WO2017018397A1 - Sapphire single-crystal ribbon and method for producing same - Google Patents

Sapphire single-crystal ribbon and method for producing same Download PDF

Info

Publication number
WO2017018397A1
WO2017018397A1 PCT/JP2016/071788 JP2016071788W WO2017018397A1 WO 2017018397 A1 WO2017018397 A1 WO 2017018397A1 JP 2016071788 W JP2016071788 W JP 2016071788W WO 2017018397 A1 WO2017018397 A1 WO 2017018397A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
sapphire single
crystal ribbon
ribbon
thickness
Prior art date
Application number
PCT/JP2016/071788
Other languages
French (fr)
Japanese (ja)
Inventor
古滝 敏郎
佐藤 次男
高橋 正幸
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015147556A external-priority patent/JP2017024955A/en
Priority claimed from JP2015226197A external-priority patent/JP7075711B2/en
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Publication of WO2017018397A1 publication Critical patent/WO2017018397A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides

Definitions

  • the present invention relates to a sapphire single crystal ribbon and a method for producing the sapphire single crystal ribbon.
  • a superconductor For example, by forming such a superconductor into a long strip (ribbon) having dimensions in the longitudinal direction, it can be used for power transmission / distribution, various devices, electrical connection between elements, AC winding, etc. Can be used.
  • a method for forming an oxide superconductor into a strip-like body a method is known in which an oxide superconducting layer is formed on the surface of a base substrate having a longitudinal dimension.
  • Sapphire single crystal is required as the ribbon of the base material. The reason is that the ribbon is provided with high electrical resistance, thermal conductivity, and electrical insulation by producing the ribbon from sapphire single crystal. If the laminated superconductor is in a superconducting state, the electric resistance becomes zero, and a current can be passed through the superconductor composed of the base substrate and the superconductor layer. Furthermore, a configuration is disclosed in which a superconductor including the sapphire single crystal ribbon is bent to be wound in a coil shape (see, for example, Patent Document 1).
  • micro cracks on the surface of the sapphire single crystal ribbon induced cracking and destruction.
  • the microcracks are formed innumerably on the surface of the sapphire single crystal by abrasive grains, a grinding machine, or the like when surface processing such as grinding or polishing is performed after the sapphire single crystal is grown in a ribbon shape.
  • the present applicant has found that cracks and breakage are caused by the progress of cracks inside the sapphire single crystal from the microcracks.
  • the present applicant has found through verification that it is important to have resistance against tensile stress and to suppress the progression of microcracks.
  • the present invention has been made in view of the above circumstances, and has an object to provide a sapphire single crystal ribbon that has resistance to tensile stress, is prevented from being broken or broken, and has flexibility, and a method for manufacturing the same. To do.
  • a die having slits and arranged in parallel in the width direction is housed in a crucible, and an aluminum oxide raw material is charged into the crucible and heated to obtain an aluminum oxide raw material.
  • Prepare an aluminum oxide melt by melting in a crucible, form an aluminum oxide melt pool at the upper part of the slit through the slit, and pull the seed crystal by bringing the seed crystal into contact with the aluminum oxide melt at the upper part of the slit.
  • a sapphire single crystal ribbon having a desired main surface and a longitudinal dimension and having flexibility is grown.
  • the ribbon shape of the sapphire single crystal ribbon is a rectangular shape in the plane direction, and specific dimensions are a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more. Refers to a sapphire single crystal of size.
  • the sapphire single crystal ribbon of the present invention can be bent or wound by applying an external force.
  • (B) It is a front view of the same figure (a).
  • (C) It is a side view of the same figure (a).
  • (A) It is explanatory drawing which shows an example of the seed crystal which concerns on embodiment of this invention.
  • (B) It is explanatory drawing which shows the other example of the seed crystal which concerns on embodiment of this invention.
  • (C) It is explanatory drawing which shows the further another example of the seed crystal which concerns on embodiment of this invention. It is a perspective view which shows typically the positional relationship of the seed crystal and partition plate in embodiment of this invention.
  • (A) It is a front view which shows typically the positional relationship of the seed crystal and partition plate in embodiment of this invention.
  • (B) It is a front view which shows a mode that a part of seed crystal is fuse
  • (A) It is a front view of the seed crystal which concerns on the example of a change of embodiment of this invention.
  • (C) It is a side view of the same figure (a).
  • (A) It is a bottom view of the sapphire single crystal ribbon grown using the seed crystal of FIG.
  • (B) It is a front view of the same figure (a).
  • (C) It is a side view of the same figure (a).
  • (A) It is a front view of the seed crystal which concerns on the other modification of this invention.
  • (B) It is a top view of the figure (a).
  • (C) It is a side view of the same figure (a). It is explanatory drawing which shows the positional relationship of the seed crystal shown in FIG. 15, and a partition plate.
  • the second feature is that the sapphire single crystal ribbon does not have microcracks on the surface.
  • the third feature is that the sapphire single crystal ribbon is an As-grown single crystal.
  • the fifth feature is that the grown sapphire single crystal ribbon is a method for producing a sapphire single crystal ribbon having no microcracks on the surface.
  • the microcrack means, for example, when an etching solution such as heated phosphoric acid, phosphoric acid / sulfuric acid mixed solution, strong alkaline melt such as potassium hydroxide is applied on the surface of the sapphire single crystal, or visually. Therefore, the crack which can be observed shall be pointed out.
  • an etching solution such as heated phosphoric acid, phosphoric acid / sulfuric acid mixed solution, strong alkaline melt such as potassium hydroxide
  • the As-grown single crystal refers to a single crystal that has not been subjected to surface processing such as grinding or polishing in the state of crystal growth.
  • the sapphire single crystal ribbon of the present invention can be bent or wound by applying an external force.
  • the seventh feature is that the sapphire single crystal ribbon has a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more.
  • the eighth feature is that the grown sapphire single crystal ribbon has a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more. It is that.
  • a sapphire single crystal ribbon having high versatility and desirable dimensions for a superconducting coil can be obtained.
  • the tenth feature is that the sapphire single crystal ribbon has a width of 10 mm, a thickness of 0.1 mm, and a length of 1000 mm.
  • the ribbon shape of the sapphire single crystal ribbon is a rectangular shape in the plane direction, and specific dimensions include a length of 100 mm or less, a thickness of 0.5 mm or less, and a longitudinal dimension. Refers to a sapphire single crystal having a size of 1000 mm or more.
  • An eleventh feature is that the sapphire single crystal ribbon has a ratio of the width to the thickness (the width / the thickness) of 20 or more and 1000 or less.
  • a twelfth feature is that the ratio of the width to the thickness (the width / the thickness) is a method for producing a sapphire single crystal ribbon that is 20 or more and 1000 or less.
  • the thirteenth feature is that the sapphire single crystal ribbon is bent into a curved shape having a diameter of 300 mm or less.
  • the fourteenth feature is that the sapphire single crystal ribbon is produced by bending the grown sapphire single crystal ribbon into a curved shape having a diameter of 300 mm or less.
  • the fifteenth feature is a sapphire single crystal ribbon having a main surface and the main surface being an r-plane (10-12), a c-plane (0001), or an r-plane or c-plane having an off angle. That is.
  • a sixteenth feature is a method for producing a sapphire single crystal ribbon having a main surface and the main surface being an r-plane (10-12), a c-plane (0001), or an r-plane or c-plane having an off angle. It is that.
  • the seventeenth feature is that the aluminum oxide raw material is added to the aluminum oxide melt in the crucible while the seed crystal is pulled up to grow the sapphire single crystal ribbon or after the sapphire single crystal ribbon is grown. Furthermore, it is set as the manufacturing method of the sapphire single crystal ribbon which throws in and replenishes the said aluminum oxide melt.
  • the eighteenth feature is that the sapphire single crystal ribbon has a dimension T in the thickness direction and a dimension in the longitudinal direction, and a variation width ⁇ T in the dimension T in the thickness direction is within 0.05 mm. (However, ⁇ T is greater than 0 mm).
  • the nineteenth feature is that the fluctuation range ⁇ T of the sapphire single crystal ribbon is within 0.025 mm.
  • the twentieth feature is that the slit has a gap TS, the desired main surface, the dimension T in the thickness direction, and the dimension in the longitudinal direction, and the gap TS and the thickness dimension T.
  • the twenty-first feature is that a method for producing a sapphire single crystal ribbon in which the relationship between the interval TS and the thickness T satisfies TS ⁇ 0.5T.
  • the thickness T refers to the average thickness of the sapphire single crystal ribbon or the dimension in the thickness direction set in advance for manufacturing.
  • the sapphire single crystal ribbon is grown on the condition that the dimension T in the thickness direction and the slit interval TS of the die satisfy the relationship of TS ⁇ T, and the variation width ⁇ T in the dimension T in the thickness direction.
  • the thickness T can be made uniform and the thickness variation ⁇ T can be reduced, resulting in characteristic variations and stress concentration during winding (especially the minimum thickness portion). Damage due to stress concentration on the surface can be suppressed.
  • the sapphire single crystal ribbon is grown so as to have a dimension T in the thickness direction and a dimension in the longitudinal direction, and further, surface cracking or polishing is not performed, and microcracks are formed on the surface.
  • surface cracking or polishing is not performed, and microcracks are formed on the surface.
  • the superconductor 37 is formed by providing a superconducting layer 35 made of a superconducting material on the surface of the base material 2 having a ribbon-like thin or thin flexibility. Since the base substrate 2 is required to have high electrical resistance, thermal conductivity, and electrical insulation, it is preferably made of a sapphire single crystal (hereinafter referred to as “sapphire single crystal ribbon 2”). Description).
  • a sapphire single crystal ribbon having a width W of 10 mm, a thickness of T 0.1 mm, and a length of L 1000 mm is most versatile and desirable for a superconducting coil.
  • the thickness T refers to the average thickness of the sapphire single crystal ribbon 2 or the dimension in the thickness direction that is set in advance for manufacturing.
  • FIG. 2 is a conceptual diagram schematically showing the average thickness T and the thickness fluctuation range ⁇ T of the sapphire single crystal ribbon 2.
  • the dimensional variation in the thickness direction is emphasized. Even if the crystal growth is performed such that the average dimension in the thickness direction of the sapphire single crystal ribbon 2 is T, the dimension in the thickness direction changes.
  • the heat-resistant temperature becomes 200 ° C. or higher, the expansion or contraction of the base substrate 2 itself is suppressed, and the possibility of distortion in the superconducting layer 35 is reduced, and the critical current density Jc is reduced.
  • it is possible to withstand the heat treatment temperature when heat treatment is performed after winding.
  • the superconducting layer 35 is composed of oxide superconductivity, it can withstand the heat treatment temperature necessary for forming the oxide superconducting layer.
  • the sapphire single crystal ribbon 2 according to the present invention is an As-grown single crystal.
  • An As-grown single crystal refers to a single crystal that has not been subjected to surface processing such as grinding or polishing in a crystal-grown state. That is, the formation of microcracks on the surface of the single crystal by abrasive grains or a grinding machine when performing surface processing such as grinding or polishing is prevented.
  • the sapphire single crystal ribbon 2 has resistance and flexibility against tensile stress, and is microscopic when bent or wound by applying external force. Cracks and breakage due to cracks are prevented.
  • further surface treatment such as grinding or polishing
  • the As-grown single crystal of the sapphire single crystal ribbon 2 grown to have a dimension in the longitudinal direction is not subjected to surface processing such as grinding or polishing, and no As-grown crack is formed on the surface.
  • surface processing such as grinding or polishing
  • flexibility can be imparted to the sapphire single crystal ribbon 2 and the surface processing steps can be reduced.
  • the sapphire single crystal ribbon 2 of the present invention can be bent or wound by applying an external force, and can be bent into a curved shape having a diameter of 300 mm or less. Can be wound around the winding base and can be used preferably.
  • the diameter of the sapphire single crystal ribbon 2 may be further wound with a smaller diameter such as 200 mm or less or 100 mm or less, or may be wound with a larger diameter such as 500 mm or less, and can be appropriately selected depending on the intended use.
  • the microcrack means, for example, when an etching solution such as heated phosphoric acid, phosphoric acid / sulfuric acid mixed solution, strong alkaline melt such as potassium hydroxide is applied on the surface of the sapphire single crystal, or visually. Therefore, the crack which can be observed shall be pointed out.
  • an etching solution such as heated phosphoric acid, phosphoric acid / sulfuric acid mixed solution, strong alkaline melt such as potassium hydroxide
  • width W / thickness T As 20 or more and 1000 or less, flexibility can be stably imparted to the sapphire single crystal ribbon 2, Resistance to tensile stress and reliability for prevention of cracking and breakage can be further strengthened.
  • the superconductor 37 or the superconducting coil 36 includes at least the sapphire single crystal ribbon 2 and the superconducting layer 35.
  • a superconductor 37 or a superconducting coil 36 having a buffer layer 34 is shown (see FIG. 3 or FIG. 4).
  • the buffer layer 34 includes cerium oxide (CeO 2 ), SrTiO 3 , Nb-doped SrTiO 3 , RE 2 O 3 (RE is a rare earth element), MgO, LaMnO 3 , YSZ, Y 2 O 3 , LaAlO 3 , LaCrO 3 , Formed from a suitable material, such as one or more epitaxial layers selected from NdGaO 3 , LaNiO 3 , lanthanum zirconate (LZO), NbTiO 3 , TiN, TZN, TiB 2 , Pd, Ag, PT, and Au can do.
  • the buffer layer 34 has a thickness of 20 nm to 300 nm.
  • a superconducting layer 35 is formed on the main surface 2 a or the buffer layer 34.
  • the superconducting layer 35 an oxide superconductor, YBa 2 Cu 3 O 7, Y1Ba 2 Cu 3 O 7- ⁇ , REBa such GdBa 2 Cu 3 O 7 2 Cu 3 O 7 (RE is a rare earth element ), Bi 2 Sr 2 Cu 3 O x, Bi-Sr-Ca-Cu-O system, Bi-Pb-Sr-Ca -Cu-O system, Tl-Ba-Ca-Cu -O system (Tl 1 Ba 2 Ca n-1 Cu n O 2n + 3 (n is an integer between 1-4), (integer between n is 1 ⁇ 4) Tl 2 Ba 2 Ca n-1 Cu n O 2n + 4), Tl-Pb-Ba -Ca-Cu-O system, Hg 1 Ba 2 Ca n- 1 Cu n O 2n + 2 (n is an integer between 1-4) can be selected from.
  • the sapphire single crystal ribbon manufacturing apparatus 1 includes a growth container 3 for growing a sapphire single crystal ribbon 2 and a pulling container 4 for pulling up the grown sapphire single crystal ribbon 2.
  • EFG Erge -The sapphire single crystal ribbon 2 is grown and grown by the defined Film-fed (GrowTh) method.
  • the growth vessel 3 includes an atmosphere gas inlet 11 and an exhaust port 12.
  • the atmosphere gas introduction port 11 is an introduction port for introducing, for example, argon gas into the growth vessel 3 as the atmosphere gas, and prevents oxidation of the crucible 5, the heater 7, and the die 9.
  • the exhaust port 12 is provided for exhausting the inside of the growth vessel 3.
  • the pulling container 4 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of flat plate-shaped sapphire single crystal ribbons 2 grown and grown from the seed crystal 17.
  • the shaft 13 holds a seed crystal 17.
  • the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 5 and rotates the shaft 13 around the lifting direction.
  • the gate valve 15 partitions the growth container 3 and the pulling container 4.
  • the substrate entrance / exit 16 takes in and out the seed crystal 17.
  • the manufacturing apparatus 1 also has a control unit (not shown), and the rotation of the crucible drive unit 6 and the shaft drive unit 14 is controlled by this control unit.
  • a slope 30 is formed at the upper part of each partition plate 18, and the opening 20 is formed by arranging the slopes 30 so as to face outward. Moreover, the slit 19 has a role which raises the melt 21 to the opening part 20 from the lower end of each die
  • the width WD of the die 9 is set according to the width W of the sapphire single crystal ribbon 2. Therefore, it is desirable to set the die width WD to 100 mm or less, more preferably 10 mm, because the sapphire single crystal ribbon 2 having a desired width W can be obtained by crystal growth.
  • the aluminum oxide raw material charged into the crucible 5 is melted (raw material melt) based on the temperature rise of the crucible 5 to become a melt 21.
  • a part of the melt 21 enters the slit 19 of the die 9, and ascends in the slit 19 based on the capillary phenomenon as described above, and is exposed from the opening 20. 22 (see FIG. 9B) is formed.
  • the sapphire single crystal ribbon 2 grows according to the shape of the melt surface formed by the aluminum oxide melt pool (hereinafter referred to as “melt pool” if necessary) 22.
  • the shape of the melt surface is an elongated rectangle, so that a flat sapphire single crystal ribbon 2 is manufactured.
  • FIGS. 7, 8, and 9 in this embodiment, a plate-shaped substrate is used as the seed crystal 17, and the c-axis is along the surface direction of the principal surface (a surface orthogonal to the crystal surface 28).
  • a horizontal sapphire single crystal substrate is used.
  • the seed crystal 17 is arranged so that the planar direction of the seed crystal 17 and the width direction of the die 9 are orthogonal to each other at an angle of 90 °. Accordingly, the c-axis of the seed crystal 17 is perpendicular to the partition plate 18. Further, since the seed crystal 17 and the sapphire single crystal ribbon 2 are orthogonal to each other at an angle of 90 °, FIG. 5 shows the side surface of the sapphire single crystal ribbon 2.
  • the contact area between the melt 21 and the seed crystal 17 is minimized. It becomes possible to do. Therefore, the contact part of the seed crystal 17 becomes easy to become familiar with the melt 21, and the occurrence of crystal defects in the sapphire single crystal ribbon 2 is reduced or eliminated.
  • the contact area with the substrate holder (not shown) under the shaft 13 is large, the seed crystal 17 is deformed due to a stress due to a difference in thermal expansion coefficient, and may be damaged in some cases. On the contrary, the fixation of the seed crystal 17 may be loosened due to the difference in thermal expansion coefficient. Therefore, it is preferable that the contact area between the seed crystal 17 and the substrate holder is small.
  • the seed crystal 17 needs to have a substrate shape that can be securely fixed to the substrate holder.
  • FIG. 7 is a diagram showing an example of the substrate shape of the seed crystal 17.
  • (a) and (b) in the figure are those in which a notch 23 is provided in the upper part of the seed crystal 17.
  • a U-shaped substrate holder can be inserted from the lower side of the two notches 23, and the seed crystal 17 can be reliably held while reducing the contact area.
  • a notch hole 24 may be provided inside the seed crystal 17. Using this cutout hole 24, for example, locking claws are inserted into the two cutout holes 24, and the contact area between the substrate holder and the seed crystal 17 is reduced, and the seed crystal 17 is securely held. It becomes possible.
  • a method for manufacturing the sapphire single crystal ribbon 2 using the manufacturing apparatus 1 will be described.
  • a predetermined amount of granulated aluminum oxide raw material powder (99.99% aluminum oxide), which is a sapphire raw material, is charged into a crucible 5 in which a die 9 is housed.
  • the aluminum oxide raw material powder may contain a compound or element other than aluminum oxide depending on the purity or composition of the sapphire single crystal ribbon to be produced.
  • the heater 7, or the die 9 the inside of the growth vessel 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
  • the crucible 5 is heated to a predetermined temperature by the heater 7 to melt the aluminum oxide raw material powder. Since the melting point of aluminum oxide is about 2050 ° C. to 2072 ° C., the heating temperature of the crucible 5 is set to a temperature higher than the melting point (for example, 2100 ° C.). After a while after heating, the raw material powder is melted and an aluminum oxide melt 21 is prepared. Further, a part of the melt 21 rises through the slit 19 of the die 9 by capillary action to reach the surface of the die 9, and a melt pool 22 is formed above the slit 19.
  • the seed crystal 17 is lowered while holding the seed crystal 17 at an angle perpendicular to the width direction of the melt reservoir 22 above the slit 19, so that the seed crystal 17 is melted in the melt reservoir 22. Touch the liquid surface.
  • the seed crystal 17 is previously introduced into the pulling container 4 from the substrate entrance 16.
  • the melt 21 and the melt reservoir 22 are not shown in order to prioritize the visibility of the slit 19 and the opening 20.
  • FIG. 8 is a diagram showing the positional relationship between the seed crystal 17 and the partition plate 18.
  • the contact area between the seed crystal 17 and the melt 21 can be reduced. Therefore, the contact portion of the seed crystal 17 becomes compatible with the melt 21, and crystal defects are less likely to occur in the grown and grown sapphire single crystal ribbon 2. Therefore, the yield of the sapphire single crystal ribbon 2 can be improved.
  • FIG. 9B is a diagram showing a state in which a part of the seed crystal 17 is melted.
  • FIG. 10 is an explanatory view showing a state in which the sapphire single crystal ribbon 2 grows.
  • FIG. 11 is a schematic diagram showing the relationship between the slit interval TS and the thickness T of the sapphire single crystal ribbon 2.
  • the thickness T of the sapphire single crystal ribbon 2 is controlled by adjusting growth conditions such as the speed at which the seed crystal 17 is pulled up, and the relationship with the interval TS between the slits 19 is TS ⁇ T.
  • the sapphire single crystal ribbon 2 is grown while expanding from the interval TS of the slit 19 and is pulled up and grown by the thickness T.
  • the thickness T can be made uniform by growing so that the relationship between the interval TS of the slits 19 and the thickness T of the sapphire single crystal ribbon 2 satisfies TS ⁇ T, as shown in FIG.
  • the thickness variation ⁇ T can be reduced.
  • variation (DELTA) T can be suppressed and the damage by the characteristic dispersion
  • DELTA thickness fluctuation
  • the thickness T can be made more uniform, and the thickness variation ⁇ T can be suppressed to prevent damage due to characteristic variation and stress concentration during winding.
  • a flat sapphire single crystal ribbon 2 having a width W substantially equal to the width WD of the die 9 is grown.
  • the sapphire single crystal ribbon 2 is grown with the width WD of the die 9 (that is, the width W of the sapphire single crystal ribbon 2), and the sapphire single crystal ribbon 2 is pulled up to a predetermined length (length L) at a predetermined speed. Thus, a flat sapphire single crystal ribbon 2 is obtained.
  • the obtained sapphire single crystal ribbon 2 is cooled, the gate valve 15 is opened, moved to the lifting container 4 side, and taken out from the substrate entrance 16.
  • the appearance of the obtained flat plate-shaped sapphire single crystal ribbon 2 is shown in FIG.
  • the manufacturing apparatus 1 is provided with a crucible driving unit 6 that rotates the crucible 5 in which the die 9 is installed, and a control unit (not shown) that controls the rotation.
  • the shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation of the shaft 13. That is, the positioning of the seed crystal 17 with respect to the die 9 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit.
  • the interval TS between the slits 19 is set to 0.25 mm / 0.1 mm / 0.075 mm / 0.05 mm / 0.025 mm, respectively, and the thickness T is 0.5 mm / 0.2 mm / 0.15 mm / 0.1 mm /
  • the seed crystal 17 was pulled up under the condition of 0.05 mm to grow the sapphire single crystal ribbon 2.
  • the thickness variation ⁇ T was within 0.05 mm, and no breakage occurred even when bent into a curved shape having a diameter of 300 mm.
  • the thickness variation ⁇ T exceeds 0.05 mm.
  • the thickness variation ⁇ T of the sapphire single crystal ribbon 2 is within 0.05 mm, more It can be preferably accommodated within 0.025 mm, and it has been found that the thickness T can be made uniform to suppress the thickness variation ⁇ T, and the damage due to characteristic variations and stress concentration during winding can be suppressed.
  • the present invention can be applied to the growth of a sapphire single crystal ribbon having a step structure on the main surface and having an off angle set within 5 ° from the r-plane, c-plane, a-plane, and m-plane. It is.
  • the m-axis of the seed crystal is aligned with the pulling direction of the sapphire single crystal ribbon.
  • the c-axis of the seed crystal positioned in the direction perpendicular to the pulling direction is set to a predetermined angle (for example, 0.05) with respect to the normal of the main surface of the sapphire single crystal ribbon with the pulling direction as the rotation axis. It may be grown at an angle of more than °.
  • a predetermined angle for example, 0.05
  • the description which overlaps with the said embodiment is abbreviate
  • the c-axis of the seed crystal 31 is adjusted such that the angle ⁇ formed with the Z-axis (the axis in the pulling direction) is within a predetermined range (for example, 90 ° ⁇ 0.5 °).
  • the c-axis is inclined at a predetermined angle ⁇ (for example, a range of 0.05 ° or more and 1.0 ° or less) in the X-axis direction (a-axis direction).
  • for example, a range of 0.05 ° or more and 1.0 ° or less
  • the m-axis in the pulling-up axis direction (Z-axis direction) is perpendicular to the c-axis as shown in FIG.
  • the deviation angle ⁇ from the pulling-up axis direction (Z-axis) is adjusted within a predetermined angle range (for example, 0.5 ° or less) in the X-axis direction with respect to the Z-axis.
  • the sapphire single crystal ribbon 32 grown and grown using the seed crystal 31 is as shown in FIG.
  • the c-axis is inclined at a predetermined angle ⁇ (in the range of 0.05 ° or more and 1.0 ° or less as described above) with respect to the normal nv direction of the main surface with the Z-axis (pull-up direction) as the rotation axis. That is, it is possible to obtain a sapphire single crystal ribbon having a c-axis inclination angle on the main surface corresponding to the predetermined angle ⁇ .
  • the deviation angle between the m-axis and the Z-axis is formed within the ⁇ (0.5 °), and as shown in FIG. 14C, the c-axis and the Z-axis have the ⁇ (90 ° ⁇ 0.5 °). ) Formed within.
  • the c-axis of the seed crystal 33 is adjusted so that the angle ⁇ formed with the Z-axis is within a predetermined range (for example, 90 ° ⁇ 0.5 °).
  • the c-axis is adjusted parallel to the Y-axis direction.
  • the m-axis in the pulling direction (Z-axis) is perpendicular to the c-axis as shown in FIG. 15 (a), and the deviation angle ⁇ from the Z-axis is Z-axis as shown in FIG. 15 (c). Is adjusted within a predetermined range (0.5 ° or less) in the X-axis direction (a-axis direction).
  • the normal of the side surface (end face) of the seed crystal 33 is shifted by a predetermined angle ⁇ with respect to the normal of the partition plate 18 as shown in FIG.
  • the shaft 13 or the crucible 5 is rotated by the control unit, so that the normal line of the side surface (end face) of the seed crystal 33 is accurately positioned within the range of the predetermined angle ⁇ with respect to the normal line of the partition plate 18. To do. Thereby, it is possible to obtain a sapphire single crystal ribbon whose c-axis is inclined in a predetermined direction by a predetermined angle ⁇ .
  • the leakage of atmospheric gas for example, inert gas
  • the atmospheric gas may be continuously supplied.

Abstract

[Problem] To provide: a flexible sapphire single-crystal ribbon which is resistant to tensile stress and for which cracking or breaking is prevented; and a method for producing same. [Solution] Dies that have a slit and are arranged so as to have parallel width directions are accommodated in a crucible. An aluminum oxide raw material is fed into the crucible and heated. The aluminum oxide raw material is melted in the crucible to prepare an aluminum oxide melt. Via the slits, an aluminum oxide melt reservoir is formed in a slit upper section. A seed crystal is brought into contact with the aluminum oxide melt at the slit upper part, and the seed crystal is drawn up, to thereby grow a sapphire single-crystal ribbon of a flexible as-grown single crystal having desired principal surface and longitudinal direction dimensions. This causes the surface of the grown and formed sapphire single-crystal ribbon to be free of micro-cracks.

Description

サファイア単結晶リボンとその製造方法Sapphire single crystal ribbon and manufacturing method thereof
 本発明は、サファイア単結晶リボンと、そのサファイア単結晶リボンの製造方法に関する。 The present invention relates to a sapphire single crystal ribbon and a method for producing the sapphire single crystal ribbon.
 超電導体は、臨界温度以下の温度に保持されることにより電気抵抗が零の状態になり、この特性を利用して、例えば高磁界の発生や大容量電流の高密度伝送等が試みられている。超電導体としては従来から、金属系、化合物系、酸化物系の物が知られており、それら超電導体の中でも酸化物系が超電導状態を示す臨界温度を高くできる。 Superconductors are brought into a state of zero electrical resistance by being maintained at a temperature lower than the critical temperature. Using this characteristic, for example, generation of a high magnetic field or high-density transmission of a large capacity current has been attempted. . Conventionally, metal-based, compound-based, and oxide-based materials are known as superconductors, and among these superconductors, the critical temperature at which the oxide-based material exhibits a superconducting state can be increased.
 このような超電導体を、例えば長手方向の寸法を有する長尺の帯状体(リボン)に形成することで、送配電、各種機器、又は素子間の電気的接続、交流用巻線等の用途に用いることができる。酸化物超電導体を帯状体に形成する方法として、長手方向の寸法を有する下地基材の面上に、酸化物超電導層を積層形成する方法が知られている。 For example, by forming such a superconductor into a long strip (ribbon) having dimensions in the longitudinal direction, it can be used for power transmission / distribution, various devices, electrical connection between elements, AC winding, etc. Can be used. As a method for forming an oxide superconductor into a strip-like body, a method is known in which an oxide superconducting layer is formed on the surface of a base substrate having a longitudinal dimension.
 前記下地基材のリボンとしては、サファイア単結晶が求められる。その理由は、サファイア単結晶でリボンを作製することで、高い電気抵抗と熱伝導性及び電気絶縁性がリボンに備えられるためである。積層された超電導体が超電導状態であれば電気抵抗が零となり、下地基材及び超電導体層から成る超電導体に電流を流すことが可能となる。更にそのサファイア単結晶のリボンを含めて超電導体を曲げることで、コイル状に巻回する構成が開示されている(例えば、特許文献1を参照)。 Sapphire single crystal is required as the ribbon of the base material. The reason is that the ribbon is provided with high electrical resistance, thermal conductivity, and electrical insulation by producing the ribbon from sapphire single crystal. If the laminated superconductor is in a superconducting state, the electric resistance becomes zero, and a current can be passed through the superconductor composed of the base substrate and the superconductor layer. Furthermore, a configuration is disclosed in which a superconductor including the sapphire single crystal ribbon is bent to be wound in a coil shape (see, for example, Patent Document 1).
特許第5233011号公報Japanese Patent No. 5233011
 しかし特許文献1では、サファイア単結晶リボンを備える超電導体を巻回する構成が開示されているものの、サファイア単結晶は引っ張り応力に対して耐性が弱いため、サファイア単結晶のリボンを曲げて巻回することは困難であった。実際に本出願人がサファイア単結晶リボンを備える超電導体を作製して巻回したところ、サファイア単結晶リボンに割れ、破壊が生じることが判明した。 However, Patent Document 1 discloses a configuration in which a superconductor including a sapphire single crystal ribbon is wound. However, since a sapphire single crystal has low resistance to tensile stress, the sapphire single crystal ribbon is bent and wound. It was difficult to do. When the present applicant actually produced and wound a superconductor provided with a sapphire single crystal ribbon, it was found that the sapphire single crystal ribbon was cracked and broken.
 サファイア単結晶リボンが引っ張り応力に弱い理由を本出願人が検証したところ、サファイア単結晶リボン表面のマイクロクラックが、割れや破壊を誘発していることが判明した。マイクロクラックは、サファイア単結晶をリボン状に結晶成長させた後に、研削や研磨等の表面加工を施す際、砥粒や研削盤等によってサファイア単結晶の表面上に無数に形成される。そのマイクロクラックからサファイア単結晶の内部にクラックが進行することで、割れ、破壊が生じることを本出願人は見出した。 When the present applicant verified the reason why the sapphire single crystal ribbon was weak against tensile stress, it was found that the micro cracks on the surface of the sapphire single crystal ribbon induced cracking and destruction. The microcracks are formed innumerably on the surface of the sapphire single crystal by abrasive grains, a grinding machine, or the like when surface processing such as grinding or polishing is performed after the sapphire single crystal is grown in a ribbon shape. The present applicant has found that cracks and breakage are caused by the progress of cracks inside the sapphire single crystal from the microcracks.
 従って、引っ張り応力に対して耐性を有し、マイクロクラックの進行を抑えることが重要であることを本出願人は検証により見出した。 Therefore, the present applicant has found through verification that it is important to have resistance against tensile stress and to suppress the progression of microcracks.
 本発明は、上記事情に鑑みてなされたものであり、引っ張り応力に対し耐性を有し、割れや破壊が防止されて、可撓性を備えるサファイア単結晶リボンとその製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and has an object to provide a sapphire single crystal ribbon that has resistance to tensile stress, is prevented from being broken or broken, and has flexibility, and a method for manufacturing the same. To do.
 前記課題は、以下の本発明により解決される。即ち、本発明のサファイア単結晶リボンは、長手方向の寸法を有し、可撓性を有することを特徴とする。 The above-mentioned problem is solved by the following present invention. That is, the sapphire single crystal ribbon of the present invention has a longitudinal dimension and is flexible.
 また、本発明のサファイア単結晶リボンの製造方法は、スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、坩堝に酸化アルミニウム原料を投入して加熱し、酸化アルミニウム原料を坩堝内で溶融して酸化アルミニウム融液を用意し、スリットを介してスリット上部に酸化アルミニウム融液溜まりを形成し、そのスリット上部の酸化アルミニウム融液に種結晶を接触させて種結晶を引き上げることで、所望の主面と長手方向の寸法を有し、可撓性を有するサファイア単結晶リボンを成長させることを特徴とする。 In the method for producing a sapphire single crystal ribbon according to the present invention, a die having slits and arranged in parallel in the width direction is housed in a crucible, and an aluminum oxide raw material is charged into the crucible and heated to obtain an aluminum oxide raw material. Prepare an aluminum oxide melt by melting in a crucible, form an aluminum oxide melt pool at the upper part of the slit through the slit, and pull the seed crystal by bringing the seed crystal into contact with the aluminum oxide melt at the upper part of the slit. A sapphire single crystal ribbon having a desired main surface and a longitudinal dimension and having flexibility is grown.
 サファイア単結晶リボンのリボン形状とは、平面方向の形状が長方形であり、具体的な寸法としては幅が100mm以下、厚さが0.5mm以下、長手方向の寸法である長さが1000mm以上のサイズのサファイア単結晶を指す。 The ribbon shape of the sapphire single crystal ribbon is a rectangular shape in the plane direction, and specific dimensions are a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more. Refers to a sapphire single crystal of size.
 なお、共通の種結晶から同時に複数のサファイア単結晶リボンを成長させることが、一枚当たりのサファイア単結晶リボンの製造コストを下げることが可能となる点で好ましい。同時に複数のサファイア単結晶リボンを製造する際は、複数のダイを坩堝に収容すると共に、各ダイの各々の幅方向を平行に配置する。 Note that it is preferable to simultaneously grow a plurality of sapphire single crystal ribbons from a common seed crystal because it is possible to reduce the manufacturing cost of one sapphire single crystal ribbon. When simultaneously manufacturing a plurality of sapphire single crystal ribbons, a plurality of dies are accommodated in a crucible and the width directions of the dies are arranged in parallel.
 本発明に依れば、長手方向の寸法を有するようにサファイア単結晶リボンを結晶成長させ、更に、研削または研磨などの表面加工を施こさないことでサファイア単結晶表面上へのマイクロクラックの形成が防止される。表面上にマイクロクラックを有さないことでマイクロクラックの進行が防止され、サファイア単結晶リボンに引っ張り応力に対する耐性と可撓性が備えられ、割れや破壊が防止される。 According to the present invention, microcracks are formed on the surface of a sapphire single crystal by growing a sapphire single crystal ribbon so as to have a longitudinal dimension, and further by not performing surface processing such as grinding or polishing. Is prevented. By not having microcracks on the surface, the progress of microcracks is prevented, and the sapphire single crystal ribbon is provided with resistance to tensile stress and flexibility, and cracking and destruction are prevented.
 更に長手方向の寸法を有するように結晶成長させたサファイア単結晶リボンのAs-grown単結晶に研削または研磨等の表面加工を施すこと無く、更に表面上にマイクロクラックが形成されていないAs-grown単結晶を選択することにより、サファイア単結晶リボンに可撓性を付与することが可能となり、表面加工の工程削減も出来る。 Further, the As-grown single crystal of the sapphire single crystal ribbon grown to have a dimension in the longitudinal direction is not subjected to surface processing such as grinding or polishing, and the As-grown has no microcracks formed on the surface. By selecting a single crystal, flexibility can be imparted to the sapphire single crystal ribbon, and the surface processing steps can be reduced.
 更に、研削または研磨等の表面加工を施さず、表面上にマイクロクラックが形成されていないAs-grown単結晶を選択することにより、マイクロクラックの進行が防止され、引っ張り応力に対する耐性が備えられて、割れや破壊が防止される。 Furthermore, by selecting an As-grown single crystal that is not subjected to surface processing such as grinding or polishing and has no microcracks formed on the surface, the progress of microcracks is prevented and resistance to tensile stress is provided. , Cracking and destruction are prevented.
 以上により、本発明のサファイア単結晶リボンに外力を加えて曲げたり、巻回することが可能となる。 As described above, the sapphire single crystal ribbon of the present invention can be bent or wound by applying an external force.
本発明の実施形態及び実施例に係るサファイア単結晶リボンを模式的に示す斜視図である。It is a perspective view showing typically a sapphire single crystal ribbon concerning an embodiment and an example of the present invention. 本発明の実施形態及び実施例に係るサファイア単結晶リボンの厚さTと厚さの変動幅ΔTを示す模式概念図である。It is a schematic conceptual diagram which shows thickness T and the fluctuation range (DELTA) T of thickness of the sapphire single crystal ribbon which concern on embodiment and the Example of this invention. 本発明の実施形態及び実施例に係るサファイア単結晶リボンを備える超電導体を示す側面図である。It is a side view showing a superconductor provided with a sapphire single crystal ribbon concerning an embodiment and an example of the present invention. 図3の超電導体を曲げて形成した超電導コイルを、部分的に示す模式図である。FIG. 4 is a schematic diagram partially showing a superconducting coil formed by bending the superconductor of FIG. 3. EFG法によるサファイア単結晶リボンの製造装置を概略して模式的に示す構成図である。It is a block diagram which shows schematically and the manufacturing apparatus of the sapphire single crystal ribbon by EFG method schematically. (a)本発明の実施形態に係るダイの一例を模式的に示す平面図である。(b)同図(a)の正面図である。(c)同図(a)の側面図である。(A) It is a top view which shows typically an example of the die | dye which concerns on embodiment of this invention. (B) It is a front view of the same figure (a). (C) It is a side view of the same figure (a). (a)本発明の実施形態に係る種結晶の一例を示す説明図である。(b)本発明の実施形態に係る種結晶の他の例を示す説明図である。(c)本発明の実施形態に係る種結晶の更に他の例を示す説明図である。(A) It is explanatory drawing which shows an example of the seed crystal which concerns on embodiment of this invention. (B) It is explanatory drawing which shows the other example of the seed crystal which concerns on embodiment of this invention. (C) It is explanatory drawing which shows the further another example of the seed crystal which concerns on embodiment of this invention. 本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す斜視図である。It is a perspective view which shows typically the positional relationship of the seed crystal and partition plate in embodiment of this invention. (a)本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す正面図である。(b)本発明の実施形態における、種結晶の一部を溶融する様子を示す正面図である。(A) It is a front view which shows typically the positional relationship of the seed crystal and partition plate in embodiment of this invention. (B) It is a front view which shows a mode that a part of seed crystal is fuse | melted in embodiment of this invention. 本発明の実施形態におけるサファイア単結晶リボンが成長する様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode that the sapphire single-crystal ribbon in embodiment of this invention grows. 本発明の実施形態におけるスリット間隔TSとサファイア単結晶リボンの厚さTとの関係を示す模式図である。It is a schematic diagram which shows the relationship between the slit space | interval TS in embodiment of this invention, and the thickness T of a sapphire single crystal ribbon. EFG法により得られる、本発明の実施形態に係る複数のサファイア単結晶リボンを部分的且つ模式的に示す斜視図である。It is a perspective view showing partially and typically a plurality of sapphire single crystal ribbons according to an embodiment of the present invention obtained by the EFG method. (a)本発明の実施形態の変更例に係る種結晶の正面図である。(b)同図(a)の平面図である。(c)同図(a)の側面図である。(A) It is a front view of the seed crystal which concerns on the example of a change of embodiment of this invention. (B) It is a top view of the figure (a). (C) It is a side view of the same figure (a). (a)図13の種結晶を用いて育成されたサファイア単結晶リボンの底面図である。(b)同図(a)の正面図である。(c)同図(a)の側面図である。(A) It is a bottom view of the sapphire single crystal ribbon grown using the seed crystal of FIG. (B) It is a front view of the same figure (a). (C) It is a side view of the same figure (a). (a)本発明の他の変更例に係る種結晶の正面図である。(b)同図(a)の平面図である。(c)同図(a)の側面図である。(A) It is a front view of the seed crystal which concerns on the other modification of this invention. (B) It is a top view of the figure (a). (C) It is a side view of the same figure (a). 図15に示す種結晶と、仕切り板との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the seed crystal shown in FIG. 15, and a partition plate.
 本実施の形態の第一の特徴は、長手方向の寸法を有し、可撓性を有するサファイア単結晶リボンとしたことである。 The first feature of the present embodiment is that the sapphire single crystal ribbon has a dimension in the longitudinal direction and has flexibility.
 第二の特徴は、前記サファイア単結晶リボンが、表面上にマイクロクラックを有さないとしたことである。 The second feature is that the sapphire single crystal ribbon does not have microcracks on the surface.
 第三の特徴は、前記サファイア単結晶リボンが、As-grown単結晶であるとしたことである。 The third feature is that the sapphire single crystal ribbon is an As-grown single crystal.
 また第四の特徴は、スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、坩堝に酸化アルミニウム原料を投入して加熱し、酸化アルミニウム原料を坩堝内で溶融して酸化アルミニウム融液を用意し、スリットを介してスリット上部に酸化アルミニウム融液溜まりを形成し、そのスリット上部の酸化アルミニウム融液に種結晶を接触させて種結晶を引き上げることで、所望の主面と長手方向の寸法を有し、可撓性を有するサファイア単結晶リボンを成長させるサファイア単結晶リボンの製造方法としたことである。 The fourth feature is that a die having slits and arranged in parallel in the width direction is accommodated in a crucible, an aluminum oxide raw material is charged into the crucible and heated, and the aluminum oxide raw material is melted and oxidized in the crucible. An aluminum melt is prepared, an aluminum oxide melt pool is formed at the upper part of the slit through the slit, the seed crystal is brought into contact with the aluminum oxide melt at the upper part of the slit, and the seed crystal is pulled up. This is a method for producing a sapphire single crystal ribbon in which a sapphire single crystal ribbon having dimensions in the longitudinal direction and having flexibility is grown.
 第五の特徴は、成長させた前記サファイア単結晶リボンが、表面上にマイクロクラックを有さないサファイア単結晶リボンの製造方法としたことである。 The fifth feature is that the grown sapphire single crystal ribbon is a method for producing a sapphire single crystal ribbon having no microcracks on the surface.
 第六の特徴は、成長させた前記サファイア単結晶リボンが、As-grown単結晶であるサファイア単結晶リボンの製造方法としたことである。 The sixth feature is that the grown sapphire single crystal ribbon is a method for producing a sapphire single crystal ribbon which is an As-grown single crystal.
 本発明において、マイクロクラックとは、例えば熱したリン酸、リン酸・硫酸混液、水酸化カリウム等の強アルカリ融液等のエッチング溶液をサファイア単結晶の表面上に塗布した時に、目視又は顕微鏡で以て観察可能なクラックを指すものとする。 In the present invention, the microcrack means, for example, when an etching solution such as heated phosphoric acid, phosphoric acid / sulfuric acid mixed solution, strong alkaline melt such as potassium hydroxide is applied on the surface of the sapphire single crystal, or visually. Therefore, the crack which can be observed shall be pointed out.
 なお本発明において、As-grown単結晶とは、結晶成長された状態のままで研削または研磨などの表面加工が施こされていない単結晶を指す。 In the present invention, the As-grown single crystal refers to a single crystal that has not been subjected to surface processing such as grinding or polishing in the state of crystal growth.
 これらの構成に依れば、長手方向の寸法を有するようにサファイア単結晶リボンを結晶成長させ、更に、研削または研磨などの表面加工を施こさず、表面上にマイクロクラックが形成されていないAs-grown単結晶を選択することにより、サファイア単結晶表面上へのマイクロクラックの形成が防止される。表面上にマイクロクラックを有さないことでマイクロクラックの進行が防止され、サファイア単結晶リボンに引っ張り応力に対する耐性と可撓性が備えられ、割れや破壊が防止される。更に、サファイア単結晶リボンの表面加工の工程削減も出来る。 According to these configurations, As is obtained by growing a sapphire single crystal ribbon so as to have a longitudinal dimension, and without performing surface processing such as grinding or polishing, and no microcracks are formed on the surface. By selecting the -grown single crystal, the formation of microcracks on the surface of the sapphire single crystal is prevented. By not having microcracks on the surface, the progress of microcracks is prevented, and the sapphire single crystal ribbon is provided with resistance to tensile stress and flexibility, and cracking and destruction are prevented. Furthermore, the process of surface processing of the sapphire single crystal ribbon can be reduced.
 以上により、本発明のサファイア単結晶リボンに外力を加えて曲げたり、巻回することが可能となる。 As described above, the sapphire single crystal ribbon of the present invention can be bent or wound by applying an external force.
 また第七の特徴は、幅が100mm以下、厚さが0.5mm以下、前記長手方向の寸法である長さが1000mm以上であるサファイア単結晶リボンとしたことである。 The seventh feature is that the sapphire single crystal ribbon has a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more.
 第八の特徴は、成長させた前記サファイア単結晶リボンが、幅が100mm以下、厚さが0.5mm以下、前記長手方向の寸法である長さが1000mm以上であるサファイア単結晶リボンの製造方法としたことである。 The eighth feature is that the grown sapphire single crystal ribbon has a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more. It is that.
 これらの構成に依れば、超電導コイル用として汎用性が高く、望ましい寸法のサファイア単結晶リボンとすることが出来る。なお、長さの上限値は特に無く、任意に設定可能であるが、用途上の目安としては10km以下が挙げられる。 According to these configurations, a sapphire single crystal ribbon having high versatility and desirable dimensions for a superconducting coil can be obtained. In addition, there is no upper limit in particular and it can set arbitrarily, However As a standard in use, 10 km or less is mentioned.
 更に第九の特徴は、前記幅が10mm、前記厚さが0.1mm、前記長さが1000mmであるサファイア単結晶リボンとしたことである。 The ninth feature is that the sapphire single crystal ribbon has a width of 10 mm, a thickness of 0.1 mm, and a length of 1000 mm.
 第十の特徴は、前記幅が10mm、前記厚さが0.1mm、前記長さが1000mmであるサファイア単結晶リボンの製造方法としたことである。 The tenth feature is that the sapphire single crystal ribbon has a width of 10 mm, a thickness of 0.1 mm, and a length of 1000 mm.
 これらの構成に依れば、超電導コイル用として最も汎用性が高く、望ましい寸法のサファイア単結晶リボンとすることが出来る。 According to these configurations, a sapphire single crystal ribbon having the most versatile and desirable dimensions for a superconducting coil can be obtained.
 なお本発明において、サファイア単結晶リボンのリボン形状とは、平面方向の形状が長方形であり、具体的な寸法としては幅が100mm以下、厚さが0.5mm以下、長手方向の寸法である長さが1000mm以上のサイズのサファイア単結晶を指す。 In the present invention, the ribbon shape of the sapphire single crystal ribbon is a rectangular shape in the plane direction, and specific dimensions include a length of 100 mm or less, a thickness of 0.5 mm or less, and a longitudinal dimension. Refers to a sapphire single crystal having a size of 1000 mm or more.
 更に第十一の特徴は、前記幅と前記厚さの比(前記幅/前記厚さ)が、20以上1000以下であるサファイア単結晶リボンとしたことである。 An eleventh feature is that the sapphire single crystal ribbon has a ratio of the width to the thickness (the width / the thickness) of 20 or more and 1000 or less.
 第十二の特徴は、前記幅と記厚さの比(前記幅/前記厚さ)が、20以上1000以下であるサファイア単結晶リボンの製造方法としたことである。 A twelfth feature is that the ratio of the width to the thickness (the width / the thickness) is a method for producing a sapphire single crystal ribbon that is 20 or more and 1000 or less.
 これらの構成に依れば、安定して可撓性をサファイア単結晶リボンに付与可能となり、引っ張り応力に対する耐性と割れや破壊の防止に対する信頼性をより強固にすることが出来る。 According to these configurations, it is possible to stably impart flexibility to the sapphire single crystal ribbon, and it is possible to further strengthen the resistance to tensile stress and the reliability of preventing cracking and destruction.
 更に第十三の特徴は、直径300mm以下の曲線状に曲げられているサファイア単結晶リボンとしたことである。 The thirteenth feature is that the sapphire single crystal ribbon is bent into a curved shape having a diameter of 300 mm or less.
 第十四の特徴は、成長させたサファイア単結晶リボンを、直径300mm以下の曲線状に曲げるサファイア単結晶リボンの製造方法としたことである。 The fourteenth feature is that the sapphire single crystal ribbon is produced by bending the grown sapphire single crystal ribbon into a curved shape having a diameter of 300 mm or less.
 これらの構成に依れば、可撓性が付与されることでサファイア単結晶リボンに外力を加えて曲げたり巻回することが可能となり、直径300mm以下の曲線状に曲げることも出来て、超電導コイル用途として巻き取りベースに巻回可能となり好適に使用することが出来る。 According to these structures, it is possible to bend and wind by applying external force to the sapphire single crystal ribbon by providing flexibility, and it can be bent into a curved shape with a diameter of 300 mm or less. As a coil application, it can be wound on a winding base and can be suitably used.
 更に第十五の特徴は、主面を有すると共に、その主面がr面(10-12)、c面(0001)、又はオフ角度を有するr面またはc面であるサファイア単結晶リボンとしたことである。 Furthermore, the fifteenth feature is a sapphire single crystal ribbon having a main surface and the main surface being an r-plane (10-12), a c-plane (0001), or an r-plane or c-plane having an off angle. That is.
 第十六の特徴は、主面を有すると共に、その主面がr面(10-12)、c面(0001)、又はオフ角度を有するr面またはc面であるサファイア単結晶リボンの製造方法としたことである。 A sixteenth feature is a method for producing a sapphire single crystal ribbon having a main surface and the main surface being an r-plane (10-12), a c-plane (0001), or an r-plane or c-plane having an off angle. It is that.
 これらの構成に依れば、超電導層の形成面として最適な面方位を主面として設定することが可能となる。 According to these configurations, it is possible to set an optimum plane orientation as a main surface as a formation surface of the superconducting layer.
 更に第十七の特徴は、前記種結晶を引き上げて前記サファイア単結晶リボンを成長させている間又は前記サファイア単結晶リボンの成長後に、前記坩堝内の前記酸化アルミニウム融液に前記酸化アルミニウム原料を更に投入し、前記酸化アルミニウム融液を補充するサファイア単結晶リボンの製造方法としたことである。 Further, the seventeenth feature is that the aluminum oxide raw material is added to the aluminum oxide melt in the crucible while the seed crystal is pulled up to grow the sapphire single crystal ribbon or after the sapphire single crystal ribbon is grown. Furthermore, it is set as the manufacturing method of the sapphire single crystal ribbon which throws in and replenishes the said aluminum oxide melt.
 これらの構成に依れば、連続的にサファイア単結晶リボンの結晶育成を行うことが可能となり、量産性を向上させることが出来る。 According to these configurations, it becomes possible to continuously grow crystals of a sapphire single crystal ribbon and to improve mass productivity.
 更に第十八の特徴は、前記厚さ方向の寸法Tと前記長手方向の寸法を有し、前記厚さ方向の寸法Tにおける変動幅ΔTが0.05mm以内のサファイア単結晶リボンとしたことである(但し、ΔTは0mm超である)。 The eighteenth feature is that the sapphire single crystal ribbon has a dimension T in the thickness direction and a dimension in the longitudinal direction, and a variation width ΔT in the dimension T in the thickness direction is within 0.05 mm. (However, ΔT is greater than 0 mm).
 第十九の特徴は、サファイア単結晶リボンの前記変動幅ΔTが0.025mm以内としたことである。 The nineteenth feature is that the fluctuation range ΔT of the sapphire single crystal ribbon is within 0.025 mm.
 また第二十の特徴は、前記スリットが間隔TSを有すると共に、前記所望の主面と前記厚さ方向の寸法Tと前記長手方向の寸法を有し、前記間隔TSと前記厚さ寸法TとがTS≦Tの関係を満たす条件で前記サファイア単結晶リボンを成長させるサファイア単結晶リボンの製造方法としたことである。 In addition, the twentieth feature is that the slit has a gap TS, the desired main surface, the dimension T in the thickness direction, and the dimension in the longitudinal direction, and the gap TS and the thickness dimension T. Is a method for producing a sapphire single crystal ribbon in which the sapphire single crystal ribbon is grown under conditions satisfying the relationship of TS ≦ T.
 第二十一の特徴は、前記間隔TSと前記厚さTとの関係がTS≦0.5Tを満たすサファイア単結晶リボンの製造方法としたことである。 The twenty-first feature is that a method for producing a sapphire single crystal ribbon in which the relationship between the interval TS and the thickness T satisfies TS ≦ 0.5T.
 なお本発明において厚さTとは、サファイア単結晶リボンの平均厚さ又は製造上予め設定される厚さ方向の寸法を指すものとする。 In the present invention, the thickness T refers to the average thickness of the sapphire single crystal ribbon or the dimension in the thickness direction set in advance for manufacturing.
 これらの構成によれば、厚さ方向の寸法Tとダイのスリット間隔TSとが、TS≦Tの関係を満たす条件でサファイア単結晶リボンを結晶成長させ、厚さ方向の寸法Tにおける変動幅ΔTが0.05mm以内であるサファイア単結晶リボンとすることで、厚さTを均一化し、厚さ変動ΔTを小さくすることができ、特性ばらつきや巻回時の応力集中(特に、最小厚さ部分への応力集中)による破損を抑制できる。 According to these configurations, the sapphire single crystal ribbon is grown on the condition that the dimension T in the thickness direction and the slit interval TS of the die satisfy the relationship of TS ≦ T, and the variation width ΔT in the dimension T in the thickness direction. By using a sapphire single crystal ribbon with a thickness of 0.05 mm or less, the thickness T can be made uniform and the thickness variation ΔT can be reduced, resulting in characteristic variations and stress concentration during winding (especially the minimum thickness portion). Damage due to stress concentration on the surface can be suppressed.
 またこれらの構成によれば、厚さ方向の寸法Tと長手方向の寸法を有するようにサファイア単結晶リボンを結晶成長させ、更に、研削または研磨などの表面加工を施さず、表面上にマイクロクラックが形成されていないAs-grown単結晶を選択することにより、サファイア単結晶表面上へのマイクロクラック形成が防止される。 Further, according to these configurations, the sapphire single crystal ribbon is grown so as to have a dimension T in the thickness direction and a dimension in the longitudinal direction, and further, surface cracking or polishing is not performed, and microcracks are formed on the surface. By selecting an As-grown single crystal in which no is formed, microcrack formation on the surface of the sapphire single crystal is prevented.
 以下、図1~図4を参照して、超電導コイルの超電導層の形成に用いられる、本実施形態に係る下地基材用のサファイア単結晶リボンを説明する。 Hereinafter, a sapphire single crystal ribbon for a base substrate according to the present embodiment, which is used for forming a superconducting layer of a superconducting coil, will be described with reference to FIGS.
 超電導体37は図3,図4に示すように、超電導物質で構成される超電導層35を、リボン形状の細い又は薄い可撓性を有する下地基材2の表面上に備えて形成される。下地基材2には、高い電気抵抗と熱伝導性及び電気絶縁性が要求されるため、サファイア単結晶で作製されることが好ましい(以下、必要に応じて、「サファイア単結晶リボン2)と記載)。 As shown in FIGS. 3 and 4, the superconductor 37 is formed by providing a superconducting layer 35 made of a superconducting material on the surface of the base material 2 having a ribbon-like thin or thin flexibility. Since the base substrate 2 is required to have high electrical resistance, thermal conductivity, and electrical insulation, it is preferably made of a sapphire single crystal (hereinafter referred to as “sapphire single crystal ribbon 2”). Description).
 本発明におけるサファイア単結晶リボン2のリボン形状とは、図1に示すように長手方向の寸法を有し、平面方向の形状が長方形であり、具体的な寸法としては幅Wが100mm以下、厚さTが0.5mm以下、前記長手方向の寸法である長さLが1000mm以上のサイズのサファイア単結晶を指す。幅W100mm以下、厚さT0.5mm以下、長さL1000mm以上のサイズのサファイア単結晶が、超電導コイル用として汎用性が高く、望ましい。なお、長さLの上限値は特に無く、任意に設定可能であるが、用途上の目安としては10km以下が挙げられる。 The ribbon shape of the sapphire single crystal ribbon 2 in the present invention has dimensions in the longitudinal direction as shown in FIG. 1, the shape in the plane direction is rectangular, and specific dimensions include a width W of 100 mm or less, a thickness This refers to a sapphire single crystal having a length T of 0.5 mm or less and a length L of 1000 mm or more as a dimension in the longitudinal direction. A sapphire single crystal having a width W of 100 mm or less, a thickness T of 0.5 mm or less, and a length L of 1000 mm or more is desirable because of its high versatility for superconducting coils. The upper limit of the length L is not particularly limited and can be set arbitrarily, but a guideline for use is 10 km or less.
 更に、幅W10mm、厚さT0.1mm、長さL1000mmのサイズのサファイア単結晶リボンが、超電導コイル用として最も汎用性が高く、望ましい。なお、厚さTとは、サファイア単結晶リボン2の平均厚さ又は製造上予め設定される厚さ方向の寸法を指すものとする。 Furthermore, a sapphire single crystal ribbon having a width W of 10 mm, a thickness of T 0.1 mm, and a length of L 1000 mm is most versatile and desirable for a superconducting coil. The thickness T refers to the average thickness of the sapphire single crystal ribbon 2 or the dimension in the thickness direction that is set in advance for manufacturing.
 図2はサファイア単結晶リボン2の平均厚さTと厚さの変動幅ΔTを模式的に概念図で示したものである。図中では厚さ方向の寸法変動を強調して表現している。サファイア単結晶リボン2の厚さ方向の平均寸法をTとするように結晶成長させても、厚さ方向の寸法に変化が生じる。このとき、結晶成長させたサファイア単結晶リボン2の最大厚さをTmaxとし、最小厚さをTminとすると、その差ΔT=Tmax-Tminが厚さ方向の寸法Tにおける変動幅である。 FIG. 2 is a conceptual diagram schematically showing the average thickness T and the thickness fluctuation range ΔT of the sapphire single crystal ribbon 2. In the figure, the dimensional variation in the thickness direction is emphasized. Even if the crystal growth is performed such that the average dimension in the thickness direction of the sapphire single crystal ribbon 2 is T, the dimension in the thickness direction changes. At this time, when the maximum thickness of the sapphire single crystal ribbon 2 grown is T max and the minimum thickness is T min , the difference ΔT = T max −T min is the fluctuation width in the dimension T in the thickness direction. is there.
 本発明ではサファイア単結晶リボン2の厚さ方向の変動幅ΔTを0.05mm以内とすることで、サファイア単結晶リボン2の特性ばらつきや巻回時の応力集中(特に、最小厚さ部分であるTmin部分への応力集中)、さらに巻回時の応力集中による破損を抑制できる。 In the present invention, the variation width ΔT in the thickness direction of the sapphire single crystal ribbon 2 is set to 0.05 mm or less, so that the characteristic variation of the sapphire single crystal ribbon 2 and the stress concentration during winding (particularly, the minimum thickness portion). T concentration of stress on the min part), can further suppress the damage due to the stress concentration at the time the wound.
 サファイア単結晶は高熱伝導率を有するため、耐熱温度は200℃以上となり、下地基材2自身の膨張又は収縮が抑制されて超電導層35に歪みが生じるおそれが低減され、臨界電流密度Jcの低下防止を図ることができると共に、巻回後に熱処理する場合にその熱処理温度に耐えることが可能となる。更に、超電導層35が酸化物超電導で構成される場合、酸化物超電導層の形成に必要な熱処理温度に耐えることもできる。 Since the sapphire single crystal has a high thermal conductivity, the heat-resistant temperature becomes 200 ° C. or higher, the expansion or contraction of the base substrate 2 itself is suppressed, and the possibility of distortion in the superconducting layer 35 is reduced, and the critical current density Jc is reduced. In addition to preventing the heat treatment, it is possible to withstand the heat treatment temperature when heat treatment is performed after winding. Furthermore, when the superconducting layer 35 is composed of oxide superconductivity, it can withstand the heat treatment temperature necessary for forming the oxide superconducting layer.
 本発明に係るサファイア単結晶リボン2は、As-grown単結晶である。As-grown単結晶とは、結晶成長された状態のままで研削または研磨などの表面加工が施されていない単結晶を指す。即ち、研削または研磨等の表面加工を施す際の砥粒や研削盤等による単結晶表面上へのマイクロクラック形成が防止される。表面上にマイクロクラックを有さないことでマイクロクラックの進行が防止され、サファイア単結晶リボン2に引っ張り応力に対する耐性と可撓性が備えられ、外力を加えて曲げたり巻回を行った時にマイクロクラックに起因した割れ、破壊が防止される。 The sapphire single crystal ribbon 2 according to the present invention is an As-grown single crystal. An As-grown single crystal refers to a single crystal that has not been subjected to surface processing such as grinding or polishing in a crystal-grown state. That is, the formation of microcracks on the surface of the single crystal by abrasive grains or a grinding machine when performing surface processing such as grinding or polishing is prevented. By not having a microcrack on the surface, the progress of the microcrack is prevented, and the sapphire single crystal ribbon 2 has resistance and flexibility against tensile stress, and is microscopic when bent or wound by applying external force. Cracks and breakage due to cracks are prevented.
 サファイア単結晶を長手方向の寸法を有するように結晶成長させ、更に、研削または研磨などの表面加工を施さないことで、サファイア単結晶表面上へのマイクロクラック形成が防止される。表面上にマイクロクラックを有さないことでマイクロクラックの進行が防止され、サファイア単結晶リボン2に引っ張り応力に対する耐性と可撓性が備えられ、割れや破壊が防止される。 Crystal growth of the sapphire single crystal so as to have a dimension in the longitudinal direction and further surface treatment such as grinding or polishing are not performed, thereby preventing formation of microcracks on the surface of the sapphire single crystal. By not having a microcrack on the surface, the progress of the microcrack is prevented, and the sapphire single crystal ribbon 2 is provided with resistance to tensile stress and flexibility, and cracking and destruction are prevented.
 更に長手方向の寸法を有するように結晶成長させたサファイア単結晶リボン2のAs-grown単結晶に研削または研磨等の表面加工を施すこと無く、更に表面上にマイクロクラックが形成されていないAs-grown単結晶を選択することにより、サファイア単結晶リボン2に可撓性を付与することが可能となり、表面加工の工程削減もできる。 Further, the As-grown single crystal of the sapphire single crystal ribbon 2 grown to have a dimension in the longitudinal direction is not subjected to surface processing such as grinding or polishing, and no As-grown crack is formed on the surface. By selecting the grown single crystal, flexibility can be imparted to the sapphire single crystal ribbon 2 and the surface processing steps can be reduced.
 更に、研削または研磨等の表面加工を施さず、表面上にマイクロクラックが形成されていないAs-grown単結晶を選択することにより、マイクロクラックの進行が防止され、引っ張り応力に対する耐性が備えられて、割れや破壊が防止される。 Furthermore, by selecting an As-grown single crystal that is not subjected to surface processing such as grinding or polishing and has no microcracks formed on the surface, the progress of microcracks is prevented and resistance to tensile stress is provided. , Cracking and destruction are prevented.
 可撓性が付与されることで、本発明のサファイア単結晶リボン2に外力を加えて曲げたり巻回することが可能となり、直径300mm以下の曲線状に曲げることもできて、超電導コイル36用途として巻き取りベースに巻回可能となり好適に使用することができる。サファイア単結晶リボン2の直径は、更に200mm以下又は100mm以下といったより小径の巻回や、500mm以下といったより大径に巻回しても良く、用いられる用途に応じて適宜選択可能である。 By imparting flexibility, the sapphire single crystal ribbon 2 of the present invention can be bent or wound by applying an external force, and can be bent into a curved shape having a diameter of 300 mm or less. Can be wound around the winding base and can be used preferably. The diameter of the sapphire single crystal ribbon 2 may be further wound with a smaller diameter such as 200 mm or less or 100 mm or less, or may be wound with a larger diameter such as 500 mm or less, and can be appropriately selected depending on the intended use.
 また、引っ張り応力に対する耐性と可撓性を有するサファイア単結晶リボン2を備えることで、超電導体37は巻回することが可能になると共に、超電導体37を巻回してもサファイア単結晶リボン2に割れ、破壊の発生が防止される。従って、超電導マグネットや核磁気共鳴診断装置用マグネットといった各種マグネット、ケーブル、送配電、交流用巻線、発電機、変圧器、超電導限流器等に使用することができる。 Further, by providing the sapphire single crystal ribbon 2 having resistance to tensile stress and flexibility, the superconductor 37 can be wound, and even if the superconductor 37 is wound, the sapphire single crystal ribbon 2 is wound. Generation of cracks and destruction is prevented. Therefore, it can be used for various magnets such as superconducting magnets and magnets for nuclear magnetic resonance diagnostic apparatuses, cables, power transmission and distribution, AC windings, generators, transformers, superconducting fault current limiters, and the like.
 本発明において、マイクロクラックとは、例えば熱したリン酸、リン酸・硫酸混液、水酸化カリウム等の強アルカリ融液等のエッチング溶液をサファイア単結晶の表面上に塗布した時に、目視又は顕微鏡で以て観察可能なクラックを指すものとする。 In the present invention, the microcrack means, for example, when an etching solution such as heated phosphoric acid, phosphoric acid / sulfuric acid mixed solution, strong alkaline melt such as potassium hydroxide is applied on the surface of the sapphire single crystal, or visually. Therefore, the crack which can be observed shall be pointed out.
 更に、サファイア単結晶リボン2は主面2aを有すると共に、その主面2aはr面(10-12)、c面(0001)、又はオフ角度を有するr面またはc面とする。オフ角度とはr面又はc面に対する角度であり、5°以内に設定する。このような面方位に主面2aを設定することにより、超電導層35の形成面として最適な面方位を設定することが可能となる。また、主面2aの別の面方位として、a面(1120)又はm面(1010)、またはこれらa面又はm面から5°以内に設定されたオフ角度を有する面も選択可能である。 Furthermore, the sapphire single crystal ribbon 2 has a main surface 2a, and the main surface 2a is an r-plane (10-12), a c-plane (0001), or an r-plane or c-plane having an off angle. The off-angle is an angle with respect to the r-plane or c-plane, and is set within 5 °. By setting the main surface 2a in such a plane orientation, it is possible to set an optimum plane orientation as a formation surface of the superconducting layer 35. Further, as another plane orientation of the main surface 2a, an a plane (1120) or an m plane (1010), or a plane having an off angle set within 5 ° from the a plane or the m plane can be selected.
 更に、幅Wと厚さTの比(幅W/厚さT)の数値範囲を、20以上1000以下と設定することにより、安定して可撓性をサファイア単結晶リボン2に付与可能となり、引っ張り応力に対する耐性と割れや破壊の防止に対する信頼性をより強固にすることができる。 Furthermore, by setting the numerical range of the ratio of width W to thickness T (width W / thickness T) as 20 or more and 1000 or less, flexibility can be stably imparted to the sapphire single crystal ribbon 2, Resistance to tensile stress and reliability for prevention of cracking and breakage can be further strengthened.
 前記の通り超電導体37または超電導コイル36は、少なくともサファイア単結晶リボン2と、超電導層35を含んで構成される。更により好ましい構成として、緩衝層34を備えた超電導体37または超電導コイル36を図示している(図3又は図4参照)。 As described above, the superconductor 37 or the superconducting coil 36 includes at least the sapphire single crystal ribbon 2 and the superconducting layer 35. As a still more preferable configuration, a superconductor 37 or a superconducting coil 36 having a buffer layer 34 is shown (see FIG. 3 or FIG. 4).
 緩衝層34は、酸化セリウム(CeO)、SrTiO、Nb-ドープSrTiO、RE(REは希土類元素)、MgO、LaMnO、YSZ、Y、LaAlO、LaCrO、NdGaO、LaNiO、ジルコニウム酸ランタン(LZO)、NbTiO、TiN、TZN、TiB、Pd、Ag、PT、およびAuから選択される1つまたは複数のエピタキシャル層等の、好適な材料から形成することができる。また、緩衝層34の厚さは20nm~300nmとする。 The buffer layer 34 includes cerium oxide (CeO 2 ), SrTiO 3 , Nb-doped SrTiO 3 , RE 2 O 3 (RE is a rare earth element), MgO, LaMnO 3 , YSZ, Y 2 O 3 , LaAlO 3 , LaCrO 3 , Formed from a suitable material, such as one or more epitaxial layers selected from NdGaO 3 , LaNiO 3 , lanthanum zirconate (LZO), NbTiO 3 , TiN, TZN, TiB 2 , Pd, Ag, PT, and Au can do. The buffer layer 34 has a thickness of 20 nm to 300 nm.
 更に主面2a上又は緩衝層34上に、超電導層35を形成する。超電導層35としては、酸化物超電導体である、YBaCu、Y1BaCu7-δ、GdBaCu等のREBaCu(REは希土類元素である)、BiSrCu、Bi-Sr-Ca-Cu-O系、Bi-Pb-Sr-Ca-Cu-O系、Tl-Ba-Ca-Cu-O系(TlBaCan-1Cu2n+3(nは1~4の間の整数)、TlBaCan-1Cu2n+4(nは1~4の間の整数))、Tl-Pb-Ba-Ca-Cu-O系、HgBaCan-1Cu2n+2(nは1~4の間の整数)から選択することができる。また、超電導層35の厚さは410nm~2μmとする。 Further, a superconducting layer 35 is formed on the main surface 2 a or the buffer layer 34. The superconducting layer 35, an oxide superconductor, YBa 2 Cu 3 O 7, Y1Ba 2 Cu 3 O 7-δ, REBa such GdBa 2 Cu 3 O 7 2 Cu 3 O 7 (RE is a rare earth element ), Bi 2 Sr 2 Cu 3 O x, Bi-Sr-Ca-Cu-O system, Bi-Pb-Sr-Ca -Cu-O system, Tl-Ba-Ca-Cu -O system (Tl 1 Ba 2 Ca n-1 Cu n O 2n + 3 (n is an integer between 1-4), (integer between n is 1 ~ 4) Tl 2 Ba 2 Ca n-1 Cu n O 2n + 4), Tl-Pb-Ba -Ca-Cu-O system, Hg 1 Ba 2 Ca n- 1 Cu n O 2n + 2 (n is an integer between 1-4) can be selected from. The thickness of the superconducting layer 35 is 410 nm to 2 μm.
 次に、本発明の実施形態に係るサファイア単結晶リボンの製造方法について、図5から図12を参照しながら説明する。なお、前記サファイアリボン2の説明と重複する箇所や内容に関しては、説明を簡略化又は省略する。 Next, a method for manufacturing a sapphire single crystal ribbon according to an embodiment of the present invention will be described with reference to FIGS. In addition, about the location and content which overlap with description of the said sapphire ribbon 2, description is simplified or abbreviate | omitted.
 図5に示すように、サファイア単結晶リボンの製造装置1は、サファイア単結晶リボン2を育成する育成容器3と、育成したサファイア単結晶リボン2を引き上げる引き上げ容器4とから構成され、EFG(Edge-defined Film-fed. GrowTh)法によりサファイア単結晶リボン2を育成成長する。 As shown in FIG. 5, the sapphire single crystal ribbon manufacturing apparatus 1 includes a growth container 3 for growing a sapphire single crystal ribbon 2 and a pulling container 4 for pulling up the grown sapphire single crystal ribbon 2. EFG (Edge -The sapphire single crystal ribbon 2 is grown and grown by the defined Film-fed (GrowTh) method.
 育成容器3は、坩堝5、坩堝駆動部6、ヒータ7、電極8、ダイ9、及び断熱材10を備える。坩堝5はモリブデン製であり、酸化アルミニウム原料を溶融する。坩堝駆動部6は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。ダイ9は坩堝5内に設置され、サファイア単結晶リボン2を引き上げる際の酸化アルミニウム融液(以下、必要に応じて単に「融液」と表記)21の液面形状を決定する。また断熱材10は、坩堝5とヒータ7とダイ9を取り囲んでいる。 The growth container 3 includes a crucible 5, a crucible drive unit 6, a heater 7, an electrode 8, a die 9, and a heat insulating material 10. The crucible 5 is made of molybdenum and melts the aluminum oxide raw material. The crucible drive unit 6 rotates the crucible 5 with the vertical direction as an axis. The heater 7 heats the crucible 5. The electrode 8 energizes the heater 7. The die 9 is installed in the crucible 5 and determines the liquid surface shape of an aluminum oxide melt (hereinafter simply referred to as “melt” if necessary) 21 when pulling up the sapphire single crystal ribbon 2. The heat insulating material 10 surrounds the crucible 5, the heater 7 and the die 9.
 更に育成容器3は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとして例えばアルゴンガスを育成容器3内に導入するための導入口であり、坩堝5やヒータ7、及びダイ9の酸化消耗を防止する。一方、排気口12は育成容器3内を排気するために備えられる。 Furthermore, the growth vessel 3 includes an atmosphere gas inlet 11 and an exhaust port 12. The atmosphere gas introduction port 11 is an introduction port for introducing, for example, argon gas into the growth vessel 3 as the atmosphere gas, and prevents oxidation of the crucible 5, the heater 7, and the die 9. On the other hand, the exhaust port 12 is provided for exhausting the inside of the growth vessel 3.
 引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶17から育成成長した複数の平板形状のサファイア単結晶リボン2を引き上げる。シャフト13は種結晶17を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は育成容器3と引き上げ容器4とを仕切る。また基板出入口16は、種結晶17を出し入れする。 The pulling container 4 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of flat plate-shaped sapphire single crystal ribbons 2 grown and grown from the seed crystal 17. The shaft 13 holds a seed crystal 17. Further, the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 5 and rotates the shaft 13 around the lifting direction. The gate valve 15 partitions the growth container 3 and the pulling container 4. The substrate entrance / exit 16 takes in and out the seed crystal 17.
 なお製造装置1は図示されない制御部も有しており、この制御部により坩堝駆動部6及びシャフト駆動部14の回転を制御する。 The manufacturing apparatus 1 also has a control unit (not shown), and the rotation of the crucible drive unit 6 and the shaft drive unit 14 is controlled by this control unit.
 次に、ダイ9について説明する。ダイ9はモリブデン製であり、図6に示すように多数の仕切り板18を有する。図6ではダイの一例として、仕切り板18が30枚であり、ダイ9が15個形成されている場合を示している。仕切り板18は同一の平板形状を有し、微小間隙(スリット)19を形成するように互いに平行に配置されて、1つのダイ9を形成している。スリット19は、ダイ9のほぼ全幅に亘って設けられる。また複数のダイ9は同一形状を有すると共に、その幅方向が互いに平行となるように所定の間隔で並列に配置されているため、複数のスリット19が設けられることとなる。各仕切り板18の上部は斜面30が形成されており、互いの斜面30が外側に向くように配置されることで開口部20が形成されている。またスリット19は融液21を毛細管現象によって、各ダイ9の下端から開口部20に上昇させる役割を有している。 Next, the die 9 will be described. The die 9 is made of molybdenum and has a number of partition plates 18 as shown in FIG. In FIG. 6, as an example of the die, 30 partition plates 18 are provided and 15 dies 9 are formed. The partition plates 18 have the same flat plate shape and are arranged in parallel to each other so as to form a minute gap (slit) 19 to form one die 9. The slit 19 is provided over almost the entire width of the die 9. Further, since the plurality of dies 9 have the same shape and are arranged in parallel at a predetermined interval so that the width directions thereof are parallel to each other, a plurality of slits 19 are provided. A slope 30 is formed at the upper part of each partition plate 18, and the opening 20 is formed by arranging the slopes 30 so as to face outward. Moreover, the slit 19 has a role which raises the melt 21 to the opening part 20 from the lower end of each die | dye 9 by capillary action.
 図8に示すようにダイ9の幅WDは、前記サファイア単結晶リボン2の幅Wに合わせて設定される。従って、ダイの幅WDは100mm以下、より好ましくは10mmに設定することが、所望の幅Wのサファイア単結晶リボン2が結晶成長で得られるため望ましい。 As shown in FIG. 8, the width WD of the die 9 is set according to the width W of the sapphire single crystal ribbon 2. Therefore, it is desirable to set the die width WD to 100 mm or less, more preferably 10 mm, because the sapphire single crystal ribbon 2 having a desired width W can be obtained by crystal growth.
 坩堝5内に投入される酸化アルミニウム原料は、坩堝5の温度上昇に基づいて溶融(原料メルト)し、融液21となる。この融液21の一部は、ダイ9のスリット19に浸入し、前記のように毛細管現象に基づいてスリット19内を上昇し開口部20から露出して、開口部20で酸化アルミニウム融液溜まり22(図9(b)参照)が形成される。EFG法では、酸化アルミニウム融液溜まり(以下、必要に応じて「融液溜まり」と表記)22で形成される融液面の形状に従って、サファイア単結晶リボン2が成長する。図6に示したダイ9では、融液面の形状は細長い長方形となるので、平板形状のサファイア単結晶リボン2が製造される。 The aluminum oxide raw material charged into the crucible 5 is melted (raw material melt) based on the temperature rise of the crucible 5 to become a melt 21. A part of the melt 21 enters the slit 19 of the die 9, and ascends in the slit 19 based on the capillary phenomenon as described above, and is exposed from the opening 20. 22 (see FIG. 9B) is formed. In the EFG method, the sapphire single crystal ribbon 2 grows according to the shape of the melt surface formed by the aluminum oxide melt pool (hereinafter referred to as “melt pool” if necessary) 22. In the die 9 shown in FIG. 6, the shape of the melt surface is an elongated rectangle, so that a flat sapphire single crystal ribbon 2 is manufactured.
 次に、種結晶17について説明する。図7、図8、及び図9に示すように本実施形態では、種結晶17として平板形状の基板を用い、更にc軸が主面(結晶面28と直交する面)の面方向に沿って水平なサファイア単結晶製の基板を用いる。更に、種結晶17の平面方向とダイ9の幅方向は、互いに90°の角度で以て直交するように、種結晶17が配置される。従って、種結晶17のc軸は、仕切り板18と垂直になる。また、種結晶17とサファイア単結晶リボン2も90°の角度で以て直交するので、図5ではサファイア単結晶リボン2の側面を示している。種結晶17の平面方向と仕切り板18の幅方向との位置関係を垂直にする(種結晶17を仕切り板18と交叉させる)ことにより、融液21と種結晶17との接触面積を最小にすることが可能となる。従って、種結晶17の接触部分が融液21と馴染み易くなり、サファイア単結晶リボン2での結晶欠陥の発生が低減又は解消される。 Next, the seed crystal 17 will be described. As shown in FIGS. 7, 8, and 9, in this embodiment, a plate-shaped substrate is used as the seed crystal 17, and the c-axis is along the surface direction of the principal surface (a surface orthogonal to the crystal surface 28). A horizontal sapphire single crystal substrate is used. Further, the seed crystal 17 is arranged so that the planar direction of the seed crystal 17 and the width direction of the die 9 are orthogonal to each other at an angle of 90 °. Accordingly, the c-axis of the seed crystal 17 is perpendicular to the partition plate 18. Further, since the seed crystal 17 and the sapphire single crystal ribbon 2 are orthogonal to each other at an angle of 90 °, FIG. 5 shows the side surface of the sapphire single crystal ribbon 2. By making the positional relationship between the planar direction of the seed crystal 17 and the width direction of the partition plate 18 perpendicular (by crossing the seed crystal 17 with the partition plate 18), the contact area between the melt 21 and the seed crystal 17 is minimized. It becomes possible to do. Therefore, the contact part of the seed crystal 17 becomes easy to become familiar with the melt 21, and the occurrence of crystal defects in the sapphire single crystal ribbon 2 is reduced or eliminated.
 種結晶17は、シャフト13の下部の基板保持具(図示せず)との接触面積が大きいと、熱膨張率の差による応力のため変形し、場合によっては破損してしまう。反対に熱膨張率の差により種結晶17の固定が緩む場合もある。従って、種結晶17と基板保持具との接触面積は小さい方が好ましい。また、種結晶17は基板保持具に確実に固定できる基板形状の必要がある。 If the contact area with the substrate holder (not shown) under the shaft 13 is large, the seed crystal 17 is deformed due to a stress due to a difference in thermal expansion coefficient, and may be damaged in some cases. On the contrary, the fixation of the seed crystal 17 may be loosened due to the difference in thermal expansion coefficient. Therefore, it is preferable that the contact area between the seed crystal 17 and the substrate holder is small. The seed crystal 17 needs to have a substrate shape that can be securely fixed to the substrate holder.
 図7は種結晶17の基板形状の一例を示した図である。このうち、同図(a)及び(b)は、種結晶17の上部に切り欠き部23を設けたものである。この切り欠き部23を利用して、例えば2カ所の切り欠き部23の下側からU字形の基板保持具を差し込んで、接触面積を小さくしつつ確実に種結晶17を保持することが可能となる。 FIG. 7 is a diagram showing an example of the substrate shape of the seed crystal 17. Among these, (a) and (b) in the figure are those in which a notch 23 is provided in the upper part of the seed crystal 17. By using this notch 23, for example, a U-shaped substrate holder can be inserted from the lower side of the two notches 23, and the seed crystal 17 can be reliably held while reducing the contact area. Become.
 また、図7(c)に示したように、種結晶17内側に切り欠き穴24を設けても良い。この切り欠き穴24を利用して、例えば2カ所の切り欠き穴24に係止爪を差し込んで、基板保持具と種結晶17との接触面積を小さくしつつ、確実に種結晶17を保持することが可能となる。 Further, as shown in FIG. 7C, a notch hole 24 may be provided inside the seed crystal 17. Using this cutout hole 24, for example, locking claws are inserted into the two cutout holes 24, and the contact area between the substrate holder and the seed crystal 17 is reduced, and the seed crystal 17 is securely held. It becomes possible.
 次に、前記製造装置1を使用したサファイア単結晶リボン2の製造方法を説明する。最初にサファイア原料である、造粒された酸化アルミニウム原料粉末(99.99%酸化アルミニウム)をダイ9が収納された坩堝5に所定量投入して充填する。酸化アルミニウム原料粉末には、製造しようとするサファイア単結晶リボンの純度又は組成に応じて、酸化アルミニウム以外の化合物や元素が含まれていても良い。 Next, a method for manufacturing the sapphire single crystal ribbon 2 using the manufacturing apparatus 1 will be described. First, a predetermined amount of granulated aluminum oxide raw material powder (99.99% aluminum oxide), which is a sapphire raw material, is charged into a crucible 5 in which a die 9 is housed. The aluminum oxide raw material powder may contain a compound or element other than aluminum oxide depending on the purity or composition of the sapphire single crystal ribbon to be produced.
 続いて、坩堝5やヒータ7若しくはダイ9を酸化消耗させないために、育成容器3内をアルゴンガスで置換し、酸素濃度を所定値以下とする。 Subsequently, in order not to oxidize the crucible 5, the heater 7, or the die 9, the inside of the growth vessel 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.
 次に、ヒータ7で加熱して坩堝5を所定の温度とし、酸化アルミニウム原料粉末を溶融する。酸化アルミニウムの融点は2050℃~2072℃程度なので、坩堝5の加熱温度はその融点以上の温度(例えば2100℃)に設定する。加熱後しばらくすると原料粉末が溶融して、酸化アルミニウム融液21が用意される。更に融液21の一部はダイ9のスリット19を毛細管現象により上昇してダイ9の表面に達し、スリット19上部に融液溜まり22が形成される。 Next, the crucible 5 is heated to a predetermined temperature by the heater 7 to melt the aluminum oxide raw material powder. Since the melting point of aluminum oxide is about 2050 ° C. to 2072 ° C., the heating temperature of the crucible 5 is set to a temperature higher than the melting point (for example, 2100 ° C.). After a while after heating, the raw material powder is melted and an aluminum oxide melt 21 is prepared. Further, a part of the melt 21 rises through the slit 19 of the die 9 by capillary action to reach the surface of the die 9, and a melt pool 22 is formed above the slit 19.
 次に図8及び図9に示すように、スリット19上部の融液溜まり22の幅方向に対して垂直な角度に種結晶17を保持しつつ降下させ、種結晶17を融液溜まり22の融液面に接触させる。なお、種結晶17は、予め基板出入口16から引き上げ容器4内に導入しておく。図8ではスリット19や開口部20の見易さを優先するため、融液21と融液溜まり22の図示を省略している。 Next, as shown in FIGS. 8 and 9, the seed crystal 17 is lowered while holding the seed crystal 17 at an angle perpendicular to the width direction of the melt reservoir 22 above the slit 19, so that the seed crystal 17 is melted in the melt reservoir 22. Touch the liquid surface. The seed crystal 17 is previously introduced into the pulling container 4 from the substrate entrance 16. In FIG. 8, the melt 21 and the melt reservoir 22 are not shown in order to prioritize the visibility of the slit 19 and the opening 20.
 図8は、種結晶17と仕切り板18との位置関係を示した図である。前記の通り、種結晶17の平面方向を仕切り板18の幅方向と直交させることにより、種結晶17と融液21との接触面積を小さくすることが可能となる。従って、種結晶17の接触部分が融液21となじみ、育成成長されるサファイア単結晶リボン2に結晶欠陥が生じにくくなる。従って、サファイア単結晶リボン2の歩留まりを向上させることができる。 FIG. 8 is a diagram showing the positional relationship between the seed crystal 17 and the partition plate 18. As described above, by making the plane direction of the seed crystal 17 perpendicular to the width direction of the partition plate 18, the contact area between the seed crystal 17 and the melt 21 can be reduced. Therefore, the contact portion of the seed crystal 17 becomes compatible with the melt 21, and crystal defects are less likely to occur in the grown and grown sapphire single crystal ribbon 2. Therefore, the yield of the sapphire single crystal ribbon 2 can be improved.
 種結晶17を融液面に接触させる際に、種結晶17の下部を仕切り板18の上部に接触させて溶融しても良い。図9(b)は、種結晶17の一部を溶融する様子を示した図である。このように種結晶17の一部を溶融することで、種結晶17と融液21との温度差を速やかに解消することができ、サファイア単結晶リボン2での結晶欠陥の発生を更に低減することが可能となる。 When the seed crystal 17 is brought into contact with the melt surface, the lower part of the seed crystal 17 may be brought into contact with the upper part of the partition plate 18 and melted. FIG. 9B is a diagram showing a state in which a part of the seed crystal 17 is melted. By melting part of the seed crystal 17 in this way, the temperature difference between the seed crystal 17 and the melt 21 can be quickly eliminated, and the generation of crystal defects in the sapphire single crystal ribbon 2 is further reduced. It becomes possible.
 続いてシャフト13により基板保持具を所定の上昇速度で引き上げて、種結晶17の引き上げを開始し、図10に示すようにサファイア単結晶リボン2を形成する。図10はサファイア単結晶リボン2が成長する様子を示した説明図である。図11は、スリット間隔TSとサファイア単結晶リボン2の厚さTとの関係を示す模式図である。本実施形態では、種結晶17を引き上げる速度などの成長条件を調整することで、サファイア単結晶リボン2の厚さTを制御し、スリット19の間隔TSとの関係をTS≦Tとする。これによりサファイア単結晶リボン2は、スリット19の間隔TSから広がりながら成長形成され、前記厚みTで以て引き上げ成長されていく。 Subsequently, the substrate holder is pulled up by the shaft 13 at a predetermined rising speed to start pulling up the seed crystal 17 to form the sapphire single crystal ribbon 2 as shown in FIG. FIG. 10 is an explanatory view showing a state in which the sapphire single crystal ribbon 2 grows. FIG. 11 is a schematic diagram showing the relationship between the slit interval TS and the thickness T of the sapphire single crystal ribbon 2. In the present embodiment, the thickness T of the sapphire single crystal ribbon 2 is controlled by adjusting growth conditions such as the speed at which the seed crystal 17 is pulled up, and the relationship with the interval TS between the slits 19 is TS ≦ T. As a result, the sapphire single crystal ribbon 2 is grown while expanding from the interval TS of the slit 19 and is pulled up and grown by the thickness T.
 本実施形態の成長方法では、スリット19の間隔TSとサファイア単結晶リボン2の厚さTとの関係がTS≦Tとなるように成長させることで厚さTを均一化でき、図2に示した厚さ変動ΔTを小さくすることができる。これにより、厚さ変動ΔTを抑制して特性ばらつきや巻回時の応力集中による破損を抑制できる。より好ましくはTS≦0.5Tの関係を満たすように成長させることで、さらに厚さTを均一化し、厚さ変動ΔTを抑制して特性ばらつきや巻回時の応力集中による破損を抑制できる。 In the growth method of the present embodiment, the thickness T can be made uniform by growing so that the relationship between the interval TS of the slits 19 and the thickness T of the sapphire single crystal ribbon 2 satisfies TS ≦ T, as shown in FIG. The thickness variation ΔT can be reduced. Thereby, thickness fluctuation | variation (DELTA) T can be suppressed and the damage by the characteristic dispersion | variation and the stress concentration at the time of winding can be suppressed. More preferably, by growing so as to satisfy the relationship of TS ≦ 0.5T, the thickness T can be made more uniform, and the thickness variation ΔT can be suppressed to prevent damage due to characteristic variation and stress concentration during winding.
 また、ダイ9の幅WDと同程度の幅Wを有する、平板形状のサファイア単結晶リボン2が育成される。 Further, a flat sapphire single crystal ribbon 2 having a width W substantially equal to the width WD of the die 9 is grown.
 ダイ9の幅WD(即ち、サファイア単結晶リボン2の幅W)で以てサファイア単結晶リボン2を成長させ、サファイア単結晶リボン2を所定の速度で所定の長さ(長さL)まで引き上げて、平板形状のサファイア単結晶リボン2を得る。 The sapphire single crystal ribbon 2 is grown with the width WD of the die 9 (that is, the width W of the sapphire single crystal ribbon 2), and the sapphire single crystal ribbon 2 is pulled up to a predetermined length (length L) at a predetermined speed. Thus, a flat sapphire single crystal ribbon 2 is obtained.
 この後、得られたサファイア単結晶リボン2を冷却し、ゲートバルブ15を空け、引き上げ容器4側に移動して、基板出入口16から取り出す。得られた平板形状のサファイア単結晶リボン2の外観を図12に示す。 Thereafter, the obtained sapphire single crystal ribbon 2 is cooled, the gate valve 15 is opened, moved to the lifting container 4 side, and taken out from the substrate entrance 16. The appearance of the obtained flat plate-shaped sapphire single crystal ribbon 2 is shown in FIG.
 なお、サファイア単結晶リボン2は、図5、図8~図12に示すように共通の種結晶17から同時に複数結晶成長させることが、一枚当たりのサファイア単結晶リボン2の製造コストを下げることが可能となり好ましい。同時に複数のサファイア単結晶リボン2を製造する際は、複数のダイを坩堝に収容すると共に、各ダイの各々の幅方向を平行に配置する。種結晶17を引き上げることで、所望の主面2aと長手方向の寸法Lを有し、可撓性を有する複数のサファイア単結晶リボン2をAs-grown単結晶として作製することが可能となる。 In addition, as shown in FIGS. 5 and 8 to 12, a plurality of sapphire single crystal ribbons 2 can be simultaneously grown from a common seed crystal 17 to lower the manufacturing cost of the sapphire single crystal ribbon 2. Is possible and preferable. When manufacturing a plurality of sapphire single crystal ribbons 2 at the same time, a plurality of dies are accommodated in a crucible and the width directions of the dies are arranged in parallel. By pulling up the seed crystal 17, it is possible to produce a plurality of sapphire single crystal ribbons 2 having a desired principal surface 2 a and a longitudinal dimension L and having flexibility as As-grown single crystals.
 またEFG法では、サファイア単結晶リボン2の主面2aの面方向が、種結晶17の結晶面28と同じ結晶方向を取りながら、サファイア単結晶リボン2が育成成長される。一例として、種結晶17がサファイア単結晶製で結晶面28がc面の場合、得られる平板形状のサファイア単結晶リボン2の全ての主面2aを、c面とすることができる。従って、複数のサファイア単結晶リボン2を結晶方向の観点から見てばらつきの無い状態で得ることができる。 In the EFG method, the sapphire single crystal ribbon 2 is grown and grown while the surface direction of the main surface 2a of the sapphire single crystal ribbon 2 is the same crystal direction as the crystal surface 28 of the seed crystal 17. As an example, when the seed crystal 17 is made of a sapphire single crystal and the crystal plane 28 is a c-plane, all the main surfaces 2a of the obtained flat plate-shaped sapphire single crystal ribbon 2 can be a c-plane. Therefore, it is possible to obtain a plurality of sapphire single crystal ribbons 2 with no variation in view of the crystal direction.
 従って、種結晶17、及び仕切り板18を含めたダイ9は、精密に位置決めする必要がある。よって図5に示したように製造装置1は、ダイ9を設置する坩堝5を回転する坩堝駆動部6、及びその回転を制御する制御部(図示せず)が設けられている。またシャフト13に関しても、シャフト13を回転するシャフト駆動部14、及びその回転を制御する制御部(図示せず)が設けられている。即ち、ダイ9に対する種結晶17の位置決めは、制御部によりシャフト13又は坩堝5を回転させて調整する。 Therefore, the die 9 including the seed crystal 17 and the partition plate 18 needs to be positioned precisely. Therefore, as shown in FIG. 5, the manufacturing apparatus 1 is provided with a crucible driving unit 6 that rotates the crucible 5 in which the die 9 is installed, and a control unit (not shown) that controls the rotation. The shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation of the shaft 13. That is, the positioning of the seed crystal 17 with respect to the die 9 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit.
 尚、種結晶17の結晶面28はc面に限定されず、例えばr面、a面、m面等、所望の結晶面に設定することが可能である。このように結晶面28を任意に設定することで、サファイア単結晶リボン2の主面2aの面方向も任意に変更することが可能となる。 Note that the crystal plane 28 of the seed crystal 17 is not limited to the c-plane, and can be set to a desired crystal plane such as an r-plane, a-plane, or m-plane. Thus, by setting the crystal plane 28 arbitrarily, the surface direction of the main surface 2a of the sapphire single crystal ribbon 2 can be arbitrarily changed.
 引き上げ速度は、種結晶17の引き上げ開始による結晶成長開示時から、所望の長さLで以て結晶成長が終了するまでの間、一定に設定することが幅W/厚さTの変動比を抑えて、20以上1000以下の範囲内に納められるので好ましい。また、引き上げ速度を一定に設定することで厚さ変動ΔTを抑えて0.05mm以内および0.025mm以内の範囲に納められるので好ましい。 The pulling rate can be set constant from the time when the crystal growth is disclosed by the start of pulling up the seed crystal 17 until the crystal growth is completed with the desired length L, so that the variation ratio of the width W / thickness T is set. This is preferable because it is within the range of 20 or more and 1000 or less. Further, it is preferable to set the pulling speed constant so that the thickness variation ΔT can be suppressed and the thickness can be kept within the range of 0.05 mm and 0.025 mm.
 スリット19の間隔TSをそれぞれ0.25mm/0.1mm/0.075mm/0.05mm/0.025mmに設定し、厚さTが0.5mm/0.2mm/0.15mm/0.1mm/0.05mmとなる条件で種結晶17を引き上げてサファイア単結晶リボン2を成長させた。いずれのサファイア単結晶リボン2でも、厚さ変動ΔTは0.05mm以内であり、直径300mmの曲線状に曲げても破損が生じなかった。 The interval TS between the slits 19 is set to 0.25 mm / 0.1 mm / 0.075 mm / 0.05 mm / 0.025 mm, respectively, and the thickness T is 0.5 mm / 0.2 mm / 0.15 mm / 0.1 mm / The seed crystal 17 was pulled up under the condition of 0.05 mm to grow the sapphire single crystal ribbon 2. In any of the sapphire single crystal ribbons 2, the thickness variation ΔT was within 0.05 mm, and no breakage occurred even when bent into a curved shape having a diameter of 300 mm.
 一方、スリット19の間隔TSよりも厚さTが薄くなるような条件で種結晶17を引き上げてサファイア単結晶リボン2を成長させた場合には、厚さ変動ΔTは0.05mmを超えるものが発生し、直径300mmの曲線状に曲げたところ破損が発生した。 On the other hand, when the seed crystal 17 is pulled up and the sapphire single crystal ribbon 2 is grown under the condition that the thickness T is thinner than the interval TS between the slits 19, the thickness variation ΔT exceeds 0.05 mm. When it was generated and bent into a curved shape having a diameter of 300 mm, breakage occurred.
 したがって、厚さTとスリット19の間隔TSとの関係をTS≦Tとし、より好ましくはTS≦0.5Tとすることで、サファイア単結晶リボン2の厚さ変動ΔTを0.05mm以内、より好ましくは0.025mm以内に納めることができ、厚さTを均一化して厚さ変動ΔTを抑制し、特性ばらつきや巻回時の応力集中による破損を抑制できることがわかった。 Therefore, by setting the relationship between the thickness T and the interval TS between the slits 19 to be TS ≦ T, more preferably TS ≦ 0.5T, the thickness variation ΔT of the sapphire single crystal ribbon 2 is within 0.05 mm, more It can be preferably accommodated within 0.025 mm, and it has been found that the thickness T can be made uniform to suppress the thickness variation ΔT, and the damage due to characteristic variations and stress concentration during winding can be suppressed.
 なお本発明は、前述の実施形態に限定するものでは無く、その技術的思想の範囲から逸脱しない範囲の構成による変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be modified by a configuration within a range not departing from the scope of the technical idea.
 例えば本発明は、主面にステップ構造を有し、r面、c面、a面、m面から5°以内に設定されたオフ角度を有するサファイア単結晶リボンの育成にも適用することが可能である。サファイア単結晶リボン2の主面2aを例えばc面とする、EFG法によるサファイア単結晶リボンの製造方法において、種結晶のm軸をサファイア単結晶リボンの引き上げ方向に合わせる。更に、引き上げ方向に対して垂直方向に位置する種結晶のc軸を、引き上げ方向を回転軸としてサファイア単結晶リボンの主面の法線に対してa軸方向に所定角度(例えば、0.05°以上)に傾斜させて育成しても良い。なお、前記実施形態と重複する説明は省略又は簡略化する。 For example, the present invention can be applied to the growth of a sapphire single crystal ribbon having a step structure on the main surface and having an off angle set within 5 ° from the r-plane, c-plane, a-plane, and m-plane. It is. In the method of manufacturing a sapphire single crystal ribbon by the EFG method in which the main surface 2a of the sapphire single crystal ribbon 2 is, for example, c-plane, the m-axis of the seed crystal is aligned with the pulling direction of the sapphire single crystal ribbon. Further, the c-axis of the seed crystal positioned in the direction perpendicular to the pulling direction is set to a predetermined angle (for example, 0.05) with respect to the normal of the main surface of the sapphire single crystal ribbon with the pulling direction as the rotation axis. It may be grown at an angle of more than °. In addition, the description which overlaps with the said embodiment is abbreviate | omitted or simplified.
 ここで、c軸が傾斜した種結晶について図13を参照して説明する。図13に示す種結晶31の平面の法線をZ軸、種結晶31の側面(結晶面)の法線をY軸、及び種結晶31の正面の法線をX軸とする直交座標系を用いて説明する。Z軸はサファイア単結晶リボンの引き上げ方向に対して平行に配置されている。 Here, the seed crystal in which the c-axis is inclined will be described with reference to FIG. An orthogonal coordinate system in which the normal of the plane of the seed crystal 31 shown in FIG. 13 is the Z axis, the normal of the side surface (crystal plane) of the seed crystal 31 is the Y axis, and the normal of the front of the seed crystal 31 is the X axis. It explains using. The Z axis is arranged in parallel to the pulling direction of the sapphire single crystal ribbon.
 種結晶31のc軸は、図13(a)に示すように、Z軸(引き上げ方向の軸)とのなす角αが所定の範囲内(例えば、90°±0.5°)に調整されており、また、図13(b)に示すように、c軸は、X軸方向(a軸方向)に所定角度β(例えば、0.05°以上1.0°以下の範囲)に傾斜している。一方、引き上げ軸方向(Z軸方向)のm軸は、図13(a)に示すように、c軸に対して垂直であり、また、 このm軸は、図13(c)に示すように、引き上げ軸方向(Z軸)とのずれ角γが、Z軸に対してX軸方向に所定角度の範囲内(例えば、0.5°以下)に調整されている。 As shown in FIG. 13A, the c-axis of the seed crystal 31 is adjusted such that the angle α formed with the Z-axis (the axis in the pulling direction) is within a predetermined range (for example, 90 ° ± 0.5 °). In addition, as shown in FIG. 13B, the c-axis is inclined at a predetermined angle β (for example, a range of 0.05 ° or more and 1.0 ° or less) in the X-axis direction (a-axis direction). ing. On the other hand, the m-axis in the pulling-up axis direction (Z-axis direction) is perpendicular to the c-axis as shown in FIG. 13 (a), and this m-axis is as shown in FIG. 13 (c). The deviation angle γ from the pulling-up axis direction (Z-axis) is adjusted within a predetermined angle range (for example, 0.5 ° or less) in the X-axis direction with respect to the Z-axis.
 このように種結晶31のc軸をX軸方向に所定角度βだけ傾斜させることにより、この種結晶31を用いて育成成長されたサファイア単結晶リボン32は、図14(a)に示すようにc軸がZ軸(引き上げ方向)を回転軸として主面の法線nv方向に対して所定角度β(前記の通り、0.05°以上1.0°以下の範囲)で傾斜している。即ち所定角度βに対応した、主面におけるc軸の傾斜角度を有するサファイア単結晶リボンを得ることができる。これにより、得られるサファイア単結晶リボンの主面におけるステップ構造が全て同一方向になり、結晶欠陥の無いサファイア単結晶リボンを得ることができる。またm軸とZ軸とのずれ角は前記γ(0.5°)以内に形成され、図14(c)に示すようにc軸とZ軸とは前記α(90°±0.5°)以内に形成される。 In this way, by tilting the c-axis of the seed crystal 31 by a predetermined angle β in the X-axis direction, the sapphire single crystal ribbon 32 grown and grown using the seed crystal 31 is as shown in FIG. The c-axis is inclined at a predetermined angle β (in the range of 0.05 ° or more and 1.0 ° or less as described above) with respect to the normal nv direction of the main surface with the Z-axis (pull-up direction) as the rotation axis. That is, it is possible to obtain a sapphire single crystal ribbon having a c-axis inclination angle on the main surface corresponding to the predetermined angle β. Thereby, all the step structures in the main surface of the obtained sapphire single crystal ribbon become the same direction, and a sapphire single crystal ribbon without a crystal defect can be obtained. Further, the deviation angle between the m-axis and the Z-axis is formed within the γ (0.5 °), and as shown in FIG. 14C, the c-axis and the Z-axis have the α (90 ° ± 0.5 °). ) Formed within.
 なお、図13及び図14に示す変更例では、予めc軸がa軸方向に所定角度βだけ傾斜した種結晶31を用いて、c軸がnv方向に対して所定角度β傾斜したサファイア単結晶リボン32を育成する場合を説明したが、これに限定されず図15に示す種結晶33を用いてサファイア単結晶リボンを育成しても良い。 13 and 14, a sapphire single crystal whose c-axis is inclined at a predetermined angle β with respect to the nv direction using a seed crystal 31 whose c-axis is inclined at a predetermined angle β in the a-axis direction in advance. Although the case where the ribbon 32 is grown has been described, the present invention is not limited to this, and a sapphire single crystal ribbon may be grown using the seed crystal 33 shown in FIG.
 種結晶33のc軸は図15(a)に示すように、Z軸とのなす角αが所定の範囲内(例えば、90°±0.5°)に調整されており、また図15(b)に示すようにc軸はY軸方向に平行に調整されている。一方、引き上げ方向(Z軸)のm軸は、図15(a)に示すようにc軸に対して垂直であり、図15(c)に示すようにZ軸とのずれ角γがZ軸に対してX軸方向(a軸方向)に所定の範囲内(0.5°以下)に調整されている。 As shown in FIG. 15A, the c-axis of the seed crystal 33 is adjusted so that the angle α formed with the Z-axis is within a predetermined range (for example, 90 ° ± 0.5 °). As shown in b), the c-axis is adjusted parallel to the Y-axis direction. On the other hand, the m-axis in the pulling direction (Z-axis) is perpendicular to the c-axis as shown in FIG. 15 (a), and the deviation angle γ from the Z-axis is Z-axis as shown in FIG. 15 (c). Is adjusted within a predetermined range (0.5 ° or less) in the X-axis direction (a-axis direction).
 図15に示す種結晶33を用いた場合には、図16に示すように種結晶33の側面(端面)の法線を仕切り板18の法線に対して所定角度βずらして位置決めする。 When the seed crystal 33 shown in FIG. 15 is used, the normal of the side surface (end face) of the seed crystal 33 is shifted by a predetermined angle β with respect to the normal of the partition plate 18 as shown in FIG.
 従って、前記制御部によりシャフト13又は坩堝5を回転させて、種結晶33の側面(端面)の法線が仕切り板18の法線に対して所定角度βの範囲内となるように精度良く位置決めする。これにより、c軸が所定方向に所定角度βだけ傾斜したサファイア単結晶リボンを得ることができる。 Therefore, the shaft 13 or the crucible 5 is rotated by the control unit, so that the normal line of the side surface (end face) of the seed crystal 33 is accurately positioned within the range of the predetermined angle β with respect to the normal line of the partition plate 18. To do. Thereby, it is possible to obtain a sapphire single crystal ribbon whose c-axis is inclined in a predetermined direction by a predetermined angle β.
 また、種結晶17を引き上げてサファイア単結晶リボン2を成長させている間、又はサファイア単結晶リボン2の成長後に、成長サイクル毎に坩堝5内に残存している酸化アルミニウム融液21に図示しない酸化アルミニウム原料を更に投入し、酸化アルミニウム融液21を補充して、連続的にサファイア単結晶リボン2の結晶育成を行っても良い。このように成長サイクル毎に坩堝5内に酸化アルミニウム原料を投入し、酸化アルミニウム融液21を補充することにより、連続的にサファイア単結晶リボン2の結晶育成を行うことが可能となり、量産性を向上させることができる。連続的にサファイア単結晶リボン2を結晶育成する場合、サファイア単結晶リボン2を長さL以上で結晶成長させても良い。 Further, during the growth of the sapphire single crystal ribbon 2 by pulling up the seed crystal 17 or after the growth of the sapphire single crystal ribbon 2, the aluminum oxide melt 21 remaining in the crucible 5 is not shown in each growth cycle. An aluminum oxide raw material may be further added and the aluminum oxide melt 21 may be replenished to continuously grow the sapphire single crystal ribbon 2. In this way, by introducing the aluminum oxide raw material into the crucible 5 for each growth cycle and replenishing the aluminum oxide melt 21, it becomes possible to continuously grow the crystal of the sapphire single crystal ribbon 2. Can be improved. When the sapphire single crystal ribbon 2 is continuously grown, the sapphire single crystal ribbon 2 may be grown with a length L or longer.
 連続的にサファイア単結晶リボン2を結晶育成する場合は、ゲートバルブ15を用いることで、育成容器3内の雰囲気ガス(例えば不活性ガス)の漏洩や、熱の漏洩を最小限に抑えて、成長効率の低下を防止すれば良い。その上で雰囲気ガスも連続投入すれば良い。 When continuously growing the sapphire single crystal ribbon 2 by using the gate valve 15, the leakage of atmospheric gas (for example, inert gas) in the growth vessel 3 and the leakage of heat are minimized. What is necessary is to prevent a drop in growth efficiency. In addition, the atmospheric gas may be continuously supplied.
 また、引き上げ容器4の引き上げ方向の寸法を、サファイア単結晶リボン2の長さLよりも大きく設定するものとする。 Also, the dimension in the pulling direction of the pulling container 4 is set to be larger than the length L of the sapphire single crystal ribbon 2.
 酸化アルミニウム原料は、サファイア単結晶リボン2の結晶成長速度に対応する速度で坩堝5内へ送給して、酸化アルミニウム融液21を補充する。酸化アルミニウム原料は、坩堝5の中へ固体の状態で送給されていても良い。 The aluminum oxide raw material is fed into the crucible 5 at a rate corresponding to the crystal growth rate of the sapphire single crystal ribbon 2 to replenish the aluminum oxide melt 21. The aluminum oxide raw material may be fed into the crucible 5 in a solid state.
 その後、結晶成長されたサファイア単結晶リボン2の主面2a上に超電導層35が、直接またはより好ましくは緩衝層34を介して堆積形成される。緩衝層34は、物理蒸着法や化学蒸着法(CVD又はMOCVDを含む)、スパッタリング法、パルスレーザ蒸着法、塗布熱分解法、塗布光分解法、ゾルゲル法、電着、化学溶液堆積法等により堆積形成する。 Thereafter, the superconducting layer 35 is deposited directly or more preferably via the buffer layer 34 on the main surface 2a of the crystal-grown sapphire single crystal ribbon 2. The buffer layer 34 is formed by physical vapor deposition, chemical vapor deposition (including CVD or MOCVD), sputtering, pulse laser vapor deposition, coating pyrolysis, coating photolysis, sol-gel, electrodeposition, chemical solution deposition, or the like. Deposition formation.
 更に超電導層35の形成には、種々の方法が適用可能であり、物理蒸着法や化学蒸着法(CVD又はMOCVDを含む)、パルスレーザ蒸着法、化学溶液堆積法、溶液分解法(原料となる金属の有機化合物溶液に紫外光(レーザまたはランプ光)を照射する方法)、スパッタリング法、パルスレーザアブレーション法、塗布熱分解法等を使用することができる。このようにして、超電導体37または超電導コイル36が作製される。 Furthermore, various methods can be applied to the formation of the superconducting layer 35, including physical vapor deposition, chemical vapor deposition (including CVD or MOCVD), pulsed laser vapor deposition, chemical solution deposition, and solution decomposition (as raw materials). A method of irradiating a metal organic compound solution with ultraviolet light (laser or lamp light), a sputtering method, a pulse laser ablation method, a coating pyrolysis method, or the like can be used. In this way, the superconductor 37 or the superconducting coil 36 is produced.
   1        サファイア単結晶リボンの製造装置
   2、32     サファイア単結晶リボン又は下地基材
   2a       主面
   3        育成容器
   4        引き上げ容器
   5        坩堝
   6        坩堝駆動部
   7        ヒータ
   8        電極
   9        ダイ
   10       断熱材
   11       雰囲気ガス導入口
   12       排気口
   13       シャフト
   14       シャフト駆動部
   15       ゲートバルブ
   16       基板出入口
   17、31、33 種結晶
   18       仕切り板
   19       スリット
   20       開口部
   21       酸化アルミニウム融液
   22       酸化アルミニウム融液溜まり
   23       種結晶の切り欠き部
   24       種結晶の切り欠き穴
   28       結晶面
   30       斜面
   34       緩衝層
   35       超電導層
   36       超電導コイル
   37       超電導体
   L        サファイア単結晶リボンの長さ
   W        サファイア単結晶リボンの幅
   T        サファイア単結晶リボンの厚さ
   ΔT       サファイア単結晶リボンの厚さ方向の変動幅
   TS       スリットの幅
   WD       ダイの幅
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of sapphire single crystal ribbon 2, 32 Sapphire single crystal ribbon or base material 2a Main surface 3 Growth container 4 Lifting container 5 Crucible 6 Crucible drive part 7 Heater 8 Electrode 9 Die 10 Heat insulating material 11 Atmospheric gas inlet 12 Exhaust Port 13 Shaft 14 Shaft drive 15 Gate valve 16 Substrate entry / exit 17, 31, 33 Seed crystal 18 Partition plate 19 Slit 20 Opening 21 Aluminum oxide melt 22 Aluminum oxide melt reservoir 23 Notch portion of seed crystal 24 Seed crystal Notch 28 Crystal plane 30 Slope 34 Buffer layer 35 Superconducting layer 36 Superconducting coil 37 Conductor L Length of sapphire single crystal ribbon W Width of sapphire single crystal ribbon T Thickness of sapphire single crystal ribbon ΔT Width of sapphire single crystal ribbon in the thickness direction TS Slit width WD Die width

Claims (21)

  1.  長手方向の寸法を有し、可撓性を有することを特徴とするサファイア単結晶リボン。 A sapphire single crystal ribbon having dimensions in the longitudinal direction and having flexibility.
  2.  表面上にマイクロクラックを有さないことを特徴とする請求項1に記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to claim 1, wherein the sapphire single crystal ribbon has no microcracks on the surface.
  3.  前記サファイア単結晶リボンが、As-grown単結晶であることを特徴とする請求項1又は2に記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to claim 1 or 2, wherein the sapphire single crystal ribbon is an As-grown single crystal.
  4.  幅が100mm以下、厚さが0.5mm以下、前記長手方向の寸法である長さが1000mm以上であることを特徴とする請求項1~3の何れかに記載のサファイア単結晶リボン。 4. The sapphire single crystal ribbon according to claim 1, wherein the sapphire single crystal ribbon has a width of 100 mm or less, a thickness of 0.5 mm or less, and a length in the longitudinal direction of 1000 mm or more.
  5.  前記幅が10mm、前記厚さが0.1mm、前記長さが1000mmであることを特徴とする請求項4に記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to claim 4, wherein the width is 10 mm, the thickness is 0.1 mm, and the length is 1000 mm.
  6.  前記幅と前記厚さの比(前記幅/前記厚さ)が、20以上1000以下であることを特徴とする請求項4又は5に記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to claim 4 or 5, wherein a ratio of the width to the thickness (the width / the thickness) is 20 or more and 1000 or less.
  7.  直径300mm以下の曲線状に曲げられていることを特徴とする請求項1~6の何れかに記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to any one of claims 1 to 6, which is bent into a curved shape having a diameter of 300 mm or less.
  8.  主面を有すると共に、その主面がr面、c面、又はオフ角度を有するr面またはc面であることを特徴とする請求項1~7の何れかに記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to any one of claims 1 to 7, wherein the sapphire single crystal ribbon has a main surface and the main surface is an r-plane, a c-plane, or an r-plane or a c-plane having an off angle.
  9.  前記厚さ方向の寸法Tと前記長手方向の寸法を有し、前記厚さ方向の寸法Tにおける変動幅ΔTが0.05mm以内であることを特徴とする請求項1~8の何れかに記載のサファイア単結晶リボン。 9. The thickness direction dimension T and the longitudinal direction dimension, and a variation width ΔT in the thickness direction dimension T is 0.05 mm or less. Sapphire single crystal ribbon.
  10.  前記変動幅ΔTが0.025mm以内であることを特徴とする請求項9に記載のサファイア単結晶リボン。 The sapphire single crystal ribbon according to claim 9, wherein the fluctuation range ΔT is within 0.025 mm.
  11.  スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、
     坩堝に酸化アルミニウム原料を投入して加熱し、酸化アルミニウム原料を坩堝内で溶融して酸化アルミニウム融液を用意し、
     スリットを介してスリット上部に酸化アルミニウム融液溜まりを形成し、
     そのスリット上部の酸化アルミニウム融液に種結晶を接触させて種結晶を引き上げることで、所望の主面と長手方向の寸法を有し、可撓性を有するサファイア単結晶リボンを成長させることを特徴とするサファイア単結晶リボンの製造方法。
    A die having a slit and arranged in parallel in the width direction is housed in a crucible,
    An aluminum oxide raw material is put into a crucible and heated, and the aluminum oxide raw material is melted in the crucible to prepare an aluminum oxide melt.
    Form an aluminum oxide melt pool at the top of the slit through the slit,
    The seed crystal is brought into contact with the aluminum oxide melt at the top of the slit and the seed crystal is pulled up to grow a sapphire single crystal ribbon having a desired main surface and a longitudinal dimension and having flexibility. A method for manufacturing a sapphire single crystal ribbon.
  12.  成長させた前記サファイア単結晶リボンが、表面上にマイクロクラックを有さないことを特徴とする請求項11に記載のサファイア単結晶リボンの製造方法。 The method for producing a sapphire single crystal ribbon according to claim 11, wherein the grown sapphire single crystal ribbon has no microcracks on the surface.
  13.  成長させた前記サファイア単結晶リボンが、As-grown単結晶であることを特徴とする請求項11又は12に記載のサファイア単結晶リボンの製造方法。 The method for producing a sapphire single crystal ribbon according to claim 11 or 12, wherein the grown sapphire single crystal ribbon is an As-grown single crystal.
  14.  成長させた前記サファイア単結晶リボンが、幅が100mm以下、厚さが0.5mm以下、前記長手方向の寸法である長さが1000mm以上であることを特徴とする請求項11~13の何れかに記載のサファイア単結晶リボンの製造方法。 14. The grown sapphire single crystal ribbon has a width of 100 mm or less, a thickness of 0.5 mm or less, and a length as a dimension in the longitudinal direction of 1000 mm or more. The manufacturing method of the sapphire single crystal ribbon as described in 2.
  15.  前記幅が10mm、前記厚さが0.1mm、前記長さが1000mmであることを特徴とする請求項14に記載のサファイア単結晶リボンの製造方法。 The method for producing a sapphire single crystal ribbon according to claim 14, wherein the width is 10 mm, the thickness is 0.1 mm, and the length is 1000 mm.
  16.  前記幅と記厚さの比(前記幅/前記厚さ)が、20以上1000以下であることを特徴とする請求項14又は15に記載のサファイア単結晶リボンの製造方法。 The method for producing a sapphire single crystal ribbon according to claim 14 or 15, wherein the ratio of the width to the thickness (the width / the thickness) is 20 or more and 1000 or less.
  17.  成長させた前記サファイア単結晶リボンを、直径300mm以下の曲線状に曲げることを特徴とする請求項11~16の何れかに記載のサファイア単結晶リボンの製造方法。 The method for producing a sapphire single crystal ribbon according to any one of claims 11 to 16, wherein the grown sapphire single crystal ribbon is bent into a curved shape having a diameter of 300 mm or less.
  18.  主面を有すると共に、その主面がr面、c面、又はオフ角度を有するr面またはc面であることを特徴とする請求項11~17の何れかに記載のサファイア単結晶リボンの製造方法。 The sapphire single crystal ribbon according to any one of claims 11 to 17, wherein the sapphire single crystal ribbon has a main surface and the main surface is an r-plane, a c-plane, or an r-plane or c-plane having an off angle. Method.
  19.  前記種結晶を引き上げて前記サファイア単結晶リボンを成長させている間又は前記サファイア単結晶リボンの成長後に、前記坩堝内の前記酸化アルミニウム融液に前記酸化アルミニウム原料を更に投入し、前記酸化アルミニウム融液を補充することを特徴とする請求項11~18の何れかに記載のサファイア単結晶リボンの製造方法。 During the growth of the sapphire single crystal ribbon by pulling up the seed crystal or after the growth of the sapphire single crystal ribbon, the aluminum oxide raw material is further added to the aluminum oxide melt in the crucible, The method for producing a sapphire single crystal ribbon according to any one of claims 11 to 18, wherein the liquid is replenished.
  20.  前記スリットが間隔TSを有すると共に、前記所望の主面と前記厚さ方向の寸法Tと前記長手方向の寸法を有し、前記間隔TSと前記厚さ寸法TとがTS≦Tの関係を満たす条件で前記サファイア単結晶リボンを成長させることを特徴とする請求項11~19の何れかに記載のサファイア単結晶リボンの製造方法。 The slit has an interval TS, and has the desired main surface, the thickness-direction dimension T, and the longitudinal dimension, and the interval TS and the thickness dimension T satisfy the relationship TS ≦ T. The method for producing a sapphire single crystal ribbon according to any one of claims 11 to 19, wherein the sapphire single crystal ribbon is grown under conditions.
  21.  前記間隔TSと前記厚さTとの関係がTS≦0.5Tを満たすことを特徴とする請求項20に記載のサファイア単結晶リボンの製造方法。 21. The method for producing a sapphire single crystal ribbon according to claim 20, wherein a relationship between the interval TS and the thickness T satisfies TS ≦ 0.5T.
PCT/JP2016/071788 2015-07-27 2016-07-26 Sapphire single-crystal ribbon and method for producing same WO2017018397A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-147556 2015-07-27
JP2015147556A JP2017024955A (en) 2015-07-27 2015-07-27 Sapphire single crystal ribbon, and production method thereof
JP2015226197A JP7075711B2 (en) 2015-11-19 2015-11-19 Sapphire single crystal ribbon and its manufacturing method
JP2015-226197 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017018397A1 true WO2017018397A1 (en) 2017-02-02

Family

ID=57885224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071788 WO2017018397A1 (en) 2015-07-27 2016-07-26 Sapphire single-crystal ribbon and method for producing same

Country Status (1)

Country Link
WO (1) WO2017018397A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369797A (en) * 1986-06-11 1988-03-29 マンフレツド ア−ル キユ−ンル Method and apparatus for manufacturing inorganic web and formed structure
JP2010540390A (en) * 2007-09-26 2010-12-24 ユーティ―バテル エルエルシー Faceted ceramic fibers, tapes or ribbons and epitaxial devices comprising them
JP2014070016A (en) * 2012-09-28 2014-04-21 Apple Inc Continuous sapphire growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369797A (en) * 1986-06-11 1988-03-29 マンフレツド ア−ル キユ−ンル Method and apparatus for manufacturing inorganic web and formed structure
JP2010540390A (en) * 2007-09-26 2010-12-24 ユーティ―バテル エルエルシー Faceted ceramic fibers, tapes or ribbons and epitaxial devices comprising them
JP2014070016A (en) * 2012-09-28 2014-04-21 Apple Inc Continuous sapphire growth

Similar Documents

Publication Publication Date Title
US8481460B2 (en) Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom
US7674751B2 (en) Fabrication of sealed high temperature superconductor wires
JP4223076B2 (en) Controlled conversion of metal oxyfluoride to superconducting oxide
CN101506100B (en) Manufacturing method of tape-shaped re-base (123) superconductor
US6673387B1 (en) Control of oxide layer reaction rates
CN1539172A (en) Superconductor method and reactor
WO2007069524A1 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
WO2017018397A1 (en) Sapphire single-crystal ribbon and method for producing same
JP4433589B2 (en) High temperature superconducting thick film member and manufacturing method thereof
JP7075711B2 (en) Sapphire single crystal ribbon and its manufacturing method
US20190131044A1 (en) Dielectric substrate for superconductive device and superconductive article utilizing such substrate
JP2017024955A (en) Sapphire single crystal ribbon, and production method thereof
US7231239B2 (en) Super conducting cable conductor with rebco-coated conductor elements
JP4513142B2 (en) Oxide superconducting wire, oxide superconducting conductor assembled therewith, and manufacturing method of oxide superconducting wire
US20050039672A1 (en) Methods for surface-biaxially-texturing amorphous films
JP7330152B2 (en) Oxide superconductor and its manufacturing method
Cai Solution Fabrication for Multifilamentary tapes of the Second Generation High-Temperature Superconductor
WO2017091112A2 (en) Method for producing high-temperature superconducting film on quartz substrate
JP2012069500A (en) Tape-like oxide superconducting thin-film wire rod and intermediate layer thereof, and method for manufacturing the same
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JPS63310798A (en) Production of oxide superconducting element wafer
WO2004015787A1 (en) Long superconductor fabrication
JPH087680A (en) Manufacture of oxide superconductive wire rod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830502

Country of ref document: EP

Kind code of ref document: A1