는 주요 인자들을 변수로 하는 컬 지표(curl indicator)가 일정 범위로 제한됨으로써 컬 발생이 최소화 된 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 출원은 2015년 7월 24일에 출원된 한국특허출원 제10-2015-0104779호 및 2016년 5월 24일에 출원된 한국특허출원 제10-2016-0063598호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다. The present invention relates to an electrolytic copper foil for a lithium secondary battery and a lithium secondary battery including the same. More specifically, a curl indicator (curl indicator) as a variable which is a main factor for generating curl of copper foil is limited to a certain range, thereby generating curl. It relates to an electrolytic copper foil for a minimized lithium secondary battery and a lithium secondary battery comprising the same. This application claims the priority based on Korean Patent Application No. 10-2015-0104779 filed on July 24, 2015 and Korean Patent Application No. 10-2016-0063598 filed on May 24, 2016, All content disclosed in the specification and drawings of an application is incorporated in this application.
리튬 이차전지용 전해동박에 일정 수준 이상의 컬(curl)이 발생되는 경우 전지 제조 공정에서 주름이 발생될 수 있으며, 주름 발생이 심화되는 경우 겹침 현상까지 발생될 수 있는데, 이러한 주름 및 겹침 현상의 발생은 리튬 이차전지용 전해동박의 제조에 있어서 치명적인 결함이 될 수 있다.If a certain level of curl is generated in the electrolytic copper foil for a lithium secondary battery, wrinkles may occur in a battery manufacturing process, and when wrinkles are intensified, overlap may occur. Such wrinkles and overlap may occur in lithium. It may become a fatal defect in manufacture of the electrolytic copper foil for secondary batteries.
이에 따라, 리튬 이차전지용 전해동박의 제조에 있어서는, 통상적으로 컬을 대략 7mm 이하 수준으로 관리할 필요성이 있다.Accordingly, in the production of the electrolytic copper foil for lithium secondary batteries, it is usually necessary to manage the curl at a level of about 7 mm or less.
한편, 이러한 컬의 발생 원인은, 동박의 양 면 중 상대적으로 높은 광택도를 갖는 샤이니 면(shiny surface)과 상대적으로 낮은 광택도를 갖는 매트 면(matte surface)에서 발생되는 응력 및 표면특성의 차이에 따라서 발생된다.On the other hand, the cause of the curl is the difference between the stress and surface characteristics generated on the shiny surface (shiny surface) having a relatively high glossiness and the matte surface having a relatively low gloss of both surfaces of the copper foil Is generated accordingly.
예를 들어, 이러한 응력 및 표면특성의 차이로 인해 매트 면 쪽으로 압축 응력이 걸리는 경우 M면 컬이 발생되고, 이와 달리 샤이니 면 쪽으로 압축 응력이 걸리면 S면 컬이 발생된다.For example, due to such a difference in stress and surface characteristics, M surface curl is generated when compressive stress is applied toward the mat surface, while S surface curl is generated when compressive stress is applied to the shiny surface.
따라서, 이러한 동박의 컬 발생을 일정 수준 이하로 하기 위해서는 동박의 양 면이 갖는 표면 특성 중에서도 동박의 컬에 특별히 많은 영향을 미치는 인자들을 찾아내어 이들의 값을 일정 수준 범위 내로 제어할 필요가 있다.Therefore, in order to reduce the curl generation of the copper foil below a certain level, it is necessary to find factors that have a particularly large influence on the curl of the copper foil among the surface properties of both surfaces of the copper foil, and control their values within a certain level range.
본 발명은, 상술한 기술적 과제를 고려하여 창안된 것으로서, 리튬 이차전지용 전해동박의 컬 특성에 많은 영향을 미치는 인자들을 찾아내고 이들의 값을 일정 수준 범위 내로 제어함으로써 리튬 이차전지용 전해동박의 제조 과정에서 컬 발생량이 최소화될 수 있도록 하는 것을 일 목적으로 한다.The present invention has been made in view of the above technical problem, and finds factors influencing the curl characteristics of an electrolytic copper foil for a lithium secondary battery and controls the values thereof within a predetermined range to curl the manufacturing process of the electrolytic copper foil for a lithium secondary battery. It is an object of the present invention to minimize the generation amount.
다만, 본 발명이 이루고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 위에서 언급되지 않은 또 다른 기술적 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-described problem, another technical problem not mentioned above will be clearly understood by those skilled in the art from the description of the invention described below.
본 발명자들은 상술한 기술적 과제를 달성하기 위해 연구를 진행한 결과, 몇몇 인자들이 리튬 이차전지용 전해동박의 컬 특성에 큰 영향을 미친다는 것을 알아내었고, 이러한 몇몇 인자들을 변수로 하는 컬 지표(curl indicator)를 일정 범위로 제한함으로써 리튬 이차전지용 전해동박의 컬 변화량이 원하는 수준으로 제어될 수 있음을 알아내었다.The present inventors have conducted studies to achieve the above technical problem, and found that several factors have a great influence on the curl characteristics of the electrolytic copper foil for lithium secondary batteries, and the curl indicator using these factors as variables. It was found that the amount of curl change of the electrolytic copper foil for a lithium secondary battery can be controlled to a desired level by limiting) to a certain range.
이러한 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박은, 리튬 이차전지용 전해동박으로서, 1.21ΔR+1.12ΔCr+0.01ΔG 로 정의되는 컬 지표(C) 값이 0 이상 4.0 이하이고, 상기 ΔR은 상기 리튬 이차전지용 전해동박의 제1 면 상에서 측정된 조도와 제2 면 상에서 측정된 조도 차이의 절대값에 해당하며, 상기 ΔCr은 상기 리튬 이차전지용 전해동박의 제1 면 상에 형성된 크롬층을 이루는 크롬의 전착량과 제2 면 상에 형성된 크롬층을 이루는 크롬의 전착량 차이의 절대값에 해당하고, 상기 ΔG는 상기 리튬 이차전지용 전해동박의 제1 면 상에서 측정된 광택도와 제2 면 상에서 측정된 광택도 차이의 절대값에 해당한다.The electrolytic copper foil for lithium secondary batteries according to an embodiment of the present invention is an electrolytic copper foil for lithium secondary batteries, wherein a Curl index (C) value defined as 1.21ΔR + 1.12ΔCr + 0.01ΔG is 0 or more and 4.0 or less, and the ΔR is the lithium. It corresponds to an absolute value of the difference in roughness measured on the first surface and the second surface of the electrolytic copper foil for secondary batteries, wherein ΔCr is the electrodeposition amount of chromium forming a chromium layer formed on the first surface of the lithium secondary battery electrolytic copper foil. And the absolute value of the difference in the electrodeposition amount of chromium forming the chromium layer formed on the second surface, wherein ΔG is the difference between the glossiness measured on the first surface of the electrolytic copper foil for lithium secondary batteries and the glossiness measured on the second surface It corresponds to an absolute value.
상기 리튬 이차전지용 동박의 양 면 각각에서 측정된 조도는 모두 0.2㎛ 내지 2.5㎛ 일 수 있다.The roughness measured on each of both surfaces of the copper secondary battery foil may be 0.2 ㎛ to 2.5 ㎛.
상기 리튬 이차전지용 동박의 양 면 상에 형성된 크롬층을 이루는 크롬의 전착량 각각은 모두 1.0mg/m2 이상일 수 있다.Each electrodeposition amount of chromium forming a chromium layer formed on both surfaces of the copper secondary battery foil may be 1.0 mg / m 2 or more.
상기 리튬 이차전지용 동박의 양 면 각각에서 측정된 광택도는 모두 10GU 내지 450GU 일 수 있다.Glossiness measured on each of both surfaces of the copper secondary battery foil may be 10GU to 450GU.
상기 ΔR은 0 이상 2.0㎛ 이하일 수 있다.The ΔR may be 0 or more and 2.0 μm or less.
상기 ΔCr은 0 이상 3.5mg/m2 이하일 수 있다.The ΔCr may be 0 or more and 3.5 mg / m 2 or less.
상기 ΔG는 0 이상 350GU 이하일 수 있다.The ΔG may be 0 or more and 350GU or less.
상기 리튬 이차전지용 동박의 두께는 4㎛ 내지 35㎛ 일 수 있다.The lithium secondary battery copper foil may have a thickness of about 4 μm to about 35 μm.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지는, 상술한 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박이 음극 집전체로 적용된 것이다.On the other hand, the lithium secondary battery according to an embodiment of the present invention, the lithium secondary battery electrolytic copper foil according to an embodiment of the present invention is applied as a negative electrode current collector.
본 발명의 일 측면에 따르면, 리튬 이차전지용 전해동박의 제조 과정에서 동박에 발생되는 컬량이 기준치 이하로 억제될 수 있으며, 이로써 리튬 이차전지의 제조 공정에 있어서 동박에 주름 및 겹침이 발생되는 것을 방지할 수 있게 된다.According to an aspect of the present invention, the amount of curl generated in the copper foil in the manufacturing process of the electrolytic copper foil for lithium secondary battery can be suppressed to below the reference value, thereby preventing the occurrence of wrinkles and overlap in the copper foil in the manufacturing process of the lithium secondary battery. It becomes possible.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification are illustrative of the preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박을 나타내는 단면도이다.1 is a cross-sectional view showing an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
도 2는, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박의 양 면에 크롬층이 형성된 상태를 나타내는 단면도이다.2 is a cross-sectional view showing a state in which chromium layers are formed on both surfaces of an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
도 3 및 도 4는, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박에 대한 컬 측정 방법을 나타내는 사진이다.3 and 4 are photographs showing a curl measurement method for an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only some of the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
먼저, 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박을 설명하기로 한다.First, an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박을 나타내는 단면도이고, 도 2는 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박의 양 면에 방청층이 형성된 상태를 나타내는 단면도이다.1 is a cross-sectional view showing an electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention, Figure 2 is a cross-sectional view showing a state in which antirust layers are formed on both sides of the electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention.
도 1 및 도 2에 도시된 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박(1)은, 대략 4㎛ 내지 35㎛ 두께를 갖는 것으로서, 리튬 이차전지의 음극 집전체로 사용되는 것이 바람직하다. 즉, 리튬 이차전지에 있어서 음극 활물질과 결합되는 음극 집전체로는 전해동박이 사용되는 것이 바람직하다.1 and 2, the electrolytic copper foil 1 for a lithium secondary battery according to an exemplary embodiment of the present invention has a thickness of about 4 μm to 35 μm, and is preferably used as a negative electrode current collector of a lithium secondary battery. That is, it is preferable that an electrolytic copper foil is used as a negative electrode collector couple | bonded with a negative electrode active material in a lithium secondary battery.
반면, 리튬 이차전지의 제조에 있어서, 양극 활물질과 결합되는 양극 집전체로는 알루미늄(Al)으로 이루어진 박(foil)이 사용되는 것이 일반적이다.On the other hand, in the manufacture of a lithium secondary battery, a foil made of aluminum (Al) is generally used as a positive electrode current collector combined with the positive electrode active material.
이에 따라, 본 발명에 있어서는, 상기 리튬 이차전지용 전해동박(1)이 리튬 이차전지에 적용되는 음극 집전체에 해당하는 경우를 예로 들어 설명하기로 한다.Therefore, in this invention, the case where the said electrolytic copper foil 1 for lithium secondary batteries corresponds to the negative electrode electrical power collector applied to a lithium secondary battery is demonstrated as an example.
리튬 이차전지용 전해동박(1)에 걸리는 응력은 동박이 갖는 표면 형상, 광택도 및 크롬 전착량에 의해 결정된다. 표면 형상과 광택도는 동박의 결정 구조 및 결정립 사이즈와 밀접한 관계가 있다.The stress applied to the electrolytic copper foil 1 for lithium secondary batteries is determined by the surface shape, glossiness, and chromium electrodeposition amount of the copper foil. Surface shape and glossiness are closely related to the crystal structure and grain size of copper foil.
결정립 사이즈가 미세하고 원형 구조로 결정이 생성되면 리튬 이차전지용 전해동박(1)의 표면은 낮은 조도와 높은 광택을 가지게 되며, 이와 달리 결정립 사이즈가 크고 기둥형 구조를 가지게 되면 상대적으로 높은 조도와 낮은 광택도를 가지게 된다.If the grain size is fine and crystals are formed in a circular structure, the surface of the electrolytic copper foil for lithium secondary batteries 1 has low roughness and high gloss. On the other hand, when the grain size is large and has a columnar structure, relatively high roughness and low gloss are achieved. You have a degree.
일반적으로, 리튬 이차전지용 전해동박(1)의 양 면 중에서 낮은 조도와 높은 광택도를 가지는 쪽으로 압축 응력이 걸리고, 압축 응력이 걸리는 쪽으로 컬(Curl)이 발생하게 된다.In general, compressive stress is applied to the side having the low roughness and high glossiness in both surfaces of the electrolytic copper foil 1 for lithium secondary battery, and curl occurs in the compressive stress side.
이와 함께, 리튬 이차전지용 전해동박(1)은 양 표면에 형성된 방청층(2)을 이루는 크롬의 전착량 차이에 의해서도 컬이 발생하게 된다. 즉, 리튬 이차전지용 전해동박(1)의 양 면 중 크롬 전착량이 더 많은 쪽으로 압축 응력이 걸리고, 해당 면 쪽으로 컬이 발생하게 된다.In addition, curling occurs in the electrolytic copper foil 1 for lithium secondary batteries due to the difference in electrodeposition amount of chromium constituting the rustproof layer 2 formed on both surfaces. That is, the compressive stress is applied to the greater amount of chromium deposition on both surfaces of the electrolytic copper foil 1 for lithium secondary battery, and curling occurs on the surface.
따라서, 리튬 이차전지용 전해동박(1)의 컬 발생을 줄이기 위해서는 리튬 이차전지용 전해동박(1)의 결정립 사이즈 및 결정구조 등과 관계가 있는 표면조도 및 광택도 뿐만 아니라 방청을 위해 동박의 양 표면에 형성되는 방청층(2)을 이루는 크롬의 전착량 까지도 고려되어야 하는 것이다.Therefore, in order to reduce curling of the electrolytic copper foil 1 for lithium secondary batteries, rust preventives are formed on both surfaces of the copper foil for rust prevention as well as surface roughness and glossiness related to grain size and crystal structure of the lithium secondary battery electrolytic copper foil 1. Even the amount of chromium deposited in the layer 2 should be taken into account.
본 발명에서는, 상기 리튬 이차전지용 전해동박(1)의 양 면에서 측정되는 세 가지 물성의 차이를 모두 고려한 것으로서, 동박에 있어서 컬이 발생되는 정도를 나타내는 지표에 해당하는 컬 지표(C)를 이용하여 컬의 발생 정도를 나타낸다. In the present invention, considering the difference in all three physical properties measured on both sides of the electrolytic copper foil (1) for the lithium secondary battery, by using the curl index (C) corresponding to the index indicating the degree of curl generated in the copper foil Indicates the degree of curling.
여기서, 상기 컬 지표(C)는 리튬 이차전지용 전해동박(1)의 양 면 상에서 측정되는 평균 거칠기, 즉 표면조도의 차이, 방청을 위해 리튬 이차전지용 전해동박(1)의 양 면 상에 형성된 방청층(2)을 이루는 크롬(Cr)의 전착량 차이, 그리고 리튬 이차전지용 전해동박(1)의 양 면 상에서 측정되는 광택도의 차이를 변수로 하는 지표에 해당한다.Here, the Curl index (C) is an average roughness measured on both sides of the lithium secondary battery electrolytic copper foil (1), that is, the difference in surface roughness, rustproof layer formed on both sides of the lithium secondary battery electrolytic copper foil (1) for rust prevention ( 2) The index corresponds to the difference in electrodeposition amount of chromium (Cr) and the difference in glossiness measured on both sides of the electrolytic copper foil for lithium secondary batteries (1).
상기 컬 지표(C)는 다음과 같이 정의된다:The curl indicator C is defined as follows:
C=1.21ΔR+1.12ΔCr+0.01ΔG (단, ΔR은 제1 면(1a) 및 제2 면(1b)에서 측정된 표면조도 차이의 절대값, ΔCr은 제1 면(1a) 및 제2 면(1b) 각각에 형성된 방청층(2)을 이루는 크롬의 전착량 차이의 절대값, ΔG는 제1 면(1a) 및 제2 면(1b)에서 측정된 광택도 차이의 절대값에 해당한다.)C = 1.21ΔR + 1.12ΔCr + 0.01ΔG (where ΔR is the absolute value of the difference in surface roughness measured at the first side 1a and the second side 1b, ΔCr is the first side 1a and the second side) (1b) The absolute value of the difference of electrodeposition amount of chromium which forms the rustproof layer 2 formed in each, (DELTA) G corresponds to the absolute value of the glossiness difference measured in the 1st surface 1a and the 2nd surface 1b. )
본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박(1)은, 컬(curl) 발생을 최소화 하기 위해 컬 특성을 나타내는 상기 컬 지표(C) 값이 0 이상 4.0 이하로 제한된다.In the electrolytic copper foil 1 for a lithium secondary battery according to an exemplary embodiment of the present invention, the curl index (C) value indicating curl characteristics is limited to 0 or more and 4.0 or less in order to minimize curl generation.
상기 컬 지표(C) 값이 4.0을 초과하는 경우, 이차전지의 음극 집전체로 이용하기 위해 제한되어야 하는 수치보다 더 큰 수치의 컬이 발생됨으로써 동박을 리튬 이차전지의 음극 집전체로 적용하기 어렵게 된다.When the curl index (C) value exceeds 4.0, curl of a value larger than the value to be limited for use as a negative electrode current collector of a secondary battery is generated, making it difficult to apply copper foil as a negative electrode current collector of a lithium secondary battery. do.
상기 컬 지표(C) 식을 구성하는 세 가지 파라미터들은 각각 그 단위가 다르지만, 표면조도 차이(ΔR)의 경우 ㎛ 단위, 크롬 전착량 차이(ΔCr)의 경우 mg/m2 단위, 그리고 광택도 차이(ΔG) 의 경우 GU(Glossy Unit) 단위를 기준으로 하여 계산한 후 단위는 제외하고 수치끼리 더함으로써 컬 지표(C) 값을 얻는다.The three parameters constituting the Curl Index (C) formula are different in units, but in terms of surface roughness difference (ΔR), in μm units, in case of chromium deposition amount (ΔCr), in mg / m 2 units, and in glossiness difference. In the case of (ΔG), the Curl index (C) value is obtained by calculating values based on GU (Glossy Unit) units and adding the values together except for units.
한편, 상기 리튬 이차전지용 전해동박(1)은, 원하는 컬 특성을 얻기 위해, 컬 지표(C) 값이 일정 범위 내로 제한될 수 있으며, 바람직하게는, 컬 지표(C)를 구성하는 각각의 파라미터(ΔR, ΔCr, ΔG) 역시 일정 범위 내로 제한될 수 있다. On the other hand, the lithium secondary battery electrolytic copper foil (1), in order to obtain the desired curl characteristics, the value of the curl index (C) can be limited within a certain range, preferably, each parameter constituting the curl index (C) ( ΔR, ΔCr, ΔG) may also be limited within a range.
먼저, 상기 리튬 이차전지용 전해동박(1)은, 양 면(제1면 및 제2면) 상에서 측정된 표면조도 차이의 절대값인 ΔR이 0 이상 2.0㎛ 이하가 되는 것이 바람직하다. 상기 ΔR이 2.0㎛를 초과하는 경우 동박의 양 면 중 조도가 더 낮게 나타나는 면 쪽으로 기준치를 초과하는 수준의 컬이 발생되어 제품화가 곤란하게 된다.First, it is preferable that ΔR which is the absolute value of the difference in surface roughness measured on both surfaces (first surface and second surface) of the electrolytic copper foil 1 for lithium secondary batteries is 0 or more and 2.0 µm or less. When the ΔR exceeds 2.0 μm, curling in excess of the reference value occurs toward the side where the roughness of both sides of the copper foil is lower, making it difficult to commercialize.
다음으로, 상기 리튬 이차전지용 전해동박(1)은, 양 면(제1면 및 제2면) 상에 형성된 방청층(2)을 이루는 크롬의 전착량 차이의 절대값인 ΔCr이 0 이상 3.5mg/m2 이하가 되는 것이 바람직하다. 상기 ΔCr이 3.5mg/m2 를 초과하는 경우 동박의 양 면 중 전착량이 더 많은 면 쪽으로 기준치를 초과하는 수준의 컬이 발생되어 제품화가 곤란하게 된다.Next, in the electrolytic copper foil 1 for lithium secondary batteries, ΔCr, which is the absolute value of the difference in the electrodeposition amount of chromium forming the rustproof layer 2 formed on both surfaces (first and second surfaces), is 0 to 3.5 mg / it is preferably not more than 2 m. When the ΔCr exceeds 3.5 mg / m 2 , curling occurs at a level exceeding a reference value toward the side where the amount of electrodeposition is greater among both sides of the copper foil, making it difficult to commercialize.
마지막으로, 상기 리튬 이차전지용 전해동박(1)은, 양 면(제1면 및 제2면) 상에서 측정된 광택도 차이의 절댓값인 ΔG가 0 이상 350GU 이하가 되는 것이 바람직하다. 상기 ΔG가 350GU 를 초과하는 경우 전해동박의 양 면 중 더 높은 광택도를 나타내는 면 쪽으로 기준치를 초과하는 수준의 컬이 발생되어 제품화가 곤란하게 된다.Finally, it is preferable that ΔG, which is the absolute value of the difference in glossiness measured on both surfaces (first and second surfaces) of the electrolytic copper foil 1 for lithium secondary batteries, becomes 0 or more and 350GU or less. When the ΔG exceeds 350GU, curls exceeding the reference value are generated toward the surface showing higher glossiness of both surfaces of the electrolytic copper foil, making it difficult to commercialize.
한편, 상기 리튬 이차전지용 전해동박(1)은, 제1면 및 제2면에서 각각 측정된 조도(즉, 양 면 조도)가 Rz(십점 평균거칠기) 기준으로 대략 0.2㎛ 내지 2.5㎛ 인 것이 바람직하다.On the other hand, the lithium secondary battery electrolytic copper foil (1), it is preferable that the roughness (that is, both surface roughness) measured on the first surface and the second surface, respectively, is approximately 0.2㎛ to 2.5㎛ on the basis of Rz (ten point average roughness). .
상기 양 면 조도가 0.2㎛ 미만인 경우에는 전해동박과 활물질 간의 밀착성이 저하되는 문제점이 있으며, 이처럼 전해동박과 활물질 간의 밀착성 저하가 발생되면 리튬 이차전지의 사용 과정에서 활물질 탈리 현상이 발생될 위험이 커지게 된다.When the roughness of the two sides is less than 0.2 μm, there is a problem in that the adhesion between the electrolytic copper foil and the active material is lowered. When the adhesion decreases between the electrolytic copper foil and the active material, the risk of deactivation of the active material is increased during the use of the lithium secondary battery. .
반대로, 상기 양 면 조도가 2.5㎛를 초과하는 경우에는 높은 조도로 인해 전해동박의 표면(1a)에 활물질의 균일한 코팅이 이루어질 수 없어 밀착력이 저하될 수 있으며, 이처럼 활물질의 균일한 코팅이 이루어지지 않는 경우에는 제조된 리튬 이차전지의 방전용량 유지율이 저하될 수 있다.On the contrary, when the roughness of both sides exceeds 2.5 μm, the uniformity of the active material may not be uniformly applied to the surface 1a of the electrolytic copper foil due to the high roughness, and thus the adhesion may be lowered. If not, the discharge capacity retention rate of the manufactured lithium secondary battery may decrease.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박(1)은, 제1면 및 제2면 각각에서 측정된 광택도(즉, 양 면 광택도)가 대략 10GU 이상 450GU 이하가 되는 것이 바람직하다.In addition, the lithium secondary battery electrolytic copper foil 1 according to an embodiment of the present invention, it is preferable that the glossiness (that is, both sides glossiness) measured on each of the first and second surfaces is approximately 10GU or more and 450GU or less. Do.
상기 양 면 광택도가 10GU 미만이거나 450GU 를 초과하는 경우 전지 제조 공정에 있어서 양 면 음극재 패턴 코팅 시에 동박 센싱에 에러를 발생시킬 수 있다.When the two-sided glossiness is less than 10GU or more than 450GU, an error may occur in the copper foil sensing during coating of the two-side negative electrode material pattern in the battery manufacturing process.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 전해동박은, 제1면 및 제2면에 도금되는 방청층(2)의 Cr 전착량이 1.0mg/m2 이상 4.5mg/m2 이하가 되는 것이 바람직하다. In addition, it is electrolytic copper foil for a lithium secondary battery according to an embodiment of the present invention, the first surface and the that the rust-preventive layer (2) Cr deposition amount is 1.0mg / m 2 or less than 4.5mg / m 2 of which is coated on the second surface desirable.
상기 양 면의 Cr 전착량이 1.0mg/m2 미만이 되는 경우 대기중의 공기로 인해 전해동박이 쉽게 산화되어 이차전지용 동박으로 사용할 수 없고, 4.5mg/m2 를 초과하는 경우에는 전해동박과 음극 활물질간의 밀착력이 저하된다. When if the amount is less than 1.0mg / m 2 the amount of Cr deposition of electrolytic copper foil surface is easily oxidized due to air in the atmosphere can not be used as a secondary battery, a copper foil, exceeding 4.5mg / m 2, the electrolytic copper foil and between the negative electrode active material Adhesion decreases.
<실시예 및 비교예><Examples and Comparative Examples>
이하에서, 본 발명의 특성을 만족하는 실시예와 이에 비교되는 비교예의 전해동박을 제조하고, 이 실시예 및 비교예의 전해동박간의 물성을 비교하는 것에 의해 본 발명의 특징을 보다 명확히 살펴보기로 한다. Hereinafter, the characteristics of the present invention will be described more clearly by preparing an electrolytic copper foil of an example satisfying the characteristics of the present invention and a comparative example, and comparing the physical properties between the electrolytic copper foils of this example and the comparative example.
실시예 및 비교예에 따른 리튬 이차전지용 전해동박은, 전해조 내에 회전드럼 및 드럼에 대해 소정의 간격을 갖고 위치하는 양극판을 포함하는 구조의 제박기를 이용하여 제조된다. An electrolytic copper foil for a lithium secondary battery according to an embodiment and a comparative example is manufactured by using a milling machine having a structure including a positive electrode plate positioned at a predetermined interval with respect to a rotating drum and a drum in an electrolytic cell.
본 발명의 실시예에 해당하는 전해동박은 50 ~ 100g/L의 동, 50 ~ 150g/L의 황산을 포함하는 황산동내에 2~16mg/L의 젤라틴과 2~16mg/L의 HEC로 이루어지는 첨가제를 첨가한 전해액에 대략 10ASD 내지 80ASD의 전류밀도의 전류를 인가하는 것에 의해 상기 제박기의 드럼 상에 동박을 전착시킴으로써 제조될 수 있다.Electrolytic copper foil according to an embodiment of the present invention is added to the additive consisting of 2 ~ 16mg / L gelatin and 2 ~ 16mg / L HEC in copper sulfate containing 50 ~ 100g / L copper, 50 ~ 150g / L sulfuric acid It can be produced by electrodepositing copper foil on the drum of the above-mentioned machine by applying a current density of approximately 10 ASD to 80 ASD to one electrolyte.
또한, 인가되는 전류에 기울기를 주어 초기 도금의 전류밀도와 말기 도금의 전류밀도에 차이를 줌으로써 동박 양 면의 광택도 및 조도 차이를 최소화 할 수 있다. 즉, 초기 도금의 전류밀도는 말기 도금의 전류밀도에 비해 대략 1.5배 이상 높게 설정되는 것이 바람직하다. 여기서, 초기 도금의 전류 밀도라 함은 제박 공정시 구리 도금의 핵이 생성되는 시간인 2~5초간에 인가되는 전류 밀도를 의미하고, 말기 도금의 전류밀도라 함은 초기 도금의 전류밀도를 제외한 도금 시점의 전류 밀도를 의미한다. 또한, 초기 도금의 전류밀도가 말기 도금의 전류밀도에 비해 1.5배 크도록 불연속적인 제어가 이루어진다. 즉, 초기 도금의 전류밀도로 전류 제어가 이루어지다가 말기 도금 시점에 도달하면 전류밀도가 1.5배 이하로 불연속적으로 뚝 떨어지도록 전류 제어가 이루어진다. In addition, it is possible to minimize the difference in glossiness and roughness of both surfaces of the copper foil by giving a slope to the applied current to give a difference in the current density of the initial plating and the current density of the final plating. That is, the current density of the initial plating is preferably set to approximately 1.5 times or more higher than the current density of the final plating. Here, the current density of the initial plating refers to the current density applied for 2 to 5 seconds, which is the time when the core of the copper plating is generated during the pulverization process, and the current density of the final plating refers to the current density of the initial plating except for the current density. It means the current density at the time of plating. Further, discontinuous control is made so that the current density of the initial plating is 1.5 times larger than the current density of the final plating. That is, the current control is performed by the current density of the initial plating, and when the final plating time is reached, the current control is performed so that the current density drops continuously to 1.5 times or less.
아울러, 상기 원박 제조공정을 통해 제조된 전처리 전해동박(즉, 원박)을 Cr의 농도가 0.5~1.5g/L이고, 첨가제(예를 들어, 2-디옥시리보스 등)의 농도가 1.2g/L인 방청액에 액온 20℃ ~ 35℃에서 0.5초 내지 2초 동안 침지시켜 전처리 전해동박의 양 면 상에 크롬 방청액을 도포하는 것에 의해 도 2의 방청층(2)을 형성한다. 이때, Cr의 농도와 첨가제(예를 들어, 2-디옥시리보스 등)의 농도 및/또는 원박의 양면 표면조도 및 표면형상을 적절히 조절하는 것에 의해 방청층(2)의 크롬 전착량의 차이를 최소화 할 수 있다.In addition, the concentration of the pre-treated electrolytic copper foil (ie, the raw foil) prepared by the above-described raw foil manufacturing process is 0.5 to 1.5 g / L, the concentration of the additive (for example, 2-deoxyribose, etc.) is 1.2 g / L The rust preventive layer 2 of FIG. 2 is formed by immersing the rust preventive solution at a liquid temperature of 20 ° C. to 35 ° C. for 0.5 seconds to 2 seconds to apply chromium rust preventive solution on both sides of the pretreated electrolytic copper foil. At this time, the difference in the amount of chromium deposits of the rust-preventing layer 2 is minimized by appropriately adjusting the concentration of Cr and the concentration of the additive (for example, 2-deoxyribose, etc.) and / or the surface roughness and surface shape of the raw foil. can do.
반면에 비교예에 따른 전해동박은 50 ~ 100g/L의 동, 50 ~ 150g/L의 황산을 포함하는 황산동내에 젤라틴과 HEC의 농도를 아래 [표 1]과 같이 실시예와 달리하고, 전해액에 인가되는 전류의 전류밀도를 10ASD 내지 80ASD 범위로 하되, 아래 [표 1]과 같이 초기 도금의 전류밀도와 말기 도금의 전류밀도의 차이가 1.5배 미만이 되도록 조절하여 제박기의 드럼 상에 동박을 전착시켰다.On the other hand, in the electrolytic copper foil according to the comparative example, the concentration of gelatin and HEC in copper sulfate containing 50 ~ 100g / L copper, 50 ~ 150g / L sulfuric acid is different from the embodiment as shown in Table 1 below, and applied to the electrolyte solution The current density of the current to be in the range of 10ASD to 80ASD, but as shown in Table 1 below, by adjusting the difference between the current density of the initial plating and the current density of the final plating is less than 1.5 times to electrodeposit the copper foil on the drum of the machine I was.
아울러, 상기 원박 제조공정을 통해 제조된 비교예에 따른 전처리 전해동박(즉, 원박)을 아래 [표 1]과 같은 방청액에 침지시켜 전처리 전해동박의 양 면 상에 크롬 방청액을 도포하는 것에 의해 방청층을 형성하였다. In addition, by immersing the pre-treated electrolytic copper foil (ie, the raw foil) according to the comparative example prepared through the above-mentioned raw material manufacturing process in the rust solution as shown in [Table 1] by rust prevention by applying chromium rust solution on both sides of the pre-treated electrolytic copper foil A layer was formed.
이러한 실시예 및 비교예에 따른 전해동박을 제박하기 위한 구체적인 전해액의 조성과 전해 조건 및 방청층 형성조건은 다음과 같다. The composition, electrolytic conditions and antirust layer formation conditions of a specific electrolyte solution for milling the electrolytic copper foil according to these Examples and Comparative Examples are as follows.
(1) 전해액 조성 및 전해조건(1) electrolyte composition and electrolytic conditions
구리 : 75g/LCopper: 75g / L
황산 : 100g/LSulfuric acid: 100g / L
전해액 온도 : 55℃Electrolyte Temperature: 55 ℃
초기 도금의 전류밀도 및 말기 도금의 전류밀도 : 아래 [표 1]참조 Current Density of Initial Plating and Current Density of Final Plating: Refer to [Table 1] below
첨가제(젤라틴 및 HEC) 농도 : 아래 [표 1]참조 Additive (Gelatin and HEC) Concentrations: See Table 1 below
(2) 방청층 형성조건 (2) Condition of forming rustproof layer
방청액의 Cr 농도 : 1.0g/LCr concentration of rust preventive solution: 1.0g / L
방청액의 첨가제(2-디옥시리보스) 농도 : 아래 [표 1]참조 Additive (2-deoxyribose) concentration of rust preventive solution: See Table 1 below.
액온 : 20℃ ~ 35℃Liquid temperature: 20 ℃ ~ 35 ℃
침지 시간 : 0.5초 내지 2초Immersion time: 0.5 second to 2 seconds
구분division | 첨가제additive (젤라틴)(gelatin) [mg/L][mg / L] | 첨가제additive (HEC)(HEC) [mg/L][mg / L] | 초기 도금의 Early plating 전류밀도Current density [ASD][ASD] | 말기 도금의 전류밀도Current Density of Final Plating [ASD][ASD] | CrCr [g/L][g / L] | 2-2- 디옥시리보스Deoxyribose [g/L][g / L] |
실시예 1Example 1 | 2.12.1 | 2.32.3 | 7575 | 4040 | 1.01.0 | 1.21.2 |
실시예 2Example 2 | 2.22.2 | 15.915.9 | 7575 | 4040 | 1.01.0 | 1.21.2 |
실시예 3Example 3 | 7.57.5 | 2.22.2 | 6565 | 4040 | 1.01.0 | 1.21.2 |
실시예 4Example 4 | 7.87.8 | 15.815.8 | 6565 | 4040 | 1.01.0 | 1.21.2 |
실시예 5Example 5 | 15.815.8 | 2.32.3 | 8080 | 4040 | 1.01.0 | 1.21.2 |
실시예 6Example 6 | 15.815.8 | 15.815.8 | 8080 | 4040 | 1.01.0 | 1.21.2 |
실시예 7Example 7 | 3.73.7 | 4.94.9 | 7070 | 4040 | 1.01.0 | 1.21.2 |
비교예 1Comparative Example 1 | 1.91.9 | 7.67.6 | 7575 | 4040 | 1.01.0 | 1.21.2 |
비교예 2Comparative Example 2 | 16.516.5 | 7.47.4 | 7575 | 4040 | 1.01.0 | 1.21.2 |
비교예 3Comparative Example 3 | 7.57.5 | 1.81.8 | 8080 | 4040 | 1.01.0 | 1.21.2 |
비교예 4Comparative Example 4 | 7.47.4 | 16.816.8 | 8080 | 4040 | 1.01.0 | 1.21.2 |
비교예 5Comparative Example 5 | 7.57.5 | 7.67.6 | 5555 | 4040 | 1.01.0 | 1.21.2 |
비교예 6Comparative Example 6 | 7.57.5 | 7.67.6 | 4545 | 4040 | 1.01.0 | 1.21.2 |
비교예 7Comparative Example 7 | 2.12.1 | 2.32.3 | 6565 | 4040 | 1.01.0 | 00 |
비교예 8Comparative Example 8 | 2.12.1 | 2.32.3 | 8080 | 4040 | 1.01.0 | 00 |
다음은, 아래 [표 2]를 참조하여 상기 실시예 및 비교예의 전해동박이 갖는 컬 지표(C) 값에 따른 컬 발생 수준을 살펴보기로 한다.Next, the curl generation level according to the curl index (C) value of the electrolytic copper foils of the Examples and Comparative Examples will be described with reference to Table 2 below.
표면 조도 측정Surface roughness measurement
전해동박의 표면 조도를 측정하기 위해 표면 거칠기 측정장치(Kosaka Laboratory Ltd.에 의해서 제조된 SE1700)가 사용되었다.In order to measure the surface roughness of the electrolytic copper foil, a surface roughness measuring apparatus (SE1700 manufactured by Kosaka Laboratory Ltd.) was used.
크롬 전착량 분석Chromium electrodeposition amount analysis
크롬 전착량은 실시예 및 비교예의 전해동박 샘플을 농도 20 질량%의 질산으로 용해 하여 VARIAN사 제조의 원자 흡광 분광 광도계 (형식:AA240FS)를 사용하여 원자 흡광법에 의해 정량 분석을 실시함으로써 측정하였다.The chromium electrodeposition amount was measured by dissolving the electrolytic copper foil samples of Examples and Comparative Examples with nitric acid having a concentration of 20% by mass and performing quantitative analysis by atomic absorption method using an atomic absorption spectrophotometer (model: AA240FS) manufactured by VARIAN Corporation.
광택도 측정Gloss measurement
JIS Z8741 에 준거한 닛폰 전색 공업 주식회사 제조 광택도계 핸디 글로스 미터 PG-1 을 사용하여, 입사각 60 도로 측정하였다.The incidence angle was measured at 60 degrees using Nippon Denshoku Industries Co., Ltd. glossimeter handy gloss meter PG-1 based on JISZ8741.
컬 측정법Curl measurement
도 3에 나타난 사진과 같이, 실시예 및 비교예의 전해동박의 양 면 중 상대적으로 광택도가 낮게 나타나는 매트면(matte surface)을 8cm×8cm 사이즈의 십자 형태로 절개한 후, 도 4에 나타난 사진과 같이, 컬 발생에 따라 뾰족하게 올라온 4개 부분의 높이를 자로 측정한다. 이때, 측정된 값의 산술 평균값이 해당 동박의 컬 값에 해당하는 것이다. As shown in the photograph shown in Figure 3, after cutting the matte surface (crosse) of the relatively low glossiness of both surfaces of the electrolytic copper foil of the Examples and Comparative Examples in the form of a cross of 8cm × 8cm size, and the photo shown in Figure 4 Similarly, measure the heights of the four points that rise sharply as the curl occurs. At this time, the arithmetic mean value of the measured value corresponds to the curl value of the said copper foil.
두께thickness [㎛][Μm] | 제1면Front page Rz[㎛]Rz [μm] | 제2면The second page Rz[㎛]Rz [μm] | △R△ R [㎛][Μm] | 제1면Front page 광택도Glossiness [G.U][G.U] | 제2면The second page 광택도Glossiness [G.U][G.U] | △G△ G [G.U][G.U] | 제1면Front page Cr량Cr amount [mg/㎡][mg / ㎡] | 제2면The second page Cr량Cr amount [mg/㎡][mg / ㎡] | △Cr△ Cr [mg/㎡][mg / ㎡] | 컬지표Curl Index [C][C] | CurlCurl [mm][mm] | |
실시예 1Example 1 | 66 | 2.442.44 | 0.850.85 | 1.591.59 | 4545 | 8080 | 3535 | 2.12.1 | 1.91.9 | 0.20.2 | 2.502.50 | 2.32.3 |
실시예 2Example 2 | 66 | 2.452.45 | 0.850.85 | 1.601.60 | 122122 | 8585 | 3737 | 2.12.1 | 1.91.9 | 0.20.2 | 2.532.53 | 6.46.4 |
실시예 3Example 3 | 66 | 1.761.76 | 0.850.85 | 0.910.91 | 8888 | 4242 | 4646 | 2.12.1 | 1.91.9 | 0.20.2 | 1.791.79 | 6.86.8 |
실시예 4Example 4 | 66 | 1.211.21 | 0.850.85 | 0.360.36 | 211211 | 121121 | 9090 | 2.12.1 | 1.31.3 | 0.80.8 | 2.232.23 | 6.46.4 |
실시예 5Example 5 | 66 | 1.321.32 | 0.880.88 | 0.440.44 | 177177 | 8686 | 9191 | 22 | 2.52.5 | 0.50.5 | 2.002.00 | 4.24.2 |
실시예 6Example 6 | 66 | 0.650.65 | 0.880.88 | 0.230.23 | 362362 | 8383 | 279279 | 22 | 2.72.7 | 0.70.7 | 3.853.85 | 5.85.8 |
실시예 7Example 7 | 66 | 2.012.01 | 0.780.78 | 1.231.23 | 8888 | 8787 | 1One | 22 | 2.92.9 | 0.90.9 | 2.512.51 | 6.56.5 |
비교예 1Comparative Example 1 | 66 | 2.922.92 | 0.850.85 | 2.072.07 | 3232 | 8787 | 5555 | 2.82.8 | 1.91.9 | 0.90.9 | 4.064.06 | 7.57.5 |
비교예 2Comparative Example 2 | 66 | 1.211.21 | 0.850.85 | 0.360.36 | 425425 | 7373 | 352352 | 2.12.1 | 1.91.9 | 0.90.9 | 4.184.18 | 7.97.9 |
비교예 3Comparative Example 3 | 66 | 2.892.89 | 0.850.85 | 2.042.04 | 1818 | 8282 | 6464 | 2.92.9 | 1.91.9 | 1.01.0 | 4.234.23 | 8.28.2 |
비교예 4Comparative Example 4 | 66 | 0.670.67 | 0.850.85 | 0.180.18 | 467467 | 8282 | 385385 | 1.91.9 | 2.12.1 | 0.20.2 | 4.294.29 | 8.38.3 |
비교예 5Comparative Example 5 | 66 | 2.882.88 | 0.670.67 | 2.212.21 | 1818 | 8282 | 6464 | 2.92.9 | 2.12.1 | 0.80.8 | 4.214.21 | 8.18.1 |
비교예 6Comparative Example 6 | 66 | 3.023.02 | 0.670.67 | 2.352.35 | 1111 | 8282 | 7171 | 2.82.8 | 2.12.1 | 0.70.7 | 4.344.34 | 8.38.3 |
비교예 7Comparative Example 7 | 66 | 2.122.12 | 0.880.88 | 1.241.24 | 8989 | 8686 | 33 | 4.14.1 | 0.50.5 | 3.63.6 | 5.565.56 | 7.97.9 |
비교예 8Comparative Example 8 | 66 | 1.451.45 | 0.880.88 | 0.570.57 | 268268 | 8686 | 182182 | 2.22.2 | 0.70.7 | 1.51.5 | 4.194.19 | 7.97.9 |
상기 [표 2]을 살펴보면, 동박의 컬 지표(C)가 4 이하로 나타나는 경우(실시의 예 1 내지 7)에는 컬 발생 량이 7mm 이하로 기준치를 넘지 않으나, 컬 지표 (C)가 4를 초과하는 경우(비교의 예 1 내지 8)에는 컬 발생량이 7mm 를 초과하는 것을 알 수 있다. Looking at the above [Table 2], when the curl index (C) of the copper foil appears to be 4 or less (Examples 1 to 7), the curl generation amount does not exceed the reference value to 7mm or less, but the curl index (C) exceeds 4 In the case of (comparative examples 1-8), it turns out that the curl generation amount exceeds 7 mm.
실시예 1 내지 실시예 7의 경우, 동박의 컬 지표(C)가 4 이하로 나타날 뿐만 아니라, C=1.21ΔR+1.12ΔCr+0.01ΔG(단, ΔR은 동박의 제1 면(1a) 및 제2 면(1b)에서 측정된 조도 차이의 절대값, ΔCr은 제1 면(1a) 및 제2 면(1b) 각각에 형성된 방청층(2)을 이루는 크롬의 전착량 차이의 절대값, ΔG는 제1 면(1a) 및 제2 면(1b) 상에서 측정된 광택도 차이의 절대값)과 같이 표현되는 컬 지표(C)를 구성하는 각각의 파라미터들(ΔR, ΔCr 및 ΔG) 역시 바람직한 범위를 벗어나지 않고 있음을 알 수 있다.In Examples 1 to 7, not only the curl index C of the copper foil was found to be 4 or less, but also C = 1.21ΔR + 1.12ΔCr + 0.01ΔG, provided that ΔR is the first face 1a and the first of the copper foil. ΔCr is the absolute value of the roughness difference measured on the second surface 1b, and ΔG is the absolute value of the difference in electrodeposition amount of chromium constituting the rustproof layer 2 formed on each of the first and second surfaces 1a and 1b. Each of the parameters ΔR, ΔCr and ΔG constituting the curl index C, which is expressed as an absolute value of the difference in glossiness measured on the first side 1a and the second side 1b, also have a preferred range. It can be seen that it does not deviate.
즉, 실시예 1 내지 실시예 7의 경우, ΔR 은 2.0㎛ 이하, ΔCr 는 3.5mg/m2 이하, 그리고 ΔG 는 350GU 이하로 나타나고 있음을 알 수 있다.That is, in Examples 1 to 7, it can be seen that ΔR is 2.0 μm or less, ΔCr is 3.5 mg / m 2 or less, and ΔG is 350 GU or less.
반면, 비교예 1 내지 비교예 7의 경우, 동박의 컬 지표(C)가 4 를 초과할 뿐만 아니라, 컬 지표(C)를 구성하는 각각의 파라미터들(ΔR, ΔCr 및 ΔG)이 바람직한 기준 범위를 벗어나고 있음을 알 수 있다. 특히, 비교예 8의 경우, 컬 지표(C)를 구성하는 각각의 파라미터들인 ΔR, ΔCr 및 ΔG의 값이 본 발명에서 규정하는 수치를 만족함에도 불구하고, 컬 지표(C)가 4를 초과함으로써 컬 발생량이 7mm를 초과하는 경우이다. On the other hand, in Comparative Examples 1 to 7, not only the curl index C of the copper foil exceeds 4, but the respective parameters ΔR, ΔCr, and ΔG constituting the curl index C are preferred ranges. You can see that it is moving away from. In particular, in the case of Comparative Example 8, although the value of the respective parameters ΔR, ΔCr and ΔG constituting the curl index (C) satisfies the numerical value specified in the present invention, the curl index (C) exceeds 4 The amount of curl generated exceeds 7 mm.
상술한 바와 같이, 본 발명의 일 실시예에 따른 리튬 이차전지용 동박은, 동박의 컬을 발생시키는 주요 인자들을 변수로 하는 컬 지표(curl indicator)가 일정 범위로 제한될 뿐만 아니라, 컬 지표를 구성하는 각각의 변수들 역시 일정 범위로 제한됨으로써 컬 발생이 최소화 될 수 있다.As described above, the lithium secondary battery copper foil according to an embodiment of the present invention, as well as the curl indicator (curl indicator) as a variable to the main factors that generate the curl of the copper foil is limited to a certain range, and constitutes the curl indicator Each variable is also limited to a certain range to minimize the occurrence of curl.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.
본 발명은 리튬 이차전지에 적용되는 음극 집전체 소재인 리튬 이차전지용 전해동박 및 이를 포함하는 리튬 이차전지에 관한 것이다. The present invention relates to an electrolytic copper foil for a lithium secondary battery, which is a negative electrode current collector material applied to a lithium secondary battery, and a lithium secondary battery including the same.
Claims (13)
- 리튬 이차전지용 전해동박에 있어서,In the electrolytic copper foil for lithium secondary batteries,1.21ΔR+1.12ΔCr+0.01ΔG 로 정의되는 컬 지표(C) 값이 0 이상 4.0 이하이고,Curl index (C) value defined as 1.21ΔR + 1.12ΔCr + 0.01ΔG is 0 or more and 4.0 or less,상기 ΔR은 상기 리튬 이차전지용 전해동박의 제1 면 상에서 측정된 조도와 제2 면 상에서 측정된 조도 차이의 절대값에 해당하고,ΔR corresponds to an absolute value of the illuminance difference measured on the first surface of the electrolytic copper foil for lithium secondary batteries and the illuminance difference measured on the second surface,상기 ΔCr은 상기 리튬 이차전지용 전해동박의 제1 면 상에 형성된 방청층을 이루는 크롬의 전착량과 제2 면 상에 형성된 방청층을 이루는 크롬의 전착량 차이의 절대값에 해당하며,The ΔCr corresponds to an absolute value of the difference between the electrodeposition amount of chromium forming the rustproof layer formed on the first surface of the electrolytic copper foil for lithium secondary batteries and the chromium electrodeposition amount of the chromium forming the rustproof layer formed on the second surface,상기 ΔG는 상기 리튬 이차전지용 전해동박의 제1 면 상에서 측정된 광택도와 제2 면 상에서 측정된 광택도 차이의 절대값에 해당하는 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔG corresponds to the absolute value of the difference in glossiness measured on the first surface and the glossiness measured on the second surface of the electrolytic copper foil for lithium secondary batteries.
- 제1항에 있어서,The method of claim 1,상기 리튬 이차전지용 전해동박의 제1면 및 제2면에서 측정된 표면조도는 각각 0.2㎛ 내지 2.5㎛ 인 것을 특징으로 하는 리튬 이차전지용 전해동박.The surface roughness measured on the first and second surfaces of the electrolytic copper foil for lithium secondary batteries is 0.2 ㎛ to 2.5 ㎛ electrolytic copper foil for each of.
- 제1항에 있어서,The method of claim 1,상기 리튬 이차전지용 전해동박의 제1면 및 제2면상에 형성된 방청층을 이루는 크롬의 전착량은 각각 1.0mg/m2 이상 4.5mg/m2 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The electrolytic copper foil for a lithium secondary battery a first side and a deposition amount of the chromium forming a rust-preventive layer formed on the second side is a lithium secondary battery, electrolytic copper foil, it characterized in that each of 1.0mg / m 2, more than 4.5mg / m 2 or less of.
- 제1항에 있어서,The method of claim 1,상기 리튬 이차전지용 전해동박의 제1면 및 제2면에서 측정된 광택도는 각각 10GU 내지 450GU인 것을 특징으로 하는 리튬 이차전지용 전해동박.The glossiness measured on the first and second surfaces of the electrolytic copper foil for lithium secondary batteries is 10GU to 450GU, respectively.
- 제1항에 있어서,The method of claim 1,상기 ΔR은 0 이상 2.0㎛ 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.Said (DELTA) R is 0 or more and 2.0 micrometers or less, The electrolytic copper foil for lithium secondary batteries characterized by the above-mentioned.
- 제1항에 있어서,The method of claim 1,상기 ΔCr은 0 이상 3.5mg/m2 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔCr is from 0 to 3.5mg / m 2 or less, characterized in that the lithium secondary battery electrolytic copper foil.
- 제1항에 있어서, The method of claim 1,상기 ΔG는 0 이상 350GU 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔG is 0 or more and 350GU or less, the electrolytic copper foil for lithium secondary batteries.
- 제5항에 있어서,The method of claim 5,상기 ΔG는 0 이상 350GU 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔG is 0 or more and 350GU or less, the electrolytic copper foil for lithium secondary batteries.
- 제8항에 있어서, The method of claim 8,상기 ΔCr은 0 이상 3.5mg/m2 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔCr is from 0 to 3.5mg / m 2 or less, characterized in that the lithium secondary battery electrolytic copper foil.
- 제5항에 있어서,The method of claim 5,상기 ΔCr은 0 이상 3.5mg/m2 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔCr is from 0 to 3.5mg / m 2 or less, characterized in that the lithium secondary battery electrolytic copper foil.
- 제7항에 있어서, The method of claim 7, wherein상기 ΔCr은 0 이상 3.5mg/m2 이하인 것을 특징으로 하는 리튬 이차전지용 전해동박.The ΔCr is from 0 to 3.5mg / m 2 or less, characterized in that the lithium secondary battery electrolytic copper foil.
- 제1항에 있어서,The method of claim 1,상기 리튬 이차전지용 전해동박의 두께는 4㎛ 내지 35㎛인 것을 특징으로 하는 리튬 이차전지용 전해동박.The thickness of the said electrolytic copper foil for lithium secondary batteries is 4 micrometers-35 micrometers, The electrolytic copper foil for lithium secondary batteries.
- 제1항 내지 제12항 중 어느 한 항에 따른 리튬 이차전지용 전해동박이 음극 집전체로 적용된 리튬 이차전지.A lithium secondary battery to which the electrolytic copper foil for lithium secondary batteries according to any one of claims 1 to 12 is applied as a negative electrode current collector.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018501310A JP6704445B2 (en) | 2015-07-24 | 2016-06-07 | Electrolytic copper foil for lithium secondary battery and lithium secondary battery including the same |
US15/306,230 US10243216B2 (en) | 2015-07-24 | 2016-06-07 | Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same |
EP16830688.4A EP3327838B1 (en) | 2015-07-24 | 2016-06-07 | Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same |
CN201680000884.8A CN106560009B (en) | 2015-07-24 | 2016-06-07 | Electrolytic copper foil for lithium secondary battery and the lithium secondary battery comprising the electrolytic copper foil |
PL16830688T PL3327838T3 (en) | 2015-07-24 | 2016-06-07 | Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150104779 | 2015-07-24 | ||
KR10-2015-0104779 | 2015-07-24 | ||
KR10-2016-0063598 | 2016-05-24 | ||
KR1020160063598A KR102136784B1 (en) | 2015-07-24 | 2016-05-24 | Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018655A1 true WO2017018655A1 (en) | 2017-02-02 |
Family
ID=57884752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/006007 WO2017018655A1 (en) | 2015-07-24 | 2016-06-07 | Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017018655A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020530878A (en) * | 2017-07-31 | 2020-10-29 | ケイシーエフ テクノロジース カンパニー リミテッド | Copper foil with wrinkle prevention, electrodes containing it, secondary battery containing it, and method for manufacturing the same. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070107803A (en) * | 2005-03-31 | 2007-11-07 | 미쓰이 긴조꾸 고교 가부시키가이샤 | Electrolytic copper foil and process for producing electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil |
KR20130102849A (en) * | 2012-03-08 | 2013-09-23 | 엘에스엠트론 주식회사 | Current collector for lithium secondary battery and method for producing the same |
KR20140003511A (en) * | 2010-12-27 | 2014-01-09 | 후루카와 덴키 고교 가부시키가이샤 | Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode |
KR20140041804A (en) * | 2011-06-30 | 2014-04-04 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector |
KR20140090069A (en) * | 2013-01-07 | 2014-07-16 | 창춘 페트로케미칼 컴퍼니 리미티드 | Electrolytic copper foil and method for producing the same |
-
2016
- 2016-06-07 WO PCT/KR2016/006007 patent/WO2017018655A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070107803A (en) * | 2005-03-31 | 2007-11-07 | 미쓰이 긴조꾸 고교 가부시키가이샤 | Electrolytic copper foil and process for producing electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil |
KR20140003511A (en) * | 2010-12-27 | 2014-01-09 | 후루카와 덴키 고교 가부시키가이샤 | Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode |
KR20140041804A (en) * | 2011-06-30 | 2014-04-04 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector |
KR20130102849A (en) * | 2012-03-08 | 2013-09-23 | 엘에스엠트론 주식회사 | Current collector for lithium secondary battery and method for producing the same |
KR20140090069A (en) * | 2013-01-07 | 2014-07-16 | 창춘 페트로케미칼 컴퍼니 리미티드 | Electrolytic copper foil and method for producing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020530878A (en) * | 2017-07-31 | 2020-10-29 | ケイシーエフ テクノロジース カンパニー リミテッド | Copper foil with wrinkle prevention, electrodes containing it, secondary battery containing it, and method for manufacturing the same. |
US11505873B2 (en) | 2017-07-31 | 2022-11-22 | Sk Nexilis Co., Ltd. | Copper foil free from generation of wrinkles, electrode comprising the same, secondary battery comprising the same and method for manufacturing the same |
JP7343474B2 (en) | 2017-07-31 | 2023-09-12 | エスケー ネクシリス カンパニー リミテッド | Copper foil in which wrinkles are prevented, electrodes containing the same, secondary batteries containing the same, and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016208858A1 (en) | Electrolytic copper foil for lithium secondary battery and lithium secondary battery including same | |
US10686191B2 (en) | Electrodeposited copper foil, and electrical component and battery comprising same | |
WO2017082542A1 (en) | Electrolytic copper foil, electrode including same, secondary battery including same, and method for manufacturing same | |
JP7343474B2 (en) | Copper foil in which wrinkles are prevented, electrodes containing the same, secondary batteries containing the same, and manufacturing method thereof | |
KR20180054985A (en) | Electrolytic Copper Foil with Minimized Curl, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same | |
TWI791776B (en) | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate, and printed circuit board using the electrolytic copper foil | |
KR102546687B1 (en) | Copper foil capable of manufacturing high capacity secondary battery, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same | |
KR20140050541A (en) | Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof | |
KR20190001677A (en) | Copper foil having improved workability and charge discharge characteristics, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same | |
KR20190043275A (en) | Copper foil for high capacity secondary battery, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same | |
WO2017018655A1 (en) | Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising same | |
JP2013175488A (en) | Copper foil for current collector of lithium secondary battery | |
KR102136784B1 (en) | Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same | |
WO2018088646A1 (en) | Electrolytic copper foil for secondary battery and method for producing same | |
KR20180038690A (en) | Elctrodeposited copper foil, current collectors for secondary batteries and secondary batteries | |
WO2016208869A1 (en) | Electrolytic copper foil for lithium secondary battery and lithium secondary battery including same | |
WO2019151718A1 (en) | Electrolytic copper foil having excellent handling characteristics in post-processing, and manufacturing method therefor | |
WO2023219264A1 (en) | Method for manufacturing electrolytic copper foil | |
WO2023219269A1 (en) | Method for controlling properties of electrolytic copper foil, and manufacturing method therefor | |
EP3748044A1 (en) | Electrolytic copper foil having high-temperature dimensional stability and texture stability, and manufacturing method therefor | |
WO2021125410A1 (en) | Surface-treated copper foil, method for producing same, and negative electrode for secondary battery including same | |
WO2018088645A1 (en) | Electrolytic copper foil for secondary battery, having excellent flexural resistance, and method for producing same | |
KR101571066B1 (en) | Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof | |
WO2020106106A1 (en) | Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto | |
WO2016204405A1 (en) | Electrolytic copper foil for lithium secondary battery and lithium secondary battery including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15306230 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830688 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018501310 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |