WO2017018354A1 - Fluorine-containing copolymer composition and molded article - Google Patents

Fluorine-containing copolymer composition and molded article Download PDF

Info

Publication number
WO2017018354A1
WO2017018354A1 PCT/JP2016/071596 JP2016071596W WO2017018354A1 WO 2017018354 A1 WO2017018354 A1 WO 2017018354A1 JP 2016071596 W JP2016071596 W JP 2016071596W WO 2017018354 A1 WO2017018354 A1 WO 2017018354A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing copolymer
copolymer composition
composition
unit
Prior art date
Application number
PCT/JP2016/071596
Other languages
French (fr)
Japanese (ja)
Inventor
真和 安宅
海野 正男
正登志 阿部
定雄 兼徳
渡辺 良二
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017018354A1 publication Critical patent/WO2017018354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to a fluorine-containing copolymer composition and a molded body formed by molding the fluorine-containing copolymer composition.
  • ETFE ethylene / tetrafluoroethylene copolymer
  • Patent Document 1 includes a monomer unit based on another monomer in addition to an ethylene unit and a tetrafluoroethylene unit, and the content of each unit is in a specific range.
  • a fluorine-containing copolymer composition in which a small amount of copper oxide is blended with a fluorine copolymer is disclosed.
  • a molded article obtained by molding the fluorine-containing copolymer composition has a stress crack temperature of 197 to 199 ° C. The higher the stress crack temperature, the better the stress crack resistance at high temperatures.
  • the present invention provides a fluorine-containing copolymer composition capable of forming a molded article having excellent rigidity at high temperatures and having stress crack resistance at higher temperatures, and a molded article of the fluorine-containing copolymer composition With the goal.
  • the present inventors have specifically controlled the type and content of monomer units constituting the fluorine-containing copolymer.
  • the melting point of the fluorinated copolymer is increased so that the main chain terminal of the fluorinated copolymer does not have a chlorine atom, and the fluorinated copolymer composition satisfies the following formulas (i) to (iii): Then, it discovered that the molded object which was excellent in the rigidity at high temperature, and was equipped with the stress cracking resistance in higher temperature can be shape
  • the present invention has the following configuration.
  • a fluorine-containing copolymer composition containing a fluorine-containing copolymer and copper oxide The fluorine-containing copolymer has an ethylene unit, a tetrafluoroethylene unit, and a monomer unit based on a third monomer copolymerizable with ethylene and tetrafluoroethylene, and the main chain terminal has a chlorine atom.
  • the molar ratio of the ethylene unit to the tetrafluoroethylene unit [ethylene unit / tetrafluoroethylene unit] is 44/56 to 50/50, and the third ratio with respect to all the monomer units constituting the fluorine-containing copolymer.
  • the monomer unit content based on the monomer is 1.6 to 2.4 mol%
  • the fluorine-containing copolymer composition wherein the fluorine-containing copolymer composition satisfies the following formulas (i) to (iii): ⁇ 0 ⁇ 10 (i) 0.8 ⁇ ⁇ 24 / ⁇ 0 ⁇ 1.2 (ii) 0.8 ⁇ ⁇ 96 / ⁇ 0 ⁇ 1.2 (iii)
  • the symbol in the said formula means the following.
  • ⁇ 0 Capacity flow rate (unit: g / 10 minutes) of the fluorine-containing copolymer composition at 297 ° C. and a load of 49 N.
  • ⁇ 24 a fluorine-containing copolymer composition obtained by heating a pellet comprising a fluorine-containing copolymer composition having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 24 hours. Capacity flow rate at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
  • ⁇ 96 A fluorine-containing copolymer composition obtained by heating a pellet comprising a fluorine-containing copolymer composition having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 96 hours. Capacity flow rate at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
  • [12] A molded article obtained by molding the fluorine-containing copolymer composition according to any one of [1] to [11].
  • [13] A coated electric wire having a coating layer formed from the fluorine-containing copolymer composition of any one of [1] to [11].
  • the symbol in a formula means the following.
  • D 0 Diameter of covered electric wire before self-winding [mm]
  • D 1 Maximum diameter [mm] of the wound covered electric wire after self-diameter winding (However, self-diameter winding means that the covered electric wire is wound around the covered electric wire itself 12 times without a gap. Further, the maximum diameter means the diameter of each winding of the wound covered electric wire by 12 turns. Is the maximum of the diameters obtained and measured.)
  • a fluorine-containing copolymer composition capable of forming a molded article having excellent rigidity at high temperatures and resistance to stress cracking at higher temperatures, and a molded article of the fluorine-containing copolymer composition Can provide.
  • Example 2 is a graph showing the relationship between heating time and ⁇ n / ⁇ 0 when the fluorine-containing copolymer composition of Example 1 and the fluorine-containing copolymer of Comparative Example 1 are heated at 225 ° C., respectively. It is explanatory drawing regarding the measurement of the deformation rate of a covered electric wire.
  • the fluorine-containing copolymer composition of the present invention contains a fluorine-containing copolymer composed of specific ETFE and copper oxide.
  • the fluorine-containing copolymer composition of the present invention is also referred to as “composition A”.
  • the fluorine-containing copolymer in the present invention is also referred to as “copolymer A”.
  • the fluorine-containing copolymer in the present invention (that is, copolymer A) has an ethylene unit, a tetrafluoroethylene unit, and a monomer unit based on a third monomer copolymerizable with ethylene and tetrafluoroethylene.
  • the main chain terminal does not have a chlorine atom.
  • the ethylene unit is also referred to as “E unit”.
  • Tetrafluoroethylene is also referred to as “TFE”
  • TFE units tetrafluoroethylene units
  • a monomer unit based on the third monomer is also referred to as a “third monomer unit”.
  • the stress crack resistance of the molded article comprising the composition A is as follows. Is better.
  • X in the formula is preferably a hydrogen atom.
  • Y in the formula is preferably a fluorine atom.
  • N in the formula is preferably 2 to 8, and more preferably 2 to 6. If n is more than the said lower limit, the heat resistance of the molded object which consists of a composition A and the stress crack resistance in high temperature will be more excellent. If n is not more than the upper limit of the above range, FAE has sufficient polymerization reactivity.
  • n is particularly preferably 2, 4 or 6.
  • FAE include CH 2 ⁇ CH (CF 2 ) 2 F, CH 2 ⁇ CH (CF 2 ) 4 F, CH 2 ⁇ CH (CF 2 ) 6 F, CH 2 ⁇ CF (CF 2 ) 4 F, CH 2 ⁇ CF (CF 2 ) 3 H and the like, and in particular, the stress crack resistance of the molded body made of the composition A is more excellent, and CH 2 ⁇ CH (CF 2 ) 4 F (hereinafter, Also referred to as “PFBE”).
  • PFBE CH 2 ⁇ CH (CF 2 ) 4 F
  • One or more FAEs can be used.
  • the molar ratio [E unit / TFE unit] of the E unit and the TFE unit in the copolymer A is 44.0 / 56.0 to 50.0 / 50.0, and 44.5 / 55.5 to 46. 0.0 / 54.0 is preferred.
  • the molar ratio is not less than the lower limit of the above range, the melting point of the copolymer A is sufficiently high, the molded product of the composition A is excellent in heat resistance and excellent in rigidity at high temperature. If this molar ratio is below the upper limit of the said range, the molded object of the composition A will be excellent in chemical resistance.
  • the content of the third monomer unit is preferably 1.6 to 2.4 mol%, and more preferably 1.8 to 2.2 mol% with respect to all monomer units constituting the copolymer A. If the content of the third monomer unit is at least the lower limit of the above range, the molded article of Composition A is excellent in stress crack resistance at high temperatures. When the content of the third monomer unit is not more than the upper limit of the above range, the melting point of the copolymer A is sufficiently high, the molded product of the composition A is excellent in heat resistance and excellent in rigidity at high temperature.
  • Copolymer A is characterized by having no chlorine atom at the end of the main chain. Since the copolymer A does not have a chlorine atom at the end of the main chain, even if the copolymer A has a specific amount of the above-mentioned specific unit and has a high melting point, As will be described later, the equations (i) to (iii) are easily satisfied. A molded product of the composition A satisfying the formulas (i) to (iii) is excellent in stress crack resistance at higher temperatures.
  • the copolymer A having no chlorine atom at the end of the main chain can be obtained, for example, by performing a polymerization reaction using an alcohol, hydrocarbon, or hydrofluorocarbon, which will be described later, as a chain transfer agent. Specifically, when an alcohol is used as the chain transfer agent, the hydroxyl group of the alcohol is introduced into the terminal portion of the main chain of the copolymer A, resulting in the copolymer A having a hydroxyl group-containing terminal group at the main chain terminal. .
  • a compound having a chlorine atom such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane (trade name “AK225cb” manufactured by Asahi Glass Co., Ltd.) is used as a chain transfer agent or a polymerization solvent
  • the polymer A has a chlorine atom-containing terminal group at the main chain terminal.
  • the terminal group of the copolymer A can be confirmed by analyzing the copolymer A by infrared absorption spectroscopy.
  • the volume flow rate of the copolymer A at 297 ° C. and a load of 49 N is preferably 15 to 40 g / 10 minutes, and more preferably 20 to 40 g / 10 minutes.
  • the volume flow rate of the copolymer A is a measure of the molecular weight, and can be controlled by a method of adjusting the amount of the chain transfer agent when the copolymer A is produced. Moreover, it can adjust also by using together 2 or more types of fluorine-containing copolymers from which volume flow rate differs.
  • the melting point of the copolymer A is preferably 250 to 265 ° C, more preferably 250 to 260 ° C.
  • the melting point of the copolymer A is determined by adjusting the molar ratio of the E unit to the TFE unit [E unit / TFE unit], the content of the third monomer unit with respect to all the units constituting the copolymer A, and the like. Can be controlled.
  • the melting point is a temperature corresponding to an endothermic peak when the copolymer A is heated by heating at 10 ° C./min in an air atmosphere using a scanning differential thermal analyzer.
  • the copolymer A can be produced by a known method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and solution polymerization is particularly preferable.
  • a polymerization initiator a chain transfer agent, a polymerization medium, or the like can be used.
  • a radical polymerization initiator having a half-life of 10 hours and a temperature of 0 to 100 ° C. is preferable, and a radical polymerization initiator having a temperature of 20 to 90 ° C. is more preferable.
  • various polymerization initiators exemplified in Patent Document 1 can be used.
  • As the polymerization medium perfluorocarbon, hydrofluorocarbon, hydrofluoroether or the like can be used.
  • the polymerization medium exemplified in Patent Document 1 can be used.
  • Chain transfer agents have a large chain transfer constant and a small amount of addition, so that methanol, ethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 1,1, Alcohols such as 1,3,3,3-hexafluoroisopropanol and 2,2,3,3,3-pentafluoropropanol; Hydrocarbons such as n-pentane, n-hexane and cyclohexane; CF 2 H 2 etc.
  • hydrofluorocarbons Preferred are hydrofluorocarbons; ketones such as acetone; mercaptans such as methyl mercaptan; esters such as methyl acetate and ethyl acetate; ethers such as diethyl ether and methyl ethyl ether; Among them, from the viewpoint of higher chain transfer constant and high stability of the end group of the copolymer A, it is preferably at least one selected from the group consisting of alcohols, hydrocarbons, and hydrofluorocarbons, Alcohols and / or hydrocarbons are more preferable, and alcohols are particularly preferable. Of the alcohols, methanol or ethanol is particularly preferred. Among these, methanol is particularly preferable from the viewpoint of reactivity and availability. One or more chain transfer agents can be used.
  • the amount of the chain transfer agent used is preferably 0.01 to 50% by mass, more preferably 0.02 to 40% by mass, and 0.05 to 20% by mass based on the total mass of the polymerization medium and the chain transfer agent. Most preferred.
  • Polymerization conditions are not particularly limited.
  • the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours.
  • the copper oxide As the copper oxide, cuprous oxide and cupric oxide can be used, but cupric oxide is preferable because of excellent stability even in high humidity air.
  • the copper oxide content is preferably 0.00015 to 0.02 parts by mass, more preferably 0.0003 to 0.001 parts by mass, and 0.0003 to 0.001 parts by mass with respect to 100 parts by mass of the copolymer A. 0007 parts by mass is particularly preferred. If the copper oxide content is at least the lower limit of the above range, the composition A tends to satisfy the formulas (i) to (iii) as will be described in detail later. A molded product of the composition A satisfying the formulas (i) to (iii) is excellent in stress crack resistance at higher temperatures. If content of copper oxide is below the upper limit of the said range, coloring of the molded object of the composition A will be suppressed.
  • the average particle diameter of copper oxide is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • BET specific surface area of the copper oxide is preferably 5 ⁇ 30m 2 / g, more preferably 10 ⁇ 20m 2 / g.
  • the average particle size is not more than the upper limit of the above range, or when the BET specific surface area is not less than the lower limit of the above range, cracks starting from copper oxide are unlikely to occur in the molded body of the composition A.
  • Copper oxide having an average particle size of not less than the lower limit of the above range and copper oxide having a BET specific surface area of not more than the upper limit of the above range are easy to produce.
  • an average particle diameter is the value measured using the laser diffraction type particle size distribution measuring apparatus.
  • the BET specific surface area is a value measured by a nitrogen gas adsorption BET method.
  • the composition A of the present invention may contain components other than the copolymer A and copper oxide in order to develop various properties.
  • Other components include pigments / dyes, slidability imparting agents, conductivity imparting substances, fiber reinforcing agents, thermal conductivity imparting agents, fillers, polymer materials other than copolymer A, modifiers, crystal nucleating agents. Examples thereof include a foaming agent, a foam nucleating agent, a crosslinking agent, an antioxidant, a light stabilizer, and an ultraviolet absorber.
  • 1 type (s) or 2 or more types can be used for another component.
  • composition A of the present invention satisfies the following formulas (i) to (iii). ⁇ 0 ⁇ 10 (i) 0.8 ⁇ ⁇ 24 / ⁇ 0 ⁇ 1.2 (ii) 0.8 ⁇ ⁇ 96 / ⁇ 0 ⁇ 1.2 (iii) However, the symbol in the said formula means the following.
  • ⁇ 0 Volumetric flow rate of composition A at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
  • ⁇ 24 Capacity flow rate at 297 ° C.
  • ⁇ 0 is a volume flow rate before heating at 225 ° C. for composition A obtained by melt-kneading copolymer A, copper oxide, and other components used as necessary. is there. If ⁇ 0 is not less than the lower limit value of the range described in formula (i), the moldability of composition A is excellent, and if it is not more than the upper limit value of the range described in formula (i), composition A The molded article has excellent mechanical strength and stress crack resistance. In addition, when the composition A has received a certain level of heat history at high temperature, ⁇ 0 tends to be less than the lower limit of the range described in the formula (i). ⁇ 0 can be controlled by adjusting the volume flow rate of the copolymer A used.
  • ⁇ 0 preferably satisfies the following formula (ia), and more preferably satisfies the following formula (ib). 10 ⁇ ⁇ 0 ⁇ 50 (ia) 15 ⁇ ⁇ 0 ⁇ 35 (ib)
  • ⁇ 24 / ⁇ 0 is 225 ° C. when the composition A was formed into pellets having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm, and the pellets were heated at 225 ° C. for 24 hours.
  • capacitance flow velocity before performing heating by is meant.
  • ⁇ 96 / ⁇ 0 is 225 ° C. when the composition A was formed into pellets having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm, and the pellets were heated at 225 ° C. for 96 hours.
  • capacitance flow velocity before performing heating by is meant.
  • the pellets to be heated only need to have a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm. Within this range, the diameter of the pellets, The lengths may be different from each other.
  • the molded body of composition A in which ⁇ 24 / ⁇ 0 is in the range described in formula (ii) and ⁇ 96 / ⁇ 0 is in the range described in formula (iii) The rate of change in the capacity flow rate is small, and the resistance to stress cracking at higher temperatures is excellent.
  • the inventor examined the stress crack resistance at high temperature of the molded article of the composition A. As a result, the behavior of the capacity flow rate when the composition A was heated at 225 ° C. and the high temperature of the molded article of the composition A were investigated. It has been found that there is a relationship with the stress crack resistance in Specifically, when the heating time is in the range of 0 to about 24 hours, the capacity flow rate increases remarkably as the heating time elapses, and when the heating time is in the range of about 24 hours to about 96 hours, the heating time is increased. It was found that the molded body of the composition A, in which the capacity flow rate significantly decreases with the passage of time, tends to have insufficient stress crack resistance at high temperatures.
  • the present inventor focused further on the value of the volumetric flow rate ⁇ 24 of the composition A when heated for 24 hours and the value of the volumetric flow rate ⁇ 96 of the composition A when heated for 96 hours, and further studied. .
  • the capacity flow rate change rate when heated for 24 hours that is, ⁇ 24 / ⁇ 0 is in the range described in the formula (ii)
  • the capacity flow rate change rate when heated for 96 hours that is, ⁇ It was found that the molded article of composition A having 96 / ⁇ 0 in the range described in formula (iii) has excellent stress crack resistance at higher temperatures.
  • the composition A in which ⁇ 24 / ⁇ 0 satisfies the formula (ii) and ⁇ 96 / ⁇ 0 satisfies the formula (iii) is hardly decomposed even by heating for a long time. It is considered that crosslinking is difficult. Due to this, it is considered that the molded product of the composition A satisfying the formulas (ii) and (iii) is excellent in stress crack resistance at higher temperatures.
  • the capacity flow rate change rate ⁇ 24 / ⁇ 0 when heated for 24 hours and the capacity flow rate change rate ⁇ 96 / ⁇ 0 when heated for 96 hours are an index of stress crack resistance at high temperatures of the molded body. Become.
  • ⁇ 24 / ⁇ 0 and ⁇ 96 / ⁇ 0 may be, for example, introducing a hydroxyl group-containing end group and adding copper oxide using a chain transfer agent composed of an alcohol during the production of the copolymer A. Thus, it can be adjusted to a suitable range. Moreover, (alpha) 24 / (alpha) 0 and (alpha) 96 / (alpha) 0 can also be adjusted with the addition amount of a copper oxide.
  • ⁇ 24 / ⁇ 0 preferably satisfies the following formula (ia), and more preferably satisfies the following formula (iib).
  • ⁇ 96 / ⁇ 0 preferably satisfies the following formula (iii).
  • the composition A can be produced by melt-kneading the copolymer A, copper oxide, and other components used as necessary by a known method. Since the composition A of the present invention is excellent in heat resistance and the thermal deterioration is remarkably suppressed, high temperature molding is possible.
  • the melt kneading (cylinder temperature of the extruder) is preferably performed under conditions of 250 to 320 ° C. and 30 seconds to 10 minutes.
  • the composition A of the present invention can be molded into a molded article having excellent rigidity at high temperatures and excellent stress crack resistance at higher temperatures. Therefore, it is suitably used as a wire covering material for forming a wire covering material that requires heat resistance.
  • the molded body of the present invention is obtained by molding the composition A of the present invention described above by a conventionally known molding method such as injection molding, extrusion molding, blow molding, press molding, rotational molding, electrostatic coating, or the like.
  • molding the composition A of this invention is excellent in the rigidity in high temperature and stress crack resistance, (1) Electric machines, such as a robot, an electric motor, a generator, a transformer , Wire covering materials for household electrical equipment, (2) wire covering materials for communication transmission equipment such as telephones and radios, (3) wire covering materials for electronic equipment such as computers, data communication equipment and terminal equipment, (4 ) Railway wire covering material, (5) Automotive wire covering material, (6) Aircraft wire covering material, (7) Ship wire covering material, (8) Building / factory trunk line, power plant, petrochemical / steel manufacturing It can use suitably for the use of the electric wire coating material of various apparatuses, such as the electric wire coating material for system structures, such as a plant.
  • the molded product of the present invention can also be used for tubes, sheets, films, filaments, pump casings, joints, packing, lining, coating, and the like.
  • the present invention is also a coated electric wire having a coating layer formed from the composition A.
  • the coating layer formed from the composition A is excellent in rigidity at a high temperature and stress crack resistance at a higher temperature. Therefore, the covered electric wire having this covering layer is suitable as a covered electric wire that requires heat resistance.
  • the conductor include copper, aluminum, silver, platinum, and gold, and copper is preferable in terms of weight reduction and conductivity.
  • a hard copper wire and a soft copper wire are used as the copper conductor, and the soft copper wire is particularly preferable in that the conductor has high flexibility and deformation due to stress is reduced.
  • the type of twisting of the strands constituting the conductor may be either concentric twisting or collective twisting, but concentric twisting is more preferable because it is difficult to deform when stress is applied.
  • a covered electric wire having a change rate represented by the following formula (iv) of 11% or less is preferable.
  • the symbol in a formula means the following.
  • D 0 Diameter of covered electric wire before self-winding [mm]
  • D 1 Maximum diameter [mm] of the wound covered electric wire after self-diameter winding (However, self-diameter winding means that the covered electric wire is wound around the covered electric wire itself 12 times without a gap. Further, the maximum diameter means the diameter of each winding of the wound covered electric wire by 12 turns. Is the maximum of the diameters obtained and measured.)
  • the self-diameter winding in the measurement of the change rate will be described with reference to FIG.
  • One bent electric wire having a diameter D 0 is bent and then the bent portion is fixed, and one side extending from the bent portion is used as the covered electric wire 1 and the other side is used as the covered electric wire 2.
  • the covered electric wire 2 is wound 12 times so as not to generate a gap around it, thereby obtaining a self-diameter-wrapped covered electric wire 3.
  • the diameter of each turn of the covered electric wire 2 wound was measured for 12 turns, respectively, the maximum value among the obtained diameter is D 1.
  • the self-diameter wrapping covered electric wire 3 is produced in the same manner as described above and used as a molded body sample.
  • the stress to the molded body used as the coating layer is reduced, and therefore the coated wire is excellent in stress crack resistance.
  • the deformation rate at the time of self-winding of the covered electric wire increases, the bending radius of the covering layer covered with the conductor becomes small, and the stress applied to the covering layer becomes excessive.
  • the deformation rate of the covered electric wire is preferably 11% or less, more preferably 7% or less, and further preferably 4% or less.
  • Average particle size The average particle size was measured using a laser diffraction particle size distribution analyzer “HELOS-RODOS” manufactured by Sympatec.
  • BET specific surface area The BET specific surface area was measured by a nitrogen gas adsorption BET method using “SORPTY-1750” manufactured by Carlo Erba.
  • the electric wire was wound around the electric wire itself (self-winding) to prepare a molded body sample.
  • this molded body sample was exposed in a gear oven at 225 ° C. for 1 hour to check for cracks.
  • the number of samples was 5.
  • T1 annealing temperature
  • T2 maximum annealing temperature
  • Tb stress crack temperature
  • the stress crack temperature is preferably 205 ° C. or higher, and more preferably 210 ° C. or higher.
  • Tb T1- ⁇ T (S / 100-1 / 2)
  • Tb stress crack temperature
  • T1 the lowest annealing temperature at which cracks occur in all molded body samples
  • ⁇ T Annealing temperature interval (5 ° C.)
  • a mixed gas of TFE / ethylene 54/46 (mol%) so that the pressure is 1.5 MPaG, and an amount of PFBE corresponding to 1.9 mol% with respect to 100 mol% of the mixed gas.
  • a mixed gas of TFE / ethylene 54/46 (mol%) so that the pressure is 1.5 MPaG, and an amount of PFBE corresponding to 1.9 mol% with respect to 100 mol% of the mixed gas.
  • 34 kg of TFE / ethylene mixed gas was charged, and then the autoclave was cooled, the residual gas was purged, and the polymerization was terminated.
  • the obtained copolymer slurry was transferred to a 850 liter granulation tank, 340 L of water was added and heated with stirring to remove the polymerization medium and residual monomer, and a granulated product was obtained.
  • the obtained granulated product was dried at 150 ° C.
  • Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained.
  • the monomer unit name is indicated by the monomer name, and “Tb” in Table 1 indicates the stress crack temperature. Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometry, a peak in the vicinity of 3650 cm ⁇ 1 due to the hydroxyl group was confirmed.
  • FIG. 1 shows a pellet of the composition 1 obtained in Example 1 (mass: 5 g, diameter 2.4 to 2.5 mm, length 2.5 mm) in a heating furnace (atmosphere) having a furnace temperature of 225 ° C.
  • the graph of the rate of change of the volume flow rate when heated for 0 to 96 hours is shown.
  • the horizontal axis is the heating time (n hours), and the vertical axis is the capacity flow rate change rate ( ⁇ n / ⁇ 0 ).
  • ⁇ 0 , ⁇ 24 and ⁇ 96 are as described in Table 1.
  • the capacity flow rate ⁇ n in each heating time was measured by the method described above after the pellet was taken out of the heating furnace and allowed to cool to room temperature
  • Example 1 Except that 0.00045 parts by mass of the same cupric oxide used in Example 1 was added to 100 parts by mass of the obtained granulated product, melt extrusion was performed in the same manner as in Example 1 to obtain a composition. 3 pellets were produced. Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used. Further, ⁇ 0 , ⁇ 24 , and ⁇ 96 were measured by the above method, and ⁇ 24 / ⁇ 0 and ⁇ 96 / ⁇ 0 were calculated. The results are shown in Table 1.
  • the granulated product was dried at 150 ° C. for 5 hours to obtain 34 kg of a granulated product of the copolymer.
  • Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained. Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometer measurement, a peak in the vicinity of 3650 cm ⁇ 1 due to the hydroxyl group was confirmed.
  • Example 1 Except that 0.00045 parts by mass of the same cupric oxide used in Example 1 was added to 100 parts by mass of the obtained granulated product, melt extrusion was performed in the same manner as in Example 1 to obtain a composition. 4 pellets were produced. Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used. Further, ⁇ 0 , ⁇ 24 , and ⁇ 96 were measured by the above method, and ⁇ 24 / ⁇ 0 and ⁇ 96 / ⁇ 0 were calculated. The results are shown in Table 1.
  • Example 1 Except for adding 0.00030 parts by mass of the same cupric oxide as used in Example 1 to 100 parts by mass of the obtained granulated product, melt extrusion was performed in the same manner as in Example 1 to obtain a composition. 5 pellets were produced. Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used. Further, ⁇ 0 , ⁇ 24 , and ⁇ 96 were measured by the above method, and ⁇ 24 / ⁇ 0 and ⁇ 96 / ⁇ 0 were calculated. The results are shown in Table 1.
  • Example 7 A pellet of the composition 7 was prepared in the same manner as in Example 5 except that the amount of cupric oxide added was changed to 0.0015 parts by mass using the copolymer produced in Example 5. Measurements and calculations similar to those of 1 were performed. The results are shown in Table 1.
  • Example 8 A pellet of composition 8 was prepared in the same manner as in Example 5 except that the amount of cupric oxide added was changed to 0.0020 parts by mass using the copolymer produced in Example 5. Measurements and calculations similar to those of 1 were performed. The results are shown in Table 1.
  • n 1 hour, 8 hours, 24 hours, 48 hours, and 96 hours.
  • ⁇ 1 34.3 (g / 10 min)
  • ⁇ 8 36.2 (g / 10 min)
  • ⁇ 48 18.1 (g / 10 min).
  • ⁇ 0 , ⁇ 24 and ⁇ 96 are as described in Table 1.
  • the capacity flow rate ⁇ n in each heating time was measured by the method described above after the pellet was taken out of the heating furnace and allowed to cool to room temperature.
  • the temperature in the polymerization tank was raised to 66 ° C., and 460 mL of a 1% by mass AK225cb solution of tertiary butyl peroxypivalate (hereinafter referred to as “PBPV”) was charged as a polymerization initiator solution to initiate polymerization.
  • PBPV tertiary butyl peroxypivalate
  • a monomer mixed gas having a molar ratio of TFE / ethylene 60/40 was continuously charged so that the pressure was constant. Further, in accordance with the charging of the monomer mixed gas, an amount of PFBE corresponding to 2.0 mol% with respect to the total number of moles of TFE and ethylene was continuously charged.
  • the obtained granulated material was melt-extruded with an extruder having a caliber of 30 mm under the conditions of a cylinder temperature of 260 to 300 ° C., a die temperature of 250 ° C., and a screw rotation speed of 30 rpm, and a pellet of the copolymer 10 was produced. .
  • Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used. Further, ⁇ 0 , ⁇ 24 , and ⁇ 96 were measured by the above method, and ⁇ 24 / ⁇ 0 and ⁇ 96 / ⁇ 0 were calculated. The results are shown in Table 1.
  • Example 3 Melt extrusion was performed in the same manner as in Example 1 except that 0.0005 parts by mass of the same cupric oxide used in Example 1 was added to 100 parts by mass of the granulated product obtained in Comparative Example 2. The pellet of the composition 11 was produced. Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used. Further, ⁇ 0 , ⁇ 24 , and ⁇ 96 were measured by the above method, and ⁇ 24 / ⁇ 0 and ⁇ 96 / ⁇ 0 were calculated. The results are shown in Table 1.
  • Examples 9 to 17, Comparative Examples 4 to 6 The deformation rate was measured using the covered electric wires covered with the molded products of the compositions and copolymers of Examples 1 to 8 and Comparative Examples 1 to 3. The results are shown in Table 2. Moreover, it measured similarly about the covered electric wire which changed the kind of conductor using the molded object which consists of the compositions 2.
  • the conductor 1 is an element wire diameter of 0.26 mm, the number of element wires of 37, a conductor diameter of 1.8 mm, and a concentric twisted copper conductor.
  • the conductor 2 is a copper conductor having a strand diameter of 0.25 mm, a number of strands of 50, a conductor diameter of 1.8 mm, and a collective twist. By making the conductor concentric twist, it is considered that the deformation rate is lower than that of the collective twist and the stress crack resistance is further improved.
  • the composition A of the present invention can produce a molded article having superior stress crack resistance at a higher temperature than conventional. Therefore, the molded body of the present invention is particularly suitable for (1) electric machines such as robots, electric motors, generators and transformers, wire covering materials for household electric appliances, and (2) communication transmission equipment such as telephones and radios. (3) Wire covering material for electronic equipment such as computer, data communication equipment and terminal equipment, (4) railway wire covering material, (5) Automotive wire covering material, (6) Aircraft wire Suitable for use as a wire covering material for various devices, such as covering materials, (7) wire covering materials for ships, (8) wire covering materials for system construction of buildings / factory trunk lines, power plants, petrochemical / steel plants, etc. Can be used.
  • the entire contents of the specification, claims, abstract, and drawings of Japanese Patent Application No. 2015-148486 filed on July 28, 2015 are cited here as disclosure of the specification of the present invention. Incorporated.

Abstract

Provided are: a fluorine-containing copolymer composition which is capable of forming a molded article having excellent stiffness at high temperatures and having stress crack resistance at even higher temperatures; and a molded article obtained from the fluorine-containing copolymer composition. This fluorine-containing copolymer composition contains a fluorine-containing copolymer and a copper oxide, and satisfies α0 ≥ 10, 0.8 ≤ α240 ≤ 1.2, and 0.8 ≤ α960 ≤ 1.2, wherein the fluorine-containing copolymer is a specific ethylene/tetrafluoroethylene copolymer. In the above equations, α0 represents a volume flow rate (in g/10 minutes) of the fluorine-containing copolymer composition under a load of 49 N at 297°C, α24 represents a volume flow rate (in g/10 minutes) of the fluorine-containing copolymer composition under a load of 49 N at 297°C after being heated for 24 hours at 225°C, and α96 represents a volume flow rate (in g/10 minutes) of the fluorine-containing copolymer composition under a load of 49 N at 297°C after being heated for 96 hours at 225°C.

Description

含フッ素共重合体組成物および成形体Fluorine-containing copolymer composition and molded article
 本発明は、含フッ素共重合体組成物および該含フッ素共重合体組成物を成形してなる成形体に関する。 The present invention relates to a fluorine-containing copolymer composition and a molded body formed by molding the fluorine-containing copolymer composition.
 エチレン/テトラフルオロエチレン共重合体(以下、「ETFE」ともいう。)は、耐熱性、耐候性、電気絶縁性、非粘着性、撥水撥油性等に優れているとともに、フッ素樹脂の中では成形性および機械的強度が高いという特徴を有する。そのため、押出成形、ブロー成形、射出成形、回転成形などの溶融成形方法により、電線の被覆、チューブ、シート、フィルム、フィラメント、ポンプケーシング、継ぎ手類、パッキング、ライニング、コーティング等の多様な成形体が製造されている。 An ethylene / tetrafluoroethylene copolymer (hereinafter also referred to as “ETFE”) is excellent in heat resistance, weather resistance, electrical insulation, non-adhesiveness, water / oil repellency, and the like among fluororesins. It is characterized by high moldability and mechanical strength. Therefore, various molded products such as wire coating, tubes, sheets, films, filaments, pump casings, fittings, packing, linings, coatings, etc., can be obtained by melt molding methods such as extrusion molding, blow molding, injection molding, and rotational molding. It is manufactured.
 しかし、ETFEからなる成形体は、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体等の他のフッ素樹脂からなる成形体に比べ、高温での耐ストレスクラック性に劣る。
 このような課題に対して、たとえば特許文献1には、エチレン単位と、テトラフルオロエチレン単位に加えて、他のモノマーに基づくモノマー単位を有し、各単位の含有量が特定の範囲にある含フッ素共重合体に対して、少量の酸化銅を配合した含フッ素共重合体組成物が開示されている。特許文献1の実施例には、該含フッ素共重合体組成物を成形した成形体は、197~199℃のストレスクラック温度を有することが示されている。ストレスクラック温度が高いほど、高温での耐ストレスクラック性に優れる。
However, a molded body made of ETFE is inferior in stress crack resistance at a high temperature as compared with a molded body made of other fluororesins such as a tetrafluoroethylene / hexafluoropropylene copolymer.
For example, Patent Document 1 includes a monomer unit based on another monomer in addition to an ethylene unit and a tetrafluoroethylene unit, and the content of each unit is in a specific range. A fluorine-containing copolymer composition in which a small amount of copper oxide is blended with a fluorine copolymer is disclosed. In the examples of Patent Document 1, it is shown that a molded article obtained by molding the fluorine-containing copolymer composition has a stress crack temperature of 197 to 199 ° C. The higher the stress crack temperature, the better the stress crack resistance at high temperatures.
国際公開第2013/015202号International Publication No. 2013/015202
 しかし、最近では、より高温での耐ストレスクラック性を備えた成形体を製造できる含フッ素共重合体組成物が求められている。また、特許文献1の成形体は、融点が低い含フッ素共重合体を用いているため高温での柔軟性に優れ、耐ストレスクラック性の点では有利であるが、高温での剛性に劣り、用途が制限される場合があった。 However, recently, there has been a demand for a fluorine-containing copolymer composition capable of producing a molded article having resistance to stress cracking at a higher temperature. In addition, since the molded article of Patent Document 1 uses a fluorine-containing copolymer having a low melting point, it is excellent in flexibility at high temperature and advantageous in terms of stress crack resistance, but is inferior in rigidity at high temperature, In some cases, the application was limited.
 本発明は、高温での剛性に優れるとともに、より高温での耐ストレスクラック性を備えた成形体を成形できる含フッ素共重合体組成物と、該含フッ素共重合体組成物の成形体の提供を目的とする。 The present invention provides a fluorine-containing copolymer composition capable of forming a molded article having excellent rigidity at high temperatures and having stress crack resistance at higher temperatures, and a molded article of the fluorine-containing copolymer composition With the goal.
 本発明者は、含フッ素共重合体と酸化銅とを含む含フッ素共重合体組成物について鋭意検討の結果、含フッ素共重合体を構成するモノマー単位の種類および含有量を特定に制御して含フッ素共重合体の融点を高め、含フッ素共重合体の主鎖末端が塩素原子を有しないものとし、含フッ素共重合体組成物が後述の式(i)~(iii)を満たすようにすると、高温での剛性に優れるとともに、より高温での耐ストレスクラック性を備えた成形体を成形できることを見出した。 As a result of intensive studies on a fluorine-containing copolymer composition containing a fluorine-containing copolymer and copper oxide, the present inventors have specifically controlled the type and content of monomer units constituting the fluorine-containing copolymer. The melting point of the fluorinated copolymer is increased so that the main chain terminal of the fluorinated copolymer does not have a chlorine atom, and the fluorinated copolymer composition satisfies the following formulas (i) to (iii): Then, it discovered that the molded object which was excellent in the rigidity at high temperature, and was equipped with the stress cracking resistance in higher temperature can be shape | molded.
 本発明は、以下の構成を有する。
 [1]含フッ素共重合体と、酸化銅とを含有する含フッ素共重合体組成物であって、
 前記含フッ素共重合体は、エチレン単位と、テトラフルオロエチレン単位と、エチレンおよびテトラフルオロエチレンと共重合可能な第3のモノマーに基づくモノマー単位とを有し、主鎖末端が塩素原子を有さず、
 前記エチレン単位と前記テトラフルオロエチレン単位とのモル比[エチレン単位/テトラフルオロエチレン単位]が44/56~50/50であり、前記含フッ素共重合体を構成する全モノマー単位に対する前記第3のモノマーに基づくモノマー単位の含有量が1.6~2.4モル%であり、
 該含フッ素共重合体組成物が、下記式(i)~(iii)を満足することを特徴とする含フッ素共重合体組成物。
 α≧10…(i)
 0.8≦α24/α≦1.2…(ii)
 0.8≦α96/α≦1.2…(iii)
 ただし、上記式中の記号は、以下を意味する。
 α:含フッ素共重合体組成物の297℃、荷重49Nにおける容量流速(単位:g/10分)。
 α24:含フッ素共重合体組成物からなる直径2.0~3.0mm、長さ2.0~3.0mmのペレットを225℃で24時間加熱した後の含フッ素共重合体組成物の297℃、荷重49Nにおける容量流速(単位:g/10分)。
 α96:含フッ素共重合体組成物からなる直径2.0~3.0mm、長さ2.0~3.0mmのペレットを225℃で96時間加熱した後の含フッ素共重合体組成物の297℃、荷重49Nにおける容量流速(単位:g/10分)。
The present invention has the following configuration.
[1] A fluorine-containing copolymer composition containing a fluorine-containing copolymer and copper oxide,
The fluorine-containing copolymer has an ethylene unit, a tetrafluoroethylene unit, and a monomer unit based on a third monomer copolymerizable with ethylene and tetrafluoroethylene, and the main chain terminal has a chlorine atom. Without
The molar ratio of the ethylene unit to the tetrafluoroethylene unit [ethylene unit / tetrafluoroethylene unit] is 44/56 to 50/50, and the third ratio with respect to all the monomer units constituting the fluorine-containing copolymer. The monomer unit content based on the monomer is 1.6 to 2.4 mol%,
The fluorine-containing copolymer composition, wherein the fluorine-containing copolymer composition satisfies the following formulas (i) to (iii):
α 0 ≧ 10 (i)
0.8 ≦ α 24 / α 0 ≦ 1.2 (ii)
0.8 ≦ α 96 / α 0 ≦ 1.2 (iii)
However, the symbol in the said formula means the following.
α 0 : Capacity flow rate (unit: g / 10 minutes) of the fluorine-containing copolymer composition at 297 ° C. and a load of 49 N.
α 24 : a fluorine-containing copolymer composition obtained by heating a pellet comprising a fluorine-containing copolymer composition having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 24 hours. Capacity flow rate at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
α 96 : A fluorine-containing copolymer composition obtained by heating a pellet comprising a fluorine-containing copolymer composition having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 96 hours. Capacity flow rate at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
 [2]前記含フッ素共重合体は、前記主鎖末端に、水酸基含有末端基を有する、[1]の含フッ素共重合体組成物。
 [3]前記第3のモノマーが下記式で表される化合物である、[1]または[2]の含フッ素共重合体組成物。
  CH=CX(CF
 (式中、XおよびYはそれぞれ独立に、水素原子またはフッ素原子であり、nは1~10の整数である。)
 [4]前記含フッ素共重合体を構成する全モノマー単位に対する前記第3のモノマーに基づくモノマー単位の含有量が、1.8~2.2モル%である、[1]~[3]のいずれかの含フッ素共重合体組成物。
 [5]前記含フッ素共重合体の融点が250℃~265℃である、[1]~[4]のいずれかの含フッ素共重合体組成物。
 [6]前記含フッ素共重合体の297℃、荷重49Nにおける容量流速が、15~40g/10分である、[1]~[5]のいずれかの含フッ素共重合体組成物。
[2] The fluorine-containing copolymer composition according to [1], wherein the fluorine-containing copolymer has a hydroxyl group-containing terminal group at the end of the main chain.
[3] The fluorine-containing copolymer composition according to [1] or [2], wherein the third monomer is a compound represented by the following formula.
CH 2 = CX (CF 2 ) n Y
(In the formula, X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 1 to 10.)
[4] The content of the monomer unit based on the third monomer with respect to all monomer units constituting the fluorine-containing copolymer is 1.8 to 2.2 mol%, Any fluorine-containing copolymer composition.
[5] The fluorine-containing copolymer composition according to any one of [1] to [4], wherein the melting point of the fluorine-containing copolymer is 250 ° C. to 265 ° C.
[6] The fluorine-containing copolymer composition according to any one of [1] to [5], wherein the volume flow rate of the fluorine-containing copolymer at 297 ° C. and a load of 49 N is 15 to 40 g / 10 minutes.
 [7]前記酸化銅が、酸化第二銅である、[1]~[6]のいずれかの含フッ素共重合体組成物。
 [8]前記酸化銅の平均粒径が0.1~10μmであり、BET比表面積が5~30m/gである、[1]~[7]のいずれかの含フッ素共重合体組成物。
 [9]前記酸化銅の含有量が、前記含フッ素共重合体の100質量部に対して、0.00015~0.02質量部である、[1]~[8]のいずれかの含フッ素共重合体組成物。
 [10]前記酸化銅の含有量が、前記含フッ素共重合体の100質量部に対して、0.0003~0.001質量部である、[9]の含フッ素共重合体組成物。
 [11]電線被覆材料である、[1]~[10]のいずれかの含フッ素共重合体組成物。
[7] The fluorine-containing copolymer composition according to any one of [1] to [6], wherein the copper oxide is cupric oxide.
[8] The fluorine-containing copolymer composition according to any one of [1] to [7], wherein the copper oxide has an average particle size of 0.1 to 10 μm and a BET specific surface area of 5 to 30 m 2 / g. .
[9] The fluorine-containing material according to any one of [1] to [8], wherein the content of the copper oxide is 0.00015 to 0.02 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer. Copolymer composition.
[10] The fluorine-containing copolymer composition according to [9], wherein the content of the copper oxide is 0.0003 to 0.001 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer.
[11] The fluorine-containing copolymer composition according to any one of [1] to [10], which is a wire coating material.
 [12]前記[1]~[11]のいずれかの含フッ素共重合体組成物を成形してなる成形体。
 [13]前記[1]~[11]のいずれかの含フッ素共重合体組成物から形成された被覆層を有する被覆電線。
 [14]下記式(iv)で表される変形率が11%以下である、[13]の被覆電線。
  |D-D|/D×100 …(iv)
 ただし、式中の記号は以下を意味する。
  D:自己径巻き付け前の、被覆電線の径[mm]
  D:自己径巻き付け後の、巻き付けた被覆電線の最大径[mm]
 (ただし、自己径巻き付けとは、被覆電線自体に、該被覆電線を隙間なく12回巻き付けることを意味する。また、最大径とは、巻き付けた被覆電線の1巻き毎の径を、12巻きそれぞれについて測定し、得られた径の中の最大値である。)
[12] A molded article obtained by molding the fluorine-containing copolymer composition according to any one of [1] to [11].
[13] A coated electric wire having a coating layer formed from the fluorine-containing copolymer composition of any one of [1] to [11].
[14] The covered electric wire according to [13], wherein the deformation rate represented by the following formula (iv) is 11% or less.
| D 1 -D 0 | / D 0 × 100 (iv)
However, the symbol in a formula means the following.
D 0 : Diameter of covered electric wire before self-winding [mm]
D 1 : Maximum diameter [mm] of the wound covered electric wire after self-diameter winding
(However, self-diameter winding means that the covered electric wire is wound around the covered electric wire itself 12 times without a gap. Further, the maximum diameter means the diameter of each winding of the wound covered electric wire by 12 turns. Is the maximum of the diameters obtained and measured.)
 本発明によれば、高温での剛性に優れるとともに、より高温での耐ストレスクラック性を備えた成形体を成形できる含フッ素共重合体組成物と、該含フッ素共重合体組成物の成形体を提供できる。 According to the present invention, a fluorine-containing copolymer composition capable of forming a molded article having excellent rigidity at high temperatures and resistance to stress cracking at higher temperatures, and a molded article of the fluorine-containing copolymer composition Can provide.
実施例1の含フッ素共重合体組成物および比較例1の含フッ素共重合体をそれぞれ225℃で加熱した場合における、加熱時間と、α/αとの関係を示すグラフである。2 is a graph showing the relationship between heating time and α n / α 0 when the fluorine-containing copolymer composition of Example 1 and the fluorine-containing copolymer of Comparative Example 1 are heated at 225 ° C., respectively. 被覆電線の変形率の測定に関する説明図である。It is explanatory drawing regarding the measurement of the deformation rate of a covered electric wire.
 本発明の含フッ素共重合体組成物は、特定のETFEからなる含フッ素共重合体と、酸化銅とを含有する。以下、本発明の含フッ素共重合体組成物を「組成物A」ともいう。また、本発明における含フッ素共重合体を「共重合体A」ともいう。 The fluorine-containing copolymer composition of the present invention contains a fluorine-containing copolymer composed of specific ETFE and copper oxide. Hereinafter, the fluorine-containing copolymer composition of the present invention is also referred to as “composition A”. Further, the fluorine-containing copolymer in the present invention is also referred to as “copolymer A”.
〔含フッ素共重合体〕
 本発明における含フッ素共重合体(すなわち、共重合体A)は、エチレン単位と、テトラフルオロエチレン単位と、エチレンおよびテトラフルオロエチレンと共重合可能な第3のモノマーに基づくモノマー単位とを有し、主鎖末端が塩素原子を有しない。
 以下、エチレン単位を「E単位」ともいう。テトラフルオロエチレンを「TFE」ともいい、テトラフルオロエチレン単位を「TFE単位」もいう。また、第3のモノマーに基づくモノマー単位を「第3のモノマー単位」ともいう。
[Fluorine-containing copolymer]
The fluorine-containing copolymer in the present invention (that is, copolymer A) has an ethylene unit, a tetrafluoroethylene unit, and a monomer unit based on a third monomer copolymerizable with ethylene and tetrafluoroethylene. The main chain terminal does not have a chlorine atom.
Hereinafter, the ethylene unit is also referred to as “E unit”. Tetrafluoroethylene is also referred to as “TFE”, and tetrafluoroethylene units are also referred to as “TFE units”. A monomer unit based on the third monomer is also referred to as a “third monomer unit”.
 第3のモノマーとしては、たとえば、一般式CH=CX(CFY(式中、XおよびYはそれぞれ独立に、水素原子またはフッ素原子であり、nは1~10の整数である。)で表される化合物が挙げられる。第3のモノマーは、1種または2種以上を用いることができる。 As the third monomer, for example, the general formula CH 2 = CX (CF 2 ) n Y (wherein X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 1 to 10) .). 1 type (s) or 2 or more types can be used for a 3rd monomer.
 第3のモノマーとして、上記一般式CH=CX(CFYで表される化合物(以下、「FAE」ともいう。)を用いると、組成物Aからなる成形体の耐ストレスクラック性がより優れる。
 式中のXは、水素原子が好ましい。式中のYは、フッ素原子が好ましい。
 式中のnは2~8が好ましく、2~6がより好ましい。nが上記下限値以上であれば、組成物Aからなる成形体の耐熱性および高温での耐ストレスクラック性がより優れる。nが上記範囲の上限値以下であれば、FAEは重合反応性を充分に有する。nは、2、4または6が特に好ましい。
 FAEの好ましい具体例としては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFF、CH=CF(CFH等が挙げられ、なかでも組成物Aからなる成形体の耐ストレスクラック性がより優れる点で、CH=CH(CFF(以下、「PFBE」ともいう。)が好ましい。
 FAEは、1種または2種以上を用いることができる。
When a compound represented by the above general formula CH 2 ═CX (CF 2 ) n Y (hereinafter, also referred to as “FAE”) is used as the third monomer, the stress crack resistance of the molded article comprising the composition A is as follows. Is better.
X in the formula is preferably a hydrogen atom. Y in the formula is preferably a fluorine atom.
N in the formula is preferably 2 to 8, and more preferably 2 to 6. If n is more than the said lower limit, the heat resistance of the molded object which consists of a composition A and the stress crack resistance in high temperature will be more excellent. If n is not more than the upper limit of the above range, FAE has sufficient polymerization reactivity. n is particularly preferably 2, 4 or 6.
Preferable specific examples of FAE include CH 2 ═CH (CF 2 ) 2 F, CH 2 ═CH (CF 2 ) 4 F, CH 2 ═CH (CF 2 ) 6 F, CH 2 ═CF (CF 2 ) 4 F, CH 2 ═CF (CF 2 ) 3 H and the like, and in particular, the stress crack resistance of the molded body made of the composition A is more excellent, and CH 2 ═CH (CF 2 ) 4 F (hereinafter, Also referred to as “PFBE”).
One or more FAEs can be used.
 共重合体AにおけるE単位とTFE単位とのモル比[E単位/TFE単位]は、44.0/56.0~50.0/50.0であり、44.5/55.5~46.0/54.0が好ましい。該モル比が上記範囲の下限値以上であれば、共重合体Aの融点が充分に高く、組成物Aの成形体は耐熱性に優れ、高温での剛性が優れる。該モル比が上記範囲の上限値以下であれば、組成物Aの成形体は耐薬品性に優れる。 The molar ratio [E unit / TFE unit] of the E unit and the TFE unit in the copolymer A is 44.0 / 56.0 to 50.0 / 50.0, and 44.5 / 55.5 to 46. 0.0 / 54.0 is preferred. When the molar ratio is not less than the lower limit of the above range, the melting point of the copolymer A is sufficiently high, the molded product of the composition A is excellent in heat resistance and excellent in rigidity at high temperature. If this molar ratio is below the upper limit of the said range, the molded object of the composition A will be excellent in chemical resistance.
 第3のモノマー単位の含有量は、共重合体Aを構成する全モノマー単位に対して、1.6~2.4モル%が好ましく、1.8~2.2モル%がより好ましい。第3のモノマー単位の含有量が上記範囲の下限値以上であれば、組成物Aの成形体は、高温での耐ストレスクラック性に優れる。第3のモノマー単位の含有量が上記範囲の上限値以下であれば、共重合体Aの融点が充分に高く、組成物Aの成形体は耐熱性に優れ、高温での剛性が優れる。 The content of the third monomer unit is preferably 1.6 to 2.4 mol%, and more preferably 1.8 to 2.2 mol% with respect to all monomer units constituting the copolymer A. If the content of the third monomer unit is at least the lower limit of the above range, the molded article of Composition A is excellent in stress crack resistance at high temperatures. When the content of the third monomer unit is not more than the upper limit of the above range, the melting point of the copolymer A is sufficiently high, the molded product of the composition A is excellent in heat resistance and excellent in rigidity at high temperature.
 共重合体Aは、主鎖末端に塩素原子を有しないことを特徴とする。共重合体Aが主鎖末端に塩素原子を有しないことにより、該共重合体Aが上述した特定の単位を特定量有し、融点が高いものであっても、組成物Aは、詳しくは後述するように、式(i)~(iii)を満足しやすくなる。式(i)~(iii)を満足する組成物Aの成形体は、より高温での耐ストレスクラック性に優れる。 Copolymer A is characterized by having no chlorine atom at the end of the main chain. Since the copolymer A does not have a chlorine atom at the end of the main chain, even if the copolymer A has a specific amount of the above-mentioned specific unit and has a high melting point, As will be described later, the equations (i) to (iii) are easily satisfied. A molded product of the composition A satisfying the formulas (i) to (iii) is excellent in stress crack resistance at higher temperatures.
 主鎖末端に塩素原子を有しない共重合体Aは、例えば連鎖移動剤として、後述するアルコール類、ハイドロカーボン類、ハイドロフルオロカーボン類を用いて重合反応を行うことにより得られる。具体的には、連鎖移動剤としてアルコール類を用いた場合、アルコールの水酸基が共重合体Aの主鎖の末端部に導入され、水酸基含有末端基を主鎖末端に有する共重合体Aが生じる。逆に、例えば連鎖移動剤や重合溶媒として1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(商品名「AK225cb」旭硝子社製)など塩素原子を有する化合物を用いると、塩素原子含有末端基を主鎖末端に有する重合体Aとなる。
 共重合体Aの末端基は、共重合体Aを赤外吸収スペクトル法で分析することにより確認できる。
The copolymer A having no chlorine atom at the end of the main chain can be obtained, for example, by performing a polymerization reaction using an alcohol, hydrocarbon, or hydrofluorocarbon, which will be described later, as a chain transfer agent. Specifically, when an alcohol is used as the chain transfer agent, the hydroxyl group of the alcohol is introduced into the terminal portion of the main chain of the copolymer A, resulting in the copolymer A having a hydroxyl group-containing terminal group at the main chain terminal. . Conversely, for example, when a compound having a chlorine atom such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane (trade name “AK225cb” manufactured by Asahi Glass Co., Ltd.) is used as a chain transfer agent or a polymerization solvent, The polymer A has a chlorine atom-containing terminal group at the main chain terminal.
The terminal group of the copolymer A can be confirmed by analyzing the copolymer A by infrared absorption spectroscopy.
 共重合体Aの297℃、荷重49Nにおける容量流速は、15~40g/10分であることが好ましく、20~40g/10分がより好ましい。共重合体Aの容量流速が上記範囲の下限値以上であると、組成物Aの成形性が優れ、上記範囲の上限値以下であると、組成物Aの成形体の機械的強度、高温での耐ストレスクラック性が優れやすい。
 共重合体Aの容量流速は、分子量の尺度であり、共重合体Aを製造する際の連鎖移動剤の量を調整する方法等で制御できる。また、容量流速が異なる2種以上の含フッ素共重合体を併用することによっても調整できる。
The volume flow rate of the copolymer A at 297 ° C. and a load of 49 N is preferably 15 to 40 g / 10 minutes, and more preferably 20 to 40 g / 10 minutes. When the capacity flow rate of the copolymer A is not less than the lower limit value of the above range, the moldability of the composition A is excellent, and when it is not more than the upper limit value of the above range, the mechanical strength of the molded body of the composition A is high. Excellent resistance to stress cracking.
The volume flow rate of the copolymer A is a measure of the molecular weight, and can be controlled by a method of adjusting the amount of the chain transfer agent when the copolymer A is produced. Moreover, it can adjust also by using together 2 or more types of fluorine-containing copolymers from which volume flow rate differs.
 共重合体Aの融点は、250~265℃が好ましく、250~260℃がより好ましい。共重合体Aの融点が上記範囲の下限値以上であると、組成物Aの成形体の耐熱性が優れ、高温での剛性に優れる。上記範囲の上限値以下であると、組成物Aの成形性が優れる。
 共重合体Aの融点は、E単位とTFE単位とのモル比[E単位/TFE単位]、共重合体Aを構成する全単位に対する第3のモノマー単位の含有量等を調整する方法等で制御できる。
The melting point of the copolymer A is preferably 250 to 265 ° C, more preferably 250 to 260 ° C. When the melting point of the copolymer A is not less than the lower limit of the above range, the molded article of the composition A has excellent heat resistance and excellent rigidity at high temperatures. The moldability of the composition A is excellent when it is not more than the upper limit of the above range.
The melting point of the copolymer A is determined by adjusting the molar ratio of the E unit to the TFE unit [E unit / TFE unit], the content of the third monomer unit with respect to all the units constituting the copolymer A, and the like. Can be controlled.
 本明細書において、融点は、走査型示差熱分析器を用いて、空気雰囲気下、10℃/分で昇温し、共重合体Aを加熱した際の吸熱ピークに対応する温度である。 In the present specification, the melting point is a temperature corresponding to an endothermic peak when the copolymer A is heated by heating at 10 ° C./min in an air atmosphere using a scanning differential thermal analyzer.
 共重合体Aは、塊状重合、溶液重合、懸濁重合、乳化重合等の公知の方法で製造でき、特に溶液重合が好ましい。重合には、重合開始剤、連鎖移動剤、重合媒体等を使用できる。
 重合開始剤としては、半減期が10時間である温度が0~100℃であるラジカル重合開始剤が好ましく、該温度が20~90℃であるラジカル重合開始剤がより好ましい。具体例としては、たとえば特許文献1に例示されている各種重合開始剤を使用できる。
 重合媒体としては、ペルフルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロエーテル等を使用でき、具体例としては、たとえば特許文献1に例示されている重合媒体を使用できる。
The copolymer A can be produced by a known method such as bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and solution polymerization is particularly preferable. For the polymerization, a polymerization initiator, a chain transfer agent, a polymerization medium, or the like can be used.
As the polymerization initiator, a radical polymerization initiator having a half-life of 10 hours and a temperature of 0 to 100 ° C. is preferable, and a radical polymerization initiator having a temperature of 20 to 90 ° C. is more preferable. As specific examples, various polymerization initiators exemplified in Patent Document 1 can be used.
As the polymerization medium, perfluorocarbon, hydrofluorocarbon, hydrofluoroether or the like can be used. As a specific example, for example, the polymerization medium exemplified in Patent Document 1 can be used.
 連鎖移動剤は、連鎖移動定数が大きく、添加量が少なくてすむ点から、メタノール、エタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,3-ペンタフルオロプロパノール等のアルコール類;n-ペンタン、n-ヘキサン、シクロヘキサン等のハイドロカーボン類;CF等のハイドロフルオロカーボン類;アセトン等のケトン類;メチルメルカプタン等のメルカプタン類;酢酸メチル、酢酸エチル等のエステル類;ジエチルエーテル、メチルエチルエーテル等のエーテル類;などが好ましい。
 中でも、連鎖移動定数がより高く、共重合体Aの末端基の安定性が高い点から、アルコール類、ハイドロカーボン類、及びハイドロフルオロカーボン類からなる群から選ばれる1種以上であることが好ましく、アルコール類及び/又はハイドロカーボン類がより好ましく、特にアルコール類が好ましい。アルコール類の中では、メタノール又はエタノールが特に好ましい。中でも、反応性および入手容易性から、メタノールが特に好ましい。連鎖移動剤は、1種または2種以上を用いることができる。
Chain transfer agents have a large chain transfer constant and a small amount of addition, so that methanol, ethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 1,1, Alcohols such as 1,3,3,3-hexafluoroisopropanol and 2,2,3,3,3-pentafluoropropanol; Hydrocarbons such as n-pentane, n-hexane and cyclohexane; CF 2 H 2 etc. Preferred are hydrofluorocarbons; ketones such as acetone; mercaptans such as methyl mercaptan; esters such as methyl acetate and ethyl acetate; ethers such as diethyl ether and methyl ethyl ether;
Among them, from the viewpoint of higher chain transfer constant and high stability of the end group of the copolymer A, it is preferably at least one selected from the group consisting of alcohols, hydrocarbons, and hydrofluorocarbons, Alcohols and / or hydrocarbons are more preferable, and alcohols are particularly preferable. Of the alcohols, methanol or ethanol is particularly preferred. Among these, methanol is particularly preferable from the viewpoint of reactivity and availability. One or more chain transfer agents can be used.
 連鎖移動剤の使用量は、重合媒体と連鎖移動剤の合計質量に対して、0.01~50質量%が好ましく、0.02~40質量%がより好ましく、0.05~20質量%が最も好ましい。 The amount of the chain transfer agent used is preferably 0.01 to 50% by mass, more preferably 0.02 to 40% by mass, and 0.05 to 20% by mass based on the total mass of the polymerization medium and the chain transfer agent. Most preferred.
 重合条件には特に制限はなく、たとえば、重合温度は0~100℃が好ましく、20~90℃がより好ましい。重合圧力は、たとえば、0.1~10MPaが好ましく、0.5~3MPaがより好ましい。重合時間は1~30時間が好ましい。 Polymerization conditions are not particularly limited. For example, the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C. For example, the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa. The polymerization time is preferably 1 to 30 hours.
〔酸化銅〕
 酸化銅としては、酸化第1銅、酸化第2銅を使用できるが、湿度の高い空気中でも安定性に優れるため、酸化第2銅が好ましい。
 酸化銅の含有量は、共重合体Aの100質量部に対して、0.00015~0.02質量部が好ましく、0.0003~0.001質量部がより好ましく、0.0003~0.0007質量部が特に好ましい。
 酸化銅の含有量が上記範囲の下限値以上であれば、組成物Aは、詳しくは後述するように、式(i)~(iii)を満足しやすい。式(i)~(iii)を満足する組成物Aの成形体は、より高温での耐ストレスクラック性に優れる。酸化銅の含有量が上記範囲の上限値以下であれば、組成物Aの成形体の着色が抑制される。
[Copper oxide]
As the copper oxide, cuprous oxide and cupric oxide can be used, but cupric oxide is preferable because of excellent stability even in high humidity air.
The copper oxide content is preferably 0.00015 to 0.02 parts by mass, more preferably 0.0003 to 0.001 parts by mass, and 0.0003 to 0.001 parts by mass with respect to 100 parts by mass of the copolymer A. 0007 parts by mass is particularly preferred.
If the copper oxide content is at least the lower limit of the above range, the composition A tends to satisfy the formulas (i) to (iii) as will be described in detail later. A molded product of the composition A satisfying the formulas (i) to (iii) is excellent in stress crack resistance at higher temperatures. If content of copper oxide is below the upper limit of the said range, coloring of the molded object of the composition A will be suppressed.
 酸化銅の平均粒径は、0.1~10μmが好ましく、0.5~5μmがより好ましい。酸化銅のBET比表面積は、5~30m/gが好ましく、10~20m/gがより好ましい。平均粒径が上記範囲の上限値以下である場合や、BET比表面積が上記範囲の下限値以上である場合には、組成物Aの成形体において、酸化銅を起点としたクラックが生じにくい。平均粒径が上記範囲の下限値以上である酸化銅や、BET比表面積が上記範囲の上限値以下である酸化銅は、製造しやすい。 The average particle diameter of copper oxide is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm. BET specific surface area of the copper oxide is preferably 5 ~ 30m 2 / g, more preferably 10 ~ 20m 2 / g. When the average particle size is not more than the upper limit of the above range, or when the BET specific surface area is not less than the lower limit of the above range, cracks starting from copper oxide are unlikely to occur in the molded body of the composition A. Copper oxide having an average particle size of not less than the lower limit of the above range and copper oxide having a BET specific surface area of not more than the upper limit of the above range are easy to produce.
 本明細書において、平均粒径は、レーザー回折式粒度分布測定装置を用いて測定した値である。
 本明細書において、BET比表面積は、窒素ガス吸着BET法により測定した値である。
In this specification, an average particle diameter is the value measured using the laser diffraction type particle size distribution measuring apparatus.
In this specification, the BET specific surface area is a value measured by a nitrogen gas adsorption BET method.
〔他の成分〕
 本発明の組成物Aは、種々の特性を発現させるために、共重合体Aおよび酸化銅以外の成分を含有してもよい。
 他の成分としては、顔料・染料、摺動性付与剤、導電性付与物質、繊維強化剤、熱伝導性付与剤、フィラー、共重合体A以外の高分子材料、改質剤、結晶核剤発泡剤、発泡核剤、架橋剤、酸化防止剤、光安定剤、紫外線吸収剤等が挙げられる。具体例としては、たとえば特許文献1に例示されているものを使用できる。
 他の成分の含有量は、付与する特性に応じて適宜選択できる。他の成分は、1種または2種以上を用いることができる。
[Other ingredients]
The composition A of the present invention may contain components other than the copolymer A and copper oxide in order to develop various properties.
Other components include pigments / dyes, slidability imparting agents, conductivity imparting substances, fiber reinforcing agents, thermal conductivity imparting agents, fillers, polymer materials other than copolymer A, modifiers, crystal nucleating agents. Examples thereof include a foaming agent, a foam nucleating agent, a crosslinking agent, an antioxidant, a light stabilizer, and an ultraviolet absorber. As a specific example, what is illustrated by patent document 1, for example can be used.
The content of other components can be appropriately selected according to the properties to be imparted. 1 type (s) or 2 or more types can be used for another component.
〔含フッ素共重合体組成物〕
 本発明の組成物Aは、下記式(i)~(iii)を満足する。
 α≧10…(i)
 0.8≦α24/α≦1.2…(ii)
 0.8≦α96/α≦1.2…(iii)
 ただし、上記式中の記号は、以下を意味する。
 α:組成物Aの297℃、荷重49Nにおける容量流速(単位:g/10分)。
 α24:組成物Aからなる直径2.0~3.0mm、長さ2.0~3.0mmのペレットを225℃で24時間加熱した後の組成物Aの297℃、荷重49Nにおける容量流速(単位:g/10分)。
 α96:組成物Aからなる直径2.0~3.0mm、長さ2.0~3.0mmのペレットを225℃で96時間加熱した後の組成物Aの297℃、荷重49Nにおける容量流速(単位:g/10分)。
[Fluorine-containing copolymer composition]
The composition A of the present invention satisfies the following formulas (i) to (iii).
α 0 ≧ 10 (i)
0.8 ≦ α 24 / α 0 ≦ 1.2 (ii)
0.8 ≦ α 96 / α 0 ≦ 1.2 (iii)
However, the symbol in the said formula means the following.
α 0 : Volumetric flow rate of composition A at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
α 24 : Capacity flow rate at 297 ° C. and load of 49 N of composition A after heating a pellet of composition A having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 24 hours (Unit: g / 10 minutes).
α 96 : Capacity flow rate at 297 ° C. and load 49 N of composition A after heating a pellet of composition A having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 96 hours (Unit: g / 10 minutes).
 αは、共重合体Aと、酸化銅と、必要に応じて使用される他の成分とを溶融混練して得られた組成物Aについて、225℃での加熱を行う前の容量流速である。
 αが、式(i)に記載された範囲の下限値以上であると、組成物Aの成形性が優れ、式(i)に記載された範囲の上限値以下であると、組成物Aの成形体の機械的強度、耐ストレスクラック性が優れる。
 なお、組成物Aが、高温での熱履歴を一定以上受けたものである場合、αは、式(i)に記載された範囲の下限値未満となりやすい。
 αは、使用する共重合体Aの容量流速を調整することにより、制御できる。
α 0 is a volume flow rate before heating at 225 ° C. for composition A obtained by melt-kneading copolymer A, copper oxide, and other components used as necessary. is there.
If α 0 is not less than the lower limit value of the range described in formula (i), the moldability of composition A is excellent, and if it is not more than the upper limit value of the range described in formula (i), composition A The molded article has excellent mechanical strength and stress crack resistance.
In addition, when the composition A has received a certain level of heat history at high temperature, α 0 tends to be less than the lower limit of the range described in the formula (i).
α 0 can be controlled by adjusting the volume flow rate of the copolymer A used.
 αは、下記式(ia)を満足することが好ましく、下記式(ib)を満足することがより好ましい。
 10≦α≦50…(ia)
 15≦α≦35…(ib)
α 0 preferably satisfies the following formula (ia), and more preferably satisfies the following formula (ib).
10 ≦ α 0 ≦ 50 (ia)
15 ≦ α 0 ≦ 35 (ib)
 α24/αは、組成物Aを直径2.0~3.0mm、長さ2.0~3.0mmのペレットに成形し、該ペレットを225℃で24時間加熱したときの、225℃での加熱を行う前の容量流速に対する組成物Aの容量流量変化率を意味する。α96/αは、組成物Aを直径2.0~3.0mm、長さ2.0~3.0mmのペレットに成形し、該ペレットを225℃で96時間加熱したときの、225℃での加熱を行う前の容量流速に対する組成物Aの容量流量変化率を意味する。
 なお、加熱に供するペレットは、各ペレットのそれぞれが、直径2.0~3.0mm、長さ2.0~3.0mmの範囲内にあればよく、この範囲内で、ペレット同士の直径、長さが互いに異なっていてもよい。
 α24/αが式(ii)に記載された範囲内であって、かつ、α96/αが式(iii)に記載された範囲内である組成物Aの成形体は、加熱による容量流速変化率が少なく、より高温での耐ストレスクラック性に優れる。
α 24 / α 0 is 225 ° C. when the composition A was formed into pellets having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm, and the pellets were heated at 225 ° C. for 24 hours. The volume flow rate change rate of the composition A with respect to the capacity | capacitance flow velocity before performing heating by is meant. α 96 / α 0 is 225 ° C. when the composition A was formed into pellets having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm, and the pellets were heated at 225 ° C. for 96 hours. The volume flow rate change rate of the composition A with respect to the capacity | capacitance flow velocity before performing heating by is meant.
Note that the pellets to be heated only need to have a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm. Within this range, the diameter of the pellets, The lengths may be different from each other.
The molded body of composition A in which α 24 / α 0 is in the range described in formula (ii) and α 96 / α 0 is in the range described in formula (iii) The rate of change in the capacity flow rate is small, and the resistance to stress cracking at higher temperatures is excellent.
 本発明者は、組成物Aの成形体の高温での耐ストレスクラック性について検討したところ、組成物Aを225℃で加熱した際の容量流速の挙動と、該組成物Aの成形体の高温での耐ストレスクラック性との間に、関係があることを見出した。
 具体的には、加熱時間が0~約24時間の範囲においては、加熱時間の経過にともなって容量流速が顕著に増加し、加熱時間が約24時間~約96時間の範囲においては、加熱時間の経過にともなって容量流速が顕著に低下する組成物Aの成形体は、高温での耐ストレスクラック性が不充分な傾向にあることを見出した。
 そこで、本発明者は、24時間加熱したときの組成物Aの容量流速α24の値と、96時間加熱したときの組成物Aの容量流速α96の値に着目し、さらに検討を進めた。
 その結果、24時間加熱したときの容量流速変化率、すなわちα24/αが式(ii)に記載された範囲内であって、かつ、96時間加熱したときの容量流速変化率、すなわちα96/αが式(iii)に記載された範囲内である組成物Aの成形体は、より高温での耐ストレスクラック性が優れることを見出した。
The inventor examined the stress crack resistance at high temperature of the molded article of the composition A. As a result, the behavior of the capacity flow rate when the composition A was heated at 225 ° C. and the high temperature of the molded article of the composition A were investigated. It has been found that there is a relationship with the stress crack resistance in
Specifically, when the heating time is in the range of 0 to about 24 hours, the capacity flow rate increases remarkably as the heating time elapses, and when the heating time is in the range of about 24 hours to about 96 hours, the heating time is increased. It was found that the molded body of the composition A, in which the capacity flow rate significantly decreases with the passage of time, tends to have insufficient stress crack resistance at high temperatures.
Therefore, the present inventor focused further on the value of the volumetric flow rate α 24 of the composition A when heated for 24 hours and the value of the volumetric flow rate α 96 of the composition A when heated for 96 hours, and further studied. .
As a result, the capacity flow rate change rate when heated for 24 hours, that is, α 24 / α 0 is in the range described in the formula (ii), and the capacity flow rate change rate when heated for 96 hours, that is, α It was found that the molded article of composition A having 96 / α 0 in the range described in formula (iii) has excellent stress crack resistance at higher temperatures.
 加熱時間が0~約24時間の範囲においては、加熱時間の経過にともなって容量流速が顕著に増加してα24/αが式(ii)に記載された範囲の上限値を超え、かつ、加熱時間が約24時間~約96時間の範囲においては、加熱時間の経過にともなって容量流速が顕著に低下してα96/αが式(iii)に記載された範囲の下限値未満となる組成物Aは、加熱時間が0~約24時間の範囲においては、主に分解が進行し、加熱時間が約24時間~約96時間の範囲においては、分解により生じた成分が架橋する等しているものと推測できる。
 これに対して、α24/αが式(ii)を満足し、かつ、α96/αが式(iii)を満足する組成物Aは、長時間の加熱によっても分解しにくく、そのため、架橋もしにくいものと考えられる。これに起因して、式(ii)および式(iii)を満足する組成物Aの成形体は、より高温での耐ストレスクラック性に優れるものと考えられる。
 このように24時間加熱したときの容量流量変化率α24/αと、96時間加熱したときの容量流量変化率α96/αは、成形体の高温での耐ストレスクラック性の指標となる。
When the heating time is in the range of 0 to about 24 hours, the capacity flow rate increases remarkably as the heating time elapses, and α 24 / α 0 exceeds the upper limit of the range described in formula (ii), and When the heating time is in the range of about 24 hours to about 96 hours, the capacity flow rate is remarkably lowered with the elapse of the heating time, and α 96 / α 0 is less than the lower limit value of the range described in the formula (iii) In composition A, the decomposition mainly proceeds when the heating time is in the range of 0 to about 24 hours, and the components generated by the decomposition are crosslinked when the heating time is in the range of about 24 to about 96 hours. It can be inferred that they are equal.
On the other hand, the composition A in which α 24 / α 0 satisfies the formula (ii) and α 96 / α 0 satisfies the formula (iii) is hardly decomposed even by heating for a long time. It is considered that crosslinking is difficult. Due to this, it is considered that the molded product of the composition A satisfying the formulas (ii) and (iii) is excellent in stress crack resistance at higher temperatures.
Thus, the capacity flow rate change rate α 24 / α 0 when heated for 24 hours and the capacity flow rate change rate α 96 / α 0 when heated for 96 hours are an index of stress crack resistance at high temperatures of the molded body. Become.
 α24/α、およびα96/αは、たとえば、共重合体Aの製造時にアルコールからなる連鎖移動剤を使用して、水酸基含有末端基を導入し、かつ、酸化銅を添加することにより、好適な範囲に調整できる。また、酸化銅の添加量により、α24/αおよびα96/αを調整することもできる。 α 24 / α 0 and α 96 / α 0 may be, for example, introducing a hydroxyl group-containing end group and adding copper oxide using a chain transfer agent composed of an alcohol during the production of the copolymer A. Thus, it can be adjusted to a suitable range. Moreover, (alpha) 24 / (alpha) 0 and (alpha) 96 / (alpha) 0 can also be adjusted with the addition amount of a copper oxide.
 α24/αは、下記式(iia)を満足することが好ましく、下記式(iib)を満足することがより好ましい。
 α96/αは、下記式(iiia)を満足することが好ましい。
α 24 / α 0 preferably satisfies the following formula (ia), and more preferably satisfies the following formula (iib).
α 96 / α 0 preferably satisfies the following formula (iii).
 0.85≦α24/α≦1.0…(iia)
 0.9≦α24/α≦1.0…(iib)
 0.8≦α96/α≦1.0…(iiia)
0.85 ≦ α 24 / α 0 ≦ 1.0 (iii)
0.9 ≦ α 24 / α 0 ≦ 1.0 (iib)
0.8 ≦ α 96 / α 0 ≦ 1.0 (iii)
 組成物Aは、共重合体Aと、酸化銅と、必要に応じて使用される他の成分とを公知の方法で溶融混練することにより製造できる。本発明の組成物Aは、耐熱性に優れ、熱劣化が著しく抑制されているため、高温成形が可能である。
 溶融混練(押出機のシリンダー温度)は、250~320℃、30秒間~10分間の条件で行うことが好ましい。
 以上説明したように、本発明の組成物Aは、高温での剛性に優れるとともに、より高温での耐ストレスクラック性に優れる成形体を成形できる。そのため、耐熱性が必要な電線被覆材を形成するための電線被覆材料として好適に使用される。
The composition A can be produced by melt-kneading the copolymer A, copper oxide, and other components used as necessary by a known method. Since the composition A of the present invention is excellent in heat resistance and the thermal deterioration is remarkably suppressed, high temperature molding is possible.
The melt kneading (cylinder temperature of the extruder) is preferably performed under conditions of 250 to 320 ° C. and 30 seconds to 10 minutes.
As described above, the composition A of the present invention can be molded into a molded article having excellent rigidity at high temperatures and excellent stress crack resistance at higher temperatures. Therefore, it is suitably used as a wire covering material for forming a wire covering material that requires heat resistance.
〔成形体〕
 本発明の成形体は、上述した本発明の組成物Aを、射出成形、押出成形、ブロー成形、プレス成形、回転成形、静電塗装等の従来公知の成形方法により成形加工したものである。
 また、本発明の組成物Aを成形して得られる成形体は、高温での剛性に優れるとともに、耐ストレスクラック性に優れるため、(1)ロボット、電動機、発電機、変圧器等の電気機械、家庭用電気機器の電線被覆材、(2)電話、無線機等の通信用伝送機器の電線被覆材、(3)コンピュータ・データ通信機器・端末機器等の電子機器の電線被覆材、(4)鉄道車両用電線被覆材、(5)自動車用電線被覆材、(6)航空機用電線被覆材、(7)船舶用電線被覆材、(8)ビル・工場幹線、発電所、石油化学・製鉄プラント等のシステム構成用電線被覆材等、各種機器類の電線被覆材の用途に好適に用いることができる。
 また、本発明の成形体は、チューブ、シート、フィルム、フィラメント、ポンプケーシング、継ぎ手類、パッキング、ライニング、コーティング等にも使用できる。
[Molded body]
The molded body of the present invention is obtained by molding the composition A of the present invention described above by a conventionally known molding method such as injection molding, extrusion molding, blow molding, press molding, rotational molding, electrostatic coating, or the like.
Moreover, since the molded object obtained by shape | molding the composition A of this invention is excellent in the rigidity in high temperature and stress crack resistance, (1) Electric machines, such as a robot, an electric motor, a generator, a transformer , Wire covering materials for household electrical equipment, (2) wire covering materials for communication transmission equipment such as telephones and radios, (3) wire covering materials for electronic equipment such as computers, data communication equipment and terminal equipment, (4 ) Railway wire covering material, (5) Automotive wire covering material, (6) Aircraft wire covering material, (7) Ship wire covering material, (8) Building / factory trunk line, power plant, petrochemical / steel manufacturing It can use suitably for the use of the electric wire coating material of various apparatuses, such as the electric wire coating material for system structures, such as a plant.
The molded product of the present invention can also be used for tubes, sheets, films, filaments, pump casings, joints, packing, lining, coating, and the like.
 [被覆電線]
 本発明は、また、前記組成物Aから形成された被覆層を有する被覆電線である。組成物Aから形成された被覆層は、高温での剛性に優れるとともに、より高温での耐ストレスクラック性に優れる。そのため、この被覆層を有する被覆電線は、耐熱性が必要な被覆電線として好適である。
 導体としては、銅、アルミニウム、銀、白金、金等が挙げられ、銅が軽量化、導電性の点で好ましい。また、銅の導体については硬銅線と軟銅線が使用され、特に導体の柔軟性が高く、ストレスによる変形が低減される点で軟銅線が特に好ましい。
 また、導体を構成する素線の撚り種類としては、同芯撚りと集合撚りのいずれであってもよいが、同心撚りの方が、ストレス付与時に変形し難い点でより好ましい。
[Coated wire]
The present invention is also a coated electric wire having a coating layer formed from the composition A. The coating layer formed from the composition A is excellent in rigidity at a high temperature and stress crack resistance at a higher temperature. Therefore, the covered electric wire having this covering layer is suitable as a covered electric wire that requires heat resistance.
Examples of the conductor include copper, aluminum, silver, platinum, and gold, and copper is preferable in terms of weight reduction and conductivity. In addition, a hard copper wire and a soft copper wire are used as the copper conductor, and the soft copper wire is particularly preferable in that the conductor has high flexibility and deformation due to stress is reduced.
In addition, the type of twisting of the strands constituting the conductor may be either concentric twisting or collective twisting, but concentric twisting is more preferable because it is difficult to deform when stress is applied.
 本発明の被覆電線としては、下記式(iv)で表される変化率が11%以下である被覆電線が好ましい。
  |D-D|/D×100 …(iv)
 ただし、式中の記号は以下を意味する。
  D:自己径巻き付け前の、被覆電線の径[mm]
  D:自己径巻き付け後の、巻き付けた被覆電線の最大径[mm]
 (ただし、自己径巻き付けとは、被覆電線自体に、該被覆電線を隙間なく12回巻き付けることを意味する。また、最大径とは、巻き付けた被覆電線の1巻き毎の径を、12巻きそれぞれについて測定し、得られた径の中の最大値である。)
As the covered electric wire of the present invention, a covered electric wire having a change rate represented by the following formula (iv) of 11% or less is preferable.
| D 1 -D 0 | / D 0 × 100 (iv)
However, the symbol in a formula means the following.
D 0 : Diameter of covered electric wire before self-winding [mm]
D 1 : Maximum diameter [mm] of the wound covered electric wire after self-diameter winding
(However, self-diameter winding means that the covered electric wire is wound around the covered electric wire itself 12 times without a gap. Further, the maximum diameter means the diameter of each winding of the wound covered electric wire by 12 turns. Is the maximum of the diameters obtained and measured.)
 上記変化率の測定における自己径巻きつけについて、図2を用いて説明する。
 径がDである1本の被覆電線を折り曲げてから折り曲げ部を固定し、折り曲げ部から伸びた一方の辺を被覆電線1、他方の辺を被覆電線2として使用する。被覆電線1の径Dを維持したまま、その周囲に被覆電線2を隙間を生じないように12回巻き付けて、自己径巻き付け被覆電線3とする。自己径巻き付け被覆電線3において、巻き付けた被覆電線2の1巻き毎の径を、12巻きそれぞれについて測定し、得られた径の中の最大値をDとする。
 なお、実施例の耐ストレスクラック性評価においても、上記と同様に自己径巻き付け被覆電線3を作製して、それを成形体試料として用いた評価である。
The self-diameter winding in the measurement of the change rate will be described with reference to FIG.
One bent electric wire having a diameter D 0 is bent and then the bent portion is fixed, and one side extending from the bent portion is used as the covered electric wire 1 and the other side is used as the covered electric wire 2. While maintaining the diameter D 0 of the covered electric wire 1, the covered electric wire 2 is wound 12 times so as not to generate a gap around it, thereby obtaining a self-diameter-wrapped covered electric wire 3. In the self-diameter winding covered wires 3, the diameter of each turn of the covered electric wire 2 wound was measured for 12 turns, respectively, the maximum value among the obtained diameter is D 1.
In the stress crack resistance evaluation of the examples, the self-diameter wrapping covered electric wire 3 is produced in the same manner as described above and used as a molded body sample.
 使用される導体が荷重または巻き付けストレスによって変形し難いものは、被覆層として使用される成形体へのストレスが低減されることから、被覆電線の耐ストレスクラック性に優れる。被覆電線の自己径巻き付け時の変形率が大きくなると、導体とともに被覆される被覆層の曲げ半径が小さくなり、被覆層に付与されるストレスが過大となる。
 また、被覆電線の変形率は11%以下であることが好ましく、7%以下がより好ましく、4%以下がさらに好ましい。上限値を超えると、被覆される被覆層の曲げ半径が小さくなり、被覆層に付与されるストレスが過大となることから被覆層として使用される成形体の耐ストレスクラック性が悪くなる。
When the conductor used is difficult to be deformed by a load or a winding stress, the stress to the molded body used as the coating layer is reduced, and therefore the coated wire is excellent in stress crack resistance. If the deformation rate at the time of self-winding of the covered electric wire increases, the bending radius of the covering layer covered with the conductor becomes small, and the stress applied to the covering layer becomes excessive.
The deformation rate of the covered electric wire is preferably 11% or less, more preferably 7% or less, and further preferably 4% or less. When the upper limit is exceeded, the bending radius of the coating layer to be coated becomes small, and the stress applied to the coating layer becomes excessive, so that the stress crack resistance of the molded body used as the coating layer is deteriorated.
 以下に実施例を挙げて、本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種評価方法、測定方法を以下に示す。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.
Various evaluation methods and measurement methods are shown below.
[共重合組成(モル%)および末端基の分析]
 共重合体の共重合組成(各繰り返し単位の含有量)は、フーリエ変換型赤外分光光度計(FT-IR)測定の結果から算出した。
 末端基については、フーリエ変換型赤外分光光度計測定により確認した。
[Analysis of copolymer composition (mol%) and end groups]
The copolymer composition (content of each repeating unit) of the copolymer was calculated from the results of Fourier transform infrared spectrophotometer (FT-IR) measurement.
The terminal group was confirmed by Fourier transform infrared spectrophotometer measurement.
[平均粒径]
 平均粒径は、Sympatec社製レーザー回折式粒度分布測定装置「HELOS-RODOS」を用いて測定した。
[Average particle size]
The average particle size was measured using a laser diffraction particle size distribution analyzer “HELOS-RODOS” manufactured by Sympatec.
[BET比表面積]
 BET比表面積は、CarloErba社製「SORPTY-1750」を用い、窒素ガス吸着BET法により測定した。
[BET specific surface area]
The BET specific surface area was measured by a nitrogen gas adsorption BET method using “SORPTY-1750” manufactured by Carlo Erba.
[融点(℃)]
 共重合体の融点は、走査型示差熱分析器(日立ハイテクサイエンス社製「DSC7020(商品名)」)を用いて、空気雰囲気下、10℃/分で300℃まで昇温し、共重合体を加熱した際の吸熱ピークに対応する温度である。
[Melting point (° C)]
The melting point of the copolymer was raised to 300 ° C. at 10 ° C./min in an air atmosphere using a scanning differential thermal analyzer (“DSC7020 (trade name)” manufactured by Hitachi High-Tech Science Co., Ltd.). Is the temperature corresponding to the endothermic peak when the is heated.
[容量流速]
 テクノセブン社製のメルトフローテスタを用いて、温度297℃、荷重49Nの条件で、直径2.1mm、長さ8mmのオリフィス中に試料を押し出すときの押出し速度(g/10分)を求め、これを容量流速とした。
(1)共重合体の容量流速
 上記方法により容量流速を測定した。
(2)α
 得られた組成物(比較例1および2については共重合体のみ。)について、上記方法により容量流速αを測定した。
(3)α24
 製造した組成物(比較例1および2については共重合体のみ。)のペレット(質量:5g、直径2.0~3.0mm、長さ2.0~3.0mm)を炉内温度225℃の加熱炉(大気雰囲気)内に入れ、24時間保持した。その後、組成物を加熱炉から取り出して室温まで放冷した後、上記方法により容量流速α24を測定した。
(4)α96
 製造した組成物(比較例1および2については含フッ素共重合体のみ。)のペレット(質量:5g、直径2.0~3.0mm、長さ2.0~3.0mm)を炉内温度が225℃の加熱炉(大気雰囲気)内に入れ、96時間保持した。その後、組成物を加熱炉から取り出して室温まで放冷した後、上記方法により容量流速α96を測定した。
[Capacity flow rate]
Using a melt flow tester manufactured by Techno Seven, the extrusion speed (g / 10 minutes) when extruding a sample into an orifice having a diameter of 2.1 mm and a length of 8 mm was obtained under the conditions of a temperature of 297 ° C. and a load of 49 N. This was the volume flow rate.
(1) Volume flow rate of copolymer The volume flow rate was measured by the above method.
(2) α 0
With respect to the obtained compositions (for Comparative Examples 1 and 2, only the copolymer), the volume flow rate α 0 was measured by the above method.
(3) α 24
The pellets (mass: 5 g, diameter 2.0-3.0 mm, length 2.0-3.0 mm) of the produced composition (comparison only for Comparative Examples 1 and 2) were subjected to a furnace temperature of 225 ° C. In a heating furnace (atmosphere) and kept for 24 hours. Thereafter, the composition was removed from the heating furnace and allowed to cool to room temperature, and then the capacity flow rate α 24 was measured by the above method.
(4) α 96
The pellets (mass: 5 g, diameter 2.0 to 3.0 mm, length 2.0 to 3.0 mm) of the produced composition (for the comparative examples 1 and 2 only the fluorine-containing copolymer) were heated in the furnace. Was placed in a heating furnace (atmosphere) at 225 ° C. and held for 96 hours. Thereafter, the composition was taken out of the heating furnace and allowed to cool to room temperature, and then the volume flow rate α 96 was measured by the above method.
[耐ストレスクラック性評価]
 口径が30mmの押出し機にて、1.8mmの芯線(スズメッキ銅撚線)に被覆厚0.5mmで、組成物からなる成形体(比較例1および2については共重合体のみからなる成形体。)を被覆した。
 条件は以下の通りである。
 成形温度:320℃。
 DDR(Draw-Down Ratio):16。
 引き取り速度:10m/分。
 上記のように被覆した電線を5℃刻みの所定温度で96時間アニール処理した。アニール処理後、電線を電線自体に12巻まきつけ(自己径巻きつけ)、成形体試料を作製した。次に、この成形体試料をギヤオーブンで225℃、1時間暴露し、クラックの有無を確認した。サンプル数は5個とした。
 5個すべての成形体試料にクラックが発生する最低アニール温度(T1)と、5個すべての成形体試料にクラックが発生しない最高アニール温度(T2)を求め、これらの値を下記式に代入し、ストレスクラック温度(Tb)を求めた。
 ストレスクラック温度(Tb)とは、上記の実験で求めた、成形体試料の50%が割れるアニール温度である。ストレスクラック温度が高いほど、耐ストレスクラック性が高いことになる。ストレスクラック温度は、205℃以上が好ましく、210℃以上がより好ましい。
 Tb=T1-ΔT(S/100-1/2)
 ただし、上記式中の記号は、以下を意味する。
 Tb:ストレスクラック温度、
 T1:全成形体試料にクラックが発生する最低アニール温度、
 ΔT:アニール温度の間隔(5℃)、
 S:全成形体試料にクラックが発生しない最高アニール温度(T2)から全成形体試料にクラックが発生する最低アニール温度(T1)までの各温度におけるクラックの発生確率(たとえば成形体試料5本のうち2本にクラックが発生した場合には、発生確率は2/5=0.4となる。)の総和。
[Stress crack resistance evaluation]
A molded body made of a composition with a coating thickness of 0.5 mm on a 1.8 mm core wire (tin-plated copper stranded wire) in an extruder having a diameter of 30 mm (for Comparative Examples 1 and 2, a molded body made only of a copolymer) .) Was coated.
The conditions are as follows.
Molding temperature: 320 ° C.
DDR (Draw-Down Ratio): 16.
Take-off speed: 10 m / min.
The wire coated as described above was annealed at a predetermined temperature in increments of 5 ° C. for 96 hours. After the annealing treatment, the electric wire was wound around the electric wire itself (self-winding) to prepare a molded body sample. Next, this molded body sample was exposed in a gear oven at 225 ° C. for 1 hour to check for cracks. The number of samples was 5.
Obtain the lowest annealing temperature (T1) at which cracks occur in all five molded body samples and the maximum annealing temperature (T2) at which cracks do not occur in all five molded body samples, and assign these values to the following equation. The stress crack temperature (Tb) was determined.
The stress crack temperature (Tb) is an annealing temperature obtained by the above experiment, at which 50% of the molded body sample is broken. The higher the stress crack temperature, the higher the stress crack resistance. The stress crack temperature is preferably 205 ° C. or higher, and more preferably 210 ° C. or higher.
Tb = T1-ΔT (S / 100-1 / 2)
However, the symbol in the said formula means the following.
Tb: stress crack temperature,
T1: the lowest annealing temperature at which cracks occur in all molded body samples,
ΔT: Annealing temperature interval (5 ° C.),
S: Probability of occurrence of cracks at each temperature from the highest annealing temperature (T2) at which no cracks are generated in all the molded body samples to the lowest annealing temperature (T1) at which cracks are generated in all the molded body samples (for example, five molded sample samples) When cracks occur in two of them, the probability of occurrence is 2/5 = 0.4).
 [変形率]
 前記耐ストレスクラック性試験で被覆した電線を、アニール処理せずに、自己径巻き付けを12回行った。巻き付け前の被覆電線の径と、巻き付けた被覆電線の1巻き毎の径の最大値から、変形率を求めた。
[Deformation rate]
The electric wire covered by the stress crack resistance test was subjected to self-diameter winding 12 times without annealing. The deformation rate was determined from the diameter of the covered electric wire before winding and the maximum value of the diameter of each winding of the wound covered electric wire.
[実施例1]
 内容積が430リットルの撹拌機付き重合槽を脱気して、CF(CFHの418.2kg、PFBEの2.12kg、メタノールの3.4kgを仕込み、攪拌しながら66℃まで昇温し、TFE/エチレン=84/16(モル%)の混合ガスを1.5MPaG(ゲージ圧)になるまで導入し、50質量%tert-ブチルペルオキシピバレートのCF(CFH溶液の26gとCF(CFHの4974gを混合した溶液を注入し、重合を開始した。重合中は、圧力が1.5MPaGとなるようにTFE/エチレン=54/46(モル%)の混合ガスと、該混合ガスの100モル%に対して1.9モル%に相当する量のPFBEを連続的に添加し、TFE/エチレン混合ガスを34kg仕込んだ後にオートクレーブを冷却し、残留ガスをパージし、重合を終了させた。
 得られた共重合体のスラリーを850リットルの造粒槽へ移し、340Lの水を加えて攪拌しながら加熱し、重合媒体や残留モノマーを除去し造粒物を得た。
 得られた造粒物を150℃で5時間乾燥して、共重合体の造粒物の34kgを得た。
 得られた共重合体の共重合組成、融点、容量流速を表1に示す。なお、表1中、モノマー単位名はモノマー名で示し、表1中の「Tb」はストレスクラック温度を示す。
 また、共重合体の末端基をフーリエ変換型赤外分光光度計測定により確認したところ、水酸基に起因する3650cm-1付近でのピークが確認された。
[Example 1]
The polymerization tank with a stirrer with an internal volume of 430 liters was deaerated, and 418.2 kg of CF 3 (CF 2 ) 5 H, 2.12 kg of PFBE, and 3.4 kg of methanol were charged to 66 ° C. while stirring. The temperature was raised, and a mixed gas of TFE / ethylene = 84/16 (mol%) was introduced until the pressure became 1.5 MPaG (gauge pressure), and CF 3 (CF 2 ) 5 H of 50 mass% tert-butylperoxypivalate. A solution in which 26 g of the solution and 4974 g of CF 3 (CF 2 ) 5 H were mixed was injected to initiate polymerization. During the polymerization, a mixed gas of TFE / ethylene = 54/46 (mol%) so that the pressure is 1.5 MPaG, and an amount of PFBE corresponding to 1.9 mol% with respect to 100 mol% of the mixed gas. Was continuously added, and 34 kg of TFE / ethylene mixed gas was charged, and then the autoclave was cooled, the residual gas was purged, and the polymerization was terminated.
The obtained copolymer slurry was transferred to a 850 liter granulation tank, 340 L of water was added and heated with stirring to remove the polymerization medium and residual monomer, and a granulated product was obtained.
The obtained granulated product was dried at 150 ° C. for 5 hours to obtain 34 kg of a granulated product of the copolymer.
Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained. In Table 1, the monomer unit name is indicated by the monomer name, and “Tb” in Table 1 indicates the stress crack temperature.
Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometry, a peak in the vicinity of 3650 cm −1 due to the hydroxyl group was confirmed.
 得られた造粒物の100質量部に対し、酸化第2銅(平均粒径0.8μm、BET比表面積12m/g)を0.00045質量部添加し、口径が30mmの押出機にて、シリンダー温度260~300℃、ダイス温度250℃、スクリュ回転数30rpmの条件で溶融押出しを行い、組成物のペレットを作製した。以下、得られた組成物を組成物1という。以下の実施例、比較例において得られた組成物や共重合体についても同様に名づけた。
 得られたペレットを電線の被覆に用い、上記方法にて、耐ストレスクラック性評価を行ってストレスクラック温度を求めた。
 また、上記方法により、α、α24、α96を測定し、α24/α、α96/αを算出した。
 結果を表1に示す。
To 100 parts by mass of the obtained granulated product, 0.00045 parts by mass of cupric oxide (average particle size 0.8 μm, BET specific surface area 12 m 2 / g) was added, and an extruder having a diameter of 30 mm was used. Then, melt extrusion was carried out under the conditions of a cylinder temperature of 260 to 300 ° C., a die temperature of 250 ° C., and a screw rotation speed of 30 rpm, to produce pellets of the composition. Hereinafter, the obtained composition is referred to as Composition 1. The compositions and copolymers obtained in the following examples and comparative examples were similarly named.
The obtained pellet was used for covering the electric wire, and stress crack resistance was evaluated by the above method to determine the stress crack temperature.
Further, α 0 , α 24 , and α 96 were measured by the above method, and α 24 / α 0 and α 96 / α 0 were calculated.
The results are shown in Table 1.
 図1に、実施例1で得られた組成物1のペレット(質量:5g、直径2.4~2.5mm、長さ2.5mm)を炉内温度225℃の加熱炉(大気雰囲気)内に入れ、0~96時間加熱したときの容量流速変化率のグラフを示す。
 横軸は加熱時間(n時間)であり、縦軸は容量流速変化率(α/α)である。
 各プロットは、n=1時間、8時間、24時間、48時間、96時間のデータである。また、α=26.1(g/10min)、α=25.2(g/10min)、α48=24.4(g/10min)であった。α、α24、α96は、表1に記載のとおりである。
 各加熱時間における容量流速αは、ペレットを加熱炉から取り出して室温まで放冷した後、先に説明した方法で測定した。
FIG. 1 shows a pellet of the composition 1 obtained in Example 1 (mass: 5 g, diameter 2.4 to 2.5 mm, length 2.5 mm) in a heating furnace (atmosphere) having a furnace temperature of 225 ° C. The graph of the rate of change of the volume flow rate when heated for 0 to 96 hours is shown.
The horizontal axis is the heating time (n hours), and the vertical axis is the capacity flow rate change rate (α n / α 0 ).
Each plot is data of n = 1 hour, 8 hours, 24 hours, 48 hours, and 96 hours. Further, α 1 = 26.1 (g / 10 min), α 8 = 25.2 (g / 10 min), and α 48 = 24.4 (g / 10 min). α 0 , α 24 and α 96 are as described in Table 1.
The capacity flow rate α n in each heating time was measured by the method described above after the pellet was taken out of the heating furnace and allowed to cool to room temperature.
[実施例2]
 実施例1で製造した共重合体を用い、酸化第2銅の添加量を0.00065質量部に変更した以外は、実施例1と同様にして、組成物2のペレットを作製し、実施例1と同様の測定および算出を行った。
 結果を表1に示す。
[Example 2]
A pellet of composition 2 was prepared in the same manner as in Example 1 except that the copolymer produced in Example 1 was used and the addition amount of cupric oxide was changed to 0.00065 parts by mass. Measurements and calculations similar to those of 1 were performed.
The results are shown in Table 1.
[実施例3]
 連続的に添加するPFBEの量を、TFE/エチレン=54/46(モル%)の混合ガスの100モル%に対してに対して2.1モル%に相当する量とした以外は、実施例1と同様な方法で重合し、造粒物を150℃で5時間乾燥して、共重合体の造粒物の34kgを得た。
 得られた共重合体の共重合組成、融点、容量流速を表1に示す。
 また、共重合体の末端基をフーリエ変換型赤外分光光度計測定により確認したところ、水酸基に起因する3650cm-1付近でのピークが確認された。
[Example 3]
Example except that the amount of PFBE to be continuously added was 2.1 mol% with respect to 100 mol% of the mixed gas of TFE / ethylene = 54/46 (mol%). Polymerization was conducted in the same manner as in No. 1, and the granulated product was dried at 150 ° C. for 5 hours to obtain 34 kg of a granulated product of the copolymer.
Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained.
Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometry, a peak in the vicinity of 3650 cm −1 due to the hydroxyl group was confirmed.
 得られた造粒物の100質量部に対し、実施例1で用いたものと同じ酸化第2銅を0.00045質量部添加した以外は、実施例1と同様に溶融押出しを行い、組成物3のペレットを作製した。
 得られたペレットを用いた以外は実施例1と同様にして、耐ストレスクラック性評価を行ってストレスクラック温度を求めた。
 また、上記方法により、α、α24、α96を測定し、α24/α、α96/αを算出した。
 結果を表1に示す。
Except that 0.00045 parts by mass of the same cupric oxide used in Example 1 was added to 100 parts by mass of the obtained granulated product, melt extrusion was performed in the same manner as in Example 1 to obtain a composition. 3 pellets were produced.
Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used.
Further, α 0 , α 24 , and α 96 were measured by the above method, and α 24 / α 0 and α 96 / α 0 were calculated.
The results are shown in Table 1.
[実施例4]
 連続的に添加するPFBEの量を、TFE/エチレン=54/46(モル%)の混合ガスの100モル%に対して1.6モル%に相当する量とした以外は、実施例1と同様な方法で重合し、造粒物を150℃で5時間乾燥して、共重合体の造粒物の34kgを得た。
 得られた共重合体の共重合組成、融点、容量流速を表1に示す。
 また、該共重合体の末端基をフーリエ変換型赤外分光光度計測定により確認したところ、水酸基に起因する3650cm-1付近でのピークが確認された。
[Example 4]
The amount of PFBE added continuously was the same as in Example 1 except that the amount was equivalent to 1.6 mol% with respect to 100 mol% of the mixed gas of TFE / ethylene = 54/46 (mol%). The granulated product was dried at 150 ° C. for 5 hours to obtain 34 kg of a granulated product of the copolymer.
Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained.
Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometer measurement, a peak in the vicinity of 3650 cm −1 due to the hydroxyl group was confirmed.
 得られた造粒物の100質量部に対し、実施例1で用いたものと同じ酸化第2銅を0.00045質量部添加した以外は、実施例1と同様に溶融押出しを行い、組成物4のペレットを作製した。
 得られたペレットを用いた以外は実施例1と同様にして、耐ストレスクラック性評価を行ってストレスクラック温度を求めた。
 また、上記方法により、α、α24、α96を測定し、α24/α、α96/αを算出した。
 結果を表1に示す。
Except that 0.00045 parts by mass of the same cupric oxide used in Example 1 was added to 100 parts by mass of the obtained granulated product, melt extrusion was performed in the same manner as in Example 1 to obtain a composition. 4 pellets were produced.
Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used.
Further, α 0 , α 24 , and α 96 were measured by the above method, and α 24 / α 0 and α 96 / α 0 were calculated.
The results are shown in Table 1.
[実施例5]
 連続的に添加するPFBEの量を、TFE/エチレン=54/46(モル%)の混合ガスに対して2.2モル%に相当する量とした以外は、実施例1と同様な方法で重合し、造粒物を150℃で5時間乾燥して、共重合体の造粒物の34kgを得た。
 得られた共重合体の共重合組成、融点、容量流速を表1に示す。
 また、該共重合体の末端基をフーリエ変換型赤外分光光度計測定により確認したところ、水酸基に起因する3650cm-1付近でのピークが確認された。
[Example 5]
Polymerization was carried out in the same manner as in Example 1 except that the amount of PFBE continuously added was changed to an amount corresponding to 2.2 mol% with respect to the mixed gas of TFE / ethylene = 54/46 (mol%). The granulated product was dried at 150 ° C. for 5 hours to obtain 34 kg of a granulated product of the copolymer.
Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained.
Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometer measurement, a peak in the vicinity of 3650 cm −1 due to the hydroxyl group was confirmed.
 得られた造粒物の100質量部に対し、実施例1で用いたものと同じ酸化第2銅を0.00030質量部添加した以外は、実施例1と同様に溶融押出しを行い、組成物5のペレットを作製した。
 得られたペレットを用いた以外は実施例1と同様にして、耐ストレスクラック性評価を行ってストレスクラック温度を求めた。
 また、上記方法により、α、α24、α96を測定し、α24/α、α96/αを算出した。
 結果を表1に示す。
Except for adding 0.00030 parts by mass of the same cupric oxide as used in Example 1 to 100 parts by mass of the obtained granulated product, melt extrusion was performed in the same manner as in Example 1 to obtain a composition. 5 pellets were produced.
Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used.
Further, α 0 , α 24 , and α 96 were measured by the above method, and α 24 / α 0 and α 96 / α 0 were calculated.
The results are shown in Table 1.
[実施例6]
 実施例5で製造した共重合体を用い、酸化第2銅の添加量を0.001質量部に変更した以外は、実施例5と同様にして、組成物6のペレットを作製し、実施例1と同様の測定および算出を行った。
 結果を表1に示す。
[Example 6]
A pellet of the composition 6 was prepared in the same manner as in Example 5 except that the amount of cupric oxide added was changed to 0.001 part by mass using the copolymer produced in Example 5. Measurements and calculations similar to those of 1 were performed.
The results are shown in Table 1.
[実施例7]
 実施例5で製造した共重合体を用い、酸化第2銅の添加量を0.0015質量部に変更した以外は、実施例5と同様にして、組成物7のペレットを作製し、実施例1と同様の測定および算出を行った。
 結果を表1に示す。
[Example 7]
A pellet of the composition 7 was prepared in the same manner as in Example 5 except that the amount of cupric oxide added was changed to 0.0015 parts by mass using the copolymer produced in Example 5. Measurements and calculations similar to those of 1 were performed.
The results are shown in Table 1.
[実施例8]
 実施例5で製造した共重合体を用い、酸化第2銅の添加量を0.0020質量部に変更した以外は、実施例5と同様にして、組成物8のペレットを作製し、実施例1と同様の測定および算出を行った。
 結果を表1に示す。
[Example 8]
A pellet of composition 8 was prepared in the same manner as in Example 5 except that the amount of cupric oxide added was changed to 0.0020 parts by mass using the copolymer produced in Example 5. Measurements and calculations similar to those of 1 were performed.
The results are shown in Table 1.
[比較例1]
 実施例5で製造した共重合体を用い、酸化第2銅を添加しない以外は、実施例1と同様にして、共重合体9のペレットを作製し、実施例1と同様の測定および算出を行った。
 結果を表1に示す。
 図1に、比較例1の共重合体9のペレット(質量:5g、直径2.4~2.6mm、長さ2.5mm)を炉内温度225℃の加熱炉(大気雰囲気)内に入れ、0~96時間加熱したときの容量流速変化率のグラフを示す。
 横軸は加熱時間(n時間)であり、縦軸は容量流速変化率(α/α)である。
 各プロットは、n=1時間、8時間、24時間、48時間、96時間のデータである。また、α=34.3(g/10min)、α=36.2(g/10min)、α48=18.1(g/10min)であった。α、α24、α96は、表1に記載のとおりである。
 各加熱時間における容量流速αは、ペレットを加熱炉から取り出して室温まで放冷した後、先に説明した方法で測定した。
[Comparative Example 1]
Using the copolymer produced in Example 5, except that cupric oxide was not added, pellets of copolymer 9 were prepared in the same manner as in Example 1, and the same measurements and calculations as in Example 1 were performed. went.
The results are shown in Table 1.
In FIG. 1, the pellets of the copolymer 9 of Comparative Example 1 (mass: 5 g, diameter 2.4 to 2.6 mm, length 2.5 mm) are placed in a heating furnace (atmosphere) having a furnace temperature of 225 ° C. The graph of the volume flow rate change rate when heated for 0 to 96 hours is shown.
The horizontal axis is the heating time (n hours), and the vertical axis is the capacity flow rate change rate (α n / α 0 ).
Each plot is data of n = 1 hour, 8 hours, 24 hours, 48 hours, and 96 hours. Α 1 = 34.3 (g / 10 min), α 8 = 36.2 (g / 10 min), and α 48 = 18.1 (g / 10 min). α 0 , α 24 and α 96 are as described in Table 1.
The capacity flow rate α n in each heating time was measured by the method described above after the pellet was taken out of the heating furnace and allowed to cool to room temperature.
[比較例2]
 内容積が94リットルの撹拌機付き重合槽を脱気して、1-ヒドロトリデカフルオロヘキサンの63.1kg、連鎖移動剤である1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(商品名「AK225cb」旭硝子社製、以下、「AK225cb」という。)の42.1kg、及びPFBEの0.7kgを仕込み、TFEの13.9kg、及びエチレンの0.5kgを圧入した。
 重合槽内を66℃に昇温し、重合開始剤溶液としてターシャリーブチルパーオキシピバレート(以下、「PBPV」という。)の1質量%のAK225cb溶液の460mLを仕込み、重合を開始させた。
 重合中、圧力が一定になるようにTFE/エチレン=60/40のモル比のモノマー混合ガスを連続的に仕込んだ。また、モノマー混合ガスの仕込みに合わせて、TFEとエチレンの合計モル数に対して2.0モル%に相当する量のPFBEを連続的に仕込んだ。
 重合開始6.0時間後、モノマー混合ガスの7.4kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに重合槽の圧力を常圧までパージした。
 得られた共重合体のスラリーを、水の77kgを仕込んだ220L(リットル)の造粒槽に投入し、次いで撹拌しながら105℃まで昇温して溶媒を留出除去しながら造粒した。得られた造粒物を150℃で5時間乾燥して、共重合体の造粒物の7.3kgを得た。
 得られた共重合体の共重合組成、融点、容量流速を表1に示す。
 また、該共重合体の末端基をフーリエ変換型赤外分光光度計測定により確認したところ、塩素基を確認でき、水酸基は確認できなかった。
[Comparative Example 2]
A polymerization tank equipped with a stirrer with an internal volume of 94 liters was degassed, and 63.1 kg of 1-hydrotridecafluorohexane and 1,3-dichloro-1,1,2,2,3- 42.1 kg of pentafluoropropane (trade name “AK225cb” manufactured by Asahi Glass Co., Ltd., hereinafter referred to as “AK225cb”) and 0.7 kg of PFBE were charged, and 13.9 kg of TFE and 0.5 kg of ethylene were injected. .
The temperature in the polymerization tank was raised to 66 ° C., and 460 mL of a 1% by mass AK225cb solution of tertiary butyl peroxypivalate (hereinafter referred to as “PBPV”) was charged as a polymerization initiator solution to initiate polymerization.
During the polymerization, a monomer mixed gas having a molar ratio of TFE / ethylene = 60/40 was continuously charged so that the pressure was constant. Further, in accordance with the charging of the monomer mixed gas, an amount of PFBE corresponding to 2.0 mol% with respect to the total number of moles of TFE and ethylene was continuously charged.
6.0 hours after the start of polymerization, when 7.4 kg of the monomer mixed gas was charged, the temperature inside the polymerization tank was lowered to room temperature, and the pressure in the polymerization tank was purged to normal pressure.
The obtained copolymer slurry was put into a 220 L (liter) granulation tank charged with 77 kg of water, and then granulated while distilling and removing the solvent by raising the temperature to 105 ° C. while stirring. The obtained granulated product was dried at 150 ° C. for 5 hours to obtain 7.3 kg of a granulated product of the copolymer.
Table 1 shows the copolymer composition, melting point, and capacity flow rate of the copolymer obtained.
Further, when the terminal group of the copolymer was confirmed by Fourier transform infrared spectrophotometer measurement, a chlorine group could be confirmed, and a hydroxyl group could not be confirmed.
 得られた造粒物について、口径が30mmの押出機にて、シリンダー温度260~300℃、ダイス温度250℃、スクリュ回転数30rpmの条件で溶融押出しを行い、共重合体10のペレットを作製した。
 得られたペレットを用いた以外は実施例1と同様にして、耐ストレスクラック性評価を行ってストレスクラック温度を求めた。
 また、上記方法により、α、α24、α96を測定し、α24/α、α96/αを算出した。
 結果を表1に示す。
The obtained granulated material was melt-extruded with an extruder having a caliber of 30 mm under the conditions of a cylinder temperature of 260 to 300 ° C., a die temperature of 250 ° C., and a screw rotation speed of 30 rpm, and a pellet of the copolymer 10 was produced. .
Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used.
Further, α 0 , α 24 , and α 96 were measured by the above method, and α 24 / α 0 and α 96 / α 0 were calculated.
The results are shown in Table 1.
[比較例3]
 比較例2で得られた造粒物の100質量部に対し、実施例1で用いたものと同じ酸化第2銅を0.0005質量部添加した以外は、実施例1と同様に溶融押出しを行い、組成物11のペレットを作製した。
 得られたペレットを用いた以外は実施例1と同様にして、耐ストレスクラック性評価を行ってストレスクラック温度を求めた。
 また、上記方法により、α、α24、α96を測定し、α24/α、α96/αを算出した。
 結果を表1に示す。
[Comparative Example 3]
Melt extrusion was performed in the same manner as in Example 1 except that 0.0005 parts by mass of the same cupric oxide used in Example 1 was added to 100 parts by mass of the granulated product obtained in Comparative Example 2. The pellet of the composition 11 was produced.
Stress crack resistance was evaluated and the stress crack temperature was determined in the same manner as in Example 1 except that the obtained pellet was used.
Further, α 0 , α 24 , and α 96 were measured by the above method, and α 24 / α 0 and α 96 / α 0 were calculated.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各実施例の成形体は、ストレスクラック温度がいずれも208℃以上であり、高温での耐ストレスクラック性が優れていることが明らかとなった。
 なかでも、α24/α、α96/αの各値がより好適な範囲にある実施例2の成形体は、ストレスクラック温度が216℃であり、高温での耐ストレスクラック性が非常に優れていた。
 また、実施例1、実施例2および比較例1の結果から、ストレスクラック温度も向上することがわかった。具体的には、ストレスクラック温度が、実施例1では比較例1よりも29℃向上し、実施例2では比較例1よりも31℃向上した。
 一方、比較例2および比較例3の結果から、繰り返し単位の(a1)と繰り返し単位(a2)とのモル比が特定の範囲外であるとともに、水酸基含有末端基を有しない共重合体の場合、酸化第2銅を添加しているが、ストレスクラック温度は13℃しか向上せず、高温での耐ストレスクラック性は不充分であった。
The molded body of each example had a stress crack temperature of 208 ° C. or higher, and it was revealed that the stress crack resistance at high temperatures was excellent.
In particular, the molded body of Example 2 in which the values of α 24 / α 0 and α 96 / α 0 are in a more preferable range has a stress crack temperature of 216 ° C., and the stress crack resistance at high temperatures is extremely high. It was excellent.
Moreover, it turned out that the stress crack temperature also improves from the result of Example 1, Example 2, and Comparative Example 1. Specifically, the stress crack temperature was improved by 29 ° C. in Comparative Example 1 in Example 1 and improved by 31 ° C. in Comparative Example 1 in Comparative Example 1.
On the other hand, from the results of Comparative Example 2 and Comparative Example 3, the molar ratio of the repeating unit (a1) to the repeating unit (a2) is out of a specific range, and the copolymer does not have a hydroxyl group-containing end group. Although cupric oxide was added, the stress crack temperature was improved only by 13 ° C., and the stress crack resistance at high temperature was insufficient.
[実施例9~17、比較例4~6]
 実施例1~8および比較例1~3の組成物、共重合体からなる成形体で被覆した被覆電線を用いて、変形率の測定を行った。結果を表2に示す。また、組成物2からなる成形体を用い、導体の種類を変えた被覆電線についても同様に測定を行った。
 なお、表2において、導体1は素線径0.26mm、素線数37本、導体径1.8mm、同心撚りの銅導体である。導体2は素線径0.25mm、素線数50本、導体径1.8mm、集合撚りの銅導体である。
 導体を同心撚りとすることで、集合撚りに比べて変形率が低くなり耐ストレスクラック性がさらに向上したと考えられる。
[Examples 9 to 17, Comparative Examples 4 to 6]
The deformation rate was measured using the covered electric wires covered with the molded products of the compositions and copolymers of Examples 1 to 8 and Comparative Examples 1 to 3. The results are shown in Table 2. Moreover, it measured similarly about the covered electric wire which changed the kind of conductor using the molded object which consists of the compositions 2.
In Table 2, the conductor 1 is an element wire diameter of 0.26 mm, the number of element wires of 37, a conductor diameter of 1.8 mm, and a concentric twisted copper conductor. The conductor 2 is a copper conductor having a strand diameter of 0.25 mm, a number of strands of 50, a conductor diameter of 1.8 mm, and a collective twist.
By making the conductor concentric twist, it is considered that the deformation rate is lower than that of the collective twist and the stress crack resistance is further improved.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の組成物Aは、従来よりも高温での耐ストレスクラック性に優れる成形体を製造できる。
 そのため、本発明の成形体は、特に、(1)ロボット、電動機、発電機、変圧器等の電気機械、家庭用電気機器の電線被覆材、(2)電話、無線機等の通信用伝送機器の電線被覆材、(3)コンピュータ・データ通信機器・端末機器等の電子機器の電線被覆材、(4)鉄道車両用電線被覆材、(5)自動車用電線被覆材、(6)航空機用電線被覆材、(7)船舶用電線被覆材、(8)ビル・工場幹線、発電所、石油化学・製鉄プラント等のシステム構成用電線被覆材等、各種機器類の電線被覆材の用途に好適に用いることができる。
 なお、2015年7月28日に出願された日本特許出願2015-148486号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The composition A of the present invention can produce a molded article having superior stress crack resistance at a higher temperature than conventional.
Therefore, the molded body of the present invention is particularly suitable for (1) electric machines such as robots, electric motors, generators and transformers, wire covering materials for household electric appliances, and (2) communication transmission equipment such as telephones and radios. (3) Wire covering material for electronic equipment such as computer, data communication equipment and terminal equipment, (4) Railway wire covering material, (5) Automotive wire covering material, (6) Aircraft wire Suitable for use as a wire covering material for various devices, such as covering materials, (7) wire covering materials for ships, (8) wire covering materials for system construction of buildings / factory trunk lines, power plants, petrochemical / steel plants, etc. Can be used.
The entire contents of the specification, claims, abstract, and drawings of Japanese Patent Application No. 2015-148486 filed on July 28, 2015 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (14)

  1.  含フッ素共重合体と、酸化銅とを含有する含フッ素共重合体組成物であって、
     前記含フッ素共重合体は、エチレン単位と、テトラフルオロエチレン単位と、エチレンおよびテトラフルオロエチレンと共重合可能な第3のモノマーに基づくモノマー単位とを有し、主鎖末端が塩素原子を有さず、
     前記エチレン単位と前記テトラフルオロエチレン単位とのモル比[エチレン単位/テトラフルオロエチレン単位]が44/56~50/50であり、前記含フッ素共重合体を構成する全モノマー単位に対する前記第3のモノマーに基づくモノマー単位の含有量が1.6~2.4モル%であり、
     該含フッ素共重合体組成物が、下記式(i)~(iii)を満足することを特徴とする含フッ素共重合体組成物。
     α≧10…(i)
     0.8≦α24/α≦1.2…(ii)
     0.8≦α96/α≦1.2…(iii)
     ただし、上記式中の記号は、以下を意味する。
     α:含フッ素共重合体組成物の297℃、荷重49Nにおける容量流速(単位:g/10分)。
     α24:含フッ素共重合体組成物からなる直径2.0~3.0mm、長さ2.0~3.0mmのペレットを225℃で24時間加熱した後の含フッ素共重合体組成物の297℃、荷重49Nにおける容量流速(単位:g/10分)。
     α96:含フッ素共重合体組成物からなる直径2.0~3.0mm、長さ2.0~3.0mmのペレットを225℃で96時間加熱した後の含フッ素共重合体組成物の297℃、荷重49Nにおける容量流速(単位:g/10分)。
    A fluorine-containing copolymer composition containing a fluorine-containing copolymer and copper oxide,
    The fluorine-containing copolymer has an ethylene unit, a tetrafluoroethylene unit, and a monomer unit based on a third monomer copolymerizable with ethylene and tetrafluoroethylene, and the main chain terminal has a chlorine atom. Without
    The molar ratio of the ethylene unit to the tetrafluoroethylene unit [ethylene unit / tetrafluoroethylene unit] is 44/56 to 50/50, and the third ratio with respect to all the monomer units constituting the fluorine-containing copolymer. The monomer unit content based on the monomer is 1.6 to 2.4 mol%,
    The fluorine-containing copolymer composition, wherein the fluorine-containing copolymer composition satisfies the following formulas (i) to (iii):
    α 0 ≧ 10 (i)
    0.8 ≦ α 24 / α 0 ≦ 1.2 (ii)
    0.8 ≦ α 96 / α 0 ≦ 1.2 (iii)
    However, the symbol in the said formula means the following.
    α 0 : Capacity flow rate (unit: g / 10 minutes) of the fluorine-containing copolymer composition at 297 ° C. and a load of 49 N.
    α 24 : a fluorine-containing copolymer composition obtained by heating a pellet comprising a fluorine-containing copolymer composition having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 24 hours. Capacity flow rate at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
    α 96 : A fluorine-containing copolymer composition obtained by heating a pellet comprising a fluorine-containing copolymer composition having a diameter of 2.0 to 3.0 mm and a length of 2.0 to 3.0 mm at 225 ° C. for 96 hours. Capacity flow rate at 297 ° C. and a load of 49 N (unit: g / 10 minutes).
  2.  前記含フッ素共重合体は、前記主鎖末端に、水酸基含有末端基を有する、請求項1に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to claim 1, wherein the fluorine-containing copolymer has a hydroxyl group-containing terminal group at the end of the main chain.
  3.  前記第3のモノマーが下記式で表される化合物である、請求項1または2に記載の含フッ素共重合体組成物。
      CH=CX(CF
     (式中、XおよびYはそれぞれ独立に、水素原子またはフッ素原子であり、nは1~10の整数である。)
    The fluorine-containing copolymer composition according to claim 1 or 2, wherein the third monomer is a compound represented by the following formula.
    CH 2 = CX (CF 2 ) n Y
    (In the formula, X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 1 to 10.)
  4.  前記含フッ素共重合体を構成する全モノマー単位に対する前記第3のモノマーに基づくモノマー単位の含有量が、1.8~2.2モル%である、請求項1~3のいずれか一項に記載の含フッ素共重合体組成物。 The content of the monomer unit based on the third monomer with respect to all the monomer units constituting the fluorine-containing copolymer is 1.8 to 2.2 mol%, according to any one of claims 1 to 3. The fluorine-containing copolymer composition described.
  5.  前記含フッ素共重合体の融点が250℃~265℃である、請求項1~4のいずれか一項に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to any one of claims 1 to 4, wherein the melting point of the fluorine-containing copolymer is 250 ° C to 265 ° C.
  6.  前記含フッ素共重合体の297℃、荷重49Nにおける容量流速が、15~40g/10分である、請求項1~5のいずれか一項に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to any one of claims 1 to 5, wherein the fluorine-containing copolymer has a volume flow rate of 15 to 40 g / 10 minutes at 297 ° C and a load of 49 N.
  7.  前記酸化銅が、酸化第二銅である、請求項1~6のいずれか一項に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to any one of claims 1 to 6, wherein the copper oxide is cupric oxide.
  8.  前記酸化銅の平均粒径が0.1~10μmであり、BET比表面積が5~30m/gである、請求項1~7のいずれか一項に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to any one of claims 1 to 7, wherein the copper oxide has an average particle size of 0.1 to 10 µm and a BET specific surface area of 5 to 30 m 2 / g.
  9.  前記酸化銅の含有量が、前記含フッ素共重合体の100質量部に対して、0.00015~0.02質量部である、請求項1~8のいずれか一項に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer according to any one of claims 1 to 8, wherein a content of the copper oxide is 0.00015 to 0.02 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer. Polymer composition.
  10.  前記酸化銅の含有量が、前記含フッ素共重合体の100質量部に対して、0.0003~0.001質量部である、請求項9に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to claim 9, wherein the content of the copper oxide is 0.0003 to 0.001 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer.
  11.  電線被覆材料である、請求項1~10のいずれか一項に記載の含フッ素共重合体組成物。 The fluorine-containing copolymer composition according to any one of claims 1 to 10, which is a wire coating material.
  12.  請求項1~11のいずれか一項に記載の含フッ素共重合体組成物を成形してなる成形体。 A molded product obtained by molding the fluorine-containing copolymer composition according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか一項に記載の含フッ素共重合体組成物から形成された被覆層を有する被覆電線。 A coated electric wire having a coating layer formed from the fluorine-containing copolymer composition according to any one of claims 1 to 11.
  14.  下記式(iv)で表される変形率が11%以下である、請求項13に記載の被覆電線。
      |D-D|/D×100 …(iv)
     ただし、式中の記号は以下を意味する。
      D:自己径巻き付け前の、被覆電線の径[mm]
      D:自己径巻き付け後の、巻き付けた被覆電線の最大径[mm]
     (ただし、自己径巻き付けとは、被覆電線自体に、該被覆電線を隙間なく12回巻き付けることを意味する。また、最大径とは、巻き付けた被覆電線の1巻き毎の径を、12巻きそれぞれについて測定し、得られた径の中の最大値である。)
    The covered electric wire according to claim 13, wherein the deformation rate represented by the following formula (iv) is 11% or less.
    | D 1 -D 0 | / D 0 × 100 (iv)
    However, the symbol in a formula means the following.
    D 0 : Diameter of covered electric wire before self-winding [mm]
    D 1 : Maximum diameter [mm] of the wound covered electric wire after self-diameter winding
    (However, self-diameter winding means that the covered electric wire is wound around the covered electric wire itself 12 times without a gap. Further, the maximum diameter means the diameter of each winding of the wound covered electric wire by 12 turns. Is the maximum of the diameters obtained and measured.)
PCT/JP2016/071596 2015-07-28 2016-07-22 Fluorine-containing copolymer composition and molded article WO2017018354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015148486A JP2018145209A (en) 2015-07-28 2015-07-28 Fluorine-containing copolymer composition and molded article
JP2015-148486 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017018354A1 true WO2017018354A1 (en) 2017-02-02

Family

ID=57884347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071596 WO2017018354A1 (en) 2015-07-28 2016-07-22 Fluorine-containing copolymer composition and molded article

Country Status (2)

Country Link
JP (1) JP2018145209A (en)
WO (1) WO2017018354A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108920751A (en) * 2018-05-24 2018-11-30 西安交通大学 The Converse solved method of winding deformation of power transformer state based on topological optimization
WO2023248841A1 (en) * 2022-06-20 2023-12-28 Agc株式会社 Crosslinkable fluororesin composition, molded body, crosslinked molded body, and coated wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172953A1 (en) 2021-02-12 2022-08-18

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225850A (en) * 1975-08-25 1977-02-26 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer composition with improved heat stability
JPH05271508A (en) * 1992-03-25 1993-10-19 Asahi Glass Co Ltd Fluororesin powder for rotary molding
JP2006206637A (en) * 2005-01-25 2006-08-10 Asahi Glass Co Ltd Ethylene/tetrafluoroethylene-based copolymer powder and article coated with the same
WO2011129405A1 (en) * 2010-04-16 2011-10-20 旭硝子株式会社 Process for producing fluorine-containing copolymer composition and fluorocarbon-resin molded product
WO2013015202A1 (en) * 2011-07-26 2013-01-31 旭硝子株式会社 Fluorine-containing copolymer composition
JP2014015551A (en) * 2012-07-10 2014-01-30 Asahi Glass Co Ltd Ethylene/tetrafluoroethylene-based copolymer and production method thereof, ethylene/tetrafluoroethylene-based copolymer powder, powder composition, and article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225850A (en) * 1975-08-25 1977-02-26 Asahi Glass Co Ltd Ethylene-tetrafluoroethylene copolymer composition with improved heat stability
JPH05271508A (en) * 1992-03-25 1993-10-19 Asahi Glass Co Ltd Fluororesin powder for rotary molding
JP2006206637A (en) * 2005-01-25 2006-08-10 Asahi Glass Co Ltd Ethylene/tetrafluoroethylene-based copolymer powder and article coated with the same
WO2011129405A1 (en) * 2010-04-16 2011-10-20 旭硝子株式会社 Process for producing fluorine-containing copolymer composition and fluorocarbon-resin molded product
WO2013015202A1 (en) * 2011-07-26 2013-01-31 旭硝子株式会社 Fluorine-containing copolymer composition
JP2014015551A (en) * 2012-07-10 2014-01-30 Asahi Glass Co Ltd Ethylene/tetrafluoroethylene-based copolymer and production method thereof, ethylene/tetrafluoroethylene-based copolymer powder, powder composition, and article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108920751A (en) * 2018-05-24 2018-11-30 西安交通大学 The Converse solved method of winding deformation of power transformer state based on topological optimization
CN108920751B (en) * 2018-05-24 2020-05-15 西安交通大学 Topological optimization-based inverse solving method for deformation state of power transformer winding
WO2023248841A1 (en) * 2022-06-20 2023-12-28 Agc株式会社 Crosslinkable fluororesin composition, molded body, crosslinked molded body, and coated wire

Also Published As

Publication number Publication date
JP2018145209A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
EP3076405B1 (en) Heat-resistant electric wire
JP5314707B2 (en) Tetrafluoroethylene / hexafluoropropylene copolymer and electric wire
JP5298853B2 (en) Fluorine-containing copolymer and molded product
JP5958467B2 (en) Fluorine-containing copolymer composition
WO2017018354A1 (en) Fluorine-containing copolymer composition and molded article
WO2003059969A1 (en) Fep pellet
US11905349B2 (en) Ethylene/tetrafluoroethylene copolymer
CN107922543A (en) Copolymer, its manufacture method, electric wire coatings resin material and electric wire
CN106661297A (en) Fluororesin composition, production method for same, molded article, molded foam article, and coated electric wire
JP6638261B2 (en) Fluororesin composition for electric wire covering material and electric wire
JP4868272B2 (en) Heat resistant wire
CN114644723A (en) Melt-processible perfluoropolymers having improved thermal and mechanical properties after heat treatment
US20230391934A1 (en) Copolymer, composition, molded product and coated electrical wire
JP4803476B2 (en) Heat resistant wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP