JPS62267402A - Production of porous metallic body by activated sintering - Google Patents

Production of porous metallic body by activated sintering

Info

Publication number
JPS62267402A
JPS62267402A JP10940886A JP10940886A JPS62267402A JP S62267402 A JPS62267402 A JP S62267402A JP 10940886 A JP10940886 A JP 10940886A JP 10940886 A JP10940886 A JP 10940886A JP S62267402 A JPS62267402 A JP S62267402A
Authority
JP
Japan
Prior art keywords
molding
sintering
porous
binder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10940886A
Other languages
Japanese (ja)
Other versions
JPH0478681B2 (en
Inventor
Akira Yanagisawa
柳沢 章
Kiyoshi Suzuki
清 鈴木
Hiroyuki Noguchi
裕之 野口
Toyoji Fuma
豊治 夫馬
Kazuyuki Nishikawa
和之 西川
Masato Imamura
正人 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP10940886A priority Critical patent/JPS62267402A/en
Publication of JPS62267402A publication Critical patent/JPS62267402A/en
Publication of JPH0478681B2 publication Critical patent/JPH0478681B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a porous metallic body having high strength by mixing a binder with metallic powder, molding the mixture by slip casting, drying the molding and subjecting the molding to an oxidation treatment, then sintering the same by heating in a reducing atmosphere. CONSTITUTION:The non-pressurized molding is obtd. by adding the binder (ethyl silicate, etc.) at about 10-30% with the metallic powder (Fe-Cu, etc.), mixing the mixture to a slurry state, removing the intruded air therefrom, pouring the slurry into a prescribed mold and solidifying the molding. The molding is then dried and is heated at the temp. lower than the reduction sintering temp. in an oxidizing atmosphere to consume the binder, by which the porous body having high porosity is obtd. The molding subjected to the oxidation treatment is heated to a prescribed temp. in the reducing atmosphere to form the porous metallic body. Said body is machined as it is or after cooling to form a product. The high-strength porous metallic body finely dispersed with pores is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属多孔質体の製造法とりわけ活性化焼結によ
る金属多孔質体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a porous metal body, particularly a method for producing a porous metal body by activated sintering.

〔従来の技術とその問題点〕[Conventional technology and its problems]

金属多孔質体を得る場合、従来では一般に金属粉末に潤
滑材又は/及びバインダを添加混合し、この混合物を金
型に充填し高圧縮力を加えて圧粉体を作り、この圧粉体
を還元性雰囲気中で加熱焼結する方法が採られていた。
Conventionally, when obtaining a porous metal body, a lubricant and/or a binder is generally added and mixed with metal powder, this mixture is filled into a mold, and a high compression force is applied to create a green compact. A method of heating and sintering in a reducing atmosphere was used.

しかし、この方法は、圧粉体の装造に錐雌の金型と大容
量のプレスなど設備を必要とするため、製造コストが高
価となり、また、金型製作上の制約や流動性などの面か
ら、複雑な形状や高さの大きな金属多孔質体の製造が難
しいという問題があった。
However, this method requires equipment such as a conical female mold and a large-capacity press to prepare the powder compact, resulting in high manufacturing costs and problems such as mold manufacturing constraints and fluidity. From this point of view, there was a problem in that it was difficult to manufacture porous metal bodies with complicated shapes and large heights.

この対策としては、成形法として圧粉成形でなく、金属
粉とバインダをスラリー状にしてスリップキャスティン
グのような流し込み成形する手法を採り、この成形体を
焼結する方法が考えられる。
As a countermeasure to this problem, a method of forming the metal powder and binder in a slurry form, instead of powder compaction, using a method such as slip casting, and then sintering the formed body may be considered.

しかしながら、この場合には、無加圧成形であることか
ら、成形体の気孔率が約50%と圧粉体のそれに対し約
2倍以上高く、そのためこの方式では焼結が容易に進行
せず、所期の機械的強度を得がたいという問題がある。
However, in this case, since pressureless molding is used, the porosity of the compact is about 50%, which is about twice as high as that of the green compact, so sintering does not proceed easily with this method. However, there is a problem in that it is difficult to obtain the desired mechanical strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記のような問題点を解決するために研究して
創案されたもので、その目的とするところは、気孔が微
細に散在した良好な強度の金属多孔質体を簡単かつ安価
に製造することができる方法を提供することにある。
The present invention was developed through research to solve the above-mentioned problems, and its purpose is to easily and inexpensively produce a porous metal body with good strength and finely scattered pores. Our goal is to provide a way to do so.

この目的を達成するため1本発明は、無加圧成形の利点
を生かしつつ同時にその難点である低焼結性を予備酸化
と還元工程の組合せにより回避して適切な活性化焼結を
行うようにしたもので、すなわち、金属粉末とバインダ
との混合試料をスリップキャストにより成形し、この成
形体を酸化処理してから還元性雰囲気中で加熱焼結する
ことを特徴とするものである。
In order to achieve this object, the present invention utilizes the advantages of non-pressure forming and at the same time avoids its disadvantage of low sinterability by a combination of preliminary oxidation and reduction process to perform appropriate activation sintering. That is, the method is characterized in that a mixed sample of metal powder and a binder is molded by slip casting, and this molded body is oxidized and then heated and sintered in a reducing atmosphere.

このような本発明によれば、成形行程においてプレスな
どの大掛りな加圧設備を必要とせず、マスターモデル、
製品サンプルあるいはせいぜい雌型などを使用するだけ
で簡単に成形できる。また。
According to the present invention, there is no need for large press equipment such as a press in the molding process, and the master model,
It can be easily molded by using a product sample or at most a female mold. Also.

この成形体段階で気孔率が大であっても、予備酸化処理
により金属粒子が膨張して相互の接触面積が大きくなり
、基地が互いに連結されるため、次の還元性雰囲気で加
熱することにより焼結が著しく促進される。そして、前
記予備酸化処理での金属粒子の膨張・連結で金属粒子間
の空孔が埋められるとともに気孔の合体化が生ずるため
気孔が閉じられ、残存する気孔も還元時の収縮で絞り出
され、分散微細化する。これらにより高強度な金属多孔
質体が得られる。
Even if the porosity is large at this compact stage, the metal particles expand due to the preliminary oxidation treatment, increasing the mutual contact area and connecting the bases with each other. Sintering is significantly accelerated. Then, the pores between the metal particles are filled by the expansion and connection of the metal particles in the preliminary oxidation treatment, and the pores are closed due to the coalescence of the pores, and the remaining pores are also squeezed out by contraction during the reduction, Refine dispersion. A high-strength metal porous body can be obtained by these methods.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明による金属多孔質体の製造法は、下記の基本工程
からなっている。
The method for producing a porous metal body according to the present invention consists of the following basic steps.

■金属粉末にバインダを添加し、混練してスラリー状試
料を作り、これをスリップキャステング法により成形し
、無加圧成形体を得る工程■無加圧成形体を酸化処理す
る工程 ■酸化処理した無加圧成形体を還元焼結する工程詳述す
ると、まずIの工程において、「金属粉末」は酸化性の
ものたとえば鉄またはその合金(Fe−Cu等)、Ni
、 Coの1種又は2種以上が効果的に利用される。こ
の金属粉末には、スリップキャスティング時の成形性を
確保し、乾燥クラックや焼結時のクラックを防止するた
め、ファイバーを適量添加してもよいにの目つぶれは後
に研削や研摩を行うことで除去され、多孔性を再生でき
る。
■A process of adding a binder to metal powder and kneading it to make a slurry sample, which is then molded by the slip casting method to obtain a non-pressure compact.■A process of oxidizing the non-pressure compact.■A process of oxidizing the non-pressure compact. To explain the process of reducing and sintering the non-pressure compact, first, in step I, the "metal powder" is an oxidizing material such as iron or its alloy (Fe-Cu, etc.), Ni
, Co, or more are effectively used. In order to ensure formability during slip casting and prevent cracks during drying and sintering, an appropriate amount of fiber may be added to this metal powder. removed and the porosity can be regenerated.

次にバインダは、金属粉末に流動性と成形性を与えると
共に気孔を形成するためのもので、金属粉末と化学反応
を起こさず、乾燥時またはそれ以降の加熱で成形体中か
ら気散する性質の液体であり、その代表例としては加水
分解エチルシリケートすなわちアルコール性シリカゾル
(以下単にエチルシリケートと称す)またはこれと同効
の特性を有する物質が挙げられる。このバインダは金属
粉末に対し1通常10〜30%添加される。
Next, the binder is used to provide fluidity and moldability to the metal powder, as well as to form pores.It has the property of not causing a chemical reaction with the metal powder, and evaporating from the molded body during drying or subsequent heating. A typical example thereof is hydrolyzed ethyl silicate, ie, alcoholic silica sol (hereinafter simply referred to as ethyl silicate), or a substance having the same properties as this. This binder is usually added in an amount of 10 to 30% based on the metal powder.

上記原料は計量後混ぜ合わされ、攪拌あるいは振動を加
えることで混練され、スラリー状試料となる。このスラ
リー状試料は次いで真空脱泡などにより混入エアを除去
した後、製造目的の形状寸法、模様などを所望の型に流
し込み、固化させる。
The above raw materials are weighed, mixed, and kneaded by stirring or vibration to form a slurry sample. This slurry-like sample is then subjected to vacuum defoaming or the like to remove mixed air, and then poured into a desired mold with the desired shape, size, pattern, etc. for manufacturing purposes, and solidified.

これは、たとえば製造目的製品が通気性の型であれば、
型枠中にマスターモデルや製品サンプルを配して行えば
よいし、それ以外の機械部品などにあっては雌型のキャ
ビティを利用すればよい、固化後は型から取り出し、要
すれば、自然乾燥、加熱あるいは冷凍などの強制乾燥を
行うもので、これにより、無加圧成形体が得られる。
For example, if the product to be manufactured is of a breathable type,
This can be done by placing a master model or product sample in the mold, or by using a female cavity for other mechanical parts. This method performs forced drying such as drying, heating, or freezing, and thereby a non-pressure molded product can be obtained.

次に本発明は、■のように無加圧成形体を酸化処理する
。これは、具体的には、酸化性雰囲気中で、かつ後述す
る還元焼結よりも低い温度で加熱することである。酸化
性雰囲気は最も簡便には大気が使用されるが、要すれば
酸素富化の雰囲気としてもよい。
Next, in the present invention, the non-pressure molded product is subjected to oxidation treatment as in (2). Specifically, this means heating in an oxidizing atmosphere and at a lower temperature than the reduction sintering described below. The atmosphere is most conveniently used as the oxidizing atmosphere, but an oxygen-enriched atmosphere may be used if necessary.

この酸化処理の温度と時間は、金属粉末の酸化特性、製
造する金属多孔質体の寸法諸元、およびに金属多孔質体
に求められる気孔率と必要強度の相関を考慮して適宜設
定するが、有機バインダを用いた場合にはこの工程にお
いてバインダが消失・除去され、気孔率の大きな多孔体
が得られる。
The temperature and time of this oxidation treatment are determined as appropriate, taking into account the oxidation characteristics of the metal powder, the dimensions of the porous metal body to be manufactured, and the correlation between the porosity and required strength of the porous metal body. When an organic binder is used, the binder disappears and is removed in this step, resulting in a porous body with a high porosity.

金属粉末が鉄またはその合金の場合には、通常、処理温
度は300〜650℃、処理時間は1〜360+inの
範囲から選択すればよい、一般に多孔質体の強度は気孔
率に指数関数的に依存している。
When the metal powder is iron or its alloy, the processing temperature is usually selected from the range of 300 to 650°C, and the processing time is selected from the range of 1 to 360+ inches.In general, the strength of the porous body is exponentially proportional to the porosity. dependent.

したがって、強度より気孔率が要求される場合たとえば
通気性の型のような場合には、処理温度と処理時間の少
なくとも一方のパラメータを減少側に制御すればよく、
強度が重視される場合には。
Therefore, in cases where porosity is required more than strength, such as in the case of breathable molds, it is sufficient to control at least one of the processing temperature and processing time to the lower side.
When strength is important.

処理温度と処理時間の少なくとも一方のパラメータを増
大側に制御すればよい。
It is sufficient to control at least one of the processing temperature and processing time to increase the parameter.

温度条件については、処理温度があまり高温では酸化膜
中の酸素の拡散が早く、酸化膜の成長速度が早いため、
成形体内部に酸素が供給されにくくなり、内部は気孔率
が高いまま酸化が進行しなくなる。低温側では酸化膜の
成長が緩やかであるため、雰囲気中の酸素が内部まで移
動し、中心部まで酸化焼結が進み全体として強度上昇が
図られる。この特性を利用することで内部と外部での気
孔率をコントロールすることができる。
Regarding temperature conditions, if the processing temperature is too high, oxygen in the oxide film will diffuse quickly and the growth rate of the oxide film will be fast.
Oxygen is difficult to be supplied to the inside of the molded body, and oxidation does not proceed while the porosity remains high inside. Since the growth of the oxide film is slow on the low temperature side, oxygen in the atmosphere moves to the inside, oxidation sintering progresses to the center, and the overall strength is increased. By utilizing this property, the porosity inside and outside can be controlled.

次いで、■のように酸化処理を終えた成形体を還元焼結
する。これは、具体的には還元性雰囲気中で、焼結金属
の融点Tmの0.5〜0.8倍の温度範囲、たとえば純
鉄の場合、Tm =1535℃とすると約770〜12
30℃の範囲の温度条件で加熱することにより行われる
が、本発明の場合、後述のように焼結性が良いため、比
較的低温でまた短時間で実施することができる。
Next, as in (2), the oxidized compact is reduced and sintered. Specifically, this is within a temperature range of 0.5 to 0.8 times the melting point Tm of the sintered metal in a reducing atmosphere, for example, in the case of pure iron, if Tm = 1535°C, it is approximately 770 to 12
This is carried out by heating at a temperature in the range of 30°C, but in the case of the present invention, since the sinterability is good as described later, it can be carried out at a relatively low temperature and in a short time.

還元性雰囲気は水素ガス、アンモニア分解ガスなどが使
用されるが、鉄系粉末の場合、補助的tこメタンやプロ
パンなどの炭化水素系ガスあるいは一酸化炭素などの添
加雰囲気あるいは、黒鉛粉末や黒鉛を添加したセラミッ
クス粉中にバッキングして還元を促進あるいはさらに加
炭をすることも可能である。この還元焼結工程は前記酸
化処理とともにバッチ火炉あるいはコンベア式、プッシ
ャ一式などの連続炉で行えばよい。
Hydrogen gas, ammonia decomposition gas, etc. are used as reducing atmospheres, but in the case of iron-based powders, supplementary hydrocarbon gases such as methane and propane, or added atmospheres such as carbon monoxide, or graphite powder or graphite gases are used. It is also possible to accelerate the reduction or further carburize by backing it in the ceramic powder to which it has been added. This reduction sintering step may be performed together with the oxidation treatment in a batch furnace or a continuous furnace such as a conveyor type or a pusher set.

この還元焼結工程で目的とする金属多孔質体が得られ、
冷却後そのままあるいは機械加工を施すことで製品とな
る。また、要すれば、還元焼結時または焼結後、成形体
に異種金属を含浸あるいは溶浸してもよく、これにより
密度が向上し、強度が増加する。
Through this reduction sintering process, the desired porous metal body is obtained,
After cooling, it becomes a product either as is or by machining. Furthermore, if necessary, the compact may be impregnated or infiltrated with a different metal during or after the reduction sintering, thereby increasing the density and strength.

第1図は本発明による焼結挙動を模式的に示すもので、
たとえばバインダとしてエチルシリケートを使用し、ス
リップキャスティングし固化した段階では、第1図(a
)のように成形体を構成する金属粒子1,1はわずかに
点状に接触するだけで、金属粒子1,1の周りを粗大な
空孔2,2が取り巻いている。そのため、成形体はきわ
めてポーラスであり、これをそのまま還元焼結しても焼
結は容易に進行せず、高温かつ長時間を要する。
FIG. 1 schematically shows the sintering behavior according to the present invention.
For example, when ethyl silicate is used as a binder and is slip casted and solidified,
), the metal particles 1, 1 constituting the molded body are in only point contact, and the metal particles 1, 1 are surrounded by coarse pores 2, 2. Therefore, the molded body is extremely porous, and even if it is subjected to reduction sintering as it is, sintering does not proceed easily and requires a high temperature and a long time.

しかし1本発明のように、還元焼結の前段として積極的
に酸化処理を行えば、第1図(b)のように金属粒子1
,1は酸素との反応で金属酸化粒子1’、’1’ に変
化し、この酸化の際の体積膨張と金属酸化粒子1’ 、
1’の焼結により、連結基地3に変容する。それと同時
に、第1図(a)における金属粒子1,1間の空孔2,
2が金属酸化粒子1’ 、1’ により埋められるとと
もに、空孔の合体化が生ずるため閉空孔2′となる。
However, if oxidation treatment is actively performed as a pre-stage of reduction sintering as in the present invention, as shown in FIG. 1(b), metal particles 1
, 1 changes into metal oxide particles 1', '1' by reaction with oxygen, and the volume expansion during this oxidation and metal oxide particles 1',
By sintering 1', it transforms into a connecting base 3. At the same time, the holes 2 between the metal particles 1 and 1 in FIG. 1(a),
2 is filled with metal oxide particles 1', 1', and the pores coalesce to form closed pores 2'.

このような金属酸化粒子1’ 、1’の連結基地3が得
られた状態で次に還元が行われるため、還元反応が著し
く促進され、金属酸化粒子1’ 、1’は金属に還元さ
れながら基地金属の流動により収縮し、これにより、第
1図(c)、(d)のごとく焼結の進行とともに、空孔
は絞られる形で分散微細化され1組織の緻密な多孔質体
となるものである。
Since the reduction is then carried out in a state where the connecting base 3 of such metal oxide particles 1', 1' is obtained, the reduction reaction is significantly promoted, and the metal oxide particles 1', 1' are reduced to metal while being reduced. It contracts due to the flow of the base metal, and as a result, as sintering progresses, the pores are narrowed and dispersed to become finer, forming a dense porous body with one structure. It is something.

〔実 施 例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例1 ■下記第1表の粒度分布(%)の還元鉄粉を用い、これ
にエチルシリケートを15%添加後、振動混練すること
でスラリー化し、真空脱泡後、雌型に流し込み、脱型後
自然乾燥してφ10 X 20mmの無加圧成形体を得
た。
Example 1 ■ Using reduced iron powder with the particle size distribution (%) shown in Table 1 below, add 15% of ethyl silicate to it, make a slurry by vibration kneading, and after vacuum degassing, pour into a female mold and degas. After molding, the product was air-dried to obtain a non-pressure molded product of φ10 x 20 mm.

第  1  表 ■次いで無加圧成形体を、大気雰囲気下で300〜65
0℃の保持温度範囲で、保持時間を0.15,60,3
60m1nにとって酸化処理した。
Table 1 ■Then, the non-pressure molded product was heated to 300 to 65
In the holding temperature range of 0℃, holding time is 0.15, 60, 3
It was oxidized to 60mln.

得られた酸化処理成形体の圧縮強度と開気孔率の関係を
調べた結果を示すと第2図のとおりである。この第2図
から明らかなように、酸化処理を行わない無加圧成形体
にあっては、開気孔率(含水率として測定)が45%、
圧縮強度10kgf/Ciである。これに対し、酸化処
理を行った場合、開気孔率は低下し、圧縮強度は大きく
上昇する。その上昇度合いは、保持時間および保持温度
に対応する。
FIG. 2 shows the results of examining the relationship between compressive strength and open porosity of the obtained oxidized molded body. As is clear from Fig. 2, the open porosity (measured as water content) of the non-pressure molded body without oxidation treatment is 45%,
The compressive strength is 10 kgf/Ci. On the other hand, when oxidation treatment is performed, the open porosity decreases and the compressive strength increases significantly. The degree of increase corresponds to the holding time and holding temperature.

気孔率は500℃X 360m1nの保持の場合に最も
減少していることから、この温度での酸化が著しいもの
と判断される。 550”Cでは15m1n保持まで強
度が向上し、それ以上の温度では、気孔率はl5−21
%、強度は350−500kgf/j (7)範囲テホ
ぼ一定値を示している。 550’C以上の場合、成形
体の表面のみに緻密な酸化層が形成されるために内部ま
で十分な酸化が進行せず、試料全体の強度上昇は認めら
れない、但し、工程■の処理により表面のみが緻密な成
形体を臨む場合にはこの温度での処理も有効となる。
Since the porosity decreases the most when the temperature is maintained at 500° C. and 360 ml, it is judged that oxidation is significant at this temperature. At 550"C, the strength increases to 15m1n, and at higher temperatures, the porosity decreases to 15-21
%, the strength is 350-500 kgf/j (7) It shows a constant value within the range. If the temperature is 550'C or higher, a dense oxidized layer is formed only on the surface of the compact, so oxidation does not progress to the inside sufficiently, and no increase in the strength of the entire sample is observed.However, due to the treatment in step Treatment at this temperature is also effective when facing a molded product whose surface is dense.

■次に、酸化処理条件550’CX 360m1nのも
のにつイテ、750℃、950”C,1050”l、テ
水素雰囲気中ニテ還元焼結を実施した。
(2) Next, reduction sintering was carried out under oxidation treatment conditions of 550'C x 360ml at 750°C, 950''C, 1050''l in a hydrogen atmosphere.

その結果を示すと、第3図のとおりであり、酸化処理を
施さないものは、750’Cではほとんど焼結せず、強
度も低い、これに対し1本発明を採用したものは、同一
温度の焼結で4−3倍以上の強度を示し、したがって同
一強度を得るためには、たとえば焼結温度で約200℃
低く、焼結時間で約176に短縮できることがわがる。
The results are shown in Fig. 3, and the one without oxidation treatment hardly sintered at 750'C and had low strength.In contrast, the one with the present invention applied at the same temperature shows 4-3 times more strength when sintered, so to obtain the same strength, for example, the sintering temperature must be about 200°C.
It can be seen that the sintering time can be reduced to about 176.

このような結果の差異が生じたのは、酸化処理を行わな
い試料では、ただ単に鉄粉接触点の形状改良つまり球状
化により強度が上昇するのに対し、本発明は前述のよう
に酸化処理により接触面積の増加、気孔率の減少が得ら
れ、この状態で還元が行われるためである。
The reason for this difference in results is that in the case of samples without oxidation treatment, the strength increases simply by improving the shape of the iron powder contact point, that is, by making it spherical, whereas in the present invention, the strength increases simply by improving the shape of the iron powder contact point, that is, by making it spherical. This is because the contact area increases and the porosity decreases, and reduction takes place in this state.

また、 1150℃X 60+iin処理により得られ
た金属多孔質体のミクロ組織を示すと第4図(a)のと
おりである、第4図(b)は酸化処理を行わずに還元焼
結した金属多孔質体のミクロ組織を示すものである。こ
れらを比較して明らかなように、酸化処理を行わなかっ
たものは大きな気孔が全体に散在して焼結が進行してい
ないが1本発明の場合は、気孔が細かく分散して微細化
しており、さらにその形状も角が取れて球状化している
In addition, the microstructure of the metal porous body obtained by the 1150°C It shows the microstructure of a porous body. As is clear from comparing these, large pores are scattered throughout the product without oxidation treatment and no sintering progresses, whereas in the case of the present invention, the pores are finely dispersed and become finer. Furthermore, its shape is rounded and spherical.

実施例2 Niアトマイズ粉(−200メツシユ)にエチルシリケ
ートを14%添加して、実施例1と同様な手法により多
孔質体を製造した。500℃X6hrの予備酸化後、1
150℃で30m1n焼結したところ、未処理の試料の
圧縮強度104104O/aJ(気孔率36%)のもの
が圧縮強度3180kgf/d (気孔率32%)へと
゛約3倍の強度上昇を得ることができた。
Example 2 A porous body was produced in the same manner as in Example 1 by adding 14% ethyl silicate to Ni atomized powder (-200 mesh). After preliminary oxidation at 500°C for 6 hours, 1
When sintering 30ml at 150°C, the untreated sample with a compressive strength of 104,104 O/aJ (porosity: 36%) became compressive strength of 3,180 kgf/d (porosity: 32%), an increase of approximately 3 times in strength. was completed.

なお、Fe−8%Cuの混合粉を用いて実施例1と同様
な手法で処理した試料は1.6300kgf/aIt(
気孔率30%)が得られた。
In addition, the sample treated in the same manner as in Example 1 using Fe-8%Cu mixed powder had a yield of 1.6300 kgf/aIt (
A porosity of 30% was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によるときには、スリップキャステ
ィング法による無加圧成形のメリットを生かしつつ、同
時にその弱点をカバーして気孔が微細に分散した高強度
な金属多孔質体を容易に製造できるという優れた効果が
得られる。
According to the present invention as described above, while taking advantage of the advantages of non-pressure forming using the slip casting method, at the same time it is possible to easily manufacture a high-strength metal porous body with finely dispersed pores by covering its weaknesses. Effects can be obtained.

本発明はプラスチックの真空成形、ゴム成形、陶磁器成
形などをはじめとする各種通気性・吸水性の型材や、各
種多孔質機械部品構造用部品等の製造に利用することが
できる。
The present invention can be used to manufacture various types of breathable and water-absorbing mold materials, including vacuum molding of plastics, rubber molding, ceramic molding, etc., and structural parts of various porous mechanical parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の活性化焼結による金属多孔質体の製造
法における成形体の焼結挙動を模式的に示す説明図、第
2図は酸化処理を行った場合の圧縮強度と気孔率の関係
を示すグラフ、第3図は還元焼結に及ぼす酸化処理の影
響を示すグラフ、第4図(a)は本発明により得られた
金属多孔質体のミクロ組織写真(X67)、第4図(b
)は酸化処理を行わない金属多孔質体のミクロ組織写真
(X67)である。
Figure 1 is an explanatory diagram schematically showing the sintering behavior of a molded body in the method of manufacturing a porous metal body by activated sintering of the present invention, and Figure 2 is a diagram showing compressive strength and porosity when oxidation treatment is performed. Figure 3 is a graph showing the influence of oxidation treatment on reduction sintering, Figure 4 (a) is a microstructure photograph (X67) of the porous metal body obtained by the present invention, Figure (b
) is a microstructure photograph (X67) of a metal porous body that is not subjected to oxidation treatment.

Claims (1)

【特許請求の範囲】[Claims] 金属粉末とバインダとの混合試料をスリップキャストに
より成形し、この成形体を乾燥後酸化処理してから還元
性雰囲気中で加熱焼結することを特徴とする活性化焼結
による金属多孔質体の製造法。
A porous metal body is produced by activation sintering, which is characterized in that a mixed sample of metal powder and a binder is molded by slip casting, and this molded body is dried, oxidized, and then heated and sintered in a reducing atmosphere. Manufacturing method.
JP10940886A 1986-05-15 1986-05-15 Production of porous metallic body by activated sintering Granted JPS62267402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10940886A JPS62267402A (en) 1986-05-15 1986-05-15 Production of porous metallic body by activated sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10940886A JPS62267402A (en) 1986-05-15 1986-05-15 Production of porous metallic body by activated sintering

Publications (2)

Publication Number Publication Date
JPS62267402A true JPS62267402A (en) 1987-11-20
JPH0478681B2 JPH0478681B2 (en) 1992-12-11

Family

ID=14509491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10940886A Granted JPS62267402A (en) 1986-05-15 1986-05-15 Production of porous metallic body by activated sintering

Country Status (1)

Country Link
JP (1) JPS62267402A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219430A (en) * 1988-07-08 1990-01-23 Sintokogio Ltd Production of metallic porous body
JPH0413803A (en) * 1990-05-07 1992-01-17 Godo Imono Gijutsu:Kk Method for injection-compacting metal powder
KR100367655B1 (en) * 2000-02-10 2003-01-10 김성균 Process for Making Porous Metals and Alloys
WO2007013712A1 (en) * 2005-07-27 2007-02-01 Korea Research Institute Of Chemical Technology Preparation method of metallic membranes
WO2018212554A1 (en) * 2017-05-16 2018-11-22 주식회사 엘지화학 Method for manufacturing metal foam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115010A (en) * 1973-02-22 1974-11-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115010A (en) * 1973-02-22 1974-11-02

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219430A (en) * 1988-07-08 1990-01-23 Sintokogio Ltd Production of metallic porous body
JPH0413803A (en) * 1990-05-07 1992-01-17 Godo Imono Gijutsu:Kk Method for injection-compacting metal powder
KR100367655B1 (en) * 2000-02-10 2003-01-10 김성균 Process for Making Porous Metals and Alloys
WO2007013712A1 (en) * 2005-07-27 2007-02-01 Korea Research Institute Of Chemical Technology Preparation method of metallic membranes
WO2018212554A1 (en) * 2017-05-16 2018-11-22 주식회사 엘지화학 Method for manufacturing metal foam

Also Published As

Publication number Publication date
JPH0478681B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US6582651B1 (en) Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles
JPS6141867B2 (en)
JP2002129204A (en) Method for manufacturing porous metal
JPH06144948A (en) Production of ceramic porous body
JPS62267402A (en) Production of porous metallic body by activated sintering
JPS60246264A (en) Manufacture of silicon carbide material
US5141683A (en) Method of producing reinforced materials
CN111868008A (en) Method for producing porous preforms with controlled porosity from silicon carbide and porous preforms of silicon carbide
JPH0436117B2 (en)
JPS6196008A (en) Production of porous forming mold
Takata et al. Influence of Hipping Pressure on The Strength and The Porosity of Porous Copper
JPS63140740A (en) Mold for casting active metal of high melting point
JPH0826366B2 (en) Mold made of metal powder compact and manufacturing method thereof
Kuchkorov et al. Features of Mechanical Characteristics of Sand-Clay Mixtures in the Production of a Particularly Responsible Purpose Steel Castings
JP2654999B2 (en) Precision suction mold
JP2005320581A (en) Method for manufacturing porous metal body
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
US3153825A (en) Carbon-bonded refractory casting mold and process for fabrication thereof
JPH0324204A (en) Method for cast-forming powder body
Kumar et al. Effect of shell thickness and firing temperature on properties of modified ceramic shell for precision casting of Al-Si alloys
JPH0210118B2 (en)
RU2408741C2 (en) Procedure for production of high porous material
JPS6244506A (en) Manufacture of porous sintered body of stainless steel powder
KR100462396B1 (en) Fabrication Process of Porous SiC Particulate Preform Using Polymer Former
JPS62164847A (en) Manufacture of porous sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees