WO2017017863A1 - Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting - Google Patents

Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting Download PDF

Info

Publication number
WO2017017863A1
WO2017017863A1 PCT/JP2015/083213 JP2015083213W WO2017017863A1 WO 2017017863 A1 WO2017017863 A1 WO 2017017863A1 JP 2015083213 W JP2015083213 W JP 2015083213W WO 2017017863 A1 WO2017017863 A1 WO 2017017863A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
cast iron
iron casting
suction device
Prior art date
Application number
PCT/JP2015/083213
Other languages
French (fr)
Japanese (ja)
Inventor
大羽 崇文
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201580003017.5A priority Critical patent/CN106559990B/en
Priority to JP2017510700A priority patent/JP6586994B2/en
Priority to EP15899695.9A priority patent/EP3326733B1/en
Priority to KR1020187003443A priority patent/KR20180034470A/en
Priority to US15/747,065 priority patent/US20180369900A1/en
Priority to RU2018103953A priority patent/RU2710612C2/en
Publication of WO2017017863A1 publication Critical patent/WO2017017863A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/03Sand moulds or like moulds for shaped castings formed by vacuum-sealed moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • B22D47/02Casting plants for both moulding and casting

Definitions

  • the present invention relates to a cast iron casting, a cast iron casting manufacturing method, and a cast iron casting manufacturing facility.
  • Patent Document 1 discloses that after the surface of a steel product is cleaned and activated, plating is performed by applying a catalyst that promotes a reduction reaction.
  • Patent Document 2 a pure Fe thin plate is attached to the surface of a mold in contact with a casting, molten spherical graphite cast iron is cast into the mold, and the pure Fe thin plate on the mold surface is melted to form graphite on the surface of the casting. It is disclosed that after forming a hindering surface layer, galvanization is performed.
  • Patent Document 3 ultrasonic vibration is applied in a state in which the cast iron material is immersed in the plating solution, the surface of the cast iron material is washed, the graphite existing on the surface is crushed, and dispersed in the plating solution. It is disclosed to form a plating film containing graphite dispersed on its surface.
  • Non-Patent Document 1 suggests that carbon monoxide and carbon dioxide generated by oxidation of graphite in the vicinity of the casting surface in the glazing treatment on cast iron are the cause of bubble defects.
  • Non-Patent Document 2 the metal structure in which defects are generated is graphite that is gradually cooled and enlarged, and conversely, that is rapidly cooled to prevent the growth of graphite. To improve these structures, it is disclosed that it is effective to perform a degassing heat treatment before the soot treatment.
  • Non-Patent Document 3 there are many defects in places of coarse graphite structure, places where redebrite is crystallized, places where cementite is decomposed due to temperature rise during the soot treatment and temper carbon is crystallized, To improve this, low carbon saturation prevents the coarsening of graphite and increases the phosphorus content to prevent crystallization of redebrite and suppress the decomposition of cementite during the soot treatment. It is disclosed that by performing a degassing heat treatment on the cast material before the slag treatment, bubble defects are significantly suppressed.
  • Patent Documents 4 and 5 in the production of enameled cast iron, the one in which a graphite-free layer is formed on the cast iron surface structure has few bubble defects, and the cast iron of flake graphite cast iron having a low carbon and high silicon composition has bubble defects. It is disclosed that the occurrence of bubble defects can be reduced by adding titanium even when the composition is low, and the composition is high carbon and low silicon.
  • the method of forming a graphite-free layer in the vicinity of the casting surface by pouring with a pure Fe thin plate attached to the mold surface in contact with the molten metal is formed in advance according to the shape of the thin plate, It will be necessary to paste it on. For this reason, the applicable shapes are limited to simple ones, and there is a problem that productivity is reduced by operations such as attaching a thin plate.
  • the method of forming a graphite-free layer near the casting surface by controlling the chemical composition of the casting and adding an alloy limits the application range of the product. Therefore, this method is adopted depending on the required specifications. It is impossible.
  • the metal structure and mechanical properties of the casting produced by creating an air flow near the casting there are known techniques for improving the above.
  • the shielding member is closely attached to the shielding surface of the original shape member, the inside or outside of the shielding member is filled with the heat-resistant particulate matter, and the shielding member is made with a negative pressure on the heat-resistant particulate matter side.
  • a casting method that adsorbs to the heat-resistant particle material side, then molds the original member to form a cavity, and pours the molten metal into the cavity, the surface layer of the molten metal after the pouring of the molten metal is completed.
  • a casting method is disclosed in which air is introduced into the heat-resistant particles when the solidification starts.
  • Patent Document 7 the molten metal is poured into a mold made using dry silica sand, and after the injected molten metal has solidified, air is passed through the dry silica sand surrounding the casting material formed by solidification of the molten metal.
  • a casting method characterized by cooling the casting material is disclosed.
  • the present invention has been made in view of the above-mentioned problems, and without subjecting the productivity and cost to increase, a plating process or a glazing process having no defects on the surface thereof regardless of the specifications of the cast iron casting. It is an object of the present invention to provide a cast iron casting, a cast iron casting manufacturing method, and a cast iron casting manufacturing facility that can be applied.
  • the present invention is formed by depressurizing mold sand to form a mold, pouring molten metal into the mold, and the molten metal. comprise the step of temperature of the casting is to reduce the pressure within the mold until the following a 1 transformation point, and characterized.
  • the present invention also provides at least one mold, a frame feed device for moving the mold, a mold, in a cast iron casting production facility for producing cast iron casting by pouring molten metal into a mold formed by depressurizing the mold sand.
  • At least one fixed suction device that depressurizes the inside of the mold when stopped, and at least one movable suction device that moves while depressurizing the inside of the mold instead of the fixed suction device when the mold moves. Note until the casting temperature in the mold after the hot water is below the a 1 transformation point, repeating the stopping and movement by the frame feeder, and wherein.
  • the present invention provides a casting mold making method involving pouring into the mold the molding sand is molding in vacuo, Note casting temperature in the hot water after the mold continues to reduce the pressure in the mold until the following A 1 transformation point It is manufactured by this.
  • Method for producing cast iron of the present invention is to molding and vacuum the mold using a molding sand containing no Nebayuizai, after pouring, to a temperature of the casting to be built into the mold falls below the A 1 transformation point The inside of the mold is continuously decompressed.
  • the present invention oxidizes graphite and free cementite, which have an adverse effect on plating treatment or flaw treatment, by creating a state in which the inside of the mold continues to be depressurized and air continues to flow on the casting surface.
  • the purpose is to create a layer.
  • the target material is cast iron, and no operation that results in a metastable solidification reaction in the Fe—C binary alloy phase diagram, such as forced quenching, is performed. continue to reduce the pressure in the mold until the following a 1 transformation point is the reaction completion temperature.
  • a 2 transformation point is a magnetic transformation point of Fe
  • a 3 transformation point of the crystal structure changes to face-centered cubic lattice from the body-centered cubic lattice, and crystal structure again body-centered cubic lattice of a face-centered cubic lattice the varying a 4 transformation point, each lower temperatures graphite or eutectic or eutectoid reaction of cementite occurs at. For this reason, it is not sufficient to release the reduced pressure state after the inside of the mold is continuously decompressed until the temperature becomes lower than the respective transformation point.
  • a shielding member adhesion process for closely adhering the shielding member to the surface of the original model board is in close contact.
  • a process of forming a shielding member by adsorbing to the mold sand side, a process of forming a half mold having a molding surface by releasing the original model board from the shielding member, and molding in the same manner as the half mold The process of forming a casting cavity by matching with one half mold, the process of pouring molten metal (molten metal) into the casting cavity (pouring process), and then releasing the negative pressure state in the molding frame Mold casting and pouring having a process of taking out the casting
  • V Process vacuum mold formation method
  • a model made of a resin foam is embedded in mold sand that does not contain a binder, and the molded foam is melted while the resin foam is melted in a molded mold by reducing the pressure inside. Also included is the disappearance model casting method.
  • the reduced pressure of the mold is extremely close to atmospheric pressure, the mold sand falls on the casting surface, so that it is impossible to create a state where air always flows on the casting surface.
  • the reduced pressure is made extremely close to vacuum, it is possible to create a state in which air always flows on the casting surface, but the molten metal penetrates into the voids between the mold sand grains and causes a significant insertion defect.
  • the reduced pressure is preferably between ⁇ 10 kPa and ⁇ 70 kPa.
  • the mold sand in the present invention may be any kind such as dredged sand, olivine sand, chromite sand, zircon sand, and ceramic artificial sand.
  • a material having high air permeability when filled as a mold is suitable, and therefore, a material having a small proportion of particles having a diameter of less than 53 ⁇ m in the mold sand is suitable. It is.
  • the ratio of particles having a diameter of less than 53 ⁇ m in the mold sand is excessive, the mold does not have sufficient air permeability, and sufficient air flow does not occur in the vicinity of the casting surface, so that a decarburized layer cannot be formed. Therefore, the ratio of particles having a diameter of less than 53 ⁇ m is desirably 10% or less.
  • the time that the temperature of the casting to be built in the mold required until below the A 1 transformation point differs by the mass and thickness of the product.
  • the temperature of the casting to be incorporated in the mold in the manufacturing facility of cast iron with a fixed suction device and a movable suction device frame number of required to perform until the following A 1 transformation point, in the mold can not directly measure the surface temperature of the casting C, for it takes until the temperature of the casting is less than the a 1 transformation point, it performs casting either or experimentally confirmed by casting simulation on set in advance casting conditions, actually measure the time required until the following a 1 transformation point, it is necessary to know.
  • Drawing 1 is a mimetic diagram showing the composition of the cast iron casting manufacturing equipment concerning a 1st embodiment.
  • the cast iron casting manufacturing facility 1 is a facility that manufactures cast iron castings using the V process, and includes a mold 2 that uses mold sand that does not contain a binder, a mold surface plate 3, a frame feeding device 4, and a fixed suction.
  • a device 5 and a movable suction device 6 are provided.
  • the mold 2 is a mold in which a mold is formed from mold sand in a molding frame.
  • FIG. 1 shows the state of the fixed suction device 5 and the movable suction device 6 immediately before the mold 2 moves.
  • the fixed suction device 5 sucks each mold 2 to decompress the inside of the mold 2, and when the mold 2 moves, the fixed suction device 5 is detached, and instead the movable suction device 6 is attached to the mold 2.
  • the mold 2 is suctioned and the inside of the mold 2 is depressurized.
  • the movable suction device 6 moves following the mold 2, and after the movement is completed, the movable suction device 6 is detached.
  • the fixed suction device 5 comes into close contact with the mold 2 and sucks the mold 2, thereby moving the mold 2 into the mold 2.
  • the pressure is reduced.
  • FIG. 1 it is assumed that the mold 2 moves from the right side to the left side of the drawing, the right end mold 2 is in a state immediately after pouring, and the left end mold 2 has a temperature of a casting incorporated in the mold after pouring. A It is in the state where it was decompressed until it became below 1 transformation point.
  • the frame feeding device 4 is first brought into close contact with the mold surface plate 3 on which both ends of the mold 2 are placed, and the mold surface plate 3 is fixed from both sides. . Further, the mold 2 is kept in a reduced pressure state when the fixed suction device 5 communicating with the pipe 7 is in close contact with a suction source (not shown). Further, the movable suction device 6 communicating with the hose 8 that freely moves to a suction source (not shown) is brought into close contact with the mold 2 to depressurize the mold 2 and at the same time, the fixed suction device 5 is detached.
  • FIG. 2 is a schematic diagram showing a state after the movable suction device 6 has moved following the mold 2 fed by the frame feeding device 4. Since the movable suction device 6 is connected to the frame feeding device 4 by a connection mechanism (not shown), the movable suction device 6 moves following the operation of the frame feeding device 4. Thus, the mold 2 is kept in a reduced pressure state by the movable suction device 6 even during movement.
  • the leftmost mold 2 is transported to a secondary cooling step or a frame opening step, which is the next step, by a transport device not shown.
  • a new non-poured frame is conveyed from the molding step, which is a previous step, to the right end by a conveying device having a suction device (not shown).
  • the fixed suction device 5 is brought into close contact with the mold 2 to depressurize the mold 2 and at the same time, the movable suction device 6 is detached. In this way, the reduced pressure state of the mold 2 is maintained by the fixed suction device 5.
  • FIG. 3 is a schematic diagram showing the state of the fixed suction device 5 and the movable suction device 6 immediately after returning to the original position.
  • the number of the molds 2 placed on the series of mold surface plates 3 closely fixed by the frame feeding device 4 is determined by the cycle time, which is the time required to mold the mold
  • temperature of the casting to be incorporated in the mold is determined by the time until the following a 1 transformation point.
  • the cycle time which is the time required to mold the mold
  • temperature of the casting to be incorporated in the mold is determined by the time until the following a 1 transformation point.
  • the mold 2 placed on a series of mold surface plates 3 tightly fixed by the frame feeding device 4 is cooled while being kept in a reduced pressure state by the fixed suction device 5 and the movable suction device 6.
  • the mold may be moved by the frame feeding device 5 without being sucked.
  • the cast iron casting manufacturing facility 1 includes a mold 2, a mold surface plate 3, a frame feeding device 4, a fixed suction device 5, and a movable suction device 6.
  • FIG. 4 is a schematic cross-sectional view around the mold 2 according to the second embodiment.
  • FIG. 4 includes a mold 2 that uses a molding sand 9 that does not contain a binder, a fixed suction device 5, a temperature sensor 10, and a control device 11, and the temperature sensor 10 is a casting C in the mold 2.
  • the V process mold in a state of being inserted into and contacted with the thickest portion of is shown.
  • the temperature sensor 10 is waiting in advance immediately above the thickest portion of the casting C outside the mold 2.
  • the control device 11 moves the temperature sensor 10. Further, the mold 2 communicates with a suction source (not shown) through a fixed suction device 5 and a pipe 7.
  • the temperature sensor 10 When information indicating that pouring has been completed is input to the control device 11, the temperature sensor 10 is inserted into contact with the thickest portion of the casting C in the mold 2 by an insertion / removal device (not shown). . Thereby, the temperature information of the casting C surface is input to the control device 11.
  • control unit 11 with information from the temperature sensor 10 is the product surface temperature of the casting C senses that it has reached below the A 1 transformation point, the control unit 11 a stationary suction device 5 is detached from the mold 2, a reduced pressure To release. Next, the temperature sensor 10 is removed by an insertion / removal device (not shown).
  • the temperature of the upper surface of the frying is measured with a non-contact thermometer, the temperature information of the upper surface of the frying is monitored by the control device 11, and the temperature of the upper surface of the frying has risen to the molten metal temperature.
  • the temperature sensor 10 may be inserted and contacted when it is determined that the hot water is completed.
  • the cast iron casting manufacturing facility 1 includes a mold 2, a mold surface plate 3, a frame feeding device 4, a fixed suction device 5, and a movable suction device 6.
  • FIG. 5 is a schematic cross-sectional view around the mold 2 according to the third embodiment.
  • FIG. 5 is composed of a mold 2 using a molding sand 9 that does not contain a binder, a temperature sensor 10, a control device 11, a warning light 12, and a two-way valve 13, and the temperature sensor 10 is used as a mold.
  • 2 shows a V process mold in a state where it is inserted into and contacted with the thickest portion of the casting C in 2.
  • FIG. Similar to the second embodiment, the temperature sensor 10 is waiting in advance immediately above the thickest portion of the casting C outside the mold 2.
  • the standby position of the temperature sensor 10 varies depending on the product, the horizontal position and the height from the reference plane of each thickest portion are stored in a storage device (not shown) in advance, and the information is stored in the information. Based on this, the control device 11 moves the temperature sensor 10.
  • the mold 2 is connected to a two-way valve 13 by an easily detachable hose 8, and the two-way valve 13 communicates with a suction source (not shown) via a pipe 7.
  • the control device 11 when information indicating that pouring has been completed is input to the control device 11, temperature detection is performed at the thickest portion of the casting C in the mold by an insertion / removal device (not shown). The container 10 is brought into contact with insertion. Thereby, the temperature information of the casting C surface is input to the control device 11.
  • the controller 11 lights the warning lamp 12.
  • the two-way valve 13 is manually closed, and the hose 8 is removed from the mold 2 to release the reduced pressure state.
  • the temperature sensor 10 is removed by an insertion / removal device (not shown).
  • the means for inputting information that pouring is completed to the control device 11 is not particularly limited as in the second embodiment.
  • a push button that is connected to the control device 11 by the operator after pouring is completed. It is possible to input information that the pouring has been completed by pressing, measure the temperature of the upper surface of the frying with a non-contact thermometer, monitor the temperature information of the upper surface of the frying with the control device 11, and the upper surface of the frying is molten.
  • the temperature sensor 10 may be inserted and contacted by determining that pouring has been completed when the temperature has risen.
  • the molding sand containing no binder is used.
  • a trace amount of binder may be contained in the mold sand.
  • the present invention is a method for producing a cast iron casting in which the surface of the casting is subjected to plating treatment or glazing treatment after casting, in which the molding sand containing no binder is used and the inside of the casting mold is decompressed.
  • the temperature of the casting to be built into the mold continues to reduce the pressure in the mold until the following a 1 transformation point, always casting surface state through which air flows become. Therefore, in the casting in a high temperature state, graphite existing near the surface is quickly oxidized, so that a decarburized layer is formed near the casting surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

[Problem] To provide a cast-iron casting, a method for manufacturing a cast-iron casting, and equipment for manufacturing a cast-iron casting that can implement plating treatment or enameling treatment without defects on the surface of the cast-iron casting regardless of the specifications thereof and without inviting a decrease in productivity and an increase in costs. [Solution] In a method for manufacturing a cast-iron casting, a mold is made by applying a vacuum to mold sand, and a melt is poured into the mold. A vacuum is applied to the inside of the mold until the temperature of a casting formed by this melt falls to or below the A1 transformation temperature. Equipment for manufacturing a cast-iron casting is provided with: at least one mold; a frame feed device that moves the mold; at least one fixed suction device that applies a vacuum to the inside of the mold when the mold is stopped; at least one movable suction device that moves while applying a vacuum to the inside of the mold instead of the fixed suction device when the mold is moved; and a temperature sensor that measures the surface temperature of the casting product.

Description

鋳鉄鋳物、鋳鉄鋳物の製造方法、及び、鋳鉄鋳物製造設備Cast iron casting, cast iron casting manufacturing method, and cast iron casting manufacturing equipment
 本発明は、鋳鉄鋳物、鋳鉄鋳物の製造方法、及び、鋳鉄鋳物製造設備に関する。 The present invention relates to a cast iron casting, a cast iron casting manufacturing method, and a cast iron casting manufacturing facility.
 金属製品の表面に、耐食性、耐摩耗性、又は、耐熱性等を付与するための技術として、めっき処理及び琺瑯処理が存在する。そして、鋳鉄鋳物の表面にめっき処理及び琺瑯処理を施す場合、鋳物表面の黒鉛及び遊離セメンタイトの存在が、これらの処理に対して悪影響を及ぼすという問題が知られており、この問題を解決するための技術若しくは研究が以前より行われている。 As a technique for imparting corrosion resistance, wear resistance, heat resistance or the like to the surface of a metal product, there are plating treatment and wrinkle treatment. In addition, when plating and glazing are performed on the surface of a cast iron casting, there is a known problem that the presence of graphite and free cementite on the casting surface adversely affects these treatments. Technology or research has been conducted for some time.
 特許文献1には、鉄鋼製品の表面を清浄化及び活性化した後、還元反応を促進する触媒を付与してめっきを行うことが開示されている。 Patent Document 1 discloses that after the surface of a steel product is cleaned and activated, plating is performed by applying a catalyst that promotes a reduction reaction.
 特許文献2には、純Fe薄板を鋳造物と接する鋳型の表面部に張り付けて、溶融球状黒鉛鋳鉄を鋳型に鋳込み、鋳型表面における純Fe薄板を溶解させて、鋳物の表面に黒鉛の形成を阻害する表面層を形成した後、亜鉛めっきを行うことが開示されている。 In Patent Document 2, a pure Fe thin plate is attached to the surface of a mold in contact with a casting, molten spherical graphite cast iron is cast into the mold, and the pure Fe thin plate on the mold surface is melted to form graphite on the surface of the casting. It is disclosed that after forming a hindering surface layer, galvanization is performed.
 特許文献3には、めっき液中に鋳鉄材料を浸漬した状態で超音波振動を与え、鋳鉄材料の表面を洗浄し、その表面に存在する黒鉛を破砕し、めっき液中に放散させた後、その表面に黒鉛が分散した状態で含まれているめっき被膜を形成することが開示されている。 In Patent Document 3, ultrasonic vibration is applied in a state in which the cast iron material is immersed in the plating solution, the surface of the cast iron material is washed, the graphite existing on the surface is crushed, and dispersed in the plating solution. It is disclosed to form a plating film containing graphite dispersed on its surface.
 非特許文献1には、鋳鉄への琺瑯処理において鋳物表面付近の黒鉛が酸化して発生する一酸化炭素並びに二酸化炭素が気泡状の欠陥の原因であることを示唆している。 Non-Patent Document 1 suggests that carbon monoxide and carbon dioxide generated by oxidation of graphite in the vicinity of the casting surface in the glazing treatment on cast iron are the cause of bubble defects.
 非特許文献2には、欠陥の発生する金属組織は、徐冷されて肥大化した黒鉛と、逆に急冷されて黒鉛の成長が妨げられたものとであり、これらの組織を改善するために琺瑯処理前に脱ガス熱処理を行うことが効果的であることが開示されている。 In Non-Patent Document 2, the metal structure in which defects are generated is graphite that is gradually cooled and enlarged, and conversely, that is rapidly cooled to prevent the growth of graphite. To improve these structures, It is disclosed that it is effective to perform a degassing heat treatment before the soot treatment.
 非特許文献3には、粗大黒鉛組織の箇所、レデブライトが晶出している箇所、琺瑯処理時の昇温によりセメンタイトが分解してテンパーカーボンが晶出している箇所に欠陥が多く発生しており、これを改善するために低炭素飽和度として黒鉛の粗大化を防止するとともにリンの含有量を高めにしてレデブライトの晶出を防止させるとともに琺瑯処理時のセメンタイト分解を抑制し、さらにこれらの対策を行った鋳物を琺瑯処理前に脱ガス熱処理を行うことで、気泡状の欠陥を大幅に抑制することが開示されている。 In Non-Patent Document 3, there are many defects in places of coarse graphite structure, places where redebrite is crystallized, places where cementite is decomposed due to temperature rise during the soot treatment and temper carbon is crystallized, To improve this, low carbon saturation prevents the coarsening of graphite and increases the phosphorus content to prevent crystallization of redebrite and suppress the decomposition of cementite during the soot treatment. It is disclosed that by performing a degassing heat treatment on the cast material before the slag treatment, bubble defects are significantly suppressed.
 特許文献4及び5には、ホーロー鋳鉄の製造において、鋳鉄表面組織に無黒鉛層が生成されたものは泡欠陥が少ないこと、低炭素で高シリコン組成の片状黒鉛鋳鉄の鋳鉄は泡欠陥が少ないこと、高炭素、低シリコン組成であってもチタンを添加することで泡欠陥の発生を低減できることが開示されている。 In Patent Documents 4 and 5, in the production of enameled cast iron, the one in which a graphite-free layer is formed on the cast iron surface structure has few bubble defects, and the cast iron of flake graphite cast iron having a low carbon and high silicon composition has bubble defects. It is disclosed that the occurrence of bubble defects can be reduced by adding titanium even when the composition is low, and the composition is high carbon and low silicon.
 以上の内容からも、鋳鉄鋳物の表面にめっき処理若しくは琺瑯処理を施すにあたり、鋳物表面付近の黒鉛並びに遊離セメンタイトが悪影響を及ぼすことは明らかである。そして、黒鉛並びに遊離セメンタイトによる悪影響を抑えるためには、化学的、物理的、熱的に鋳物を処理して黒鉛などを除去するか、鋳造後鋳物表面付近に黒鉛を含まない被膜を形成するか、溶湯と接触する鋳型表面に純Fe薄板を貼り付けた状態で注湯して鋳物表面付近に無黒鉛層を形成するか、若しくは、鋳物の化学組成を制御し合金を添加することにより鋳物表面付近に無黒鉛層を形成するか等の方法がある。 From the above contents, it is clear that graphite and free cementite in the vicinity of the casting surface adversely affect the surface of the cast iron casting. And in order to suppress the negative effects of graphite and free cementite, is it possible to remove the graphite by chemically, physically and thermally treating the casting, or to form a coating that does not contain graphite near the casting surface after casting? The casting surface is formed by pouring with a pure Fe thin plate attached to the mold surface in contact with the molten metal to form a graphite-free layer near the casting surface, or by adding an alloy by controlling the chemical composition of the casting. There are methods such as forming a graphite-free layer in the vicinity.
 化学的、物理的、熱的に鋳物を処理して黒鉛などを除去する方法は、それぞれ鋳造後に鋳物表面付近の黒鉛などを除去する工程が別途必要となる。また、それぞれの鋳物製品に合わせて細かく処理条件を設定する必要がある。そのため、生産性を低下させ、製造コストを上昇させる原因となる。鋳造後鋳物表面付近に黒鉛を含まない被膜を形成する方法は、被膜直下の鋳鉄材料の表面に存在している黒鉛は除去されないまま存在している。このため、黒鉛とめっき被膜との密着性が損なわれ、その部分から腐食が発生し、その近傍のめっき被膜が膨れたり、剥がれたりするおそれがある。 Each method of chemically, physically, and thermally treating a casting to remove graphite and the like requires a separate step of removing the graphite and the like near the casting surface after casting. Moreover, it is necessary to set processing conditions finely according to each casting product. For this reason, productivity is reduced and manufacturing costs are increased. In the method of forming a film that does not contain graphite in the vicinity of the casting surface after casting, the graphite present on the surface of the cast iron material directly under the film exists without being removed. For this reason, the adhesion between the graphite and the plating film is impaired, corrosion occurs from that portion, and the plating film in the vicinity thereof may swell or peel off.
 溶湯と接触する鋳型表面に純Fe薄板を貼り付けた状態で注湯して鋳物表面付近に無黒鉛層を形成する方法は、あらかじめ薄板を鋳物形状に合わせて成形しておき、それを鋳型表面に貼り付ける作業が必要となる。そのため、適用できる形状はごく単純なものに限られ、さらに薄板を貼り付けるなどの作業により、生産性が低下する問題がある。鋳物の化学組成を制御し合金を添加することにより鋳物表面付近に無黒鉛層を形成する方法は、製品の適用範囲を制限することになるため、要求される仕様によっては、この方法を採用することが不可能である。 The method of forming a graphite-free layer in the vicinity of the casting surface by pouring with a pure Fe thin plate attached to the mold surface in contact with the molten metal is formed in advance according to the shape of the thin plate, It will be necessary to paste it on. For this reason, the applicable shapes are limited to simple ones, and there is a problem that productivity is reduced by operations such as attaching a thin plate. The method of forming a graphite-free layer near the casting surface by controlling the chemical composition of the casting and adding an alloy limits the application range of the product. Therefore, this method is adopted depending on the required specifications. It is impossible.
 一方で、粘結剤を含まない鋳型砂を使用する鋳型内を減圧した状態で注湯を行う鋳型造型法において、鋳物付近に空気の流れを作って製造される鋳物の金属組織並びに機械的性質を改善する技術が知られている。例えば、特許文献6では、原形部材の遮蔽面に遮蔽部材を密着し、この遮蔽部材の内側または外側に耐熱性粒子状物を充填し、この耐熱性粒子物側を負圧にして遮蔽部材を上記耐熱性粒子物側に吸着し、ついで原形部材を離型しキャビティを形成し、このキャビティ内に溶湯を注湯する鋳造方法に於いて、上記溶湯の注湯完了後該溶湯の表面層が凝固し始めた時に、上記耐熱性粒子物側に空気を導入することを特徴とする鋳造方法が開示されている。 On the other hand, in the mold making method in which pouring is performed in a state where the inside of the mold is depressurized using mold sand that does not contain a binder, the metal structure and mechanical properties of the casting produced by creating an air flow near the casting There are known techniques for improving the above. For example, in Patent Document 6, the shielding member is closely attached to the shielding surface of the original shape member, the inside or outside of the shielding member is filled with the heat-resistant particulate matter, and the shielding member is made with a negative pressure on the heat-resistant particulate matter side. In a casting method that adsorbs to the heat-resistant particle material side, then molds the original member to form a cavity, and pours the molten metal into the cavity, the surface layer of the molten metal after the pouring of the molten metal is completed. A casting method is disclosed in which air is introduced into the heat-resistant particles when the solidification starts.
 また、特許文献7では、乾燥状態の珪砂を使用して造型した鋳型に溶湯を注入し、注入した溶湯が凝固した後、溶湯の凝固により成る鋳物素材を包囲する乾燥状態の珪砂に空気を貫流させて鋳物素材を冷却することを特徴とする鋳造法が開示されている。 Further, in Patent Document 7, the molten metal is poured into a mold made using dry silica sand, and after the injected molten metal has solidified, air is passed through the dry silica sand surrounding the casting material formed by solidification of the molten metal. A casting method characterized by cooling the casting material is disclosed.
 これらの技術は、注湯後減圧状態に保持される鋳型では空気を介した熱伝達が上手く行われず、鋳型の冷却速度が他の造型法と比較して著しく遅くなる問題を解決するために為されたもので、鋳鉄の凝固温度である1200℃付近で減圧状態を解除し、代わりに大気若しくは圧縮空気を導入することで、冷却速度を速める効果を得たものである。しかしながら、これらの方法はいずれも黒鉛の晶出を防止して代わりにセメンタイトを晶出させることを目的としたものであり、鋳物表面付近の脱炭を目的として為されたものではない。したがって、このような方法で製造された鋳物表面付近にはめっき処理若しくは琺瑯処理に悪影響を及ぼす遊離セメンタイトが存在しているので、これらの鋳物表面にめっき処理若しくは琺瑯処理を施工しても良好な被膜は得られないことは、上記特許文献1ないし5及び非特許文献1ないし3の内容より明らかである。 These technologies are intended to solve the problem that heat transfer via air is not performed well in molds that are kept in a reduced pressure state after pouring, and the cooling rate of the molds is significantly slower than other molding methods. Thus, the effect of increasing the cooling rate is obtained by releasing the reduced pressure state around 1200 ° C., which is the solidification temperature of cast iron, and introducing air or compressed air instead. However, all of these methods are intended to prevent crystallization of graphite and crystallize cementite instead, and are not intended for decarburization near the casting surface. Therefore, since there is free cementite that adversely affects the plating process or the glazing process in the vicinity of the casting surface manufactured by such a method, it is good even if the plating process or the glazing process is applied to these casting surfaces. It is clear from the contents of Patent Documents 1 to 5 and Non-Patent Documents 1 to 3 that a film cannot be obtained.
特開平8-170178号公報JP-A-8-170178 特開2001-200350号公報JP 2001-200350 A 特開2004-143552号公報JP 2004-143552 A 特開2015-42774号公報JP 2015-42774 A 特開2015-42775号公報JP 2015-42775 A 特開昭58-224066号公報JP 58-2224066 A 特開昭63-10062号公報JP-A-63-10062
 以上の理由により、従来技術はいずれも様々な問題点を有している。したがって本発明は上記の問題に鑑みてなされたものであって、生産性の低下や製造コストの上昇を招かずに、鋳鉄鋳物の仕様に関係なくその表面に欠陥のないめっき処理若しくは琺瑯処理を施すことができる鋳鉄鋳物、鋳鉄鋳物の製造方法、及び、鋳鉄鋳物製造設備を提供することを目的とする。 For the above reasons, all the conventional techniques have various problems. Accordingly, the present invention has been made in view of the above-mentioned problems, and without subjecting the productivity and cost to increase, a plating process or a glazing process having no defects on the surface thereof regardless of the specifications of the cast iron casting. It is an object of the present invention to provide a cast iron casting, a cast iron casting manufacturing method, and a cast iron casting manufacturing facility that can be applied.
 上述した課題を解決し、目的を達成するために、本発明は、鋳型砂を減圧することにより、鋳型を造型する工程と、鋳型内に溶湯を注湯する工程と、前記溶湯により形成される鋳物の温度がA変態点以下になるまで前記鋳型内を減圧する工程と、を含むこと、を特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is formed by depressurizing mold sand to form a mold, pouring molten metal into the mold, and the molten metal. comprise the step of temperature of the casting is to reduce the pressure within the mold until the following a 1 transformation point, and characterized.
 また、本発明は、鋳型砂を減圧して造型された鋳型内に注湯を行い、鋳鉄鋳物を製造する鋳鉄鋳物製造設備において、少なくとも1つの鋳型と、鋳型を移動させる枠送り装置と、鋳型の停止時に、鋳型内を減圧する少なくとも1つの固定吸引装置と、鋳型の移動時に、固定吸引装置の代わりに鋳型内を減圧しながら移動する少なくとも1つの可動吸引装置と、を備え、鋳型は、注湯後の鋳型内の鋳物温度がA変態点以下になるまで、枠送り装置による移動と停止を繰り返すこと、を特徴とする。 The present invention also provides at least one mold, a frame feed device for moving the mold, a mold, in a cast iron casting production facility for producing cast iron casting by pouring molten metal into a mold formed by depressurizing the mold sand. At least one fixed suction device that depressurizes the inside of the mold when stopped, and at least one movable suction device that moves while depressurizing the inside of the mold instead of the fixed suction device when the mold moves. Note until the casting temperature in the mold after the hot water is below the a 1 transformation point, repeating the stopping and movement by the frame feeder, and wherein.
 また、本発明は、鋳型砂を減圧して造型された鋳型内に注湯を行う鋳型造型法において、注湯後鋳型内の鋳物温度がA変態点以下になるまで鋳型内を減圧し続けることにより製造されること、を特徴とする。 Further, the present invention provides a casting mold making method involving pouring into the mold the molding sand is molding in vacuo, Note casting temperature in the hot water after the mold continues to reduce the pressure in the mold until the following A 1 transformation point It is manufactured by this.
 本発明によれば、めっき処理若しくは琺瑯処理に悪影響を及ぼす鋳物表面付近の黒鉛を酸化するとともに遊離セメンタイトの発生を防ぐことができるので、容易かつ安価にめっき処理若しくは琺瑯処理時の欠陥を抑制することが可能となる。 According to the present invention, it is possible to oxidize graphite in the vicinity of the casting surface that adversely affects the plating treatment or the glazing treatment and to prevent the generation of free cementite, thereby suppressing defects during the plating treatment or glazing treatment easily and inexpensively. It becomes possible.
 また、本発明によれば、鋳物の化学組成を制御したり合金を添加したりする必要がないので、鋳物の肉厚や要求品質などに関係なく適用することが可能となる。 Further, according to the present invention, since it is not necessary to control the chemical composition of the casting or add an alloy, it can be applied regardless of the thickness of the casting or the required quality.
第1の実施の形態にかかる鋳鉄鋳物製造設備の構成を示す模式図である。It is a schematic diagram which shows the structure of the cast iron casting manufacturing equipment concerning 1st Embodiment. 可動吸引装置が枠送り装置で送られる鋳型に追随して移動した後の状態を示す模式図である。It is a schematic diagram which shows the state after a movable suction apparatus moved following the casting_mold | template sent with a frame feeding apparatus. 原位置に復帰直後の固定吸引装置と可動吸引装置の状態を示す模式図である。It is a schematic diagram which shows the state of the fixed suction device and movable suction device immediately after returning to an original position. 第2の実施の形態にかかる鋳型周りの概略断面図である。It is a schematic sectional drawing around the casting_mold | template concerning 2nd Embodiment. 第3の実施の形態にかかる鋳型周りの概略断面図である。It is a schematic sectional drawing around the casting_mold | template concerning 3rd Embodiment.
 以下に添付図面を参照して、本発明にかかる鋳鉄鋳物、鋳鉄鋳物の製造方法、及び、鋳鉄鋳物製造設備の最良の形態を詳細に説明する。本発明における鋳鉄鋳物の製造方法は、粘結剤を含まない鋳型砂を使用する鋳型を減圧して造型し、注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで鋳型内を減圧し続けるものである。 Exemplary embodiments of a cast iron casting, a cast iron casting production method, and a cast iron casting production facility according to the present invention will be explained below in detail with reference to the accompanying drawings. Method for producing cast iron of the present invention is to molding and vacuum the mold using a molding sand containing no Nebayuizai, after pouring, to a temperature of the casting to be built into the mold falls below the A 1 transformation point The inside of the mold is continuously decompressed.
 本発明は、めっき処理若しくは琺瑯処理に対して悪影響を及ぼす黒鉛および遊離セメンタイトを、鋳型内を減圧し続けて鋳物表面に空気が流れ続ける状態を作り出して酸化させることによって、鋳物表層付近に無黒鉛層を作り出すことを目的としている。そのためには共析反応が完全に終了する温度、すなわち準安定系におけるAcm変態点か、安定系におけるA変態点以下の温度になるまでその状態を保つことが必要となる。本発明においては、対象とする材質が鋳鉄であり、強制急冷させるなどFe-C系二元合金状態図における準安定系の凝固反応となるような操作を行っていないので、安定系の共析反応完了温度であるA変態点以下になるまで鋳型内を減圧し続けている。 The present invention oxidizes graphite and free cementite, which have an adverse effect on plating treatment or flaw treatment, by creating a state in which the inside of the mold continues to be depressurized and air continues to flow on the casting surface. The purpose is to create a layer. For this purpose, it is necessary to keep the state until the eutectoid reaction is completed, that is, the temperature of the A cm transformation point in the metastable system or the temperature below the A 1 transformation point in the stable system. In the present invention, the target material is cast iron, and no operation that results in a metastable solidification reaction in the Fe—C binary alloy phase diagram, such as forced quenching, is performed. continue to reduce the pressure in the mold until the following a 1 transformation point is the reaction completion temperature.
 なお、Feの磁気変態点であるA変態点、結晶構造が体心立方格子から面心立方格子に変化するA変態点、及び、結晶構造が面心立方格子から再び体心立方格子に変化するA変態点では、各々それ以下の温度で黒鉛もしくはセメンタイトの共晶もしくは共析反応が起こる。そのため、それぞれの変態点以下の温度になるまで鋳型内を減圧し続けた後で減圧状態を解除しても不十分である。 Incidentally, A 2 transformation point is a magnetic transformation point of Fe, A 3 transformation point of the crystal structure changes to face-centered cubic lattice from the body-centered cubic lattice, and crystal structure again body-centered cubic lattice of a face-centered cubic lattice the varying a 4 transformation point, each lower temperatures graphite or eutectic or eutectoid reaction of cementite occurs at. For this reason, it is not sufficient to release the reduced pressure state after the inside of the mold is continuously decompressed until the temperature becomes lower than the respective transformation point.
 本発明における粘結剤を含まない鋳型砂を使用する鋳型内を減圧した状態で注湯を行う鋳型造型法には、原形模型板の表面に遮蔽部材を密着する遮蔽部材密着工程と、密着した遮蔽部材上に造型枠体を載置すると共に造型枠体内に粘結剤を含まない鋳型砂を充填する工程と、鋳型砂の上面を密閉して造型枠体内を負圧にし、もって遮蔽部材を鋳型砂側に吸着して遮蔽部材を成形する工程と、ついで原形模型板を遮蔽部材から離型して造型面を有する半割鋳型を造型する工程と、半割鋳型と同様にして造型したもう一つの半割鋳型と型合せして鋳造キャビティを形成する工程と、鋳造キャビティ内に溶融金属(溶湯)を注入する工程(注湯工程)と、しかる後造型枠体内の負圧状態を解除して鋳物を取り出す工程と、を有する鋳型造型・注湯プロセスである減圧鋳型造型法(以下、「Vプロセス」という)がある。また、樹脂製の発泡体からなる模型を、粘結剤を含まない鋳型砂に埋設し、内部を減圧することで成形した鋳型に減圧した状態のままで樹脂製の発泡体を溶融しながら注湯する、消失模型鋳造法も含まれる。 In the mold making method in which the casting is performed in a state where the inside of the mold using the molding sand containing no binder in the present invention is decompressed, a shielding member adhesion process for closely adhering the shielding member to the surface of the original model board is in close contact. A step of placing the molding frame on the shielding member and filling the molding frame with mold sand not containing a binder, and sealing the upper surface of the molding sand to make the molding frame negative pressure, thereby A process of forming a shielding member by adsorbing to the mold sand side, a process of forming a half mold having a molding surface by releasing the original model board from the shielding member, and molding in the same manner as the half mold The process of forming a casting cavity by matching with one half mold, the process of pouring molten metal (molten metal) into the casting cavity (pouring process), and then releasing the negative pressure state in the molding frame Mold casting and pouring having a process of taking out the casting A process vacuum mold formation method (hereinafter, referred to as "V Process") it is. In addition, a model made of a resin foam is embedded in mold sand that does not contain a binder, and the molded foam is melted while the resin foam is melted in a molded mold by reducing the pressure inside. Also included is the disappearance model casting method.
 本発明において、脱炭層を形成するためには鋳物表面に常に空気が流れる状態を作り出す必要がある。しかしながら、鋳型の減圧圧力を極端に大気圧に近い状態にすると、鋳型砂が鋳物表面に落下してしまうので、鋳物表面に常に空気が流れる状態を作り出すことができない。一方、減圧圧力を極端に真空に近い状態にすると、鋳物表面に常に空気が流れる状態を作り出すことはできるが、溶湯が鋳型砂粒間の空隙に浸透して、著しい差込欠陥の原因となる。そのため、減圧圧力は-10kPa~-70kPaの間であることが望ましい。 In the present invention, in order to form a decarburized layer, it is necessary to create a state where air always flows on the casting surface. However, if the reduced pressure of the mold is extremely close to atmospheric pressure, the mold sand falls on the casting surface, so that it is impossible to create a state where air always flows on the casting surface. On the other hand, when the reduced pressure is made extremely close to vacuum, it is possible to create a state in which air always flows on the casting surface, but the molten metal penetrates into the voids between the mold sand grains and causes a significant insertion defect. For this reason, the reduced pressure is preferably between −10 kPa and −70 kPa.
 また、本発明における鋳型砂は、硅砂、オリビンサンド、クロマイトサンド、ジルコンサンド、セラミック系人工砂などその種類を問わない。しかしながら、減圧した状態で鋳物表面付近を脱炭するためには、鋳型として充填した際の通気性が高いものが好適であるため、鋳型砂における53μm未満の直径の粒子の割合が少ないものが好適である。鋳型砂における53μm未満の直径の粒子の割合が過剰のものでは、鋳型の通気性が不足し、鋳物表面付近に十分な空気の流れが起こらず、脱炭層を形成することができなくなる。そのため、53μm未満の直径の粒子の割合は、10%以下であることが望ましい。 Further, the mold sand in the present invention may be any kind such as dredged sand, olivine sand, chromite sand, zircon sand, and ceramic artificial sand. However, in order to decarburize the vicinity of the casting surface in a reduced pressure state, a material having high air permeability when filled as a mold is suitable, and therefore, a material having a small proportion of particles having a diameter of less than 53 μm in the mold sand is suitable. It is. When the ratio of particles having a diameter of less than 53 μm in the mold sand is excessive, the mold does not have sufficient air permeability, and sufficient air flow does not occur in the vicinity of the casting surface, so that a decarburized layer cannot be formed. Therefore, the ratio of particles having a diameter of less than 53 μm is desirably 10% or less.
 注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで要する時間は、製品の質量並びに肉厚によって異なる。注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで行うのに必要な枠数分の固定吸引装置と可動吸引装置を有する鋳鉄鋳物の製造設備においては、鋳型内の鋳物Cの表面温度を直接測定できないので、鋳物の温度がA変態点以下になるまで要する時間は、あらかじめ鋳造条件を設定した上で鋳造シミュレーションにより確認するか、若しくは試験的に鋳造を行い、実際にA変態点以下になるまで要する時間を測定し、確認しておく必要がある。 After pouring, the time that the temperature of the casting to be built in the mold required until below the A 1 transformation point, it differs by the mass and thickness of the product. After pouring, the temperature of the casting to be incorporated in the mold in the manufacturing facility of cast iron with a fixed suction device and a movable suction device frame number of required to perform until the following A 1 transformation point, in the mold can not directly measure the surface temperature of the casting C, for it takes until the temperature of the casting is less than the a 1 transformation point, it performs casting either or experimentally confirmed by casting simulation on set in advance casting conditions, actually measure the time required until the following a 1 transformation point, it is necessary to know.
(第1の実施の形態)
 図1は、第1の実施の形態にかかる鋳鉄鋳物製造設備の構成を示す模式図である。
鋳鉄鋳物製造設備1は、Vプロセスを用いて鋳鉄鋳物を製造する設備であり、粘結剤を含まない鋳型砂を使用する鋳型2と、鋳型定盤3と、枠送り装置4と、固定吸引装置5と、可動吸引装置6と、を備えて構成されている。なお、鋳型2は、造型枠体内に鋳型砂により鋳型が形成されたものである。ここで、図1は鋳型2が移動直前の時点の固定吸引装置5と可動吸引装置6の状態を示している。鋳型2が停止中は固定吸引装置5が各鋳型2を吸引して鋳型2内を減圧し、鋳型2が移動する際は固定吸引装置5が離脱し、代わりに可動吸引装置6が鋳型2に密着して鋳型2を吸引して鋳型2内を減圧する。その後、可動吸引装置6は鋳型2に追随して移動し、移動完了後は可動吸引装置6が離脱し、代わりに固定吸引装置5が鋳型2に密着して鋳型2を吸引して鋳型2内を減圧する。これらの動作を、注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで行うのに必要な枠数分の数だけ、少なくとも固定吸引装置5と可動吸引装置6を有する。
(First embodiment)
Drawing 1 is a mimetic diagram showing the composition of the cast iron casting manufacturing equipment concerning a 1st embodiment.
The cast iron casting manufacturing facility 1 is a facility that manufactures cast iron castings using the V process, and includes a mold 2 that uses mold sand that does not contain a binder, a mold surface plate 3, a frame feeding device 4, and a fixed suction. A device 5 and a movable suction device 6 are provided. Note that the mold 2 is a mold in which a mold is formed from mold sand in a molding frame. Here, FIG. 1 shows the state of the fixed suction device 5 and the movable suction device 6 immediately before the mold 2 moves. While the mold 2 is stopped, the fixed suction device 5 sucks each mold 2 to decompress the inside of the mold 2, and when the mold 2 moves, the fixed suction device 5 is detached, and instead the movable suction device 6 is attached to the mold 2. The mold 2 is suctioned and the inside of the mold 2 is depressurized. Thereafter, the movable suction device 6 moves following the mold 2, and after the movement is completed, the movable suction device 6 is detached. Instead, the fixed suction device 5 comes into close contact with the mold 2 and sucks the mold 2, thereby moving the mold 2 into the mold 2. The pressure is reduced. These operations, after pouring, the temperature of the casting to be built into the mold only a fraction number frame required to perform until the following A 1 transformation point, has at least fixed suction device 5 and the movable suction unit 6 .
 図1において、鋳型2は図の右側から左側に移動するものとし、右端の鋳型2は注湯直後の状態であり、左端の鋳型2は、注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで減圧された状態にある。右端の鋳型2に注湯後鋳型2を移動させるためには、まず枠送り装置4がそれぞれ両端の鋳型2を戴置した鋳型定盤3にそれぞれ密着し、両側から鋳型定盤3を固定する。また、鋳型2は、図示されていない吸引源に配管7と連通している固定吸引装置5が密着することにより、減圧状態に保たれる。さらに、図示されていない吸引源に自在に移動するホース8と連通している可動吸引装置6が鋳型2に密着して、鋳型2を減圧すると同時に、固定吸引装置5が離脱する。 In FIG. 1, it is assumed that the mold 2 moves from the right side to the left side of the drawing, the right end mold 2 is in a state immediately after pouring, and the left end mold 2 has a temperature of a casting incorporated in the mold after pouring. A It is in the state where it was decompressed until it became below 1 transformation point. In order to move the mold 2 to the right end mold 2 after pouring, the frame feeding device 4 is first brought into close contact with the mold surface plate 3 on which both ends of the mold 2 are placed, and the mold surface plate 3 is fixed from both sides. . Further, the mold 2 is kept in a reduced pressure state when the fixed suction device 5 communicating with the pipe 7 is in close contact with a suction source (not shown). Further, the movable suction device 6 communicating with the hose 8 that freely moves to a suction source (not shown) is brought into close contact with the mold 2 to depressurize the mold 2 and at the same time, the fixed suction device 5 is detached.
 次いで、枠送り装置4が作動して、鋳型定盤3に戴置した鋳型2(造型枠)を移動させる。図2は、可動吸引装置6が枠送り装置4で送られる鋳型2に追随して移動した後の状態を示す模式図である。可動吸引装置6は、図示されていない連結機構により枠送り装置4と連結しているため、枠送り装置4の動作に追随して移動する。こうして、鋳型2は移動中も可動吸引装置6により減圧状態に保たれる。 Next, the frame feeding device 4 operates to move the mold 2 (molding frame) placed on the mold surface plate 3. FIG. 2 is a schematic diagram showing a state after the movable suction device 6 has moved following the mold 2 fed by the frame feeding device 4. Since the movable suction device 6 is connected to the frame feeding device 4 by a connection mechanism (not shown), the movable suction device 6 moves following the operation of the frame feeding device 4. Thus, the mold 2 is kept in a reduced pressure state by the movable suction device 6 even during movement.
 次に、一枠分の移動が完了すると、左端の鋳型2は図示されていない搬送装置によって、次工程である二次冷却工程若しくは解枠工程に搬送される。また、右端には、図示されていない吸引装置を具備する搬送装置によって、前工程である造型工程から、新たな未注湯枠が搬送されてくる。さらに、固定吸引装置5が鋳型2に密着して、鋳型2を減圧すると同時に、可動吸引装置6が離脱する。こうして、固定吸引装置5によって、鋳型2の減圧状態は保たれる。その後、枠送り装置4による鋳型定盤3の密着が解除され、枠送り装置4が原位置に復帰するのに追随して可動吸引装置6も移動し、原位置に復帰する。図3は、原位置に復帰直後の固定吸引装置5と可動吸引装置6の状態を示す模式図である。 Next, when the movement for one frame is completed, the leftmost mold 2 is transported to a secondary cooling step or a frame opening step, which is the next step, by a transport device not shown. In addition, a new non-poured frame is conveyed from the molding step, which is a previous step, to the right end by a conveying device having a suction device (not shown). Further, the fixed suction device 5 is brought into close contact with the mold 2 to depressurize the mold 2 and at the same time, the movable suction device 6 is detached. In this way, the reduced pressure state of the mold 2 is maintained by the fixed suction device 5. After that, the close contact of the mold surface plate 3 by the frame feeding device 4 is released, and the movable suction device 6 also moves and returns to the original position following the return of the frame feeding device 4 to the original position. FIG. 3 is a schematic diagram showing the state of the fixed suction device 5 and the movable suction device 6 immediately after returning to the original position.
 原位置に復帰した時、枠送り装置4で密着固定される一連の鋳型定盤3に戴置した鋳型2の数は、鋳型を造型するのに要する時間であるサイクルタイムと、注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまでの時間によって決定される。例えばサイクルタイムが3分/枠で、鋳造シミュレーションで確認したか若しくは試験的に鋳造を行い求めた注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまでの時間が15分であるとするならば、注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで減圧状態に保つ必要のある鋳型2の数は、15÷3=5枠ということになる。 When returning to the original position, the number of the molds 2 placed on the series of mold surface plates 3 closely fixed by the frame feeding device 4 is determined by the cycle time, which is the time required to mold the mold, temperature of the casting to be incorporated in the mold is determined by the time until the following a 1 transformation point. For example, in a cycle time of 3 minutes / frame, after pouring obtained do cast to or trial was confirmed by casting the simulation, the time until the temperature of the casting to be built into the mold falls below the A 1 transformation point 15 if assumed to be minute, after pouring, the number of mold 2 in which the temperature of the casting to be built in the mold should be kept in a reduced pressure state until the following a 1 transformation point, that 15 ÷ 3 = 5 frame become.
 また図3では、枠送り装置4で密着固定される一連の鋳型定盤3に戴置した鋳型2はいずれも固定吸引装置5並びに可動吸引装置6により減圧状態に保たれたままで冷却されるが、これに限らない。例えば上記のように注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで減圧状態に保つ必要のある鋳型2の数は5枠であるとすると、6枠目以降は二次冷却工程として鋳型を吸引せずに枠送り装置5によって移動させてもよい。 In FIG. 3, the mold 2 placed on a series of mold surface plates 3 tightly fixed by the frame feeding device 4 is cooled while being kept in a reduced pressure state by the fixed suction device 5 and the movable suction device 6. Not limited to this. For example, after pouring, as described above, when the temperature of the casting to be built in the mold number of the mold 2 that must be kept in a reduced pressure state until the following A 1 transformation point to a 5 frame, 6 frame onwards As a secondary cooling step, the mold may be moved by the frame feeding device 5 without being sucked.
(第2の実施の形態)
 第2の実施の形態は、第1の実施の形態の鋳鉄鋳物製造設備1における鋳型2周りの構成に関するものである。第2の実施の形態について、添付図面を参照して説明する。本実施の形態にかかる鋳鉄鋳物製造設備の構成のうち、第1の実施の形態と異なる部分を説明する。他の部分については第1の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
(Second Embodiment)
2nd Embodiment is related with the structure around the casting_mold | template 2 in the cast iron casting manufacturing equipment 1 of 1st Embodiment. A second embodiment will be described with reference to the accompanying drawings. Of the configuration of the cast iron casting manufacturing facility according to the present embodiment, a portion different from the first embodiment will be described. The other parts are the same as those in the first embodiment, so the description is omitted with reference to the above description.
 鋳鉄鋳物製造設備1は、鋳型2と、鋳型定盤3と、枠送り装置4と、固定吸引装置5と、可動吸引装置6と、を備えて構成されている。図4は、第2の実施の形態にかかる鋳型2周りの概略断面図である。図4は、粘結剤を含まない鋳型砂9を使用する鋳型2と、固定吸引装置5と、温度感知器10と、制御装置11で構成され、温度感知器10を鋳型2内の鋳物Cの最も肉厚の箇所に挿入接触させた状態のVプロセス鋳型を示している。温度感知器10は、あらかじめ鋳型2外の鋳物Cの最も肉厚の箇所の直上で待機している。温度感知器10の待機位置は製品によって変わるので、あらかじめ図示されていない記憶装置にそれぞれの最も肉厚となる箇所の水平方向の位置と基準面からの高さを記憶させておき、その情報に基づいて制御装置11が温度感知器10を移動させている。また、鋳型2は固定吸引装置5並びに配管7を介して、図示されていない吸引源と連通している。 The cast iron casting manufacturing facility 1 includes a mold 2, a mold surface plate 3, a frame feeding device 4, a fixed suction device 5, and a movable suction device 6. FIG. 4 is a schematic cross-sectional view around the mold 2 according to the second embodiment. FIG. 4 includes a mold 2 that uses a molding sand 9 that does not contain a binder, a fixed suction device 5, a temperature sensor 10, and a control device 11, and the temperature sensor 10 is a casting C in the mold 2. The V process mold in a state of being inserted into and contacted with the thickest portion of is shown. The temperature sensor 10 is waiting in advance immediately above the thickest portion of the casting C outside the mold 2. Since the standby position of the temperature sensor 10 varies depending on the product, the horizontal position and the height from the reference plane of each thickest portion are stored in a storage device (not shown) in advance, and the information is stored in the information. Based on this, the control device 11 moves the temperature sensor 10. Further, the mold 2 communicates with a suction source (not shown) through a fixed suction device 5 and a pipe 7.
 注湯が完了したとの情報が制御装置11に入力されると、温度感知器10は、図示されていない挿脱装置によって、鋳型2内の鋳物Cの最も肉厚の箇所に挿入接触される。これにより、鋳物C表面の温度情報が、制御装置11に入力される。 When information indicating that pouring has been completed is input to the control device 11, the temperature sensor 10 is inserted into contact with the thickest portion of the casting C in the mold 2 by an insertion / removal device (not shown). . Thereby, the temperature information of the casting C surface is input to the control device 11.
 温度感知器10からの情報で制御装置11が鋳物Cの製品表面温度がA変態点以下に達したことを感知すると、制御装置11は固定吸引装置5を鋳型2より離脱させ、減圧状態を解除する。次いで、図示されていない挿脱装置によって、温度感知器10を抜脱する。 When the control unit 11 with information from the temperature sensor 10 is the product surface temperature of the casting C senses that it has reached below the A 1 transformation point, the control unit 11 a stationary suction device 5 is detached from the mold 2, a reduced pressure To release. Next, the temperature sensor 10 is removed by an insertion / removal device (not shown).
 なお、注湯が完了したとの情報を制御装置11に入力する手段には特に制限は無く、例えば注湯完了後に作業者が制御装置11に接続されている押釦を押して注湯が完了したとの情報を入力しても構わないし、揚がり上面の温度を非接触の温度計で測定し、揚がり上面の温度の情報を制御装置11で監視して、揚がり上面が溶湯温度まで上昇したことで注湯完了と判断して温度感知器10を挿入接触させてもよい。 In addition, there is no restriction | limiting in particular in the means to input the information that pouring was completed to the control apparatus 11, for example, the operator pushed the pushbutton connected to the control apparatus 11 after pouring completion, and pouring was completed. Note that the temperature of the upper surface of the frying is measured with a non-contact thermometer, the temperature information of the upper surface of the frying is monitored by the control device 11, and the temperature of the upper surface of the frying has risen to the molten metal temperature. The temperature sensor 10 may be inserted and contacted when it is determined that the hot water is completed.
(第3の実施の形態)
 第3の実施の形態は、第2の実施の形態と同じく、第1の実施の形態の鋳鉄鋳物製造設備1における鋳型2周りの構成に関するものである。第3の実施の形態について、添付図面を参照して説明する。本実施の形態にかかる鋳鉄鋳物製造設備の構成のうち、第2の実施の形態と異なる部分を説明する。他の部分については第2の実施の形態と同様であるので、上述した説明を参照し、ここでの説明を省略する。
(Third embodiment)
3rd Embodiment is related with the structure around the casting_mold | template 2 in the cast iron casting manufacturing equipment 1 of 1st Embodiment similarly to 2nd Embodiment. A third embodiment will be described with reference to the accompanying drawings. Of the configuration of the cast iron casting manufacturing facility according to the present embodiment, a portion different from the second embodiment will be described. The other parts are the same as those in the second embodiment, so the description is omitted with reference to the above description.
 鋳鉄鋳物製造設備1は、鋳型2と、鋳型定盤3と、枠送り装置4と、固定吸引装置5と、可動吸引装置6と、を備えて構成されている。図5は、第3の実施の形態にかかる鋳型2周りの概略断面図である。図5は、粘結剤を含まない鋳型砂9を使用する鋳型2と、温度感知器10と、制御装置11と、警告灯12と、二方弁13で構成され、温度感知器10を鋳型2内の鋳物Cの最も肉厚の箇所に挿入接触させた状態のVプロセス鋳型を示している。温度感知器10は第2の実施の形態と同様にあらかじめ鋳型2外の鋳物Cの最も肉厚の箇所の直上で待機している。温度感知器10の待機位置は製品によって変わるので、あらかじめ図示されていない記憶装置にそれぞれの最も肉厚となる箇所の水平方向の位置と基準面からの高さを記憶させておき、その情報に基づいて制御装置11が温度感知器10を移動させている。また、鋳型2は容易に着脱可能なホース8で二方弁13と接続されており、二方弁13は配管7を介して、図示されていない吸引源と連通している。 The cast iron casting manufacturing facility 1 includes a mold 2, a mold surface plate 3, a frame feeding device 4, a fixed suction device 5, and a movable suction device 6. FIG. 5 is a schematic cross-sectional view around the mold 2 according to the third embodiment. FIG. 5 is composed of a mold 2 using a molding sand 9 that does not contain a binder, a temperature sensor 10, a control device 11, a warning light 12, and a two-way valve 13, and the temperature sensor 10 is used as a mold. 2 shows a V process mold in a state where it is inserted into and contacted with the thickest portion of the casting C in 2. FIG. Similar to the second embodiment, the temperature sensor 10 is waiting in advance immediately above the thickest portion of the casting C outside the mold 2. Since the standby position of the temperature sensor 10 varies depending on the product, the horizontal position and the height from the reference plane of each thickest portion are stored in a storage device (not shown) in advance, and the information is stored in the information. Based on this, the control device 11 moves the temperature sensor 10. The mold 2 is connected to a two-way valve 13 by an easily detachable hose 8, and the two-way valve 13 communicates with a suction source (not shown) via a pipe 7.
 第2の実施の形態と同様に注湯が完了したとの情報が制御装置11に入力されると、図示されていない挿脱装置によって、鋳型内の鋳物Cの最も肉厚の箇所に温度感知器10を挿入接触させる。これにより、鋳物C表面の温度情報が、制御装置11に入力される。 As in the second embodiment, when information indicating that pouring has been completed is input to the control device 11, temperature detection is performed at the thickest portion of the casting C in the mold by an insertion / removal device (not shown). The container 10 is brought into contact with insertion. Thereby, the temperature information of the casting C surface is input to the control device 11.
 温度感知器10からの情報で制御装置11が鋳物Cの製品表面温度がA変態点以下に達したことを感知すると、制御装置11は警告灯12を点灯させる。警告灯12が点灯したことを作業者が確認すると、手動で二方弁13を閉じて、ホース8を鋳型2より抜脱して減圧状態を解除する。次いで、図示されていない挿脱装置によって、温度感知器10を抜脱する。 When the control unit 11 with information from the temperature sensor 10 is the product surface temperature of the casting C senses that it has reached below the A 1 transformation point, the controller 11 lights the warning lamp 12. When the operator confirms that the warning lamp 12 is turned on, the two-way valve 13 is manually closed, and the hose 8 is removed from the mold 2 to release the reduced pressure state. Next, the temperature sensor 10 is removed by an insertion / removal device (not shown).
 なお、注湯が完了したとの情報を制御装置11に入力する手段には特に第2の実施の形態と同様制限は無く、例えば注湯完了後に作業者が制御装置11に接続されている押釦を押して注湯が完了したとの情報を入力しても構わないし、揚がり上面の温度を非接触の温度計で測定し、揚がり上面の温度情報を制御装置11で監視して、揚がり上面が溶湯温度まで上昇したことで注湯完了と判断して温度感知器10を挿入接触させてもよい。 The means for inputting information that pouring is completed to the control device 11 is not particularly limited as in the second embodiment. For example, a push button that is connected to the control device 11 by the operator after pouring is completed. It is possible to input information that the pouring has been completed by pressing, measure the temperature of the upper surface of the frying with a non-contact thermometer, monitor the temperature information of the upper surface of the frying with the control device 11, and the upper surface of the frying is molten. The temperature sensor 10 may be inserted and contacted by determining that pouring has been completed when the temperature has risen.
 なお、第1~3の実施の形態では、いずれもVプロセスにおける例を示したが、消失模型鋳造法の場合でも、設備の構成並びに動作は同様である。 In each of the first to third embodiments, an example in the V process has been shown. However, the configuration and operation of the equipment are the same even in the disappearance model casting method.
 また、第1~3の実施の形態では、粘結剤を含まない鋳型砂を使用しているが、鋳型内を減圧した状態で、鋳物表面に空気が流れ続ける状態を作り出すことができる限り、微量な粘結剤が鋳型砂に含まれていてもよい。 In the first to third embodiments, the molding sand containing no binder is used. However, as long as it is possible to create a state in which the air continues to flow on the casting surface in a state where the inside of the mold is decompressed, A trace amount of binder may be contained in the mold sand.
 上記の説明から明らかなように、本発明は、鋳造後その表面にめっき処理若しくは琺瑯処理を行う鋳鉄鋳物の製造方法において、粘結剤を含まない鋳型砂を使用し、鋳型内を減圧した状態で注湯を行う鋳型造型法を用いて、注湯後、鋳型に内蔵される鋳物の温度がA変態点以下になるまで鋳型内を減圧し続けるため、常に鋳物表面を空気が流れる状態となる。そのため、高温の状態の鋳物において、表面付近に存在する黒鉛は速やかに酸化されるので、鋳物表面付近に脱炭層が形成される。一方で、鋳型は減圧された状態であるので、急冷されることで生じる遊離セメンタイトが生じることもない。そのため、めっき処理や琺瑯処理を行う際に悪影響を及ぼす、鋳物表面付近の異常組織は形成されないこととなり、本発明の効果は当業者において非常に多大なものであることは明らかである。 As is apparent from the above description, the present invention is a method for producing a cast iron casting in which the surface of the casting is subjected to plating treatment or glazing treatment after casting, in which the molding sand containing no binder is used and the inside of the casting mold is decompressed. in using the casting mold making method involving pouring, after pouring, the temperature of the casting to be built into the mold continues to reduce the pressure in the mold until the following a 1 transformation point, always casting surface state through which air flows Become. Therefore, in the casting in a high temperature state, graphite existing near the surface is quickly oxidized, so that a decarburized layer is formed near the casting surface. On the other hand, since the mold is in a depressurized state, free cementite produced by rapid cooling does not occur. Therefore, an abnormal structure in the vicinity of the casting surface that adversely affects the plating process and the wrinkle process is not formed, and it is clear that the effect of the present invention is very large for those skilled in the art.
1 鋳鉄鋳物製造設備
2 鋳型
3 鋳型定盤
4 枠送り装置
5 固定吸引装置
6 可動吸引装置
7 配管
8 ホース
9 鋳型砂
10 温度感知器
11 制御装置
12 警告灯
13 二方弁
DESCRIPTION OF SYMBOLS 1 Cast iron casting production equipment 2 Mold 3 Mold surface plate 4 Frame feeder 5 Fixed suction device 6 Movable suction device 7 Piping 8 Hose 9 Mold sand 10 Temperature sensor 11 Controller 12 Warning light 13 Two-way valve

Claims (10)

  1.  鋳型砂を減圧することにより、鋳型を造型する工程と、
     鋳型内に溶湯を注湯する工程と、
     前記溶湯により形成される鋳物の温度がA変態点以下になるまで前記鋳型内を減圧する工程と、を含むこと、を特徴とする鋳鉄鋳物の製造方法。
    A step of molding the mold by depressurizing the mold sand;
    A process of pouring molten metal into the mold,
    Method for producing cast iron, characterized in, that including a step of depressurizing the inside mold to a temperature of the casting formed by the molten metal is below the A 1 transformation point.
  2.  前記鋳型砂は粘結剤を含まないこと、を特徴とする請求項1に記載の鋳鉄鋳物の製造方法。 2. The method for producing a cast iron casting according to claim 1, wherein the molding sand does not contain a binder.
  3.  前記鋳型内の圧力を、-10kPa~-70kPaの間で保持すること、を特徴とする請求項1または2に記載の鋳鉄鋳物の製造方法。 The method for producing a cast iron casting according to claim 1 or 2, wherein the pressure in the mold is maintained between -10 kPa and -70 kPa.
  4.  前記粘結剤を含まない鋳型砂における53μm未満の直径の粒子の割合は、10%以下であること、を特徴とする請求項1~3のいずれか一項に記載の鋳鉄鋳物の製造方法。 The method for producing a cast iron casting according to any one of claims 1 to 3, wherein a ratio of particles having a diameter of less than 53 µm in the mold sand not including the binder is 10% or less.
  5.  鋳型砂を減圧して造型された鋳型内に注湯を行い、鋳鉄鋳物を製造する鋳鉄鋳物製造設備において、
     少なくとも1つの鋳型と、
     前記鋳型を移動させる枠送り装置と、
     前記鋳型の停止時に、前記鋳型内を減圧する少なくとも1つの固定吸引装置と、
     前記鋳型の移動時に、前記固定吸引装置の代わりに前記鋳型内を減圧しながら移動する少なくとも1つの可動吸引装置と、を備え、
     前記鋳型は、注湯後の鋳型内の鋳物温度がA変態点以下になるまで、前記枠送り装置による移動と停止を繰り返すこと、を特徴とする鋳鉄鋳物製造設備。
    In a cast iron casting production facility for producing cast iron castings by pouring molten metal into a mold formed by reducing the pressure of the mold sand,
    At least one mold;
    A frame feeder for moving the mold;
    At least one fixed suction device for decompressing the inside of the mold when the mold is stopped;
    At least one movable suction device that moves while reducing the pressure inside the mold instead of the fixed suction device when the mold is moved,
    The mold, cast until casting temperature in the mold after the hot water is below the A 1 transformation point, repeating the stopping and movement by the frame feeder, iron casting manufacturing facility according to claim.
  6.  前記鋳型が複数存在し、
     前記枠送り装置が複数の前記鋳型を同時に移動させ、
     前記固定吸引装置及び前記可動吸引装置を、少なくとも前記鋳型と同じ数だけ備えること、を特徴とする請求項5に記載の鋳鉄鋳物製造設備。
    There are a plurality of the molds,
    The frame feeder moves a plurality of the molds simultaneously,
    6. The cast iron casting manufacturing facility according to claim 5, wherein the fixed suction device and the movable suction device are provided in at least the same number as the mold.
  7.  前記鋳物の製品表面温度を測定する温度感知器と、
     前記鋳物の製品表面温度がA変態点以下に達した時点で、前記固定吸引装置を前記鋳型から離脱させて減圧状態を解除するように制御する制御装置と、をさらに備えたこと、を特徴とする請求項5または6に記載の鋳鉄鋳物製造設備。
    A temperature sensor for measuring the product surface temperature of the casting,
    When the product surface temperature of the casting has reached below the A 1 transformation point, wherein, further, comprising a control device, the controlling to the fixed suction device releases the vacuum state is disengaged from the mold The cast iron casting manufacturing facility according to claim 5 or 6.
  8.  前記温度感知器は、前記鋳型内の鋳物の最も肉厚の箇所に接触するように、前記鋳型内に挿入されること、を特徴とする請求項7に記載の鋳鉄鋳物製造設備。 8. The cast iron casting manufacturing facility according to claim 7, wherein the temperature sensor is inserted into the mold so as to come into contact with the thickest portion of the casting in the mold.
  9.  前記制御装置の指示により点灯する警告灯をさらに備えたこと、を特徴とする請求項7または8に記載の鋳鉄鋳物製造設備。 The cast iron casting manufacturing facility according to claim 7 or 8, further comprising a warning light that is turned on according to an instruction from the control device.
  10.  鋳型砂を減圧して造型された鋳型内に注湯を行う鋳型造型法において、注湯後前記鋳型内の鋳物温度がA変態点以下になるまで前記鋳型内を減圧することにより製造される鋳鉄鋳物。 In casting mold making method involving pouring into the mold the molding sand is molding under reduced pressure, the casting temperature inside the mold after pouring is produced by reducing the pressure within the mold until the following A 1 transformation point Cast iron casting.
PCT/JP2015/083213 2015-07-24 2015-11-26 Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting WO2017017863A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580003017.5A CN106559990B (en) 2015-07-24 2015-11-26 The manufacturing equipment of iron casting, the manufacturing method of iron casting and iron casting
JP2017510700A JP6586994B2 (en) 2015-07-24 2015-11-26 Cast iron casting, cast iron casting manufacturing method, and cast iron casting manufacturing equipment
EP15899695.9A EP3326733B1 (en) 2015-07-24 2015-11-26 Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting
KR1020187003443A KR20180034470A (en) 2015-07-24 2015-11-26 Cast iron castings, cast iron casting production method, and cast iron casting production facility
US15/747,065 US20180369900A1 (en) 2015-07-24 2015-11-26 Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting
RU2018103953A RU2710612C2 (en) 2015-07-24 2015-11-26 Cast-iron casting, method of cast iron casting production and equipment for production of cast iron casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015146257 2015-07-24
JP2015-146257 2015-07-24

Publications (1)

Publication Number Publication Date
WO2017017863A1 true WO2017017863A1 (en) 2017-02-02

Family

ID=57884162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083213 WO2017017863A1 (en) 2015-07-24 2015-11-26 Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting

Country Status (7)

Country Link
US (1) US20180369900A1 (en)
EP (1) EP3326733B1 (en)
JP (1) JP6586994B2 (en)
KR (1) KR20180034470A (en)
CN (1) CN106559990B (en)
RU (1) RU2710612C2 (en)
WO (1) WO2017017863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115090835A (en) * 2022-06-22 2022-09-23 曹涛 Precise casting process of hardware casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115502152B (en) * 2022-09-01 2023-05-30 扬州一川镍业有限公司 Post-treatment process for casting molding of nickel ore molten iron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224066A (en) * 1982-06-23 1983-12-26 Nippon Kokan Keishiyu Kk Casting method
JP2006212669A (en) * 2005-02-04 2006-08-17 Sintokogio Ltd Cooling device for molten metal pouring flask
JP2012035270A (en) * 2010-08-03 2012-02-23 Sintokogio Ltd Vacuum molding casting line
JP2015042775A (en) * 2013-08-26 2015-03-05 国立大学法人岩手大学 Method of producing vitreous-enamel cast iron

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789785A (en) * 1971-10-08 1973-02-01 Akita Kk MOLD PRODUCTION APPARATUS
DE2402870C2 (en) * 1974-01-22 1975-07-17 Heinrich Wagner, Maschinenfabrik, 5928 Laasphe Molding box
SU766744A1 (en) * 1978-09-04 1980-09-30 Предприятие П/Я Р-6762 Automatic production line for making castings by the vacuum process method
SU825269A1 (en) * 1979-06-07 1981-04-30 Институт Проблем Литья Ан Украинской Сср Method of producing casting moulds
SU852445A1 (en) * 1979-08-31 1981-08-07 Предприятие П/Я Р-6762 Plant for production casting by vacuum process
SU975202A1 (en) * 1981-05-27 1982-11-23 Предприятие П/Я Р-6543 Automatic casting line for producing castings by vacuum moulding
SU1103934A1 (en) * 1983-04-21 1984-07-23 Всесоюзный Заочный Политехнический Институт Method of manufacturing casting moulds by vacuum shaping
US4780665A (en) * 1986-09-30 1988-10-25 Deere & Company Apparatus and method for controlling sand moisture
CN1030646C (en) * 1992-04-01 1996-01-10 中国科学院长春光学精密机械研究所 Casting method of high-chrome cast iron ball
JP2002035918A (en) * 2000-07-17 2002-02-05 Sintokogio Ltd Method for holding vacuum mold and suction pipeline apparatus
JP2004143552A (en) * 2002-10-25 2004-05-20 Aisan Ind Co Ltd Cast iron components and method for plating the same
KR100901034B1 (en) * 2004-04-01 2009-06-04 신토고교 가부시키가이샤 Method and device for pouring molten metal in vacuum molding and casting
JP4352397B2 (en) * 2004-04-01 2009-10-28 新東工業株式会社 Pouring method for vacuum mold making
WO2008038397A1 (en) * 2006-09-25 2008-04-03 Aisin Takaoka Co., Ltd. Cast production line apparatus
CN101690976B (en) * 2008-01-08 2012-02-01 刘玉满 Method for eliminating carbon defects by adopting high-performance coating, negative-pressure firing, vacant shell pouring and quick airflow cooling in lost foam casting
EP2578333A1 (en) * 2011-10-07 2013-04-10 Nemak Linz GmbH Method for controlling a casting assembly
CN103212667B (en) * 2013-03-26 2016-05-18 山东蒙凌工程机械股份有限公司 Production technology and the V method mould of application V method cast gear box casing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224066A (en) * 1982-06-23 1983-12-26 Nippon Kokan Keishiyu Kk Casting method
JP2006212669A (en) * 2005-02-04 2006-08-17 Sintokogio Ltd Cooling device for molten metal pouring flask
JP2012035270A (en) * 2010-08-03 2012-02-23 Sintokogio Ltd Vacuum molding casting line
JP2015042775A (en) * 2013-08-26 2015-03-05 国立大学法人岩手大学 Method of producing vitreous-enamel cast iron

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3326733A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115090835A (en) * 2022-06-22 2022-09-23 曹涛 Precise casting process of hardware casting
CN115090835B (en) * 2022-06-22 2023-12-29 繁峙县志高矿山机械有限责任公司 Precise casting process of hardware castings

Also Published As

Publication number Publication date
CN106559990B (en) 2019-11-05
RU2710612C2 (en) 2019-12-30
JP6586994B2 (en) 2019-10-09
JPWO2017017863A1 (en) 2018-03-29
US20180369900A1 (en) 2018-12-27
EP3326733B1 (en) 2021-05-05
RU2018103953A3 (en) 2019-08-26
EP3326733A1 (en) 2018-05-30
EP3326733A4 (en) 2019-01-02
KR20180034470A (en) 2018-04-04
RU2018103953A (en) 2019-08-26
CN106559990A (en) 2017-04-05

Similar Documents

Publication Publication Date Title
CN104043787B (en) The casting technique of magnetic valve foundry goods
JP6586994B2 (en) Cast iron casting, cast iron casting manufacturing method, and cast iron casting manufacturing equipment
CN103203445A (en) Preparation method of cast copper cage rotor
Banchhor et al. Optimization in green sand casting process for efficient, economical and quality casting
CN107699741A (en) A kind of method of lost foam casting alloy-steel casting
WO2016082561A1 (en) Method for forming amorphous alloy member
US10259034B2 (en) Slurry for forming mold, mold and method for producing mold
JPH0211703A (en) Method for degreasing metal powder injection green compact
JP2003181598A (en) Casting machine
JP4701035B2 (en) Casting method
JPH05277699A (en) Method for casting thin casting
JPS62267402A (en) Production of porous metallic body by activated sintering
RU2630399C2 (en) Method for manufacturing cast rods from liquid glass mixtures in heated "thermo-shock-co2-process" equipment
JP2003326337A (en) Mold for producing casting by using holding material and method for making mold
JPH04500949A (en) Container for molten metal, material for the container, and method for manufacturing the material
JPS63140740A (en) Mold for casting active metal of high melting point
JP4911012B2 (en) Heat-resistant cast steel mold for casting noble metal ingot and method for casting noble metal ingot using the same
JP2016014186A (en) Method for producing slag cast body
JP5196402B2 (en) Vacuum suction casting method
US929777A (en) Process of producing coated metal objects.
KR100824439B1 (en) Vertical die casting machine of amorphous alloys
JP3720241B2 (en) Vacuum casting method using vanishing model
CN113560501A (en) Sand core for casting and preparation method thereof
JPH0220687B2 (en)
JP6459643B2 (en) Method for removing non-metallic inclusions and adsorbent

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017510700

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187003443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018103953

Country of ref document: RU

Ref document number: 2015899695

Country of ref document: EP