WO2017017952A1 - Cooling device for laser shutter apparatus - Google Patents

Cooling device for laser shutter apparatus Download PDF

Info

Publication number
WO2017017952A1
WO2017017952A1 PCT/JP2016/003464 JP2016003464W WO2017017952A1 WO 2017017952 A1 WO2017017952 A1 WO 2017017952A1 JP 2016003464 W JP2016003464 W JP 2016003464W WO 2017017952 A1 WO2017017952 A1 WO 2017017952A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
absorber
laser
cooling
reflecting mirror
Prior art date
Application number
PCT/JP2016/003464
Other languages
French (fr)
Japanese (ja)
Inventor
皓平 舩井
西村 哲二
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017017952A1 publication Critical patent/WO2017017952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present disclosure relates to a laser shutter device of a laser oscillator of a kilowatt class, and particularly relates to a cooling device for the laser shutter device.
  • the laser shutter device is disposed inside or outside the laser oscillation device.
  • the laser shutter device is a protection device that absorbs the laser light oscillated by the laser oscillation device without irradiating the laser beam to the outside except when a heat source such as laser processing or laser welding is necessary.
  • FIG. 6A is a component arrangement diagram showing the configuration of a conventional laser shutter device, and is a view seen from the side with respect to the optical axis of the laser beam.
  • FIG. 6B is a component arrangement diagram showing a configuration of a conventional laser shutter device, and is a front view seen from the optical axis direction of laser light.
  • the mirror block 42 is equipped with a reflecting mirror 41 that reflects laser light.
  • the drive device 43 drives the mirror block 42 in the rotational direction to open and close the laser light passage hole.
  • FIG. 6A shows a state in which the laser light passage hole is closed.
  • FIG. 6B shows both the closed state and the opened state of the laser light passage hole.
  • FIG. 6A shows a state in which the laser light passage hole is closed.
  • FIG. 6B shows both the closed state and the opened state of the laser light passage hole.
  • the laser light absorbing means 44 absorbs the laser light reflected by the reflecting mirror 41.
  • the laser light absorbing means 44 is composed of an absorber inner cylinder 45 and an absorber outer cylinder 46.
  • the cooling water passage 47 is piped so as to cool both the mirror block 42 and the laser light absorbing means 44.
  • the laser shutter device is provided with a limit switch 48 and a limit switch 49 for detecting opening / closing of the mirror block 42.
  • the movement of the mirror block 42 is detected via the sensor dog 50.
  • the sensor dog 50 rotates together with the mirror block 42 and shields the photoelectric part of the limit switch 49 to detect that the laser shutter is in the “open” position.
  • the sensor dog 50 returns to the original position, and the photoelectric part of the limit switch 48 is shielded to detect that the laser shutter is in the “closed” position.
  • the base 51 is provided with each component device, and a cover 52 covers them.
  • the above is the configuration of the conventional laser shutter device (see, for example, FIG. 6 of Patent Document 1).
  • the cooling mechanism of the conventional laser shutter device since the cooling water contact area of the absorber inner cylinder 45 is small, the water cooling effect is low and high power laser light cannot be absorbed.
  • the conventional laser shutter device has a large thermal gradient between the reflecting mirror 41 that receives high-power laser light and the bottom surface of the reflecting mirror 41 that is water-cooled. Therefore, the reflecting mirror 41 is distorted by heat, the laser beam to the laser beam absorbing means 44 is shifted, and a sufficient cooling effect cannot be exhibited.
  • the position of the reflecting mirror 41 needs to be adjusted, or the laser beam is reflected in multiple stages without being absorbed in the absorber inner cylinder 45 to heat the case or the protective cover. is there. Further, although cooling water is constantly circulated through the laser light absorbing means 44 and the mirror block 42, there is no means for adjusting the amount of water, and the cooling efficiency is not improved.
  • the present disclosure solves the above problems and provides a cooling device for a laser shutter device that can block high-power laser light and has high cooling efficiency.
  • a cooling device for a laser shutter device includes a reflecting mirror, a mirror block, a driving unit, and an absorber.
  • the reflecting mirror reflects the laser light.
  • the mirror block is provided with a reflecting mirror and is rotatably installed.
  • the drive unit rotationally drives the mirror block.
  • the absorber receives the laser beam reflected by the reflecting mirror and converts it into heat.
  • the absorber has a conical inner cylinder and an outer cylinder that fits into the conical shape of the inner cylinder.
  • a spiral rib is formed outside the conical shape of the inner cylinder, and a predetermined space is provided between the tip of the rib and the recess of the outer cylinder. And cooling water flows through the space.
  • another cooling device for a laser shutter device includes a reflecting mirror, a driving unit, and an absorber.
  • the reflecting mirror reflects the laser light.
  • the drive unit is provided with a reflecting mirror and rotationally drives the mirror block.
  • the absorber receives the laser beam reflected by the reflecting mirror and converts it into heat.
  • the mirror block has a reflecting mirror holding portion and an arm portion for fixing the driving portion at a predetermined position from the reflecting mirror, and the arm portion is provided with a flow path through which cooling water passes.
  • the cooling device for the laser shutter device includes a reflecting mirror, a mirror block, a drive unit, and an absorber.
  • the reflecting mirror reflects the laser light.
  • the mirror block is provided with a reflecting mirror, has a cooling water channel in an arm portion, and is rotatably installed.
  • the drive unit rotationally drives the mirror block.
  • the absorber has a space constituted by the inside of the inner cylinder and the inside of the outer cylinder, receives the laser beam reflected by the reflecting mirror, and converts it into heat.
  • the laser shutter device has a first flow path through which cooling water is discharged from the supply port of the absorber through the space to the outside.
  • the laser shutter device has a second flow path in which cooling water branches from between the flow paths connecting the supply port of the absorber and the supply port of the space, passes through the arm portion of the mirror block, and is discharged to the outside. .
  • the cooling water is spirally flowed by the conical helical rib outside the absorber inner cylinder.
  • cooling water flows through the gap between the tip of the helical rib outside the conical shape of the inner cylinder of the absorber and the recess of the outer cylinder of the absorber. Can be made.
  • the reflecting mirror that receives the laser light is water-cooled by the cooling water flowing in the mirror block arm portion that is spaced from the reflecting mirror. Therefore, the temperature gradient from the reflecting mirror surface to the mirror block arm portion becomes smooth, and the distortion of the reflecting mirror due to a rapid temperature change can be suppressed to prevent the laser irradiation position shift to the absorber.
  • the cooling device for the laser shutter device is configured to branch the cooling water to the absorber inside the absorber and to send the cooling water to the arm portion of the mirror block. Therefore, only by adjusting the amount of cooling water to the absorber supply port, the amount of cooling water inside both the absorber and the mirror block arm can be adjusted, and the cooling efficiency can be improved.
  • thermal problems can be prevented with high cooling efficiency even if high-power laser light is cut off.
  • FIG. 1A is a diagram illustrating a schematic configuration of a cooling device of a laser shutter device according to an embodiment, and is a diagram viewed from a side with respect to an optical axis of laser light.
  • FIG. 1B is a diagram illustrating a schematic configuration of the cooling device of the laser shutter device according to the embodiment, and is a front view seen from the optical axis direction of the laser light.
  • FIG. 2 is a diagram illustrating a schematic configuration of a cooling water flow path of the cooling device of the laser shutter device according to the embodiment.
  • FIG. 3 is an exploded perspective view showing an outline of the absorber inner cylinder and the absorber outer cylinder according to the embodiment.
  • FIG. 4A is a cross-sectional view showing the space in the absorber according to the embodiment.
  • FIG. 4B is a partially enlarged view of a cross-sectional view showing the absorber inner space of FIG. 4A.
  • FIG. 5A is a partial cross-sectional view showing a cooling water flow path in the mirror block arm portion according to the embodiment, and is a view seen from the side with respect to the rotation axis.
  • FIG. 5B is a partial cross-sectional view showing the cooling water flow path in the mirror block arm portion according to the embodiment, and is a front view seen from the direction of the rotation axis.
  • FIG. 6A is a component arrangement diagram showing the configuration of a conventional laser shutter device, and is a view seen from the side with respect to the optical axis of the laser beam.
  • FIG. 6B is a component arrangement diagram showing a configuration of a conventional laser shutter device, and is a front view seen from the optical axis direction of laser light.
  • FIG. 1A and 1B are diagrams illustrating a schematic configuration of a cooling device for a laser shutter device according to an embodiment of the present disclosure.
  • FIG. 1A is a side view of the optical axis of laser light.
  • FIG. 1B is a front view seen from the optical axis direction of the laser light.
  • a reflecting mirror 102 that reflects the laser beam 101 is attached to a mirror block 103.
  • the reflecting mirror 102 is made of copper with good heat transfer, and the surface is gold-plated so that the surface is almost totally reflected. Since the mirror block 103 is also heated by the laser beam 101 via the reflecting mirror 102, a copper material having good heat transfer is used in order to increase the cooling efficiency.
  • the drive unit 104 attached to the mirror block 103 receives a command from the control unit 105 and rotates the mirror block 103.
  • the drive unit 104 uses a rotary solenoid, a motor, or the like.
  • the mirror block 103 functions as a shutter for the laser beam 101.
  • the laser light 101 is emitted to the outside of the shutter device without being blocked by the mirror block 103.
  • the mirror block 103 is at the position depicted by the solid line in FIG. 1B, this corresponds to a state where the shutter is closed, and the laser light 101 is reflected by the reflecting mirror 102 attached to the mirror block 103. Thereby, the laser beam 101 is not output to the outside but is blocked.
  • the laser beam 101 reflected by the reflecting mirror 102 is guided into the conical shape of the absorber inner cylinder 106.
  • the surface of the reflecting mirror 102 is processed into a spherical surface, and the received laser light 101 is appropriately diffused to reduce the energy density of the reflected light.
  • a superabsorbent such as dotite is applied to the inside of the conical shape of the absorber inner cylinder 106, and heat generated by the irradiation of the laser beam 101 is efficiently transmitted to the absorber inner cylinder 106.
  • the absorber outer cylinder 107 is fitted and fixed to the absorber inner cylinder 106 with a certain gap.
  • the cooling water is supplied to the absorber outer cylinder 107 via the cooling water tube 111a and the joint 110a. As one flow, the cooling water passes through a gap between the fitting portions of the absorber inner cylinder 106 and the absorber outer cylinder 107, and is discharged through the cooling water tube 111b connected to the joint 110b.
  • the cooling water supplied to the absorber outer cylinder 46 is branched inside as the other flow, passes through the cooling water tube 111c from the joint 110c, passes through the inside of the mirror block 103 to which the joint 110d is fixed, and is connected to the joint 110e.
  • the discharged cooling water tube 111d is discharged.
  • the cooling water tube 111 c and the cooling water tube 111 d are fixed with a margin so as to draw a circle in front of the absorber outer cylinder 107 so as not to hinder the rotation of the mirror block 103.
  • the center of the circle drawn by the cooling water tube 111c and the cooling water tube 111d is set away from the rotation center of the drive unit 104 in the direction in which the cooling water tube 111c and the cooling water tube 111d become longer. Thereby, rotational load can be reduced.
  • the cooling water tube is made of highly flexible polyurethane.
  • the cooling water tube should have a diameter as small as possible, and is preferably about ⁇ 6 mm.
  • the laser beam 101 oscillated from the laser oscillation device is reflected by the reflecting mirror 102 attached to the mirror block 103 and reaches the conical portion inside the absorber inner cylinder 106.
  • the laser beam 101 that has reached the conical portion inside the absorber inner cylinder 106 is absorbed by repeating multi-stage reflection.
  • cooling water constantly circulates in the gap formed by the absorber inner cylinder 106 and the absorber outer cylinder 107 and the mirror block 103 to prevent parts from being burned out.
  • FIG. 2 is a diagram illustrating a schematic configuration of a cooling water flow path of the cooling device of the laser shutter device according to the embodiment of the present disclosure.
  • the cooling water 108 a passes from the cooling water supply unit 109 through the water amount adjustment unit 112 toward the supply port 113 of the absorber outer cylinder 107.
  • the cooling water 108 a that has entered the absorber outer cylinder 107 is divided into a cooling water 108 b that is directed toward the tip of the absorber inner cylinder 106 and a cooling water 108 c that is directed toward the mirror block 103 at the internal branching portion 114.
  • the cooling water 108b toward the tip of the absorber inner cylinder 106 returns to the cooling water supply unit 109 after passing through a gap formed by the absorber inner cylinder 106 and the absorber outer cylinder 107. Further, the cooling water 108 c to the mirror block 103 side returns to the cooling water supply unit 109 after passing through the inside of the mirror block 103.
  • the water amount adjustment unit 112 may be configured using a valve, an orifice, or the like.
  • the water flow rate adjustment unit 112 at one location controls the cooling water flow rates of the two flow paths. be able to. Thereby, installation space and member cost can be reduced compared with the case where the flow path passing through the absorber inner cylinder 106 and the absorber outer cylinder 107 and the flow path passing through the mirror block 103 are two independent flow paths.
  • the inner diameter of the cooling water tube 111b through which the cooling water 108b flows is set to about 2 to 4 times the inner diameter of the cooling water tube 111c through which the cooling water 108c flows and the cooling water tube 111d. It is desirable.
  • the inner diameter of the cooling water tube 111c and the cooling water tube 111d are “1”
  • the inner diameter of the cooling water tube 111b is “2.25”
  • the inner diameter of the cooling water tube 111a is Is set to “3.2”.
  • the pressure loss of the entire cooling device 100 of the laser shutter device increases. If it does in this way, since the cooling efficiency of the cooling device 100 of a laser shutter apparatus will fall, it is returned to the cooling water supply part 109, with the cooling water 108b and the cooling water 108c separated.
  • FIG. 3 is an exploded perspective view showing the general shape of the absorber inner cylinder 106 and the absorber outer cylinder 107 according to the embodiment of the present disclosure.
  • FIG. 4A is a cross-sectional view showing the space in the absorber according to the embodiment of the present disclosure.
  • 4B is a partial enlarged view of a cross-sectional view showing the absorber inner space of FIG. 4A (enlarged view of a portion surrounded by A in FIG. 4A).
  • the absorber outer cylinder 107 is a cast of bronze or stainless steel, has a conical recess for fitting the absorber inner cylinder 106, and has a supply port 113 for cooling water 108a at the bottom. Further, a branch portion 114 of the cooling water 108 a is provided inside the absorber outer cylinder 107, and a discharge port 115 a for the cooling water 108 b is provided above the absorber outer cylinder 107.
  • the cooling water 108c is supplied from the branch part 114 to the mirror block 103 through the discharge port 115b.
  • the branch portion 114 is disposed in front of the absorber inner cylinder 106 as viewed from the supply port 113. This is because the flow passage cross-sectional area of the cooling water 108b is reduced due to the fitting of the absorber inner cylinder 106 and the absorber outer cylinder 107, and the cooling water 108c is maintained by holding a sufficient water pressure on the mirror block 103 before the pressure loss increases. This is to supply.
  • the material of the absorber inner cylinder 106 is a cast of bronze material with good heat transfer, and has a helical rib 116 outside the conical shape. Thereby, the cooling water becomes a spiral flow, the cooling water contact area of the absorber inner cylinder 106 is increased, and the cooling efficiency is improved.
  • the rib height is set so that when the absorber inner cylinder 106 is fitted with the absorber outer cylinder 107, a predetermined gap 117 is formed between the outside of the absorber inner cylinder 106 and the recess of the absorber outer cylinder 107. Therefore, the tip of the spiral rib 116 is processed into a flat surface. This is because a gap having a width y shown in FIG. 4A is formed between the tip of the spiral rib 116 and the absorber outer cylinder 107. Thereby, the flow 122 passing through the gap of the width y is generated, the amount of cooling water inside the absorber is increased, and the cooling capacity is further enhanced.
  • the O-ring 120 is attached to prevent the water leakage when the cooling water 108b is flowed inside after fitting.
  • doughite which is a high absorption material, is applied to the inside of the conical shape of the absorber inner cylinder 106 to suppress the reflection of the irradiated laser beam 101 and absorb it.
  • 4A and 4B indicate the flow of cooling water inside the absorber.
  • the supplied cooling water 108 b is guided to the tip of the absorber inner cylinder 106. Thereby, cooling efficiency can be improved compared with the case where cooling water is supplied to the absorber inner cylinder 106 from the side surface.
  • the cooling water 108b is divided into a flow 121 along the spiral rib and a flow 122 passing through the gap of the width y, and as shown in FIG. , Carried outside the absorber.
  • the cooling water flowing through the gap of width y generates a spiral flow, so that the flow rate per unit time flowing while contacting the surface that requires heat dissipation can be increased.
  • the load of the cooling water flowing through the gap with the width y is smaller than simply providing the spiral water channel, the amount of water itself is also increased. As a result, cooling can be performed more efficiently by setting a predetermined space between the tip of the rib and the recess of the outer cylinder and flowing cooling water.
  • the cooling water flows with the least load while maintaining the spiral flow.
  • 5A and 5B are partial cross-sectional views showing cooling water flow paths in the mirror block arm portion according to the embodiment of the present invention.
  • 5A is a view seen from the side with respect to the rotation axis
  • FIG. 5B is a front view seen from the direction of the rotation axis. The configuration and operation of the cooling water channel inside the mirror block will be described with reference to FIGS. 5A and 5B.
  • the mirror block 103 is divided into an arm portion 118 through which the cooling water 108c passes and a holding portion 119 to which the reflecting mirror 102 is attached.
  • the arm portion 118 is provided with a first cooling water passage 123 and a second cooling water passage 124 in the longitudinal direction, and a third cooling water passage 125 that connects the first cooling water passage 123 and the second cooling water passage 124 is provided. It has been.
  • a one-way flow path is formed in the arm portion 118 by closing the opening of the third cooling water passage 125 with the plug 126.
  • the mirror block 103 whose temperature rises is cooled by the cooling water 108c through the reflecting mirror 102 that receives the laser beam 101 and generates heat.
  • the temperature gradient from the surface to the bottom of the reflecting mirror 102 which is an accurate component attached to the holding portion 119, becomes gentle.
  • the time difference of the deformation amount of the part 119 is suppressed, and the trajectory of the laser light 101 to the absorber inner cylinder 106 is stabilized.
  • the laser beam is reflected in a multistage manner in the absorber inner cylinder 106 without being absorbed, and the problem of heating the laser shutter device does not occur.
  • the cooling water 108 b is spirally flowed by the spiral rib 116 outside the conical shape of the absorber inner cylinder 106, and further the spiral rib 116.
  • the cooling water also flows from the gap between the tip of the absorber and the concave portion of the absorber outer cylinder 107. Thereby, a sufficient amount of cooling water flows evenly outside the absorber inner cylinder 106, and the cooling efficiency can be improved.
  • the reflecting mirror 102 that receives the laser beam 101 is water-cooled by the cooling water 108c flowing in the arm portion 118 of the mirror block at a distance. Therefore, the temperature gradient in the reflecting mirror 102 becomes gentle, the thermal distortion of the reflecting mirror 102 is suppressed, and the laser irradiation position shift to the absorber inner cylinder 106 can be prevented.
  • the cooling water 108a is branched inside the absorber outer cylinder 107, and the cooling water 108c is also sent to the arm portion 118 of the mirror block. Therefore, the amount of cooling water inside both the absorber and the arm portion 118 of the mirror block can be appropriately adjusted by one water amount adjusting unit 112, and the cooling efficiency of the entire cooling device 100 of the laser shutter device can be increased.
  • the cooling device of the laser shutter device of the present embodiment it is possible to prevent thermal problems with high cooling efficiency even if high-power laser light is cut off.
  • a cooling device for a laser shutter device can prevent a thermal problem with high cooling efficiency even when high-power laser light is cut off. Useful in.
  • Cooling apparatus of laser shutter apparatus 101 Laser beam 102 Reflecting mirror 103 Mirror block 104 Drive part 105 Control part 106 Absorber inner cylinder 107 Absorber outer cylinder 108a, 108b, 108c Cooling water 109 Cooling water supply part 110a, 110b, 110c, 110d, 110e Joint 111a, 111b, 111c, 111d Cooling water tube 112 Water quantity adjustment part 113 Supply port 114 Branch part 115a, 115b Discharge port 116 Spiral rib 117 Gap 118 Arm part 119 Holding part 120 O-ring 121 Along the spiral rib Flow 122 Flow through gap 123 First cooling water channel 124 Second cooling water channel 125 Third cooling water channel 126 Plug 41 Reflecting mirror 42 Mirror block 43 Drive device 44 Laser light absorption means 45 In the absorber Cylinder 46 Absorber outer cylinder 47 Cooling water flow path 48 Limit switch 49 Limit switch 50 Sensor dog 51 Base 52 Cover

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

A cooling device for a laser shutter apparatus according to the present disclosure includes a reflection mirror, a mirror block, a driving unit, and an absorber. The reflection mirror reflects laser light. The reflection mirror is provided on the mirror block and disposed so as to be rotatable. The driving unit rotationally drives the mirror block. The absorber receives laser light reflected by the reflection mirror and converts the laser light into heat. The absorber has an inner cylinder having a cone shape and an outer cylinder that fits on the cone shape of the inner cylinder. A spiral rib is provided on the outer side of the cone shape of the inner cylinder, and a predetermined space is provided between the leading end of the rib and a recessed section of the outer cylinder. Cooling water flows through the space.

Description

レーザシャッタ装置の冷却装置Cooling device for laser shutter device
 本開示は、キロワット級のレーザ発振器のレーザシャッタ装置に関し、特に、レーザシャッタ装置の冷却装置に関する。 The present disclosure relates to a laser shutter device of a laser oscillator of a kilowatt class, and particularly relates to a cooling device for the laser shutter device.
 レーザシャッタ装置はレーザ発振装置の内または外に配置されるものである。レーザシャッタ装置は、レーザ発振装置で発振したレーザ光を、レーザ加工やレーザ溶接など熱源の必要な時以外に、外部へ照射させずに吸収する保護装置である。 The laser shutter device is disposed inside or outside the laser oscillation device. The laser shutter device is a protection device that absorbs the laser light oscillated by the laser oscillation device without irradiating the laser beam to the outside except when a heat source such as laser processing or laser welding is necessary.
 近年、厚みのある金属素材を切断できるレーザ加工機が求められており、高出力のレーザ発振器の需要が高まっている。それに伴い、より大きなレーザエネルギを受ける(吸収する)ことができる、レーザシャッタ装置が求められている。 In recent years, there has been a demand for a laser processing machine capable of cutting a thick metal material, and the demand for a high-power laser oscillator is increasing. Accordingly, there is a need for a laser shutter device that can receive (absorb) more laser energy.
 図6Aおよび図6Bを用いて、従来のレーザシャッタ装置の概略構成を説明する。図6Aは、従来のレーザシャッタ装置の構成を示す部品配置図であり、レーザ光の光軸に対して側面から見た図である。図6Bは、従来のレーザシャッタ装置の構成を示す部品配置図であり、レーザ光の光軸方向から見た正面図である。ミラーブロック42には、レーザ光を反射させる反射鏡41が装着されている。駆動装置43は、ミラーブロック42を回転方向に駆動してレーザ光の通過孔を開閉させる。図6Aは、レーザ光の通過孔が閉じられた状態である。図6Bは、レーザ光の通過孔が閉じられた状態と、開かれた状態の両方を示している。図6Bにおいて、ミラーブロック42が下方向に位置する時は、レーザ光の通過孔は閉じられており、ミラーブロック42が右下方向に位置する時は、レーザ光の通過孔は開かれている。レーザ光は、図6Aでは右から入射され、図6Bでは、紙面手前から入射される。 A schematic configuration of a conventional laser shutter device will be described with reference to FIGS. 6A and 6B. FIG. 6A is a component arrangement diagram showing the configuration of a conventional laser shutter device, and is a view seen from the side with respect to the optical axis of the laser beam. FIG. 6B is a component arrangement diagram showing a configuration of a conventional laser shutter device, and is a front view seen from the optical axis direction of laser light. The mirror block 42 is equipped with a reflecting mirror 41 that reflects laser light. The drive device 43 drives the mirror block 42 in the rotational direction to open and close the laser light passage hole. FIG. 6A shows a state in which the laser light passage hole is closed. FIG. 6B shows both the closed state and the opened state of the laser light passage hole. In FIG. 6B, when the mirror block 42 is located in the downward direction, the laser light passage hole is closed, and when the mirror block 42 is located in the lower right direction, the laser light passage hole is opened. . The laser light is incident from the right in FIG. 6A and is incident from the front of the paper in FIG. 6B.
 図6Aおよび図6Bにおいて、レーザ光吸収手段44は反射鏡41により反射したレーザ光を吸収する。図6Aに示すように、レーザ光吸収手段44はアブソーバ内筒45とアブソーバ外筒46で構成されている。冷却水流路47は、ミラーブロック42とレーザ光吸収手段44との両方を冷却するように配管されている。 6A and 6B, the laser light absorbing means 44 absorbs the laser light reflected by the reflecting mirror 41. As shown in FIG. 6A, the laser light absorbing means 44 is composed of an absorber inner cylinder 45 and an absorber outer cylinder 46. The cooling water passage 47 is piped so as to cool both the mirror block 42 and the laser light absorbing means 44.
 図6Bに示すように、レーザシャッタ装置は、ミラーブロック42の開閉検出のためにリミットスイッチ48とリミットスイッチ49が設置されている。ミラーブロック42の動きは、センサドグ50を介して検知されている。センサドグ50は、ミラーブロック42と供に回転し、リミットスイッチ49の光電部を遮光することで、レーザシャッタが「開」の位置であることを検出する。センサドグ50が元の位置に戻り、リミットスイッチ48の光電部を遮光することで、レーザシャッタが「閉」の位置であることを検出する。 As shown in FIG. 6B, the laser shutter device is provided with a limit switch 48 and a limit switch 49 for detecting opening / closing of the mirror block 42. The movement of the mirror block 42 is detected via the sensor dog 50. The sensor dog 50 rotates together with the mirror block 42 and shields the photoelectric part of the limit switch 49 to detect that the laser shutter is in the “open” position. The sensor dog 50 returns to the original position, and the photoelectric part of the limit switch 48 is shielded to detect that the laser shutter is in the “closed” position.
 図6Aおよび図6Bに示すように、ベース51には各構成機器がとりつけられており、それらをカバー52がおおっている。以上が、従来のレーザシャッタ装置の構成である(例えば、特許文献1の図6を参照)。 As shown in FIGS. 6A and 6B, the base 51 is provided with each component device, and a cover 52 covers them. The above is the configuration of the conventional laser shutter device (see, for example, FIG. 6 of Patent Document 1).
特開2010-212563号公報JP 2010-212563 A
 しかし、従来のレーザシャッタ装置の冷却機構では、アブソーバ内筒45の冷却水接触面積が小さいため、水冷効果が低く、高出力レーザ光を吸収することはできない。また、従来のレーザシャッタ装置は、高出力のレーザ光を受ける反射鏡41と水冷される反射鏡41の底面との熱勾配が大きい。そのため、反射鏡41が熱によってひずみ、レーザ光吸収手段44へのレーザ光がずれ、十分な冷却効果を発揮できない。 However, in the cooling mechanism of the conventional laser shutter device, since the cooling water contact area of the absorber inner cylinder 45 is small, the water cooling effect is low and high power laser light cannot be absorbed. The conventional laser shutter device has a large thermal gradient between the reflecting mirror 41 that receives high-power laser light and the bottom surface of the reflecting mirror 41 that is water-cooled. Therefore, the reflecting mirror 41 is distorted by heat, the laser beam to the laser beam absorbing means 44 is shifted, and a sufficient cooling effect cannot be exhibited.
 レーザ光の位置ずれが起こると、反射鏡41の位置調整が必要となったり、レーザ光がアブソーバ内筒45内で吸収されずに多段反射し、ケースや保護カバーなどを加熱するなどの問題がある。また、レーザ光吸収手段44とミラーブロック42とには常時冷却水を循環させているが、水量調整の手段がなく、冷却効率を高められていない。 When the laser beam is misaligned, the position of the reflecting mirror 41 needs to be adjusted, or the laser beam is reflected in multiple stages without being absorbed in the absorber inner cylinder 45 to heat the case or the protective cover. is there. Further, although cooling water is constantly circulated through the laser light absorbing means 44 and the mirror block 42, there is no means for adjusting the amount of water, and the cooling efficiency is not improved.
 そこで本開示は、以上の問題を解決し、高出力のレーザ光を遮断できる、冷却効率が高いレーザシャッタ装置の冷却装置を提供する。 Therefore, the present disclosure solves the above problems and provides a cooling device for a laser shutter device that can block high-power laser light and has high cooling efficiency.
 上記課題を解決するために、本開示に係るレーザシャッタ装置の冷却装置は、反射鏡と、ミラーブロックと、駆動部と、アブソーバとを有する。反射鏡は、レーザ光を反射する。ミラーブロックは、反射鏡が設けられ、回転可能に設置されている。駆動部は、ミラーブロックを回転駆動する。アブソーバは、反射鏡で反射されたレーザ光を受けて熱に変換する。さらに、アブソーバは円錐形状の内筒と内筒の円錐形状に嵌合する外筒を有する。さらに、内筒の円錐形状の外部には螺旋状のリブが形成され、リブの先端と外筒の凹部との間に所定の空間が設けられている。そして、冷却水が空間を流れるようになっている。 In order to solve the above-described problem, a cooling device for a laser shutter device according to the present disclosure includes a reflecting mirror, a mirror block, a driving unit, and an absorber. The reflecting mirror reflects the laser light. The mirror block is provided with a reflecting mirror and is rotatably installed. The drive unit rotationally drives the mirror block. The absorber receives the laser beam reflected by the reflecting mirror and converts it into heat. Further, the absorber has a conical inner cylinder and an outer cylinder that fits into the conical shape of the inner cylinder. Furthermore, a spiral rib is formed outside the conical shape of the inner cylinder, and a predetermined space is provided between the tip of the rib and the recess of the outer cylinder. And cooling water flows through the space.
 また、本開示に係る他のレーザシャッタ装置の冷却装置は、反射鏡と、駆動部と、アブソーバとを有する。反射鏡は、レーザ光を反射する。駆動部は、反射鏡が設けられ、ミラーブロックを回転駆動する。アブソーバは、反射鏡で反射されたレーザ光を受けて熱に変換する。さらに、ミラーブロックは反射鏡保持部と、反射鏡から所定の位置に駆動部を固定する腕部とを有し、腕部は内部に冷却水を通す流路が設けられている。 Further, another cooling device for a laser shutter device according to the present disclosure includes a reflecting mirror, a driving unit, and an absorber. The reflecting mirror reflects the laser light. The drive unit is provided with a reflecting mirror and rotationally drives the mirror block. The absorber receives the laser beam reflected by the reflecting mirror and converts it into heat. Further, the mirror block has a reflecting mirror holding portion and an arm portion for fixing the driving portion at a predetermined position from the reflecting mirror, and the arm portion is provided with a flow path through which cooling water passes.
 さらに、本開示に係るレーザシャッタ装置の冷却装置は、反射鏡と、ミラーブロックと、駆動部と、アブソーバとを有する。反射鏡は、レーザ光を反射する。ミラーブロックは、反射鏡が設けられ、冷却水路を腕部に有し、回転可能に設置されている。駆動部は、ミラーブロックを回転駆動する。アブソーバは、内筒外部と外筒内部で構成される空間を有して、反射鏡で反射されたレーザ光を受けて熱に変換する。さらに、レーザシャッタ装置は、冷却水が、アブソーバの供給口から空間を通り、外部へ排出される第一の流路を有する。さらに、レーザシャッタ装置は、冷却水が、アブソーバの供給口と空間の供給口を結ぶ流路の間から分岐し、ミラーブロックの腕部を通り、外部へ排出される第二の流路を有する。 Furthermore, the cooling device for the laser shutter device according to the present disclosure includes a reflecting mirror, a mirror block, a drive unit, and an absorber. The reflecting mirror reflects the laser light. The mirror block is provided with a reflecting mirror, has a cooling water channel in an arm portion, and is rotatably installed. The drive unit rotationally drives the mirror block. The absorber has a space constituted by the inside of the inner cylinder and the inside of the outer cylinder, receives the laser beam reflected by the reflecting mirror, and converts it into heat. Further, the laser shutter device has a first flow path through which cooling water is discharged from the supply port of the absorber through the space to the outside. Further, the laser shutter device has a second flow path in which cooling water branches from between the flow paths connecting the supply port of the absorber and the supply port of the space, passes through the arm portion of the mirror block, and is discharged to the outside. .
 上記の構成により、本開示に係るレーザシャッタ装置の冷却装置では、アブソーバ内筒の外部の円錐形状の螺旋状リブにより冷却水が螺旋流となる。さらに、アブソーバ内筒の円錐形状外部の螺旋状リブ先端とアブソーバ外筒凹部との隙間からも冷却水が流れることで、アブソーバ内筒外部をまんべんなく、かつ十分な冷却水量が流れ、冷却能力を向上させることができる。 With the above configuration, in the cooling device for the laser shutter device according to the present disclosure, the cooling water is spirally flowed by the conical helical rib outside the absorber inner cylinder. In addition, cooling water flows through the gap between the tip of the helical rib outside the conical shape of the inner cylinder of the absorber and the recess of the outer cylinder of the absorber. Can be made.
 また上記の構成により、本開示に係るレーザシャッタ装置の冷却装置では、レーザ光を受ける反射鏡は、反射鏡から距離をとったミラーブロック腕部内を流れる冷却水により、水冷される。そのため、反射鏡表面からミラーブロック腕部までの温度勾配がなだらかになり、急激な温度変化による反射鏡のひずみをおさえ、アブソーバへのレーザ照射位置ずれを防ぐことができる。 Also, with the above-described configuration, in the cooling device for the laser shutter device according to the present disclosure, the reflecting mirror that receives the laser light is water-cooled by the cooling water flowing in the mirror block arm portion that is spaced from the reflecting mirror. Therefore, the temperature gradient from the reflecting mirror surface to the mirror block arm portion becomes smooth, and the distortion of the reflecting mirror due to a rapid temperature change can be suppressed to prevent the laser irradiation position shift to the absorber.
 さらに上記の構成により、本開示に係るレーザシャッタ装置の冷却装置では、アブソーバへの冷却水をアブソーバ内部で分岐させ、ミラーブロックの腕部へ冷却水を送る構成である。そのため、アブソーバ供給口への冷却水量を調整するだけで、アブソーバ内部およびミラーブロック腕部双方の冷却水量を調整することができ、冷却効率を高めることができる。 Further, with the above-described configuration, the cooling device for the laser shutter device according to the present disclosure is configured to branch the cooling water to the absorber inside the absorber and to send the cooling water to the arm portion of the mirror block. Therefore, only by adjusting the amount of cooling water to the absorber supply port, the amount of cooling water inside both the absorber and the mirror block arm can be adjusted, and the cooling efficiency can be improved.
 以上のように、高出力のレーザ光を遮断しても熱的な問題を高い冷却効率で防止することができる。 As described above, thermal problems can be prevented with high cooling efficiency even if high-power laser light is cut off.
図1Aは、実施の形態に係るレーザシャッタ装置の冷却装置の概略構成を示す図であり、レーザ光の光軸に対して側面から見た図である。FIG. 1A is a diagram illustrating a schematic configuration of a cooling device of a laser shutter device according to an embodiment, and is a diagram viewed from a side with respect to an optical axis of laser light. 図1Bは、実施の形態に係るレーザシャッタ装置の冷却装置の概略構成を示す図であり、レーザ光の光軸方向から見た正面図である。FIG. 1B is a diagram illustrating a schematic configuration of the cooling device of the laser shutter device according to the embodiment, and is a front view seen from the optical axis direction of the laser light. 図2は、実施の形態に係るレーザシャッタ装置の冷却装置の冷却水流路概略構成を示す図である。FIG. 2 is a diagram illustrating a schematic configuration of a cooling water flow path of the cooling device of the laser shutter device according to the embodiment. 図3は、実施の形態に係るアブソーバ内筒とアブソーバ外筒との概形を示す分解斜視図である。FIG. 3 is an exploded perspective view showing an outline of the absorber inner cylinder and the absorber outer cylinder according to the embodiment. 図4Aは、実施の形態に係るアブソーバ内空間を示す断面図である。FIG. 4A is a cross-sectional view showing the space in the absorber according to the embodiment. 図4Bは、図4Aのアブソーバ内空間を示す断面図の部分拡大図である。FIG. 4B is a partially enlarged view of a cross-sectional view showing the absorber inner space of FIG. 4A. 図5Aは、実施の形態に係るミラーブロック腕部内の冷却水流路を示す部分断面図であり、回転軸に対して側面から見た図である。FIG. 5A is a partial cross-sectional view showing a cooling water flow path in the mirror block arm portion according to the embodiment, and is a view seen from the side with respect to the rotation axis. 図5Bは、実施の形態に係るミラーブロック腕部内の冷却水流路を示す部分断面図であり、回転軸方向から見た正面図である。FIG. 5B is a partial cross-sectional view showing the cooling water flow path in the mirror block arm portion according to the embodiment, and is a front view seen from the direction of the rotation axis. 図6Aは、従来のレーザシャッタ装置の構成を示す部品配置図であり、レーザ光の光軸に対して側面から見た図である。FIG. 6A is a component arrangement diagram showing the configuration of a conventional laser shutter device, and is a view seen from the side with respect to the optical axis of the laser beam. 図6Bは、従来のレーザシャッタ装置の構成を示す部品配置図であり、レーザ光の光軸方向から見た正面図である。FIG. 6B is a component arrangement diagram showing a configuration of a conventional laser shutter device, and is a front view seen from the optical axis direction of laser light.
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same components are denoted by the same reference numerals, and the description thereof may be omitted.
 (実施の形態1)
 <レーザシャッタ装置の冷却装置の主要構成>
 図1Aおよび図1Bは、本開示発明の実施形態に係るレーザシャッタ装置の冷却装置の概略構成を示す図である。図1Aは、レーザ光の光軸に対して側面から見た図である。図1Bは、レーザ光の光軸方向から見た正面図である。
(Embodiment 1)
<Main configuration of cooling device for laser shutter device>
1A and 1B are diagrams illustrating a schematic configuration of a cooling device for a laser shutter device according to an embodiment of the present disclosure. FIG. 1A is a side view of the optical axis of laser light. FIG. 1B is a front view seen from the optical axis direction of the laser light.
 図1Aおよび図1Bに示すように、レーザ光101を反射する反射鏡102がミラーブロック103に取り付けられている。反射鏡102は熱伝達のよい銅製であり、表面はほぼ全反射となるよう金メッキ処理が施されている。ミラーブロック103も、反射鏡102を介して、レーザ光101により加熱されるので、冷却効率を高めるため、熱伝達のよい銅素材を用いている。 As shown in FIGS. 1A and 1B, a reflecting mirror 102 that reflects the laser beam 101 is attached to a mirror block 103. The reflecting mirror 102 is made of copper with good heat transfer, and the surface is gold-plated so that the surface is almost totally reflected. Since the mirror block 103 is also heated by the laser beam 101 via the reflecting mirror 102, a copper material having good heat transfer is used in order to increase the cooling efficiency.
 ミラーブロック103に取り付けられた駆動部104は、制御部105による指令を受け、ミラーブロック103を回転駆動させる。駆動部104には回転式ソレノイドやモータなどを用いる。ミラーブロック103は、レーザ光101に対するシャッタとして働く。ミラーブロック103が、図1Bの破線で描いた位置にあるときは、レーザ光101はミラーブロック103に遮断されずにシャッタ装置の外部に射出される。ミラーブロック103が、図1Bの実線で描いた位置にあるときは、シャッタが閉じた状態に相当し、レーザ光101はミラーブロック103に取り付けられた反射鏡102で反射される。これにより、レーザ光101が外部に出力されず、遮断される。 The drive unit 104 attached to the mirror block 103 receives a command from the control unit 105 and rotates the mirror block 103. The drive unit 104 uses a rotary solenoid, a motor, or the like. The mirror block 103 functions as a shutter for the laser beam 101. When the mirror block 103 is at the position depicted by the broken line in FIG. 1B, the laser light 101 is emitted to the outside of the shutter device without being blocked by the mirror block 103. When the mirror block 103 is at the position depicted by the solid line in FIG. 1B, this corresponds to a state where the shutter is closed, and the laser light 101 is reflected by the reflecting mirror 102 attached to the mirror block 103. Thereby, the laser beam 101 is not output to the outside but is blocked.
 反射鏡102で反射されたレーザ光101は、アブソーバ内筒106の円錐形状内部へ導かれる。反射鏡102の表面は球面上に加工されており、受光したレーザ光101を適度に拡散させ、反射光のエネルギ密度を下げている。 The laser beam 101 reflected by the reflecting mirror 102 is guided into the conical shape of the absorber inner cylinder 106. The surface of the reflecting mirror 102 is processed into a spherical surface, and the received laser light 101 is appropriately diffused to reduce the energy density of the reflected light.
 これにより、アブソーバ内筒106の円錐形状内部において、局所的にレーザ光が集中することなく、焼損などの重大事故を防いでいる。アブソーバ内筒106の円錐形状内部にはドータイトなどの高吸収剤が塗布されており、レーザ光101の照射によって発生した熱を、効率よくアブソーバ内筒106に伝えている。 This prevents a serious accident such as burnout without locally concentrating the laser beam inside the conical shape of the absorber inner cylinder 106. A superabsorbent such as dotite is applied to the inside of the conical shape of the absorber inner cylinder 106, and heat generated by the irradiation of the laser beam 101 is efficiently transmitted to the absorber inner cylinder 106.
 アブソーバ外筒107はアブソーバ内筒106と一定の隙間を有して嵌合し、固定されている。冷却水は、冷却水チューブ111aおよび継手110aを介し、アブソーバ外筒107へ供給される。冷却水は、一方の流れとして、アブソーバ内筒106とアブソーバ外筒107の嵌合部の隙間を通り、継手110bに接続された冷却水チューブ111bを介して排出される。 The absorber outer cylinder 107 is fitted and fixed to the absorber inner cylinder 106 with a certain gap. The cooling water is supplied to the absorber outer cylinder 107 via the cooling water tube 111a and the joint 110a. As one flow, the cooling water passes through a gap between the fitting portions of the absorber inner cylinder 106 and the absorber outer cylinder 107, and is discharged through the cooling water tube 111b connected to the joint 110b.
 アブソーバ外筒46に供給された冷却水は、他方の流れとして、内部で分岐し、継手110cより冷却水チューブ111cを通り、継手110dが固定されたミラーブロック103の内部を通り、継手110eに接続された冷却水チューブ111dより排出される。 The cooling water supplied to the absorber outer cylinder 46 is branched inside as the other flow, passes through the cooling water tube 111c from the joint 110c, passes through the inside of the mirror block 103 to which the joint 110d is fixed, and is connected to the joint 110e. The discharged cooling water tube 111d is discharged.
 冷却水チューブ111cと冷却水チューブ111dは、ミラーブロック103の回転を阻害しないように、アブソーバ外筒107の前方で円を描くように余裕を持ってて固定されている。冷却水チューブ111cと冷却水チューブ111dが描く円の中心は、駆動部104の回転中心より、冷却水チューブ111cと冷却水チューブ111dが長くなる方向へ離して設定する。これにより、回転負荷を減らすことができる。 The cooling water tube 111 c and the cooling water tube 111 d are fixed with a margin so as to draw a circle in front of the absorber outer cylinder 107 so as not to hinder the rotation of the mirror block 103. The center of the circle drawn by the cooling water tube 111c and the cooling water tube 111d is set away from the rotation center of the drive unit 104 in the direction in which the cooling water tube 111c and the cooling water tube 111d become longer. Thereby, rotational load can be reduced.
 さらに回転負荷を小さくするため、冷却水チューブは、柔軟性の高いポリウレタン製のものを用いている。また、冷却水チューブは、できるだけ直径の小さいものを使用すべきであり、φ6mm程度が望ましい。 In order to further reduce the rotational load, the cooling water tube is made of highly flexible polyurethane. The cooling water tube should have a diameter as small as possible, and is preferably about φ6 mm.
 次に、本開示のレーザシャッタ装置の冷却装置の動作について説明する。 Next, the operation of the cooling device of the laser shutter device of the present disclosure will be described.
 レーザ発振装置より発振したレーザ光101は、ミラーブロック103に装着された反射鏡102で反射され、アブソーバ内筒106内部の円錐形状部へ達する。アブソーバ内筒106内部の円錐形状部へ達したレーザ光101は、多段反射を繰り返して、吸収される。 The laser beam 101 oscillated from the laser oscillation device is reflected by the reflecting mirror 102 attached to the mirror block 103 and reaches the conical portion inside the absorber inner cylinder 106. The laser beam 101 that has reached the conical portion inside the absorber inner cylinder 106 is absorbed by repeating multi-stage reflection.
 この状態から、レーザ加工やレーザ溶接のためにレーザ光をレーザシャッタ外へ照射させるときは、駆動部104に電力が供給されミラーブロック103が回転する。逆に外部へのレーザ光の照射をやめて、元に戻す際には駆動部104に電力供給を停止するこれにより、ミラーブロック103は、自重にて反射鏡102が自然落下し、元の状態に戻る。駆動部104への電力供給はレーザ発振停止時に行うことで、ミラーブロック103駆動途中の状態でレーザ光101が外部に照射されることを防いでいる。 From this state, when irradiating laser light outside the laser shutter for laser processing or laser welding, power is supplied to the drive unit 104 and the mirror block 103 rotates. On the other hand, when the external laser beam is stopped and returned to its original state, the power supply to the drive unit 104 is stopped. As a result, the mirror block 103 causes the reflecting mirror 102 to spontaneously fall under its own weight and return to its original state. Return. By supplying power to the drive unit 104 when the laser oscillation is stopped, the laser beam 101 is prevented from being irradiated to the outside while the mirror block 103 is being driven.
 またアブソーバ内筒106とアブソーバ外筒107で構成される隙間とミラーブロック103へは常時冷却水が循環しており部品の焼損を阻止している。 Further, cooling water constantly circulates in the gap formed by the absorber inner cylinder 106 and the absorber outer cylinder 107 and the mirror block 103 to prevent parts from being burned out.
 次に、冷却水の流れを、図2を用いて模式的に説明する。図2は、本開示の実施の形態に係るレーザシャッタ装置の冷却装置の冷却水流路概略構成を示す図である。 Next, the flow of cooling water will be schematically described with reference to FIG. FIG. 2 is a diagram illustrating a schematic configuration of a cooling water flow path of the cooling device of the laser shutter device according to the embodiment of the present disclosure.
 図2に示すように、冷却水108aは冷却水供給部109より水量調整部112を通り、アブソーバ外筒107の供給口113に向かう。アブソーバ外筒107へ入った冷却水108aは、内部の分岐部114でアブソーバ内筒106先端部側に向かう冷却水108bとミラーブロック103側へ向かう冷却水108cに分かれていく。 As shown in FIG. 2, the cooling water 108 a passes from the cooling water supply unit 109 through the water amount adjustment unit 112 toward the supply port 113 of the absorber outer cylinder 107. The cooling water 108 a that has entered the absorber outer cylinder 107 is divided into a cooling water 108 b that is directed toward the tip of the absorber inner cylinder 106 and a cooling water 108 c that is directed toward the mirror block 103 at the internal branching portion 114.
 アブソーバ内筒106先端部側への冷却水108bは、アブソーバ内筒106とアブソーバ外筒107で構成される隙間を通過後に冷却水供給部109へ還っていく。また、ミラーブロック103側への冷却水108cは、ミラーブロック103内部を通過後、冷却水供給部109へ還っていく。水量調整部112としてはバルブやオリフィスなどを用いて構成すれば良い。 The cooling water 108b toward the tip of the absorber inner cylinder 106 returns to the cooling water supply unit 109 after passing through a gap formed by the absorber inner cylinder 106 and the absorber outer cylinder 107. Further, the cooling water 108 c to the mirror block 103 side returns to the cooling water supply unit 109 after passing through the inside of the mirror block 103. The water amount adjustment unit 112 may be configured using a valve, an orifice, or the like.
 アブソーバ内筒106とアブソーバ外筒107で構成される隙間を通る流路とミラーブロック103を通る流路を決定すると、1ヶ所の水量調整部112により、2つの流路の冷却水流量を制御することができる。これにより、アブソーバ内筒106とアブソーバ外筒107を通る流路とミラーブロック103内部を通る流路とを、独立した2つの流路とする場合よりも、設置スペースおよび部材コストを削減できる。 When the flow path passing through the gap formed by the absorber inner cylinder 106 and the absorber outer cylinder 107 and the flow path passing through the mirror block 103 are determined, the water flow rate adjustment unit 112 at one location controls the cooling water flow rates of the two flow paths. be able to. Thereby, installation space and member cost can be reduced compared with the case where the flow path passing through the absorber inner cylinder 106 and the absorber outer cylinder 107 and the flow path passing through the mirror block 103 are two independent flow paths.
 また、アブソーバ内筒106で発生する熱量のほうがミラーブロック103の熱量より大きい。そのため、流路の圧力損失を適正にするため、冷却水108bの流れる冷却水チューブ111bの内径を冷却水108cの流れる冷却水チューブ111cと冷却水チューブ111dの内径の2~4倍程度に設定することが望ましい。本開示の実施の形態では、その一例として、冷却水チューブ111cと冷却水チューブ111dの内径を「1」とすると、冷却水チューブ111bの内径を「2.25」に、冷却水チューブ111aの内径は「3.2」に設定している。 Further, the amount of heat generated in the absorber inner cylinder 106 is larger than the amount of heat of the mirror block 103. Therefore, in order to make the pressure loss of the flow path appropriate, the inner diameter of the cooling water tube 111b through which the cooling water 108b flows is set to about 2 to 4 times the inner diameter of the cooling water tube 111c through which the cooling water 108c flows and the cooling water tube 111d. It is desirable. In the embodiment of the present disclosure, as an example, when the inner diameters of the cooling water tube 111c and the cooling water tube 111d are “1”, the inner diameter of the cooling water tube 111b is “2.25”, and the inner diameter of the cooling water tube 111a is Is set to “3.2”.
 またアブソーバ内筒106とアブソーバ外筒107を通過した冷却水108bとミラーブロック103内部を通過した冷却水108cを合流させるとレーザシャッタ装置の冷却装置100全体の圧力損失が大きくなる。このようにすると、レーザシャッタ装置の冷却装置100の冷却効率が下がってしまうため、冷却水108bと冷却水108cを分けたまま、冷却水供給部109に戻している。 Further, when the cooling water 108b that has passed through the absorber inner cylinder 106 and the absorber outer cylinder 107 and the cooling water 108c that has passed through the mirror block 103 are merged, the pressure loss of the entire cooling device 100 of the laser shutter device increases. If it does in this way, since the cooling efficiency of the cooling device 100 of a laser shutter apparatus will fall, it is returned to the cooling water supply part 109, with the cooling water 108b and the cooling water 108c separated.
 <アブソーバの詳細な構成>
 図3は、本開示の実施の形態に係るアブソーバ内筒106とアブソーバ外筒107の概形を示す分解斜視図である。図4Aは、本開示の実施の形態に係るアブソーバ内空間を示す断面図である。図4Bは、図4Aのアブソーバ内空間を示す断面図の部分拡大図である(図4AのAで囲まれた部分の拡大図)。これらの図を使って、アブソーバの詳細な構成と効率的な冷却作用を説明する。
<Detailed configuration of the absorber>
FIG. 3 is an exploded perspective view showing the general shape of the absorber inner cylinder 106 and the absorber outer cylinder 107 according to the embodiment of the present disclosure. FIG. 4A is a cross-sectional view showing the space in the absorber according to the embodiment of the present disclosure. 4B is a partial enlarged view of a cross-sectional view showing the absorber inner space of FIG. 4A (enlarged view of a portion surrounded by A in FIG. 4A). The detailed configuration and efficient cooling action of the absorber will be described with reference to these drawings.
 図3において、アブソーバ外筒107は青銅あるいはステンレス素材の鋳物であり、アブソーバ内筒106を嵌合する円錐形状の凹部を有し、下部に冷却水108aの供給口113を有する。さらに、アブソーバ外筒107の内部には冷却水108aの分岐部114、さらにアブソーバ外筒107の上部には冷却水108bの排出口115aが設けられている。 In FIG. 3, the absorber outer cylinder 107 is a cast of bronze or stainless steel, has a conical recess for fitting the absorber inner cylinder 106, and has a supply port 113 for cooling water 108a at the bottom. Further, a branch portion 114 of the cooling water 108 a is provided inside the absorber outer cylinder 107, and a discharge port 115 a for the cooling water 108 b is provided above the absorber outer cylinder 107.
 分岐部114から、排出口115bを通ってミラーブロック103へ冷却水108cは供給される。供給口113から見て分岐部114をアブソーバ内筒106の手前に配置している。これはアブソーバ内筒106とアブソーバ外筒107の嵌合により、冷却水108bの流路断面積が小さくなり、圧力損失が大きくなる前にミラーブロック103へ十分な水圧を保持して冷却水108cを供給するためである。 The cooling water 108c is supplied from the branch part 114 to the mirror block 103 through the discharge port 115b. The branch portion 114 is disposed in front of the absorber inner cylinder 106 as viewed from the supply port 113. This is because the flow passage cross-sectional area of the cooling water 108b is reduced due to the fitting of the absorber inner cylinder 106 and the absorber outer cylinder 107, and the cooling water 108c is maintained by holding a sufficient water pressure on the mirror block 103 before the pressure loss increases. This is to supply.
 アブソーバ外筒107の外部には表面積を稼ぐため、適度な肉盗み(肉抜き)を施している。アブソーバ内筒106と嵌合する部分は、アブソーバ外筒107の外部からの肉盗みによって厚みを薄くし、冷却水108bによる水冷だけでなく、大気による空冷も行われ、冷却効率を向上させている。 ◎ Appropriate meat stealing (meat removal) is given to the outside of the absorber outer cylinder 107 in order to increase the surface area. The portion that fits into the absorber inner cylinder 106 is thinned by stealing meat from the outside of the absorber outer cylinder 107, and not only water cooling by the cooling water 108b but also air cooling by the atmosphere is performed to improve the cooling efficiency. .
 アブソーバ内筒106の材質は、熱伝達のよい青銅素材の鋳物であり、円錐形状外部には螺旋状リブ116を有している。これにより、冷却水が螺旋流となり、アブソーバ内筒106の冷却水接触面積が増え、冷却効率を向上させている。 The material of the absorber inner cylinder 106 is a cast of bronze material with good heat transfer, and has a helical rib 116 outside the conical shape. Thereby, the cooling water becomes a spiral flow, the cooling water contact area of the absorber inner cylinder 106 is increased, and the cooling efficiency is improved.
 アブソーバ内筒106をアブソーバ外筒107と嵌合させたときに、アブソーバ内筒106の外部とアブソーバ外筒107の凹部に所定の隙間117が生じるようにリブ高さを設定している。そのため、螺旋状リブ116の先端部は平面に加工されている。これは螺旋状リブ116の先端部とアブソーバ外筒107内部に、図4Aで示される幅yの隙間を形成するためである。これにより、幅yの隙間を通る流れ122が生じ、アブソーバ内部の冷却水量を増加させ、冷却能力をさらに高めている。 The rib height is set so that when the absorber inner cylinder 106 is fitted with the absorber outer cylinder 107, a predetermined gap 117 is formed between the outside of the absorber inner cylinder 106 and the recess of the absorber outer cylinder 107. Therefore, the tip of the spiral rib 116 is processed into a flat surface. This is because a gap having a width y shown in FIG. 4A is formed between the tip of the spiral rib 116 and the absorber outer cylinder 107. Thereby, the flow 122 passing through the gap of the width y is generated, the amount of cooling water inside the absorber is increased, and the cooling capacity is further enhanced.
 またアブソーバ内筒106はアブソーバ外筒107と嵌合させる際に、Oリング120を装着することで嵌合後、内部に冷却水108bを流したときの水漏れを防いでいる。 Further, when the absorber inner cylinder 106 is fitted to the absorber outer cylinder 107, the O-ring 120 is attached to prevent the water leakage when the cooling water 108b is flowed inside after fitting.
 またアブソーバ内筒106の円錐形状内部には高吸収材であるドータイトなどが塗布され、照射されたレーザ光101の反射を抑え、吸収する。 Further, doughite, which is a high absorption material, is applied to the inside of the conical shape of the absorber inner cylinder 106 to suppress the reflection of the irradiated laser beam 101 and absorb it.
 図4Aおよび図4Bの矢印は、アブソーバ内部の冷却水の流れを示している。供給された冷却水108bはアブソーバ内筒106の先端部に導かれる。これにより、アブソーバ内筒106に側面より、冷却水が供給される場合よりも冷却効率が高めることができる。 4A and 4B indicate the flow of cooling water inside the absorber. The supplied cooling water 108 b is guided to the tip of the absorber inner cylinder 106. Thereby, cooling efficiency can be improved compared with the case where cooling water is supplied to the absorber inner cylinder 106 from the side surface.
 冷却水108bは、図4Bに示すように、螺旋状のリブに沿った流れ121と幅yの隙間を通る流れ122に分かれ、図4Aに示すように、アブソーバ外筒107上部の排出口115aより、アブソーバ外部へ運ばれる。 As shown in FIG. 4B, the cooling water 108b is divided into a flow 121 along the spiral rib and a flow 122 passing through the gap of the width y, and as shown in FIG. , Carried outside the absorber.
 このようにすることで、幅yの隙間を流れる冷却水が螺旋流を生じるので、放熱を要する面に接しながら流れる単位時間当たりの流量を増大させることができる。また、単に螺旋状の水路だけを設けるより、幅yの隙間を流れる冷却水の負荷はが小さくなるので、水量そのものも大きくなる。結果的に、リブの先端と外筒の凹部に所定の空間を設定して冷却水を流すことで、より効率的に冷却することができる。 By doing in this way, the cooling water flowing through the gap of width y generates a spiral flow, so that the flow rate per unit time flowing while contacting the surface that requires heat dissipation can be increased. In addition, since the load of the cooling water flowing through the gap with the width y is smaller than simply providing the spiral water channel, the amount of water itself is also increased. As a result, cooling can be performed more efficiently by setting a predetermined space between the tip of the rib and the recess of the outer cylinder and flowing cooling water.
 なお、螺旋状リブ116のリブ高さxに対するアブソーバ外筒107内部の隙間の空間yの比率は、
 y/x=0.15~0.3
 とするのが、螺旋流を維持しながら最も負荷が少なく冷却水が流れる。
The ratio of the space y in the gap inside the absorber outer cylinder 107 to the rib height x of the spiral rib 116 is as follows:
y / x = 0.15 to 0.3
The cooling water flows with the least load while maintaining the spiral flow.
 <ミラーブロック内部の構成>
 図5Aおよび図5Bは、本発明の実施の形態に係るミラーブロック腕部内の冷却水流路を示す部分断面図である。図5Aは、回転軸に対して側面から見た図であり、図5Bは、回転軸方向から見た正面図である。図5Aおよび図5Bを用いて、ミラーブロック内部の冷却水路の構成と作用を説明する。
<Configuration inside mirror block>
5A and 5B are partial cross-sectional views showing cooling water flow paths in the mirror block arm portion according to the embodiment of the present invention. 5A is a view seen from the side with respect to the rotation axis, and FIG. 5B is a front view seen from the direction of the rotation axis. The configuration and operation of the cooling water channel inside the mirror block will be described with reference to FIGS. 5A and 5B.
 ミラーブロック103は、内部に冷却水108cを通す腕部118と反射鏡102を装着する保持部119に分かれている。腕部118には、長手方向に第一の冷却水路123と第二の冷却水路124が設けられ、第一の冷却水路123と第二の冷却水路124とを繋ぐ第三の冷却水路125が設けられている。 The mirror block 103 is divided into an arm portion 118 through which the cooling water 108c passes and a holding portion 119 to which the reflecting mirror 102 is attached. The arm portion 118 is provided with a first cooling water passage 123 and a second cooling water passage 124 in the longitudinal direction, and a third cooling water passage 125 that connects the first cooling water passage 123 and the second cooling water passage 124 is provided. It has been.
 第三の冷却水路125の開口部をプラグ126で閉じることにより、腕部118には一方向の流路が形成される。レーザ光101を受けて発熱する反射鏡102を介し、温度上昇するミラーブロック103を冷却水108cにより水冷する。 A one-way flow path is formed in the arm portion 118 by closing the opening of the third cooling water passage 125 with the plug 126. The mirror block 103 whose temperature rises is cooled by the cooling water 108c through the reflecting mirror 102 that receives the laser beam 101 and generates heat.
 腕部118のみを冷却することで保持部119に取り付けられた精度部品である反射鏡102における表面から底部までの温度勾配がなだらかになるこれにより、レーザ受光開始から終了までの反射鏡102ならびに保持部119の変形量の時間差分が抑えられ、レーザ光101のアブソーバ内筒106への軌道が安定する。 By cooling only the arm portion 118, the temperature gradient from the surface to the bottom of the reflecting mirror 102, which is an accurate component attached to the holding portion 119, becomes gentle. The time difference of the deformation amount of the part 119 is suppressed, and the trajectory of the laser light 101 to the absorber inner cylinder 106 is stabilized.
 これにより、レーザ光の位置ずれによるセンターあわせなどの位置調整が不要となる。また、レーザ光がアブソーバ内筒106内で多段反射して吸収されずに反射され、レーザシャッタ装置を加熱するなどの問題も起こらない。 This eliminates the need for position adjustment such as centering due to laser beam misalignment. Further, the laser beam is reflected in a multistage manner in the absorber inner cylinder 106 without being absorbed, and the problem of heating the laser shutter device does not occur.
 以上に述べたように、本実施の形態のレーザシャッタ装置の冷却装置100によれば、アブソーバ内筒106の円錐形状外部の螺旋状リブ116により冷却水108bが螺旋流となり、さらに螺旋状リブ116の先端とアブソーバ外筒107の凹部との隙間からも冷却水が流れる。これにより、アブソーバ内筒106の外部をまんべんなく、かつ十分な冷却水量が流れ、冷却効率を向上させることができる。 As described above, according to the cooling device 100 of the laser shutter device of the present embodiment, the cooling water 108 b is spirally flowed by the spiral rib 116 outside the conical shape of the absorber inner cylinder 106, and further the spiral rib 116. The cooling water also flows from the gap between the tip of the absorber and the concave portion of the absorber outer cylinder 107. Thereby, a sufficient amount of cooling water flows evenly outside the absorber inner cylinder 106, and the cooling efficiency can be improved.
 またレーザ光101を受ける反射鏡102は、距離をとったミラーブロックの腕部118内を流れる冷却水108cにより水冷される。そのため、反射鏡102内の温度勾配がなだらかになり、反射鏡102の熱ひずみが抑えられ、アブソーバ内筒106へのレーザ照射位置ずれを防ぐことができる。 Further, the reflecting mirror 102 that receives the laser beam 101 is water-cooled by the cooling water 108c flowing in the arm portion 118 of the mirror block at a distance. Therefore, the temperature gradient in the reflecting mirror 102 becomes gentle, the thermal distortion of the reflecting mirror 102 is suppressed, and the laser irradiation position shift to the absorber inner cylinder 106 can be prevented.
 さらに冷却水108aをアブソーバ外筒107内部で分岐させ、ミラーブロックの腕部118へも冷却水108cを送る構成である。そのため、1つの水量調整部112により、アブソーバ内部およびミラーブロックの腕部118双方の冷却水量を適切に調整することができ、レーザシャッタ装置の冷却装置100全体の冷却効率を高めることができる。 Further, the cooling water 108a is branched inside the absorber outer cylinder 107, and the cooling water 108c is also sent to the arm portion 118 of the mirror block. Therefore, the amount of cooling water inside both the absorber and the arm portion 118 of the mirror block can be appropriately adjusted by one water amount adjusting unit 112, and the cooling efficiency of the entire cooling device 100 of the laser shutter device can be increased.
 以上に述べたように、本実施の形態のレーザシャッタ装置の冷却装置によれば、高出力のレーザ光を遮断しても熱的な問題を高い冷却効率で防止することができる。 As described above, according to the cooling device of the laser shutter device of the present embodiment, it is possible to prevent thermal problems with high cooling efficiency even if high-power laser light is cut off.
 本開示にかかるレーザシャッタ装置の冷却装置は、高出力のレーザ光を遮断しても熱的な問題を高い冷却効率で防止することができるものであり、キロワット級のレーザ発振器のレーザシャッタ装置等において有用である。 A cooling device for a laser shutter device according to the present disclosure can prevent a thermal problem with high cooling efficiency even when high-power laser light is cut off. Useful in.
100  レーザシャッタ装置の冷却装置
101  レーザ光
102  反射鏡
103  ミラーブロック
104  駆動部
105  制御部
106  アブソーバ内筒
107  アブソーバ外筒
108a,108b,108c  冷却水
109  冷却水供給部
110a,110b,110c,110d,110e  継手
111a,111b,111c,111d  冷却水チューブ
112  水量調整部
113  供給口
114  分岐部
115a,115b  排出口
116  螺旋状リブ
117  隙間
118  腕部
119  保持部
120  Oリング
121  螺旋状のリブに沿った流れ
122  隙間を通る流れ
123  第一の冷却水路
124  第二の冷却水路
125  第三の冷却水路
126  プラグ
41  反射鏡
42  ミラーブロック
43  駆動装置
44  レーザ光吸収手段
45  アブソーバ内筒
46  アブソーバ外筒
47  冷却水流路
48  リミットスイッチ
49  リミットスイッチ
50  センサドグ
51  ベース
52  カバー
DESCRIPTION OF SYMBOLS 100 Cooling apparatus of laser shutter apparatus 101 Laser beam 102 Reflecting mirror 103 Mirror block 104 Drive part 105 Control part 106 Absorber inner cylinder 107 Absorber outer cylinder 108a, 108b, 108c Cooling water 109 Cooling water supply part 110a, 110b, 110c, 110d, 110e Joint 111a, 111b, 111c, 111d Cooling water tube 112 Water quantity adjustment part 113 Supply port 114 Branch part 115a, 115b Discharge port 116 Spiral rib 117 Gap 118 Arm part 119 Holding part 120 O-ring 121 Along the spiral rib Flow 122 Flow through gap 123 First cooling water channel 124 Second cooling water channel 125 Third cooling water channel 126 Plug 41 Reflecting mirror 42 Mirror block 43 Drive device 44 Laser light absorption means 45 In the absorber Cylinder 46 Absorber outer cylinder 47 Cooling water flow path 48 Limit switch 49 Limit switch 50 Sensor dog 51 Base 52 Cover

Claims (8)

  1.  レーザ光を反射する反射鏡と、
     前記反射鏡が設けられ、回転可能に設置されたミラーブロックと、
     前記ミラーブロックを回転駆動する駆動部と、
     前記反射鏡で反射されたレーザ光を受けて熱に変換するアブソーバとを備え、
     前記アブソーバは円錐形状の内筒と前記内筒の円錐形状に嵌合する外筒を備え、
     前記内筒の円錐形状の外部には螺旋状のリブを形成し、
     前記リブの先端と前記外筒の凹部に所定の空間を設定し、
     前記空間には冷却水を流すレーザシャッタ装置の冷却装置。
    A reflecting mirror that reflects the laser light;
    A mirror block provided with the reflecting mirror and rotatably installed;
    A drive unit for rotationally driving the mirror block;
    An absorber that receives the laser light reflected by the reflecting mirror and converts it into heat;
    The absorber includes a conical inner cylinder and an outer cylinder that fits into the conical shape of the inner cylinder,
    A spiral rib is formed outside the conical shape of the inner cylinder,
    A predetermined space is set at the tip of the rib and the recess of the outer cylinder;
    A cooling device of a laser shutter device for flowing cooling water into the space.
  2.  前記冷却水は前記円錐形状の先端から供給する請求項1に記載のレーザシャッタ装置の冷却装置。 The cooling device for a laser shutter device according to claim 1, wherein the cooling water is supplied from the tip of the conical shape.
  3.  前記リブの高さに対する前記リブの先端から前記外筒までの空間の距離の比率を0.15以上0.3以下とした請求項1または2に記載のレーザシャッタ装置の冷却装置。 The laser shutter device cooling device according to claim 1 or 2, wherein a ratio of a distance of a space from a tip of the rib to the outer cylinder with respect to a height of the rib is 0.15 or more and 0.3 or less.
  4.  前記外筒は鋳造によって形成され、円錐形状の内面より所定の厚みを設けて、外気に接するように肉盗みを設けた請求項1から3のいずれかに記載のレーザシャッタ装置の冷却装置。 4. The cooling device for a laser shutter device according to claim 1, wherein the outer cylinder is formed by casting, is provided with a predetermined thickness from a conical inner surface, and is provided with a meat steal so as to be in contact with the outside air.
  5.  レーザ光を反射する反射鏡と、
     前記反射鏡が設けられ、ミラーブロックを回転駆動する駆動部と、
     前記反射鏡で反射されたレーザ光を受けて熱に変換するアブソーバを備え、
     前記ミラーブロックは前記反射鏡保持部を備え、
     前記反射鏡から所定の位置に前記駆動部を固定する腕部を備え、
     前記腕部は内部に冷却水を通す流路を設けたレーザシャッタ装置の冷却装置。
    A reflecting mirror that reflects the laser light;
    A driving unit provided with the reflecting mirror and rotating the mirror block;
    An absorber that receives the laser beam reflected by the reflecting mirror and converts it into heat,
    The mirror block includes the reflector holding unit,
    An arm for fixing the drive unit at a predetermined position from the reflecting mirror;
    A cooling device for a laser shutter device, wherein the arm portion is provided with a flow path through which cooling water passes.
  6.  前記流路は前記腕部の長手方向に第一の冷却水路と第二の冷却水路を備え、
     第一と第二の冷却水路を通る第三の冷却水路を備えた請求項5に記載のレーザシャッタ装置の冷却装置。
    The flow path includes a first cooling water channel and a second cooling water channel in the longitudinal direction of the arm portion,
    6. The cooling device for a laser shutter device according to claim 5, further comprising a third cooling water channel that passes through the first and second cooling water channels.
  7.  レーザ光を反射する反射鏡と、
     前記反射鏡が設けられ、冷却水路を腕部に有し、回転可能に設置されたミラーブロックと、
     前記ミラーブロックを回転駆動する駆動部と、
     内筒外部と外筒内部で構成される空間を有して、前記反射鏡で反射されたレーザ光を受けて熱に変換するアブソーバを備え、
     冷却水が、前記アブソーバの供給口から前記空間を通り、外部へ排出される第一の流路と、
     冷却水が、前記アブソーバの供給口と前記空間の供給口を結ぶ流路の間から分岐し、前記ミラーブロックの腕部を通り、外部へ排出される第二の流路を備えたレーザシャッタ装置の冷却装置。
    A reflecting mirror that reflects the laser light;
    A mirror block provided with the reflecting mirror, having a cooling water channel in an arm portion, and rotatably installed;
    A drive unit for rotationally driving the mirror block;
    It has a space constituted by an inner cylinder exterior and an outer cylinder interior, and comprises an absorber that receives the laser beam reflected by the reflecting mirror and converts it into heat,
    A first flow path through which cooling water is discharged from the supply port of the absorber through the space and to the outside;
    A laser shutter device comprising a second flow path in which cooling water branches from between the flow path connecting the supply port of the absorber and the supply port of the space, passes through the arm portion of the mirror block, and is discharged to the outside Cooling system.
  8.  前記第一の流路と前記第二の流路に冷却水を供給する冷却水供給部を設け、前記冷却水供給部と前記アブソーバの供給口までの流路の間に冷却水量の調整部を備えた請求項7に記載のレーザシャッタ装置の冷却装置。 A cooling water supply unit that supplies cooling water to the first channel and the second channel is provided, and a cooling water amount adjusting unit is provided between the cooling water supply unit and the channel to the absorber supply port. The cooling device of the laser shutter apparatus according to claim 7 provided.
PCT/JP2016/003464 2015-07-28 2016-07-27 Cooling device for laser shutter apparatus WO2017017952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015148184 2015-07-28
JP2015-148184 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017017952A1 true WO2017017952A1 (en) 2017-02-02

Family

ID=57884214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003464 WO2017017952A1 (en) 2015-07-28 2016-07-27 Cooling device for laser shutter apparatus

Country Status (1)

Country Link
WO (1) WO2017017952A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286481A (en) * 1999-03-29 2000-10-13 Nippon Steel Corp Output meter for high-output laser
JP2005515492A (en) * 2002-01-16 2005-05-26 ロフィン−ジナール レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling mirror for laser light
JP2010212563A (en) * 2009-03-12 2010-09-24 Panasonic Corp Laser oscillator and laser processing machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286481A (en) * 1999-03-29 2000-10-13 Nippon Steel Corp Output meter for high-output laser
JP2005515492A (en) * 2002-01-16 2005-05-26 ロフィン−ジナール レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling mirror for laser light
JP2010212563A (en) * 2009-03-12 2010-09-24 Panasonic Corp Laser oscillator and laser processing machine

Similar Documents

Publication Publication Date Title
JP3981284B2 (en) Lamp assembly
US20080060636A1 (en) Solar Energy Control
CN100484681C (en) Laser cutting processing apparatus
US8742379B2 (en) Window unit, window device, laser apparatus, and extreme ultraviolet light generation system
US9777375B2 (en) Converging mirror furnace
CN108279449B (en) High power beam trap
WO2017017952A1 (en) Cooling device for laser shutter apparatus
WO2005049262A1 (en) Hand-held laser welding wand with reflection shield
CN110932062A (en) Laser energy absorption device
US6040551A (en) Apparatus for hardening the inside contour of a gun barrel with laser radiation
JP5868670B2 (en) Holder device, chamber device, and extreme ultraviolet light generation device
US20220234137A1 (en) Laser processing head having a diaphragm to increase scan field of the laser beam
WO2022161820A1 (en) Laser cutting machine
JP2757649B2 (en) Laser processing head
EP0440990A1 (en) Optical collimating, laser ray target position indicating and laser ray absorbing device of a laser system
KR100805436B1 (en) Reflector Cooling Structure For Laser Machine
WO2018029433A1 (en) Device for treating a surface or a zone using a laser beam with a thermal hold system
US20240189943A1 (en) Laser processing head and laser processing device
WO2023054466A1 (en) Optical connector
WO2022220054A1 (en) Laser processing head and laser processing device
CN212894980U (en) Laser cladding head
JP3970501B2 (en) Laser processing equipment
KR20200113707A (en) Cabinet cooler using voltex tube
JPH11277286A (en) Laser beam machining device
CN219349279U (en) Facula adjusting device and laser processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16830057

Country of ref document: EP

Kind code of ref document: A1