JPH0324204A - Method for cast-forming powder body - Google Patents

Method for cast-forming powder body

Info

Publication number
JPH0324204A
JPH0324204A JP15833889A JP15833889A JPH0324204A JP H0324204 A JPH0324204 A JP H0324204A JP 15833889 A JP15833889 A JP 15833889A JP 15833889 A JP15833889 A JP 15833889A JP H0324204 A JPH0324204 A JP H0324204A
Authority
JP
Japan
Prior art keywords
powder
slurry
dispersion medium
mold
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15833889A
Other languages
Japanese (ja)
Inventor
Hiroaki Nishio
浩明 西尾
Akira Kato
明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15833889A priority Critical patent/JPH0324204A/en
Priority to US07/540,555 priority patent/US5021213A/en
Priority to EP90111776A priority patent/EP0404159A1/en
Publication of JPH0324204A publication Critical patent/JPH0324204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

PURPOSE:To obtain a cast-formed body of powder in which strain and deformation are difficult-to-be-developed in the inner part thereof, by dispersing metal powder or ceramic powder into dispersion medium, casting the obtd. slurry into a porous mold, heating the slurry together with the mold, vaporizing or heat-decomposing the dispersion medium and removing this. CONSTITUTION:Mixed powder of 2% Ni and 98% Fe, metal powder of SUS316 powder, etc., or ceramic powder of Al2O3 powder, ZrO2 powder, etc., is dispersed in the dispersion medium of alcohol kind, ketone kind, etc., to make the slurry. In this case, particle diameter of the above powder is about 0.2 - 100mum and concn. of the powder in the slurry is desirable to be 45 - 85vol.%. Successively, this slurry is cast into the porous mold composed or porous sintered ceramic, etc., of alumina, etc. Then, this porous mold containing the slurry is charged into a heating device and heated to the necessary temp. to vaporization and heat decomposition of the dispersion medium to remove the dispersion medium. In this result, from the obtd. formed body a sintered body having extremely high dimensional accuracy is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属粉またはセラミック粉を液状分散媒に
分散させてスラリーとし、このスラリーを鋳型に鋳込む
威形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of dispersing metal powder or ceramic powder in a liquid dispersion medium to form a slurry, and casting the slurry into a mold.

〔従来の技術〕[Conventional technology]

金属粉、セラミック粉、セラ【ツクスと金属との混合粉
を戒形する方法として鋳込み威形法がある。
Metal powder, ceramic powder, cera [casting method is a method for forming mixed powder of tsukusu and metal.

本発明者らは、先に特開昭62−192502号公報に
おいて、金属粉あるいはセラミック粉を、液体または超
臨界の二酸化炭素によって抽出可能であってかつ融点が
0〜100゜Cの物質を主要威分とする分散媒に分散せ
しめてスラリーとなし、このスラリーを非吸液性の鋳型
に鋳込む金属粉あるいはセラ壽ツク粉の成形方法を開示
した。この方法においては、鋳込んだスラリーを冷却し
て凍結固化させて成形体としてから脱型し、ついで、液
体または超臨界の二酸化炭素により成形体中の分散媒の
主要部分を抽出除去している。このようにして得られた
戒形体を加熱して、残留分散媒を熱分解によって除去す
る。ついで焼結工程で緻密化をはかり焼結体とする上記
の工程の概要を第7図に示す。
The present inventors previously disclosed in Japanese Patent Application Laid-Open No. 62-192502 that metal powders or ceramic powders can be extracted with liquid or supercritical carbon dioxide, and that the main material is a substance with a melting point of 0 to 100°C. A method for forming metal powder or ceramic powder is disclosed in which the powder is dispersed in a suitable dispersion medium to form a slurry, and the slurry is cast into a non-liquid-absorbing mold. In this method, the cast slurry is cooled and freeze-solidified to form a molded body, which is then demolded, and then the main portion of the dispersion medium in the molded body is extracted and removed using liquid or supercritical carbon dioxide. . The shaped body thus obtained is heated to remove the residual dispersion medium by thermal decomposition. Then, in the sintering process, the sintered body is densified to form a sintered body. An outline of the above process is shown in FIG.

このような焼結体は必要があれば機械加工を加えて、切
削工具、機械構造部品等として使用される。
Such sintered bodies are used as cutting tools, mechanical structural parts, etc. after being subjected to machining if necessary.

本発明者らはまた前記の改良法として、超臨界流体また
は液化ガスによって抽出可能な液体を少なくとも分散媒
の10重量%含む分散媒に金属粉またはセラミック粉を
分散させたスラリーを多孔質鋳型に鋳込み、この久ラリ
ーを多孔質鋳型に入れたまま分散媒の融点以上の温度に
保持し、分散媒の少なくとも10重景%を超臨界流体ま
たは液化ガスにより抽出して被処理物に保形性を付与す
る方法も開発した(特願昭63−218300号明細書
)。
The present inventors have also proposed an improved method in which a slurry in which metal powder or ceramic powder is dispersed in a dispersion medium containing at least 10% by weight of a liquid extractable by a supercritical fluid or liquefied gas is placed in a porous mold. Casting, the slurry is kept in a porous mold at a temperature higher than the melting point of the dispersion medium, and at least 10% of the dispersion medium is extracted with a supercritical fluid or liquefied gas to give the object shape retention. We have also developed a method for imparting (Japanese Patent Application No. 1983-218300).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の金属粉およびセラ旦ツク粉の鋳込み戒形法には次
に示すような問題点がある。すなわち、スラリーを鋳込
み後冷却して凝固させるが、凝固に伴い分散媒に体積変
化が生ずる。例えば、分散媒としてバラフィンワックス
を使用すると約25%もの体積収縮が生ずる。凝固は鋳
型と接する部分からはじまり凝固部分が収縮することに
より被処理物内部に歪が生じる。この結果、凝固が完了
し保形性を得た被処理物、すなわち、戒形体は程度の差
はあれ、必らず変形する。このため説型が困難になった
り、脱型時に型離れが悪く戒形体が破損することすらあ
る。変形の程度は調製したスラリーの温度、鋳込み圧力
、鋳型の冷媒温度、保圧時間に著しく左右される。従っ
て適正な鋳込み条件を見出す必要があるが、これには長
時間の試行ti誤を要する。また、成形時の内部歪は後
工程の超臨界流体または液化ガスによる抽出、熱分解、
焼結の時に解放されて変形が進行する。そして、焼結体
の寸法精度を不十分なものにする大型異形品になれば、
この問題点はさらに顕著になる。
The conventional method of casting metal powder and ceramic powder has the following problems. That is, after the slurry is poured, it is cooled and solidified, but the solidification causes a volume change in the dispersion medium. For example, when paraffin wax is used as a dispersion medium, a volume shrinkage of about 25% occurs. Solidification begins at the part in contact with the mold, and as the solidified part contracts, distortion occurs inside the object. As a result, the object to be treated, which has been solidified and has achieved shape retention, is inevitably deformed to varying degrees. For this reason, it becomes difficult to form the mold, and the kai-form body may even be damaged due to difficulty in separating from the mold when removing the mold. The degree of deformation depends significantly on the temperature of the prepared slurry, the casting pressure, the temperature of the coolant in the mold, and the holding time. Therefore, it is necessary to find appropriate casting conditions, but this requires a long period of trial and error. In addition, internal strain during molding can be reduced by extraction with supercritical fluid or liquefied gas in the post-process, thermal decomposition,
It is released during sintering and deformation progresses. And when it comes to large irregularly shaped products that make the dimensional accuracy of the sintered body insufficient,
This problem becomes even more obvious.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる問題点を解決するべくなされたものであ
り、分散媒に金属粉またはセラミック粉を分散させたス
ラリーを多孔質鋳型に鋳込み、このスラリーを多孔質鋳
型に入れたまま加熱することにより分散媒を蒸発させあ
るいは熱分解させて除去することによって保形性のある
戒形体に転化しうることを見出してなされたものである
The present invention was made to solve this problem, and by casting a slurry in which metal powder or ceramic powder is dispersed in a dispersion medium into a porous mold, and heating the slurry while it is in the porous mold. This was achieved by discovering that by removing the dispersion medium by evaporation or thermal decomposition, it can be converted into a shape-retaining body.

本発明の方法で戒形される粉体は2%Ni−98%re
混合粉、SUS316粉、高速度鋼粉等の金属粉、アル
ξナ粉、ジルコニア粉、窒化ケイ素粉、炭化ケイ素粉等
のセラξツク粉、炭化タングステンーコバルト混合粉、
炭化チタン一ニッケル混合粉等の金属とセラξツクスの
混合粉である。これらの粉体の粒径は0.2〜100n
程度である。
The powder formed by the method of the present invention is 2%Ni-98%re.
Mixed powder, metal powder such as SUS316 powder, high speed steel powder, ceramic powder such as alumina powder, zirconia powder, silicon nitride powder, silicon carbide powder, tungsten carbide-cobalt mixed powder,
It is a mixed powder of metal such as titanium carbide-nickel mixed powder and ceramics. The particle size of these powders is 0.2-100n
That's about it.

金属またはセラミック粉を分散させる分散媒は粉末に流
動性を付与する役割を担うが、従来の方法のように戒形
用バインダーとしての役割は不要である。本発明では分
散媒を加熱除去することによってスラリ一の流動性を消
失させて保形性を生じさせ、戒形体とするからである。
The dispersion medium that disperses the metal or ceramic powder plays the role of imparting fluidity to the powder, but does not need to play the role of a binder for prescribing as in conventional methods. This is because, in the present invention, by heating and removing the dispersion medium, the fluidity of the slurry is lost and shape retention is produced, resulting in a shaped body.

この目的にあう液体としてはメチルアルコール、エチル
アルコール、プロビルアルコール、ブチルアルコール等
のアルコール類、アセトン等のケトン類、ヘキサン、ベ
ンゼン等の炭化水素、流動パラフィン等多数ある。金属
粉またはセラξツク粉のスラリーを形威させる際に撹拌
等によってスラリーに混入した空気を真空に吸引して除
去しうる点でこれらのなかで高真空状態にしうるものが
好ましく、例えば流動バラフィンは好適に使用できる.
このような液体のみで分散媒を構戒することもできる。
There are many liquids suitable for this purpose, such as alcohols such as methyl alcohol, ethyl alcohol, probyl alcohol, and butyl alcohol, ketones such as acetone, hydrocarbons such as hexane and benzene, and liquid paraffin. Among these, those that can be made into a high vacuum state are preferable in that they can remove air mixed into the slurry by stirring or the like when shaping a slurry of metal powder or ceramic powder, such as liquid paraffin. can be suitably used.
It is also possible to use only such a liquid as a dispersion medium.

単味で適正な流動性が得られない場合には、オレイン酸
等の分散剤、あるいは、ポリビニルアルコール、ポリビ
ニルブチラール、メチルセルロース、カルボキシメチル
セルロース、エチルセルロ−ス、パラフィンワックス、
フェノール樹脂等の増粘剤を加えて、流動性を調節する
If proper fluidity cannot be obtained with a single agent, use a dispersant such as oleic acid, polyvinyl alcohol, polyvinyl butyral, methylcellulose, carboxymethylcellulose, ethylcellulose, paraffin wax,
Add a thickener such as phenolic resin to adjust fluidity.

スラリーは鋳込みに必要な流動性を確保できる範囲にお
いてできうる限り金属粉またはセラ旦ツタ粉の濃度の高
いものがよい。その濃度は45容積%以上85容積%以
下とすることが望ましい。45容積%未満では焼結工程
で緻密化が難かしく、また85容積%を越えると、粉の
粒度分布、分散剤等を工夫しても鋳込みに必要な流動性
を得るのは困難となるのである。適正な流動性の目安と
してはスラリーの粘度が50〜104ボイズの範囲にあ
ることである。
It is preferable that the slurry has as high a concentration of metal powder or seradan ivy powder as possible within a range that can ensure the fluidity necessary for casting. The concentration is desirably 45% by volume or more and 85% by volume or less. If it is less than 45 volume%, it will be difficult to densify it during the sintering process, and if it exceeds 85 volume%, it will be difficult to obtain the fluidity necessary for casting even if the particle size distribution of the powder, dispersant, etc. are modified. be. A measure of proper fluidity is that the viscosity of the slurry is in the range of 50 to 104 voids.

多孔質鋳型はスラリ一の鋳込み時の保圧に耐える強度と
分散媒の加熱除去時に発生するガスが鋳型を通って外部
に移動できる通気性を保有しなければならない。この目
的に合う材料としては、石膏、例えばケイ砂、アル【ナ
、被処理物と同質のセラξツク粉等のセラ藁ツタ粉に、
例えばエチルシリケートの加水分解液、ポリビニルアル
コール、ポリビニルブチラール、メチルセルロース、カ
ルボキシメチルセルロース、エチルセルロース、パラフ
ィンワンクス、フェノール樹脂、エボキシ樹脂等の有機
バインダーを加えたもの、アルミナ等の多孔質焼結セラ
ミックス、ステンレス等の多孔質焼結金属、発泡スチレ
ン、発泡ウレタン等の発泡有機材料などが挙げられる。
The porous mold must have the strength to withstand the holding pressure during casting of the slurry and the permeability to allow the gas generated when the dispersion medium is heated and removed to move to the outside through the mold. Materials suitable for this purpose include gypsum, silica sand, alkaline powder, and sera-ivy powder, which is the same as the material to be treated.
For example, ethyl silicate hydrolyzate, polyvinyl alcohol, polyvinyl butyral, methyl cellulose, carboxymethyl cellulose, ethyl cellulose, paraffin wax, phenol resin, epoxy resin, etc., with organic binders added, porous sintered ceramics such as alumina, stainless steel, etc. Examples include porous sintered metals, foamed organic materials such as foamed styrene, and foamed urethane.

多孔質鋳型の構造例を第2図に示す。これは割り型とな
っており、繰り返し使用が可能である。
An example of the structure of a porous mold is shown in FIG. This is a split type and can be used repeatedly.

これと同一のキャビティを有する従来の方法のための鋳
型を第3図に示す。この場合、スラリーを冷却するため
に鋳型は冷媒配管1を内蔵させる必要がある。効率の良
い冷却のために鋳型は可能な限り高い熱伝導率を必要と
し、このためには材質をアルくニウム等の金属とする必
要がある。結果的に高価な材料を使用して複雑な構造と
することは避けられない。
A mold for a conventional method having this same cavity is shown in FIG. In this case, the mold needs to have a built-in refrigerant pipe 1 in order to cool the slurry. For efficient cooling, the mold needs to have as high a thermal conductivity as possible, and for this purpose it is necessary to use a metal such as aluminium. As a result, the use of expensive materials and complex structures are unavoidable.

本発明の方法のための多孔質鋳型の別の構造例を第4図
に示す。これはいわゆるシェル鋳型である.すなわち、
ワックス、尿素樹脂等の樹脂等で鋳型のキャビティ形状
に相当するパターンを作成し、このパターン表面にセラ
ξツク粉を有機バインダーにより被覆し、所定の厚みと
したのち、水蒸気処理、熱分解、水洗等により内部のワ
ックス、樹脂等を除去する。こうして多孔質のシェル鋳
型を得る.この型は毎回使い捨てになるが、複雑な形状
に対処できる利点がある。このシェル鋳型形戒に熱分解
して消失する有機バインダーを使用し、シェル鋳型に被
処理物を入れたまま加熱して、有機バインダーを被処理
物中の分散媒とともに熱分解除去させることによってシ
ェル鋳型を強度低下させて後続の脱型を容易にするか、
または自己崩壊させることにより脱型工程を省くことも
できる。
Another example of a porous mold structure for the method of the invention is shown in FIG. This is a so-called shell mold. That is,
A pattern corresponding to the shape of the mold cavity is created using resin such as wax or urea resin, and the surface of this pattern is coated with ceramic powder using an organic binder to obtain a desired thickness, followed by steam treatment, thermal decomposition, and water washing. Remove internal wax, resin, etc. In this way, a porous shell mold is obtained. Although this mold is disposable each time, it has the advantage of being able to handle complex shapes. An organic binder that disappears through thermal decomposition is used in this shell mold, and the shell mold is heated with the object to be processed in it to thermally decompose and remove the organic binder along with the dispersion medium in the object. Reduce the strength of the mold to facilitate subsequent demolding, or
Alternatively, the demolding step can be omitted by causing self-disintegration.

このような目的にはシェル鋳型の有機バインダーとして
ポリビニルアルコール、ポリビニルブチラール、メチル
セルロース、カルボキシメチルセルロース、エチルセル
ロース等が適用できる。これらバインダーを熱分解させ
るためには400’C以上1200’C以下が適してい
る。
For this purpose, polyvinyl alcohol, polyvinyl butyral, methyl cellulose, carboxymethyl cellulose, ethyl cellulose, etc. can be used as an organic binder for the shell mold. In order to thermally decompose these binders, a temperature of 400'C to 1200'C is suitable.

金属粉またはセラミック粉を分散媒と混合して混練して
作ったスラリーを多孔質鋳型に鋳込む。
A slurry made by mixing metal powder or ceramic powder with a dispersion medium and kneading it is cast into a porous mold.

スラリーを入れた多孔質鋳型を加熱装置に装入し、分散
媒の蒸発あるいは熱分解に必要な温度に加熱する。その
際必要により減圧することもできる。
The porous mold containing the slurry is placed in a heating device and heated to a temperature necessary for evaporation or thermal decomposition of the dispersion medium. At this time, the pressure can be reduced if necessary.

加熱温度は熱分解の場合には400〜600゜C程度が
好適である。分散媒の除去後必要によりl000〜13
00゜C程度まで仮焼すれば戒形体の保形強度を増すこ
とができる。次いで、多孔質鋳型に入った被処理物を取
り出して脱型することにより成形体が得られる。本発明
の工程のフローを第l図に示す。
In the case of thermal decomposition, the heating temperature is preferably about 400 to 600°C. 1000-13 if necessary after removing the dispersion medium
By calcining to about 00°C, the shape-retaining strength of the precepts can be increased. Next, the object to be treated that has entered the porous mold is taken out and demolded to obtain a molded body. The process flow of the present invention is shown in FIG.

使い捨てのシェル鋳型の場合には下記の工程としてもよ
い。すなわち、熱分解工程時に被処理物中の分散媒と共
にシェル鋳型の有機バインダーを熱分解除去してシェル
鋳型の強度低下もしくは自己崩壊させる。ついで、脱型
工程を経て戒形体を得る。
In the case of a disposable shell mold, the following steps may be used. That is, during the thermal decomposition process, the organic binder of the shell mold is removed by thermal decomposition together with the dispersion medium in the object to be treated, thereby reducing the strength of the shell mold or causing it to self-destruct. Next, a pre-shaped body is obtained through a demolding process.

戒形体は焼結工程を経て緻密な焼結体とする。The precept form is made into a dense sintered body through a sintering process.

〔作用〕[Effect]

本発明の粉体の鋳込み戊形方法においては、従来の分散
媒の凝固現象を利用した成形に代わって分散媒を加熱に
よって蒸発させあるいは熱分解して除去することにより
スラリーの流動性を消失させて成形している。
In the powder casting method of the present invention, the fluidity of the slurry is lost by evaporating the dispersion medium by heating or removing it by thermal decomposition, instead of the conventional molding using the solidification phenomenon of the dispersion medium. It is molded using

〔実施例〕〔Example〕

実施例1 窒化ケイ素のボルトを作成した。まず平均粒径0.75
μ一のsi,s492.0重景部と焼結助剤としての平
均粒径0.54のy2o36.0重量部、平均粒径1.
20t!mのAltos 2.0重量部に流動パラフィ
ン27.6重量部、オレイン酸3.0重量部を加えて2
4時間混練した。
Example 1 A silicon nitride bolt was made. First, the average particle size is 0.75.
si, s492.0 heavy part of μ1 and 36.0 parts by weight of y2o with an average particle size of 0.54 as a sintering aid, an average particle size of 1.
20t! Add 27.6 parts by weight of liquid paraffin and 3.0 parts by weight of oleic acid to 2.0 parts by weight of Altos of m.
The mixture was kneaded for 4 hours.

得られたスラリーを真空雰囲気に晒して脱泡した。The obtained slurry was exposed to a vacuum atmosphere to degas it.

一方、第5図と第6図に示すボルトに対応するキャビテ
ィ形状のシェル鋳型を同上の窒化ケイ素粉末100重量
部にポリビニルブチラール5重量部をバインダーとして
加えて成形した。このシェル鋳型に上記スラリーを22
℃、鋳込み圧力3 Kg/cm”で鋳込んだ。鋳込み開
始によって鋳込み圧力は一時的に低下したが3 Kg/
c一まで回復したことを確認後、ただちに鋳型をスラリ
ーを充填したまま取り外した。これを脱脂炉に装入し、
窒素ガスを流通させながら500゜Cまでl時間3゜C
の昇温速度で昇温した。500゜Cに到達後2時間その
まま保持してから放冷し、大気圧に戻した。この結果、
鋳型はきわめて脆いものとなっていて容易に除去でき、
健全な戒形体が得られた。これをSi,N. 50重量
%、Sing 50重量%の詰め粉に埋めて焼結炉に装
入し、真空中で1200″Cまで昇温し30分間保持し
た。続いて、窒素ガスをガス圧9 .5Kg/cm”で
流通させながら、さらに1800゜Cまで昇温し2時間
保持した。ガス圧を9 .5Kg/cm”に保持しつつ
1000゜Cまで冷却し、さらに常圧に戻して放冷した
On the other hand, a cavity-shaped shell mold corresponding to the bolt shown in FIGS. 5 and 6 was molded by adding 5 parts by weight of polyvinyl butyral as a binder to 100 parts by weight of the above silicon nitride powder. Add the above slurry to this shell mold for 22 hours.
℃, and a casting pressure of 3 Kg/cm. Although the casting pressure temporarily decreased by the start of casting, it remained at 3 Kg/cm.
After confirming that the slurry had recovered to c1, the mold was immediately removed with the slurry still being filled. Charge this into a degreasing furnace,
3°C for 1 hour to 500°C while flowing nitrogen gas
The temperature was increased at a rate of . After reaching 500°C, the temperature was maintained for 2 hours, then allowed to cool, and the pressure was returned to atmospheric pressure. As a result,
The mold is extremely brittle and can be easily removed.
A healthy precept form was obtained. Si,N. It was filled with packing powder of 50% by weight and Sing 50% by weight and charged into a sintering furnace, and the temperature was raised to 1200''C in vacuum and held for 30 minutes. Subsequently, nitrogen gas was introduced at a gas pressure of 9.5Kg/cm. The temperature was further raised to 1,800°C and held for 2 hours while circulating at a temperature of 1,800°C. Increase the gas pressure to 9. It was cooled to 1000°C while maintaining the pressure at 5Kg/cm'', and then returned to normal pressure and allowed to cool.

この結果、理論密度比で98.1%の焼結体が得られた
。このボルト形状の焼結体の各部A,B,C、Dの収縮
率を測定した。結果を第1表に示すが、ばらつきは0.
1%で極めてわずかであった。
As a result, a sintered body with a theoretical density ratio of 98.1% was obtained. The shrinkage rate of each part A, B, C, and D of this bolt-shaped sintered body was measured. The results are shown in Table 1, and the variation is 0.
It was extremely small at 1%.

第1表 比較例1 実施例lと同一形状、同一寸法のボルト金型を使って窒
化ケイ素のボルトを作威した。まず、実施例lと同一の
配合の原料粉100重量部に対して融点42゜Cのパラ
フィン27.6重量部、オレイン酸3.0重量部を加え
て90゜Cで24時間混練した。得られたスラリーを真
空雰囲気に晒して脱泡した。このスラリーを90゜C1
鋳込み圧力3 Kg/cta”で10゜Cの冷却水を通
した金型に鋳込み、鋳込圧力3kg/cm2まで回復し
た後スラリーの凝固終了のために5分間保持してから脱
型した。次いで成形体を抽出装置に装入し、200Kg
/cs+” 、60゜Cの超臨界二酸化炭素を流通させ
ながら4時間接触させた。この間に抽出されたバラフィ
ンとオレイン酸の混合物は戒形体中の分散媒の62重量
%に相当した。引き続き、加圧脱脂炉に装入した。雰囲
気は窒素としガス圧6kg/cn+”で流通させながら
100″C /Hrの昇温速度で昇温した。500゜C
に到達後、1時間そのまま保持してから放冷し、大気圧
に戻した。こうして分散媒を熱分解により完全に除去で
きた。実施例1と同一条件で焼結を実施したところ、理
論密度比98.4%の焼結体が得られた。各部の収縮率
を前記の第1表に示すが、ばらつきは0.6%であり、
明らかに実施例1より寸法精度において劣っていた。
Table 1 Comparative Example 1 A silicon nitride bolt was made using a bolt mold having the same shape and dimensions as in Example 1. First, 27.6 parts by weight of paraffin having a melting point of 42°C and 3.0 parts by weight of oleic acid were added to 100 parts by weight of raw material powder having the same composition as in Example 1, and the mixture was kneaded at 90°C for 24 hours. The obtained slurry was exposed to a vacuum atmosphere to degas it. This slurry was heated to 90°C1
The slurry was poured into a mold through which cooling water at 10°C was passed at a casting pressure of 3 kg/cta, and after the casting pressure had recovered to 3 kg/cm2, the slurry was held for 5 minutes to complete solidification and then removed from the mold. The molded body is charged into the extraction device and weighs 200Kg.
/cs+" and 60°C supercritical carbon dioxide was passed through the mixture for 4 hours. The mixture of paraffin and oleic acid extracted during this period corresponded to 62% by weight of the dispersion medium in the shaped body.Subsequently, The material was charged into a pressure degreasing furnace. The atmosphere was nitrogen, and the temperature was raised at a rate of 100"C/Hr while circulating the gas at a gas pressure of 6kg/cn+". 500°C.
After reaching the temperature, the pressure was maintained for 1 hour, then allowed to cool, and the pressure was returned to atmospheric pressure. In this way, the dispersion medium could be completely removed by thermal decomposition. When sintering was carried out under the same conditions as in Example 1, a sintered body with a theoretical density ratio of 98.4% was obtained. The shrinkage rate of each part is shown in Table 1 above, and the variation is 0.6%.
It was clearly inferior to Example 1 in dimensional accuracy.

(発明の効果) 本発明の方法では従来の方法に比べて時間がかかるが従
来の方法のように通常体積変化を伴なう分散媒の相変態
が起きないので、成形体の内部に歪、変形が生じにくい
、この結果、きわめて寸法精度の高い焼結体が得られる
(Effects of the Invention) Although the method of the present invention takes more time than the conventional method, it does not cause phase transformation of the dispersion medium that normally accompanies a volume change as in the conventional method, so there is no strain inside the molded body. As a result, a sintered body with extremely high dimensional accuracy can be obtained.

また、従来法では鋳型の適正な冷却条件を見出すために
試行錯誤が必要であったが、本発明の方法においては、
これは全く不要である。
In addition, in the conventional method, trial and error was required to find the appropriate cooling conditions for the mold, but in the method of the present invention,
This is completely unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の方法の一態様を示す工程系統図である
。第2図は本発明の方法に使用される鋳型の1例の断面
図であり、第3図は従来の方法で使用されていた鋳型の
1例の断面図である。第4図は本発明の方法に使用され
る鋳型の別の例の断面図である。第5図は戒形体の1例
の平面図であり、第6図は正面図である。第7図は従来
の方法の工程系統図である。
FIG. 1 is a process flow diagram showing one embodiment of the method of the present invention. FIG. 2 is a sectional view of an example of a mold used in the method of the present invention, and FIG. 3 is a sectional view of an example of a mold used in the conventional method. FIG. 4 is a cross-sectional view of another example of a mold used in the method of the invention. FIG. 5 is a plan view of an example of a precept-shaped body, and FIG. 6 is a front view. FIG. 7 is a process flow diagram of a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 分散媒に金属粉またはセラミック粉を分散させたスラリ
ーを多孔質鋳型に鋳込み、このスラリーを多孔質鋳型に
入れたまま加熱することにより分散媒を蒸発させあるい
は熱分解させて除去することを特徴とする金属粉または
セラミック粉の成形体の製造方法
A slurry in which metal powder or ceramic powder is dispersed in a dispersion medium is cast into a porous mold, and the slurry is heated while in the porous mold to evaporate or thermally decompose the dispersion medium and remove it. Method for manufacturing a molded body of metal powder or ceramic powder
JP15833889A 1989-06-22 1989-06-22 Method for cast-forming powder body Pending JPH0324204A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15833889A JPH0324204A (en) 1989-06-22 1989-06-22 Method for cast-forming powder body
US07/540,555 US5021213A (en) 1989-06-22 1990-06-20 Method of casting powder
EP90111776A EP0404159A1 (en) 1989-06-22 1990-06-21 Method of casting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15833889A JPH0324204A (en) 1989-06-22 1989-06-22 Method for cast-forming powder body

Publications (1)

Publication Number Publication Date
JPH0324204A true JPH0324204A (en) 1991-02-01

Family

ID=15669455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15833889A Pending JPH0324204A (en) 1989-06-22 1989-06-22 Method for cast-forming powder body

Country Status (1)

Country Link
JP (1) JPH0324204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062011A (en) * 1992-06-24 1994-01-11 Agency Of Ind Science & Technol Production of powder compact
US5500790A (en) * 1991-11-21 1996-03-19 Ichikoh Industries, Ltd. Device for confirming optical-axis adjustment of automotive headlamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119704A (en) * 1984-07-06 1986-01-28 Ishikawajima Harima Heavy Ind Co Ltd Preparation of sintered machine parts
JPS6167703A (en) * 1984-09-07 1986-04-07 Sintokogio Ltd Production of porous metallic pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119704A (en) * 1984-07-06 1986-01-28 Ishikawajima Harima Heavy Ind Co Ltd Preparation of sintered machine parts
JPS6167703A (en) * 1984-09-07 1986-04-07 Sintokogio Ltd Production of porous metallic pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500790A (en) * 1991-11-21 1996-03-19 Ichikoh Industries, Ltd. Device for confirming optical-axis adjustment of automotive headlamp
JPH062011A (en) * 1992-06-24 1994-01-11 Agency Of Ind Science & Technol Production of powder compact

Similar Documents

Publication Publication Date Title
US5021213A (en) Method of casting powder
US4041123A (en) Method of compacting shaped powdered objects
US2869215A (en) Molding method
CN106830942B (en) Porous B4C ceramic skeleton and its freezing injection moulding process
CN110732637A (en) turbine blade air film hole precision forming method
JPS61287702A (en) Method of molding powdered body
JP2002129204A (en) Method for manufacturing porous metal
JPH0270007A (en) Method for casting and molding powder
US20060211567A1 (en) Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body
US4139393A (en) Ceramic core for use in making molds and dies
JPH0324204A (en) Method for cast-forming powder body
EP0380973A1 (en) Reinforced materials
JPH0436117B2 (en)
JP2002530220A (en) Low pressure injection molding of metals and ceramics using flexible molds
JPS63309403A (en) Mold for casting and molding of slurry
CN114367663A (en) Preparation method of fully-compact titanium alloy thin-wall part with complex shape
JPH0344405A (en) Casting forming method for powder
JPH0478681B2 (en)
CN111592359A (en) Method for preparing porous WC ceramic based on porous carbon template
JPS63140740A (en) Mold for casting active metal of high melting point
JPS63311082A (en) Production unit for high-density sintered body
JP4018488B2 (en) INORGANIC POROUS BODY AND INORGANIC OBJECT USING THE SAME AND PUMP IMPELLER, CASING OR LINER RING
JPH059507A (en) Method for molding powder
US3153825A (en) Carbon-bonded refractory casting mold and process for fabrication thereof
JPH05200711A (en) Method for molding powder