WO2017018023A1 - Method for operating power supply device, power supply device, and high-frequency treatment system - Google Patents
Method for operating power supply device, power supply device, and high-frequency treatment system Download PDFInfo
- Publication number
- WO2017018023A1 WO2017018023A1 PCT/JP2016/064615 JP2016064615W WO2017018023A1 WO 2017018023 A1 WO2017018023 A1 WO 2017018023A1 JP 2016064615 W JP2016064615 W JP 2016064615W WO 2017018023 A1 WO2017018023 A1 WO 2017018023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- output
- impedance
- period
- power supply
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00732—Frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00755—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00767—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00827—Current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00892—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1266—Generators therefor with DC current output
Definitions
- the present invention relates to a method for operating a power supply device for operating a high-frequency treatment instrument, a power supply device, and a high-frequency treatment system.
- a high-frequency treatment system in which a living tissue that is a treatment target is grasped by a pair of grasping members, and treatment is performed by supplying high-frequency power to the living tissue.
- the living tissue grasped by the grasping member is heated by flowing a high-frequency current.
- Such a high frequency treatment system is used, for example, for sealing a blood vessel.
- it is required to appropriately adjust the output voltage and the output current in order to improve treatment accuracy and efficiency.
- Japanese Patent Application Laid-Open No. 8-98845 discloses a technique related to controlling an output by paying attention to an impedance value of a living tissue. That is, in this technique, the maximum value and the minimum value of the impedance value measured in the initial stage of treatment are specified. The impedance value measured during the procedure rises after showing a minimum value. In this rising process, the output is stopped when the impedance value becomes a predetermined value between the specified maximum value and minimum value.
- the value between the maximum value and the minimum value is preferably an average value of the maximum value and the minimum value, for example.
- a target value is set for the transition of the impedance value during treatment, and the output is controlled so that this target value matches the actual impedance value to be measured.
- a technology related to this is disclosed.
- An object of the present invention is to provide a method of operating a power supply device, a power supply device, and a high-frequency treatment system for operating a high-frequency treatment tool that performs an output optimized according to a treatment target.
- an operation method of a power supply device is an operation method of a power supply device for operating a high-frequency treatment instrument that performs high-frequency treatment on a living tissue, and the control circuit is connected to the high-frequency power supply circuit.
- Outputting electric power obtaining an initial impedance value that is a value related to the impedance of the living tissue within a first period after the control circuit starts the output; and Determining an increase rate of the output voltage with respect to time based on an initial impedance value; and the control circuit increases the output voltage of the high-frequency power supply circuit according to the increase rate in a second period after the first period.
- the control circuit acquires a value related to the impedance of the living tissue during the second period, and the control circuit relates to the impedance. After the value reaches the minimum value, and a to terminate the second time period.
- a power supply device is a power supply device for operating a high-frequency treatment instrument that performs high-frequency treatment on a living tissue, and detects a high-frequency power supply circuit that outputs power and the output.
- An output detection circuit and a control circuit that obtains a value related to the output from the output detection circuit and controls the operation of the high-frequency power supply circuit, wherein the control circuit causes the high-frequency power supply circuit to output power;
- Acquiring an initial impedance value that is a value related to the impedance of the living tissue within a first period from the start of the output based on the value related to the output acquired from the output detection circuit;
- the rate of increase of the output voltage with respect to time is determined, and the output voltage of the high-frequency power supply circuit is set in the second period after the first period.
- the increase rate obtaining a value related to the impedance of the living tissue during the second period, and ending the second period after the value related to the imped
- a high-frequency treatment system includes the power supply device and the high-frequency treatment tool.
- the present invention it is possible to provide an operation method of a power supply device, a power supply device, and a high-frequency treatment system for operating a high-frequency treatment tool that performs an output optimized according to a treatment target.
- FIG. 1 is a figure showing an outline of an example of the appearance of the high frequency treatment system concerning one embodiment.
- FIG. 2 is a block diagram illustrating an outline of a configuration example of a high-frequency treatment system according to an embodiment.
- FIG. 3 is a flowchart illustrating an example of the operation of the high-frequency treatment system according to the embodiment.
- FIG. 4 is a diagram illustrating an example of changes in power, voltage, current, and impedance with respect to time in the high-frequency treatment system according to an embodiment.
- FIG. 5 is a flowchart illustrating an example of the first control of the high-frequency treatment system according to the embodiment.
- FIG. 1 is a figure showing an outline of an example of the appearance of the high frequency treatment system concerning one embodiment.
- FIG. 2 is a block diagram illustrating an outline of a configuration example of a high-frequency treatment system according to an embodiment.
- FIG. 3 is a flowchart illustrating an example of the operation of the high-frequency treatment system according to the embodiment.
- FIG. 6 is a diagram illustrating an example of the relationship between the time during which voltage is applied to the living tissue in the second control and the Vessel Burst Pressure of the blood vessel sealed by the treatment.
- FIG. 7 is a flowchart illustrating an example of second control of the high-frequency treatment system according to the embodiment.
- FIG. 8 is a diagram illustrating an example of a table including a relationship between an initial resistance value and an addition resistance value used in the high-frequency treatment system according to the embodiment.
- FIG. 9 is a diagram illustrating an example of a table including the relationship between the initial resistance value, the duration, and the added resistance value used in the high-frequency treatment system according to the embodiment.
- FIG. 10 is a diagram illustrating an example of a relationship between time and a target resistance value in the high-frequency treatment system according to an embodiment.
- FIG. 11 is a diagram illustrating an example of the relationship between the output power and the resistance value with respect to time in the high-frequency treatment system according to the embodiment.
- FIG. 12 is a flowchart illustrating an example of third control of the high-frequency treatment system according to the embodiment.
- FIG. 10 A schematic diagram of a high-frequency treatment system 10 according to the present embodiment is shown in FIG.
- the high frequency treatment system 10 includes a high frequency treatment instrument 100 that functions as a high frequency treatment instrument, a power supply device 200 that supplies power to the treatment instrument, and a foot switch 290.
- the high-frequency treatment tool 100 includes a treatment unit 110, a shaft 160, and an operation unit 170.
- the treatment section 110 side is referred to as the distal end side
- the operation section 170 side is referred to as the proximal end side.
- the high-frequency treatment system 10 is configured to hold a biological tissue such as a blood vessel that is a treatment target in the treatment unit 110.
- the high frequency treatment system 10 seals the living tissue by applying a high frequency voltage to the grasped living tissue.
- the treatment section 110 provided at the tip of the shaft 160 is provided with a first holding member 112 and a second holding member 114 which are a pair of holding members.
- the portions of the first grasping member 112 and the second grasping member 114 that contact the living tissue function as electrodes. That is, the first holding member 112 and the second holding member 114 function as bipolar electrodes.
- the operation unit 170 is provided with an operation unit main body 172, a fixed handle 174, a movable handle 176, and an output switch 178.
- the fixed handle 174 is fixed with respect to the operation unit main body 172
- the movable handle 176 is displaced with respect to the operation unit main body 172.
- the movable handle 176 is connected to a wire or rod inserted through the shaft 160. This wire or rod is connected to the second gripping member 114.
- the operation of the movable handle 176 is transmitted to the second gripping member 114.
- the second gripping member 114 is displaced with respect to the first gripping member 112 in accordance with the operation of the movable handle 176. As a result, the first holding member 112 and the second holding member 114 are opened and closed.
- the output switch 178 includes, for example, two buttons. These buttons are buttons that are pressed when the high-frequency power is applied to the biological tissue to be treated by the treatment unit 110.
- the power supply device 200 that has detected that the button has been pressed applies a high-frequency voltage between the first gripping member 112 and the second gripping member 114. As a result, the living tissue grasped by the treatment unit 110 is sealed.
- the high-frequency treatment instrument 100 is configured such that the output level varies depending on which of two buttons is pressed.
- the foot switch 290 is also provided with, for example, two switches. Each of the two switches of the foot switch 290 has the same function as each button of the output switch 178.
- the high-frequency treatment system 10 may be provided with both the output switch 178 and the foot switch 290, or may be provided with either one. In the following description, the output switch 178 is mainly operated. However, the foot switch 290 may be operated.
- One end of a cable 180 is connected to the proximal end side of the operation unit 170.
- the other end of the cable 180 is connected to the power supply device 200.
- the power supply device 200 controls the operation of the high-frequency treatment instrument 100 and supplies power to the high-frequency treatment instrument 100.
- FIG. 2 is a block diagram showing an outline of a configuration example of the power supply device 200.
- the power supply device 200 includes a control circuit 210, a high frequency power supply circuit 220, an output detection circuit 230, an A / D converter 240, a storage medium 250, an input device 262, a display device 264, and a speaker 266. .
- the control circuit 210 includes, for example, an integrated circuit such as a central processing unit (CPU), an application specific integrated circuit (ASIC), or a field programmable gate array (FPGA).
- the control circuit 210 may be configured by one integrated circuit or the like, or may be configured by combining a plurality of integrated circuits.
- the operation of the control circuit 210 is performed according to a program recorded in the control circuit 210 or the storage medium 250, for example.
- the control circuit 210 acquires information from each unit of the power supply apparatus 200 and controls the operation of each unit.
- the high frequency power supply circuit 220 outputs high frequency power supplied to the high frequency treatment instrument 100.
- the high frequency power supply circuit 220 includes a variable DC power supply 221, a waveform generation circuit 222, and an output circuit 223.
- the variable DC power source 221 outputs DC power under the control of the control circuit 210.
- the output of the variable DC power source 221 is transmitted to the output circuit 223.
- the waveform generation circuit 222 generates an AC waveform under the control of the control circuit 210, and outputs the generated AC waveform.
- the output of the waveform generation circuit 222 is transmitted to the output circuit 223.
- the output circuit 223 superimposes the output of the variable DC power supply 221 and the output of the waveform generation circuit 222 and outputs AC power. This AC power is supplied to the first gripping member 112 and the second gripping member 114 of the high-frequency treatment instrument 100 via the output detection circuit 230.
- the output detection circuit 230 includes a current detection circuit 231 and a voltage detection circuit 232.
- the current detection circuit 231 is inserted in the middle of the circuit from the high frequency power supply circuit 220 to the high frequency treatment instrument 100, and outputs an analog signal representing a current value output from the high frequency power supply circuit 220.
- the voltage detection circuit 232 outputs an analog signal representing the output voltage of the high frequency power supply circuit 220.
- the output signal of the current detection circuit 231 and the output signal of the voltage detection circuit 232 are input to the A / D converter 240.
- the A / D converter 240 converts the input analog signal into a digital signal and transmits it to the control circuit 210.
- the control circuit 210 acquires information on the output voltage and output current of the high frequency power supply circuit 220.
- the control circuit 210 calculates a value related to the impedance of the circuit including the first grasping member 112, the biological tissue to be treated, and the second grasping member 114 based on the output voltage and the output current. That is, the control circuit 210 acquires a value related to the impedance of the living tissue.
- the storage medium 250 stores programs used in the control circuit 210, various parameters used in calculations performed in the control circuit 210, tables, and the like.
- the input device 262 includes an input device such as a button, a slider, a dial, a keyboard, or a touch panel.
- the control circuit 210 acquires an input to the input device 262 by the user.
- the display 264 includes a display device such as a liquid crystal display or an LED lamp.
- the display 264 presents information related to the high-frequency treatment system 10 to the user under the control of the control circuit 210.
- the speaker 266 emits, for example, an input sound, an output sound, a warning sound, and the like under the control of the control circuit 210.
- the operation of the high-frequency treatment system 10 will be described.
- the user operates the input device 262 of the power supply device 200 to set a desired output level for the high-frequency treatment instrument 100.
- the output level is set for each of a plurality of output switches 178, for example.
- the treatment part 110 and the shaft 160 are inserted into the abdominal cavity through the abdominal wall, for example.
- the user operates the movable handle 176 to open and close the treatment unit 110.
- the first grasping member 112 and the second grasping member 114 grasp the living tissue that is the treatment target.
- the user operates the output switch 178.
- the control circuit 210 of the power supply device 200 that has detected that the button of the output switch 178 has been pressed outputs an instruction for driving to the high frequency power supply circuit 220.
- the high-frequency power supply circuit 220 applies a high-frequency voltage to the first grasping member 112 and the second grasping member 114 of the treatment unit 110 under the control of the control circuit 210, and causes a high-frequency current to flow through the living tissue to be treated.
- a high frequency current flows, the living tissue becomes an electrical resistance, so heat is generated in the living tissue and the temperature of the living tissue rises. As a result, the protein of the living tissue is denatured and the living tissue is sealed. Thus, the treatment of the living tissue is completed.
- step S101 the control circuit 210 determines whether or not the output switch 178 is turned on. If not, the process returns to step S101. That is, the control circuit 210 waits until it is turned on. When turned on, the process proceeds to step S102.
- step S102 the control circuit 210 executes the first control.
- step S103 the control circuit 210 executes the second control.
- step S104 the control circuit 210 executes third control. The first control, the second control, and the third control will be described in detail later. Thus, the output control ends.
- three-stage control is performed.
- the horizontal axis indicates time when the output start time is 0, the left vertical axis indicates output power, output voltage, and output current, and the right vertical axis indicates impedance.
- a solid line indicates a change in output voltage
- a broken line indicates a change in impedance
- a one-dot chain line indicates a change in output power
- a two-dot chain line indicates a change in output current.
- the output control of the high-frequency treatment system 10 is divided into three stages (three phases). Therefore, the period during which power is supplied to the living tissue includes the first period in which the first control for a short period immediately after the start of output is performed, and the second period in which the second control is performed for about 1 second thereafter. And a third period during which the third control is performed for about 2 seconds thereafter.
- the output by the first control is referred to as the first output
- the output by the second control is referred to as the second output
- the output by the third control is referred to as the third output. Since the output by the second control is performed before the output by the third control, the period by the second control is referred to as the first period, and the output by the third control is referred to as the latter period.
- the first control high-frequency power having a predetermined power value is supplied to the living tissue for a predetermined period.
- This first period is, for example, about 100 milliseconds.
- a value related to impedance is acquired.
- the state of the living tissue that is the treatment target is grasped based on the value relating to the impedance acquired in the first period in which the first control is performed, and is used in later control.
- Control parameters are determined. That is, a control parameter is set according to the characteristics of the living tissue to be treated. Further, in the first control, a predetermined power that is not so large is supplied to the living tissue, thereby suppressing output overshoot.
- the second control In the second control, a linearly rising voltage is applied to the living tissue. In the second period in which the second control is performed, the temperature of the living tissue rises. The second control is performed until it is detected that the value related to the measured impedance indicates the minimum value. When the value relating to the measured impedance becomes the minimum value, the control shifts to the third control.
- the value related to the impedance increases with the temperature rise.
- output control is performed so that the value related to impedance rises linearly.
- the temperature of the living tissue is maintained to be substantially constant.
- step S ⁇ b> 201 the control circuit 210 supplies AC power having a predetermined power value to the high-frequency power supply circuit 220 to the living tissue that is the treatment target sandwiched between the first grasping member 112 and the second grasping member 114. Let By supplying this AC power, an AC current flows through the living tissue.
- the control circuit 210 acquires an impedance value related to the biological tissue that is the treatment target. For example, the control circuit 210 acquires the current detected by the current detection circuit 231 of the output detection circuit 230 and the voltage detected by the voltage detection circuit 232, and calculates an impedance value based on these values.
- the calculated impedance value may be various values relating to impedance, and may be, for example, an absolute value of impedance that is a complex number or a resistance value that is a real component. An admittance that is an inverse number may be used.
- step S203 the control circuit 210 determines whether or not a predetermined time has elapsed.
- the predetermined time is, for example, 100 milliseconds.
- the process returns to step S201. That is, the supply of the predetermined power and the acquisition of the impedance value are repeated.
- the predetermined time has elapsed, the first control is terminated and the process proceeds to the second control.
- the impedance value acquired in the first control is referred to as an initial impedance value.
- the initial impedance value may be an impedance value acquired first, or may be an average value or an intermediate value of impedance values acquired in any period of the first period in which the first control is performed. Good.
- the second control is a control optimized for performing stable sealing of blood vessels and the like.
- the second control is a control optimized for performing stable sealing of blood vessels and the like.
- attention is paid to a change in impedance value when a biological tissue such as a blood vessel is heated.
- the temperature of the electrolyte solution in the living tissue increases, and the impedance decreases. Focusing on this drop in impedance, the following became clear.
- FIG. 6 shows the relationship between the voltage application time (heating time) by the second control and the average value of Vessel Burst Pressure (VBP).
- the voltage application time by the second control is the time from the start of the second control until the impedance value takes the minimum value as described above.
- the second control is a control that is adjusted so that the output voltage rises linearly as described above and shown in FIG. VBP indicates the pressure at which the sealed portion peels when water pressure is applied to the blood vessel after the sealing treatment that has undergone the second control and the third control. That is, the higher the VBP, the stronger the sealing.
- VBP it is required that a VBP of 360 mmHg or more can be obtained in at least 90% or more of the treated blood vessels.
- VBP tends to increase as the time until the impedance value takes the minimum value becomes longer. Further, even when the time until the impedance value takes the minimum value is 1 second or more, VBP does not increase so much.
- the time until the impedance value takes the minimum value is about 1 second. It can also be seen that VBP may be in the range of about 0.5 to 1.5 seconds, which is sufficiently higher than 360 mmHg. Based on these results, in the present embodiment, the output voltage in the second control is adjusted so that the time until the impedance value takes the minimum value is about 1 second.
- the control circuit 210 controls the output voltage V (t) applied to the living tissue in the second control so as to satisfy the following formula (1).
- V (t) (V (Z) / GV) ⁇ t (1)
- t represents the time from the start of the treatment, that is, the time from the start of the first control.
- t may be the time from the start of the second control.
- V (Z) represents a constant, for example, the maximum value of the output voltage.
- GV indicates a gradient value.
- (V (Z) / GV) indicates the increase value of the output voltage per unit time, that is, the slope (increase rate).
- a and b are constants.
- a and b are values empirically adjusted so that the impedance value shows the minimum value in about 1 second when the output voltage V (t) is applied to the living tissue.
- the above equation (2) is not limited to a linear function, and may be another equation such as a higher-order function.
- the initial resistance value R0 is a linear function rather than a high-order function so that the influence of the initial resistance value R0 on the above equation (1) does not become too large.
- the above equation (1) is also a linear function with respect to time. By being a linear function, the stability is high and an appropriate temperature increase is obtained. Since the output voltage is a linear function with respect to time, the power input to the living tissue increases in a quadratic function with respect to time.
- the gradient (V (Z) / GV) may be calculated and used each time based on the relationship of the above formulas (1) and (2) and the initial resistance value R0, or may be stored in advance in the storage medium 250. Alternatively, it may be determined based on a table representing the relationship between the initial resistance value R0 and the gradient (V (Z) / GV) and the initial resistance value.
- step S301 the control circuit 210 calculates the relationship between time and the output voltage V (t) based on the initial impedance value.
- the output voltage V (t) is determined using, for example, the above equations (1) and (2).
- step S302 the control circuit 210 causes the high frequency power supply circuit 220 to output a voltage V (t) corresponding to time.
- step S303 the control circuit 210 acquires the impedance value of the living tissue.
- step S304 the control circuit 210 determines whether or not the impedance value acquired in step S303 is a switching impedance value.
- the switching impedance value is an impedance value that is a condition for ending the second control.
- the switching impedance value can be, for example, a value when a change in impedance value is measured and becomes a minimum value. In order to easily detect the minimum value, a value increased by a predetermined value after the impedance value indicates the minimum value may be used as the switching impedance value. That is, in step S304, it may be determined that the impedance value has become the switching impedance value when the impedance value increases by a predetermined value after the impedance value decreases and shows a minimum value.
- step S304 If it is determined in step S304 that the impedance is not a switching impedance value, the process returns to step S302. On the other hand, when it determines with it being a switching impedance value, 2nd control is complete
- the output voltage and impedance value are as shown in FIG. That is, the output voltage rises linearly in the second period in which the second control is performed. At this time, the output power rises in a quadratic function. The impedance value acquired in the second period gradually decreases with time. In the example shown in FIG. 4, the second control ends when the impedance value rises slightly after showing the minimum value.
- the output current or the output power may be controlled to increase linearly in the same manner.
- the temperature of the living tissue can be made uniform while shortening the treatment time. Further, by making the time until the impedance value takes the minimum value constant at about 1 second regardless of the size of the treatment target, variation in the results of each treatment can be suppressed. When the same energy is input, the smaller the blood vessel, the shorter the impedance value takes a minimum value. By setting the time until the impedance value takes the minimum value to about 1 second, a high sealing force can be stably obtained as shown in FIG.
- the third control will be described in detail.
- the output is controlled so that the measured impedance value increases at a constant rate.
- an end impedance value that is an impedance value when output is stopped is determined.
- a target impedance value that rises at a constant speed from the impedance value at the start of the third control to the end impedance value is set. That is, the target impedance value is set as the target value of the impedance value at each time.
- the output is controlled such that the output value is determined based on the difference between the target impedance value and the measured impedance value acquired using the output detection circuit 230 at regular intervals. In this way, the third control is performed until the measured impedance value reaches the end impedance value along the target impedance value.
- Rstop Rin + Radd (4)
- Rin is a resistance value related to the living tissue acquired at the start of the third control. That is, Rin is a resistance value corresponding to the switching impedance value described above. Rin may be the minimum impedance measured in the second control. Moreover, the initial impedance value acquired by 1st control may be used for Rin.
- Radd is an added resistance value determined based on the initial state of the living tissue. Some examples of how to determine the added resistance value Radd will be described.
- the added resistance value Radd is calculated as a function of the initial resistance value R0.
- the initial resistance value R0 is a resistance value detected in the first control.
- a table representing the relationship between the added resistance value Radd and the initial resistance value R0 as shown in FIG. 8 is stored in the storage medium 250, and the initial resistance value R0 measured in the first control is stored in this table. Based on this, the addition resistance value Radd is determined.
- a, b, c, and d represent resistance values, respectively, and have a relationship of a ⁇ b ⁇ c ⁇ d. That is, the higher the initial resistance value R0, the lower the added resistance value Radd.
- the added resistance value Radd may be calculated based on a function showing the same relationship as in FIG.
- the added resistance value Radd is calculated as a function of the initial resistance value R0 and the duration Dt of the second control.
- the duration Dt is acquired when the second control is finished.
- the first additional resistance value Radd1 is selected as the additional resistance value Radd
- the initial resistance value R0 is equal to the predetermined threshold value.
- the second added resistance value Radd2 is selected as the added resistance value Radd.
- the first addition resistance value Radd1 is lower than the second addition resistance value Radd2.
- a table representing the relationship between the added resistance value Radd, the duration time Dt, and the initial resistance value R0 as shown in FIG. 9 is stored in the storage medium 250, and this table and the first control are measured.
- the added resistance value Radd may be determined based on the initial resistance value R0 and the duration Dt of the second control.
- a, b, c, and d represent resistance values, respectively, and have a relationship of a ⁇ b ⁇ c ⁇ d. That is, the higher the initial resistance value R0, the lower the added resistance value Radd, and the longer the duration Dt, the higher the added resistance value Radd.
- the added resistance value Radd may be calculated based on a function showing the same relationship as in FIG.
- a more appropriate added resistance value Radd can be obtained than when determined based only on the initial resistance value R0. Can be determined.
- the added resistance value Radd may be selected according to the output level set by the user. For example, the higher the output level, the higher the added resistance value Radd, and the lower the output level, the lower the added resistance value Radd.
- the output level is preferably used as a combination with the initial resistance value R0 or the duration Dt of the second control.
- a more appropriate value can be set by determining the added resistance value Radd using the output level together with the initial resistance value R0 or the duration Dt of the second control.
- the end resistance value Rstop is higher than the initial resistance value R0.
- Rin corresponds to the switching impedance value
- the added resistance value Radd corresponds to the added impedance value
- the initial resistance value R0 is similar to the above. Corresponds to the initial impedance value.
- the end impedance value corresponding to the treatment target is appropriately set by using the initial impedance value that varies depending on the treatment target such as the thickness of the blood vessel.
- Appropriate treatment can be performed by performing output control using the end impedance value thus determined.
- ⁇ Setting of target impedance value in the third control> A method for setting the target impedance value will be described.
- a case where a resistance value is used as the impedance value will be described in the same manner as the end resistance value described above. That is, a case where a target resistance value is used as the target impedance value will be described. Not only the resistance value but also other impedance related values are used.
- the time during which the high frequency power is output by the third control is determined in advance.
- the target resistance value for each time can be set so that the resistance value increases linearly up to the end resistance value Rstop calculated from the switching resistance value Rin in this predetermined time.
- the time during which the high frequency power is output by the third control is determined according to the output level set by the user.
- the target resistance value can be set so that the resistance value increases linearly to the calculated end resistance value Rstop at a time determined according to the output level. That is, as shown in FIG. 10, the slope when the value of the target resistance value is shown with respect to time changes according to the output level. In other words, the increasing speed of the target resistance value changes according to the output level.
- L1, L2, and L3 indicate output levels, respectively, and have a relationship of L1 ⁇ L2 ⁇ L3.
- the time during which high-frequency power is output by the third control is determined according to the resistance value (initial resistance value) obtained in the first control. Further, the time during which the high frequency power is output by the third control may be determined according to the resistance value obtained in the second control.
- the target resistance value can be set so that the resistance value increases linearly to the calculated end resistance value Rstop at the determined time. That is, the slope when the value of the target resistance value is shown with respect to time changes according to the resistance value obtained in the first control or the second control. In other words, the increasing speed of the target resistance value changes according to the resistance value obtained in the first control or the second control.
- the output time in the third control is shortened and the slope is increased.
- the output time in the third control becomes long and the inclination becomes small.
- FIG. 11 schematically shows a target resistance value and a measured resistance value with respect to time.
- the target resistance value is indicated by a broken line
- the measured resistance value is indicated by a solid line.
- the lower part of FIG. 11 schematically shows output power with respect to time.
- the output power is set every step time every several tens of milliseconds.
- the setting of the output power is performed by comparing the target resistance value with the measured resistance value. That is, the target resistance value and the measured resistance value are compared every predetermined time, and when the measured resistance value is higher than the target resistance value, the output power is lowered. On the other hand, when the measured resistance value is lower than the target resistance value, the output power is increased.
- the output power at the start of the third control may be the output power at the end of the second control. Further, the output power at the start of the third control may be a predetermined value or may be determined by a predetermined method.
- the change amount of the output power is a predetermined ratio with respect to the output power at that time.
- this predetermined ratio is the first ratio
- the initial output power is the first power
- the next output power is the first power.
- the next output power is the third power that is increased from the second power by the first rate.
- the first ratio is 10%
- the output power at that time is 20 W and the measured resistance value is higher than the target resistance value
- the next output power is adjusted to 18 W.
- the output power is 18 W, and when the measured resistance value is lower than the target resistance value, the next output power is adjusted to 19.8 W.
- the amount of change in output power is adjusted to an appropriate value both when the output power is large and small.
- the numerical value shown here is an example, and any value may be set appropriately.
- the ratio when decreasing the output power is the first ratio and the ratio when increasing the output is the second ratio
- the first ratio and the second ratio may be the same or different. May be. It is preferable that the first ratio is larger than the second ratio. For example, when the measured resistance value is higher than the target resistance value, the output is decreased by 10%, and when the measured resistance value is lower than the target resistance value, the output is increased by 5%. Further, when the difference between the measured resistance value and the target resistance value is within a predetermined range, the output power need not be changed.
- the amount of change in output power is a predetermined value.
- this predetermined value is the first value
- the next output power is adjusted to a value lower than the current output power by the first value.
- the next output power is adjusted to a value higher by a first value than the current output power. For example, when the amount of change is 2 W, the following occurs.
- the output power at that time is 20 W and the measured resistance value is higher than the target resistance value
- the next output power is adjusted to 18 W.
- the output power is 18 W, and when the measured resistance value is lower than the target resistance value, the next output power is adjusted to 20 W.
- the numerical value shown here is an example, and any value may be set appropriately.
- the amount of change when increasing the output and the amount of change when decreasing the output may be the same or different. It is preferable that the amount of change when decreasing is larger than the amount of change when increasing. Further, when the difference between the measured resistance value and the target resistance value is within a predetermined range, the output power need not be changed.
- the amount of change in the output power includes the initial resistance value R0 acquired in the first control and the length of the second period during which the second control is performed, that is, the second control is started. And the time until the impedance value reaches the minimum value. For this reason, for example, the relationship between the initial resistance value R0 and the length of the second period and the amount of change in the output power is stored in the storage medium 250 in advance. The control circuit 210 determines the output power with reference to this relationship.
- the amount of change in output power is a predetermined value determined according to the output level set by the user.
- the relationship between the output level and the amount of change in output power is stored in the storage medium 250 in advance.
- the control circuit 210 determines the output power with reference to this relationship.
- the output power is determined by the relationship between the measured resistance value and the target resistance value. For example: When the measured resistance value is higher than the target resistance value, the output power is set to the first power value. When the measured resistance value matches the target resistance value, the output power is set to the second power value. When the measured resistance value is lower than the target resistance value, the output power is set to the third power value.
- the value increases in the order of the first power value, the second power value, and the third power value. For example, the first power value is 5 W, the second power value is 8 W, and the third power value is 10 W.
- the numerical value shown here is an example, and any value may be set appropriately.
- step S401 the control circuit 210 calculates an added impedance value based on the initial impedance value.
- step S402 the control circuit 210 sets an end impedance value based on the sum of the switching impedance value and the added impedance value.
- a method for setting the end impedance value for example, any of the above-described first to third examples may be used.
- step S403 the control circuit 210 sets a target impedance value using the end impedance value.
- a method for setting the target impedance value for example, any of the above-described first to third examples may be used.
- step S404 the control circuit 210 causes the high frequency power supply circuit 220 to output power having a predetermined power value as initial power.
- the initial power is, for example, power at the end of the second control.
- step S405 the control circuit 210 acquires the impedance value using the value detected by the output detection circuit 230.
- step S406 the control circuit 210 determines whether or not the measured impedance value is greater than or equal to the end impedance value. If the measured impedance value is not equal to or greater than the end impedance value, the process proceeds to step S407.
- step S407 the control circuit 210 compares the measured impedance value (Zm) with the target impedance value (Zt). When the difference between the measured impedance value (Zm) and the target impedance value (Zt) is within a predetermined threshold (Zm ⁇ Zt), the process proceeds to step S408. In step S408, the control circuit 210 maintains the set value (set power) of the output power. Thereafter, the process proceeds to step S411. In step S407, when it is determined that the measured impedance value (Zm) is larger than the target impedance value (Zt) (Zm> Zt), the process proceeds to step S409. In step S409, the control circuit 210 sets the set power to low power.
- step S411 If it is determined in step S407 that the measured impedance value (Zm) is smaller than the target impedance value (Zt) (Zm ⁇ Zt), the process proceeds to step S410.
- step S410 the control circuit 210 sets the set power to high power. Thereafter, the process proceeds to step S411.
- the power setting method in steps S408 to S410 for example, any of the above-described first to fifth examples may be used.
- step S411 the control circuit 210 causes the high frequency power supply circuit 220 to output the power having the power value set in any of steps S408 to S410. Thereafter, the process returns to step S405.
- step S406 When it is determined in step S406 that the measured impedance value is equal to or greater than the end impedance value, the process proceeds to step S412.
- step S412 the control circuit 210 causes the high frequency power supply circuit 220 to stop the output. Thereafter, the third control ends. Thus, the supply of the high frequency power to the high frequency treatment tool 100 by the power supply device 200 is completed.
- the output and acquired impedance values are as shown in FIG. That is, in the third control, the impedance value rises linearly.
- the output power (output voltage or output current) is adjusted so that the impedance value rises linearly.
- the living tissue is maintained at a substantially constant temperature by linearly increasing the impedance value.
- the treatment of the living tissue proceeds under a substantially constant temperature. For this reason, for example, stable sealing of blood vessels can be obtained.
- the condition for ending the treatment according to the characteristics of the living tissue is determined. In other words, regardless of the difference in the characteristics of the biological tissue that is the treatment target, the treatment ends when a sufficient treatment is performed.
- the high-frequency treatment system 10 performs an output optimized according to the treatment target.
- the description has been given mainly using the sealing of blood vessels as an example, but the above-described technique can also be applied to treatment of other living tissues.
- the above-described operation may be prepared as a mode for blood vessel sealing, and may be provided in the high-frequency treatment system 10 together with other modes.
- the high frequency treatment system 10 may be configured such that the user selects a mode corresponding to the treatment from these modes.
- the high-frequency treatment system 10 outputs not only high-frequency power, but also, for example, an ultrasonic wave in which the first grasping member 112 vibrates at an ultrasonic frequency to treat a living tissue with ultrasonic vibration.
- a function as a treatment tool may also be provided. Even in a treatment instrument that uses ultrasonic energy, the output of high-frequency power can function in the same manner as in the above-described embodiment.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
This method for operating a power supply device (200) for actuating a high-frequency treatment tool (100) that subjects living tissue to high-frequency treatment includes the following: a control circuit causes a high-frequency power supply circuit to output power (S201); an initial impedance value is acquired within a first period after starting first output (S202); the rate by which output voltage is to be increased with respect to time is determined on the basis of the initial impedance value (S301); the output voltage is increased in accordance with the rate by which said output voltage is to be increased during a second period (S302); a value relating to the impedance of the living tissue during the second period is acquired (S303); and the second period is ended after the value relating to impedance reaches a minimum value (S304).
Description
本発明は、高周波処置具を動作させるための電源装置の作動方法、電源装置、及び高周波処置システムに関する。
The present invention relates to a method for operating a power supply device for operating a high-frequency treatment instrument, a power supply device, and a high-frequency treatment system.
一般に、一対の把持部材で処置対象である生体組織を把持し、当該生体組織に高周波電力を供給することで処置を行う高周波処置システムが知られている。このようなシステムにおいて、把持部材で把持された生体組織は、高周波電流が流れることで加熱される。このような高周波処置システムは、例えば血管の封止に用いられる。高周波処置システムにおいて、処置の精度及び効率を向上させるため、出力電圧及び出力電流を適切に調整することが求められている。
Generally, a high-frequency treatment system is known in which a living tissue that is a treatment target is grasped by a pair of grasping members, and treatment is performed by supplying high-frequency power to the living tissue. In such a system, the living tissue grasped by the grasping member is heated by flowing a high-frequency current. Such a high frequency treatment system is used, for example, for sealing a blood vessel. In a high-frequency treatment system, it is required to appropriately adjust the output voltage and the output current in order to improve treatment accuracy and efficiency.
例えば日本国特開平8-98845号公報には、生体組織のインピーダンス値に注目して出力を制御することに係る技術が開示されている。すなわち、この技術では、処置の初期において計測されたインピーダンス値の最大値と最小値とが特定される。処置中に計測されるインピーダンス値は最小値を示した後に上昇する。この上昇する過程において、インピーダンス値が特定された最大値と最小値との間の所定の値となったときに出力は停止される。この最大値と最小値との間の値は、例えば最大値と最小値との平均値であることが好ましいとされる。
For example, Japanese Patent Application Laid-Open No. 8-98845 discloses a technique related to controlling an output by paying attention to an impedance value of a living tissue. That is, in this technique, the maximum value and the minimum value of the impedance value measured in the initial stage of treatment are specified. The impedance value measured during the procedure rises after showing a minimum value. In this rising process, the output is stopped when the impedance value becomes a predetermined value between the specified maximum value and minimum value. The value between the maximum value and the minimum value is preferably an average value of the maximum value and the minimum value, for example.
また、例えば日本国特開2012-196458号公報には、処置中のインピーダンス値の推移について目標値を設定し、この目標値と計測される実際のインピーダンス値とが一致するように出力が制御されることに係る技術が開示されている。
Also, for example, in Japanese Patent Application Laid-Open No. 2012-196458, a target value is set for the transition of the impedance value during treatment, and the output is controlled so that this target value matches the actual impedance value to be measured. A technology related to this is disclosed.
高周波処置システムにおいて、出力電圧及び出力電流の調整は、処置の精度及び効率に影響を与えるので、より適切に調整されることが求められている。また、最適な出力電圧及び出力電流は、処置対象に応じて異なることが知られている。したがって、出力電圧及び出力電流は、処置対象に応じて調整されることが求められている。
In the high frequency treatment system, adjustment of the output voltage and output current affects the accuracy and efficiency of the treatment, so that it is required to be adjusted more appropriately. Further, it is known that the optimum output voltage and output current differ depending on the treatment target. Therefore, the output voltage and the output current are required to be adjusted according to the treatment target.
本発明は、処置対象に応じて最適化された出力が行われる高周波処置具を動作させるための電源装置の作動方法、電源装置、及び高周波処置システムを提供することを目的とする。
An object of the present invention is to provide a method of operating a power supply device, a power supply device, and a high-frequency treatment system for operating a high-frequency treatment tool that performs an output optimized according to a treatment target.
本発明の一態様によれば、電源装置の作動方法は、生体組織に対して高周波処置を行う高周波処置具を動作させるための電源装置の作動方法であって、制御回路が、高周波電源回路に電力を出力させることと、前記制御回路が、前記出力を開始してから第1の期間内に前記生体組織のインピーダンスに係る値である初期インピーダンス値を取得することと、前記制御回路が、前記初期インピーダンス値に基づいて、時間に対する出力電圧の増加割合を決定することと、前記制御回路が、前記第1の期間後の第2の期間において前記高周波電源回路の出力電圧を前記増加割合に従って増加させることと、前記制御回路が、前記第2の期間に前記生体組織のインピーダンスに係る値を取得することと、前記制御回路が、前記インピーダンスに係る値が最小値に到達した後に、前記第2の期間を終了させることとを含む。
According to one aspect of the present invention, an operation method of a power supply device is an operation method of a power supply device for operating a high-frequency treatment instrument that performs high-frequency treatment on a living tissue, and the control circuit is connected to the high-frequency power supply circuit. Outputting electric power; obtaining an initial impedance value that is a value related to the impedance of the living tissue within a first period after the control circuit starts the output; and Determining an increase rate of the output voltage with respect to time based on an initial impedance value; and the control circuit increases the output voltage of the high-frequency power supply circuit according to the increase rate in a second period after the first period. And the control circuit acquires a value related to the impedance of the living tissue during the second period, and the control circuit relates to the impedance. After the value reaches the minimum value, and a to terminate the second time period.
本発明の一態様によれば、電源装置は、生体組織に対して高周波処置を行う高周波処置具を動作させるための電源装置であって、電力を出力する高周波電源回路と、前記出力を検出する出力検出回路と、前記出力検出回路から前記出力に係る値を取得し、前記高周波電源回路の動作を制御する制御回路とを備え、前記制御回路は、前記高周波電源回路に電力を出力させることと、前記出力を開始してから第1の期間内に前記生体組織のインピーダンスに係る値である初期インピーダンス値を、前記出力検出回路から取得した前記出力に係る値に基づいて取得することと、前記初期インピーダンス値に基づいて、時間に対する出力電圧の増加割合を決定することと、前記第1の期間後の第2の期間において前記高周波電源回路の出力電圧を前記増加割合に従って増加させることと、前記第2の期間に前記生体組織のインピーダンスに係る値を取得することと、前記インピーダンスに係る値が最小値に到達した後に、前記第2の期間を終了させることとを実行する。
According to one aspect of the present invention, a power supply device is a power supply device for operating a high-frequency treatment instrument that performs high-frequency treatment on a living tissue, and detects a high-frequency power supply circuit that outputs power and the output. An output detection circuit; and a control circuit that obtains a value related to the output from the output detection circuit and controls the operation of the high-frequency power supply circuit, wherein the control circuit causes the high-frequency power supply circuit to output power; Acquiring an initial impedance value that is a value related to the impedance of the living tissue within a first period from the start of the output based on the value related to the output acquired from the output detection circuit; Based on the initial impedance value, the rate of increase of the output voltage with respect to time is determined, and the output voltage of the high-frequency power supply circuit is set in the second period after the first period. Increasing according to the increase rate, obtaining a value related to the impedance of the living tissue during the second period, and ending the second period after the value related to the impedance reaches a minimum value And execute.
本発明の一態様によれば、高周波処置システムは、前記電源装置と、前記高周波処置具とを備える。
According to an aspect of the present invention, a high-frequency treatment system includes the power supply device and the high-frequency treatment tool.
本発明によれば、処置対象に応じて最適化された出力が行われる高周波処置具を動作させるための電源装置の作動方法、電源装置、及び高周波処置システムを提供できる。
According to the present invention, it is possible to provide an operation method of a power supply device, a power supply device, and a high-frequency treatment system for operating a high-frequency treatment tool that performs an output optimized according to a treatment target.
本発明の一実施形態について図面を参照して説明する。本実施形態に係る高周波処置システム10の概略図を図1に示す。この図に示すように、高周波処置システム10は、高周波処置具として機能する高周波処置具100と、処置具に電力を供給する電源装置200と、フットスイッチ290とを備える。
An embodiment of the present invention will be described with reference to the drawings. A schematic diagram of a high-frequency treatment system 10 according to the present embodiment is shown in FIG. As shown in this figure, the high frequency treatment system 10 includes a high frequency treatment instrument 100 that functions as a high frequency treatment instrument, a power supply device 200 that supplies power to the treatment instrument, and a foot switch 290.
高周波処置具100は、処置部110と、シャフト160と、操作部170とを有する。以降説明のため、処置部110側を先端側、操作部170側を基端側と称することにする。高周波処置システム10は、処置部110で処置対象である例えば血管といった生体組織を把持するように構成されている。高周波処置システム10は、把持した生体組織に高周波電圧を印加して、この生体組織を封止する。
The high-frequency treatment tool 100 includes a treatment unit 110, a shaft 160, and an operation unit 170. Hereinafter, for the sake of explanation, the treatment section 110 side is referred to as the distal end side, and the operation section 170 side is referred to as the proximal end side. The high-frequency treatment system 10 is configured to hold a biological tissue such as a blood vessel that is a treatment target in the treatment unit 110. The high frequency treatment system 10 seals the living tissue by applying a high frequency voltage to the grasped living tissue.
シャフト160の先端に設けられた処置部110には、一対の把持部材である第1の把持部材112と第2の把持部材114とが設けられている。第1の把持部材112及び第2の把持部材114の生体組織に接触する部分は、それぞれ電極として機能する。すなわち、第1の把持部材112と第2の把持部材114とは、バイポーラ電極として機能する。
The treatment section 110 provided at the tip of the shaft 160 is provided with a first holding member 112 and a second holding member 114 which are a pair of holding members. The portions of the first grasping member 112 and the second grasping member 114 that contact the living tissue function as electrodes. That is, the first holding member 112 and the second holding member 114 function as bipolar electrodes.
操作部170には、操作部本体172と、固定ハンドル174と、可動ハンドル176と、出力スイッチ178とが設けられている。固定ハンドル174は、操作部本体172に対して固定されており、可動ハンドル176は、操作部本体172に対して変位する。可動ハンドル176は、シャフト160内を挿通しているワイヤ又はロッドに接続されている。このワイヤ又はロッドは、第2の把持部材114に接続されている。可動ハンドル176の動作は、第2の把持部材114に伝達される。第2の把持部材114は、可動ハンドル176の動作に応じて、第1の把持部材112に対して変位する。その結果、第1の把持部材112と第2の把持部材114とは、開いたり閉じたりする。
The operation unit 170 is provided with an operation unit main body 172, a fixed handle 174, a movable handle 176, and an output switch 178. The fixed handle 174 is fixed with respect to the operation unit main body 172, and the movable handle 176 is displaced with respect to the operation unit main body 172. The movable handle 176 is connected to a wire or rod inserted through the shaft 160. This wire or rod is connected to the second gripping member 114. The operation of the movable handle 176 is transmitted to the second gripping member 114. The second gripping member 114 is displaced with respect to the first gripping member 112 in accordance with the operation of the movable handle 176. As a result, the first holding member 112 and the second holding member 114 are opened and closed.
出力スイッチ178は、例えば2つのボタンを含む。これらのボタンは、処置部110によって処置対象である生体組織に高周波電力を作用させる際に押圧されるボタンである。このボタンが押圧されたことを検知した電源装置200は、第1の把持部材112と第2の把持部材114との間に高周波電圧を印加する。その結果、処置部110で把持された生体組織は、封止される。高周波処置具100は、例えば、2つあるボタンのうち何れが押圧されるかで、出力レベルが異なるように構成されている。フットスイッチ290にも、例えば2つのスイッチが設けられている。フットスイッチ290の2つのスイッチのそれぞれは、出力スイッチ178のそれぞれのボタンと同様の機能を有する。なお、高周波処置システム10には、出力スイッチ178とフットスイッチ290との両方が設けられていてもよいし、何れか一方が設けられていてもよい。以下、主に出力スイッチ178が操作されるものとして説明するがフットスイッチ290が操作されてもよい。
The output switch 178 includes, for example, two buttons. These buttons are buttons that are pressed when the high-frequency power is applied to the biological tissue to be treated by the treatment unit 110. The power supply device 200 that has detected that the button has been pressed applies a high-frequency voltage between the first gripping member 112 and the second gripping member 114. As a result, the living tissue grasped by the treatment unit 110 is sealed. For example, the high-frequency treatment instrument 100 is configured such that the output level varies depending on which of two buttons is pressed. The foot switch 290 is also provided with, for example, two switches. Each of the two switches of the foot switch 290 has the same function as each button of the output switch 178. The high-frequency treatment system 10 may be provided with both the output switch 178 and the foot switch 290, or may be provided with either one. In the following description, the output switch 178 is mainly operated. However, the foot switch 290 may be operated.
操作部170の基端側には、ケーブル180の一端が接続されている。ケーブル180の他端は、電源装置200に接続されている。電源装置200は、高周波処置具100の動作を制御し、高周波処置具100に電力を供給する。
One end of a cable 180 is connected to the proximal end side of the operation unit 170. The other end of the cable 180 is connected to the power supply device 200. The power supply device 200 controls the operation of the high-frequency treatment instrument 100 and supplies power to the high-frequency treatment instrument 100.
図2に、電源装置200の構成例の概略を表すブロック図を示す。電源装置200は、制御回路210と、高周波電源回路220と、出力検出回路230と、A/D変換器240と、記憶媒体250と、入力器262と、表示器264と、スピーカ266とを有する。
FIG. 2 is a block diagram showing an outline of a configuration example of the power supply device 200. The power supply device 200 includes a control circuit 210, a high frequency power supply circuit 220, an output detection circuit 230, an A / D converter 240, a storage medium 250, an input device 262, a display device 264, and a speaker 266. .
制御回路210は、例えばCentral Processing Unit(CPU)、Application Specific Integrated Circuit(ASIC)、又はField Programmable Gate Array(FPGA)等の集積回路等を含む。制御回路210は、1つの集積回路等で構成されてもよいし、複数の集積回路等が組み合わされて構成されてもよい。制御回路210の動作は、例えば制御回路210内又は記憶媒体250に記録されたプログラムに従って行われる。制御回路210は、電源装置200の各部から情報を取得し、各部の動作を制御する。
The control circuit 210 includes, for example, an integrated circuit such as a central processing unit (CPU), an application specific integrated circuit (ASIC), or a field programmable gate array (FPGA). The control circuit 210 may be configured by one integrated circuit or the like, or may be configured by combining a plurality of integrated circuits. The operation of the control circuit 210 is performed according to a program recorded in the control circuit 210 or the storage medium 250, for example. The control circuit 210 acquires information from each unit of the power supply apparatus 200 and controls the operation of each unit.
高周波電源回路220は、高周波処置具100に供給する高周波電力を出力する。高周波電源回路220は、可変直流電源221と、波形生成回路222と、出力回路223とを備える。可変直流電源221は、制御回路210の制御下で、直流の電力を出力する。可変直流電源221の出力は、出力回路223へと伝達される。波形生成回路222は、制御回路210の制御下で、交流波形を生成し、生成した交流波形を出力する。波形生成回路222の出力は、出力回路223へと伝達される。出力回路223は、可変直流電源221の出力と、波形生成回路222の出力とを重畳し、交流の電力を出力する。この交流電力は、出力検出回路230を介して、高周波処置具100の第1の把持部材112と第2の把持部材114とに供給される。
The high frequency power supply circuit 220 outputs high frequency power supplied to the high frequency treatment instrument 100. The high frequency power supply circuit 220 includes a variable DC power supply 221, a waveform generation circuit 222, and an output circuit 223. The variable DC power source 221 outputs DC power under the control of the control circuit 210. The output of the variable DC power source 221 is transmitted to the output circuit 223. The waveform generation circuit 222 generates an AC waveform under the control of the control circuit 210, and outputs the generated AC waveform. The output of the waveform generation circuit 222 is transmitted to the output circuit 223. The output circuit 223 superimposes the output of the variable DC power supply 221 and the output of the waveform generation circuit 222 and outputs AC power. This AC power is supplied to the first gripping member 112 and the second gripping member 114 of the high-frequency treatment instrument 100 via the output detection circuit 230.
出力検出回路230は、電流検出回路231と電圧検出回路232とを有する。電流検出回路231は、高周波電源回路220から高周波処置具100への回路の途中に挿入されており、高周波電源回路220から出力される電流値を表すアナログ信号を出力する。電圧検出回路232は、高周波電源回路220の出力電圧を表すアナログ信号を出力する。
The output detection circuit 230 includes a current detection circuit 231 and a voltage detection circuit 232. The current detection circuit 231 is inserted in the middle of the circuit from the high frequency power supply circuit 220 to the high frequency treatment instrument 100, and outputs an analog signal representing a current value output from the high frequency power supply circuit 220. The voltage detection circuit 232 outputs an analog signal representing the output voltage of the high frequency power supply circuit 220.
電流検出回路231の出力信号及び電圧検出回路232の出力信号は、A/D変換器240へと入力される。A/D変換器240は、入力されたアナログ信号をデジタル信号に変換し、制御回路210へと伝達する。このようにして、制御回路210は、高周波電源回路220の出力電圧及び出力電流の情報を取得する。また、制御回路210は、これら出力電圧及び出力電流に基づいて、第1の把持部材112、処置対象である生体組織、及び第2の把持部材114を含む回路のインピーダンスに係る値を算出する。すなわち、制御回路210は、生体組織のインピーダンスに係る値を取得する。
The output signal of the current detection circuit 231 and the output signal of the voltage detection circuit 232 are input to the A / D converter 240. The A / D converter 240 converts the input analog signal into a digital signal and transmits it to the control circuit 210. In this way, the control circuit 210 acquires information on the output voltage and output current of the high frequency power supply circuit 220. Further, the control circuit 210 calculates a value related to the impedance of the circuit including the first grasping member 112, the biological tissue to be treated, and the second grasping member 114 based on the output voltage and the output current. That is, the control circuit 210 acquires a value related to the impedance of the living tissue.
記憶媒体250は、制御回路210で用いられるプログラム、制御回路210で行われる演算に用いられる各種のパラメータ、テーブル等を記憶している。
The storage medium 250 stores programs used in the control circuit 210, various parameters used in calculations performed in the control circuit 210, tables, and the like.
入力器262は、例えば、ボタン、スライダ、ダイヤル、キーボード、又はタッチパネルといった入力機器を含む。制御回路210は、ユーザによる入力器262への入力を取得する。表示器264は、例えば、液晶ディスプレイ又はLEDランプといった表示機器を含む。表示器264は、制御回路210の制御下で、高周波処置システム10に係る情報を、ユーザに提示する。スピーカ266は、制御回路210の制御下で、例えば入力音、出力音、警告音等を発する。
The input device 262 includes an input device such as a button, a slider, a dial, a keyboard, or a touch panel. The control circuit 210 acquires an input to the input device 262 by the user. The display 264 includes a display device such as a liquid crystal display or an LED lamp. The display 264 presents information related to the high-frequency treatment system 10 to the user under the control of the control circuit 210. The speaker 266 emits, for example, an input sound, an output sound, a warning sound, and the like under the control of the control circuit 210.
本実施形態に係る高周波処置システム10の動作について説明する。ユーザは、電源装置200の入力器262を操作して、高周波処置具100についての希望する出力レベルを設定する。出力レベルは、例えば複数ある出力スイッチ178毎に設定される。
The operation of the high-frequency treatment system 10 according to this embodiment will be described. The user operates the input device 262 of the power supply device 200 to set a desired output level for the high-frequency treatment instrument 100. The output level is set for each of a plurality of output switches 178, for example.
処置部110及びシャフト160は、例えば、腹壁を通して腹腔内に挿入される。ユーザは、可動ハンドル176を操作して処置部110を開閉させる。こうして、第1の把持部材112と第2の把持部材114とは、処置対象である生体組織を把持する。ユーザは、処置部110で生体組織を把持したら、出力スイッチ178を操作する。出力スイッチ178のボタンが押圧されたことを検出した電源装置200の制御回路210は、高周波電源回路220に駆動に係る指示を出力する。
The treatment part 110 and the shaft 160 are inserted into the abdominal cavity through the abdominal wall, for example. The user operates the movable handle 176 to open and close the treatment unit 110. Thus, the first grasping member 112 and the second grasping member 114 grasp the living tissue that is the treatment target. When the user grips the living tissue with the treatment unit 110, the user operates the output switch 178. The control circuit 210 of the power supply device 200 that has detected that the button of the output switch 178 has been pressed outputs an instruction for driving to the high frequency power supply circuit 220.
高周波電源回路220は、制御回路210の制御下で、処置部110の第1の把持部材112及び第2の把持部材114に高周波電圧を印加し、処置対象である生体組織に高周波電流を流す。高周波電流が流れると、生体組織が電気的な抵抗となるため、生体組織で熱が発生し、生体組織の温度が上昇する。その結果、生体組織のタンパク質は変成し、生体組織が封止される。以上によって生体組織の処置は完了する。
The high-frequency power supply circuit 220 applies a high-frequency voltage to the first grasping member 112 and the second grasping member 114 of the treatment unit 110 under the control of the control circuit 210, and causes a high-frequency current to flow through the living tissue to be treated. When a high frequency current flows, the living tissue becomes an electrical resistance, so heat is generated in the living tissue and the temperature of the living tissue rises. As a result, the protein of the living tissue is denatured and the living tissue is sealed. Thus, the treatment of the living tissue is completed.
電源装置200の出力動作について詳述する。本実施形態に係る電源装置200の動作の概略を図3に示すフローチャートを参照して説明する。ステップS101において、制御回路210は、出力スイッチ178がオンになったか否かを判定する。オンになっていないとき、処理はステップS101に戻る。すなわち、制御回路210は、オンになるまで待機する。オンになったとき、処理はステップS102に進む。ステップS102において、制御回路210は、第1の制御を実行する。続いて、ステップS103において、制御回路210は、第2の制御を実行する。続いて、ステップS104において、制御回路210は、第3の制御を実行する。第1の制御、第2の制御、及び第3の制御については、後に詳述する。以上によって出力制御は終了する。このように、本実施形態では、3段階の制御が行われる。
The output operation of the power supply device 200 will be described in detail. An outline of the operation of the power supply apparatus 200 according to the present embodiment will be described with reference to a flowchart shown in FIG. In step S101, the control circuit 210 determines whether or not the output switch 178 is turned on. If not, the process returns to step S101. That is, the control circuit 210 waits until it is turned on. When turned on, the process proceeds to step S102. In step S102, the control circuit 210 executes the first control. Subsequently, in step S103, the control circuit 210 executes the second control. Subsequently, in step S104, the control circuit 210 executes third control. The first control, the second control, and the third control will be described in detail later. Thus, the output control ends. Thus, in the present embodiment, three-stage control is performed.
本実施形態に係る高周波処置システム10の出力及びその際算出される生体組織に係るインピーダンスの一例を図4を参照して説明する。図4は、横軸に出力開始時を0とした時間を示し、左縦軸は、出力電力、出力電圧及び出力電流を示し、右縦軸はインピーダンスを示す。図4において、実線は出力電圧の変化を示し、破線はインピーダンスの変化を示し、一点鎖線は出力電力の変化を示し、二点鎖線は出力電流の変化を示す。
An example of the output of the high-frequency treatment system 10 according to the present embodiment and the impedance relating to the living tissue calculated at that time will be described with reference to FIG. In FIG. 4, the horizontal axis indicates time when the output start time is 0, the left vertical axis indicates output power, output voltage, and output current, and the right vertical axis indicates impedance. In FIG. 4, a solid line indicates a change in output voltage, a broken line indicates a change in impedance, a one-dot chain line indicates a change in output power, and a two-dot chain line indicates a change in output current.
上述のとおり、本実施形態に係る高周波処置システム10の出力の制御は、3段階(3つのフェーズ)に分かれている。したがって、生体組織に電力が供給される期間は、出力開始直後の短期間の第1の制御が行われる第1の期間と、その後の約1秒間の第2の制御が行われる第2の期間と、その後の約2秒間の第3の制御が行われる第3の期間とを含む。第1の制御による出力を第1の出力と称し、第2の制御による出力を第2の出力と称し、第3の制御による出力を第3の出力と称することにする。また、第2の制御による出力は第3の制御による出力よりも前に行われるので、第2の制御による期間を前期期間と称し、第3の制御による出力を後期期間と称することにする。
As described above, the output control of the high-frequency treatment system 10 according to the present embodiment is divided into three stages (three phases). Therefore, the period during which power is supplied to the living tissue includes the first period in which the first control for a short period immediately after the start of output is performed, and the second period in which the second control is performed for about 1 second thereafter. And a third period during which the third control is performed for about 2 seconds thereafter. The output by the first control is referred to as the first output, the output by the second control is referred to as the second output, and the output by the third control is referred to as the third output. Since the output by the second control is performed before the output by the third control, the period by the second control is referred to as the first period, and the output by the third control is referred to as the latter period.
第1の制御においては、所定の期間、所定の電力値を有する高周波電力が生体組織に供給される。この第1の期間は、例えば100ミリ秒程度である。この第1の期間に、インピーダンスに係る値が取得される。処置対象である生体組織の大きさ、種類等、又は生体組織の状態に応じて、このときに取得されるインピーダンスに係る値は異なるものとなる。そこで、本実施形態では、第1の制御が行われている第1の期間に取得されるインピーダンスに係る値に基づいて、処置対象である生体組織の状態が把握され、後の制御で用いられる制御パラメータが決定される。すなわち、処置対象である生体組織の特性に応じた制御パラメータが設定される。また、第1の制御において、それほど大きくない所定の電力が生体組織に供給されることによって、出力のオーバーシュートが抑制される。
In the first control, high-frequency power having a predetermined power value is supplied to the living tissue for a predetermined period. This first period is, for example, about 100 milliseconds. In this first period, a value related to impedance is acquired. Depending on the size, type, etc. of the biological tissue to be treated or the state of the biological tissue, the value relating to the impedance obtained at this time varies. Therefore, in the present embodiment, the state of the living tissue that is the treatment target is grasped based on the value relating to the impedance acquired in the first period in which the first control is performed, and is used in later control. Control parameters are determined. That is, a control parameter is set according to the characteristics of the living tissue to be treated. Further, in the first control, a predetermined power that is not so large is supplied to the living tissue, thereby suppressing output overshoot.
第2の制御においては、線形に上昇する電圧が生体組織に印加される。この第2の制御が行われている第2の期間において、生体組織の温度が上昇する。第2の制御は、計測されるインピーダンスに係る値が最小値を示したことが検出されるまで行われる。計測されるインピーダンスに係る値が最小値となったら、制御は第3の制御に移行する。
In the second control, a linearly rising voltage is applied to the living tissue. In the second period in which the second control is performed, the temperature of the living tissue rises. The second control is performed until it is detected that the value related to the measured impedance indicates the minimum value. When the value relating to the measured impedance becomes the minimum value, the control shifts to the third control.
第2の制御において水分が蒸発すると、その後温度上昇に伴ってインピーダンスに係る値が上昇していく。第3の制御においては、インピーダンスに係る値が線形に上昇するように出力制御が行われる。この第3の期間において、生体組織の温度は、ほぼ一定となるように維持される。
When the moisture evaporates in the second control, the value related to the impedance increases with the temperature rise. In the third control, output control is performed so that the value related to impedance rises linearly. In this third period, the temperature of the living tissue is maintained to be substantially constant.
以下、第1乃至第3の制御について詳述する。
Hereinafter, the first to third controls will be described in detail.
[第1の制御について]
第1の制御について、図5に示すフローチャートを参照して説明する。 [About the first control]
The first control will be described with reference to the flowchart shown in FIG.
第1の制御について、図5に示すフローチャートを参照して説明する。 [About the first control]
The first control will be described with reference to the flowchart shown in FIG.
ステップS201において、制御回路210は、高周波電源回路220に、所定の電力値を有する交流電力を第1の把持部材112と第2の把持部材114とで挟持された処置対象である生体組織に供給させる。この交流電力の供給によって生体組織に交流電流が流れる。
In step S <b> 201, the control circuit 210 supplies AC power having a predetermined power value to the high-frequency power supply circuit 220 to the living tissue that is the treatment target sandwiched between the first grasping member 112 and the second grasping member 114. Let By supplying this AC power, an AC current flows through the living tissue.
ステップS202において、制御回路210は、処置対象である生体組織に係るインピーダンス値を取得する。例えば、制御回路210は、出力検出回路230の電流検出回路231で検出された電流と、電圧検出回路232で検出された電圧とを取得し、これらの値に基づいて、インピーダンス値を算出する。ここで、算出されるインピーダンス値は、インピーダンスに係る種々の値でよく、例えば複素数であるインピーダンスの絶対値であっても、実数成分である抵抗値であってもよい。また、逆数であるアドミタンスが用いられてもよい。
In step S202, the control circuit 210 acquires an impedance value related to the biological tissue that is the treatment target. For example, the control circuit 210 acquires the current detected by the current detection circuit 231 of the output detection circuit 230 and the voltage detected by the voltage detection circuit 232, and calculates an impedance value based on these values. Here, the calculated impedance value may be various values relating to impedance, and may be, for example, an absolute value of impedance that is a complex number or a resistance value that is a real component. An admittance that is an inverse number may be used.
ステップS203において、制御回路210は、所定時間が経過したか否かを判定する。ここで、所定時間は、例えば100ミリ秒である。所定時間が経過していないとき、処理はステップS201に戻る。すなわち、所定電力の供給とインピーダンス値の取得とが繰り返される。所定時間が経過したとき、第1の制御は終了し、第2の制御へと移行する。
In step S203, the control circuit 210 determines whether or not a predetermined time has elapsed. Here, the predetermined time is, for example, 100 milliseconds. When the predetermined time has not elapsed, the process returns to step S201. That is, the supply of the predetermined power and the acquisition of the impedance value are repeated. When the predetermined time has elapsed, the first control is terminated and the process proceeds to the second control.
なお、第1の制御で取得されるインピーダンス値を初期インピーダンス値と称することにする。初期インピーダンス値は、最初に取得されたインピーダンス値でもよいし、第1の制御が行われる第1の期間のうち何れかの期間に取得されたインピーダンス値の平均値や中間値などであってもよい。
Note that the impedance value acquired in the first control is referred to as an initial impedance value. The initial impedance value may be an impedance value acquired first, or may be an average value or an intermediate value of impedance values acquired in any period of the first period in which the first control is performed. Good.
[第2の制御について]
第2の制御について詳述する。第2の制御は、血管等の安定した封止を行うために最適化された制御である。ここで、血管等の生体組織を加熱する際のインピーダンス値の変化に注目する。生体組織を加熱すると、生体組織内の電解質溶液の温度が上昇し、インピーダンスが低下する。このインピーダンスの低下に注目すると、以下のことが明らかになった。 [About the second control]
The second control will be described in detail. The second control is a control optimized for performing stable sealing of blood vessels and the like. Here, attention is paid to a change in impedance value when a biological tissue such as a blood vessel is heated. When the living tissue is heated, the temperature of the electrolyte solution in the living tissue increases, and the impedance decreases. Focusing on this drop in impedance, the following became clear.
第2の制御について詳述する。第2の制御は、血管等の安定した封止を行うために最適化された制御である。ここで、血管等の生体組織を加熱する際のインピーダンス値の変化に注目する。生体組織を加熱すると、生体組織内の電解質溶液の温度が上昇し、インピーダンスが低下する。このインピーダンスの低下に注目すると、以下のことが明らかになった。 [About the second control]
The second control will be described in detail. The second control is a control optimized for performing stable sealing of blood vessels and the like. Here, attention is paid to a change in impedance value when a biological tissue such as a blood vessel is heated. When the living tissue is heated, the temperature of the electrolyte solution in the living tissue increases, and the impedance decreases. Focusing on this drop in impedance, the following became clear.
図6に、第2の制御による電圧印加時間(加熱時間)と、Vessel Burst Pressure(VBP)の平均値との関係を示す。ここで、第2の制御による電圧印加時間は、上述のとおり第2の制御の開始からインピーダンス値が最小値を取るまでの時間となる。また、第2の制御は、上述し図4に示したように、出力電圧が線形に上昇するように調整される制御である。また、VBPは、第2の制御及び第3の制御を経た封止処置後の血管に水圧をかけたときに封止部分が剥離する圧力を示す。すなわち、VBPが高い程、強固な封止が行われていることを意味する。一般に、少なくとも90%以上の処置後の血管で360mmHg以上のVBPが得られることが要求される。図6に示すように、インピーダンス値が最小値を取るまでの時間が長くなるほど、VBPは上昇する傾向にある。また、インピーダンス値が最小値を取るまでの時間が1秒以上になっても、VBPはそれほど上昇しなかった。
FIG. 6 shows the relationship between the voltage application time (heating time) by the second control and the average value of Vessel Burst Pressure (VBP). Here, the voltage application time by the second control is the time from the start of the second control until the impedance value takes the minimum value as described above. The second control is a control that is adjusted so that the output voltage rises linearly as described above and shown in FIG. VBP indicates the pressure at which the sealed portion peels when water pressure is applied to the blood vessel after the sealing treatment that has undergone the second control and the third control. That is, the higher the VBP, the stronger the sealing. In general, it is required that a VBP of 360 mmHg or more can be obtained in at least 90% or more of the treated blood vessels. As shown in FIG. 6, VBP tends to increase as the time until the impedance value takes the minimum value becomes longer. Further, even when the time until the impedance value takes the minimum value is 1 second or more, VBP does not increase so much.
図6に示す結果と、処置時間は短いことが望まれていることとを考慮すると、インピーダンス値が最小値を取るまでの時間は、1秒程度であることが好ましいと考えられる。また、VBPが360mmHgよりも十分に高い0.5秒から1.5秒程度の範囲内でもよいことが分かる。これらの結果を踏まえて、本実施形態では、インピーダンス値が最小値を取るまでの時間が1秒程度となるように、第2の制御における出力電圧を調整することとした。
Considering the result shown in FIG. 6 and the fact that a short treatment time is desired, it is considered preferable that the time until the impedance value takes the minimum value is about 1 second. It can also be seen that VBP may be in the range of about 0.5 to 1.5 seconds, which is sufficiently higher than 360 mmHg. Based on these results, in the present embodiment, the output voltage in the second control is adjusted so that the time until the impedance value takes the minimum value is about 1 second.
本実施形態では、制御回路210は、第2の制御における生体組織に印加する出力電圧V(t)を下記式(1)となるように制御する。
V(t)=(V(Z)/GV)×t (1)
ここで、tは、処置の開始からの時間、すなわち、第1の制御が開始してからの時間を示す。tは、第2の制御が開始してからの時間であってもよい。V(Z)は、定数を示し、例えば出力電圧の最大値を示す。GVは、勾配値を示す。このように、(V(Z)/GV)は、単位時間当たりの出力電圧の上昇値、すなわち、傾き(増加割合)を示す。 In the present embodiment, thecontrol circuit 210 controls the output voltage V (t) applied to the living tissue in the second control so as to satisfy the following formula (1).
V (t) = (V (Z) / GV) × t (1)
Here, t represents the time from the start of the treatment, that is, the time from the start of the first control. t may be the time from the start of the second control. V (Z) represents a constant, for example, the maximum value of the output voltage. GV indicates a gradient value. Thus, (V (Z) / GV) indicates the increase value of the output voltage per unit time, that is, the slope (increase rate).
V(t)=(V(Z)/GV)×t (1)
ここで、tは、処置の開始からの時間、すなわち、第1の制御が開始してからの時間を示す。tは、第2の制御が開始してからの時間であってもよい。V(Z)は、定数を示し、例えば出力電圧の最大値を示す。GVは、勾配値を示す。このように、(V(Z)/GV)は、単位時間当たりの出力電圧の上昇値、すなわち、傾き(増加割合)を示す。 In the present embodiment, the
V (t) = (V (Z) / GV) × t (1)
Here, t represents the time from the start of the treatment, that is, the time from the start of the first control. t may be the time from the start of the second control. V (Z) represents a constant, for example, the maximum value of the output voltage. GV indicates a gradient value. Thus, (V (Z) / GV) indicates the increase value of the output voltage per unit time, that is, the slope (increase rate).
GVは、第1の制御で取得された初期インピーダンス値に基づいて決定される。GVは、例えば初期抵抗値R0に基づいて、下記式(2)で決定される。
GV=a・R0+b (2)
ここで、a及びbは、それぞれ定数である。a及びbは、出力電圧V(t)を生体組織に印加したときに、1秒程度でインピーダンス値が最小値を示すように経験的に調整された値である。 GV is determined based on the initial impedance value acquired in the first control. GV is determined by the following equation (2) based on, for example, the initial resistance value R0.
GV = a · R0 + b (2)
Here, a and b are constants. a and b are values empirically adjusted so that the impedance value shows the minimum value in about 1 second when the output voltage V (t) is applied to the living tissue.
GV=a・R0+b (2)
ここで、a及びbは、それぞれ定数である。a及びbは、出力電圧V(t)を生体組織に印加したときに、1秒程度でインピーダンス値が最小値を示すように経験的に調整された値である。 GV is determined based on the initial impedance value acquired in the first control. GV is determined by the following equation (2) based on, for example, the initial resistance value R0.
GV = a · R0 + b (2)
Here, a and b are constants. a and b are values empirically adjusted so that the impedance value shows the minimum value in about 1 second when the output voltage V (t) is applied to the living tissue.
なお、上記式(2)は、1次関数に限らず高次の関数など他の式でもよい。ただし、初期抵抗値R0が上記式(1)に与える影響が大きくなり過ぎないように、高次関数よりも1次関数であることが好ましい。また、上記式(1)も時間に関する1次関数となっている。1次関数であることで、安定性が高く、かつ適度な温度上昇が得られる。出力電圧が時間に関する1次関数であるので、生体組織に投入される電力は時間に関して2次関数的に増加する。なお、出力電圧V(t)はオフセットが与えられてもよい。すなわち、上記式(1)は、
V(t)=(V(Z)/GV)×t+c (3)
(ここでcは定数)のように変形されてもよい。 The above equation (2) is not limited to a linear function, and may be another equation such as a higher-order function. However, it is preferable that the initial resistance value R0 is a linear function rather than a high-order function so that the influence of the initial resistance value R0 on the above equation (1) does not become too large. Also, the above equation (1) is also a linear function with respect to time. By being a linear function, the stability is high and an appropriate temperature increase is obtained. Since the output voltage is a linear function with respect to time, the power input to the living tissue increases in a quadratic function with respect to time. The output voltage V (t) may be given an offset. That is, the above formula (1) is
V (t) = (V (Z) / GV) × t + c (3)
(Where c is a constant).
V(t)=(V(Z)/GV)×t+c (3)
(ここでcは定数)のように変形されてもよい。 The above equation (2) is not limited to a linear function, and may be another equation such as a higher-order function. However, it is preferable that the initial resistance value R0 is a linear function rather than a high-order function so that the influence of the initial resistance value R0 on the above equation (1) does not become too large. Also, the above equation (1) is also a linear function with respect to time. By being a linear function, the stability is high and an appropriate temperature increase is obtained. Since the output voltage is a linear function with respect to time, the power input to the living tissue increases in a quadratic function with respect to time. The output voltage V (t) may be given an offset. That is, the above formula (1) is
V (t) = (V (Z) / GV) × t + c (3)
(Where c is a constant).
上記式(1)及び(2)に従えば、例えば細い血管では、初期抵抗値R0が比較的高いので、勾配を示す(V(Z)/GV)が比較的小さくなる。すなわち、細い血管では、出力電圧は比較的ゆっくりと上昇し、したがって、投入電力は比較的ゆっくりと上昇する。一方、例えば太い血管では、初期抵抗値R0が比較的低いので、勾配を示す(V(Z)/GV)が比較的大きくなる。すなわち、太い血管では、出力電圧は比較的速く上昇し、したがって、投入電力は比較的速く上昇する。
According to the above formulas (1) and (2), for example, in a thin blood vessel, since the initial resistance value R0 is relatively high, the gradient (V (Z) / GV) is relatively small. That is, in a thin blood vessel, the output voltage rises relatively slowly, and therefore the input power rises relatively slowly. On the other hand, for example, in a thick blood vessel, since the initial resistance value R0 is relatively low, the gradient (V (Z) / GV) indicating the gradient is relatively large. That is, in a thick blood vessel, the output voltage rises relatively quickly, and therefore the input power rises relatively quickly.
勾配(V(Z)/GV)は、上記式(1)及び(2)の関係と初期抵抗値R0とに基づいてその都度算出されて用いられてもよいし、記憶媒体250に予め記憶された初期抵抗値R0と勾配(V(Z)/GV)との関係を表すテーブルと初期抵抗値とに基づいて決定されてもよい。
The gradient (V (Z) / GV) may be calculated and used each time based on the relationship of the above formulas (1) and (2) and the initial resistance value R0, or may be stored in advance in the storage medium 250. Alternatively, it may be determined based on a table representing the relationship between the initial resistance value R0 and the gradient (V (Z) / GV) and the initial resistance value.
第2の制御における電源装置200の動作を、図7に示すフローチャートを参照して説明する。
The operation of the power supply apparatus 200 in the second control will be described with reference to the flowchart shown in FIG.
ステップS301において、制御回路210は、初期インピーダンス値に基づいて、時間と出力電圧V(t)との関係を算出する。出力電圧V(t)は、例えば上述の式(1)及び(2)を用いて決定される。
In step S301, the control circuit 210 calculates the relationship between time and the output voltage V (t) based on the initial impedance value. The output voltage V (t) is determined using, for example, the above equations (1) and (2).
ステップS302において、制御回路210は、高周波電源回路220に、時間に応じた電圧V(t)を出力させる。ステップS303において、制御回路210は、生体組織のインピーダンス値を取得する。
In step S302, the control circuit 210 causes the high frequency power supply circuit 220 to output a voltage V (t) corresponding to time. In step S303, the control circuit 210 acquires the impedance value of the living tissue.
ステップS304において、制御回路210は、ステップS303で取得されたインピーダンス値が切替インピーダンス値であるか否かを判定する。ここで、切替インピーダンス値とは、第2の制御を終了する条件となるインピーダンス値である。切替インピーダンス値は、例えばインピーダンス値の変化が計測されて、最小値となったときの値であり得る。最小値の検出を容易に行うため、インピーダンス値が最小値を示した後、所定の値だけ上昇した値を切替インピーダンス値としてもよい。すなわち、ステップS304において、インピーダンス値が減少し、最小値を示した後に所定の値だけインピーダンス値が上昇したとき、インピーダンス値が切替インピーダンス値になったと判定されてもよい。ステップS304において切替インピーダンス値でないと判定されたとき、処理はステップS302に戻る。一方、切替インピーダンス値であると判定されたとき、第2の制御は終了し、第3の制御へと移行する。
In step S304, the control circuit 210 determines whether or not the impedance value acquired in step S303 is a switching impedance value. Here, the switching impedance value is an impedance value that is a condition for ending the second control. The switching impedance value can be, for example, a value when a change in impedance value is measured and becomes a minimum value. In order to easily detect the minimum value, a value increased by a predetermined value after the impedance value indicates the minimum value may be used as the switching impedance value. That is, in step S304, it may be determined that the impedance value has become the switching impedance value when the impedance value increases by a predetermined value after the impedance value decreases and shows a minimum value. If it is determined in step S304 that the impedance is not a switching impedance value, the process returns to step S302. On the other hand, when it determines with it being a switching impedance value, 2nd control is complete | finished and it transfers to 3rd control.
以上のような制御によって、出力電圧及びインピーダンス値は図4に示すようになる。すなわち、第2の制御が行われる第2の期間において、出力電圧は、線形に上昇する。このとき、出力電力は2次関数的に上昇する。第2の期間において取得されるインピーダンス値は、時間経過とともにゆっくりと減少していく。図4に示す例では、インピーダンス値が最小値を示した後にわずかに上昇したところで、第2の制御が終了している。なお、ここでは出力電圧が制御される例を示したが、同様に出力電流又は出力電力が線形に上昇するように制御されてもよい。
By the control as described above, the output voltage and impedance value are as shown in FIG. That is, the output voltage rises linearly in the second period in which the second control is performed. At this time, the output power rises in a quadratic function. The impedance value acquired in the second period gradually decreases with time. In the example shown in FIG. 4, the second control ends when the impedance value rises slightly after showing the minimum value. In addition, although the example in which the output voltage is controlled is shown here, the output current or the output power may be controlled to increase linearly in the same manner.
インピーダンス値が最小値を取るまでの時間を1秒程度と比較的ゆっくりにすることで、処置の時間を短くしつつ生体組織の温度を均一にすることができる。また、処置対象のサイズ等によらず、インピーダンス値が最小値を取るまでの時間を1秒程度と一定にすることで、処置ごとの結果のバラつきを抑制することができる。なお、同じエネルギを投入した場合、細い血管ほど、短い時間でインピーダンス値が最小値を取る。インピーダンス値が最小値を取るまでの時間を1秒程度とすることで、図6に示すように、安定して高い封止力が得られる。
¡By relatively slowing the time until the impedance value takes the minimum value of about 1 second, the temperature of the living tissue can be made uniform while shortening the treatment time. Further, by making the time until the impedance value takes the minimum value constant at about 1 second regardless of the size of the treatment target, variation in the results of each treatment can be suppressed. When the same energy is input, the smaller the blood vessel, the shorter the impedance value takes a minimum value. By setting the time until the impedance value takes the minimum value to about 1 second, a high sealing force can be stably obtained as shown in FIG.
[第3の制御について]
第3の制御について詳述する。第3の制御では、計測されるインピーダンス値が一定の割合で上昇するように出力が制御される。本実施形態では、まず、出力を停止するときのインピーダンス値である終了インピーダンス値が決定される。次に、第3の制御の開始時のインピーダンス値から終了インピーダンス値まで一定の速度で上昇する目標インピーダンス値が設定される。すなわち、目標インピーダンス値は、各時間におけるインピーダンス値の目標値として設定される。出力の制御は、一定期間ごとに目標インピーダンス値と出力検出回路230を用いて取得された計測インピーダンス値との差異に基づいて、出力値が決定されるように行われる。このようにして、計測インピーダンス値が目標インピーダンス値に沿って終了インピーダンス値に達するまで、第3の制御は行われる。 [About the third control]
The third control will be described in detail. In the third control, the output is controlled so that the measured impedance value increases at a constant rate. In the present embodiment, first, an end impedance value that is an impedance value when output is stopped is determined. Next, a target impedance value that rises at a constant speed from the impedance value at the start of the third control to the end impedance value is set. That is, the target impedance value is set as the target value of the impedance value at each time. The output is controlled such that the output value is determined based on the difference between the target impedance value and the measured impedance value acquired using theoutput detection circuit 230 at regular intervals. In this way, the third control is performed until the measured impedance value reaches the end impedance value along the target impedance value.
第3の制御について詳述する。第3の制御では、計測されるインピーダンス値が一定の割合で上昇するように出力が制御される。本実施形態では、まず、出力を停止するときのインピーダンス値である終了インピーダンス値が決定される。次に、第3の制御の開始時のインピーダンス値から終了インピーダンス値まで一定の速度で上昇する目標インピーダンス値が設定される。すなわち、目標インピーダンス値は、各時間におけるインピーダンス値の目標値として設定される。出力の制御は、一定期間ごとに目標インピーダンス値と出力検出回路230を用いて取得された計測インピーダンス値との差異に基づいて、出力値が決定されるように行われる。このようにして、計測インピーダンス値が目標インピーダンス値に沿って終了インピーダンス値に達するまで、第3の制御は行われる。 [About the third control]
The third control will be described in detail. In the third control, the output is controlled so that the measured impedance value increases at a constant rate. In the present embodiment, first, an end impedance value that is an impedance value when output is stopped is determined. Next, a target impedance value that rises at a constant speed from the impedance value at the start of the third control to the end impedance value is set. That is, the target impedance value is set as the target value of the impedance value at each time. The output is controlled such that the output value is determined based on the difference between the target impedance value and the measured impedance value acquired using the
〈第3の制御における終了インピーダンス値の設定について〉
出力を停止するときの終了インピーダンス値の決定方法について説明する。ここでは、インピーダンス値として、抵抗値を用いる場合を説明する。抵抗値に限らず、その他のインピーダンス値を用いても同様である。出力を停止するときの抵抗値である終了抵抗値Rstopは、例えば、下記式(4)で求められる。
Rstop=Rin+Radd (4)
ここで、Rinは、第3の制御の開始時に取得される生体組織に係る抵抗値である。すなわち、Rinは、上述の切替インピーダンス値に対応する抵抗値である。なお、Rinは、第2の制御において計測された最小インピーダンスであってもよい。また、Rinには、第1の制御で取得された初期インピーダンス値が用いられてもよい。 <Setting of the end impedance value in the third control>
A method for determining the end impedance value when the output is stopped will be described. Here, a case where a resistance value is used as the impedance value will be described. Not only the resistance value but also other impedance values are used. An end resistance value Rstop, which is a resistance value when the output is stopped, is obtained by, for example, the following formula (4).
Rstop = Rin + Radd (4)
Here, Rin is a resistance value related to the living tissue acquired at the start of the third control. That is, Rin is a resistance value corresponding to the switching impedance value described above. Rin may be the minimum impedance measured in the second control. Moreover, the initial impedance value acquired by 1st control may be used for Rin.
出力を停止するときの終了インピーダンス値の決定方法について説明する。ここでは、インピーダンス値として、抵抗値を用いる場合を説明する。抵抗値に限らず、その他のインピーダンス値を用いても同様である。出力を停止するときの抵抗値である終了抵抗値Rstopは、例えば、下記式(4)で求められる。
Rstop=Rin+Radd (4)
ここで、Rinは、第3の制御の開始時に取得される生体組織に係る抵抗値である。すなわち、Rinは、上述の切替インピーダンス値に対応する抵抗値である。なお、Rinは、第2の制御において計測された最小インピーダンスであってもよい。また、Rinには、第1の制御で取得された初期インピーダンス値が用いられてもよい。 <Setting of the end impedance value in the third control>
A method for determining the end impedance value when the output is stopped will be described. Here, a case where a resistance value is used as the impedance value will be described. Not only the resistance value but also other impedance values are used. An end resistance value Rstop, which is a resistance value when the output is stopped, is obtained by, for example, the following formula (4).
Rstop = Rin + Radd (4)
Here, Rin is a resistance value related to the living tissue acquired at the start of the third control. That is, Rin is a resistance value corresponding to the switching impedance value described above. Rin may be the minimum impedance measured in the second control. Moreover, the initial impedance value acquired by 1st control may be used for Rin.
また、Raddは、生体組織の初期状態に基づいて決められる加算抵抗値である。加算抵抗値Raddの決定方法の例をいくつか示す。
Further, Radd is an added resistance value determined based on the initial state of the living tissue. Some examples of how to determine the added resistance value Radd will be described.
(第1の例)
加算抵抗値Raddは、初期抵抗値R0の関数として算出される。初期抵抗値R0は、第1の制御において、検出される抵抗値である。例えば、図8に示すような加算抵抗値Raddと初期抵抗値R0との関係を表すテーブルが記憶媒体250に記憶されており、このテーブルと第1の制御で計測された初期抵抗値R0とに基づいて加算抵抗値Raddが決定される。なお、図8において、a,b,c,dは、それぞれ抵抗値を表し、a<b<c<dの関係を有する。すなわち、初期抵抗値R0が高い程、加算抵抗値Raddは低くなる。言い換えると、処置対象が血管であるとき、細い血管ほど初期抵抗値R0が高いので、加算抵抗値Raddが低くなる。また、図8と同様の関係を示す関数に基づいて、加算抵抗値Raddが算出されてもよい。 (First example)
The added resistance value Radd is calculated as a function of the initial resistance value R0. The initial resistance value R0 is a resistance value detected in the first control. For example, a table representing the relationship between the added resistance value Radd and the initial resistance value R0 as shown in FIG. 8 is stored in thestorage medium 250, and the initial resistance value R0 measured in the first control is stored in this table. Based on this, the addition resistance value Radd is determined. In FIG. 8, a, b, c, and d represent resistance values, respectively, and have a relationship of a <b <c <d. That is, the higher the initial resistance value R0, the lower the added resistance value Radd. In other words, when the treatment target is a blood vessel, the smaller the blood vessel, the higher the initial resistance value R0, and thus the lower the added resistance value Radd. Further, the added resistance value Radd may be calculated based on a function showing the same relationship as in FIG.
加算抵抗値Raddは、初期抵抗値R0の関数として算出される。初期抵抗値R0は、第1の制御において、検出される抵抗値である。例えば、図8に示すような加算抵抗値Raddと初期抵抗値R0との関係を表すテーブルが記憶媒体250に記憶されており、このテーブルと第1の制御で計測された初期抵抗値R0とに基づいて加算抵抗値Raddが決定される。なお、図8において、a,b,c,dは、それぞれ抵抗値を表し、a<b<c<dの関係を有する。すなわち、初期抵抗値R0が高い程、加算抵抗値Raddは低くなる。言い換えると、処置対象が血管であるとき、細い血管ほど初期抵抗値R0が高いので、加算抵抗値Raddが低くなる。また、図8と同様の関係を示す関数に基づいて、加算抵抗値Raddが算出されてもよい。 (First example)
The added resistance value Radd is calculated as a function of the initial resistance value R0. The initial resistance value R0 is a resistance value detected in the first control. For example, a table representing the relationship between the added resistance value Radd and the initial resistance value R0 as shown in FIG. 8 is stored in the
(第2の例)
加算抵抗値Raddは、初期抵抗値R0と第2の制御の継続時間Dtとの関数として算出される。継続時間Dtは、第2の制御が終了したときに取得される。例えば、初期抵抗値R0が所定の閾値以上、かつ、継続時間Dtが所定の閾値以下であるとき、加算抵抗値Raddとして第1の加算抵抗値Radd1が選択され、初期抵抗値R0が所定の閾値よりも低い、又は、継続時間Dtが所定の閾値よりも長いとき、加算抵抗値Raddとして第2の加算抵抗値Radd2が選択される。ここで、第1の加算抵抗値Radd1は、第2の加算抵抗値Radd2よりも低い。 (Second example)
The added resistance value Radd is calculated as a function of the initial resistance value R0 and the duration Dt of the second control. The duration Dt is acquired when the second control is finished. For example, when the initial resistance value R0 is equal to or greater than a predetermined threshold value and the duration Dt is equal to or less than the predetermined threshold value, the first additional resistance value Radd1 is selected as the additional resistance value Radd, and the initial resistance value R0 is equal to the predetermined threshold value. Is lower or the duration Dt is longer than a predetermined threshold, the second added resistance value Radd2 is selected as the added resistance value Radd. Here, the first addition resistance value Radd1 is lower than the second addition resistance value Radd2.
加算抵抗値Raddは、初期抵抗値R0と第2の制御の継続時間Dtとの関数として算出される。継続時間Dtは、第2の制御が終了したときに取得される。例えば、初期抵抗値R0が所定の閾値以上、かつ、継続時間Dtが所定の閾値以下であるとき、加算抵抗値Raddとして第1の加算抵抗値Radd1が選択され、初期抵抗値R0が所定の閾値よりも低い、又は、継続時間Dtが所定の閾値よりも長いとき、加算抵抗値Raddとして第2の加算抵抗値Radd2が選択される。ここで、第1の加算抵抗値Radd1は、第2の加算抵抗値Radd2よりも低い。 (Second example)
The added resistance value Radd is calculated as a function of the initial resistance value R0 and the duration Dt of the second control. The duration Dt is acquired when the second control is finished. For example, when the initial resistance value R0 is equal to or greater than a predetermined threshold value and the duration Dt is equal to or less than the predetermined threshold value, the first additional resistance value Radd1 is selected as the additional resistance value Radd, and the initial resistance value R0 is equal to the predetermined threshold value. Is lower or the duration Dt is longer than a predetermined threshold, the second added resistance value Radd2 is selected as the added resistance value Radd. Here, the first addition resistance value Radd1 is lower than the second addition resistance value Radd2.
また、例えば、図9に示すような加算抵抗値Raddと継続時間Dtと初期抵抗値R0との関係を表すテーブルが記憶媒体250に記憶されており、このテーブルと第1の制御で計測された初期抵抗値R0と第2の制御の継続時間Dtとに基づいて加算抵抗値Raddが決定されてもよい。なお、図9において、a,b,c,dは、それぞれ抵抗値を表し、a<b<c<dの関係を有する。すなわち、初期抵抗値R0が高い程、加算抵抗値Raddは低くなり、継続時間Dtが長い程、加算抵抗値Raddは高くなる。また、図9と同様の関係を示す関数に基づいて、加算抵抗値Raddが算出されてもよい。
Further, for example, a table representing the relationship between the added resistance value Radd, the duration time Dt, and the initial resistance value R0 as shown in FIG. 9 is stored in the storage medium 250, and this table and the first control are measured. The added resistance value Radd may be determined based on the initial resistance value R0 and the duration Dt of the second control. In FIG. 9, a, b, c, and d represent resistance values, respectively, and have a relationship of a <b <c <d. That is, the higher the initial resistance value R0, the lower the added resistance value Radd, and the longer the duration Dt, the higher the added resistance value Radd. Further, the added resistance value Radd may be calculated based on a function showing the same relationship as in FIG.
初期抵抗値R0と第2の制御の継続時間Dtとに基づいて加算抵抗値Raddが決定されることで、初期抵抗値R0のみに基づいて決定される場合よりも、適切な加算抵抗値Raddが決定され得る。
By determining the added resistance value Radd based on the initial resistance value R0 and the duration Dt of the second control, a more appropriate added resistance value Radd can be obtained than when determined based only on the initial resistance value R0. Can be determined.
(第3の例)
加算抵抗値Raddは、ユーザが設定した出力レベルに応じて選択されてもよい。例えば、出力レベルが高い程、加算抵抗値Raddは高くなり、出力レベルが低い程、加算抵抗値Raddは低くなる。出力レベルは、第1の例又は第2の例の場合のように、初期抵抗値R0又は第2の制御の継続時間Dtとの組み合わせとして用いられることが好ましい。初期抵抗値R0又は第2の制御の継続時間Dtと併せて出力レベルを用いて加算抵抗値Raddが決定されることで、より適切な値が設定され得る。 (Third example)
The added resistance value Radd may be selected according to the output level set by the user. For example, the higher the output level, the higher the added resistance value Radd, and the lower the output level, the lower the added resistance value Radd. As in the case of the first example or the second example, the output level is preferably used as a combination with the initial resistance value R0 or the duration Dt of the second control. A more appropriate value can be set by determining the added resistance value Radd using the output level together with the initial resistance value R0 or the duration Dt of the second control.
加算抵抗値Raddは、ユーザが設定した出力レベルに応じて選択されてもよい。例えば、出力レベルが高い程、加算抵抗値Raddは高くなり、出力レベルが低い程、加算抵抗値Raddは低くなる。出力レベルは、第1の例又は第2の例の場合のように、初期抵抗値R0又は第2の制御の継続時間Dtとの組み合わせとして用いられることが好ましい。初期抵抗値R0又は第2の制御の継続時間Dtと併せて出力レベルを用いて加算抵抗値Raddが決定されることで、より適切な値が設定され得る。 (Third example)
The added resistance value Radd may be selected according to the output level set by the user. For example, the higher the output level, the higher the added resistance value Radd, and the lower the output level, the lower the added resistance value Radd. As in the case of the first example or the second example, the output level is preferably used as a combination with the initial resistance value R0 or the duration Dt of the second control. A more appropriate value can be set by determining the added resistance value Radd using the output level together with the initial resistance value R0 or the duration Dt of the second control.
上記の第1乃至第3の例の何れの場合にも、例えば血管が細い程、加算抵抗値Raddは低くなり、血管が太い程、加算抵抗値Raddは高くなる。なお、終了抵抗値Rstopは、初期抵抗値R0よりも高い値となる。
In any of the above first to third examples, for example, the thinner the blood vessel, the lower the added resistance value Radd, and the thicker the blood vessel, the higher the added resistance value Radd. The end resistance value Rstop is higher than the initial resistance value R0.
抵抗値に限らずにその他のインピーダンスに係る値が用いられるとき、上記と同様に、Rinは、切替インピーダンス値に対応し、加算抵抗値Raddは加算インピーダンス値に対応し、初期抵抗値R0は、初期インピーダンス値に対応する。
When values relating to other impedances are used in addition to the resistance value, Rin corresponds to the switching impedance value, the added resistance value Radd corresponds to the added impedance value, and the initial resistance value R0 is similar to the above. Corresponds to the initial impedance value.
上述のように、例えば血管の太さなど、処置対象に応じて変化する初期インピーダンス値が用いられることによって、処置対象に応じた終了インピーダンス値が適切に設定される。このようにして決定された終了インピーダンス値を用いて出力制御が行われることで、適切な処置が行われ得る。
As described above, the end impedance value corresponding to the treatment target is appropriately set by using the initial impedance value that varies depending on the treatment target such as the thickness of the blood vessel. Appropriate treatment can be performed by performing output control using the end impedance value thus determined.
〈第3の制御における目標インピーダンス値の設定について〉
目標インピーダンス値の設定方法について説明する。ここでは、上述の終了抵抗値と同様に、インピーダンス値として抵抗値が用いられる場合を説明する。すなわち、目標インピーダンス値として目標抵抗値が用いられる場合を説明する。抵抗値に限らず、その他のインピーダンスに係る値を用いても同様である。 <Setting of target impedance value in the third control>
A method for setting the target impedance value will be described. Here, a case where a resistance value is used as the impedance value will be described in the same manner as the end resistance value described above. That is, a case where a target resistance value is used as the target impedance value will be described. Not only the resistance value but also other impedance related values are used.
目標インピーダンス値の設定方法について説明する。ここでは、上述の終了抵抗値と同様に、インピーダンス値として抵抗値が用いられる場合を説明する。すなわち、目標インピーダンス値として目標抵抗値が用いられる場合を説明する。抵抗値に限らず、その他のインピーダンスに係る値を用いても同様である。 <Setting of target impedance value in the third control>
A method for setting the target impedance value will be described. Here, a case where a resistance value is used as the impedance value will be described in the same manner as the end resistance value described above. That is, a case where a target resistance value is used as the target impedance value will be described. Not only the resistance value but also other impedance related values are used.
(第1の例)
第1の例では、第3の制御によって高周波電力が出力される時間は、予め決められている。この所定の時間で、切替抵抗値Rinから算出された終了抵抗値Rstopまで抵抗値が線形に上昇するように、時間毎の目標抵抗値が設定され得る。 (First example)
In the first example, the time during which the high frequency power is output by the third control is determined in advance. The target resistance value for each time can be set so that the resistance value increases linearly up to the end resistance value Rstop calculated from the switching resistance value Rin in this predetermined time.
第1の例では、第3の制御によって高周波電力が出力される時間は、予め決められている。この所定の時間で、切替抵抗値Rinから算出された終了抵抗値Rstopまで抵抗値が線形に上昇するように、時間毎の目標抵抗値が設定され得る。 (First example)
In the first example, the time during which the high frequency power is output by the third control is determined in advance. The target resistance value for each time can be set so that the resistance value increases linearly up to the end resistance value Rstop calculated from the switching resistance value Rin in this predetermined time.
(第2の例)
第2の例では、第3の制御によって高周波電力が出力される時間は、ユーザによって設定された出力レベルに応じて決定される。出力レベルに応じて決定された時間で、算出された終了抵抗値Rstopまで抵抗値が線形に上昇するように、目標抵抗値が設定され得る。すなわち、図10に示すように、時間に対して目標抵抗値の値を示したときの傾きが、出力レベルに応じて変化する。言い換えると、目標抵抗値の増加速度が出力レベルに応じて変化する。なお、図10において、L1,L2,L3は、それぞれ出力レベルを示し、L1<L2<L3の関係を有する。 (Second example)
In the second example, the time during which the high frequency power is output by the third control is determined according to the output level set by the user. The target resistance value can be set so that the resistance value increases linearly to the calculated end resistance value Rstop at a time determined according to the output level. That is, as shown in FIG. 10, the slope when the value of the target resistance value is shown with respect to time changes according to the output level. In other words, the increasing speed of the target resistance value changes according to the output level. In FIG. 10, L1, L2, and L3 indicate output levels, respectively, and have a relationship of L1 <L2 <L3.
第2の例では、第3の制御によって高周波電力が出力される時間は、ユーザによって設定された出力レベルに応じて決定される。出力レベルに応じて決定された時間で、算出された終了抵抗値Rstopまで抵抗値が線形に上昇するように、目標抵抗値が設定され得る。すなわち、図10に示すように、時間に対して目標抵抗値の値を示したときの傾きが、出力レベルに応じて変化する。言い換えると、目標抵抗値の増加速度が出力レベルに応じて変化する。なお、図10において、L1,L2,L3は、それぞれ出力レベルを示し、L1<L2<L3の関係を有する。 (Second example)
In the second example, the time during which the high frequency power is output by the third control is determined according to the output level set by the user. The target resistance value can be set so that the resistance value increases linearly to the calculated end resistance value Rstop at a time determined according to the output level. That is, as shown in FIG. 10, the slope when the value of the target resistance value is shown with respect to time changes according to the output level. In other words, the increasing speed of the target resistance value changes according to the output level. In FIG. 10, L1, L2, and L3 indicate output levels, respectively, and have a relationship of L1 <L2 <L3.
(第3の例)
第3の例では、第3の制御によって高周波電力が出力される時間は、第1の制御において得られた抵抗値(初期抵抗値)に応じて決定される。また、第3の制御によって高周波電力が出力される時間は、第2の制御において得られた抵抗値に応じて決定されてもよい。決定された時間で、算出された終了抵抗値Rstopまで抵抗値が線形に上昇するように、目標抵抗値が設定され得る。すなわち、時間に対して目標抵抗値の値を示したときの傾きが、第1の制御又は第2の制御において得られた抵抗値に応じて変化する。言い換えると、目標抵抗値の増加速度が第1の制御又は第2の制御において得られた抵抗値に応じて変化する。例えば、第1の制御又は第2の制御で取得された抵抗値が低いとき、第3の制御における出力時間は短くなり、傾きは大きくなる。一方、第1の制御又は第2の制御で取得された抵抗値が高いとき、第3の制御における出力時間は長くなり、傾きは小さくなる。 (Third example)
In the third example, the time during which high-frequency power is output by the third control is determined according to the resistance value (initial resistance value) obtained in the first control. Further, the time during which the high frequency power is output by the third control may be determined according to the resistance value obtained in the second control. The target resistance value can be set so that the resistance value increases linearly to the calculated end resistance value Rstop at the determined time. That is, the slope when the value of the target resistance value is shown with respect to time changes according to the resistance value obtained in the first control or the second control. In other words, the increasing speed of the target resistance value changes according to the resistance value obtained in the first control or the second control. For example, when the resistance value acquired in the first control or the second control is low, the output time in the third control is shortened and the slope is increased. On the other hand, when the resistance value acquired in the first control or the second control is high, the output time in the third control becomes long and the inclination becomes small.
第3の例では、第3の制御によって高周波電力が出力される時間は、第1の制御において得られた抵抗値(初期抵抗値)に応じて決定される。また、第3の制御によって高周波電力が出力される時間は、第2の制御において得られた抵抗値に応じて決定されてもよい。決定された時間で、算出された終了抵抗値Rstopまで抵抗値が線形に上昇するように、目標抵抗値が設定され得る。すなわち、時間に対して目標抵抗値の値を示したときの傾きが、第1の制御又は第2の制御において得られた抵抗値に応じて変化する。言い換えると、目標抵抗値の増加速度が第1の制御又は第2の制御において得られた抵抗値に応じて変化する。例えば、第1の制御又は第2の制御で取得された抵抗値が低いとき、第3の制御における出力時間は短くなり、傾きは大きくなる。一方、第1の制御又は第2の制御で取得された抵抗値が高いとき、第3の制御における出力時間は長くなり、傾きは小さくなる。 (Third example)
In the third example, the time during which high-frequency power is output by the third control is determined according to the resistance value (initial resistance value) obtained in the first control. Further, the time during which the high frequency power is output by the third control may be determined according to the resistance value obtained in the second control. The target resistance value can be set so that the resistance value increases linearly to the calculated end resistance value Rstop at the determined time. That is, the slope when the value of the target resistance value is shown with respect to time changes according to the resistance value obtained in the first control or the second control. In other words, the increasing speed of the target resistance value changes according to the resistance value obtained in the first control or the second control. For example, when the resistance value acquired in the first control or the second control is low, the output time in the third control is shortened and the slope is increased. On the other hand, when the resistance value acquired in the first control or the second control is high, the output time in the third control becomes long and the inclination becomes small.
〈第3の制御における出力電力の決定方法について〉
出力の決定方法について説明する。ここでも、上述の場合と同様に、インピーダンス値として抵抗値が用いられる場合を説明する。抵抗値に限らず、その他のインピーダンスに係る値を用いても同様である。 <Determination of output power in third control>
A method for determining the output will be described. Here, as in the case described above, a case where a resistance value is used as the impedance value will be described. Not only the resistance value but also other impedance related values are used.
出力の決定方法について説明する。ここでも、上述の場合と同様に、インピーダンス値として抵抗値が用いられる場合を説明する。抵抗値に限らず、その他のインピーダンスに係る値を用いても同様である。 <Determination of output power in third control>
A method for determining the output will be described. Here, as in the case described above, a case where a resistance value is used as the impedance value will be described. Not only the resistance value but also other impedance related values are used.
図11を参照して説明する。図11の上段は、時間に対する目標抵抗値と計測抵抗値とを模式的に示す。ここで、目標抵抗値は破線で示され、計測抵抗値は実線で示されている。図11の下段は時間に対する出力電力を模式的に示す。本実施形態では、出力電力が数十ミリ秒毎のステップ時間毎に設定される。この出力電力の設定は、目標抵抗値と計測抵抗値とを比較することで行われる。すなわち、所定時間毎に目標抵抗値と計測抵抗値とが比較され、計測抵抗値が目標抵抗値よりも高いとき、出力電力は下げられる。一方、計測抵抗値が目標抵抗値よりも低いとき、出力電力は上げられる。また、計測抵抗値と目標抵抗値との差が所定の閾値未満の場合、出力電力は維持される。なお、第3の制御の開始時の出力電力は、第2の制御の終了時の出力電力でもよい。また、第3の制御の開始時の出力電力は、所定の値でもよいし、所定の方法によって決定されてもよい。
This will be described with reference to FIG. The upper part of FIG. 11 schematically shows a target resistance value and a measured resistance value with respect to time. Here, the target resistance value is indicated by a broken line, and the measured resistance value is indicated by a solid line. The lower part of FIG. 11 schematically shows output power with respect to time. In this embodiment, the output power is set every step time every several tens of milliseconds. The setting of the output power is performed by comparing the target resistance value with the measured resistance value. That is, the target resistance value and the measured resistance value are compared every predetermined time, and when the measured resistance value is higher than the target resistance value, the output power is lowered. On the other hand, when the measured resistance value is lower than the target resistance value, the output power is increased. Further, when the difference between the measured resistance value and the target resistance value is less than a predetermined threshold value, the output power is maintained. Note that the output power at the start of the third control may be the output power at the end of the second control. Further, the output power at the start of the third control may be a predetermined value or may be determined by a predetermined method.
頻繁に出力電力の設定値が変更されると出力が発振するおそれがある。一方で、出力電力の設定が時々しか行われないと、制御の精度が悪くなったり、目標時間内に処置が完了しなくなったりする。このため、出力電力を再設定する間隔、すなわちステップ時間は、適切に調整されることが好ましい。出力電力の決定方法の例について説明する。
∙ If the set value of output power is changed frequently, the output may oscillate. On the other hand, if the output power is set only occasionally, the accuracy of the control deteriorates, or the treatment cannot be completed within the target time. For this reason, it is preferable that the interval at which the output power is reset, that is, the step time, is adjusted appropriately. An example of a method for determining output power will be described.
(第1の例)
第1の例では、出力電力の変化量は、その時点での出力電力に対する所定の割合である。例えば、この所定の割合を第1の割合としたときに、初期の出力電力が第1の電力であり、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は、第1の電力から第1の割合だけ低下させた第2の電力とする。出力が第2の電力であり、計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は、第2の電力から第1の割合だけ上昇させた第3の電力とする。以下同様にする。例えば第1の割合を10%とするとき次のようになる。その時点の出力電力が20Wであり、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は18Wに調整される。出力電力は18Wであり、計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は、19.8Wに調整される。このように、出力電力の変化量をその時点の出力電力に対する所定の割合とすることで、出力電力が大きいときにも小さいときにも変化量が適切な値に調整される。ここに示した数値は一例であり、どのような値であってもよく、適切に設定される。 (First example)
In the first example, the change amount of the output power is a predetermined ratio with respect to the output power at that time. For example, when this predetermined ratio is the first ratio, the initial output power is the first power, and when the measured resistance value is higher than the target resistance value, the next output power is the first power. To the second power reduced by the first rate. When the output is the second power and the measured resistance value is lower than the target resistance value, the next output power is the third power that is increased from the second power by the first rate. The same shall apply hereinafter. For example, when the first ratio is 10%, it is as follows. When the output power at that time is 20 W and the measured resistance value is higher than the target resistance value, the next output power is adjusted to 18 W. The output power is 18 W, and when the measured resistance value is lower than the target resistance value, the next output power is adjusted to 19.8 W. Thus, by setting the amount of change in output power to a predetermined ratio with respect to the output power at that time, the amount of change is adjusted to an appropriate value both when the output power is large and small. The numerical value shown here is an example, and any value may be set appropriately.
第1の例では、出力電力の変化量は、その時点での出力電力に対する所定の割合である。例えば、この所定の割合を第1の割合としたときに、初期の出力電力が第1の電力であり、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は、第1の電力から第1の割合だけ低下させた第2の電力とする。出力が第2の電力であり、計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は、第2の電力から第1の割合だけ上昇させた第3の電力とする。以下同様にする。例えば第1の割合を10%とするとき次のようになる。その時点の出力電力が20Wであり、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は18Wに調整される。出力電力は18Wであり、計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は、19.8Wに調整される。このように、出力電力の変化量をその時点の出力電力に対する所定の割合とすることで、出力電力が大きいときにも小さいときにも変化量が適切な値に調整される。ここに示した数値は一例であり、どのような値であってもよく、適切に設定される。 (First example)
In the first example, the change amount of the output power is a predetermined ratio with respect to the output power at that time. For example, when this predetermined ratio is the first ratio, the initial output power is the first power, and when the measured resistance value is higher than the target resistance value, the next output power is the first power. To the second power reduced by the first rate. When the output is the second power and the measured resistance value is lower than the target resistance value, the next output power is the third power that is increased from the second power by the first rate. The same shall apply hereinafter. For example, when the first ratio is 10%, it is as follows. When the output power at that time is 20 W and the measured resistance value is higher than the target resistance value, the next output power is adjusted to 18 W. The output power is 18 W, and when the measured resistance value is lower than the target resistance value, the next output power is adjusted to 19.8 W. Thus, by setting the amount of change in output power to a predetermined ratio with respect to the output power at that time, the amount of change is adjusted to an appropriate value both when the output power is large and small. The numerical value shown here is an example, and any value may be set appropriately.
なお、出力電力を低下させるときの割合を第1の割合とし、上昇させるときの割合を第2の割合としたときに、第1の割合と第2の割合とは同一でもよいし、異なっていてもよい。第2の割合よりも第1の割合の方が大きいことが好ましい。例えば、計測抵抗値が目標抵抗値よりも高いとき、出力を10%低下させ、計測抵抗値が目標抵抗値よりも低いとき、出力を5%上昇させる等とする。また、計測抵抗値と目標抵抗値との差異が所定の範囲内のとき、出力電力を変化させなくてもよい。
In addition, when the ratio when decreasing the output power is the first ratio and the ratio when increasing the output is the second ratio, the first ratio and the second ratio may be the same or different. May be. It is preferable that the first ratio is larger than the second ratio. For example, when the measured resistance value is higher than the target resistance value, the output is decreased by 10%, and when the measured resistance value is lower than the target resistance value, the output is increased by 5%. Further, when the difference between the measured resistance value and the target resistance value is within a predetermined range, the output power need not be changed.
(第2の例)
第2の例では、出力電力の変化量は、所定の値とする。この所定の値を第1の値としたとき、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は現在の出力電力よりも第1の値だけ低い値に調整される。計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は現在の出力電力よりも第1の値だけ高い値に調整される。例えば、変化量を2Wとするとき次のようになる。その時点の出力電力が20Wであり、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は18Wに調整される。出力電力は18Wであり、計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は、20Wに調整される。このように、出力電力の変化量を一定の値とすることで、ハードウェア構成が単純となり、また、出力電力の制御が容易となる。ここに示した数値は一例であり、どのような値であってもよく、適切に設定される。 (Second example)
In the second example, the amount of change in output power is a predetermined value. When this predetermined value is the first value, when the measured resistance value is higher than the target resistance value, the next output power is adjusted to a value lower than the current output power by the first value. When the measured resistance value is lower than the target resistance value, the next output power is adjusted to a value higher by a first value than the current output power. For example, when the amount of change is 2 W, the following occurs. When the output power at that time is 20 W and the measured resistance value is higher than the target resistance value, the next output power is adjusted to 18 W. The output power is 18 W, and when the measured resistance value is lower than the target resistance value, the next output power is adjusted to 20 W. Thus, by making the amount of change in output power a constant value, the hardware configuration becomes simple and control of output power becomes easy. The numerical value shown here is an example, and any value may be set appropriately.
第2の例では、出力電力の変化量は、所定の値とする。この所定の値を第1の値としたとき、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は現在の出力電力よりも第1の値だけ低い値に調整される。計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は現在の出力電力よりも第1の値だけ高い値に調整される。例えば、変化量を2Wとするとき次のようになる。その時点の出力電力が20Wであり、計測抵抗値が目標抵抗値よりも高いとき、次の出力電力は18Wに調整される。出力電力は18Wであり、計測抵抗値が目標抵抗値よりも低いとき、次の出力電力は、20Wに調整される。このように、出力電力の変化量を一定の値とすることで、ハードウェア構成が単純となり、また、出力電力の制御が容易となる。ここに示した数値は一例であり、どのような値であってもよく、適切に設定される。 (Second example)
In the second example, the amount of change in output power is a predetermined value. When this predetermined value is the first value, when the measured resistance value is higher than the target resistance value, the next output power is adjusted to a value lower than the current output power by the first value. When the measured resistance value is lower than the target resistance value, the next output power is adjusted to a value higher by a first value than the current output power. For example, when the amount of change is 2 W, the following occurs. When the output power at that time is 20 W and the measured resistance value is higher than the target resistance value, the next output power is adjusted to 18 W. The output power is 18 W, and when the measured resistance value is lower than the target resistance value, the next output power is adjusted to 20 W. Thus, by making the amount of change in output power a constant value, the hardware configuration becomes simple and control of output power becomes easy. The numerical value shown here is an example, and any value may be set appropriately.
なお、出力を上昇させるときの変化量と低下させるときの変化量とは、等しくてもよいし、異なっていてもよい。上昇させるときの変化量よりも低下させるときの変化量の方が大きいことが好ましい。また、計測抵抗値と目標抵抗値との差異が所定の範囲内のとき、出力電力を変化させなくてもよい。
It should be noted that the amount of change when increasing the output and the amount of change when decreasing the output may be the same or different. It is preferable that the amount of change when decreasing is larger than the amount of change when increasing. Further, when the difference between the measured resistance value and the target resistance value is within a predetermined range, the output power need not be changed.
(第3の例)
第3の例では、出力電力の変化量は、第1の制御で取得された初期抵抗値R0と、第2の制御が行われる第2の期間の長さ、すなわち、第2の制御が開始してからインピーダンス値が最小値を示すまでの時間とに基づいて決定される。このため、例えば初期抵抗値R0及び第2の期間の長さと、出力電力の変化量との関係が予め記憶媒体250に記憶されている。制御回路210は、この関係を参照して、出力電力を決定する。 (Third example)
In the third example, the amount of change in the output power includes the initial resistance value R0 acquired in the first control and the length of the second period during which the second control is performed, that is, the second control is started. And the time until the impedance value reaches the minimum value. For this reason, for example, the relationship between the initial resistance value R0 and the length of the second period and the amount of change in the output power is stored in thestorage medium 250 in advance. The control circuit 210 determines the output power with reference to this relationship.
第3の例では、出力電力の変化量は、第1の制御で取得された初期抵抗値R0と、第2の制御が行われる第2の期間の長さ、すなわち、第2の制御が開始してからインピーダンス値が最小値を示すまでの時間とに基づいて決定される。このため、例えば初期抵抗値R0及び第2の期間の長さと、出力電力の変化量との関係が予め記憶媒体250に記憶されている。制御回路210は、この関係を参照して、出力電力を決定する。 (Third example)
In the third example, the amount of change in the output power includes the initial resistance value R0 acquired in the first control and the length of the second period during which the second control is performed, that is, the second control is started. And the time until the impedance value reaches the minimum value. For this reason, for example, the relationship between the initial resistance value R0 and the length of the second period and the amount of change in the output power is stored in the
(第4の例)
第4の例では、出力電力の変化量は、ユーザによって設定された出力レベルに応じて決められた所定の値とする。出力レベルと出力電力の変化量との関係は、予め記憶媒体250に記憶されている。制御回路210は、この関係を参照して、出力電力を決定する。 (Fourth example)
In the fourth example, the amount of change in output power is a predetermined value determined according to the output level set by the user. The relationship between the output level and the amount of change in output power is stored in thestorage medium 250 in advance. The control circuit 210 determines the output power with reference to this relationship.
第4の例では、出力電力の変化量は、ユーザによって設定された出力レベルに応じて決められた所定の値とする。出力レベルと出力電力の変化量との関係は、予め記憶媒体250に記憶されている。制御回路210は、この関係を参照して、出力電力を決定する。 (Fourth example)
In the fourth example, the amount of change in output power is a predetermined value determined according to the output level set by the user. The relationship between the output level and the amount of change in output power is stored in the
(第5の例)
第5の例では、出力電力は、計測抵抗値と目標抵抗値との関係で決められる。例えば、次のようになる。計測抵抗値が目標抵抗値よりも高いとき、出力電力が第1の電力値に設定される。計測抵抗値と目標抵抗値とが一致しているとき、出力電力が第2の電力値に設定される。計測抵抗値が目標抵抗値よりも低いとき、出力電力が第3の電力値に設定される。ここで、第1の電力値、第2の電力値、第3の電力値の順に値は大きくなる。例えば第1の電力値が5Wであり、第2の電力値が8Wであり、第3の電力値が10Wである。ここに示した数値は一例であり、どのような値であってもよく、適切に設定される。 (Fifth example)
In the fifth example, the output power is determined by the relationship between the measured resistance value and the target resistance value. For example: When the measured resistance value is higher than the target resistance value, the output power is set to the first power value. When the measured resistance value matches the target resistance value, the output power is set to the second power value. When the measured resistance value is lower than the target resistance value, the output power is set to the third power value. Here, the value increases in the order of the first power value, the second power value, and the third power value. For example, the first power value is 5 W, the second power value is 8 W, and the third power value is 10 W. The numerical value shown here is an example, and any value may be set appropriately.
第5の例では、出力電力は、計測抵抗値と目標抵抗値との関係で決められる。例えば、次のようになる。計測抵抗値が目標抵抗値よりも高いとき、出力電力が第1の電力値に設定される。計測抵抗値と目標抵抗値とが一致しているとき、出力電力が第2の電力値に設定される。計測抵抗値が目標抵抗値よりも低いとき、出力電力が第3の電力値に設定される。ここで、第1の電力値、第2の電力値、第3の電力値の順に値は大きくなる。例えば第1の電力値が5Wであり、第2の電力値が8Wであり、第3の電力値が10Wである。ここに示した数値は一例であり、どのような値であってもよく、適切に設定される。 (Fifth example)
In the fifth example, the output power is determined by the relationship between the measured resistance value and the target resistance value. For example: When the measured resistance value is higher than the target resistance value, the output power is set to the first power value. When the measured resistance value matches the target resistance value, the output power is set to the second power value. When the measured resistance value is lower than the target resistance value, the output power is set to the third power value. Here, the value increases in the order of the first power value, the second power value, and the third power value. For example, the first power value is 5 W, the second power value is 8 W, and the third power value is 10 W. The numerical value shown here is an example, and any value may be set appropriately.
以上のように制御される第3の制御について、図12に示すフローチャートを参照して説明する。
The third control controlled as described above will be described with reference to the flowchart shown in FIG.
ステップS401において、制御回路210は、初期インピーダンス値に基づいて、加算インピーダンス値を算出する。ステップS402において、制御回路210は、切替インピーダンス値と加算インピーダンス値との和に基づいて、終了インピーダンス値を設定する。終了インピーダンス値の設定方法は、例えば上述の第1乃至第3の例の何れの方法が用いられてもよい。
In step S401, the control circuit 210 calculates an added impedance value based on the initial impedance value. In step S402, the control circuit 210 sets an end impedance value based on the sum of the switching impedance value and the added impedance value. As a method for setting the end impedance value, for example, any of the above-described first to third examples may be used.
ステップS403において、制御回路210は、終了インピーダンス値を用いて、目標インピーダンス値を設定する。目標インピーダンス値の設定方法は、例えば上述の第1乃至第3の例の何れの方法が用いられてもよい。ステップS404において、制御回路210は、高周波電源回路220に、所定の電力値を有する電力を初期電力として出力させる。初期電力は、例えば第2の制御の終了時の電力である。
In step S403, the control circuit 210 sets a target impedance value using the end impedance value. As a method for setting the target impedance value, for example, any of the above-described first to third examples may be used. In step S404, the control circuit 210 causes the high frequency power supply circuit 220 to output power having a predetermined power value as initial power. The initial power is, for example, power at the end of the second control.
ステップS405において、制御回路210は、出力検出回路230で検出された値を用いて、インピーダンス値を取得する。ステップS406において、制御回路210は、計測インピーダンス値が終了インピーダンス値以上であるか否かを判定する。計測インピーダンス値が終了インピーダンス値以上でないとき、処理はステップS407に進む。
In step S405, the control circuit 210 acquires the impedance value using the value detected by the output detection circuit 230. In step S406, the control circuit 210 determines whether or not the measured impedance value is greater than or equal to the end impedance value. If the measured impedance value is not equal to or greater than the end impedance value, the process proceeds to step S407.
ステップS407において、制御回路210は、計測インピーダンス値(Zm)と目標インピーダンス値(Zt)とを比較する。計測インピーダンス値(Zm)と目標インピーダンス値(Zt)との差が所定の閾値以内(Zm≒Zt)であるとき、処理はステップS408に進む。ステップS408において、制御回路210は、出力電力の設定値(設定電力)を維持する。その後、処理はステップS411に進む。ステップS407において、計測インピーダンス値(Zm)が目標インピーダンス値(Zt)よりも大きい(Zm>Zt)と判定されたとき、処理はステップS409に進む。ステップS409において、制御回路210は、設定電力を低電力に設定する。その後、処理はステップS411に進む。ステップS407において、計測インピーダンス値(Zm)が目標インピーダンス値(Zt)よりも小さい(Zm<Zt)と判定されたとき、処理はステップS410に進む。ステップS410において、制御回路210は、設定電力を高電力に設定する。その後、処理はステップS411に進む。ステップS408乃至ステップS410の電力の設定の方法については、例えば上述の第1乃至第5の例の何れの方法が用いられてもよい。
In step S407, the control circuit 210 compares the measured impedance value (Zm) with the target impedance value (Zt). When the difference between the measured impedance value (Zm) and the target impedance value (Zt) is within a predetermined threshold (Zm≈Zt), the process proceeds to step S408. In step S408, the control circuit 210 maintains the set value (set power) of the output power. Thereafter, the process proceeds to step S411. In step S407, when it is determined that the measured impedance value (Zm) is larger than the target impedance value (Zt) (Zm> Zt), the process proceeds to step S409. In step S409, the control circuit 210 sets the set power to low power. Thereafter, the process proceeds to step S411. If it is determined in step S407 that the measured impedance value (Zm) is smaller than the target impedance value (Zt) (Zm <Zt), the process proceeds to step S410. In step S410, the control circuit 210 sets the set power to high power. Thereafter, the process proceeds to step S411. As the power setting method in steps S408 to S410, for example, any of the above-described first to fifth examples may be used.
ステップS411において、制御回路210は、ステップS408乃至ステップS410のうち何れかで設定された電力値の電力を、高周波電源回路220に出力させる。その後、処理はステップS405に戻る。
In step S411, the control circuit 210 causes the high frequency power supply circuit 220 to output the power having the power value set in any of steps S408 to S410. Thereafter, the process returns to step S405.
ステップS406において、計測インピーダンス値が終了インピーダンス値以上であると判定されたとき、処理はステップS412に進む。ステップS412において、制御回路210は、高周波電源回路220に出力を停止させる。その後、第3の制御は終了する。以上によって、電源装置200による高周波処置具100への高周波電力の供給は終了する。
When it is determined in step S406 that the measured impedance value is equal to or greater than the end impedance value, the process proceeds to step S412. In step S412, the control circuit 210 causes the high frequency power supply circuit 220 to stop the output. Thereafter, the third control ends. Thus, the supply of the high frequency power to the high frequency treatment tool 100 by the power supply device 200 is completed.
以上のような制御によれば、出力及び取得されるインピーダンス値は図4に示すようになる。すなわち、第3の制御においてインピーダンス値は、線形に上昇する。インピーダンス値が線形に上昇するように、出力電力(出力電圧又は出力電流)は、調整される。
According to the control as described above, the output and acquired impedance values are as shown in FIG. That is, in the third control, the impedance value rises linearly. The output power (output voltage or output current) is adjusted so that the impedance value rises linearly.
以上のような第3の制御によれば、インピーダンス値が線形に上昇することで、生体組織はほぼ一定の温度に維持される。このように、生体組織はほぼ一定の温度の下で処置が進む。このため、例えば血管の安定した封止が得られる。
According to the third control as described above, the living tissue is maintained at a substantially constant temperature by linearly increasing the impedance value. As described above, the treatment of the living tissue proceeds under a substantially constant temperature. For this reason, for example, stable sealing of blood vessels can be obtained.
また、生体組織の特性に応じた終了インピーダンス値が決定されることで、生体組織の特性に応じた処置の終了条件が決定される。すなわち、処置対象である生体組織の特性の違いに関わらず、十分な処置が行われた時点で、処置が終了することになる。
Also, by determining the end impedance value according to the characteristics of the living tissue, the condition for ending the treatment according to the characteristics of the living tissue is determined. In other words, regardless of the difference in the characteristics of the biological tissue that is the treatment target, the treatment ends when a sufficient treatment is performed.
以上のように、本実施形態によれば、高周波処置システム10において、処置対象に応じて最適化された出力が行われる。
As described above, according to the present embodiment, the high-frequency treatment system 10 performs an output optimized according to the treatment target.
なお、上述の実施形態の説明では、主に血管の封止を例に挙げて説明したが、上述の技術は他の生体組織の処置にも適用され得る。また、上述の動作が血管封止用のモードとして用意され、他のモードと共に高周波処置システム10に備えられてもよい。高周波処置システム10は、ユーザがこれらのモードの中から処置に応じたモードを選択するように構成されてもよい。
In the description of the above-described embodiment, the description has been given mainly using the sealing of blood vessels as an example, but the above-described technique can also be applied to treatment of other living tissues. Further, the above-described operation may be prepared as a mode for blood vessel sealing, and may be provided in the high-frequency treatment system 10 together with other modes. The high frequency treatment system 10 may be configured such that the user selects a mode corresponding to the treatment from these modes.
また、本実施形態に係る高周波処置システム10は、高周波電力を出力するのみならず、例えば第1の把持部材112が超音波周波数で振動して、生体組織を超音波振動で処置する、超音波処置具としての機能も備えてもよい。超音波エネルギをも用いる処置具においても、高周波電力の出力については、上述の実施形態と同様に機能し得る。
In addition, the high-frequency treatment system 10 according to the present embodiment outputs not only high-frequency power, but also, for example, an ultrasonic wave in which the first grasping member 112 vibrates at an ultrasonic frequency to treat a living tissue with ultrasonic vibration. A function as a treatment tool may also be provided. Even in a treatment instrument that uses ultrasonic energy, the output of high-frequency power can function in the same manner as in the above-described embodiment.
Claims (7)
- 生体組織に対して高周波処置を行う高周波処置具を動作させるための電源装置の作動方法であって、
制御回路が、高周波電源回路に電力を出力させることと、
前記制御回路が、前記出力を開始してから第1の期間内に前記生体組織のインピーダンスに係る値である初期インピーダンス値を取得することと、
前記制御回路が、前記初期インピーダンス値に基づいて、時間に対する出力電圧の増加割合を決定することと、
前記制御回路が、前記第1の期間後の第2の期間において前記高周波電源回路の出力電圧を前記増加割合に従って増加させることと、
前記制御回路が、前記第2の期間に前記生体組織のインピーダンスに係る値を取得することと、
前記制御回路が、前記インピーダンスに係る値が最小値に到達した後に、前記第2の期間を終了させることと
を含む電源装置の作動方法。 An operation method of a power supply device for operating a high-frequency treatment instrument that performs high-frequency treatment on a living tissue,
The control circuit causes the high-frequency power circuit to output power;
Obtaining an initial impedance value that is a value related to the impedance of the living tissue within a first period after the control circuit starts the output;
The control circuit determines an increase rate of the output voltage with respect to time based on the initial impedance value;
The control circuit increases the output voltage of the high-frequency power supply circuit according to the increase rate in a second period after the first period;
The control circuit acquires a value relating to the impedance of the living tissue in the second period;
The control circuit includes: ending the second period after a value related to the impedance reaches a minimum value. - 前記第2の期間において、前記出力電圧は時間に対して線形に増加する、請求項1に記載の作動方法。 The operating method according to claim 1, wherein, in the second period, the output voltage increases linearly with respect to time.
- 前記初期インピーダンス値が大きい程、前記増加割合が小さい、請求項2に記載の作動方法。 The operation method according to claim 2, wherein the increase rate is smaller as the initial impedance value is larger.
- 前記増加割合は、前記初期インピーダンス値に関わらず前記第2の期間の長さが所定の範囲内となるような値に決定される、請求項1に記載の作動方法。 2. The operating method according to claim 1, wherein the increase rate is determined to be a value such that a length of the second period is within a predetermined range regardless of the initial impedance value.
- 前記第2の期間の長さの前記所定の範囲は、0.5乃至1.5秒である、請求項4に記載の作動方法。 The operation method according to claim 4, wherein the predetermined range of the length of the second period is 0.5 to 1.5 seconds.
- 生体組織に対して高周波処置を行う高周波処置具を動作させるための電源装置であって、
電力を出力する高周波電源回路と、
前記出力を検出する出力検出回路と、
前記出力検出回路から前記出力に係る値を取得し、前記高周波電源回路の動作を制御する制御回路と
を備え、
前記制御回路は、
前記高周波電源回路に電力を出力させることと、
前記出力を開始してから第1の期間内に前記生体組織のインピーダンスに係る値である初期インピーダンス値を、前記出力検出回路から取得した前記出力に係る値に基づいて取得することと、
前記初期インピーダンス値に基づいて、時間に対する出力電圧の増加割合を決定することと、
前記第1の期間後の第2の期間において前記高周波電源回路の出力電圧を前記増加割合に従って増加させることと、
前記第2の期間に前記生体組織のインピーダンスに係る値を取得することと、
前記インピーダンスに係る値が最小値に到達した後に、前記第2の期間を終了させることと
を実行する、
電源装置。 A power supply device for operating a high-frequency treatment instrument that performs high-frequency treatment on a living tissue,
A high-frequency power supply circuit that outputs power;
An output detection circuit for detecting the output;
A control circuit for obtaining a value related to the output from the output detection circuit and controlling an operation of the high-frequency power supply circuit;
The control circuit includes:
Outputting power to the high-frequency power supply circuit;
Obtaining an initial impedance value that is a value related to the impedance of the living tissue within a first period from the start of the output based on the value related to the output acquired from the output detection circuit;
Determining an increase rate of the output voltage with respect to time based on the initial impedance value;
Increasing the output voltage of the high-frequency power supply circuit in the second period after the first period according to the increase rate;
Obtaining a value related to the impedance of the biological tissue in the second period;
Ending the second period after the impedance value has reached a minimum value,
Power supply. - 請求項6に記載の電源装置と、
前記高周波処置具と
を備える高周波処置システム。 A power supply device according to claim 6,
A high-frequency treatment system comprising the high-frequency treatment tool.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017503960A JP6129459B1 (en) | 2015-07-30 | 2016-05-17 | Power supply device operating method, power supply device, and high-frequency treatment system |
CN201680027005.0A CN107530123B (en) | 2015-07-30 | 2016-05-17 | Power supply device operating method, power supply device, and high-frequency treatment system |
EP16830128.1A EP3272302B1 (en) | 2015-07-30 | 2016-05-17 | Power supply device and high-frequency treatment system |
US15/784,261 US10695118B2 (en) | 2015-07-30 | 2017-10-16 | Operation method of electric power source device, electric power source device, and high-frequency treatment system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-150476 | 2015-07-30 | ||
JP2015150476 | 2015-07-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/784,261 Continuation US10695118B2 (en) | 2015-07-30 | 2017-10-16 | Operation method of electric power source device, electric power source device, and high-frequency treatment system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018023A1 true WO2017018023A1 (en) | 2017-02-02 |
Family
ID=57884653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064615 WO2017018023A1 (en) | 2015-07-30 | 2016-05-17 | Method for operating power supply device, power supply device, and high-frequency treatment system |
Country Status (5)
Country | Link |
---|---|
US (1) | US10695118B2 (en) |
EP (1) | EP3272302B1 (en) |
JP (1) | JP6129459B1 (en) |
CN (1) | CN107530123B (en) |
WO (1) | WO2017018023A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018158913A1 (en) * | 2017-03-02 | 2018-09-07 | オリンパス株式会社 | Power source device, high-frequency processing system, and operation method for power source device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018167877A1 (en) * | 2017-03-15 | 2018-09-20 | オリンパス株式会社 | Energy source device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002502660A (en) * | 1998-02-12 | 2002-01-29 | コンソーシアム マネージメント サービスィズ グループ インコーポレイテッド | Soft tissue joining method by passing high-frequency current inside |
JP2005517498A (en) * | 2002-02-19 | 2005-06-16 | ライブ ティシュー コネクト インコーポレイテッド | System and method for controlling tissue bonding |
JP2007319684A (en) * | 2006-05-30 | 2007-12-13 | Sherwood Services Ag | System and method for controlling tissue heating rate prior to vaporization of cell |
JP2011125714A (en) * | 2009-12-16 | 2011-06-30 | Tyco Healthcare Group Lp | System and method for tissue sealing |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5540684A (en) | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
US20100042093A9 (en) | 1998-10-23 | 2010-02-18 | Wham Robert H | System and method for terminating treatment in impedance feedback algorithm |
US9186200B2 (en) | 2006-01-24 | 2015-11-17 | Covidien Ag | System and method for tissue sealing |
US8827992B2 (en) * | 2010-03-26 | 2014-09-09 | Aesculap Ag | Impedance mediated control of power delivery for electrosurgery |
US8419727B2 (en) * | 2010-03-26 | 2013-04-16 | Aesculap Ag | Impedance mediated power delivery for electrosurgery |
US9144455B2 (en) | 2010-06-07 | 2015-09-29 | Just Right Surgical, Llc | Low power tissue sealing device and method |
CN103260539B (en) | 2011-02-10 | 2016-02-17 | 奥林巴斯株式会社 | High frequency surgical device and operation device |
-
2016
- 2016-05-17 CN CN201680027005.0A patent/CN107530123B/en active Active
- 2016-05-17 JP JP2017503960A patent/JP6129459B1/en active Active
- 2016-05-17 EP EP16830128.1A patent/EP3272302B1/en active Active
- 2016-05-17 WO PCT/JP2016/064615 patent/WO2017018023A1/en unknown
-
2017
- 2017-10-16 US US15/784,261 patent/US10695118B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002502660A (en) * | 1998-02-12 | 2002-01-29 | コンソーシアム マネージメント サービスィズ グループ インコーポレイテッド | Soft tissue joining method by passing high-frequency current inside |
JP2005517498A (en) * | 2002-02-19 | 2005-06-16 | ライブ ティシュー コネクト インコーポレイテッド | System and method for controlling tissue bonding |
JP2007319684A (en) * | 2006-05-30 | 2007-12-13 | Sherwood Services Ag | System and method for controlling tissue heating rate prior to vaporization of cell |
JP2011125714A (en) * | 2009-12-16 | 2011-06-30 | Tyco Healthcare Group Lp | System and method for tissue sealing |
Non-Patent Citations (1)
Title |
---|
See also references of EP3272302A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018158913A1 (en) * | 2017-03-02 | 2018-09-07 | オリンパス株式会社 | Power source device, high-frequency processing system, and operation method for power source device |
US11317960B2 (en) | 2017-03-02 | 2022-05-03 | Olympus Corporation | Electric power source device, high-frequency treatment system, and actuating method of electric power source |
Also Published As
Publication number | Publication date |
---|---|
EP3272302A4 (en) | 2018-12-19 |
JP6129459B1 (en) | 2017-05-17 |
JPWO2017018023A1 (en) | 2017-07-27 |
CN107530123A (en) | 2018-01-02 |
US10695118B2 (en) | 2020-06-30 |
EP3272302A1 (en) | 2018-01-24 |
CN107530123B (en) | 2020-09-04 |
US20180042662A1 (en) | 2018-02-15 |
EP3272302B1 (en) | 2021-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4499893B2 (en) | Electrosurgical equipment | |
JP5964000B1 (en) | Electrosurgical treatment system | |
JP6129460B1 (en) | Power supply device operating method, power supply device, and high-frequency treatment system | |
JP6246418B2 (en) | Power supply device operating method, power supply device, and high-frequency treatment system | |
US11129671B2 (en) | Energy control device, treatment system and actuating method of energy control device | |
JP6129459B1 (en) | Power supply device operating method, power supply device, and high-frequency treatment system | |
WO2018158913A1 (en) | Power source device, high-frequency processing system, and operation method for power source device | |
JP3989166B2 (en) | Electrosurgical equipment | |
JP2014223487A (en) | Device for tissue fusion or coagulation by tissue resistance-dependent voltage-controlled electrical action | |
US20170245917A1 (en) | Power supply device for high frequency treatment instrument, high frequency treatment system, and operation method for high frequency treatment system | |
WO2018229891A1 (en) | Control device | |
US20170245918A1 (en) | Power supply device for high frequency treatment instrument, high frequency treatment system, and control method for high frequency treatment instrument | |
JP2002306505A (en) | Electrosurgery system | |
WO2018020637A1 (en) | Power source apparatus and treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017503960 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830128 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |