WO2017018543A1 - Silanol compound production method - Google Patents

Silanol compound production method Download PDF

Info

Publication number
WO2017018543A1
WO2017018543A1 PCT/JP2016/072474 JP2016072474W WO2017018543A1 WO 2017018543 A1 WO2017018543 A1 WO 2017018543A1 JP 2016072474 W JP2016072474 W JP 2016072474W WO 2017018543 A1 WO2017018543 A1 WO 2017018543A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
reaction step
compound
silanol compound
group
Prior art date
Application number
PCT/JP2016/072474
Other languages
French (fr)
Japanese (ja)
Inventor
正安 五十嵐
島田 茂
佐藤 一彦
朋浩 松本
美恵 山本
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2017531422A priority Critical patent/JPWO2017018543A1/en
Publication of WO2017018543A1 publication Critical patent/WO2017018543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid

Definitions

  • the present invention relates to a method for producing a silanol compound, and more particularly to a method for producing a silanol compound using an amide compound.
  • Siloxane is a very important compound that is used in a wide range of fields such as automobiles, architecture, electronics, and medicine because of its unique properties. In recent years, it is indispensable in the environment and energy fields, such as LED sealing materials and eco-tire silane coupling agents, and it is no exaggeration to say that there are no fields that do not use siloxane compounds (2009 market scale: 115 (Billion dollars, production: 1.23 million tons per year).
  • siloxane compounds are generally synthesized via silanol by hydrolysis such as sol-gel method using alkoxysilane or halogenated silane as a raw material.
  • This silanol (including silane diol, silane triol, and silane tetraol) is condensed at the same time as hydrolysis in the presence of water, except for some silane diols and silane triols having bulky substituents such as phenyl groups. Therefore, it is difficult to synthesize with good yield. Further, its stability (stability in the presence of water) is extremely low, and it is known that condensation occurs quickly (see Non-Patent Documents 1 and 2).
  • An object of the present invention is to provide a method for producing a silanol compound that can efficiently produce a silanol compound.
  • the present inventors have conducted a reaction of a silane compound and water in a solvent containing an amide compound, thereby increasing the yield of the silanol compound and efficiently producing silanol.
  • the present inventors have found that a compound can be produced and completed the present invention. That is, the present invention is as follows.
  • a method for producing a silanol compound comprising a reaction step 1 in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound.
  • each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom.
  • Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  • the amount of water used in the reaction step 1 is 0.25 to 150 times as much as the amount of the silane compound represented by the formulas (A-1) to (A-4).
  • the amount of the solvent used in the reaction step 1 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is 0.001 to 2.00 mol / L.
  • ⁇ 4> The method for producing a silanol compound according to any one of ⁇ 1> to ⁇ 3>, wherein the amide compound is at least one compound represented by the following formula (i) or (ii).
  • R ′ and R ′′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ′′ are two or more.
  • a method for producing a silanol compound comprising a reaction step 2 in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound. , The method for producing a silanol compound, wherein the reaction step 2 is performed in an aqueous solution containing a polymer compound having at least one amide bond.
  • each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom.
  • Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  • the amount of water used in the reaction step 2 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is 0.01 to 2.00 mol / L.
  • the manufacturing method of the silanol compound in any one of. ⁇ 11> Freeze the product obtained in the reaction step 1 or the reaction step 2, the product obtained in the base addition step, or the product obtained in the ammonium salt addition step under reduced pressure.
  • a silanol compound can be produced efficiently.
  • FIG. 3 shows 29 Si-NMR measurement results immediately after completion of the reaction of the solution obtained in Example 1.
  • FIG. It is a measurement result of 29 Si-NMR after leaving the solution obtained in Example 1 to stand at room temperature for 1.5 hours. It is a measurement result of 29 Si-NMR after leaving the solution obtained in Example 1 to stand at room temperature for 6 hours. It is the measurement result of 29 Si-NMR immediately after completion
  • FIG. 4 shows the 29 Si-NMR measurement result immediately after the completion of the reaction of the solution obtained in Example 2.
  • FIG. 4 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 3.
  • FIG. 4 shows the 29 Si-NMR measurement result immediately after the completion of the reaction of the solution obtained in Example 4.
  • FIG. FIG. 6 shows 29 Si-NMR measurement results immediately after completion of the reaction of the solution obtained in Example 5.
  • FIG. It is a 29 Si-NMR measurement result immediately after completion of the reaction of the solution obtained in Example 6.
  • FIG. 6 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 7.
  • FIG. 10 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 8.
  • FIG. 10 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 9.
  • FIG. 4 shows the 29 Si-NMR measurement result immediately after the completion of the reaction of the solution obtained in Example 10.
  • FIG. 6 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 11.
  • FIG. It is a measurement result of IR of the composition obtained in Example 20.
  • 2 is a measurement result of IR of the composition obtained in Example 21.
  • FIG. 4 is a measurement result of IR of the composition obtained in Example 22.
  • 4 is a measurement result of IR of the composition obtained in Example 23.
  • 4 is a measurement result of IR of the composition obtained in Example 24.
  • 4 is a measurement result of IR of the composition obtained in Example 25.
  • 2 is a measurement result of IR of the composition obtained in Example 26.
  • FIG. 4 is a measurement result of IR of the composition obtained in Example 29. 4 is a measurement result of IR of the composition obtained in Example 30. 2 is a measurement result of IR of the composition obtained in Example 31.
  • FIG. 3 is a measurement result of IR of the composition obtained in Example 32.
  • FIG. 4 is a measurement result of IR of the composition obtained in Example 33. 3 is a measurement result of IR of the composition obtained in Example 34.
  • the method for producing a silanol compound according to one embodiment of the present invention includes a reaction step in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound. (Hereinafter, it may be abbreviated as “reaction step 1”.), Wherein the reaction step 1 is performed in a solvent containing an amide compound.
  • each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom.
  • Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  • the inventors of the present invention have improved the yield of the silanol compound by carrying out the reaction of the silane compound represented by the formulas (A-1) to (A-4) with water in a solvent containing an amide compound, It has been found that a silanol compound can be produced efficiently.
  • the reason why the silanol compound can be produced efficiently is not sufficiently clear, but it is because the amide bond of the amide compound contributes to stabilization through the hydrogen bond with the silanol compound formed, and is intended to suppress condensation between the silanols. it is conceivable that.
  • the production method of the silanol compound of the present invention is an industrially very suitable production method from the viewpoint of using inexpensive and readily available raw materials such as silane compound and water and the point that the reaction proceeds promptly under mild conditions. It can be said.
  • the “silanol compound” means a compound in which at least one hydroxyl group (—OH) is bonded to a silicon atom (Si), and the number of hydroxyl groups and other structures are not particularly limited. . Therefore, for example, the reaction of tetraethoxysilane with water is considered to produce a silanol compound represented by the following formula. However, when at least one of these is produced, it can be said that the production method of the silanol compound of the present invention is applicable.
  • the “amide compound” means a compound having at least one amide bond, and other structures are not particularly limited. However, when the “solvent containing an amide compound” is composed of one kind of amide compound, the “amide compound” is liquid under the conditions of the reaction step.
  • a method for producing a silanol compound is produced by reacting at least one silane compound represented by the following formulas (A-1) to (A-4) with water.
  • the reaction step 2 is carried out in an aqueous solution containing a polymer compound having at least one amide bond. It is characterized by that.
  • each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom.
  • Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  • a polymer compound having at least one amide bond has an advantage that it can be used as a stabilizer for a silanol compound as it is, and can be said to be an industrially very suitable production method.
  • silane compound represented by formula (A-1) to (A-4) amide compound
  • polymer having at least one amide bond in “reaction step 1” and “reaction step 2”
  • reaction step 1 reaction step 1
  • reaction step 2 reaction step 2
  • Reaction Step 1 and reaction step 2 are steps in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound.
  • Specific types of silane compounds represented by A-1) to (A-4), the amount of water used, and the like are not particularly limited, and can be appropriately selected according to the purpose. Hereinafter, a specific example will be described.
  • each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom.
  • Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  • X represents each independently an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, and the hydrocarbon group of the alkoxy group is linear It is not limited to the saturated hydrocarbon group, and each of them may have a branched structure, a cyclic structure, or an aromatic ring.
  • the carbon number of the hydrocarbon group when X is an alkoxy group is preferably 1 or more, more preferably 2 or more, preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • the carbon number of the hydrocarbon group when X is an amino group is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • X includes methoxy group (—OMe), ethoxy group (—OEt), n-propoxy group ( —n Pr), phenoxy group (—OPh), amino group (—NH 2 ), dimethylamino group (—NMe 2).
  • Each R independently represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a halogen atom. "It may contain at least one atom selected from the group consisting of an atom, an oxygen atom, and a halogen atom” may include a functional group containing a nitrogen atom, an oxygen atom, a halogen atom, etc. It is meant that a linking group containing a nitrogen atom, an oxygen atom, etc.
  • the “hydrocarbon group” is not limited to a linear saturated hydrocarbon group, and may have each of a carbon-carbon unsaturated bond, a branched structure, a cyclic structure, and an aromatic ring.
  • the functional group and linking group contained in the hydrocarbon group of R include an amide group (—NHCO—), an ether group (—O—), a fluorine atom (fluoro group, —F), a chlorine atom (chloro group, —Cl). ), Bromine atom (bromo group, —Br), iodine atom (iodo group, —I) and the like.
  • R includes a methyl group (—Me), an ethyl group (—Et), an n-propyl group ( —n Pr), an i-propyl group ( —i Pr), an n-butyl group ( —n Bu), and a cyclohexyl group.
  • Phenyl group (-Ph) naphthyl group, anthryl group, fluorenyl group, hydrogen atom and the like.
  • Examples of the silane compounds represented by the formulas (A-1) to (A-4) include compounds represented by the following formulas.
  • the amount of water used in the reaction step 1 is usually 0.25 times or more, preferably 0.3 times or more, in terms of the amount of the silane compound represented by the formulas (A-1) to (A-4). More preferably, it is 0.9 times or more, more preferably 2.5 times or more, and usually 150 times or less, preferably 100 times or less, more preferably 75 times or less, still more preferably 40 times or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • Reaction step 1 is carried out in a solvent containing an amide compound, but the specific type of amide compound, the type of compound other than the amide compound contained in the solvent, the amount of solvent used, the amount of the amide compound in the solvent, A content ratio etc. are not specifically limited, According to the objective, it can select suitably.
  • the amide compound contained in the solvent is not limited to one type, and two or more types may be combined.
  • Examples of the amide compound include compounds represented by the following formula (i) or (ii).
  • polymer compound having at least one repeating structure represented by formulas (iii) to (v)” described later is also suitable as the amide compound.
  • R ′ and R ′′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ′′ are two or more. (When it has a hydrocarbon group in a molecule
  • R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and includes a hydrogen atom, a methyl group (—Me), an ethyl group (—Et), an n-propyl group ( —n Pr).
  • R ′′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, but a hydrogen atom, a methyl group (—Me), an ethyl group (—Et), an n-propyl group ( —n Pr) ), I-propyl group ( -i Pr), n-butyl group ( -n Bu), t-butyl group ( -t Bu), n-hexyl group ( -n Hex), cyclohexyl group ( -c Hex) ), A phenyl group (-Ph).
  • R ′ and / or R ′′ have two or more hydrocarbon groups in the molecule, the hydrocarbon groups may be linked to form a cyclic structure, but “form a cyclic structure”.
  • it means a structure such as an amide compound represented by the following formula.
  • Examples of the compound represented by the formula (i) include formamide, N, N-dimethylformamide (DMF), acetamide, N-methylacetamide, N, N-dimethylacetamide (DMAc), 2-pyrrolidone, N-methylpyrrolidone, Examples include 2-piperidone and ⁇ -caprolactam.
  • Examples of the compound represented by the formula (ii) include urea, tetramethylurea (Me 4 Urea), and tetraphenylurea.
  • the solvent in the reaction step 1 may contain a compound other than an amide compound, and types thereof include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, and n-octane, benzene, toluene, and xylene.
  • Aromatic hydrocarbon compounds such as cyclohexane and decalin, alcohol compounds such as methanol, ethanol, n-propanol and i-propanol, tetrahydrofuran (THF), tetrahydropyran, dioxane, diethyl ether, dimethyl ether , Ether compounds such as diisopropyl ether, diphenyl ether, methyl ethyl ether, ester compounds such as ethyl acetate, n-amyl acetate, ethyl lactate, methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane, hexachloroethane, etc.
  • Halogenated hydrocarbon compounds as acetone, methyl ethyl ketone, phenyl methyl ketone, aprotic polar solvents such as dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • compounds other than an amide compound are not restricted to one type, You may combine 2 or more types.
  • the amount of the solvent used in the reaction step 1 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is usually 0.001 mol / L or more, preferably 0.010 mol / L.
  • the amount is L or less, more preferably 0.50 mol / L or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • the content ratio of the amide compound in the solvent in the reaction step 1 is usually 0.1% by volume or more, preferably 1% by volume or more, more preferably 50% by volume or more, and further preferably 70% by volume or more. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • the amount of water used in the reaction step 2 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is usually 0.01 mol / L or more, preferably 0.05 mol / L.
  • the reaction step 2 is performed in an aqueous solution containing a polymer compound having at least one amide bond, and the specific type of the polymer compound having at least one amide bond, the amount of water used, and the aqueous solution
  • the content ratio of the polymer compound having at least one amide bond in is not particularly limited, and can be appropriately selected according to the purpose.
  • the polymer compound having at least one amide bond contained in the aqueous solution is not limited to one type, and two or more types may be combined. Hereinafter, a specific example will be described.
  • the number average molecular weight (M n ) of the polymer compound having at least one amide bond is usually 1,000 or more, preferably 3,000 or more, more preferably 5,000 or more, and usually 500,000 or less, preferably Is 300,000 or less, more preferably 200,000 or less.
  • the polymer compound having at least one amide bond has a weight average molecular weight (M w ) of usually 1,000 or more, preferably 5,000 or more, more preferably 10,000 or more, and usually 1,000,000 or less. , Preferably 500,000 or less, more preferably 200,000 or less.
  • the number of amide bonds of the polymer compound having at least one amide bond is usually 10 or more, preferably 50 or more, more preferably 100 or more, and usually 10,000 or less, preferably 5,000 or less, more preferably 2,000 or less.
  • Examples of the polymer compound having at least one amide bond include polymer compounds having at least one repeating structure represented by the following formulas (iii) to (v). (In the formulas (iii) to (v), R ′ and R ′′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ′′ are two or more.
  • R ′ and R ′′ are the same as those described above.
  • examples of the polymer compound having only the repeating structure represented by the formula (iii) include polyvinyl pyrrolidone, polyvinyl polypyrrolidone, polyvinyl piperidone, and polyvinyl caprolactam.
  • examples of the polymer compound having only a repeating structure represented by the formula (iv) include polyacrylamide, poly-N-methylacrylamide, poly-N-ethylacrylamide, poly-N-ethylmethacrylamide, and poly-N-propylacrylamide.
  • Examples of the polymer compound consisting only of the repeating structure represented by the formula (v) include poly-2-methyloxazoline, poly-2-ethyloxazoline, poly-2-propyloxazoline and the like.
  • the aqueous solution in the reaction step 2 may contain a compound other than water, and types thereof include aliphatic hydrocarbon compounds such as n-hexane, n-heptane and n-octane, benzene, toluene, xylene and the like.
  • Aromatic hydrocarbon compounds such as cyclohexane and decalin, alcohol compounds such as methanol, ethanol, n-propanol and i-propanol, tetrahydrofuran (THF), tetrahydropyran, dioxane, diethyl ether, dimethyl ether, Ether compounds such as diisopropyl ether, diphenyl ether and methyl ethyl ether; ester compounds such as ethyl acetate, n-amyl acetate and ethyl lactate; halogens such as methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane and hexachloroethane Hydrocarbon compound, acetone, methyl ethyl ketone, phenyl methyl ketone, aprotic polar solvents such as dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfox
  • the content ratio of the polymer compound having at least one amide bond in the aqueous solution of reaction step 2 is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 1.0% by mass or more, and further preferably. Is 5.0% by mass or more, usually 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. It is. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • Reaction step 1 and reaction step 2 are steps in which at least one silane compound represented by formulas (A-1) to (A-4) is reacted with water to form a silanol compound.
  • Reaction conditions such as reaction time are not particularly limited, and can be appropriately selected according to the purpose.
  • Reaction step 1 and reaction step 2 are preferably performed in the presence of an acid.
  • the acid serves as a catalyst for the reaction of the silane compound and water, and the reaction proceeds rapidly.
  • the acid examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid, trifluoroacetic acid, formic acid, carbonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid
  • organic acids such as acetic acid, trifluoroacetic acid, formic acid, carbonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid.
  • 0.0010 mol% or more preferably 0.010 mol% or more, more preferably 0.10 mol% or more, and usually 10.0 mol% or less, preferably 8.0 mol% or less, more preferably 4.0 mol% or less. It is. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • the reaction temperature in reaction step 1 and reaction step 2 is usually ⁇ 78 ° C. or higher, preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and usually 80 ° C. or lower, preferably 50 ° C. or lower, more preferably 30 ° C. or lower. It is.
  • the reaction time in the reaction step 1 and the reaction step 2 is usually 0.1 minutes or more, preferably 0.5 minutes or more, more preferably 1 minute or more, usually 5 hours or less, preferably 1 hour or less, more preferably 0.5 hours or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • the manufacturing method of the silanol compound of this invention may include processes other than the reaction process 1 and the reaction process 2, and as a specific process, it is the product obtained by the reaction process 1 or the reaction process 2.
  • a base addition step for adding a base hereinafter sometimes abbreviated as “base addition step”
  • base addition step a product obtained in the reaction step 1 or the reaction step 2 or an ammonium salt in the product obtained in the base addition step.
  • Ammonium salt addition step (hereinafter sometimes abbreviated as “ammonium salt addition step”), product obtained in reaction step 1 or reaction step 2, product obtained in base addition step, or ammonium Examples thereof include a freeze-drying step in which the product obtained in the salt addition step is frozen and exposed to a reduced pressure (hereinafter sometimes abbreviated as “freeze-drying step”).
  • freeze-drying step in which the product obtained in the salt addition step is frozen and exposed to a reduced pressure
  • the base addition step is a step of adding a base to the product obtained in the reaction step 1 or the reaction step 2, but the specific type of base, the amount of base used, etc. are not particularly limited, and is appropriately determined depending on the purpose. You can choose.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide, and amine compounds such as ammonia and aniline.
  • the “amine compound” means a compound having an amino group (which may be any of primary amine, secondary amine, and tertiary amine), and other structures are not particularly limited.
  • the base is considered to neutralize the acid and suppress the condensation of the silanol compound.
  • Amine compounds include ammonia, aniline (NH 2 Ph), diphenylamine (NHPh 2 ), dimethylpyridine (Me 2 Pyr), di-tert-butylpyridine ( t Bu 2 Pyr), pyrazine (Pyraz), triphenylamine ( NPh 3 ), triethylamine (Et 3 N), di-isopropylethylamine ( i Pr 2 EtN) and the like.
  • the amount of the base used is usually 0.1 or more, preferably 0.25 or more, more preferably 0.5 or more, and usually 4.0 or less, preferably 2. 0 or less, more preferably 1.5 or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
  • the ammonium salt addition step is a step of adding an ammonium salt to the product obtained in the reaction step 1 or the reaction step 2 or the product obtained in the base addition step.
  • the “ammonium salt” means a compound comprising an ammonium ion and a counter anion, and the structure of the ammonium ion and the counter anion is not particularly limited.
  • the ammonium salt is considered to suppress the condensation of the silanol compound.
  • a specific example will be described.
  • tetrahydroammonium ions NH 4 +
  • NMe 4 + tetramethylammonium ions
  • NEt 4 + tetraethylammonium ions
  • NPr 4 + tetrapropylammonium ions
  • NBu 4 tetrabutylammonium ions
  • Counter anions include fluoride ion (F ⁇ ), chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ), iodide ion (I ⁇ ), acetoxy ion (AcO ⁇ ), nitrate ion (NO 3 ⁇ ). , Azide ion (N 3 ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ), perchlorate ion (ClO 4 ⁇ ), sulfate ion (HSO 4 ⁇ ) and the like.
  • ammonium salt tetrabutylammonium chloride (NBu 4 Cl) and tetrabutylammonium bromide (NBu 4 Br) are particularly preferable.
  • ammonium salt contained in a composition is not restricted to one type, You may contain 2 or more types.
  • the amount of ammonium salt used is usually greater than 0 times, preferably 1 times or more, usually 4 times or less, preferably 3 times or less, more preferably 2 times or less, in terms of the amount of substance with respect to the silanol compound. .
  • the lyophilization step is a step in which the product obtained in the reaction step 1 or the reaction step 2, the product obtained in the base addition step, or the product obtained in the ammonium salt addition step is frozen and exposed to reduced pressure.
  • the freezing temperature, drying temperature, drying pressure, drying time and the like are not particularly limited, and can be appropriately selected according to the purpose. Hereinafter, a specific example will be described.
  • the freezing temperature is not particularly limited as long as the product obtained in the ammonium salt addition step is frozen, but is usually 10 ° C. or lower, preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and usually ⁇ 196.
  • the drying temperature is usually 10 ° C. or lower, preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, usually ⁇ 196 ° C. or higher, preferably ⁇ 150 ° C. or higher, more preferably ⁇ 100 ° C. or higher.
  • the drying pressure is usually 100 Pa or less, preferably 20 Pa or less, more preferably 3 Pa or less, usually 10 ⁇ 5 Pa or more, preferably 0.01 Pa or more, more preferably 1 Pa or more.
  • the drying time is usually 200 hours or less, preferably 100 hours or less, more preferably 50 hours or less, and usually 1 hour or more, preferably 5 hours or more, more preferably 10 hours or more.
  • Example 1 A two-necked flask equipped with a magnetic stir bar was charged with 28.3 mg (0.136 mmol) of tetraethoxysilane, 0.723 mL of N, N-dimethylacetamide, and 0.0014 mL (1.0 mol%) of 1N hydrochloric acid, and 0.270 mL (15.0 mmol) of water was added and reacted at room temperature for 4 hours. Thereafter, 0.005 mL (1.0 mol%) of an N, N-dimethylacetamide solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction, and tetramethylsilane was further added as an internal standard.
  • Example 2 Tetraethoxysilane 28.3mg to 56.6mg, N, N-dimethylacetamide 0.723mL to 1.023mL, 1N hydrochloric acid 0.0014mL to 0.0028mL, triethylamine in N, N-dimethylacetamide 0.005mL
  • the reaction was carried out in the same manner as in Example 1 except that the amount was changed to 0.010 mL, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 88.4%.
  • Example 3 Tetraethoxysilane 28.3mg to 70.0mg, N, N-dimethylacetamide 0.723mL to 1.123mL, 1N hydrochloric acid 0.0014mL to 0.0042mL, triethylamine N, N-dimethylacetamide 0.005mL
  • the reaction was conducted in the same manner as in Example 1 except that the volume was changed to 0.015 mL, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 60.0%.
  • Example 4 The reaction was performed in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 20.7 mg of tetramethoxysilane and the reaction time was changed to 30 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 94.8%.
  • Example 5 The same method as in Example 4 except that 20.7 mg of tetramethoxysilane was changed to 41.4 mg, 0.0014 mL of 1N hydrochloric acid was changed to 0.0028 mL, and 0.005 mL of an N, N-dimethylacetamide solution of triethylamine was changed to 0.010 mL. And 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 95.3%.
  • Example 6> The same method as in Example 4, except that 20.7 mg of tetramethoxysilane was changed to 62.1 mg, 0.0014 mL of 1N hydrochloric acid was changed to 0.0042 mL, and 0.005 mL of an N, N-dimethylacetamide solution of triethylamine was changed to 0.015 mL. And 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 89.0%.
  • Example 7 The same method as in Example 4 except that 20.7 mg of tetramethoxysilane was changed to 82.8 mg, 0.0014 mL of 1N hydrochloric acid was changed to 0.0056 mL, and 0.005 mL of an N, N-dimethylacetamide solution of triethylamine was changed to 0.020 mL. And 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 88.8%.
  • Example 8> The reaction was performed in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane and 18.0 mg of trimethoxymethylsilane were changed to 2 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of methylsilanetriol was 100%.
  • Example 9 The reaction was carried out in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 24.2 mg of triethoxymethylsilane and the reaction time was changed to 30 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of methylsilanetriol was 99.3%.
  • Example 10 The reaction was performed in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 16.3 mg of dimethoxydimethylsilane and the reaction time was changed to 2 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of dimethylsilanediol was 95.5%.
  • Example 11 The reaction was carried out in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 18.0 mg of diethoxydimethylsilane and the reaction time was changed to 10 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of dimethylsilanediol was 93.0%.
  • Example 12 In a two-necked flask equipped with a magnetic stirring bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, 100.0 mg (0.900 mmol) of polyvinylpyrrolidone (polyvinylpyrrolidone 25 manufactured by Nacalai Tesque), 1.000 mL of water, and 1N 0.001 mL (1.0 mol%) of an aqueous hydrochloric acid solution was added and reacted at room temperature for 0.083 hours.
  • polyvinylpyrrolidone polyvinylpyrrolidone 25 manufactured by Nacalai Tesque
  • Example 13 Tetramethoxysilane 30.4 mg (0.200 mmol), 1N aqueous hydrochloric acid solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) The solution was reacted in the same manner as in Example 12 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 66.7%.
  • Example 14 45.7 mg (0.300 mmol) of tetramethoxysilane, 0.003 mL of 1N aqueous hydrochloric acid solution (1.0 mol%), and 0.030 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L)
  • the solution was reacted in the same manner as in Example 12 except that the solution was changed to), and 29 Si-NMR of the solution was measured.
  • the yield of silanetetraol was 58.1%.
  • Tetramethoxysilane was added to 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution was added to 0.004 mL (1.0 mol%), and triethylamine aqueous solution (concentration: 27.5 g / L) was added to 0.040 mL (1.0 mol%).
  • the solution was reacted in the same manner as in Example 12 except that the solution was changed to), and 29 Si-NMR of the solution was measured.
  • the yield of silanetetraol was 51.5%.
  • Example 16> In a two-necked flask equipped with a magnetic stir bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, poly-N-isopropylacrylamide (poly (N-isopropylacrylamide) manufactured by Sigma-Aldrich, Mn: 20000 to 40,000) 90. 8 mg (0.802 mmol), 1.000 mL of water, and 0.001 mL (1.0 mol%) of 1N hydrochloric acid aqueous solution were added and reacted at room temperature for 0.083 hours.
  • poly-N-isopropylacrylamide manufactured by Sigma-Aldrich, Mn: 20000 to 40,000
  • Example 17 Tetramethoxysilane 30.4 mg (0.200 mmol), 1N aqueous hydrochloric acid solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) The solution was reacted in the same manner as in Example 16 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 54.9%.
  • Tetramethoxysilane was added to 45.7 mg (0.300 mmol), 1N aqueous hydrochloric acid solution was added to 0.003 mL (1.0 mol%), and triethylamine aqueous solution (concentration: 27.5 g / L) was added to 0.030 mL (1.0 mol%).
  • the solution was reacted in the same manner as in Example 16 except that the solution was changed to), and 29 Si-NMR of the solution was measured.
  • the yield of silanetetraol was 52.4%.
  • Tetramethoxysilane was added to 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution was added to 0.004 mL (1.0 mol%), and triethylamine aqueous solution (concentration: 27.5 g / L) was added to 0.040 mL (1.0 mol%).
  • the solution was reacted in the same manner as in Example 16 except that the solution was changed to), and 29 Si-NMR of the solution was measured.
  • the yield of silanetetraol was 47.4%.
  • Example 20 To a two-necked flask equipped with a magnetic stirrer, 20.7 mg (0.136 mmol) of tetramethoxysilane, 1.200 mL of tetramethylurea, and 0.0014 mL (1.0 mol%) of 1N hydrochloric acid were added. 270 mL (15.0 mmol) was added and reacted at room temperature for 0.5 hour. Then, 0.005 mL (1.0 mol%) of a trimethylamine tetramethylurea solution (concentration: 27.5 g / L) was added to terminate the reaction.
  • a product (solution) was obtained.
  • This composition was frozen using liquid nitrogen ( ⁇ 196 ° C.) and vacuum freeze-dried to sublimate tetramethylurea and the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature. ⁇ 40 ° C., holding time 15 hours, freeze-drying step (2) Decompression degree 1 to 3 Pa, shelf temperature from ⁇ 40 ° C. to ⁇ 15 ° C.
  • Example 21 To a two-necked flask equipped with a magnetic stirrer, 103.5 mg (0.680 mmol) of tetramethoxysilane, 6.000 mL of tetramethylurea, and 0.007 mL (1.0 mol%) of 1N hydrochloric acid were added. 350 mL (75.0 mmol) was added and reacted at room temperature for 0.5 hour. Thereafter, 0.025 mL (1.0 mol%) of a triethylamine tetramethylurea solution (concentration: 27.5 g / L) was added to terminate the reaction.
  • a triethylamine tetramethylurea solution concentration: 27.5 g / L
  • This composition was frozen using liquid nitrogen ( ⁇ 196 ° C.) and vacuum freeze-dried to sublimate tetramethylurea and the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature. ⁇ 40 ° C., holding time 24 hours, freeze-drying step (2) Decompression degree 1 to 3 Pa, shelf temperature from ⁇ 40 ° C. to ⁇ 15 ° C.
  • Example 22 To a two-necked flask equipped with a magnetic stirrer, 103.5 mg (0.680 mmol) of tetramethoxysilane, 6.000 mL of tetramethylurea, and 0.007 mL (1.0 mol%) of 1N hydrochloric acid were added. 350 mL (74.9 mmol) was added and reacted at room temperature for 0.5 hour. Thereafter, 0.025 mL (1.0 mol%) of a triethylamine tetramethylurea solution (concentration: 27.5 g / L) was added to terminate the reaction.
  • a triethylamine tetramethylurea solution concentration: 27.5 g / L
  • composition containing silanetetraol and the like.
  • This composition was frozen using liquid nitrogen ( ⁇ 196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature ⁇ 40 C, holding time 285 hours). After completion of the drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 998.6 mg of a composition containing powdered silanetetraol and the like.
  • This composition was analyzed by 29 Si-NMR (Me 4 Urea / THF-d 8 : -71.7 ppm) and IR, and it was confirmed that silanetetraol and the like were contained.
  • This composition is shown in Table 3, and the results of IR analysis of the composition are shown in FIG.
  • Example 23 In a two-necked flask equipped with a magnetic stirring bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, 100.0 mg (0.900 mmol) of polyvinylpyrrolidone, 1.000 mL of water and 0.001 mL (1.0 mol%) of 1N hydrochloric acid aqueous solution. ) And reacted at room temperature for 0.083 hours. Thereafter, 0.010 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction.
  • composition containing silanetetraol and the like.
  • This composition was frozen using liquid nitrogen ( ⁇ 196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature ⁇ 40 C, holding time 72 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 103.8 mg of a composition containing powdered silanetetraol and the like.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 4, and the results of IR analysis of the composition are shown in FIG.
  • Example 24 The amount of tetramethoxysilane added was 30.4 mg (0.200 mmol), 1N hydrochloric acid aqueous solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) 110.5 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the content was changed to.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 5, and the results of IR analysis of the composition are shown in FIG.
  • Example 25 The amount of tetramethoxysilane added was 45.7 mg (0.300 mmol), 1N hydrochloric acid aqueous solution 0.003 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.030 mL (1.0 mol%) 124.2 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the composition was changed to.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 6, and the results of IR analysis of the composition are shown in FIG.
  • Example 26 The amount of tetramethoxysilane added was 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution 0.004 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.040 mL (1.0 mol%) 130.3 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the composition was changed to.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 7, and the results of IR analysis of the composition are shown in FIG.
  • Example 27 The amount of tetramethoxysilane added was 76.1 mg (0.500 mmol), 1N hydrochloric acid aqueous solution 0.005 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.050 mL (1.0 mol%) 139.0 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the composition was changed to.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 8, and the results of IR analysis of the composition are shown in FIG.
  • Example 28 In a two-necked flask equipped with a magnetic stirrer, 15.2 mg (0.100 mmol) of tetramethoxysilane, 90.8 mg (0.802 mmol) of poly-N-isopropylacrylamide, 1.000 mL of water and 0.001 mL of 1N aqueous hydrochloric acid ( 1.0 mol%) was added and reacted at room temperature for 0.083 hours. Thereafter, 0.010 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction.
  • aqueous solution of triethylamine concentration: 27.5 g / L
  • composition containing silanetetraol and the like.
  • This composition was frozen using liquid nitrogen ( ⁇ 196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature ⁇ 40 C, holding time 72 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 94.4 mg of a composition containing powdered silanetetraol and the like.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.5 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
  • Example 29 The amount of tetramethoxysilane added was 30.4 mg (0.200 mmol), 1N hydrochloric acid aqueous solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) 102.9 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
  • Example 30 The amount of tetramethoxysilane added was 45.7 mg (0.300 mmol), 1N hydrochloric acid aqueous solution 0.003 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.030 mL (1.0 mol%) 110.4 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
  • Example 31 The amount of tetramethoxysilane added was 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution 0.004 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.040 mL (1.0 mol%) 116.1 mg of a composition containing powdery silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 6.0 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.4 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 6.0 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.4 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
  • Example 33 In a two-necked flask equipped with a magnetic stirring bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, poly-2-ethyloxazoline (poly (2-ethyl-2-oxazoline) manufactured by Sigma-Aldrich, Mw: ⁇ 50000) 89.2 mg (0.900 mmol), 1.000 mL of water and 0.0025 mL (2.5 mol%) of 1N hydrochloric acid aqueous solution were added, and reacted at room temperature for 0.167 hours.
  • poly-2-ethyloxazoline poly (2-ethyl-2-oxazoline manufactured by Sigma-Aldrich, Mw: ⁇ 50000
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.2 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
  • Example 34 The amount of tetramethoxysilane added was 45.7 mg (0.300 mmol), 1N aqueous hydrochloric acid solution 0.0075 mL (2.5 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.075 mL (2.5 mol%) 114.5 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 33 except that the composition was changed to.
  • This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.2 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 9, and the results of IR analysis of the composition are shown in FIG.
  • silanol compound produced by the method for producing a silanol compound of the present invention is useful as a raw material for siloxane compounds that are used in a wide range of fields such as automobiles, architecture, electronics, and medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The purpose of the present invention is to provide a silanol compound production method that makes it possible to efficiently produce a silanol compound. The present invention can efficiently produce a silanol compound by performing, in a solvent that includes an amide compound, a reaction that generates a silanol compound by reacting at least one silane compound represented by formulas (A-1)-(A-4) with water. (In formulas (A-1)-(A-4), each X independently represents a C1-10 alkoxy group, a C0-6 amino group, a chlorine atom, a bromine atom, or an iodine atom, and each R independently represents a hydrogen atom or a C1-20 hydrocarbon group that may include one or more atom selected from the group that consists of a nitrogen atom, an oxygen atom, and a halogen atom.)

Description

シラノール化合物の製造方法Method for producing silanol compound
 本発明は、シラノール化合物の製造方法に関し、より詳しくはアミド化合物を利用したシラノール化合物の製造方法に関する。 The present invention relates to a method for producing a silanol compound, and more particularly to a method for producing a silanol compound using an amide compound.
 シロキサンは、その特異的な性質から自動車、建築、エレクトロニクス、医薬等の幅広い分野で利用されている非常に重要な化合物である。近年ではLEDの封止材やエコタイヤ用シランカップリング剤など、環境・エネルギー分野においても不可欠であり、シロキサン化合物を使用していない分野は無いといっても過言ではない(2009年市場規模:115億ドル、生産量:年間123万トン)。 Siloxane is a very important compound that is used in a wide range of fields such as automobiles, architecture, electronics, and medicine because of its unique properties. In recent years, it is indispensable in the environment and energy fields, such as LED sealing materials and eco-tire silane coupling agents, and it is no exaggeration to say that there are no fields that do not use siloxane compounds (2009 market scale: 115 (Billion dollars, production: 1.23 million tons per year).
 シロキサン化合物の大部分は、アルコキシシランやハロゲン化シラン等を原料とするゾル-ゲル法などの加水分解により、シラノールを経由して合成するのが一般的である。このシラノール(シランジオール、シラントリオール、シランテトラオールを含む。)は、フェニル基等の嵩高い置換基を有する一部のシランジオールやシラントリオールを除き、水が存在すると加水分解と同時に縮合してしまうため、収率良く合成する事が困難である。また、その安定性(水存在下での安定性)も極めて低く、速やかに縮合してしまうことが知られている(非特許文献1及び2参照)。 Most of the siloxane compounds are generally synthesized via silanol by hydrolysis such as sol-gel method using alkoxysilane or halogenated silane as a raw material. This silanol (including silane diol, silane triol, and silane tetraol) is condensed at the same time as hydrolysis in the presence of water, except for some silane diols and silane triols having bulky substituents such as phenyl groups. Therefore, it is difficult to synthesize with good yield. Further, its stability (stability in the presence of water) is extremely low, and it is known that condensation occurs quickly (see Non-Patent Documents 1 and 2).
 本発明は、効率良くシラノール化合物を製造することができるシラノール化合物の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a silanol compound that can efficiently produce a silanol compound.
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、シラン化合物と水の反応を、アミド化合物を含む溶媒中で行うことにより、シラノール化合物の収率を高めて、効率良くシラノール化合物を製造することができることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have conducted a reaction of a silane compound and water in a solvent containing an amide compound, thereby increasing the yield of the silanol compound and efficiently producing silanol. The present inventors have found that a compound can be produced and completed the present invention.
That is, the present invention is as follows.
<1> 下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する反応工程1を含むシラノール化合物の製造方法であって、
 前記反応工程1が、アミド化合物を含む溶媒中で行われることを特徴とする、シラノール化合物の製造方法。
Figure JPOXMLDOC01-appb-C000005

(式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
<2> 前記反応工程1における前記水の使用量が、前記式(A-1)~(A-4)で表されるシラン化合物に対して物質量換算で0.25~150倍である、<1>に記載のシラノール化合物の製造方法。
<3> 前記反応工程1における前記溶媒の使用量が、前記式(A-1)~(A-4)で表されるシラン化合物の濃度が0.001~2.00mol/Lとなる量である、<1>又は<2>に記載のシラノール化合物の製造方法。
<4> 前記アミド化合物が、下記式(i)又は(ii)で表される化合物の少なくとも1種である、<1>~<3>の何れかに記載のシラノール化合物の製造方法。
Figure JPOXMLDOC01-appb-C000006

(式(i)及び(ii)中、R’及びR”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表す。但し、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
<5> 下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する反応工程2を含むシラノール化合物の製造方法であって、
 前記反応工程2が、アミド結合を少なくとも1つ有する高分子化合物を含む水溶液中で行われることを特徴とする、シラノール化合物の製造方法。
Figure JPOXMLDOC01-appb-C000007

(式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
<6> 前記反応工程2における前記水の使用量が、前記式(A-1)~(A-4)で表されるシラン化合物の濃度が0.01~2.00mol/Lとなる量である、<5>に記載のシラノール化合物の製造方法。
<7> 前記高分子化合物が、下記式(iii)~(v)で表される繰り返し構造の少なくとも1種を有する高分子化合物である、<5>又は<6>に記載のシラノール化合物の製造方法。
Figure JPOXMLDOC01-appb-C000008

(式(iii)~(v)中、R’及びR”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表す。但し、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
<8> 前記反応工程1又は前記反応工程2が、酸の存在下で行われる工程である、<1>~<7>の何れかに記載のシラノール化合物の製造方法。
<9> 前記反応工程1又は前記反応工程2で得られた生成物に塩基を添加する塩基添加工程を含む、<8>に記載のシラノール化合物の製造方法。
<10> 前記反応工程1若しくは前記反応工程2で得られた生成物、又は前記塩基添加工程で得られた生成物にアンモニウム塩を添加するアンモニウム塩添加工程を含む、<1>~<9>の何れかに記載のシラノール化合物の製造方法。
<11> 前記反応工程1若しくは前記反応工程2で得られた生成物、前記塩基添加工程で得られた生成物、又は前記アンモニウム塩添加工程で得られた生成物を凍結させて、減圧下にさらす凍結乾燥工程を含む、<1>~<10>の何れかに記載のシラノール化合物の製造方法。
<1> A method for producing a silanol compound comprising a reaction step 1 in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound. ,
The method for producing a silanol compound, wherein the reaction step 1 is performed in a solvent containing an amide compound.
Figure JPOXMLDOC01-appb-C000005

(In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
<2> The amount of water used in the reaction step 1 is 0.25 to 150 times as much as the amount of the silane compound represented by the formulas (A-1) to (A-4). The manufacturing method of the silanol compound as described in <1>.
<3> The amount of the solvent used in the reaction step 1 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is 0.001 to 2.00 mol / L. A method for producing a silanol compound according to <1> or <2>.
<4> The method for producing a silanol compound according to any one of <1> to <3>, wherein the amide compound is at least one compound represented by the following formula (i) or (ii).
Figure JPOXMLDOC01-appb-C000006

(In the formulas (i) and (ii), R ′ and R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ″ are two or more. (When it has a hydrocarbon group in a molecule | numerator, hydrocarbon groups may connect and it may form the cyclic structure.)
<5> A method for producing a silanol compound comprising a reaction step 2 in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound. ,
The method for producing a silanol compound, wherein the reaction step 2 is performed in an aqueous solution containing a polymer compound having at least one amide bond.
Figure JPOXMLDOC01-appb-C000007

(In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
<6> The amount of water used in the reaction step 2 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is 0.01 to 2.00 mol / L. The manufacturing method of the silanol compound as described in <5>.
<7> The production of the silanol compound according to <5> or <6>, wherein the polymer compound is a polymer compound having at least one repeating structure represented by the following formulas (iii) to (v): Method.
Figure JPOXMLDOC01-appb-C000008

(In the formulas (iii) to (v), R ′ and R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ″ are two or more. (When it has a hydrocarbon group in a molecule | numerator, hydrocarbon groups may connect and it may form the cyclic structure.)
<8> The method for producing a silanol compound according to any one of <1> to <7>, wherein the reaction step 1 or the reaction step 2 is a step performed in the presence of an acid.
<9> The method for producing a silanol compound according to <8>, including a base addition step of adding a base to the product obtained in the reaction step 1 or the reaction step 2.
<10> An ammonium salt addition step of adding an ammonium salt to the product obtained in the reaction step 1 or the reaction step 2 or the product obtained in the base addition step, <1> to <9> The manufacturing method of the silanol compound in any one of.
<11> Freeze the product obtained in the reaction step 1 or the reaction step 2, the product obtained in the base addition step, or the product obtained in the ammonium salt addition step under reduced pressure. The method for producing a silanol compound according to any one of <1> to <10>, further comprising a freeze-drying step.
 本発明によれば、効率良くシラノール化合物を製造することができる。 According to the present invention, a silanol compound can be produced efficiently.
実施例1で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 3 shows 29 Si-NMR measurement results immediately after completion of the reaction of the solution obtained in Example 1. FIG. 実施例1で得られた溶液を室温下で1.5時間放置した後の29Si-NMRの測定結果である。It is a measurement result of 29 Si-NMR after leaving the solution obtained in Example 1 to stand at room temperature for 1.5 hours. 実施例1で得られた溶液を室温下で6時間放置した後の29Si-NMRの測定結果である。It is a measurement result of 29 Si-NMR after leaving the solution obtained in Example 1 to stand at room temperature for 6 hours. 比較例で得られた溶液の反応終了直後の29Si-NMRの測定結果である。It is the measurement result of 29 Si-NMR immediately after completion | finish of reaction of the solution obtained by the comparative example. 実施例2で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 4 shows the 29 Si-NMR measurement result immediately after the completion of the reaction of the solution obtained in Example 2. FIG. 実施例3で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 4 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 3. FIG. 実施例4で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 4 shows the 29 Si-NMR measurement result immediately after the completion of the reaction of the solution obtained in Example 4. FIG. 実施例5で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 6 shows 29 Si-NMR measurement results immediately after completion of the reaction of the solution obtained in Example 5. FIG. 実施例6で得られた溶液の反応終了直後の29Si-NMRの測定結果である。It is a 29 Si-NMR measurement result immediately after completion of the reaction of the solution obtained in Example 6. 実施例7で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 6 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 7. FIG. 実施例8で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 10 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 8. FIG. 実施例9で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 10 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 9. FIG. 実施例10で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 4 shows the 29 Si-NMR measurement result immediately after the completion of the reaction of the solution obtained in Example 10. FIG. 実施例11で得られた溶液の反応終了直後の29Si-NMRの測定結果である。FIG. 6 shows the 29 Si-NMR measurement results immediately after the completion of the reaction of the solution obtained in Example 11. FIG. 実施例20で得られた組成物のIRの測定結果である。It is a measurement result of IR of the composition obtained in Example 20. 実施例21で得られた組成物のIRの測定結果である。2 is a measurement result of IR of the composition obtained in Example 21. FIG. 実施例22で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 22. 実施例23で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 23. 実施例24で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 24. 実施例25で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 25. 実施例26で得られた組成物のIRの測定結果である。2 is a measurement result of IR of the composition obtained in Example 26. FIG. 実施例27で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 27. 実施例28で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 28. 実施例29で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 29. 実施例30で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 30. 実施例31で得られた組成物のIRの測定結果である。2 is a measurement result of IR of the composition obtained in Example 31. FIG. 実施例32で得られた組成物のIRの測定結果である。3 is a measurement result of IR of the composition obtained in Example 32. FIG. 実施例33で得られた組成物のIRの測定結果である。4 is a measurement result of IR of the composition obtained in Example 33. 実施例34で得られた組成物のIRの測定結果である。3 is a measurement result of IR of the composition obtained in Example 34. FIG.
 本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Details of the present invention will be described with specific examples. However, the present invention is not limited to the following contents without departing from the gist of the present invention, and can be implemented with appropriate modifications.
<シラノール化合物の製造方法>
 本発明の一態様であるシラノール化合物の製造方法は、下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する反応工程(以下、「反応工程1」と略す場合がある。)を含むシラノール化合物の製造方法であり、反応工程1が、アミド化合物を含む溶媒中で行われることを特徴とする。
Figure JPOXMLDOC01-appb-C000009

(式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
 前述のように、シラノールを合成するためにアルコキシシランやハロゲン化シラン等と水をただ単純に反応させても、生成したシラノールが縮合してシロキサンが生成してしまうため(下記式参照)、シラノール自体を収率良く合成することが困難であった。
Figure JPOXMLDOC01-appb-C000010

 本発明者らは、式(A-1)~(A-4)で表されるシラン化合物と水の反応を、アミド化合物を含む溶媒中で行うことにより、シラノール化合物の収率を高めて、効率良くシラノール化合物を製造することができることを見出したのである。シラノール化合物を効率良く製造できる理由は、十分に明らかとなっていないが、アミド化合物のアミド結合が生成したシラノール化合物と水素結合を介して安定化に寄与し、シラノール同士の縮合を抑えるためであると考えられる。また、本発明のシラノール化合物の製造方法は、シラン化合物と水という安価で入手し易い原料を使用する点や反応が穏和な条件で速やかに進行する点から、工業的に非常に適した製造方法と言えるのである。
 なお、本発明において「シラノール化合物」とは、ケイ素原子(Si)にヒドロキシル基(-OH)が少なくとも1つ結合した化合物を意味し、ヒドロキシル基の数やその他の構造は特に限定されないものとする。従って、例えばテトラエトキシシランと水の反応では、下記式で表されるシラノール化合物が生成すると考えられるが、これらの少なくとも1種が生成した場合、本発明のシラノール化合物の製造方法に該当すると言える。
Figure JPOXMLDOC01-appb-C000011

 また、本発明において「アミド化合物」とは、アミド結合を少なくとも1つ有する化合物を意味し、その他の構造は特に限定されないものとする。但し、「アミド化合物を含む溶媒」が1種類のアミド化合物で構成される場合、その「アミド化合物」は反応工程の条件下において液体であるものとする。
<Method for producing silanol compound>
The method for producing a silanol compound according to one embodiment of the present invention includes a reaction step in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound. (Hereinafter, it may be abbreviated as “reaction step 1”.), Wherein the reaction step 1 is performed in a solvent containing an amide compound.
Figure JPOXMLDOC01-appb-C000009

(In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
As mentioned above, even if alkoxysilane, halogenated silane, etc. are simply reacted with water to synthesize silanol, the generated silanol will condense to produce siloxane (see the following formula). It was difficult to synthesize itself with high yield.
Figure JPOXMLDOC01-appb-C000010

The inventors of the present invention have improved the yield of the silanol compound by carrying out the reaction of the silane compound represented by the formulas (A-1) to (A-4) with water in a solvent containing an amide compound, It has been found that a silanol compound can be produced efficiently. The reason why the silanol compound can be produced efficiently is not sufficiently clear, but it is because the amide bond of the amide compound contributes to stabilization through the hydrogen bond with the silanol compound formed, and is intended to suppress condensation between the silanols. it is conceivable that. Moreover, the production method of the silanol compound of the present invention is an industrially very suitable production method from the viewpoint of using inexpensive and readily available raw materials such as silane compound and water and the point that the reaction proceeds promptly under mild conditions. It can be said.
In the present invention, the “silanol compound” means a compound in which at least one hydroxyl group (—OH) is bonded to a silicon atom (Si), and the number of hydroxyl groups and other structures are not particularly limited. . Therefore, for example, the reaction of tetraethoxysilane with water is considered to produce a silanol compound represented by the following formula. However, when at least one of these is produced, it can be said that the production method of the silanol compound of the present invention is applicable.
Figure JPOXMLDOC01-appb-C000011

In the present invention, the “amide compound” means a compound having at least one amide bond, and other structures are not particularly limited. However, when the “solvent containing an amide compound” is composed of one kind of amide compound, the “amide compound” is liquid under the conditions of the reaction step.
 本発明の別の一態様であるシラノール化合物の製造方法は、同じく下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する反応工程(以下、「反応工程2」と略す場合がある。)を含むシラノール化合物の製造方法であり、反応工程2が、アミド結合を少なくとも1つ有する高分子化合物を含む水溶液中で行われることを特徴とする。
Figure JPOXMLDOC01-appb-C000012

(式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
 本発明者らは、アミド結合を少なくとも1つ有する高分子化合物を使用することにより、水を反応物として利用するのみならず、溶媒としても利用することが可能であり、水が多量に存在する水溶液中で効率良くシラノール化合物を製造することができることを見出したのである。シラノール化合物を効率良く製造できる理由は、前述のものと同様であり、高分子化合物のアミド結合が生成したシラノール化合物と水素結合を介して安定化に寄与し、シラノール同士の縮合を抑えるためであると考えられる。また、アミド結合を少なくとも1つ有する高分子化合物は、シラノール化合物の安定化剤としてそのまま利用することができる利点があり、工業的に非常に適した製造方法と言えるのである。
 以下、「反応工程1」及び「反応工程2」における「式(A-1)~(A-4)で表されるシラン化合物」、「アミド化合物」、「アミド結合を少なくとも1つ有する高分子化合物」、及びその他の反応条件等について詳細に説明する。
In another aspect of the present invention, a method for producing a silanol compound is produced by reacting at least one silane compound represented by the following formulas (A-1) to (A-4) with water. In which the reaction step 2 is carried out in an aqueous solution containing a polymer compound having at least one amide bond. It is characterized by that.
Figure JPOXMLDOC01-appb-C000012

(In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
By using a polymer compound having at least one amide bond, the present inventors can use water not only as a reactant but also as a solvent, and a large amount of water is present. It has been found that a silanol compound can be produced efficiently in an aqueous solution. The reason why the silanol compound can be produced efficiently is the same as described above, in order to contribute to stabilization through the silanol compound in which the amide bond of the polymer compound is formed and the hydrogen bond, and to suppress the condensation between the silanols. it is conceivable that. In addition, a polymer compound having at least one amide bond has an advantage that it can be used as a stabilizer for a silanol compound as it is, and can be said to be an industrially very suitable production method.
Hereinafter, “silane compound represented by formula (A-1) to (A-4)”, “amide compound”, “polymer having at least one amide bond” in “reaction step 1” and “reaction step 2” The “compound” and other reaction conditions will be described in detail.
(反応工程1・反応工程2)
 反応工程1及び反応工程2は、下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する工程であるが、式(A-1)~(A-4)で表されるシラン化合物の具体的種類、水の使用量等は特に限定されず、目的に応じて適宜選択することができる。以下、具体例を挙げて説明する。
Figure JPOXMLDOC01-appb-C000013

(式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
 Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を表しているが、アルコキシ基の炭化水素基は、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、芳香環のそれぞれを有していてもよいものとする。
 Xがアルコキシ基である場合の炭化水素基の炭素数は、好ましくは1以上、より好ましくは2以上であり、好ましくは6以下、より好ましくは5以下、さらに好ましくは4以下である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。
 Xがアミノ基である場合の炭化水素基の炭素数は、好ましくは5以下、より好ましくは4以下、さらに好ましくは3以下である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。
 Xとしては、メトキシ基(-OMe)、エトキシ基(-OEt)、n-プロポキシ基(-Pr)、フェノキシ基(-OPh)、アミノ基(-NH)、ジメチルアミノ基(-NMe)、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、メトキシ基(-OMe)、エトキシ基(-OEt)が好ましい。
 Rはそれぞれ独立して窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表しているが、「窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい」とは、窒素原子、酸素原子、ハロゲン原子等を含む官能基を含んでいてもよいほか、窒素原子、酸素原子等を含む連結基を炭素骨格の内部又は末端に含んでいてもよいことを意味するものとする。なお、「炭化水素基」は、直鎖状の飽和炭化水素基に限られず、炭素-炭素不飽和結合、分岐構造、環状構造、芳香環のそれぞれを有していてもよいものとする。
 Rの炭化水素基に含まれる官能基や連結基としては、アミド基(-NHCO-)、エーテル基(-O-)、フッ素原子(フルオロ基,-F)、塩素原子(クロロ基,-Cl)、臭素原子(ブロモ基,-Br)、ヨウ素原子(ヨード基,-I)等が挙げられる。
 Rとしては、メチル基(-Me)、エチル基(-Et)、n-プロピル基(-Pr)、i-プロピル基(-Pr)、n-ブチル基(-Bu)、シクロヘキシル基、フェニル基(-Ph)、ナフチル基、アントリル基、フルオレニル基、水素原子等が挙げられる。
 式(A-1)~(A-4)で表されるシラン化合物としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(Reaction Step 1 / Reaction Step 2)
Reaction step 1 and reaction step 2 are steps in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to form a silanol compound. Specific types of silane compounds represented by A-1) to (A-4), the amount of water used, and the like are not particularly limited, and can be appropriately selected according to the purpose. Hereinafter, a specific example will be described.
Figure JPOXMLDOC01-appb-C000013

(In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
X represents each independently an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom, and the hydrocarbon group of the alkoxy group is linear It is not limited to the saturated hydrocarbon group, and each of them may have a branched structure, a cyclic structure, or an aromatic ring.
The carbon number of the hydrocarbon group when X is an alkoxy group is preferably 1 or more, more preferably 2 or more, preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
The carbon number of the hydrocarbon group when X is an amino group is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
X includes methoxy group (—OMe), ethoxy group (—OEt), n-propoxy group ( —n Pr), phenoxy group (—OPh), amino group (—NH 2 ), dimethylamino group (—NMe 2). ), A chlorine atom, a bromine atom, an iodine atom and the like, and a methoxy group (—OMe) and an ethoxy group (—OEt) are preferable.
Each R independently represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a halogen atom. "It may contain at least one atom selected from the group consisting of an atom, an oxygen atom, and a halogen atom" may include a functional group containing a nitrogen atom, an oxygen atom, a halogen atom, etc. It is meant that a linking group containing a nitrogen atom, an oxygen atom, etc. may be contained inside or at the end of the carbon skeleton. The “hydrocarbon group” is not limited to a linear saturated hydrocarbon group, and may have each of a carbon-carbon unsaturated bond, a branched structure, a cyclic structure, and an aromatic ring.
The functional group and linking group contained in the hydrocarbon group of R include an amide group (—NHCO—), an ether group (—O—), a fluorine atom (fluoro group, —F), a chlorine atom (chloro group, —Cl). ), Bromine atom (bromo group, —Br), iodine atom (iodo group, —I) and the like.
R includes a methyl group (—Me), an ethyl group (—Et), an n-propyl group ( —n Pr), an i-propyl group ( —i Pr), an n-butyl group ( —n Bu), and a cyclohexyl group. , Phenyl group (-Ph), naphthyl group, anthryl group, fluorenyl group, hydrogen atom and the like.
Examples of the silane compounds represented by the formulas (A-1) to (A-4) include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000014
 反応工程1における水の使用量は、式(A-1)~(A-4)で表されるシラン化合物に対して物質量換算で、通常0.25倍以上、好ましくは0.3倍以上、より好ましくは0.9倍以上、さらに好ましくは2.5倍以上であり、通常150倍以下、好ましくは100倍以下、より好ましくは75倍以下、さらに好ましくは40倍以下である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。 The amount of water used in the reaction step 1 is usually 0.25 times or more, preferably 0.3 times or more, in terms of the amount of the silane compound represented by the formulas (A-1) to (A-4). More preferably, it is 0.9 times or more, more preferably 2.5 times or more, and usually 150 times or less, preferably 100 times or less, more preferably 75 times or less, still more preferably 40 times or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
 反応工程1は、アミド化合物を含む溶媒中で行われることを特徴とするが、アミド化合物の具体的種類、溶媒に含まれるアミド化合物以外の化合物の種類、溶媒の使用量、溶媒におけるアミド化合物の含有比率等は特に限定されず、目的に応じて適宜選択することができる。なお、溶媒に含まれるアミド化合物は、1種類に限られず、2種類以上を組み合せてもよい。以下、具体例を挙げて説明する。
 アミド化合物としては、下記式(i)又は(ii)で表される化合物が挙げられる。また、後述する「式(iii)~(v)で表される繰り返し構造の少なくとも1種を有する高分子化合物」もアミド化合物として好適である。
Figure JPOXMLDOC01-appb-C000015

(式(i)及び(ii)中、R’及びR”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表す。但し、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
 R’はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表しているが、水素原子、メチル基(-Me)、エチル基(-Et)、n-プロピル基(-Pr)、i-プロピル基(-Pr)、n-ブチル基(-Bu)、t-ブチル基(-Bu)、n-ヘキシル基(-Hex)、シクロへキシル基(-Hex)、フェニル基(-Ph)が挙げられる。
 R”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表しているが、水素原子、メチル基(-Me)、エチル基(-Et)、n-プロピル基(-Pr)、i-プロピル基(-Pr)、n-ブチル基(-Bu)、t-ブチル基(-Bu)、n-ヘキシル基(-Hex)、シクロへキシル基(-Hex)、フェニル基(-Ph)が挙げられる。
 なお、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよいが、「環状構造を形成」しているとは、例えば下記式で表されるアミド化合物のような構造を意味する。
Figure JPOXMLDOC01-appb-C000016

 式(i)で表される化合物としては、ホルムアミド、N,N-ジメチルホルムアミド(DMF)、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド(DMAc)、2-ピロリドン、N-メチルピロリドン、2-ピペリドン、ε-カプロラクタム等が挙げられる。
 式(ii)で表される化合物としては、尿素、テトラメチル尿素(MeUrea)、テトラフェニル尿素等が挙げられる。
Reaction step 1 is carried out in a solvent containing an amide compound, but the specific type of amide compound, the type of compound other than the amide compound contained in the solvent, the amount of solvent used, the amount of the amide compound in the solvent, A content ratio etc. are not specifically limited, According to the objective, it can select suitably. The amide compound contained in the solvent is not limited to one type, and two or more types may be combined. Hereinafter, a specific example will be described.
Examples of the amide compound include compounds represented by the following formula (i) or (ii). In addition, “polymer compound having at least one repeating structure represented by formulas (iii) to (v)” described later is also suitable as the amide compound.
Figure JPOXMLDOC01-appb-C000015

(In the formulas (i) and (ii), R ′ and R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ″ are two or more. (When it has a hydrocarbon group in a molecule | numerator, hydrocarbon groups may connect and it may form the cyclic structure.)
R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and includes a hydrogen atom, a methyl group (—Me), an ethyl group (—Et), an n-propyl group ( —n Pr). ), I-propyl group ( -i Pr), n-butyl group ( -n Bu), t-butyl group ( -t Bu), n-hexyl group ( -n Hex), cyclohexyl group ( -c Hex) ), A phenyl group (-Ph).
R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, but a hydrogen atom, a methyl group (—Me), an ethyl group (—Et), an n-propyl group ( —n Pr) ), I-propyl group ( -i Pr), n-butyl group ( -n Bu), t-butyl group ( -t Bu), n-hexyl group ( -n Hex), cyclohexyl group ( -c Hex) ), A phenyl group (-Ph).
When R ′ and / or R ″ have two or more hydrocarbon groups in the molecule, the hydrocarbon groups may be linked to form a cyclic structure, but “form a cyclic structure”. For example, it means a structure such as an amide compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000016

Examples of the compound represented by the formula (i) include formamide, N, N-dimethylformamide (DMF), acetamide, N-methylacetamide, N, N-dimethylacetamide (DMAc), 2-pyrrolidone, N-methylpyrrolidone, Examples include 2-piperidone and ε-caprolactam.
Examples of the compound represented by the formula (ii) include urea, tetramethylurea (Me 4 Urea), and tetraphenylurea.
 反応工程1における溶媒は、アミド化合物以外の化合物を含むものであってもよく、その種類としては、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素化合物、ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物、シクロヘキサン、デカリン等の脂環式炭化水素化合物、メタノール、エタノール、n-プロパノール、i-プロパノール等のアルコール化合物、テトラヒドロフラン(THF)、テトラヒドロピラン、ジオキサン、ジエチルエーテル、ジメチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、メチルエチルエーテル等のエーテル化合物、酢酸エチル、酢酸n-アミル、乳酸エチル等のエステル化合物、塩化メチレン、クロロホルム、四塩化炭素、テトラクロロエタン、ヘキサクロロエタン等のハロゲン化炭化水素化合物、アセトン、メチルエチルケトン、フェニルメチルケトン、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。なお、アミド化合物以外の化合物は、1種類に限られず、2種類以上を組み合せてもよい。 The solvent in the reaction step 1 may contain a compound other than an amide compound, and types thereof include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, and n-octane, benzene, toluene, and xylene. Aromatic hydrocarbon compounds such as cyclohexane and decalin, alcohol compounds such as methanol, ethanol, n-propanol and i-propanol, tetrahydrofuran (THF), tetrahydropyran, dioxane, diethyl ether, dimethyl ether , Ether compounds such as diisopropyl ether, diphenyl ether, methyl ethyl ether, ester compounds such as ethyl acetate, n-amyl acetate, ethyl lactate, methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane, hexachloroethane, etc. Halogenated hydrocarbon compounds as acetone, methyl ethyl ketone, phenyl methyl ketone, aprotic polar solvents such as dimethyl sulfoxide (DMSO). In addition, compounds other than an amide compound are not restricted to one type, You may combine 2 or more types.
 反応工程1における溶媒の使用量は、式(A-1)~(A-4)で表されるシラン化合物の濃度が、通常0.001mol/L以上となる量、好ましくは0.010mol/L以上となる量、より好ましくは0.10mol/L以上となる量であり、通常2.00mol/L以下となる量、好ましくは1.00mol/L以下となる量、より好ましくは0.80mol/L以下となる量、さらに好ましくは0.50mol/L以下となる量である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。 The amount of the solvent used in the reaction step 1 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is usually 0.001 mol / L or more, preferably 0.010 mol / L. An amount that becomes above, more preferably an amount that becomes 0.10 mol / L or more, an amount that usually becomes 2.00 mol / L or less, preferably an amount that becomes 1.00 mol / L or less, more preferably 0.80 mol / L. The amount is L or less, more preferably 0.50 mol / L or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
 反応工程1の溶媒におけるアミド化合物の含有比率は、通常0.1体積%以上、好ましくは1体積%以上、より好ましくは50体積%以上、さらに好ましくは70体積%以上である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。 The content ratio of the amide compound in the solvent in the reaction step 1 is usually 0.1% by volume or more, preferably 1% by volume or more, more preferably 50% by volume or more, and further preferably 70% by volume or more. Within the above range, it becomes easy to produce a silanol compound efficiently.
 反応工程2における水の使用量は、式(A-1)~(A-4)で表されるシラン化合物の濃度が、通常0.01mol/L以上となる量、好ましくは0.05mol/L以上となる量、より好ましくは0.10mol/L以上となる量であり、通常2.00mol/L以下となる量、好ましくは1.00mol/L以下となる量、より好ましくは0.50mol/L以下となる量である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。 The amount of water used in the reaction step 2 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is usually 0.01 mol / L or more, preferably 0.05 mol / L. An amount that becomes above, more preferably an amount that becomes 0.10 mol / L or more, usually an amount that becomes 2.00 mol / L or less, preferably an amount that becomes 1.00 mol / L or less, more preferably 0.50 mol / L. It is an amount that becomes L or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
 反応工程2は、アミド結合を少なくとも1つ有する高分子化合物を含む水溶液中で行われることを特徴とするが、アミド結合を少なくとも1つ有する高分子化合物の具体的種類、水の使用量、水溶液におけるアミド結合を少なくとも1つ有する高分子化合物の含有比率等は特に限定されず、目的に応じて適宜選択することができる。なお、水溶液中に含まれるアミド結合を少なくとも1つ有する高分子化合物は、1種類に限られず、2種類以上を組み合せてもよい。以下、具体例を挙げて説明する。
 アミド結合を少なくとも1つ有する高分子化合物の数平均分子量(M)は、通常1,000以上、好ましくは3,000以上、より好ましくは5,000以上であり、通常500,000以下、好ましくは300,000以下、より好ましくは200,000以下である。
 アミド結合を少なくとも1つ有する高分子化合物の重量平均分子量(M)は、通常1,000以上、好ましくは5,000以上、より好ましくは10,000以上であり、通常1,000,000以下、好ましくは500,000以下、より好ましくは200,000以下である。
 アミド結合を少なくとも1つ有する高分子化合物のアミド結合の数は、通常10以上、好ましくは50以上、より好ましくは100以上であり、通常10,000以下、好ましくは5,000以下、より好ましくは2,000以下である。
 アミド結合を少なくとも1つ有する高分子化合物としては、下記式(iii)~(v)で表される繰り返し構造の少なくとも1種を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017

(式(iii)~(v)中、R’及びR”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表す。但し、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
 なお、R’とR”については、前述のものと同様である。
 式(iii)で表される繰り返し構造のみからなる高分子化合物としては、ポリビニルピロリドン、ポリビニルポリピロリドン、ポリビニルピペリドン、ポリビニルカプロラクタム等が挙げられる。
 式(iv)で表される繰り返し構造のみからなる高分子化合物としては、ポリアクリルアミド、ポリ-N-メチルアクリルアミド、ポリ-N-エチルアクリルアミド、ポリ-N-エチルメタクリルアミド、ポリ-N-プロピルアクリルアミド、ポリ-N-プロピルメタクリルアミド、ポリ-N-イソプロピルアクリルアミド、ポリ-N-イソプロピルメタクリルアミド、ポリ-N-エチルメチルアクリルアミド、ポリ-N-ジエチルアクリルアミド、ポリ-N-イソプロピルメチルアクリルアミド、ポリ-N-メチルプロピルアクリルアミド、ポリ-N-シクロプロピルアクリルアミド、ポリ-N-シクロペンチニルアクリルアミド等が挙げられる。
 式(v)で表される繰り返し構造のみからなる高分子化合物としては、ポリ-2-メチルオキサゾリン、ポリ-2-エチルオキサゾリン、ポリ-2-プロピルオキサゾリン等が挙げられる。
The reaction step 2 is performed in an aqueous solution containing a polymer compound having at least one amide bond, and the specific type of the polymer compound having at least one amide bond, the amount of water used, and the aqueous solution The content ratio of the polymer compound having at least one amide bond in is not particularly limited, and can be appropriately selected according to the purpose. The polymer compound having at least one amide bond contained in the aqueous solution is not limited to one type, and two or more types may be combined. Hereinafter, a specific example will be described.
The number average molecular weight (M n ) of the polymer compound having at least one amide bond is usually 1,000 or more, preferably 3,000 or more, more preferably 5,000 or more, and usually 500,000 or less, preferably Is 300,000 or less, more preferably 200,000 or less.
The polymer compound having at least one amide bond has a weight average molecular weight (M w ) of usually 1,000 or more, preferably 5,000 or more, more preferably 10,000 or more, and usually 1,000,000 or less. , Preferably 500,000 or less, more preferably 200,000 or less.
The number of amide bonds of the polymer compound having at least one amide bond is usually 10 or more, preferably 50 or more, more preferably 100 or more, and usually 10,000 or less, preferably 5,000 or less, more preferably 2,000 or less.
Examples of the polymer compound having at least one amide bond include polymer compounds having at least one repeating structure represented by the following formulas (iii) to (v).
Figure JPOXMLDOC01-appb-C000017

(In the formulas (iii) to (v), R ′ and R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ″ are two or more. (When it has a hydrocarbon group in a molecule | numerator, hydrocarbon groups may connect and it may form the cyclic structure.)
Note that R ′ and R ″ are the same as those described above.
Examples of the polymer compound having only the repeating structure represented by the formula (iii) include polyvinyl pyrrolidone, polyvinyl polypyrrolidone, polyvinyl piperidone, and polyvinyl caprolactam.
Examples of the polymer compound having only a repeating structure represented by the formula (iv) include polyacrylamide, poly-N-methylacrylamide, poly-N-ethylacrylamide, poly-N-ethylmethacrylamide, and poly-N-propylacrylamide. , Poly-N-propylmethacrylamide, poly-N-isopropylacrylamide, poly-N-isopropylmethacrylamide, poly-N-ethylmethylacrylamide, poly-N-diethylacrylamide, poly-N-isopropylmethylacrylamide, poly-N -Methylpropylacrylamide, poly-N-cyclopropylacrylamide, poly-N-cyclopentynylacrylamide and the like.
Examples of the polymer compound consisting only of the repeating structure represented by the formula (v) include poly-2-methyloxazoline, poly-2-ethyloxazoline, poly-2-propyloxazoline and the like.
 反応工程2における水溶液は、水以外の化合物を含むものであってもよく、その種類としては、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素化合物、ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物、シクロヘキサン、デカリン等の脂環式炭化水素化合物、メタノール、エタノール、n-プロパノール、i-プロパノール等のアルコール化合物、テトラヒドロフラン(THF)、テトラヒドロピラン、ジオキサン、ジエチルエーテル、ジメチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、メチルエチルエーテル等のエーテル化合物、酢酸エチル、酢酸n-アミル、乳酸エチル等のエステル化合物、塩化メチレン、クロロホルム、四塩化炭素、テトラクロロエタン、ヘキサクロロエタン等のハロゲン化炭化水素化合物、アセトン、メチルエチルケトン、フェニルメチルケトン、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。なお、水以外の化合物は、1種類に限られず、2種類以上を組み合せてもよい。 The aqueous solution in the reaction step 2 may contain a compound other than water, and types thereof include aliphatic hydrocarbon compounds such as n-hexane, n-heptane and n-octane, benzene, toluene, xylene and the like. Aromatic hydrocarbon compounds such as cyclohexane and decalin, alcohol compounds such as methanol, ethanol, n-propanol and i-propanol, tetrahydrofuran (THF), tetrahydropyran, dioxane, diethyl ether, dimethyl ether, Ether compounds such as diisopropyl ether, diphenyl ether and methyl ethyl ether; ester compounds such as ethyl acetate, n-amyl acetate and ethyl lactate; halogens such as methylene chloride, chloroform, carbon tetrachloride, tetrachloroethane and hexachloroethane Hydrocarbon compound, acetone, methyl ethyl ketone, phenyl methyl ketone, aprotic polar solvents such as dimethyl sulfoxide (DMSO). The compound other than water is not limited to one type, and two or more types may be combined.
 反応工程2の水溶液におけるアミド結合を少なくとも1つ有する高分子化合物の含有比率は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは1.0質量%以上、さらに好ましくは5.0質量%以上であり、通常50質量%以下となる量、好ましくは30質量%以下となる量、より好ましくは15質量%以下となる量、さらに好ましくは10質量%以下となる量である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。 The content ratio of the polymer compound having at least one amide bond in the aqueous solution of reaction step 2 is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 1.0% by mass or more, and further preferably. Is 5.0% by mass or more, usually 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. It is. Within the above range, it becomes easy to produce a silanol compound efficiently.
 反応工程1及び反応工程2は、式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する工程であるが、反応温度、反応時間等の反応条件は特に限定されず、目的に応じて適宜選択することができる。以下、具体例を挙げて説明する。
 反応工程1及び反応工程2は、酸の存在下で行われることが好ましい。酸は、シラン化合物と水の反応の触媒となり、反応が速やかに進行する。
 酸としては、塩酸、硫酸、硝酸、リン酸等の無機酸、酢酸、トリフルオロ酢酸、ギ酸、炭酸、p-トルエンスルホン酸、トリフロオロメタンスルホン酸等の有機酸が挙げられる。
 反応工程1又は反応工程2が酸の存在下で行われる場合の酸の使用量(水素イオン濃度換算)は、式(A-1)~(A-4)で表されるシラン化合物に対して、通常0.0010mol%以上、好ましくは0.010mol%以上、より好ましくは0.10mol%以上であり、通常10.0mol%以下、好ましくは8.0mol%以下、より好ましくは4.0mol%以下である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。
Reaction step 1 and reaction step 2 are steps in which at least one silane compound represented by formulas (A-1) to (A-4) is reacted with water to form a silanol compound. Reaction conditions such as reaction time are not particularly limited, and can be appropriately selected according to the purpose. Hereinafter, a specific example will be described.
Reaction step 1 and reaction step 2 are preferably performed in the presence of an acid. The acid serves as a catalyst for the reaction of the silane compound and water, and the reaction proceeds rapidly.
Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid, trifluoroacetic acid, formic acid, carbonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid.
When the reaction step 1 or the reaction step 2 is performed in the presence of an acid, the amount of acid used (in terms of hydrogen ion concentration) is based on the silane compounds represented by the formulas (A-1) to (A-4). Usually, 0.0010 mol% or more, preferably 0.010 mol% or more, more preferably 0.10 mol% or more, and usually 10.0 mol% or less, preferably 8.0 mol% or less, more preferably 4.0 mol% or less. It is. Within the above range, it becomes easy to produce a silanol compound efficiently.
 反応工程1及び反応工程2における反応温度は、通常-78℃以上、好ましくは0℃以上、より好ましくは10℃以上であり、通常80℃以下、好ましくは50℃以下、より好ましくは30℃以下である。
 反応工程1及び反応工程2における反応時間は、通常0.1分以上、好ましくは0.5分以上、より好ましくは1分以上であり、通常5時間以下、好ましくは1時間以下、より好ましくは0.5時間以下である。
 上記範囲内であると、効率良くシラノール化合物を製造し易くなる。
The reaction temperature in reaction step 1 and reaction step 2 is usually −78 ° C. or higher, preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and usually 80 ° C. or lower, preferably 50 ° C. or lower, more preferably 30 ° C. or lower. It is.
The reaction time in the reaction step 1 and the reaction step 2 is usually 0.1 minutes or more, preferably 0.5 minutes or more, more preferably 1 minute or more, usually 5 hours or less, preferably 1 hour or less, more preferably 0.5 hours or less.
Within the above range, it becomes easy to produce a silanol compound efficiently.
 本発明のシラノール化合物の製造方法は、反応工程1及び反応工程2以外の工程を含むものであってもよく、具体的な工程としては、反応工程1又は反応工程2で得られた生成物に塩基を添加する塩基添加工程(以下、「塩基添加工程」と略す場合がある。)、反応工程1若しくは反応工程2で得られた生成物、又は塩基添加工程で得られた生成物にアンモニウム塩を添加するアンモニウム塩添加工程(以下、「アンモニウム塩添加工程」と略す場合がある。)、反応工程1若しくは反応工程2で得られた生成物、塩基添加工程で得られた生成物、又はアンモニウム塩添加工程で得られた生成物を凍結させて、減圧下にさらす凍結乾燥工程(以下、「凍結乾燥工程」と略す場合がある。)が挙げられる。
 以下、「塩基添加工程」、「アンモニウム塩添加工程」、「凍結乾燥工程」等について詳細に説明する。
The manufacturing method of the silanol compound of this invention may include processes other than the reaction process 1 and the reaction process 2, and as a specific process, it is the product obtained by the reaction process 1 or the reaction process 2. A base addition step for adding a base (hereinafter sometimes abbreviated as “base addition step”), a product obtained in the reaction step 1 or the reaction step 2 or an ammonium salt in the product obtained in the base addition step. Ammonium salt addition step (hereinafter sometimes abbreviated as “ammonium salt addition step”), product obtained in reaction step 1 or reaction step 2, product obtained in base addition step, or ammonium Examples thereof include a freeze-drying step in which the product obtained in the salt addition step is frozen and exposed to a reduced pressure (hereinafter sometimes abbreviated as “freeze-drying step”).
Hereinafter, the “base addition step”, “ammonium salt addition step”, “freeze drying step” and the like will be described in detail.
(塩基添加工程)
 塩基添加工程は、反応工程1又は反応工程2で得られた生成物に塩基を添加する工程であるが、塩基の具体的種類、塩基の使用量等は特に限定されず、目的に応じて適宜選択することができる。
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物、アンモニア、アニリン等のアミン化合物が挙げられる。
 なお、「アミン化合物」とは、アミノ基(第一級アミン、第二級アミン、第三級アミンの何れであってもよい。)を有する化合物を意味し、その他の構造は特に限定されないものとする。塩基は、酸を中和してシラノール化合物の縮合を抑えるものと考えられる。以下、具体例を挙げて説明する。
 アミン化合物としては、アンモニア、アニリン(NHPh)、ジフェニルアミン(NHPh)、ジメチルピリジン(MePyr)、ジ-tert-ブチルピリジン(BuPyr)、ピラジン(Pyraz)、トリフェニルアミン(NPh)、トリエチルアミン(EtN)、ジ-イソプロピルエチルアミン(PrEtN)等が挙げられる。
(Base addition process)
The base addition step is a step of adding a base to the product obtained in the reaction step 1 or the reaction step 2, but the specific type of base, the amount of base used, etc. are not particularly limited, and is appropriately determined depending on the purpose. You can choose.
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide, and amine compounds such as ammonia and aniline.
The “amine compound” means a compound having an amino group (which may be any of primary amine, secondary amine, and tertiary amine), and other structures are not particularly limited. And The base is considered to neutralize the acid and suppress the condensation of the silanol compound. Hereinafter, a specific example will be described.
Amine compounds include ammonia, aniline (NH 2 Ph), diphenylamine (NHPh 2 ), dimethylpyridine (Me 2 Pyr), di-tert-butylpyridine ( t Bu 2 Pyr), pyrazine (Pyraz), triphenylamine ( NPh 3 ), triethylamine (Et 3 N), di-isopropylethylamine ( i Pr 2 EtN) and the like.
 塩基の使用量は、加えた酸に対して、物質量比で通常0.1以上、好ましくは0.25以上、より好ましくは0.5以上であり、通常4.0以下、好ましくは2.0以下、より好ましくは1.5以下である。上記範囲内であると、効率良くシラノール化合物を製造し易くなる。 The amount of the base used is usually 0.1 or more, preferably 0.25 or more, more preferably 0.5 or more, and usually 4.0 or less, preferably 2. 0 or less, more preferably 1.5 or less. Within the above range, it becomes easy to produce a silanol compound efficiently.
(アンモニウム塩添加工程)
 アンモニウム塩添加工程は、反応工程1若しくは反応工程2で得られた生成物、又は塩基添加工程で得られた生成物にアンモニウム塩を添加する工程であるが、アンモニウム塩の具体的種類、アンモニウム塩の使用量等は特に限定されず、目的に応じて適宜選択することができる。なお、「アンモニウム塩」とは、アンモニウムイオンと対アニオンからなる化合物を意味し、アンモニウムイオンと対アニオンの構造は特に限定されないものとする。アンモニウム塩は、シラノール化合物の縮合を抑えるものと考えられる。以下、具体例を挙げて説明する。
 アンモニウムイオンとしては、テトラヒドロアンモニウムイオン(NH )、テトラメチルアンモニウムイオン(NMe )、テトラエチルアンモニウムイオン(NEt )、テトラプロピルアンモニウムイオン(NPr )、テトラブチルアンモニウムイオン(NBu )、ベンジルトリブチルアンモニウムイオン(NBnBu )、トリブチル(メチル)アンモニウム(NBuMe)イオン、テトラペンチルアンモニウムイオン(NPen )、テトラへキシルアンモニウムイオン(NHex )、テトラヘプチルアンモニウムイオン(NHep )、1-ブチル-1メチルピロリジウムイオン(BuMePyr)、メチルトリオクチルアンモニウムイオン(NMeOct )、ジメチルジオクタデシルアンモニウムイオン等が挙げられる。
 対アニオンとしては、フッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)、アセトキシイオン(AcO)、硝酸イオン(NO )、アジ化物イオン(N )、テトラフルオロホウ酸イオン(BF )、過塩素酸イオン(ClO )、硫酸イオン(HSO )等が挙げられる。
 アンモニウム塩としては、テトラブチルアンモニウムクロリド(NBuCl)、テトラブチルアンモニウムブロミド(NBuBr)が特に好ましい。なお、組成物に含まれるアンモニウム塩は、1種類に限られず、2種類以上を含むものであってもよい。
(Ammonium salt addition process)
The ammonium salt addition step is a step of adding an ammonium salt to the product obtained in the reaction step 1 or the reaction step 2 or the product obtained in the base addition step. There are no particular restrictions on the amount used, and it can be appropriately selected according to the purpose. The “ammonium salt” means a compound comprising an ammonium ion and a counter anion, and the structure of the ammonium ion and the counter anion is not particularly limited. The ammonium salt is considered to suppress the condensation of the silanol compound. Hereinafter, a specific example will be described.
As ammonium ions, tetrahydroammonium ions (NH 4 + ), tetramethylammonium ions (NMe 4 + ), tetraethylammonium ions (NEt 4 + ), tetrapropylammonium ions (NPr 4 + ), tetrabutylammonium ions (NBu 4). +), benzyl tributyl ammonium ions (NBnBu 3 +), tributyl (methyl) ammonium (NBu 3 Me +) ions, tetrapentylammonium ion (NPen 4 +), hexyl ammonium ion to tetra (nhex 4 +), tetra heptyl ammonium ion (NHep 4 +), 1- butyl-l-methyl pyrrolidium ion (BuMePyr +), methyl trioctyl ammonium ion (NMeOct 3 +), di Chill dioctadecyl ammonium ion and the like.
Counter anions include fluoride ion (F ), chloride ion (Cl ), bromide ion (Br ), iodide ion (I ), acetoxy ion (AcO ), nitrate ion (NO 3 ). , Azide ion (N 3 ), tetrafluoroborate ion (BF 4 ), perchlorate ion (ClO 4 ), sulfate ion (HSO 4 ) and the like.
As the ammonium salt, tetrabutylammonium chloride (NBu 4 Cl) and tetrabutylammonium bromide (NBu 4 Br) are particularly preferable. In addition, the ammonium salt contained in a composition is not restricted to one type, You may contain 2 or more types.
 アンモニウム塩の使用量は、シラノール化合物に対して物質量換算で、通常0倍より大きく、好ましくは1倍以上であり、通常4倍以下、好ましくは3倍以下、より好ましくは2倍以下である。 The amount of ammonium salt used is usually greater than 0 times, preferably 1 times or more, usually 4 times or less, preferably 3 times or less, more preferably 2 times or less, in terms of the amount of substance with respect to the silanol compound. .
(凍結乾燥工程)
 凍結乾燥工程は、反応工程1若しくは反応工程2で得られた生成物、塩基添加工程で得られた生成物、又はアンモニウム塩添加工程で得られた生成物を凍結させて、減圧下にさらす工程であるが、凍結温度、乾燥温度、乾燥圧力、乾燥時間等は特に限定されず、目的に応じて適宜選択することができる。以下、具体例を挙げて説明する。
 凍結温度は、アンモニウム塩添加工程で得られた生成物が凍結する温度であれば特に限定されないが、通常10℃以下、好ましくは0℃以下、より好ましくは-20℃以下であり、通常-196℃以上、好ましくは-150℃以上、より好ましくは-100℃以上である。
 乾燥温度は、通常10℃以下、好ましくは0℃以下、より好ましくは-20℃以下であり、通常-196℃以上、好ましくは-150℃以上、より好ましくは-100℃以上である。
 乾燥圧力は、通常100Pa以下、好ましくは20Pa以下、より好ましくは3Pa以下であり、通常10-5Pa以上、好ましくは0.01Pa以上、より好ましくは1Pa以上である。
 乾燥時間は、通常200時間以下、好ましくは100時間以下、より好ましくは50時間以下であり、通常1時間以上、好ましくは5時間以上、より好ましくは10時間以上である。
(Freeze drying process)
The lyophilization step is a step in which the product obtained in the reaction step 1 or the reaction step 2, the product obtained in the base addition step, or the product obtained in the ammonium salt addition step is frozen and exposed to reduced pressure. However, the freezing temperature, drying temperature, drying pressure, drying time and the like are not particularly limited, and can be appropriately selected according to the purpose. Hereinafter, a specific example will be described.
The freezing temperature is not particularly limited as long as the product obtained in the ammonium salt addition step is frozen, but is usually 10 ° C. or lower, preferably 0 ° C. or lower, more preferably −20 ° C. or lower, and usually −196. ° C or higher, preferably -150 ° C or higher, more preferably -100 ° C or higher.
The drying temperature is usually 10 ° C. or lower, preferably 0 ° C. or lower, more preferably −20 ° C. or lower, usually −196 ° C. or higher, preferably −150 ° C. or higher, more preferably −100 ° C. or higher.
The drying pressure is usually 100 Pa or less, preferably 20 Pa or less, more preferably 3 Pa or less, usually 10 −5 Pa or more, preferably 0.01 Pa or more, more preferably 1 Pa or more.
The drying time is usually 200 hours or less, preferably 100 hours or less, more preferably 50 hours or less, and usually 1 hour or more, preferably 5 hours or more, more preferably 10 hours or more.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but can be appropriately changed without departing from the gist of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
<実施例1>
 磁気攪拌子を備えた二口フラスコに、テトラエトキシシラン28.3mg(0.136mmol)、N,N-ジメチルアセトアミド0.723mL、及び1N塩酸0.0014mL(1.0mol%)を投入し、さらに水0.270mL(15.0mmol)を加えて、室温で4時間反応させた。その後、トリエチルアミンのN,N-ジメチルアセトアミド溶液(濃度:27.5g/L)0.005mL(1.0mol%)を加えて反応を終了させ、さらに内標としてテトラメチルシランを加えて、溶液の29Si-NMRを測定した。結果を図1に示す。溶液には162mMの濃度(収率:100%)でシランテトラオールが含まれていることが確認された。
 また、反応終了後の室温下で1.5時間放置した後、及び6時間放置した後の溶液の29Si-NMRを測定した。結果を図2、3に示す。
Figure JPOXMLDOC01-appb-C000018
<Example 1>
A two-necked flask equipped with a magnetic stir bar was charged with 28.3 mg (0.136 mmol) of tetraethoxysilane, 0.723 mL of N, N-dimethylacetamide, and 0.0014 mL (1.0 mol%) of 1N hydrochloric acid, and 0.270 mL (15.0 mmol) of water was added and reacted at room temperature for 4 hours. Thereafter, 0.005 mL (1.0 mol%) of an N, N-dimethylacetamide solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction, and tetramethylsilane was further added as an internal standard. 29 Si-NMR was measured. The results are shown in FIG. It was confirmed that the solution contained silanetetraol at a concentration of 162 mM (yield: 100%).
In addition, 29 Si-NMR of the solution after the reaction was allowed to stand at room temperature for 1.5 hours and after the reaction was left for 6 hours was measured. The results are shown in FIGS.
Figure JPOXMLDOC01-appb-C000018
<比較例>
 N,N-ジメチルアセトアミド0.723mLをアセトン0.573mLに変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図4に示す。溶液にはシランテトラオールを確認することができなかった。これは、生成したシランテトラオールが縮合してシロキサンに変性しているためであると考えられる。
<Comparative example>
The reaction was carried out in the same manner as in Example 1 except that 0.723 mL of N, N-dimethylacetamide was changed to 0.573 mL of acetone, and 29 Si-NMR of the solution was measured. The results are shown in FIG. Silane tetraol could not be confirmed in the solution. This is considered to be because the produced silanetetraol is condensed and modified to siloxane.
<実施例2>
 テトラエトキシシラン28.3mgを56.6mgに、N,N-ジメチルアセトアミド0.723mLを1.023mLに、1N塩酸0.0014mLを0.0028mLに、トリエチルアミンのN,N-ジメチルアセトアミド溶液0.005mLを0.010mLに変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図5に示す。なお、シランテトラオールの収率は88.4%であった。
<Example 2>
Tetraethoxysilane 28.3mg to 56.6mg, N, N-dimethylacetamide 0.723mL to 1.023mL, 1N hydrochloric acid 0.0014mL to 0.0028mL, triethylamine in N, N-dimethylacetamide 0.005mL The reaction was carried out in the same manner as in Example 1 except that the amount was changed to 0.010 mL, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 88.4%.
<実施例3>
 テトラエトキシシラン28.3mgを70.0mgに、N,N-ジメチルアセトアミド0.723mLを1.123mLに、1N塩酸0.0014mLを0.0042mL、トリエチルアミンのN,N-ジメチルアセトアミド溶液0.005mLを0.015mLに変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図6に示す。なお、シランテトラオールの収率は60.0%であった。
<Example 3>
Tetraethoxysilane 28.3mg to 70.0mg, N, N-dimethylacetamide 0.723mL to 1.123mL, 1N hydrochloric acid 0.0014mL to 0.0042mL, triethylamine N, N-dimethylacetamide 0.005mL The reaction was conducted in the same manner as in Example 1 except that the volume was changed to 0.015 mL, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 60.0%.
<実施例4>
 テトラエトキシシラン28.3mgをテトラメトキシシラン20.7mgに、反応時間を30分に変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図7に示す。なお、シランテトラオールの収率は94.8%であった。
Figure JPOXMLDOC01-appb-C000019
<Example 4>
The reaction was performed in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 20.7 mg of tetramethoxysilane and the reaction time was changed to 30 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 94.8%.
Figure JPOXMLDOC01-appb-C000019
<実施例5>
 テトラメトキシシラン20.7mgを41.4mgに、1N塩酸0.0014mLを0.0028mL、トリエチルアミンのN,N-ジメチルアセトアミド溶液0.005mLを0.010mLに変更した以外、実施例4と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図8に示す。なお、シランテトラオールの収率は95.3%であった。
<Example 5>
The same method as in Example 4 except that 20.7 mg of tetramethoxysilane was changed to 41.4 mg, 0.0014 mL of 1N hydrochloric acid was changed to 0.0028 mL, and 0.005 mL of an N, N-dimethylacetamide solution of triethylamine was changed to 0.010 mL. And 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 95.3%.
<実施例6>
 テトラメトキシシラン20.7mgを62.1mgに、1N塩酸0.0014mLを0.0042mL、トリエチルアミンのN,N-ジメチルアセトアミド溶液0.005mLを0.015mLに変更した以外、実施例4と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図9に示す。なお、シランテトラオールの収率は89.0%であった。
<Example 6>
The same method as in Example 4, except that 20.7 mg of tetramethoxysilane was changed to 62.1 mg, 0.0014 mL of 1N hydrochloric acid was changed to 0.0042 mL, and 0.005 mL of an N, N-dimethylacetamide solution of triethylamine was changed to 0.015 mL. And 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 89.0%.
<実施例7>
 テトラメトキシシラン20.7mgを82.8mgに、1N塩酸0.0014mLを0.0056mL、トリエチルアミンのN,N-ジメチルアセトアミド溶液0.005mLを0.020mLに変更した以外、実施例4と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図10に示す。なお、シランテトラオールの収率は88.8%であった。
<Example 7>
The same method as in Example 4 except that 20.7 mg of tetramethoxysilane was changed to 82.8 mg, 0.0014 mL of 1N hydrochloric acid was changed to 0.0056 mL, and 0.005 mL of an N, N-dimethylacetamide solution of triethylamine was changed to 0.020 mL. And 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of silanetetraol was 88.8%.
<実施例8>
 テトラエトキシシラン28.3mgをトリメトキシメチルシラン18.0mgに、反応時間を2分に変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図11に示す。なお、メチルシラントリオールの収率は100%であった。
Figure JPOXMLDOC01-appb-C000020
<Example 8>
The reaction was performed in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane and 18.0 mg of trimethoxymethylsilane were changed to 2 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of methylsilanetriol was 100%.
Figure JPOXMLDOC01-appb-C000020
<実施例9>
 テトラエトキシシラン28.3mgをトリエトキシメチルシラン24.2mgに、反応時間を30分に変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図12に示す。なお、メチルシラントリオールの収率は99.3%であった。
Figure JPOXMLDOC01-appb-C000021
<Example 9>
The reaction was carried out in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 24.2 mg of triethoxymethylsilane and the reaction time was changed to 30 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of methylsilanetriol was 99.3%.
Figure JPOXMLDOC01-appb-C000021
<実施例10>
 テトラエトキシシラン28.3mgをジメトキシジメチルシラン16.3mgに、反応時間を2分に変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図13に示す。なお、ジメチルシランジオールの収率は95.5%であった。
Figure JPOXMLDOC01-appb-C000022
<Example 10>
The reaction was performed in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 16.3 mg of dimethoxydimethylsilane and the reaction time was changed to 2 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of dimethylsilanediol was 95.5%.
Figure JPOXMLDOC01-appb-C000022
<実施例11>
 テトラエトキシシラン28.3mgをジエトキシジメチルシラン18.0mgに、反応時間を10分に変更した以外、実施例1と同様の方法によって反応させて、溶液の29Si-NMRを測定した。結果を図14に示す。なお、ジメチルシランジオールの収率は93.0%であった。
Figure JPOXMLDOC01-appb-C000023
<Example 11>
The reaction was carried out in the same manner as in Example 1 except that 28.3 mg of tetraethoxysilane was changed to 18.0 mg of diethoxydimethylsilane and the reaction time was changed to 10 minutes, and 29 Si-NMR of the solution was measured. The results are shown in FIG. The yield of dimethylsilanediol was 93.0%.
Figure JPOXMLDOC01-appb-C000023
<実施例12>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン15.2mg(0.100mmol)、ポリビニルピロリドン(ナカライテスク社製ポリビニルピロリドン25)100.0mg(0.900mmol)、水1.000mL、及び1N塩酸水溶液0.001mL(1.0mol%)を投入し、室温で0.083時間反応させた。その後、トリエチルアミンの水溶液(濃度:27.5g/L)0.010mL(1.0mol%)を加えて反応を終了させ、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は70.4%であった。
<Example 12>
In a two-necked flask equipped with a magnetic stirring bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, 100.0 mg (0.900 mmol) of polyvinylpyrrolidone (polyvinylpyrrolidone 25 manufactured by Nacalai Tesque), 1.000 mL of water, and 1N 0.001 mL (1.0 mol%) of an aqueous hydrochloric acid solution was added and reacted at room temperature for 0.083 hours. Thereafter, 0.010 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction, and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 70.4%.
<実施例13>
 テトラメトキシシランを30.4mg(0.200mmol)に、1N塩酸水溶液を0.002mL(1.0mol%)に、トリエチルアミンの水溶液(濃度:27.5g/L)を0.020mL(1.0mol%)に変更した以外、実施例12と同様の方法によって反応させて、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は66.7%であった。
<Example 13>
Tetramethoxysilane 30.4 mg (0.200 mmol), 1N aqueous hydrochloric acid solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) The solution was reacted in the same manner as in Example 12 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 66.7%.
<実施例14>
 テトラメトキシシランを45.7mg(0.300mmol)に、1N塩酸水溶液0.003mLを(1.0mol%)に、トリエチルアミンの水溶液(濃度:27.5g/L)を0.030mL(1.0mol%)に変更した以外、実施例12と同様の方法によって反応させて、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は58.1%であった。
<Example 14>
45.7 mg (0.300 mmol) of tetramethoxysilane, 0.003 mL of 1N aqueous hydrochloric acid solution (1.0 mol%), and 0.030 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) The solution was reacted in the same manner as in Example 12 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 58.1%.
<実施例15>
 テトラメトキシシランを60.9mg(0.400mmol)に、1N塩酸水溶液を0.004mL(1.0mol%)に、トリエチルアミンの水溶液(濃度:27.5g/L)を0.040mL(1.0mol%)に変更した以外、実施例12と同様の方法によって反応させて、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は51.5%であった。
<Example 15>
Tetramethoxysilane was added to 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution was added to 0.004 mL (1.0 mol%), and triethylamine aqueous solution (concentration: 27.5 g / L) was added to 0.040 mL (1.0 mol%). The solution was reacted in the same manner as in Example 12 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 51.5%.
<実施例16>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン15.2mg(0.100mmol)、ポリ-N-イソプロピルアクリルアミド(シグマアルドリッチ社製ポリ(N-イソプロピルアクリルアミド)、Mn:20000~40000)90.8mg(0.802mmol)、水1.000mL、及び1N塩酸水溶液0.001mL(1.0mol%)を投入し、室温で0.083時間反応させた。その後、トリエチルアミンの水溶液(濃度:27.5g/L)0.010mL(1.0mol%)を加えて反応を終了させ、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は67.1%であった。
<Example 16>
In a two-necked flask equipped with a magnetic stir bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, poly-N-isopropylacrylamide (poly (N-isopropylacrylamide) manufactured by Sigma-Aldrich, Mn: 20000 to 40,000) 90. 8 mg (0.802 mmol), 1.000 mL of water, and 0.001 mL (1.0 mol%) of 1N hydrochloric acid aqueous solution were added and reacted at room temperature for 0.083 hours. Thereafter, 0.010 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction, and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 67.1%.
<実施例17>
 テトラメトキシシランを30.4mg(0.200mmol)に、1N塩酸水溶液を0.002mL(1.0mol%)に、トリエチルアミンの水溶液(濃度:27.5g/L)を0.020mL(1.0mol%)に変更した以外、実施例16と同様の方法によって反応させ、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は54.9%であった。
<Example 17>
Tetramethoxysilane 30.4 mg (0.200 mmol), 1N aqueous hydrochloric acid solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) The solution was reacted in the same manner as in Example 16 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 54.9%.
<実施例18>
 テトラメトキシシランを45.7mg(0.300mmol)に、1N塩酸水溶液を0.003mL(1.0mol%)に、トリエチルアミンの水溶液(濃度:27.5g/L)を0.030mL(1.0mol%)に変更した以外、実施例16と同様の方法によって反応させ、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は52.4%であった。
<Example 18>
Tetramethoxysilane was added to 45.7 mg (0.300 mmol), 1N aqueous hydrochloric acid solution was added to 0.003 mL (1.0 mol%), and triethylamine aqueous solution (concentration: 27.5 g / L) was added to 0.030 mL (1.0 mol%). The solution was reacted in the same manner as in Example 16 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 52.4%.
<実施例19>
 テトラメトキシシランを60.9mg(0.400mmol)に、1N塩酸水溶液を0.004mL(1.0mol%)に、トリエチルアミンの水溶液(濃度:27.5g/L)を0.040mL(1.0mol%)に変更した以外、実施例16と同様の方法によって反応させ、溶液の29Si-NMRを測定した。なお、シランテトラオールの収率は47.4%であった。
<Example 19>
Tetramethoxysilane was added to 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution was added to 0.004 mL (1.0 mol%), and triethylamine aqueous solution (concentration: 27.5 g / L) was added to 0.040 mL (1.0 mol%). The solution was reacted in the same manner as in Example 16 except that the solution was changed to), and 29 Si-NMR of the solution was measured. The yield of silanetetraol was 47.4%.
<実施例20>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン20.7mg(0.136mmol)、テトラメチル尿素1.200mL、及び1N塩酸0.0014mL(1.0mol%)を投入し、さらに水0.270mL(15.0mmol)を加えて、室温で0.5時間反応させた。その後、トリエチルアミンのテトラメチル尿素溶液(濃度:27.5g/L)0.005mL(1.0mol%)を加えて反応を終了させた。この中にテトラメトキシシラン換算で物質量が2.0倍のテトラブチルアンモニウムクロリド(BuNCl、76.0mg)とテトラメチル尿素(MeUrea)15mlを加え、シランテトラオール等を含んだ組成物(溶液)を得た。
 この組成物を、液体窒素(-196℃)を用いて凍結させて、減圧下でテトラメチル尿素等を昇華させる真空凍結乾燥を行った(凍結乾燥工程(1)減圧度1~3Pa,棚温度-40℃,保持時間15時間、凍結乾燥工程(2)減圧度1~3Pa,棚温度-40℃から-15℃まで15時間かけて昇温、凍結乾燥工程(3)減圧度1~3Pa、-15℃、保持時間24時間)。乾燥終了後、ガラスバイアル中を不活性ガスで置換し、ゴム栓で封栓することで、粉末状のシランテトラオール等を含んだ組成物94.1mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-69.8ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表1に、組成物のIR分析の結果を図15に示す。
Figure JPOXMLDOC01-appb-C000024
<Example 20>
To a two-necked flask equipped with a magnetic stirrer, 20.7 mg (0.136 mmol) of tetramethoxysilane, 1.200 mL of tetramethylurea, and 0.0014 mL (1.0 mol%) of 1N hydrochloric acid were added. 270 mL (15.0 mmol) was added and reacted at room temperature for 0.5 hour. Then, 0.005 mL (1.0 mol%) of a trimethylamine tetramethylurea solution (concentration: 27.5 g / L) was added to terminate the reaction. The composition containing tetrabutylammonium chloride (Bu 4 NCl, 76.0 mg) and tetramethylurea (Me 4 Urea) 15 ml, which is 2.0 times the amount of tetramethoxysilane, and containing silanetetraol and the like. A product (solution) was obtained.
This composition was frozen using liquid nitrogen (−196 ° C.) and vacuum freeze-dried to sublimate tetramethylurea and the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature. −40 ° C., holding time 15 hours, freeze-drying step (2) Decompression degree 1 to 3 Pa, shelf temperature from −40 ° C. to −15 ° C. over 15 hours, freeze-drying step (3) decompression degree 1 to 3 Pa, −15 ° C., holding time 24 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 94.1 mg of a composition containing powdered silanetetraol and the like.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -69.8 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 1, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<実施例21>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン103.5mg(0.680mmol)、テトラメチル尿素6.000mL、及び1N塩酸0.007mL(1.0mol%)を投入し、さらに水1.350mL(75.0mmol)を加えて、室温で0.5時間反応させた。その後、トリエチルアミンのテトラメチル尿素溶液(濃度:27.5g/L)0.025mL(1.0mol%)を加えて反応を終了させた。この中にテトラメトキシシラン換算で物質量が2.0倍のテトラブチルアンモニウムクロリド(BuNCl、378.0mg)とテトラメチル尿素(MeUrea)75mlを加え、シランテトラオール等を含んだ組成物(溶液)を得た。
 この組成物を、液体窒素(-196℃)を用いて凍結させて、減圧下でテトラメチル尿素等を昇華させる真空凍結乾燥を行った(凍結乾燥工程(1)減圧度1~3Pa,棚温度-40℃,保持時間24時間、凍結乾燥工程(2)減圧度1~3Pa,棚温度-40℃から-15℃まで24時間かけて昇温、凍結乾燥工程(3)減圧度1~3Pa、-15℃、保持時間96時間)。乾燥終了後、ガラスバイアル中を不活性ガスで置換し、ゴム栓で封栓することで、粉末状のシランテトラオール等を含んだ組成物485.0mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-69.8ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表2に、組成物のIR分析の結果を図16に示す。
<Example 21>
To a two-necked flask equipped with a magnetic stirrer, 103.5 mg (0.680 mmol) of tetramethoxysilane, 6.000 mL of tetramethylurea, and 0.007 mL (1.0 mol%) of 1N hydrochloric acid were added. 350 mL (75.0 mmol) was added and reacted at room temperature for 0.5 hour. Thereafter, 0.025 mL (1.0 mol%) of a triethylamine tetramethylurea solution (concentration: 27.5 g / L) was added to terminate the reaction. The composition containing tetrabutylammonium chloride (Bu 4 NCl, 378.0 mg) and tetramethylurea (Me 4 Urea) 75 ml, whose amount is 2.0 times the amount of tetramethoxysilane, and containing silanetetraol and the like A product (solution) was obtained.
This composition was frozen using liquid nitrogen (−196 ° C.) and vacuum freeze-dried to sublimate tetramethylurea and the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature. −40 ° C., holding time 24 hours, freeze-drying step (2) Decompression degree 1 to 3 Pa, shelf temperature from −40 ° C. to −15 ° C. over 24 hours, freeze-drying step (3) decompression degree 1 to 3 Pa, −15 ° C., retention time 96 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 485.0 mg of a composition containing powdered silanetetraol and the like.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -69.8 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 2, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
<実施例22>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン103.5mg(0.680mmol)、テトラメチル尿素6.000mL、及び1N塩酸0.007mL(1.0mol%)を投入し、さらに水1.350mL(74.9mmol)を加えて、室温で0.5時間反応させた。その後、トリエチルアミンのテトラメチル尿素溶液(濃度:27.5g/L)0.025mL(1.0mol%)を加えて反応を終了させた。この中にポリビニルポリピロリドン(500.0mg)とテトラメチル尿素(MeUrea)54mlを加え、シランテトラオール等を含んだ組成物(溶液)を得た。
 この組成物を、液体窒素(-196℃)を用いて凍結させて、減圧下で水等を昇華させる真空凍結乾燥を行った(凍結乾燥工程(1)減圧度1~3Pa、棚温度-40℃、保持時間285時間)。乾燥終了後、ガラスバイアル中を不活性ガスで置換し、ゴム栓で封栓することで、粉末状のシランテトラオール等を含んだ組成物998.6mgを得た。
 この組成物を29Si-NMR(MeUrea/THF-d:-71.7ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表3に、組成物のIR分析の結果を図17に示す。
<Example 22>
To a two-necked flask equipped with a magnetic stirrer, 103.5 mg (0.680 mmol) of tetramethoxysilane, 6.000 mL of tetramethylurea, and 0.007 mL (1.0 mol%) of 1N hydrochloric acid were added. 350 mL (74.9 mmol) was added and reacted at room temperature for 0.5 hour. Thereafter, 0.025 mL (1.0 mol%) of a triethylamine tetramethylurea solution (concentration: 27.5 g / L) was added to terminate the reaction. To this, polyvinylpolypyrrolidone (500.0 mg) and 54 ml of tetramethylurea (Me 4 Urea) were added to obtain a composition (solution) containing silanetetraol and the like.
This composition was frozen using liquid nitrogen (−196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature −40 C, holding time 285 hours). After completion of the drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 998.6 mg of a composition containing powdered silanetetraol and the like.
This composition was analyzed by 29 Si-NMR (Me 4 Urea / THF-d 8 : -71.7 ppm) and IR, and it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 3, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
<実施例23>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン15.2mg(0.100mmol)、ポリビニルピロリドン100.0mg(0.900mmol)、水1.000mL及び1N塩酸水溶液0.001mL(1.0mol%)を投入し、室温で0.083時間反応させた。その後、トリエチルアミンの水溶液(濃度:27.5g/L)0.010mL(1.0mol%)を加えて反応を終了させた。この中に水9mlを加え、シランテトラオール等を含んだ組成物(溶液)を得た。
 この組成物を、液体窒素(-196℃)を用いて凍結させて、減圧下で水等を昇華させる真空凍結乾燥を行った(凍結乾燥工程(1)減圧度1~3Pa、棚温度-40℃、保持時間72時間)。乾燥終了後、ガラスバイアル中を不活性ガスで置換し、ゴム栓で封栓することで、粉末状のシランテトラオール等を含んだ組成物103.8mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.9ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.3ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表4に、組成物のIR分析の結果を図18に示す。
<Example 23>
In a two-necked flask equipped with a magnetic stirring bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, 100.0 mg (0.900 mmol) of polyvinylpyrrolidone, 1.000 mL of water and 0.001 mL (1.0 mol%) of 1N hydrochloric acid aqueous solution. ) And reacted at room temperature for 0.083 hours. Thereafter, 0.010 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction. 9 ml of water was added thereto to obtain a composition (solution) containing silanetetraol and the like.
This composition was frozen using liquid nitrogen (−196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature −40 C, holding time 72 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 103.8 mg of a composition containing powdered silanetetraol and the like.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 4, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
<実施例24>
 テトラメトキシシランの添加量を30.4mg(0.200mmol)、1N塩酸水溶液0.002mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.020mL(1.0mol%)に変更した以外は、実施例23と同様の方法によって粉末状のシランテトラオール等を含んだ組成物110.5mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.9ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.3ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表5に、組成物のIR分析の結果を図19に示す。
<Example 24>
The amount of tetramethoxysilane added was 30.4 mg (0.200 mmol), 1N hydrochloric acid aqueous solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) 110.5 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the content was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 5, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
<実施例25>
 テトラメトキシシランの添加量を45.7mg(0.300mmol)、1N塩酸水溶液0.003mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.030mL(1.0mol%)に変更した以外は、実施例23と同様の方法によって粉末状のシランテトラオール等を含んだ組成物124.2mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.3ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表6に、組成物のIR分析の結果を図20に示す。
<Example 25>
The amount of tetramethoxysilane added was 45.7 mg (0.300 mmol), 1N hydrochloric acid aqueous solution 0.003 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.030 mL (1.0 mol%) 124.2 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 6, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<実施例26>
 テトラメトキシシランの添加量を60.9mg(0.400mmol)、1N塩酸水溶液0.004mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.040mL(1.0mol%)に変更した以外は、実施例23と同様の方法によって粉末状のシランテトラオール等を含んだ組成物130.3mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.3ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表7に、組成物のIR分析の結果を図21に示す。
<Example 26>
The amount of tetramethoxysilane added was 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution 0.004 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.040 mL (1.0 mol%) 130.3 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 7, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
<実施例27>
 テトラメトキシシランの添加量を76.1mg(0.500mmol)、1N塩酸水溶液0.005mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.050mL(1.0mol%)に変更した以外は、実施例23と同様の方法によって粉末状のシランテトラオール等を含んだ組成物139.0mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.3ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表8に、組成物のIR分析の結果を図22に示す。
<Example 27>
The amount of tetramethoxysilane added was 76.1 mg (0.500 mmol), 1N hydrochloric acid aqueous solution 0.005 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.050 mL (1.0 mol%) 139.0 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 23 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.3 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 8, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
<実施例28>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン15.2mg(0.100mmol)、ポリ-N-イソプロピルアクリルアミド90.8mg(0.802mmol)、水1.000mL及び1N塩酸水溶液0.001mL(1.0mol%)を投入し、室温で0.083時間反応させた。その後、トリエチルアミンの水溶液(濃度:27.5g/L)0.010mL(1.0mol%)を加えて反応を終了させた。この中に水9mlを加え、シランテトラオール等を含んだ組成物(溶液)を得た。
 この組成物を、液体窒素(-196℃)を用いて凍結させて、減圧下で水等を昇華させる真空凍結乾燥を行った(凍結乾燥工程(1)減圧度1~3Pa、棚温度-40℃、保持時間72時間)。乾燥終了後、ガラスバイアル中を不活性ガスで置換し、ゴム栓で封栓することで、粉末状のシランテトラオール等を含んだ組成物94.4mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.9ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.5ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成物のIR分析の結果を図23に示す。
<Example 28>
In a two-necked flask equipped with a magnetic stirrer, 15.2 mg (0.100 mmol) of tetramethoxysilane, 90.8 mg (0.802 mmol) of poly-N-isopropylacrylamide, 1.000 mL of water and 0.001 mL of 1N aqueous hydrochloric acid ( 1.0 mol%) was added and reacted at room temperature for 0.083 hours. Thereafter, 0.010 mL (1.0 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction. 9 ml of water was added thereto to obtain a composition (solution) containing silanetetraol and the like.
This composition was frozen using liquid nitrogen (−196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature −40 C, holding time 72 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 94.4 mg of a composition containing powdered silanetetraol and the like.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.5 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
<実施例29>
 テトラメトキシシランの添加量を30.4mg(0.200mmol)、1N塩酸水溶液0.002mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.020mL(1.0mol%)に変更した以外は、実施例28と同様の方法によって粉末状のシランテトラオール等を含んだ組成物102.9mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.9ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.4ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成物のIR分析の結果を図24に示す。
<Example 29>
The amount of tetramethoxysilane added was 30.4 mg (0.200 mmol), 1N hydrochloric acid aqueous solution 0.002 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.020 mL (1.0 mol%) 102.9 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.4 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
<実施例30>
 テトラメトキシシランの添加量を45.7mg(0.300mmol)、1N塩酸水溶液0.003mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.030mL(1.0mol%)に変更した以外は、実施例28と同様の方法によって粉末状のシランテトラオール等を含んだ組成物110.4mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.9ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.4ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成物のIR分析の結果を図25に示す。
<Example 30>
The amount of tetramethoxysilane added was 45.7 mg (0.300 mmol), 1N hydrochloric acid aqueous solution 0.003 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.030 mL (1.0 mol%) 110.4 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.9 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.4 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
<実施例31>
 テトラメトキシシランの添加量を60.9mg(0.400mmol)、1N塩酸水溶液0.004mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.040mL(1.0mol%)に変更した以外は、実施例28と同様の方法によって粉末状のシランテトラオール等を含んだ組成物116.1mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:6.0ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.4ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成物のIR分析の結果を図26に示す。
<Example 31>
The amount of tetramethoxysilane added was 60.9 mg (0.400 mmol), 1N hydrochloric acid aqueous solution 0.004 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.040 mL (1.0 mol%) 116.1 mg of a composition containing powdery silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 6.0 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.4 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
<実施例32>
 テトラメトキシシランの添加量を76.1mg(0.500mmol)、1N塩酸水溶液0.005mL(1.0mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.050mL(1.0mol%)に変更した以外は、実施例28と同様の方法によって粉末状のシランテトラオール等を含んだ組成物128.2mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:6.0ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.4ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成物のIR分析の結果を図27に示す。
<Example 32>
The amount of tetramethoxysilane added was 76.1 mg (0.500 mmol), 1N hydrochloric acid aqueous solution 0.005 mL (1.0 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.050 mL (1.0 mol%) 128.2 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 28 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 6.0 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.4 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
<実施例33>
 磁気攪拌子を備えた二口フラスコに、テトラメトキシシラン15.2mg(0.100mmol)、ポリ-2-エチルオキサゾリン(シグマアルドリッチ社製ポリ(2-エチル-2-オキサゾリン)、Mw:~50000)89.2mg(0.900mmol)、水1.000mL及び1N塩酸水溶液0.0025mL(2.5mol%)を投入し、室温で0.167時間反応させた。その後、トリエチルアミンの水溶液(濃度:27.5g/L)0.025mL(2.5mol%)を加えて反応を終了させた。この中に水9mlを加え、シランテトラオール等を含んだ組成物(溶液)を得た。
 この組成物を、液体窒素(-196℃)を用いて凍結させて、減圧下で水等を昇華させる真空凍結乾燥を行った(凍結乾燥工程(1)減圧度1~3Pa、棚温度-40℃、保持時間72時間)。乾燥終了後、ガラスバイアル中を不活性ガスで置換し、ゴム栓で封栓することで、粉末状のシランテトラオール等を含んだ組成物95.0mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.2ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成物のIR分析の結果を図28に示す。
<Example 33>
In a two-necked flask equipped with a magnetic stirring bar, 15.2 mg (0.100 mmol) of tetramethoxysilane, poly-2-ethyloxazoline (poly (2-ethyl-2-oxazoline) manufactured by Sigma-Aldrich, Mw: ˜50000) 89.2 mg (0.900 mmol), 1.000 mL of water and 0.0025 mL (2.5 mol%) of 1N hydrochloric acid aqueous solution were added, and reacted at room temperature for 0.167 hours. Thereafter, 0.025 mL (2.5 mol%) of an aqueous solution of triethylamine (concentration: 27.5 g / L) was added to terminate the reaction. 9 ml of water was added thereto to obtain a composition (solution) containing silanetetraol and the like.
This composition was frozen using liquid nitrogen (−196 ° C.) and vacuum freeze-dried by sublimating water or the like under reduced pressure (freeze-drying step (1) degree of vacuum 1 to 3 Pa, shelf temperature −40 C, holding time 72 hours). After completion of drying, the inside of the glass vial was replaced with an inert gas and sealed with a rubber stopper to obtain 95.0 mg of a composition containing powdered silanetetraol and the like.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.2 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. The result of IR analysis of this composition is shown in FIG.
<実施例34>
 テトラメトキシシランの添加量を45.7mg(0.300mmol)、1N塩酸水溶液0.0075mL(2.5mol%)、トリエチルアミンの水溶液(濃度:27.5g/L)0.075mL(2.5mol%)に変更した以外は、実施例33と同様の方法によって粉末状のシランテトラオール等を含んだ組成物114.5mgを得た。
 この組成物をH-NMR(DMF-d/THF-d:5.8ppm)、13C、29Si-NMR(DMF-d/THF-d:-71.2ppm)及びIRで分析したところ、シランテトラオール等が含まれていることが確認された。この組成を表9に、組成物のIR分析の結果を図29に示す。
<Example 34>
The amount of tetramethoxysilane added was 45.7 mg (0.300 mmol), 1N aqueous hydrochloric acid solution 0.0075 mL (2.5 mol%), triethylamine aqueous solution (concentration: 27.5 g / L) 0.075 mL (2.5 mol%) 114.5 mg of a composition containing powdered silanetetraol and the like was obtained in the same manner as in Example 33 except that the composition was changed to.
This composition was analyzed by 1 H-NMR (DMF-d 7 / THF-d 8 : 5.8 ppm), 13 C, 29 Si-NMR (DMF-d 7 / THF-d 8 : -71.2 ppm) and IR. As a result of analysis, it was confirmed that silanetetraol and the like were contained. This composition is shown in Table 9, and the results of IR analysis of the composition are shown in FIG.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 本発明のシラノール化合物の製造方法によって製造されたシラノール化合物は、自動車、建築、エレクトロニクス、医薬等の幅広い分野で利用されているシロキサン化合物の原料等として有用である。 The silanol compound produced by the method for producing a silanol compound of the present invention is useful as a raw material for siloxane compounds that are used in a wide range of fields such as automobiles, architecture, electronics, and medicine.

Claims (11)

  1.  下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する反応工程1を含むシラノール化合物の製造方法であって、
     前記反応工程1が、アミド化合物を含む溶媒中で行われることを特徴とする、シラノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
    A method for producing a silanol compound comprising a reaction step 1 in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to produce a silanol compound,
    The method for producing a silanol compound, wherein the reaction step 1 is performed in a solvent containing an amide compound.
    Figure JPOXMLDOC01-appb-C000001

    (In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  2.  前記反応工程1における前記水の使用量が、前記式(A-1)~(A-4)で表されるシラン化合物に対して物質量換算で0.25~150倍である、請求項1に記載のシラノール化合物の製造方法。 The amount of the water used in the reaction step 1 is 0.25 to 150 times in terms of a substance amount with respect to the silane compounds represented by the formulas (A-1) to (A-4). The manufacturing method of the silanol compound as described in any one of.
  3.  前記反応工程1における前記溶媒の使用量が、前記式(A-1)~(A-4)で表されるシラン化合物の濃度が0.001~2.00mol/Lとなる量である、請求項1又は2に記載のシラノール化合物の製造方法。 The amount of the solvent used in the reaction step 1 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is 0.001 to 2.00 mol / L. Item 3. A method for producing a silanol compound according to Item 1 or 2.
  4.  前記アミド化合物が、下記式(i)又は(ii)で表される化合物の少なくとも1種である、請求項1~3の何れか1項に記載のシラノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (式(i)及び(ii)中、R’及びR”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表す。但し、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
    The process for producing a silanol compound according to any one of claims 1 to 3, wherein the amide compound is at least one compound represented by the following formula (i) or (ii).
    Figure JPOXMLDOC01-appb-C000002

    (In the formulas (i) and (ii), R ′ and R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ″ are two or more. (When it has a hydrocarbon group in a molecule | numerator, hydrocarbon groups may connect and it may form the cyclic structure.)
  5.  下記式(A-1)~(A-4)で表されるシラン化合物の少なくとも1種と水を反応させてシラノール化合物を生成する反応工程2を含むシラノール化合物の製造方法であって、
     前記反応工程2が、アミド結合を少なくとも1つ有する高分子化合物を含む水溶液中で行われることを特徴とする、シラノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (式(A-1)~(A-4)中、Xはそれぞれ独立して炭素数1~10のアルコキシ基、炭素数0~6のアミノ基、塩素原子、臭素原子、又はヨウ素原子を、Rはそれぞれ独立して水素原子、又は窒素原子、酸素原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~20の炭化水素基を表す。)
    A method for producing a silanol compound comprising a reaction step 2 in which at least one silane compound represented by the following formulas (A-1) to (A-4) is reacted with water to produce a silanol compound,
    The method for producing a silanol compound, wherein the reaction step 2 is performed in an aqueous solution containing a polymer compound having at least one amide bond.
    Figure JPOXMLDOC01-appb-C000003

    (In the formulas (A-1) to (A-4), each X independently represents an alkoxy group having 1 to 10 carbon atoms, an amino group having 0 to 6 carbon atoms, a chlorine atom, a bromine atom, or an iodine atom. Each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, and a halogen atom.
  6.  前記反応工程2における前記水の使用量が、前記式(A-1)~(A-4)で表されるシラン化合物の濃度が0.01~2.00mol/Lとなる量である、請求項5に記載のシラノール化合物の製造方法。 The amount of water used in the reaction step 2 is such that the concentration of the silane compound represented by the formulas (A-1) to (A-4) is 0.01 to 2.00 mol / L. Item 6. A process for producing a silanol compound according to Item 5.
  7.  前記高分子化合物が、下記式(iii)~(v)で表される繰り返し構造の少なくとも1種を有する高分子化合物である、請求項5又は6に記載のシラノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004

    (式(iii)~(v)中、R’及びR”はそれぞれ独立して水素原子又は炭素数1~10の炭化水素基を表す。但し、R’及び/又はR”として、2以上の炭化水素基を分子内に有する場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
    The process for producing a silanol compound according to claim 5 or 6, wherein the polymer compound is a polymer compound having at least one repeating structure represented by the following formulas (iii) to (v).
    Figure JPOXMLDOC01-appb-C000004

    (In the formulas (iii) to (v), R ′ and R ″ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, provided that R ′ and / or R ″ are two or more. (When it has a hydrocarbon group in a molecule | numerator, hydrocarbon groups may connect and it may form the cyclic structure.)
  8.  前記反応工程1又は前記反応工程2が、酸の存在下で行われる工程である、請求項1~7の何れか1項に記載のシラノール化合物の製造方法。 The method for producing a silanol compound according to any one of claims 1 to 7, wherein the reaction step 1 or the reaction step 2 is a step performed in the presence of an acid.
  9.  前記反応工程1又は前記反応工程2で得られた生成物に塩基を添加する塩基添加工程を含む、請求項8に記載のシラノール化合物の製造方法。 The method for producing a silanol compound according to claim 8, comprising a base addition step of adding a base to the product obtained in the reaction step 1 or the reaction step 2.
  10.  前記反応工程1若しくは前記反応工程2で得られた生成物、又は前記塩基添加工程で得られた生成物にアンモニウム塩を添加するアンモニウム塩添加工程を含む、請求項1~9の何れか1項に記載のシラノール化合物の製造方法。 The ammonium salt addition step of adding an ammonium salt to the product obtained in the reaction step 1 or the reaction step 2 or the product obtained in the base addition step. The manufacturing method of the silanol compound as described in any one of.
  11.  前記反応工程1若しくは前記反応工程2で得られた生成物、前記塩基添加工程で得られた生成物、又は前記アンモニウム塩添加工程で得られた生成物を凍結させて、減圧下にさらす凍結乾燥工程を含む、請求項1~10の何れか1項に記載のシラノール化合物の製造方法。 Freeze-drying by freezing the product obtained in the reaction step 1 or the reaction step 2, the product obtained in the base addition step, or the product obtained in the ammonium salt addition step and subjecting to a reduced pressure The method for producing a silanol compound according to any one of claims 1 to 10, comprising a step.
PCT/JP2016/072474 2015-07-30 2016-08-01 Silanol compound production method WO2017018543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017531422A JPWO2017018543A1 (en) 2015-07-30 2016-08-01 Method for producing silanol compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-151174 2015-07-30
JP2015151174 2015-07-30

Publications (1)

Publication Number Publication Date
WO2017018543A1 true WO2017018543A1 (en) 2017-02-02

Family

ID=57884589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072474 WO2017018543A1 (en) 2015-07-30 2016-08-01 Silanol compound production method

Country Status (2)

Country Link
JP (1) JPWO2017018543A1 (en)
WO (1) WO2017018543A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193732A1 (en) * 2017-04-20 2018-10-25 国立研究開発法人産業技術総合研究所 Silanol compound, and method for producing silanol compound
CN113195801A (en) * 2018-10-24 2021-07-30 国立研究开发法人产业技术综合研究所 Crystal, method for producing crystal, and method for self-assembling silanol compound
JP2021116261A (en) * 2020-01-27 2021-08-10 国立研究開発法人産業技術総合研究所 Method for producing silanols and novel silanols

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204815A (en) * 1982-05-25 1983-11-29 Hitachi Chem Co Ltd Preparation of hydroxysilane and/or oligomer thereof
JPH01111709A (en) * 1987-10-23 1989-04-28 Hitachi Chem Co Ltd Production of hydroxysilane and/or its oligomer
JPH05254819A (en) * 1992-03-12 1993-10-05 Sekisui Finechem Co Ltd Production of spherical fine particle
JPH10158012A (en) * 1996-11-25 1998-06-16 Asahi Chem Ind Co Ltd Production of porous silicon dioxide film
JP2009209111A (en) * 2008-03-06 2009-09-17 Daicel Chem Ind Ltd Silane oxidation reaction using hydroxyapatite having silver immobilized on its surface
WO2015115664A1 (en) * 2014-02-03 2015-08-06 独立行政法人産業技術総合研究所 Silanol compound, composition, and method for producing silanol compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204815A (en) * 1982-05-25 1983-11-29 Hitachi Chem Co Ltd Preparation of hydroxysilane and/or oligomer thereof
JPH01111709A (en) * 1987-10-23 1989-04-28 Hitachi Chem Co Ltd Production of hydroxysilane and/or its oligomer
JPH05254819A (en) * 1992-03-12 1993-10-05 Sekisui Finechem Co Ltd Production of spherical fine particle
JPH10158012A (en) * 1996-11-25 1998-06-16 Asahi Chem Ind Co Ltd Production of porous silicon dioxide film
JP2009209111A (en) * 2008-03-06 2009-09-17 Daicel Chem Ind Ltd Silane oxidation reaction using hydroxyapatite having silver immobilized on its surface
WO2015115664A1 (en) * 2014-02-03 2015-08-06 独立行政法人産業技術総合研究所 Silanol compound, composition, and method for producing silanol compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193732A1 (en) * 2017-04-20 2018-10-25 国立研究開発法人産業技術総合研究所 Silanol compound, and method for producing silanol compound
CN113195801A (en) * 2018-10-24 2021-07-30 国立研究开发法人产业技术综合研究所 Crystal, method for producing crystal, and method for self-assembling silanol compound
JP2021116261A (en) * 2020-01-27 2021-08-10 国立研究開発法人産業技術総合研究所 Method for producing silanols and novel silanols
JP7370053B2 (en) 2020-01-27 2023-10-27 国立研究開発法人産業技術総合研究所 Method for producing silanols and new silanols

Also Published As

Publication number Publication date
JPWO2017018543A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US20220056056A1 (en) Silanol compound and method for producing silanol compound
WO2017018543A1 (en) Silanol compound production method
Jiang et al. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity
JP6569990B2 (en) Method for producing silanol compound
US9487630B2 (en) Method for manufacturing polyrotaxane
KR20160014603A (en) Method for the coupled production of trisilylamine and polysilazanes having a molar mass of up to 500 g/mol
JP6198685B2 (en) Polybenzoxazine-silica composite and method for producing the same
Maegawa et al. Transparent and visible-light harvesting acridone-bridged mesostructured organosilica film
EP3375807A1 (en) Method for synthesis of pre-hydrolyzed alkyl polysilicate
JP6813857B2 (en) Siloxane compound and method for producing siloxane compound
CN111592560B (en) Photosensitizer probe and preparation method and application thereof
JP2022069882A (en) Novel compound and anion receptor
WO2023171686A1 (en) Silanol compound, production method for silanol compound, and composition including silanol compound
Bu et al. Synthesis, helical conformation, and infrared emissivity property study of optically active substituted polyacetylenes derived from serine
JP7434783B2 (en) Method for producing N-methylisocyanuric acid
JP2007211138A (en) Alicyclic polyether, its production method, and its use
Ali et al. Spectroscopic and thermal investigations of charge-transfer complexes formed between cefotaxime sodium drug and various acceptors
KR101922520B1 (en) Novel absorbent and catalyst for CO2 capture and conversion
SU517603A1 (en) The method of producing polyaminoamido acids
CN116217571A (en) Method for preparing medicine building block 1,2, 4-triazolo [4,3-A ] pyridine-3-amine
JP2010065156A (en) Halomethyl group-containing heteroaryl compound derived from oxetanyl group-containing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830645

Country of ref document: EP

Kind code of ref document: A1