WO2017017708A1 - Method for producing cobalt-base alloy member - Google Patents

Method for producing cobalt-base alloy member Download PDF

Info

Publication number
WO2017017708A1
WO2017017708A1 PCT/JP2015/003741 JP2015003741W WO2017017708A1 WO 2017017708 A1 WO2017017708 A1 WO 2017017708A1 JP 2015003741 W JP2015003741 W JP 2015003741W WO 2017017708 A1 WO2017017708 A1 WO 2017017708A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
gas
based alloy
aluminizing
heat treatment
Prior art date
Application number
PCT/JP2015/003741
Other languages
French (fr)
Japanese (ja)
Inventor
日野 武久
今井 潔
聡 宮代
斎藤 大蔵
歴 高久
秀幸 前田
岩太郎 佐藤
国彦 和田
高橋 武雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2017530457A priority Critical patent/JPWO2017017708A1/en
Priority to PCT/JP2015/003741 priority patent/WO2017017708A1/en
Publication of WO2017017708A1 publication Critical patent/WO2017017708A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • Embodiment of this invention is related with the manufacturing method of a cobalt base alloy member.
  • the combustion gas In gas turbines, the combustion gas is being heated to improve its performance.
  • the temperature of the combustion gas near the inlet of the stationary blade was about 1100 ° C. in the 1990s, but is about 1300 to 1500 ° C. in the 2000s.
  • the CO 2 turbine uses supercritical carbon dioxide as a medium.
  • the CO 2 turbine has excellent environmental characteristics because it can effectively use carbon dioxide from combustion and also suppresses emission of nitrogen oxides.
  • cobalt base alloys have been used for stationary blades in gas turbines for the following reasons. That is, since a stationary blade in a gas turbine is a stationary member, higher strength is not necessarily required compared to a rotating member such as a moving blade. On the other hand, the cobalt-based alloy is not necessarily high in strength as compared with a nickel-based alloy or the like, but is easy to repair because of its good weldability, and the price is low. For these reasons, a cobalt-based alloy is used for a stationary blade in a gas turbine.
  • Cobalt-based alloys usually contain chromium.
  • chromium contained in the cobalt-based alloy is oxidized to chromium oxide (Cr 2 O 3 ).
  • Cr 2 O 3 chromium oxide
  • the surface temperature of the stationary blade exceeds 1000 ° C. due to the high temperature of the combustion gas in the gas turbine.
  • the combustion gas is heated to a higher temperature than the conventional gas turbine, and the surface temperature of the stationary blade is expected to exceed 1000 ° C.
  • Aluminizing treatment is known as a method for improving oxidation resistance at high temperatures.
  • the oxidation resistance was lowered at a high temperature exceeding 1000 ° C. as compared with the case where the aluminizing treatment was not performed.
  • the problem to be solved by the present invention is to provide a cobalt-based alloy member having improved oxidation resistance at high temperatures.
  • Method for producing a cobalt-based alloy of embodiment a step of preparing a aluminizing is performed cobalt-based alloy, to the aluminizing is performed cobalt-based alloy, 1 ⁇ 10 -5 Pa ⁇ Heat treatment at a vacuum degree of 1 ⁇ 10 ⁇ 3 Pa.
  • the method for producing a cobalt-based alloy member of the embodiment by performing a heat treatment at a vacuum degree of 1 ⁇ 10 ⁇ 5 Pa to 1 ⁇ 10 ⁇ 3 Pa on the cobalt-based alloy subjected to the aluminizing treatment,
  • the oxidation resistance can be improved by increasing the content of aluminum oxide in the protective film.
  • the method for producing a cobalt-based alloy member according to the embodiment includes a step of heat-treating a cobalt-based alloy that has undergone aluminizing treatment at a vacuum degree of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 Pa (hereinafter referred to as heat treatment). Step).
  • the reason why the oxidation resistance is improved by the heat treatment is considered as follows.
  • an aluminizing layer is formed on the surface of the main body made of the cobalt-based alloy.
  • the aluminum concentration in the aluminizing layer is 30 mass% or more higher than that of the main body.
  • the concentration difference is large as described above, aluminum in the aluminizing layer is likely to diffuse to the main body side when exposed to a high-temperature oxidizing atmosphere.
  • the concentration of aluminum in the aluminizing layer decreases.
  • the decrease in concentration is achieved, for example, by increasing the thickness of the aluminizing layer.
  • the aluminum concentration in the aluminizing layer is lowered, the aluminum in the aluminizing layer is likely to diffuse to the surface side (the side opposite to the main body side) when the high-temperature oxidizing atmosphere is touched. Thereby, the content rate of the aluminum oxide in the protective film formed in the surface of an aluminizing layer becomes high, and oxidation resistance improves.
  • the degree of vacuum during heat treatment is 1 ⁇ 10 ⁇ 5 Pa to 1 ⁇ 10 ⁇ 3 Pa
  • metal oxides other than aluminum oxide are decomposed and decomposition of aluminum oxide is suppressed.
  • the content rate of the aluminum oxide in the protective film formed in the surface of an aluminizing layer becomes high, and oxidation resistance improves.
  • FIG. 1 is a cross-sectional view showing a cobalt-based alloy subjected to an aluminizing process used in a heat treatment process.
  • the cobalt-based alloy that has been subjected to the aluminizing process will be described as an object to be processed.
  • the object to be processed 1 is formed by, for example, a main body 2 made of a cobalt base alloy and the surface of the main body 2, and aluminum is diffused into the cobalt base alloy. And an aluminizing layer 3 having a high rate.
  • a constituent element of a cobalt base alloy and aluminum diffused in the cobalt base alloy react to form an intermetallic compound.
  • Such a to-be-processed object 1 can be manufactured by performing an aluminizing process with respect to a cobalt base alloy.
  • the cobalt-based alloy used for the manufacture of the object 1 has a high cobalt content compared to other constituent elements in mass.
  • the cobalt content in the cobalt-based alloy is preferably 30% by mass or more, and more preferably 35% by mass or more.
  • 70 mass% or less is preferable in a cobalt base alloy, and, as for content of cobalt, 65 mass% or less is more preferable.
  • the cobalt-based alloy preferably contains chromium.
  • the content of chromium is preferably 10% by mass or more, and more preferably 15% by mass or more in the cobalt-based alloy. Further, the content of chromium is preferably 40% by mass or less, and more preferably 35% by mass or less in the cobalt-based alloy.
  • the cobalt-based alloy preferably contains at least one selected from nickel and tungsten.
  • the cobalt-based alloy may contain only one selected from nickel and tungsten, or may contain two kinds of nickel and tungsten.
  • the content thereof is preferably 0.1% by mass or more, more preferably 1% by mass or more in the cobalt-based alloy.
  • the content of nickel is preferably 30% by mass or less and more preferably 25% by mass or less in the cobalt-based alloy.
  • the content thereof is preferably 1% by mass or more, more preferably 3% by mass or more in the cobalt-based alloy.
  • the content of tungsten is preferably 25% by mass or less and more preferably 20% by mass or less in the cobalt-based alloy.
  • the cobalt-based alloy can contain elements other than those described above as necessary and within the limits not departing from the spirit of the present invention.
  • examples of such elements include various elements contained in commercially available cobalt-based alloys. For example, tantalum, molybdenum, titanium, boron, zirconium, carbon, iron, lanthanum, and the like can be given.
  • the content thereof is preferably 1% by mass or more, and more preferably 2% by mass or more in the cobalt-based alloy.
  • the content of tantalum is preferably 20% by mass or less and more preferably 15% by mass or less in the cobalt-based alloy.
  • molybdenum When molybdenum is contained, its content is preferably 1% by mass or more, more preferably 2% by mass or more, in the cobalt-based alloy. The content of molybdenum is preferably 15% by mass or less, and more preferably 10% by mass or less in the cobalt-based alloy.
  • titanium, boron, zirconium and carbon When titanium, boron, zirconium and carbon are contained, their content is preferably 1% by mass or less in the cobalt-based alloy. Further, the total content of titanium, boron, zirconium and carbon is preferably 3% by mass or less, more preferably 2% by mass or less in the cobalt-based alloy.
  • iron When iron is contained, its content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in the cobalt-based alloy.
  • the content of iron is preferably 10% by mass or less, and more preferably 5% by mass or less in the cobalt-based alloy.
  • the content thereof is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in the cobalt-based alloy.
  • the content of lanthanum is preferably 5% by mass or less and more preferably 3% by mass or less in the cobalt-based alloy.
  • cobalt base alloy a commercially available one can be used. Examples thereof include FSX-414, Stellite 21, Stellite 31, MarM302, MarM509, Haynes-188, and the like. Table 1 shows the compositions of these cobalt-based alloys.
  • the aluminizing treatment only needs to be able to diffuse aluminum into the cobalt-based alloy.
  • a known method can be adopted as the aluminizing treatment. Such as Pack Aluminizing, Gas Aluminizing, Gas Aluminizing, Spray Aluminizing, Vacuum Aluminizing, Cladding, Electrolytic Coating , Hot dip aluminizing and the like.
  • Pack aluminizing is performed, for example, by placing a cobalt-based alloy to be aluminized in a container and heating aluminum or aluminum alloy powder.
  • the heating temperature should just be able to diffuse aluminum in a cobalt base alloy.
  • the heating temperature is preferably 900 to 1100 ° C. Pack aluminizing is preferable because it can process even complex shapes.
  • Gas aluminizing is performed, for example, by putting a cobalt base alloy to be aluminized in a container, 45 mass% aluminum (Al), 45 mass% aluminum oxide (Al 2 O 3 ), and 10 mass%.
  • the mixture is heated by adding a mixture of aluminum chloride (AlCl 3 ).
  • Spray aluminizing is performed, for example, by adhering aluminum or an aluminum alloy to the surface of a cobalt base alloy to be aluminized by spraying.
  • aluminum or an aluminum alloy may be adhered to the surface of a cobalt base alloy to be aluminized by thermal spraying.
  • Vacuum aluminizing is performed, for example, by depositing aluminum on the surface of a cobalt-based alloy to be aluminized at a degree of vacuum of about 0.001 to 0.1 Pa.
  • the cladding is performed, for example, by superimposing and rolling a cobalt base alloy to be aluminized and aluminum or an aluminum alloy.
  • Electroplating is performed, for example, by immersing a cobalt-based alloy to be aluminized in a molten electrolyte made of a molten salt of aluminum chloride or the like.
  • Hot dip aluminizing is performed by immersing a cobalt base alloy to be aluminized in aluminum or an aluminum alloy heated to 700 to 800 ° C. and melted.
  • the aluminizing treatment is preferably performed so that the thickness of the aluminizing layer 3 is 10 ⁇ m or more.
  • the thickness of the aluminizing layer 3 is more preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the thickness of the aluminizing layer 3 is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • a heat treatment process is performed with respect to the above-mentioned to-be-processed object 1, ie, the cobalt base alloy in which the aluminizing process was performed.
  • the heat treatment step is performed at a vacuum degree of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 Pa.
  • a cobalt-based alloy member 4 as shown in FIG. 2 is manufactured.
  • the cobalt base alloy member 4 has, for example, a protective film 5 formed by oxidizing its constituent elements on the surface of the aluminizing layer 3.
  • the degree of vacuum is 1 ⁇ 10 ⁇ 3 Pa or less, metal oxides other than aluminum oxide, for example, oxides such as cobalt and nickel, in the protective film 5 are decomposed, and the content of aluminum oxide increases.
  • the degree of vacuum is preferably 5 ⁇ 10 ⁇ 4 Pa or less.
  • disassembly is based on the reduction
  • the degree of vacuum is 1 ⁇ 10 ⁇ 5 Pa or more, the decomposition of the aluminum oxide in the protective film 5 is suppressed, and the content of aluminum oxide is increased.
  • the degree of vacuum is preferably 5 ⁇ 10 ⁇ 5 Pa or more.
  • the heat treatment temperature is preferably 1000 ° C. or higher, more preferably 1100 ° C. or higher, and still more preferably 1200 ° C. or higher, from the viewpoint of increasing the aluminum oxide content in the protective film 5.
  • the heat treatment temperature is preferably equal to or lower than the melting point of the cobalt base alloy from the viewpoint of maintaining the shape of the cobalt base alloy member 4 and the like.
  • the heat treatment temperature is preferably 1300 ° C. or lower.
  • the heat treatment time is preferably 1 hour or longer, more preferably 2 hours or longer, and even more preferably 3 hours or longer from the viewpoint of increasing the content of aluminum oxide in the protective film 5.
  • heat processing time is preferable 10 hours or less.
  • the heat treatment step it is preferable to introduce at least one gas selected from hydrogen gas, argon gas, and nitrogen gas while adjusting the degree of vacuum to 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 Pa.
  • hydrogen gas, argon gas, and nitrogen gas may introduce only 1 type of gas, may introduce 2 types of gas, and may introduce all 3 types of gas. .
  • the content of aluminum oxide in the protective film 5 is increased.
  • FIG. 3 shows an embodiment of a heat treatment apparatus used in the heat treatment step.
  • the heat treatment apparatus 10 includes, for example, a processing unit 11, a heating unit 12, a pressure adjustment unit 13, and a gas introduction unit 14.
  • the processing unit 11 includes a processing chamber 111 in which the workpiece 1 is disposed.
  • the processing unit 11 includes a vacuum heating furnace or the like.
  • the heating unit 12 is disposed, for example, in the vicinity of the processing chamber 111 and heats the object 1 to be processed.
  • the heating unit 12 includes a heater whose temperature rises when energized, for example.
  • the pressure adjustment unit 13 includes, for example, a first pump 131 and a second pump 132.
  • the first pump 131 is a rough reference pump capable of setting the degree of vacuum to about 1 ⁇ 10 ⁇ 3 Pa, and includes, for example, a rotary pump.
  • the second pump 132 is a reference pump capable of making the degree of vacuum about 1 ⁇ 10 ⁇ 5 Pa, and includes an oil diffusion pump, a turbo pump, and the like.
  • the first pump 131 and the second pump 132 are connected by a first pipe 133.
  • the second pump 132 and the processing unit 11 are connected by a second pipe 134.
  • the first pipe 133 and the processing unit 11 are connected by a third pipe 135.
  • a first main valve 136 is provided between a connection portion between the first pipe 133 and the third pipe 135 and the second pump 132.
  • the second main valve 137 is provided in the second pipe 134.
  • the third pipe 135 is provided with a roughing valve 138.
  • the gas introduction unit 14 includes a fifth pipe 141 for introducing gas into the processing chamber 111 and a sixth pipe 142 for discharging gas from the processing chamber 111.
  • a gas introduction valve 143 is provided in the middle of the fifth pipe 141.
  • a gas discharge valve 144 is provided in the middle of the sixth pipe 142. Note that the gas discharge valve 144 is connected to, for example, a sensor M that measures the degree of vacuum in the processing chamber 111, and is controlled so as to have a set degree of vacuum.
  • FIG. 4 is a diagram showing a specific heat treatment procedure when the heat treatment apparatus 10 as shown in FIG. 3 is used.
  • the heat treatment is preferably performed in the order of, for example, a step (S1) for placing the object 1 to be processed, an exhaust step (S2), a heating step (S3), a gas introduction step (S4), and a pressure adjustment step (S5).
  • the object 1 is disposed in the processing chamber 111 of the processing unit 11.
  • the exhaust step (S2) the air inside the processing unit 11 is exhausted.
  • the exhaust step (S2) is preferably performed in the order of the roughing step and the main pulling step.
  • the roughing step is performed by, for example, driving the first pump 131 after closing the first main valve 136 and the second main valve 137 and opening the rough valve 138.
  • the roughing step is performed, for example, until the degree of vacuum reaches about 1 ⁇ 10 ⁇ 3 Pa.
  • the main pulling step is performed, for example, by opening the first main pull valve 136 and the second main pull valve 137 and closing the rough pull valve 138 and driving the second pump 132. At this time, the first pump 131 may be driven or stopped. This pulling step is performed, for example, until the degree of vacuum reaches about 1 ⁇ 10 ⁇ 5 Pa.
  • the heating step (S3) energizes the heating unit 12 to heat the object 1 to be processed.
  • the gas introduction step (S4) is performed, for example, when the temperature of the workpiece 1 reaches a predetermined heat treatment temperature.
  • the gas introduction step (S4) is performed, for example, by opening the gas introduction valve 143.
  • the pressure adjustment step (S5) is performed immediately after the start of the gas introduction step (S4), for example.
  • the pressure adjustment step (S5) is performed, for example, by opening the gas discharge valve 144 so as to achieve a desired degree of vacuum.
  • the cobalt-based alloy member 4 is preferably a gas turbine component, particularly a CO 2 turbine component. Among such parts, a stationary blade generally using a cobalt-based alloy is preferable.
  • FIG. 5 is a configuration diagram illustrating an embodiment of a power generation system having a CO 2 turbine.
  • the power generation system 30 generates power by rotating a CO 2 turbine with high-temperature combustion gas generated by burning fuel such as natural gas, oxygen, and CO 2 .
  • the power generation system 30 includes a generator 31 having a CO 2 turbine.
  • a combustor 32 that generates high-temperature gas is connected to the generator 31.
  • the combustor 32 is connected to an oxygen production apparatus 33 that produces and supplies oxygen from air.
  • the combustor 32 is connected to a fuel supply device (not shown) that supplies fuel such as natural gas.
  • a regenerative heat exchanger 34 that regenerates and supplies CO 2 is connected to the combustor 32.
  • the fuel supplied from the fuel supply device, the oxygen supplied from the oxygen production device 33, and the carbon dioxide supplied from the regenerative heat exchanger 34 are mixed and burned to generate high-temperature combustion gas. .
  • Electric power is generated by rotating the generator 31 with the combustion gas.
  • the combustion gas containing carbon dioxide and steam discharged from the generator 31 is cooled by the cooler 35 through the regenerative heat exchanger 34, and then the moisture is separated by the moisture separator 36. Thereafter, the combustion gas from which moisture has been separated is compressed by a CO 2 pump 37 that is a high-pressure pump.
  • Most of the carbon dioxide is circulated to the combustor 32 via the regenerative heat exchanger 34, but a part of the carbon dioxide is recovered as it is.
  • carbon dioxide can be effectively used and nitrogen oxide emissions can be suppressed.
  • high-pressure carbon dioxide can be stored, or can be applied to EOR (Enhanced Oil Recovery) used at oil mining sites.
  • EOR is a technique for increasing the amount of oil extracted by injecting high-pressure carbon dioxide at an old oil field. Therefore, the power generation system 30 is also useful from the viewpoint of protecting the global environment.
  • FIG. 6 is a cross-sectional view showing an embodiment of the CO 2 turbine 40 constituting the generator 31.
  • the CO 2 turbine 40 includes a rotor 42 and a moving blade 43 provided on the rotor 42 as a rotating system member 41.
  • the CO 2 turbine 40 includes a casing 45 and a stationary blade 46 that is supported by the casing 45 and disposed so as to face the moving blade 43 as the stationary member 44.
  • Example 1 Aluminizing treatment was performed on the trade name MarM509 as a cobalt-based alloy to produce a test piece as a workpiece.
  • the aluminizing treatment was performed by pack aluminizing.
  • the test piece has a shape of 15 mm ⁇ 10 mm ⁇ 2 mm, and has an aluminizing layer having a thickness of 50 ⁇ m on the surface.
  • the test piece was heat-treated by the procedure as shown in FIG. That is, first, the test piece was placed in the processing chamber. Thereafter, the degree of vacuum was set to about 1 ⁇ 10 ⁇ 3 Pa using a rotary pump, and the degree of vacuum was set to about 1 ⁇ 10 ⁇ 5 Pa using an oil diffusion pump.
  • the test piece was heated by energizing the heating section.
  • the gas introduction valve was opened to introduce argon gas.
  • the amount of argon gas introduced was 20 cc / h.
  • the degree of vacuum was adjusted to 1 ⁇ 10 ⁇ 4 Pa by opening the gas discharge valve. Thereafter, the temperature and the degree of vacuum were maintained for 6 hours, and the test piece was heat-treated.
  • Example 2 The degree of vacuum at the time of gas introduction was adjusted to 2 ⁇ 10 ⁇ 4 Pa, and heat treatment was performed in the same manner as in Example 1 except that hydrogen gas was introduced instead of argon gas.
  • Example 3 The degree of vacuum at the time of gas introduction was adjusted to 3 ⁇ 10 ⁇ 4 Pa, and heat treatment was performed in the same manner as in Example 1 except that nitrogen gas was introduced instead of argon gas.
  • Example 4 Heat treatment was performed in the same manner as in Example 1 except that a mixed gas composed of 50% by volume argon gas and 50% by volume hydrogen gas was introduced instead of argon gas.
  • Example 5 Example 1 except that the degree of vacuum at the time of gas introduction was adjusted to 2 ⁇ 10 ⁇ 4 Pa and a mixed gas composed of 50% by volume hydrogen gas and 50% by volume nitrogen gas was introduced instead of argon gas. Heat treatment was performed in the same manner as described above.
  • Example 6 Example 1 except that the degree of vacuum at the time of gas introduction was adjusted to 2 ⁇ 10 ⁇ 4 Pa, and a mixed gas composed of 50% by volume nitrogen gas and 50% by volume argon gas was introduced instead of argon gas. Heat treatment was performed in the same manner as described above.
  • Example 7 While adjusting the degree of vacuum at the time of gas introduction to 2 ⁇ 10 ⁇ 4 Pa, a mixed gas composed of 50% by volume argon gas, 25% by volume nitrogen gas, and 25% by volume hydrogen gas was used instead of argon gas. A heat treatment was performed in the same manner as in Example 1 except for the introduction.
  • Example 1 The degree of vacuum at the time of gas introduction was adjusted to 9 ⁇ 10 ⁇ 6 Pa, and heat treatment was performed in the same manner as in Example 1 except that hydrogen gas was introduced instead of argon gas.
  • Example 2 (Comparative Example 2) Example 1 except that the degree of vacuum at the time of gas introduction was adjusted to 1 ⁇ 10 ⁇ 1 Pa and a mixed gas composed of 50% by volume argon gas and 50% by volume nitrogen gas was introduced instead of argon gas. In the same manner, heat treatment was performed.
  • Table 2 shows the detected intensities of aluminum oxide (Al 2 O 3 ) and cobalt oxide (CoO) by XRD.
  • indicates that no detection is detected
  • + indicates that detection is performed but the detection intensity is low
  • ++ indicates that the detection intensity is high
  • ++ indicates that the detection intensity is particularly high. It shows that.
  • test piece of the example has a high content of aluminum oxide in the protective coating and can ensure oxidation resistance even when used at a high temperature exceeding 1000 ° C.
  • SYMBOLS 1 Cobalt base alloy (to-be-processed object) by which aluminizing process was performed, 2 ... Main body, 3 ... Aluminizing layer, 4 ... Cobalt base alloy member, 5 ... Protective film, 10 ... Heat processing apparatus, 11 ... Processing part, DESCRIPTION OF SYMBOLS 12 ... Heating part, 13 ... Pressure adjustment part, 14 ... Gas introduction part, 30 ... Electric power generation system, 31 ... Generator, 32 ... Combustor, 33 ... Oxygen production apparatus, 34 ... Regenerative heat exchanger, 35 ... Cooler, 36 ... moisture separator, 37 ... CO 2 pumps, 40 ... CO 2 turbine, 41 ... rotating system member, 42 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Provided is a cobalt-base alloy member having improved oxidation resistance at high temperature. This method for producing a cobalt-base alloy member includes a step for preparing a cobalt-base alloy on which an aluminizing treatment has been performed, and a step for performing, at a degree of vacuum of 1×10-5-1×10-3 Pa, a heat treatment on the cobalt-base alloy on which the aluminizing treatment has been performed.

Description

コバルト基合金部材の製造方法Cobalt-based alloy member manufacturing method
 本発明の実施形態は、コバルト基合金部材の製造方法に関する。 Embodiment of this invention is related with the manufacturing method of a cobalt base alloy member.
 ガスタービンにおいては、その性能を向上させるために燃焼ガスの高温化が進められている。例えば、静翼の入口付近における燃焼ガスの温度は、1990年代には1100℃程度であったが、2000年代には1300~1500℃程度となっている。 In gas turbines, the combustion gas is being heated to improve its performance. For example, the temperature of the combustion gas near the inlet of the stationary blade was about 1100 ° C. in the 1990s, but is about 1300 to 1500 ° C. in the 2000s.
 また、近年、従来のガスタービンに比べて高温化されたCOタービンの開発が進められている。COタービンは、超臨界の二酸化炭素を媒体として利用する。COタービンは、燃焼による二酸化炭素を有効活用でき、また窒素酸化物の排出も抑制されることから、環境特性に優れている。 In recent years, development of a CO 2 turbine having a higher temperature than that of a conventional gas turbine has been promoted. The CO 2 turbine uses supercritical carbon dioxide as a medium. The CO 2 turbine has excellent environmental characteristics because it can effectively use carbon dioxide from combustion and also suppresses emission of nitrogen oxides.
 従来、ガスタービンにおける静翼には、以下のような理由によりコバルト基合金が使用されている。すなわち、ガスタービンにおける静翼は静止系部材であることから、動翼などの回転系部材に比べて必ずしも高い強度が要求されない。一方、コバルト基合金は、ニッケル基合金などと比べると強度は必ずしも高くないが、溶接性が良好であるために補修が容易であり、かつ価格も安い。このような理由から、ガスタービンにおける静翼にコバルト基合金が使用されている。 Conventionally, cobalt base alloys have been used for stationary blades in gas turbines for the following reasons. That is, since a stationary blade in a gas turbine is a stationary member, higher strength is not necessarily required compared to a rotating member such as a moving blade. On the other hand, the cobalt-based alloy is not necessarily high in strength as compared with a nickel-based alloy or the like, but is easy to repair because of its good weldability, and the price is low. For these reasons, a cobalt-based alloy is used for a stationary blade in a gas turbine.
 コバルト基合金は、通常、クロムを含有している。ガスタービンにおける静翼にコバルト基合金を使用した場合、このコバルト基合金に含まれるクロムが酸化されてクロム酸化物(Cr)となる。このようなクロム酸化物が静翼の表面に保護被膜として形成されることにより、静翼の高温における耐酸化性が確保される。 Cobalt-based alloys usually contain chromium. When a cobalt-based alloy is used for a stationary blade in a gas turbine, chromium contained in the cobalt-based alloy is oxidized to chromium oxide (Cr 2 O 3 ). By forming such chromium oxide as a protective film on the surface of the stationary blade, the oxidation resistance of the stationary blade at high temperature is ensured.
 しかし、ガスタービンにおける燃焼ガスの高温化により、静翼の表面温度が1000℃を超えることが予想されている。特に、COタービンは、従来のガスタービンに比べて燃焼ガスが高温化されており、静翼の表面温度が1000℃を超えることが予想されている。 However, it is expected that the surface temperature of the stationary blade exceeds 1000 ° C. due to the high temperature of the combustion gas in the gas turbine. In particular, in the CO 2 turbine, the combustion gas is heated to a higher temperature than the conventional gas turbine, and the surface temperature of the stationary blade is expected to exceed 1000 ° C.
 クロム酸化物は、1000℃程度でCrOとなって昇華することが知られている。このため、表面温度が1000℃を超えるような静翼については、表面にクロム酸化物を形成して耐酸化性を確保する方法を採用するには課題があった。 It is known that chromium oxide is sublimated as CrO 3 at about 1000 ° C. For this reason, there has been a problem in adopting a method for ensuring oxidation resistance by forming chromium oxide on the surface of a stationary blade whose surface temperature exceeds 1000 ° C.
国際公開第2013/061945号International Publication No. 2013/061945 特開2001-032061号公報JP 2001-032061 A
 高温における耐酸化性を向上させる方法として、アルミナイジング処理が知られている。しかし、コバルト基合金に対してアルミナイジング処理を行ったところ、1000℃を超えるような高温においてはアルミナイジング処理を行わないものに比べて耐酸化性が低下する結果となった。 Aluminizing treatment is known as a method for improving oxidation resistance at high temperatures. However, when the aluminizing treatment was performed on the cobalt-based alloy, the oxidation resistance was lowered at a high temperature exceeding 1000 ° C. as compared with the case where the aluminizing treatment was not performed.
 本発明が解決しようとする課題は、高温における耐酸化性が向上されたコバルト基合金部材を提供することである。 The problem to be solved by the present invention is to provide a cobalt-based alloy member having improved oxidation resistance at high temperatures.
 実施形態のコバルト基合金部材の製造方法は、アルミナイジング処理が行われたコバルト基合金を準備する工程と、前記アルミナイジング処理が行われたコバルト基合金に対して、1×10-5Pa~1×10-3Paの真空度で熱処理を行う工程と、を有する。 Method for producing a cobalt-based alloy of embodiment, a step of preparing a aluminizing is performed cobalt-based alloy, to the aluminizing is performed cobalt-based alloy, 1 × 10 -5 Pa ~ Heat treatment at a vacuum degree of 1 × 10 −3 Pa.
 実施形態のコバルト基合金部材の製造方法によれば、アルミナイジング処理が行われたコバルト基合金に対して1×10-5Pa~1×10-3Paの真空度で熱処理を行うことにより、保護皮膜におけるアルミニウム酸化物の含有率を高くして耐酸化性を向上させることができる。 According to the method for producing a cobalt-based alloy member of the embodiment, by performing a heat treatment at a vacuum degree of 1 × 10 −5 Pa to 1 × 10 −3 Pa on the cobalt-based alloy subjected to the aluminizing treatment, The oxidation resistance can be improved by increasing the content of aluminum oxide in the protective film.
実施形態の被処理体を示す断面図である。It is sectional drawing which shows the to-be-processed object of embodiment. 実施形態のコバルト基合金部材を示す断面図である。It is sectional drawing which shows the cobalt base alloy member of embodiment. 実施形態の熱処理装置を示す構成図である。It is a block diagram which shows the heat processing apparatus of embodiment. 実施形態の熱処理方法を示す手順図である。It is a procedure figure showing the heat treatment method of an embodiment. 実施形態の発電システムを示す構成図である。It is a lineblock diagram showing the power generation system of an embodiment. 実施形態のCOタービンを示す断面図である。It is a sectional view showing a CO 2 turbine embodiment.
 以下、本発明を実施するための形態について説明する。
 実施形態のコバルト基合金部材の製造方法は、アルミナイジング処理が行われたコバルト基合金に対して、1×10-5~1×10-3Paの真空度で熱処理を行う工程(以下、熱処理工程)を有する。
Hereinafter, modes for carrying out the present invention will be described.
The method for producing a cobalt-based alloy member according to the embodiment includes a step of heat-treating a cobalt-based alloy that has undergone aluminizing treatment at a vacuum degree of 1 × 10 −5 to 1 × 10 −3 Pa (hereinafter referred to as heat treatment). Step).
 熱処理により耐酸化性が向上する理由は、以下のように考えられる。
 コバルト基合金にアルミナイジング処理を施した場合、コバルト基合金からなる本体の表面にアルミナイジング層が形成される。通常、本体に比べてアルミナイジング層におけるアルミニウムの濃度が30質量%以上高くなる。このように濃度差が大きい場合、高温の酸化性雰囲気に触れたときにアルミナイジング層におけるアルミニウムが本体側に拡散しやすい。
The reason why the oxidation resistance is improved by the heat treatment is considered as follows.
When the aluminizing process is performed on the cobalt-based alloy, an aluminizing layer is formed on the surface of the main body made of the cobalt-based alloy. Usually, the aluminum concentration in the aluminizing layer is 30 mass% or more higher than that of the main body. When the concentration difference is large as described above, aluminum in the aluminizing layer is likely to diffuse to the main body side when exposed to a high-temperature oxidizing atmosphere.
 アルミナイジング処理後に熱処理を行うと、アルミナイジング層におけるアルミニウムの濃度が低下する。なお、濃度の低下は、例えば、アルミナイジング層の厚さが増加することにより達成される。アルミナイジング層におけるアルミニウムの濃度が低下すると、高温の酸化性雰囲気に触れたときにアルミナイジング層におけるアルミニウムが表面側(本体側とは反対側)に拡散しやすくなる。これにより、アルミナイジング層の表面に形成される保護被膜におけるアルミニウム酸化物の含有率が高くなり耐酸化性が向上する。 If the heat treatment is performed after the aluminizing treatment, the concentration of aluminum in the aluminizing layer decreases. The decrease in concentration is achieved, for example, by increasing the thickness of the aluminizing layer. When the aluminum concentration in the aluminizing layer is lowered, the aluminum in the aluminizing layer is likely to diffuse to the surface side (the side opposite to the main body side) when the high-temperature oxidizing atmosphere is touched. Thereby, the content rate of the aluminum oxide in the protective film formed in the surface of an aluminizing layer becomes high, and oxidation resistance improves.
 また、熱処理時の真空度が1×10-5Pa~1×10-3Paである場合、アルミニウム酸化物以外の金属酸化物が分解されるとともに、アルミニウム酸化物の分解が抑制される。これにより、アルミナイジング層の表面に形成される保護被膜におけるアルミニウム酸化物の含有率が高くなり耐酸化性が向上する。 Further, when the degree of vacuum during heat treatment is 1 × 10 −5 Pa to 1 × 10 −3 Pa, metal oxides other than aluminum oxide are decomposed and decomposition of aluminum oxide is suppressed. Thereby, the content rate of the aluminum oxide in the protective film formed in the surface of an aluminizing layer becomes high, and oxidation resistance improves.
 以下、熱処理工程について具体的に説明する。 Hereinafter, the heat treatment process will be specifically described.
 図1は、熱処理工程に使用されるアルミナイジング処理が行われたコバルト基合金を示す断面図である。以下、このアルミナイジング処理が行われたコバルト基合金を被処理体と記して説明する。 FIG. 1 is a cross-sectional view showing a cobalt-based alloy subjected to an aluminizing process used in a heat treatment process. Hereinafter, the cobalt-based alloy that has been subjected to the aluminizing process will be described as an object to be processed.
 被処理体1は、例えば、コバルト基合金からなる本体2と、この本体2の表面に設けられ、コバルト基合金にアルミニウムが拡散することにより形成され、本体2に比べて質量でのアルミニウムの含有率が高いアルミナイジング層3とを有する。アルミナイジング層3においては、例えば、コバルト基合金の構成元素とこのコバルト基合金に拡散されたアルミニウムとが反応して金属間化合物を形成している。このような被処理体1は、コバルト基合金に対してアルミナイジング処理を行うことにより製造できる。 The object to be processed 1 is formed by, for example, a main body 2 made of a cobalt base alloy and the surface of the main body 2, and aluminum is diffused into the cobalt base alloy. And an aluminizing layer 3 having a high rate. In the aluminizing layer 3, for example, a constituent element of a cobalt base alloy and aluminum diffused in the cobalt base alloy react to form an intermetallic compound. Such a to-be-processed object 1 can be manufactured by performing an aluminizing process with respect to a cobalt base alloy.
 被処理体1の製造に使用されるコバルト基合金は、質量において他の構成元素に比べてコバルトの含有率が高いものである。コバルトの含有量は、コバルト基合金中、30質量%以上が好ましく、35質量%以上がより好ましい。また、コバルトの含有量は、コバルト基合金中、70質量%以下が好ましく、65質量%以下がより好ましい。 The cobalt-based alloy used for the manufacture of the object 1 has a high cobalt content compared to other constituent elements in mass. The cobalt content in the cobalt-based alloy is preferably 30% by mass or more, and more preferably 35% by mass or more. Moreover, 70 mass% or less is preferable in a cobalt base alloy, and, as for content of cobalt, 65 mass% or less is more preferable.
 コバルト基合金は、クロムを含有することが好ましい。クロムの含有量は、コバルト基合金中、10質量%以上が好ましく、15質量%以上がより好ましい。また、クロムの含有量は、コバルト基合金中、40質量%以下が好ましく、35質量%以下がより好ましい。 The cobalt-based alloy preferably contains chromium. The content of chromium is preferably 10% by mass or more, and more preferably 15% by mass or more in the cobalt-based alloy. Further, the content of chromium is preferably 40% by mass or less, and more preferably 35% by mass or less in the cobalt-based alloy.
 コバルト基合金は、ニッケルおよびタングステンから選ばれる少なくとも1種を含有することが好ましい。なお、コバルト基合金は、ニッケルおよびタングステンから選ばれる1種のみを含有してもよいし、ニッケルおよびタングステンの2種を含有してもよい。 The cobalt-based alloy preferably contains at least one selected from nickel and tungsten. The cobalt-based alloy may contain only one selected from nickel and tungsten, or may contain two kinds of nickel and tungsten.
 ニッケルを含有する場合、その含有量は、コバルト基合金中、0.1質量%以上が好ましく、1質量%以上がより好ましい。ニッケルの含有量は、コバルト基合金中、30質量%以下が好ましく、25質量%以下がより好ましい。 When nickel is contained, the content thereof is preferably 0.1% by mass or more, more preferably 1% by mass or more in the cobalt-based alloy. The content of nickel is preferably 30% by mass or less and more preferably 25% by mass or less in the cobalt-based alloy.
 タングステンを含有する場合、その含有量は、コバルト基合金中、1質量%以上が好ましく、3質量%以上がより好ましい。タングステンの含有量は、コバルト基合金中、25質量%以下が好ましく、20質量%以下がより好ましい。 When tungsten is contained, the content thereof is preferably 1% by mass or more, more preferably 3% by mass or more in the cobalt-based alloy. The content of tungsten is preferably 25% by mass or less and more preferably 20% by mass or less in the cobalt-based alloy.
 コバルト基合金は、必要に応じて、かつ本発明の趣旨に反しない限度において、上記以外の元素を含有できる。このような元素として、市販のコバルト基合金に含有される種々の元素が挙げられる。例えば、タンタル、モリブデン、チタン、ホウ素、ジルコニウム、炭素、鉄、ランタンなどが挙げられる。 The cobalt-based alloy can contain elements other than those described above as necessary and within the limits not departing from the spirit of the present invention. Examples of such elements include various elements contained in commercially available cobalt-based alloys. For example, tantalum, molybdenum, titanium, boron, zirconium, carbon, iron, lanthanum, and the like can be given.
 タンタルを含有する場合、その含有量は、コバルト基合金中、1質量%以上が好ましく、2質量%以上がより好ましい。タンタルの含有量は、コバルト基合金中、20質量%以下が好ましく、15質量%以下がより好ましい。 When tantalum is contained, the content thereof is preferably 1% by mass or more, and more preferably 2% by mass or more in the cobalt-based alloy. The content of tantalum is preferably 20% by mass or less and more preferably 15% by mass or less in the cobalt-based alloy.
 モリブデンを含有する場合、その含有量は、コバルト基合金中、1質量%以上が好ましく、2質量%以上がより好ましい。モリブデンの含有量は、コバルト基合金中、15質量%以下が好ましく、10質量%以下がより好ましい。 When molybdenum is contained, its content is preferably 1% by mass or more, more preferably 2% by mass or more, in the cobalt-based alloy. The content of molybdenum is preferably 15% by mass or less, and more preferably 10% by mass or less in the cobalt-based alloy.
 チタン、ホウ素、ジルコニウム、炭素を含有する場合、これらの含有量は、コバルト基合金中、それぞれ、1質量%以下が好ましい。また、チタン、ホウ素、ジルコニウム、および炭素の合計した含有量は、コバルト基合金中、3質量%以下が好ましく、2質量%以下がより好ましい。 When titanium, boron, zirconium and carbon are contained, their content is preferably 1% by mass or less in the cobalt-based alloy. Further, the total content of titanium, boron, zirconium and carbon is preferably 3% by mass or less, more preferably 2% by mass or less in the cobalt-based alloy.
 鉄を含有する場合、その含有量は、コバルト基合金中、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。鉄の含有量は、コバルト基合金中、10質量%以下が好ましく、5質量%以下がより好ましい。 When iron is contained, its content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in the cobalt-based alloy. The content of iron is preferably 10% by mass or less, and more preferably 5% by mass or less in the cobalt-based alloy.
 ランタンを含有する場合、その含有量は、コバルト基合金中、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。ランタンの含有量は、コバルト基合金中、5質量%以下が好ましく、3質量%以下がより好ましい。 When lanthanum is contained, the content thereof is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in the cobalt-based alloy. The content of lanthanum is preferably 5% by mass or less and more preferably 3% by mass or less in the cobalt-based alloy.
 コバルト基合金としては、市販されているものを使用できる。このようなものとして、FSX-414、Stellite 21、Stellite 31、MarM302、MarM509、Haynes-188などが挙げられる。表1に、これらのコバルト基合金の組成を示す。 As the cobalt base alloy, a commercially available one can be used. Examples thereof include FSX-414, Stellite 21, Stellite 31, MarM302, MarM509, Haynes-188, and the like. Table 1 shows the compositions of these cobalt-based alloys.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 アルミナイジング処理は、コバルト基合金にアルミニウムを拡散できればよい。アルミナイジング処理として、公知の方法を採用できる。このようなものとして、パックアルミナイジング(Pack Aluminizing)、ガスアルミナイジング(Gas Aluminizing)、スプレーアルミナイジング(Spray Aluminizing)、真空アルミナイジング(Vacuum Aluminizing)、クラッディング(Cladding)、電解めっき(Electrolytic Coating)、ホットディップアルミナイジング(Hot Dip Aluminizing)などが挙げられる。 The aluminizing treatment only needs to be able to diffuse aluminum into the cobalt-based alloy. A known method can be adopted as the aluminizing treatment. Such as Pack Aluminizing, Gas Aluminizing, Gas Aluminizing, Spray Aluminizing, Vacuum Aluminizing, Cladding, Electrolytic Coating , Hot dip aluminizing and the like.
 パックアルミナイジングは、例えば、容器中にアルミナイジング処理が行われるコバルト基合金を入れるとともにアルミニウムまたはアルミニウム合金の粉末を入れて加熱することにより行われる。加熱温度は、コバルト基合金にアルミニウムを拡散できればよい。通常、加熱温度は、900~1100℃が好ましい。パックアルミナイジングは、複雑な形状のものに対しても処理を行うことができるために好ましい。 Pack aluminizing is performed, for example, by placing a cobalt-based alloy to be aluminized in a container and heating aluminum or aluminum alloy powder. The heating temperature should just be able to diffuse aluminum in a cobalt base alloy. Usually, the heating temperature is preferably 900 to 1100 ° C. Pack aluminizing is preferable because it can process even complex shapes.
 ガスアルミナイジングは、例えば、容器中にアルミナイジング処理が行われるコバルト基合金を入れるとともに、45質量%のアルミニウム(Al)、45質量%のアルミニウム酸化物(Al)、および10質量%の塩化アルミニウム(AlCl)の混合物などを入れて加熱することにより行われる。 Gas aluminizing is performed, for example, by putting a cobalt base alloy to be aluminized in a container, 45 mass% aluminum (Al), 45 mass% aluminum oxide (Al 2 O 3 ), and 10 mass%. The mixture is heated by adding a mixture of aluminum chloride (AlCl 3 ).
 スプレーアルミナイジングは、例えば、アルミナイジング処理が行われるコバルト基合金の表面に噴霧によりアルミニウムまたはアルミニウム合金を付着させることにより行われる。なお、スプレーアルミナイジングでは、アルミナイジング処理が行われるコバルト基合金の表面に溶射によりアルミニウムまたはアルミニウム合金を付着させてもよい。 Spray aluminizing is performed, for example, by adhering aluminum or an aluminum alloy to the surface of a cobalt base alloy to be aluminized by spraying. In spray aluminizing, aluminum or an aluminum alloy may be adhered to the surface of a cobalt base alloy to be aluminized by thermal spraying.
 真空アルミナイジングは、例えば、0.001~0.1Pa程度の真空度で、アルミナイジング処理が行われるコバルト基合金の表面にアルミニウムを蒸着させることにより行われる。 Vacuum aluminizing is performed, for example, by depositing aluminum on the surface of a cobalt-based alloy to be aluminized at a degree of vacuum of about 0.001 to 0.1 Pa.
 クラッディングは、例えば、アルミナイジング処理が行われるコバルト基合金とアルミニウムまたはアルミニウム合金とを重ね合わせて圧延することにより行われる。 The cladding is performed, for example, by superimposing and rolling a cobalt base alloy to be aluminized and aluminum or an aluminum alloy.
 電解めっきは、例えば、塩化アルミニウムの溶融塩などからなる溶融電解質にアルミナイジング処理が行われるコバルト基合金を浸漬することにより行われる。 Electroplating is performed, for example, by immersing a cobalt-based alloy to be aluminized in a molten electrolyte made of a molten salt of aluminum chloride or the like.
 ホットディップアルミナイジングは、700~800℃に加熱して溶融したアルミニウムまたはアルミニウム合金にアルミナイジング処理が行われるコバルト基合金を浸漬することにより行われる。 Hot dip aluminizing is performed by immersing a cobalt base alloy to be aluminized in aluminum or an aluminum alloy heated to 700 to 800 ° C. and melted.
 アルミナイジング処理は、アルミナイジング層3の厚さが10μm以上となるように行われることが好ましい。アルミナイジング層3の厚さが10μm以上になると、保護皮膜におけるアルミニウム酸化物の含有率が高くなる。アルミナイジング層3の厚さは、30μm以上がより好ましく、50μm以上がさらに好ましい。なお、アルミナイジング処理に必要とされる時間を短くする観点から、アルミナイジング層3の厚さは、200μm以下が好ましく、100μm以下がより好ましい。 The aluminizing treatment is preferably performed so that the thickness of the aluminizing layer 3 is 10 μm or more. When the thickness of the aluminizing layer 3 is 10 μm or more, the content of aluminum oxide in the protective film increases. The thickness of the aluminizing layer 3 is more preferably 30 μm or more, and further preferably 50 μm or more. In addition, from the viewpoint of shortening the time required for the aluminizing treatment, the thickness of the aluminizing layer 3 is preferably 200 μm or less, and more preferably 100 μm or less.
 熱処理工程は、上記した被処理体1、すなわちアルミナイジング処理が行われたコバルト基合金に対して行われる。熱処理工程は、1×10-5~1×10-3Paの真空度で行われる。 A heat treatment process is performed with respect to the above-mentioned to-be-processed object 1, ie, the cobalt base alloy in which the aluminizing process was performed. The heat treatment step is performed at a vacuum degree of 1 × 10 −5 to 1 × 10 −3 Pa.
 このような熱処理工程により、例えば、図2に示すようなコバルト基合金部材4が製造される。コバルト基合金部材4は、例えば、アルミナイジング層3の表面にその構成元素が酸化されることにより形成された保護皮膜5を有する。 By such a heat treatment step, for example, a cobalt-based alloy member 4 as shown in FIG. 2 is manufactured. The cobalt base alloy member 4 has, for example, a protective film 5 formed by oxidizing its constituent elements on the surface of the aluminizing layer 3.
 真空度が1×10-3Pa以下である場合、保護皮膜5におけるアルミニウム酸化物以外の金属酸化物、例えば、コバルト、ニッケルなどの酸化物が分解され、アルミニウム酸化物の含有率が高くなる。真空度は、5×10-4Pa以下が好ましい。なお、上記分解は、例えば、被処理体1に吸着された水分または有機物の分解に伴って生成する一酸化炭素または水素の還元によるものと考えられる。 When the degree of vacuum is 1 × 10 −3 Pa or less, metal oxides other than aluminum oxide, for example, oxides such as cobalt and nickel, in the protective film 5 are decomposed, and the content of aluminum oxide increases. The degree of vacuum is preferably 5 × 10 −4 Pa or less. In addition, it is thought that the said decomposition | disassembly is based on the reduction | restoration of the carbon monoxide or hydrogen produced | generated with decomposition | disassembly of the water | moisture content adsorbed by the to-be-processed object 1, or organic substance, for example.
 また、真空度が1×10-5Pa以上である場合、保護皮膜5におけるアルミニウム酸化物の分解が抑制されてアルミニウム酸化物の含有率が高くなる。真空度は、5×10-5Pa以上が好ましい。 Further, when the degree of vacuum is 1 × 10 −5 Pa or more, the decomposition of the aluminum oxide in the protective film 5 is suppressed, and the content of aluminum oxide is increased. The degree of vacuum is preferably 5 × 10 −5 Pa or more.
 熱処理温度は、保護皮膜5におけるアルミニウム酸化物の含有率を高くする観点から、1000℃以上が好ましく、1100℃以上がより好ましく、1200℃以上がさらに好ましい。熱処理温度は、コバルト基合金部材4の形状などを維持する観点から、コバルト基合金の融点以下が好ましい。通常、熱処理温度は、1300℃以下が好ましい。 The heat treatment temperature is preferably 1000 ° C. or higher, more preferably 1100 ° C. or higher, and still more preferably 1200 ° C. or higher, from the viewpoint of increasing the aluminum oxide content in the protective film 5. The heat treatment temperature is preferably equal to or lower than the melting point of the cobalt base alloy from the viewpoint of maintaining the shape of the cobalt base alloy member 4 and the like. Usually, the heat treatment temperature is preferably 1300 ° C. or lower.
 熱処理時間は、保護皮膜5におけるアルミニウム酸化物の含有率を高くする観点から、1時間以上が好ましく、2時間以上がより好ましく、3時間以上がさらに好ましい。なお、熱処理時間が増加すると生産性が低下することから、熱処理時間は、10時間以下が好ましい。 The heat treatment time is preferably 1 hour or longer, more preferably 2 hours or longer, and even more preferably 3 hours or longer from the viewpoint of increasing the content of aluminum oxide in the protective film 5. In addition, since productivity will fall when heat processing time increases, heat processing time is preferable 10 hours or less.
 熱処理工程では、真空度を1×10-5~1×10-3Paに調整しながら、水素ガス、アルゴンガス、および窒素ガスから選ばれる少なくとも1種のガスを導入することが好ましい。なお、水素ガス、アルゴンガス、および窒素ガスは、1種のガスのみを導入してもよいし、2種のガスを導入してもよいし、3種のガスの全てを導入してもよい。水素ガス、アルゴンガス、および窒素ガスから選ばれる少なくとも1種を導入することにより、保護皮膜5におけるアルミニウム酸化物の含有率が高くなる。 In the heat treatment step, it is preferable to introduce at least one gas selected from hydrogen gas, argon gas, and nitrogen gas while adjusting the degree of vacuum to 1 × 10 −5 to 1 × 10 −3 Pa. In addition, hydrogen gas, argon gas, and nitrogen gas may introduce only 1 type of gas, may introduce 2 types of gas, and may introduce all 3 types of gas. . By introducing at least one selected from hydrogen gas, argon gas, and nitrogen gas, the content of aluminum oxide in the protective film 5 is increased.
 図3は、熱処理工程に使用される熱処理装置の一実施形態を示したものである。
 熱処理装置10は、例えば、処理部11、加熱部12、圧力調整部13、およびガス導入部14を有する。
FIG. 3 shows an embodiment of a heat treatment apparatus used in the heat treatment step.
The heat treatment apparatus 10 includes, for example, a processing unit 11, a heating unit 12, a pressure adjustment unit 13, and a gas introduction unit 14.
 処理部11では、被処理体1の熱処理が行われる。処理部11は、内部に被処理体1が配置される処理室111を有する。処理部11は、真空加熱炉などからなる。 In the processing unit 11, the heat treatment of the object 1 is performed. The processing unit 11 includes a processing chamber 111 in which the workpiece 1 is disposed. The processing unit 11 includes a vacuum heating furnace or the like.
 加熱部12は、例えば、処理室111の近傍に配置されて被処理体1を加熱する。加熱部12は、例えば、通電により温度が上昇するヒータからなる。 The heating unit 12 is disposed, for example, in the vicinity of the processing chamber 111 and heats the object 1 to be processed. The heating unit 12 includes a heater whose temperature rises when energized, for example.
 圧力調整部13は、例えば、第1のポンプ131および第2のポンプ132を有する。第1のポンプ131は、真空度を1×10-3Pa程度にできる粗引用ポンプであり、例えば、ロータリーポンプなどからなる。第2のポンプ132は、真空度を1×10-5Pa程度にできる本引用ポンプであり、油拡散ポンプ、ターボポンプなどからなる。 The pressure adjustment unit 13 includes, for example, a first pump 131 and a second pump 132. The first pump 131 is a rough reference pump capable of setting the degree of vacuum to about 1 × 10 −3 Pa, and includes, for example, a rotary pump. The second pump 132 is a reference pump capable of making the degree of vacuum about 1 × 10 −5 Pa, and includes an oil diffusion pump, a turbo pump, and the like.
 第1のポンプ131と第2のポンプ132とは、第1の配管133により接続されている。第2のポンプ132と処理部11とは、第2の配管134により接続されている。第1の配管133と処理部11とは、第3の配管135により接続されている。 The first pump 131 and the second pump 132 are connected by a first pipe 133. The second pump 132 and the processing unit 11 are connected by a second pipe 134. The first pipe 133 and the processing unit 11 are connected by a third pipe 135.
 第1の配管133には、第1の配管133と第3の配管135との接続部と、第2のポンプ132との間に、第1の本引弁136が設けられている。第2の配管134には、第2の本引弁137が設けられている。第3の配管135には、粗引弁138が設けられている。 In the first pipe 133, a first main valve 136 is provided between a connection portion between the first pipe 133 and the third pipe 135 and the second pump 132. The second main valve 137 is provided in the second pipe 134. The third pipe 135 is provided with a roughing valve 138.
 ガス導入部14は、処理室111にガスを導入するための第5の配管141、および処理室111からガスを排出するための第6の配管142を有する。第5の配管141の途中には、ガス導入弁143が設けられている。第6の配管142の途中には、ガス排出弁144が設けられている。なお、ガス排出弁144は、例えば、処理室111の真空度を計測するセンサーMに接続されており、設定された真空度になるように制御が行われる。 The gas introduction unit 14 includes a fifth pipe 141 for introducing gas into the processing chamber 111 and a sixth pipe 142 for discharging gas from the processing chamber 111. A gas introduction valve 143 is provided in the middle of the fifth pipe 141. A gas discharge valve 144 is provided in the middle of the sixth pipe 142. Note that the gas discharge valve 144 is connected to, for example, a sensor M that measures the degree of vacuum in the processing chamber 111, and is controlled so as to have a set degree of vacuum.
 図4は、図3に示すような熱処理装置10を使用するときの具体的な熱処理の手順を示した図である。 FIG. 4 is a diagram showing a specific heat treatment procedure when the heat treatment apparatus 10 as shown in FIG. 3 is used.
 熱処理は、例えば、被処理体1を配置するステップ(S1)、排気ステップ(S2)、加熱ステップ(S3)、ガス導入ステップ(S4)、圧力調整ステップ(S5)の順に行われることが好ましい。 The heat treatment is preferably performed in the order of, for example, a step (S1) for placing the object 1 to be processed, an exhaust step (S2), a heating step (S3), a gas introduction step (S4), and a pressure adjustment step (S5).
 被処理体1を配置するステップ(S1)では、処理部11の処理室111に被処理体1を配置する。 In the step (S1) of disposing the object 1 to be processed, the object 1 is disposed in the processing chamber 111 of the processing unit 11.
 排気ステップ(S2)では、処理部11の内部の空気を排気する。排気ステップ(S2)は、粗引きステップ、本引きステップの順に行うことが好ましい。 In the exhaust step (S2), the air inside the processing unit 11 is exhausted. The exhaust step (S2) is preferably performed in the order of the roughing step and the main pulling step.
 粗引きステップは、例えば、第1の本引弁136および第2の本引弁137を閉じるとともに粗引弁138を開いた後、第1のポンプ131を駆動させて行われる。粗引きステップは、例えば、真空度が1×10-3Pa程度になるまで行われる。 The roughing step is performed by, for example, driving the first pump 131 after closing the first main valve 136 and the second main valve 137 and opening the rough valve 138. The roughing step is performed, for example, until the degree of vacuum reaches about 1 × 10 −3 Pa.
 本引きステップは、例えば、第1の本引弁136および第2の本引弁137を開くとともに粗引弁138を閉じて、第2のポンプ132を駆動させて行われる。この際、第1のポンプ131は、駆動させたままでもよいし、停止させてもよい。本引きステップは、例えば、真空度が1×10-5Pa程度になるまで行われる。 The main pulling step is performed, for example, by opening the first main pull valve 136 and the second main pull valve 137 and closing the rough pull valve 138 and driving the second pump 132. At this time, the first pump 131 may be driven or stopped. This pulling step is performed, for example, until the degree of vacuum reaches about 1 × 10 −5 Pa.
 加熱ステップ(S3)は、加熱部12に通電して被処理体1を加熱する。 The heating step (S3) energizes the heating unit 12 to heat the object 1 to be processed.
 ガス導入ステップ(S4)は、例えば、被処理体1の温度が所定の熱処理温度に到達したときに行われる。ガス導入ステップ(S4)は、例えば、ガス導入弁143を開くことにより行われる。 The gas introduction step (S4) is performed, for example, when the temperature of the workpiece 1 reaches a predetermined heat treatment temperature. The gas introduction step (S4) is performed, for example, by opening the gas introduction valve 143.
 圧力調整ステップ(S5)は、例えば、ガス導入ステップ(S4)の開始直後に行われる。圧力調整ステップ(S5)は、例えば、所望の真空度となるようにガス排出弁144を開いて行われる。 The pressure adjustment step (S5) is performed immediately after the start of the gas introduction step (S4), for example. The pressure adjustment step (S5) is performed, for example, by opening the gas discharge valve 144 so as to achieve a desired degree of vacuum.
 次に、実施形態の製造方法により製造されるコバルト基合金部材4について説明する。
 コバルト基合金部材4としては、ガスタービンにおける部品が好ましく、特にCOタービンの部品が好ましい。このような部品の中でも、一般にコバルト基合金が使用される静翼が好ましい。
Next, the cobalt base alloy member 4 manufactured by the manufacturing method of the embodiment will be described.
The cobalt-based alloy member 4 is preferably a gas turbine component, particularly a CO 2 turbine component. Among such parts, a stationary blade generally using a cobalt-based alloy is preferable.
 図5は、COタービンを有する発電システムの一実施形態を示す構成図である。
 発電システム30は、天然ガス等の燃料、酸素、およびCOを燃焼させて発生した高温の燃焼ガスによりCOタービンを回転させて発電を行う。
FIG. 5 is a configuration diagram illustrating an embodiment of a power generation system having a CO 2 turbine.
The power generation system 30 generates power by rotating a CO 2 turbine with high-temperature combustion gas generated by burning fuel such as natural gas, oxygen, and CO 2 .
 発電システム30は、COタービンを有する発電機31を有する。発電機31には、高温ガスを発生させる燃焼器32が接続されている。燃焼器32には、空気から酸素を製造して供給する酸素製造装置33が接続されている。また、燃焼器32には、天然ガス等の燃料を供給する図示しない燃料供給装置が接続されている。さらに、燃焼器32には、COを再生して供給する再生熱交換器34が接続されている。 The power generation system 30 includes a generator 31 having a CO 2 turbine. A combustor 32 that generates high-temperature gas is connected to the generator 31. The combustor 32 is connected to an oxygen production apparatus 33 that produces and supplies oxygen from air. The combustor 32 is connected to a fuel supply device (not shown) that supplies fuel such as natural gas. Further, a regenerative heat exchanger 34 that regenerates and supplies CO 2 is connected to the combustor 32.
 燃焼器32では、燃料供給装置から供給された燃料、酸素製造装置33から供給された酸素、および再生熱交換器34から供給された二酸化炭素を混合して燃焼させ、高温の燃焼ガスを発生させる。この燃焼ガスにより発電機31を回転させて発電が行われる。発電機31から排出された二酸化炭素と蒸気とを含む燃焼ガスは、再生熱交換器34を経て冷却器35で冷却された後、湿分分離器36によって水分が分離される。その後、水分が分離された燃焼ガスは、高圧ポンプであるCOポンプ37によって圧縮される。大部分の二酸化炭素は再生熱交換器34を介して燃焼器32に循環されるが、一部の二酸化炭素はそのまま回収される。 In the combustor 32, the fuel supplied from the fuel supply device, the oxygen supplied from the oxygen production device 33, and the carbon dioxide supplied from the regenerative heat exchanger 34 are mixed and burned to generate high-temperature combustion gas. . Electric power is generated by rotating the generator 31 with the combustion gas. The combustion gas containing carbon dioxide and steam discharged from the generator 31 is cooled by the cooler 35 through the regenerative heat exchanger 34, and then the moisture is separated by the moisture separator 36. Thereafter, the combustion gas from which moisture has been separated is compressed by a CO 2 pump 37 that is a high-pressure pump. Most of the carbon dioxide is circulated to the combustor 32 via the regenerative heat exchanger 34, but a part of the carbon dioxide is recovered as it is.
 発電システム30によれば、二酸化炭素を有効活用でき、かつ窒素酸化物の排出も抑制できる。例えば、高圧の二酸化炭素は、貯留することもできるし、石油採掘現場で用いられているEOR(Enhanced oil Recovery)に適用することもできる。EORとは、老朽化した油田の採掘現場において高圧の二酸化炭素を注入して、石油の採掘量を増大させる手法である。従って、発電システム30は、地球環境保護の観点からも有用である。 According to the power generation system 30, carbon dioxide can be effectively used and nitrogen oxide emissions can be suppressed. For example, high-pressure carbon dioxide can be stored, or can be applied to EOR (Enhanced Oil Recovery) used at oil mining sites. EOR is a technique for increasing the amount of oil extracted by injecting high-pressure carbon dioxide at an old oil field. Therefore, the power generation system 30 is also useful from the viewpoint of protecting the global environment.
 図6は、発電機31を構成するCOタービン40の一実施形態を示す断面図である。
 COタービン40は、回転系部材41として、ロータ42およびこのロータ42に設けられた動翼43を有する。また、COタービン40は、静止系部材44として、ケーシング45、およびこのケーシング45に支持されて動翼43に対向するように配置される静翼46を有する。
FIG. 6 is a cross-sectional view showing an embodiment of the CO 2 turbine 40 constituting the generator 31.
The CO 2 turbine 40 includes a rotor 42 and a moving blade 43 provided on the rotor 42 as a rotating system member 41. The CO 2 turbine 40 includes a casing 45 and a stationary blade 46 that is supported by the casing 45 and disposed so as to face the moving blade 43 as the stationary member 44.
 以下、実施例をさらに詳細に説明する。 Hereinafter, examples will be described in more detail.
(実施例1)
 コバルト基合金としての商品名MarM509に対してアルミナイジング処理を行って、被処理体としての試験片を製造した。なお、アルミナイジング処理は、パックアルミナイジングにより行った。試験片は、15mm×10mm×2mmの形状であり、表面に50μmの厚さのアルミナイジング層を有する。
Example 1
Aluminizing treatment was performed on the trade name MarM509 as a cobalt-based alloy to produce a test piece as a workpiece. The aluminizing treatment was performed by pack aluminizing. The test piece has a shape of 15 mm × 10 mm × 2 mm, and has an aluminizing layer having a thickness of 50 μm on the surface.
 次に、図3に示すような熱処理装置を使用して、図4に示すような手順により試験片の熱処理を行った。すなわち、まず、試験片を処理室に配置した。その後、ロータリーポンプを使用して真空度を1×10-3Pa程度にした後、油拡散ポンプを使用して真空度を1×10-5Pa程度にした。 Next, using the heat treatment apparatus as shown in FIG. 3, the test piece was heat-treated by the procedure as shown in FIG. That is, first, the test piece was placed in the processing chamber. Thereafter, the degree of vacuum was set to about 1 × 10 −3 Pa using a rotary pump, and the degree of vacuum was set to about 1 × 10 −5 Pa using an oil diffusion pump.
 その後、加熱部に通電して試験片を加熱した。試験片の温度が1230℃に到達したとき、ガス導入弁を開いてアルゴンガスを導入した。アルゴンガスの導入量は20cc/hとした。また、このとき、ガス排出弁を開いて真空度を1×10-4Paに調整した。その後、この温度および真空度を6時間維持して、試験片の熱処理を行った。 Thereafter, the test piece was heated by energizing the heating section. When the temperature of the test piece reached 1230 ° C., the gas introduction valve was opened to introduce argon gas. The amount of argon gas introduced was 20 cc / h. At this time, the degree of vacuum was adjusted to 1 × 10 −4 Pa by opening the gas discharge valve. Thereafter, the temperature and the degree of vacuum were maintained for 6 hours, and the test piece was heat-treated.
(実施例2)
 ガス導入時の真空度を2×10-4Paに調整するとともに、アルゴンガスの代わりに水素ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Example 2)
The degree of vacuum at the time of gas introduction was adjusted to 2 × 10 −4 Pa, and heat treatment was performed in the same manner as in Example 1 except that hydrogen gas was introduced instead of argon gas.
(実施例3)
 ガス導入時の真空度を3×10-4Paに調整するとともに、アルゴンガスの代わりに窒素ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Example 3)
The degree of vacuum at the time of gas introduction was adjusted to 3 × 10 −4 Pa, and heat treatment was performed in the same manner as in Example 1 except that nitrogen gas was introduced instead of argon gas.
(実施例4)
 アルゴンガスの代わりに50体積%のアルゴンガスと50体積%の水素ガスとからなる混合ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
Example 4
Heat treatment was performed in the same manner as in Example 1 except that a mixed gas composed of 50% by volume argon gas and 50% by volume hydrogen gas was introduced instead of argon gas.
(実施例5)
 ガス導入時の真空度を2×10-4Paに調整するとともに、アルゴンガスの代わりに50体積%の水素ガスと50体積%の窒素ガスとからなる混合ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Example 5)
Example 1 except that the degree of vacuum at the time of gas introduction was adjusted to 2 × 10 −4 Pa and a mixed gas composed of 50% by volume hydrogen gas and 50% by volume nitrogen gas was introduced instead of argon gas. Heat treatment was performed in the same manner as described above.
(実施例6)
 ガス導入時の真空度を2×10-4Paに調整するとともに、アルゴンガスの代わりに50体積%の窒素ガスと50体積%のアルゴンガスとからなる混合ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Example 6)
Example 1 except that the degree of vacuum at the time of gas introduction was adjusted to 2 × 10 −4 Pa, and a mixed gas composed of 50% by volume nitrogen gas and 50% by volume argon gas was introduced instead of argon gas. Heat treatment was performed in the same manner as described above.
(実施例7)
 ガス導入時の真空度を2×10-4Paに調整するとともに、アルゴンガスの代わりに、50体積%のアルゴンガス、25体積%の窒素ガス、および25体積%の水素ガスからなる混合ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Example 7)
While adjusting the degree of vacuum at the time of gas introduction to 2 × 10 −4 Pa, a mixed gas composed of 50% by volume argon gas, 25% by volume nitrogen gas, and 25% by volume hydrogen gas was used instead of argon gas. A heat treatment was performed in the same manner as in Example 1 except for the introduction.
(比較例1)
 ガス導入時の真空度を9×10-6Paに調整するとともに、アルゴンガスの代わりに水素ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Comparative Example 1)
The degree of vacuum at the time of gas introduction was adjusted to 9 × 10 −6 Pa, and heat treatment was performed in the same manner as in Example 1 except that hydrogen gas was introduced instead of argon gas.
(比較例2)
 ガス導入時の真空度を1×10-1Paに調整するとともに、アルゴンガスの代わりに50体積%のアルゴンガスと50体積%の窒素ガスとからなる混合ガスを導入したこと以外は実施例1と同様にして熱処理を行った。
(Comparative Example 2)
Example 1 except that the degree of vacuum at the time of gas introduction was adjusted to 1 × 10 −1 Pa and a mixed gas composed of 50% by volume argon gas and 50% by volume nitrogen gas was introduced instead of argon gas. In the same manner, heat treatment was performed.
 次に、実施例および比較例の熱処理が行われた試験片について、アルミナイジング層の表面に形成された保護被膜をX線回折法(XRD)により観察した。結果を表2に示す。 Next, the protective coating formed on the surface of the aluminizing layer was observed by X-ray diffraction (XRD) for the test pieces subjected to the heat treatment of Examples and Comparative Examples. The results are shown in Table 2.
 なお、表2には、XRDによるアルミニウム酸化物(Al)およびコバルト酸化物(CoO)の検出強度を示した。表中、「-」は検出されないことを示し、「+」は検出されたが検出強度が低いことを示し、「++」は検出強度が高いことを示し、「+++」は特に検出強度が高いことを示す。 Table 2 shows the detected intensities of aluminum oxide (Al 2 O 3 ) and cobalt oxide (CoO) by XRD. In the table, “−” indicates that no detection is detected, “+” indicates that detection is performed but the detection intensity is low, “++” indicates that the detection intensity is high, and “++” indicates that the detection intensity is particularly high. It shows that.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、真空度を1×10-5Pa~1×10-3Paとして熱処理を行った実施例の試験片については、いずれも、アルミニウム酸化物の検出強度が高く、コバルト酸化物の検出強度が低くなった。すなわち、実施例の試験片については、保護被膜におけるアルミニウム酸化物の含有率が高く、1000℃を超えるような高温での使用においても耐酸化性を確保できることがわかる。 As shown in Table 2, all of the test pieces of the examples subjected to the heat treatment with a degree of vacuum of 1 × 10 −5 Pa to 1 × 10 −3 Pa had high aluminum oxide detection strength, cobalt The detected intensity of oxide was lowered. That is, it can be seen that the test piece of the example has a high content of aluminum oxide in the protective coating and can ensure oxidation resistance even when used at a high temperature exceeding 1000 ° C.
 一方、真空度を1×10-5Pa未満または1×10-3Paを超えるものとして熱処理を行った比較例の試験片については、いずれも、アルミニウム酸化物が検出されたがその検出強度は低くなった。すなわち、比較例の試験片については、保護被膜におけるアルミニウム酸化物の含有率が低く、1000℃を超えるような高温での使用においては十分な耐酸化性を確保できないおそれがある。 On the other hand, for the test pieces of the comparative examples that were heat-treated with the degree of vacuum being less than 1 × 10 −5 Pa or exceeding 1 × 10 −3 Pa, aluminum oxide was detected, but the detected intensity was It became low. That is, about the test piece of a comparative example, the content rate of the aluminum oxide in a protective film is low, and there exists a possibility that sufficient oxidation resistance cannot be ensured in use at high temperature exceeding 1000 degreeC.
 以上、発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1…アルミナイジング処理が行われたコバルト基合金(被処理体)、2…本体、3…アルミナイジング層、4…コバルト基合金部材、5…保護皮膜、10…熱処理装置、11…処理部、12…加熱部、13…圧力調整部、14…ガス導入部、30…発電システム、31…発電機、32…燃焼器、33…酸素製造装置、34…再生熱交換器、35…冷却器、36…湿分分離器、37…COポンプ、40…COタービン、41…回転系部材、42…ロータ、43…動翼、44…静止系部材、45…ケーシング、46…静翼、111…処理室、131…第1のポンプ、132…第2のポンプ、133…第1の配管、134…第2の配管、135…第3の配管、136…第1の本引弁、137…第2の本引弁、138…粗引弁、141…第5の配管、142…第6の配管、143…ガス導入弁、144…ガス排出弁。 DESCRIPTION OF SYMBOLS 1 ... Cobalt base alloy (to-be-processed object) by which aluminizing process was performed, 2 ... Main body, 3 ... Aluminizing layer, 4 ... Cobalt base alloy member, 5 ... Protective film, 10 ... Heat processing apparatus, 11 ... Processing part, DESCRIPTION OF SYMBOLS 12 ... Heating part, 13 ... Pressure adjustment part, 14 ... Gas introduction part, 30 ... Electric power generation system, 31 ... Generator, 32 ... Combustor, 33 ... Oxygen production apparatus, 34 ... Regenerative heat exchanger, 35 ... Cooler, 36 ... moisture separator, 37 ... CO 2 pumps, 40 ... CO 2 turbine, 41 ... rotating system member, 42 ... rotor, 43 ... moving blades, 44 ... stationary system member, 45 ... casing, 46 ... stationary blade, 111 ... Processing chamber 131 ... first pump 132 ... second pump 133 ... first piping 134 ... second piping 135 ... third piping 136 ... first main valve 137 ... Second main valve, 138 ... Coarse valve, 141 ... Fifth Tube, 142 ... sixth pipe, 143 ... gas introduction valve, 144 ... gas discharge valve.

Claims (5)

  1.  アルミナイジング処理が行われたコバルト基合金を準備する工程と、
     前記アルミナイジング処理が行われたコバルト基合金に対して、1×10-5Pa~1×10-3Paの真空度で熱処理を行う工程と、
    を有することを特徴とするコバルト基合金部材の製造方法。
    Preparing a cobalt-based alloy that has been aluminized;
    Performing a heat treatment at a vacuum degree of 1 × 10 −5 Pa to 1 × 10 −3 Pa on the cobalt-based alloy subjected to the aluminizing treatment;
    The manufacturing method of the cobalt base alloy member characterized by having.
  2.  前記熱処理中に、アルゴンガス、水素ガス、および窒素ガスから選ばれる少なくとも1種のガスを導入することを特徴とする請求項1記載のコバルト基合金部材の製造方法。 The method for producing a cobalt-based alloy member according to claim 1, wherein at least one gas selected from argon gas, hydrogen gas, and nitrogen gas is introduced during the heat treatment.
  3.  前記熱処理を1000℃以上の温度で行うことを特徴とする請求項1または2記載のコバルト基合金部材の製造方法。 The method for producing a cobalt-based alloy member according to claim 1 or 2, wherein the heat treatment is performed at a temperature of 1000 ° C or higher.
  4.  ガスタービンにおける静翼の製造に使用されることを特徴とする請求項1乃至3のいずれか1項記載のコバルト基合金部材の製造方法。 The method for producing a cobalt-based alloy member according to any one of claims 1 to 3, wherein the method is used for producing a stationary blade in a gas turbine.
  5.  前記ガスタービンがCOタービンであることを特徴とする請求項4記載のコバルト基合金部材の製造方法。 The method for producing a cobalt-based alloy member according to claim 4, wherein the gas turbine is a CO 2 turbine.
PCT/JP2015/003741 2015-07-27 2015-07-27 Method for producing cobalt-base alloy member WO2017017708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017530457A JPWO2017017708A1 (en) 2015-07-27 2015-07-27 Cobalt-based alloy member manufacturing method
PCT/JP2015/003741 WO2017017708A1 (en) 2015-07-27 2015-07-27 Method for producing cobalt-base alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/003741 WO2017017708A1 (en) 2015-07-27 2015-07-27 Method for producing cobalt-base alloy member

Publications (1)

Publication Number Publication Date
WO2017017708A1 true WO2017017708A1 (en) 2017-02-02

Family

ID=57884646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003741 WO2017017708A1 (en) 2015-07-27 2015-07-27 Method for producing cobalt-base alloy member

Country Status (2)

Country Link
JP (1) JPWO2017017708A1 (en)
WO (1) WO2017017708A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280955A (en) * 1991-03-08 1992-10-06 Hitachi Ltd Method for modifying surface of chromizing steel
JPH0578860A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Alloy-coated gas turbine blade and its manufacture
JP2007119802A (en) * 2005-10-25 2007-05-17 Central Res Inst Of Electric Power Ind Method for improving oxidation resistance of heat resistant metallic material and method for producing heat resistant metallic member
JP2014020329A (en) * 2012-07-20 2014-02-03 Toshiba Corp Co2 turbine, method of manufacturing co2 turbine, and power generation system
JP2015108175A (en) * 2013-12-05 2015-06-11 三菱日立パワーシステムズ株式会社 Aluminum coating, formation method of laminated film, and gas turbine member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280955A (en) * 1991-03-08 1992-10-06 Hitachi Ltd Method for modifying surface of chromizing steel
JPH0578860A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Alloy-coated gas turbine blade and its manufacture
JP2007119802A (en) * 2005-10-25 2007-05-17 Central Res Inst Of Electric Power Ind Method for improving oxidation resistance of heat resistant metallic material and method for producing heat resistant metallic member
JP2014020329A (en) * 2012-07-20 2014-02-03 Toshiba Corp Co2 turbine, method of manufacturing co2 turbine, and power generation system
JP2015108175A (en) * 2013-12-05 2015-06-11 三菱日立パワーシステムズ株式会社 Aluminum coating, formation method of laminated film, and gas turbine member

Also Published As

Publication number Publication date
JPWO2017017708A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP5306569B2 (en) Method for aluminide coating of hollow articles
JP4535059B2 (en) Aluminum diffusion coating construction method
US6532657B1 (en) Pre-service oxidation of gas turbine disks and seals
RU2015147032A (en) METHOD FOR REPAIR AND MANUFACTURE OF COMPONENTS OF A GAS TURBINE ENGINE AND COMPONENTS OF A GAS TURBINE ENGINE, REPAIRED OR MANUFACTURED WITH ITS USE
JP2006075903A (en) Method for repairing metal component
US20190168327A1 (en) Method for producing turbine blade
US20090107003A1 (en) Technology for Cleaning Thermal Fatigue Cracks in Nickel-Based Superalloys With a High Chromium Content
CN102717224B (en) Method for conducting powder sintering and forming and restoring to large blade gap defects of gas turbine
US6843861B2 (en) Method for preventing the formation of secondary reaction zone in susceptible articles, and articles prepared by the method
CN108779517B (en) High oxidation resistance alloy and gas turbine application using the same
JP2015108175A (en) Aluminum coating, formation method of laminated film, and gas turbine member
WO2017017708A1 (en) Method for producing cobalt-base alloy member
US20080080978A1 (en) Coated turbine engine components and methods for making the same
US20060057416A1 (en) Article having a surface protected by a silicon-containing diffusion coating
JP2015096709A (en) Heat-resistant alloy member and gas turbine using the same
JP2014084791A (en) High temperature member for gas turbine having thermal barrier coating
US6844086B2 (en) Nickel-base superalloy article substrate having aluminide coating thereon, and its fabrication
EP1798303A2 (en) Method for depositing an aluminium-containing layer onto an article
JP2015218379A (en) Thermal barrier coating material for steam turbine, and steam apparatus for power generation
Yashwanth et al. Oxidation behaviour of a newly developed superalloy
JP2018091333A (en) Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
JP5905355B2 (en) Method for producing gas turbine blades for power generation
JP2008274357A (en) Thermal barrier coating member with columnar structure having excellent durability and method for producing the same
US20090136664A1 (en) Method for forming aluminide diffusion coatings
JP2014018836A (en) Ni-BASED WELDING MATERIAL AND DIFFERENT MATERIAL WELDED TURBINE ROTOR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899542

Country of ref document: EP

Kind code of ref document: A1