WO2017017289A1 - Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes - Google Patents

Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes Download PDF

Info

Publication number
WO2017017289A1
WO2017017289A1 PCT/ES2015/070574 ES2015070574W WO2017017289A1 WO 2017017289 A1 WO2017017289 A1 WO 2017017289A1 ES 2015070574 W ES2015070574 W ES 2015070574W WO 2017017289 A1 WO2017017289 A1 WO 2017017289A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor according
wear
wear element
support
Prior art date
Application number
PCT/ES2015/070574
Other languages
English (en)
French (fr)
Inventor
Jordi MÁRQUEZ LLINÀS
Joan CÉSAR GALOBARDES
Nil VALLVÉ
Jorge Triginer Boixeda
Cristian TORAL MARTÍN
Albert PUIG CASTELLÓ
Enric CAMPRUBÍ TORRAS
Original Assignee
Metalogenia Research & Technologies S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metalogenia Research & Technologies S.L. filed Critical Metalogenia Research & Technologies S.L.
Priority to CN201580081879.XA priority Critical patent/CN107849836B/zh
Priority to CA2993410A priority patent/CA2993410C/en
Priority to EP15760207.9A priority patent/EP3327205A1/en
Priority to PCT/ES2015/070574 priority patent/WO2017017289A1/es
Priority to US15/746,891 priority patent/US10677699B2/en
Priority to AU2015403425A priority patent/AU2015403425B2/en
Publication of WO2017017289A1 publication Critical patent/WO2017017289A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/2816Mountings therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0664Indicating or recording means; Sensing means using witness specimens

Definitions

  • the invention relates to a wear sensor for a wear element in a shovel of a earth moving machine. It is also suitable for dredging boats equipped with cutting heads that excavate, transport and deposit material from submerged areas.
  • the invention also relates to a wear element of a shovel of a earth moving machine with a sensor according to the invention as well as to an assembly formed by said wear element and the corresponding support or adapter, where the element of wear has a rear end suitable for mounting on the support and the support has a front end suitable for mounting to the wear element, where the rear end of the wear element has an inner surface that, when mounted, faces an inner surface of the front end of the support.
  • the invention also relates to a use of a wear sensor according to the invention.
  • Earthmoving machines are used in excavation, demolition, construction, mining, dredging and similar activities.
  • the shovel or bucket has a plurality of wear elements that protect it from wear and impacts and / or that improve penetration into the ground, such as with teeth, supports or holders and / or protectors (front and side).
  • the wear elements do wear out so it is necessary to replace them periodically.
  • the working conditions of the wear elements are particularly demanding, with large mechanical stresses, vibrations, shocks and high temperatures (more than 100 e C and even more than 200 e C in some areas).
  • a wear sensor of the type indicated at the beginning characterized in that it comprises an electrical sensor circuit and at least one elongated arm extending in a detection direction defining a longitudinal axis, where the elongated arm has a base and one end, where the end is apt to be worn together with the wear material of the wear element, and where the elongate arm comprises a plurality of electrical connections that are part of the sensor electrical circuit and that extend different lengths from each other, measures along the longitudinal axis along the arm.
  • the wear elements have a part of wear material already designed and intended to be worn. That is to say, it is a part of the piece that will wear out over time and, therefore, will be physically removed from the piece.
  • the sensor according to the invention has an electrical sensor circuit a part of which (the arm) extends towards the part area that is intended to be removed by wear.
  • the sensor arm has its end housed in this area of the part that will be removed and, therefore, during the subsequent use of the wear element, the end of the sensor arm will also be removed. Consequently, the electrical connections arranged in the arm will be physically eliminated, which will cause the corresponding circuits to remain open.
  • the electrical sensor circuit is preferably arranged on a printed circuit board (PBC).
  • the electrical sensor circuit is advantageously formed by passive elements (resistors, coils and / or capacitors) since these elements are the ones that best withstand the high temperatures.
  • a detection circuit can detect the breakage of each of these electrical conduits and, from there, detect the wear progress of the wear element. For this, the detection circuit sends a preset electrical signal to the sensor electrical circuit and measures and analyzes the response signal received from the sensor electrical circuit.
  • the arm is embedded in a mass of polymeric material.
  • the wear sensor will be subject to very demanding working conditions, due to the environment of the wear element itself. In particular, the arm will be exposed to the outside.
  • the mass of polymeric material is a bi-component silicone elastomer, which combines a low thermal conductivity with high elastic properties, which give the assembly a good flexibility, better absorbing the mechanical stresses to which it is subjected.
  • a commercial example of bi-component silicone elastomers suitable for carrying out the present invention is the product under the trade name SYLGARD® 170, marketed by Dow Corning®.
  • the arm can have any shape, as long as it extends in at least one direction that is the one that you want to control as an indicator of the progression of wear. It is the direction that has been considered that defines the aforementioned longitudinal axis.
  • the arm will be as small as possible in the directions in which it is not interesting to measure wear, so it will have a substantially elongated configuration (in the direction of the longitudinal axis) and narrows perpendicularly to the longitudinal axis.
  • the area of wear to be measured will be different for each application (type of wear element in question, concrete design of the same, type of terrain on which to work, etc.).
  • the elongated arm has between 3 and 7 of the aforementioned electrical connections that extend different lengths from each other along the arm, measured along the longitudinal axis.
  • a sensor that had a single electrical connection on the elongated arm might be sufficient.
  • the electrical connection could be arranged in what would correspond to the maximum wear expected for the wear element. In this way the moment in which the change of part should be made could be detected.
  • the sensor can be designed with two different strategies.
  • the sensor can be monobloc, so that a single printed circuit board integrates all the necessary elements to fulfill the functions of the sensor.
  • the printed circuit board will already include a detection circuit capable of detecting the breakage of each of the electrical connections arranged in the arm.
  • the sensor only needs to make changes in the tooth, so it can be mounted on conventional brackets or adapters and / or can be used on teeth that are directly mounted on the lip of the blade.
  • the electrical sensor circuit and the detection circuit are simpler and the presence of wireless communication means is not necessary (as will be discussed later).
  • it also has some drawbacks: the entire sensor is subjected to the high temperatures of the wear element, the sensor has the useful life of the wear element itself, etc.
  • the senor also comprises a data transmission circuit with a radio frequency transmitter.
  • a control system that can be arranged in the excavator machine cabin.
  • This control system can be connected via 3G, internet or satellite to a central headquarters away from the working area of the machine, which can manage the data obtained.
  • the radio frequency emitter emits at a frequency between 50 MHz and 990 MHz, preferably between 150 MHz and 950 MHz and most preferably at 433 MHz.
  • the sensor is arranged in an environment completely metallic and, in fact, is housed inside metal parts. This greatly hinders radio frequency communications.
  • the indicated frequencies can be transmitted through the spaces and clearances of the wear elements and, in general, of the elements arranged in the shovels of the excavating machines. In this way it is possible to establish a radio frequency communication without having to put the antennas out of the wear element, which would leave them exposed to the aggressive environment of the wear element.
  • the electrical connections are part of a plurality of resistive circuits connected in parallel with each other, where the detection circuit is suitable for detecting the voltage drop in terminals of the plurality of resistive circuits. Indeed, this solution is particularly economical and simple to implement.
  • the other strategy is to design the sensor so that it is formed into two physically independent parts or parts.
  • the first part is the one comprising the elongated arm while the second part is arranged outside the wear element and is the one that includes the detection circuit.
  • the first part also includes wireless interconnection means.
  • the second part also includes the data transmission circuit and second wireless interconnection means suitable for establishing a wireless connection with the wireless interconnection means. That is, the wireless connection means and the second wireless connection means are those that allow establishing a connection between the two parts of the sensor, in particular between the sensor electrical circuit and the detection circuit.
  • This alternative allows to house the detection circuit, the transmission circuit and, above all, the battery, in a place at a lower temperature.
  • the first part of the sensor contains only elements much more resistant to temperature.
  • wireless interconnection means is required, and the support or adapter (or, in general, the place on which the wear element is mounted) is required to be adapted to include the second part of the sensor.
  • the senor is housed in a polymeric material capsule (a single capsule in the case of the monobloc sensor or two capsules , one for each part of the sensor formed in two pieces).
  • the polymeric material of the capsule is preferably a semi-crystalline aliphatic polyamide, and it is particularly advantageous to be PA 66, that is to say poly [imino (1,6-dioxohexamethylene) iminohexamethylene], of general formula:
  • the PA 66 has a high stiffness, high melting point and dimensional stability. It also has a low moisture absorption, so it can be designed with tighter tolerances. It also has a high tensile and wear resistance, and is an adherent and weldable material. Another advantageous alternative is that the material is PEEK (polyester ether ketone, English polyether ether ketone), specifically it is the compound obtained from the following reaction:
  • This compound also has excellent mechanical and chemical properties at high temperatures (with low degradation at high temperatures).
  • the hollow space inside the capsule is preferably filled with the mass of polymeric material indicated above.
  • the electrical connections are part of a plurality of LC circuits cascaded together, where the detection circuit is capable of detecting the resonance of the plurality of LC circuits at a preset signal.
  • the sensor electrical circuit must receive a signal that has been transmitted through the wireless connection.
  • this signal be a signal variable.
  • this signal is the signal called Sinc (which is the signal corresponding to (sin (x)) / x).
  • the detection circuit can detect the resonance of the LC circuits to the sync signal.
  • the detection circuit is capable of processing the signal received from the sensor electrical circuit through a fast Fourier transform (FFT) of English Fast Fourier Transform).
  • FFT fast Fourier transform
  • the sync signal has a frequency between 1 kHz and 100 kHz, and most preferably between 4 kHz and 10 kHz. It is particularly advantageous if the frequency is 5 kHz. In this way the return of the induced impulse is received with maximum energy and power, which facilitates its processing through the fast Fourier transform.
  • the wireless interconnection means and the second wireless interconnection means each comprise a ferrite core.
  • Ferrite cores have a low mechanical resistance so they can be damaged if they are subjected to the aggressive environment of the wear element. Therefore, advantageously, each of the ferrite cores is at one end of the corresponding part (specifically at the ends that face each other) and is protected from the outside by a sheet of ceramic material, preferably alumina.
  • the sheet of ceramic material rests adhered on a silicone-based sealant adhesive pad (such as that sold by Dow Corning® under the name 7091 Adhesive Sealant), which serves to keep the system sealed against aggressions external (dust, humidity, etc.) and that of absorbing shocks and / or vibrations that could affect both the integrity of the ferrite and that of the same ceramic sheet that acts as protection of the assembly at its open end.
  • a silicone-based sealant adhesive pad such as that sold by Dow Corning® under the name 7091 Adhesive Sealant
  • the ferrites are round, which allows maximizing the field lines, with the lowest possible losses, minimizing the energy cost and allowing communication with the least possible space.
  • the field lines do not disperse significantly and communication can continue to take place.
  • the ferrite cores have a race in their outer perimeter that houses a coil. In this way the size necessary to accommodate the ferrite core is minimized.
  • the bobbin is made with Litz thread.
  • the senor has an antenna arranged at the rear end of the sensor.
  • this position is the one that is closest to the junction zone between the wear element and the corresponding support.
  • This junction zone is where there is usually a slack through which the radio frequency signal can be transmitted.
  • the antenna is zigzag-shaped, that is, it is formed by a first plurality of parallel sections joined together by a second plurality of sections also parallel to each other and forming a non-zero angle with the first plurality of sections. In this way an antenna of equivalent performance to a monopole is achieved, but with a considerably shorter length.
  • the wear sensor additionally comprises some additional sensor, in particular a temperature, pressure sensor, an accelerometer and / or a gyroscope.
  • the wear sensor also includes a location system, such as GPS or RFID type, which facilitates its location in case of detachment of the wear element. This facilitates its collection and prevents it from damaging other machines or installations, such as crushers, etc.
  • the wear sensor can itself detect the fall of the wear element, thus facilitating its collection to prevent damage to other machines such as crushers, etc. Indeed, its fall will in any case cause a "change of state" (lack of communications between sensor wear and the outside, lack of communication between the two parts of the wear sensor) that can be recognized as a fall of the wear element.
  • the wear sensor comprises consumption reduction means capable of periodically activating the sensor from a low consumption mode to an active mode and returning the sensor to the low consumption mode.
  • consumption reduction means capable of periodically activating the sensor from a low consumption mode to an active mode and returning the sensor to the low consumption mode.
  • the senor comprises energy storage means, preferably a battery.
  • the sensor can act in a totally autonomous way with respect to the outside.
  • the sensor may include some energy harvesting means (in English, energy harvesting).
  • the elements of wear after their manufacture, are stored in more or less long periods of time. Due to the limitations of space (and cost), the battery will have a limited capacity, so it is interesting that the sensor is disabled while it is not installed in the machine. Therefore, it is advantageous for the sensor to include battery connection means suitable for being activated from the outside.
  • a subject of the invention is also a wear element of a shovel of a earth moving machine characterized in that it comprises a wear sensor according to the invention.
  • the wear element has a rear end suitable for being mounted to the blade or to a support fixed to the blade, where the rear end has an inner surface that, in the mounted position, faces the blade or the support, and has a hole extending from the inner surface into the wear element, and the sensor is housed in the hole.
  • a subject of the invention is also an assembly formed by a wear element of a shovel of a earth moving machine and a support of the wear element, where the wear element has a rear end suitable for being mounted to the support and the support It has a front end suitable for mounting to the wear element, where the rear end has an inner surface that, in the assembled position, faces an inner surface of the front end of the support, and comprises a sensor composed of two parts according to the invention.
  • the inner surface of the wear element has a hole that extends from the inner surface to the inside of the wear element and the first part of the sensor is housed in this hole
  • the inner surface of the support has a second hole that extends from the inner surface of the support towards the inside of the support and the second part of the sensor is housed in this second hole.
  • the support comprises a third hole suitable for housing a retaining pin of the wear element in the support and the second hole is communicated with the third hole through a communication hole. This communication hole allows radiofrequency transmission to be established through the gaps between the retaining pin and the third hole.
  • the senor has the antenna arranged at the rear end of the sensor, specifically at the rear end of the second part of the sensor and, in particular, next to the communication hole.
  • the object of the invention is also the use of a wear sensor according to the invention for the determination of the wear of a wear element in a shovel of a earth moving machine.
  • Fig. 1 a sectional side elevation view of a first embodiment of an assembly formed by a wear element, its support and a wear sensor according to the invention.
  • Fig. 2 a perspective view of the assembly section of Fig. 1.
  • Fig. 3 a schematic side elevation view of the sensor of Fig. 1.
  • Fig. 4 a top plan view of the sensor of Fig. 1, without the capsule.
  • FIG. 5 an electrical diagram of the sensor sensor electrical circuit of Fig. 1.
  • Fig. 6 a sectional side elevation view of a second embodiment of an assembly formed by a wear element, its support and a wear sensor according to the invention.
  • Fig. 7 a perspective view of the assembly section of Fig. 6.
  • Fig. 8 a schematic side elevation view of the sensor of Fig. 6, which is formed by a first part and a second part.
  • Fig. 9 a top plan view of the first part of the sensor of Fig. 6, without the capsule.
  • Fig. 10 a top plan view of the second part of the sensor of Fig. 6, without the capsule.
  • Fig. 1 an electrical diagram of the electrical sensor circuit, the wireless connection means and the second wireless connection means of the sensor of Fig. 6, new.
  • Fig. 13 a perspective view of a saucepan with a plurality of supports and wear elements mounted on its lip.
  • Fig. 14 a sectional side elevation view of a third embodiment of a wear element according to the invention.
  • Figs. 1 to 5 show a first embodiment of the present invention.
  • a tooth 1 is mounted on a conventional support or adapter 3 which, in turn, is suitable for being mounted on the lip of a bucket of a earthmoving machine or the like (see Fig. 13).
  • the tooth 1 is the wear element according to the present invention.
  • the tooth 1 has at its rear end a housing in which a nose 7 is located located at the front end of the support 3.
  • the housing has an inner surface 9 which, in a mounted position, will face an inner surface 1 1 of the nose 7.
  • the inner surface 1 1 of the nose 7 is "inner" because it is isolated from the environment in the mounted position and not because it is a concave type surface.
  • the designation "inner” is also because it remains isolated from the environment in the mounted position although, in the present case, it is also a convex surface. Therefore, in the case of other geometric solutions for coupling between the tooth and the support (for example that the tooth has a nose and the support a housing), it should always be understood that the interior surfaces are those that are not in contact with the environment in a mounted position.
  • the wear sensor is monobloc, that is, it is formed by a single piece.
  • the wear sensor comprises a capsule 15 inside which a printed circuit board 17 and a battery 19 are housed. All the hollow space available in the capsule 15 is filled with a polymeric material, so that both the printed circuit board and The battery 19 is embedded in the mass of polymeric material.
  • the capsule 15 has substantially an elongated cylindrical shape with a closed end, although other geometries, such as a square cross section, are also possible. The other end has been closed by a lid 21.
  • the printed circuit board 17 is conceptually divided into two parts, the control part, which is close to the cover 21 and the sensor part that is close to the closed end of the capsule 15.
  • the sensor part is the one comprising the electrical circuit sensor that is formed by a plurality of resistors connected in parallel to each other.
  • the sensing part is elongated and extends to the closed end of the capsule 15 thus defining the arm 23.
  • Physically the resistances are arranged at the end of the sensing part close to the control part, that is, at the base 25 of the arm 23, while a plurality of electrical connections 27 (which establish the parallel electrical connection of the resistors) each extend a different length along the arm 23.
  • the tooth 1 when worn away, will also wear the end of the sensor, so that the electrical connections 27 will be cut. This will cause the equivalent resistance of the set of resistors connected in parallel varies depending on the number of electrical connections 27 cut.
  • the control part comprises a detection circuit capable of passing a certain current through the sensor electrical circuit and capable of detecting the voltage at terminals of the resistor assembly. In this way you can determine the value of the equivalent resistance and, consequently, know how many electrical connections 27 are cut.
  • the control part further comprises a data transmission circuit, an antenna 28, a battery 19 as well as other elements necessary for the correct operation of the sensor.
  • the antenna 28 is arranged at the rear end of the control part, that is, close to the inner surface 9 of the housing. In this way the radio frequency transmission can be established through the clearance between the inner surface 9 of the housing and the inner surface 1 1 of the nose 7.
  • Figs. 6 to 12 show a second embodiment of the present invention.
  • a tooth 1 mounted on a support 3 which, in turn, is suitable to be mounted on the lip of an excavator shovel.
  • the support 3 has a second hole 29 and the sensor is composed of two parts, which are two independent parts.
  • the first part 31 is housed in the hole 13 of the tooth 1 while the second part 33 is housed in the second hole 29 of the support 3.
  • Both holes 13 and 29 face each other in the mounted position whereby the First part 31 and second part 33 are also facing each other in the mounted position.
  • the first part 31 comprises the electrical sensor circuit which, as in the previous case, is formed by a substantially elongated printed circuit board that defines the arm 23.
  • the electrical circuit sensor comprises a cascade of LC circuits.
  • a plurality of electrical connections extend along the arm 23, which will be the ones that will be cut as the wear of the tooth 1 progresses.
  • the electrical sensor circuit is wrapped by a capsule 15 and the hollow space between the capsule 15 and the printed circuit board is filled with a polymeric material.
  • the detection circuit, the data transmission circuit, the antenna 28, the battery 19 and the remaining elements necessary for the correct operation of the sensor are in the second part 33. Since there is no electrical connection between the first part 31 and The second part 33, each of them comprises a ferrite core 35, which make up the wireless connection means and the second wireless connection means.
  • the ferrite core 35 of the first part 31 is disposed at the rear end thereof, while the ferrite core 35 of the second part 33 is disposed at the front end thereof, so that, in the assembled position, both ferrite cores 35 are facing each other and as close as possible to each other.
  • the second part 33 is housed in a second capsule 37 and the hollow space between the second capsule 37 and the printed circuit board is also filled with a polymeric material.
  • caps 21 which, in this case, are made of a ceramic material, such as alumina. This is because, in the present alternative, these caps 21 must protect the ferrite cores 35, which are very delicate.
  • the antenna 28 is again at the rear end of the sensor, specifically at the rear end of the second part 33. This end is close to a third hole 38 disposed in the support 3 on the that tooth 1 is mounted.
  • a retention pin is inserted through holes arranged on both sides of the tooth 1, the retention pin being housed in the third hole 38.
  • the orientation of the pin is not relevant and, for example, could be arranged vertically, that is, in a rotated position 90 e with respect to the position shown in Figs.
  • the clearance between the retention pin, the support 3 and the tooth 1 is sufficient to allow the passage of the radiofrequency signal. Therefore, the support 3 has the second hole 29 communicated with the third hole 38 through a communication hole 39, which facilitates the transmission of the radio frequency signal from the antenna 28 to the third hole 38 and, from there , to the outside.
  • Figs. 1 1 and 12 allow to see the corresponding part of the sensor electrical circuit to the right of the scheme and the wireless connection means and the second wireless connection means with the corresponding ferrite cores 35 in the central part.
  • Fig. 12 two LC circuits that have already been destroyed by wear have been marked with a cross.
  • the response of the sensor electrical circuit of Figs. 1 1 and 12 at a given input signal (for example, a sync signal) will be different in both cases, so the sensor can know the wear level of the wear element.
  • the wear sensor has two arms, which extend in two different directions (which can be perpendicular but could also form an acute angle between them). In this way, wear of the wear element in two different directions can be controlled.
  • This solution is compatible with both the monobloc alternative and the alternative of a sensor consisting of two physically independent parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes. El sensor está destinado a un elemento de desgaste en una pala de una máquina de movimiento de tierras. El sensor comprende un circuito eléctrico sensor y por lo menos un brazo (23) alargado que se extiende en una dirección de detección que define un eje longitudinal. El brazo (23) presenta una base (25) y un extremo. El extremo se desgasta conjuntamente con el material de desgaste del elemento de desgaste. El brazo (23) comprende una pluralidad de conexiones eléctricas (27) que forman parte del circuito eléctrico sensor y que se extienden longitudes diferentes entre sí, medidas según el eje longitudinal a lo largo del brazo (23). La invención también se refiere a un elemento de desgaste de una pala de una máquina de movimiento de tierras, a un conjunto y a su uso para determinar el desgaste.

Description

SENSOR DE DESGASTE Y ELEMENTO DE DESGASTE, CONJUNTO Y USO
CORRESPONDIENTES
DESCRIPCIÓN
Campo de la invención
La invención se refiere a un sensor de desgaste para un elemento de desgaste en una pala de una máquina de movimiento de tierras. También es apto para barcos de dragado provistos de cabezas de corte que excavan, transportan y depositan material procedente de zonas sumergidas.
La invención también se refiere a un elemento de desgaste de una pala de una máquina de movimiento de tierras con un sensor de acuerdo con la invención así como a un conjunto formado por el citado elemento de desgaste y el soporte o adaptador correspondiente, donde el elemento de desgaste presenta un extremo posterior apto para ser montado en el soporte y el soporte tiene un extremo anterior apto para ser montado al elemento de desgaste, donde el extremo posterior del elemento de desgaste presenta una superficie interior que, en posición montada, queda encarada a una superficie interior del extremo anterior del soporte.
La invención se refiere asimismo a un uso de un sensor de desgaste de acuerdo con la invención.
Estado de la técnica
Las máquinas de movimiento de tierras son empleadas en trabajos de excavación, demolición, construcción, minería, dragado y actividades similares. Usualmente la pala o cazo presenta una pluralidad de elementos de desgaste que la protegen del desgaste y los impactos y/o que mejoran la penetración en el terreno, como por ejemplo con dientes, soportes o portadientes y/o protectores (frontales y laterales). Sin embargo los elementos de desgaste sí se desgastan por lo que es necesario substituirlos periódicamente.
Las grandes máquinas de movimiento de tierras, especialmente las que operan en canteras y minas, son esenciales para la producción en dichos emplazamientos. Por ello, los tiempos de inactividad de estas máquinas pueden afectar de una forma muy relevante la productividad de los mismos. Un elemento de desgaste perdido, roto o desgastado requerirá parar la máquina para ensamblar otro elemento de desgaste, dando lugar a un tiempo de producción malgastado. En este sentido, es interesante poder prever la vida útil que le queda a un elemento de desgaste, a fin de intentar hacer coincidir la sustitución del elemento de desgaste con un paro de la máquina por otros motivos, así como para sustituir el elemento de desgaste antes de que se haya desgastado más allá del límite para el que ha sido diseñado (lo que podría provocar su caída, rotura y/o el dañado de otros elementos que el elemento de desgaste debería proteger).
Las condiciones de trabajo de los elementos de desgaste son particularmente exigentes, con grandes solicitaciones mecánicas, vibraciones, golpes y elevadas temperaturas (más de 100eC e incluso más de 200eC en algunas zonas).
Es conocida la inclusión de detectores de presencia, por ejemplo mediante etiquetas RFID (del inglés, radio-frequency Identification) que, sin embargo, es un sistema que solo es apto de detectar la presencia del elemento de desgaste pero no su nivel de desgaste. Además, suelen presentar problemas si deben trabajar a temperaturas elevadas. Otros sistemas emplean técnicas de visión artificial.
También son conocidos sistemas que permiten detectar el nivel de desgaste mediante la inclusión de marcas u orificios en el elemento de desgaste. Sin embargo, estos sistemas requieren que el operario inspeccione físicamente los elementos de desgaste. Exposición de la invención
La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante un sensor de desgaste del tipo indicado al principio, caracterizado por que comprende un circuito eléctrico sensor y por lo menos un brazo alargado que se extiende en una dirección de detección definiendo un eje longitudinal, donde el brazo alargado presenta una base y un extremo, donde el extremo es apto para ser desgastado conjuntamente con el material de desgaste del elemento de desgaste, y donde el brazo alargado comprende una pluralidad de conexiones eléctricas que forman parte del circuito eléctrico sensor y que se extienden longitudes diferentes entre sí, medidas según el eje longitudinal a lo largo del brazo.
Efectivamente los elementos de desgaste tienen una parte de material de desgaste ya diseñada y prevista para ser desgastada. Es decir es una parte de la pieza que se irá desgastando con el tiempo y, por lo tanto será físicamente eliminada de la pieza. El sensor de acuerdo con la invención tiene un circuito eléctrico sensor una parte del cual (el brazo) se extiende hacia la zona de la pieza que está prevista que sea eliminada por desgaste. El brazo del sensor tiene su extremo alojado en esta zona de la pieza que será eliminada y, por lo tanto, durante el posterior uso del elemento de desgaste, el extremo del brazo sensor será también eliminado. En consecuencia las conexiones eléctricas dispuestas en el brazo se verán físicamente eliminadas, lo que provocará que los correspondientes circuitos queden abiertos. Al haber una pluralidad de conexiones eléctricas que se extienden longitudes diferentes entre sí en sentido del eje longitudinal (es decir que se extienden hacia el extremo del brazo en una mayor o menor cantidad), estas conexiones eléctricas se irán interrumpiendo secuencialmente conforme vaya progresando el desgaste del elemento de desgaste y, en consecuencia, se vaya recortando el extremo del brazo del sensor. De esta manera, un circuito de detección podrá detectar cuál o cuáles de estas conexiones eléctricas están interrumpidas y, en consecuencia, podrá saber hasta qué punto ha avanzado el desgaste del brazo y, en consecuencia del elemento de desgaste. El circuito eléctrico sensor está preferentemente dispuesto sobre una placa de circuito impreso (PBC, del inglés Printed Board Circuit). El circuito eléctrico sensor está ventajosamente formado por unos elementos pasivos (resistencias, bobinas y/o condensadores) ya que estos elementos son los que mejor soportan las elevadas temperaturas. Adicionalmente comprenderá una serie de conexiones eléctricas entre ellos, en forma de pistas de material conductor dispuestas sobre la placa del circuito impreso. Algunas de estas conexiones eléctricas son las que se pueden alargar de manera que se extiendan a lo largo del brazo longitudes diferentes entre sí, de manera que cuando se vaya desgastando el brazo se vayan interrumpiendo estas conexiones eléctricas de una forma escalonada. De esta manera, un circuito de detección podrá detectar la rotura de cada una de estas conducciones eléctricas y, a partir de allí, detectar el progreso de desgaste del elemento de desgaste. Para ello, el circuito de detección envía una señal eléctrica preestablecida al circuito eléctrico sensor y mide y analiza la señal de respuesta recibida del circuito eléctrico sensor.
Preferentemente el brazo está embebido en una masa de material polimérico. Efectivamente el sensor de desgaste estará sometido a unas condiciones de trabajo muy exigentes, debidas al entorno propio del elemento de desgaste. En particular el brazo quedará expuesto al exterior. Para conseguir que el brazo se desgaste junto con el resto del elemento de desgaste y no sufra otros daños debidos a este entorno de trabajo agresivo, es ventajoso que esté embebido en una masa de material polimérico que lo proteja y que, además, permita fijar el sensor al elemento de desgaste. Preferentemente la masa de material polimérico es un elastomero de silicona bi-componente, que combina una baja conductividad térmica con unas propiedades elásticas elevadas, que dan una buena flexibilidad al conjunto, absorbiendo mejor las solicitaciones mecánicas a las que se ve sometido. Un ejemplo comercial de elastomeros de silicona bi-componentes aptos para la realización de la presente invención es el producto de nombre comercial SYLGARD® 170, comercializado por Dow Corning®.
En principio el brazo puede tener cualquier forma, siempre y cuando se extienda por lo menos en una dirección que sea la que se desea controlar como indicadora de la progresión del desgaste. Es la dirección que se ha considerado que define el citado eje longitudinal. En la práctica, y dadas las limitaciones de espacio existentes, el brazo será lo más pequeño posible en las direcciones en las que no interese medir el desgaste, por lo que tendrá una configuración substancialmente alargada (en la dirección del eje longitudinal) y estrecha perpendicularmente al eje longitudinal. En cualquier caso, la zona de desgaste a medir será diferente para cada aplicación (tipo de elemento de desgaste de que se trate, diseño concreto del mismo, tipo de terreno sobre el que deba trabajar, etc.). Ventajosamente el brazo alargado tiene entre 3 y 7 de las citadas conexiones eléctricas que se extienden longitudes diferentes entre sí a lo largo del brazo, medidas según el eje longitudinal. Efectivamente, en un sentido estricto podría ser suficiente un sensor que tuviese una única conexión eléctrica en el brazo alargado. Por ejemplo, la conexión eléctrica podría estar dispuesta en lo que correspondería al desgaste máximo previsto para el elemento de desgaste. De esta forma se podría detectar el momento en el que debe realizarse el cambio de pieza. Sin embargo, ya que se dispone de un sensor completo, es decir, con todos los restantes componentes para ser totalmente operativo, vale la pena que presente más de una conexión eléctrica en el brazo, ya que de esta manera se puede detectar no sólo el momento de cambio del elemento de desgaste desgastado sino que se puede detectar la progresión del desgaste, lo que permite, por ejemplo, hacer previsiones de cuándo será necesario hacer el cambio de pieza. En este sentido la existencia de al menos 2 conexiones eléctricas, y preferentemente entre 3 y 7 conexiones eléctricas, ha mostrado ser la mejor combinación ya que permite una resolución suficiente a un bajo coste. Sin embargo, es perfectamente posible plantear soluciones alternativas con más conexiones.
El sensor puede estar concebido con dos estrategias diferenciadas. En un caso el sensor puede ser monobloque, de manera que una única placa de circuito impreso integre ya todos los elementos necesarios para cumplir las funciones del sensor. En este caso la placa de circuito impreso incluirá ya un circuito de detección apto para detectar la rotura de cada una de las conexiones eléctricas dispuestas en el brazo. Esta alternativa permite la realización de un sensor más compacto y económico. Además, el sensor solamente requiere hacer cambios en el diente, por lo que puede ser montado sobre soportes o adaptadores convencionales y/o puede ser empleado en dientes que vayan directamente montados sobre el labio de la pala. El circuito eléctrico sensor y el circuito de detección son más sencillos y no es necesaria la presencia de unos medios de comunicación inalámbrica (como se comentará más adelante). Sin embargo, presenta también algunos inconvenientes: todo el sensor es sometido a las temperaturas elevadas propias del elemento de desgaste, el sensor tiene como vida útil la propia vida útil del elemento de desgaste, etc.
Preferentemente el sensor comprende también un circuito de transmisión de datos con un emisor de radiofrecuencia. Efectivamente de esta forma se puede transmitir la información relativa al desgaste del elemento de desgaste hacia el exterior, por ejemplo a un sistema de control que puede estar dispuesto en la cabina de la máquina excavadora. Este sistema de control, a su vez, puede estar conectado vía 3G, internet o vía satélite a una sede central alejada de la zona de trabajo de la máquina, la cual puede gestionar los datos obtenidos.
Ventajosamente el emisor de radiofrecuencia emite en una frecuencia comprendida entre los 50 MHz y los 990 MHz, preferentemente entre los 150 MHz y los 950 MHz y muy preferentemente a 433 MHz. Efectivamente, debe tenerse en cuenta que el sensor está dispuesto en un entorno totalmente metálico y, de hecho, está alojado en el interior de piezas metálicas. Esto dificulta enormemente las comunicaciones por radiofrecuencia. Sin embargo se ha observado que las frecuencias indicadas pueden transmitirse a través de los espacios y holguras propios de los elementos de desgaste y, en general, de los elementos dispuestos en las palas de las máquinas excavadoras. De esta forma se puede conseguir establecer una comunicación con radiofrecuencia sin necesidad de tener que poner las antenas fuera del elemento de desgaste, lo que las dejaría expuestas al agresivo entorno del elemento de desgaste.
En el caso de un sensor monobloque, es particularmente ventajoso que las conexiones eléctricas sean parte de una pluralidad de circuitos resistivos conectados en paralelo entre sí, donde el circuito de detección es apto para detectar la caída de tensión en bornes de la pluralidad de circuitos resistivos. Efectivamente, esta solución es particularmente económica y sencilla de implementar.
La otra estrategia consiste en diseñar el sensor de manera que esté formado en dos piezas o partes físicamente independientes. En este segundo caso la primera parte es la que comprende el brazo alargado mientras que la segunda parte está dispuesta fuera del elemento de desgaste y es la que incluye el circuito de detección. La primera parte comprende, además, unos medios de interconexión inalámbrica. Por su parte, la segunda parte comprende además el circuito de transmisión de datos y unos segundos medios de interconexión inalámbrica aptos para establecer una conexión inalámbrica con los medios de interconexión inalámbrica. Es decir, los medios de conexión inalámbrica y los segundos medios de conexión inalámbrica son los que permiten establecer una conexión entre las dos partes del sensor, en particular entre el circuito eléctrico sensor y el circuito de detección. Esta alternativa permite alojar el circuito de detección, el circuito de transmisión y, sobre todo, la batería, en un lugar a menor temperatura. Por otro lado, permite que estos componentes del sensor se aprovechen mejor, ya que pueden ser empleados para una pluralidad de elementos de desgaste sucesivos. Por su parte, la primera parte del sensor contiene únicamente elementos mucho más resistentes a la temperatura. Como contrapartida, se requiere de unos medios de interconexión inalámbrica, y se requiere que el soporte o adaptador (o, en general, el lugar sobre el que vaya montado el elemento de desgaste) esté adaptado para poder incluir la segunda parte del sensor.
Tanto en el caso de un sensor monobloque como en el caso de un sensor formado por dos piezas o partes físicamente independientes, es ventajoso que el sensor esté alojado en una cápsula de material polimérico (una única cápsula en el caso del sensor monobloque o dos cápsulas, una para cada parte del sensor formado en dos piezas). El material polimérico de la cápsula es preferentemente una poliamida alifática semicristalina, y es particularmente ventajoso que sea PA 66, es decir poli[imino(1 ,6-dioxohexametilen)iminohexametilen], de fórmula general:
Figure imgf000010_0001
El PA 66 presenta una elevada rigidez, punto de fusión elevado y estabilidad dimensional. Tiene además una baja absorción de humedad, por lo que permite ser diseñado con tolerancias más ajustadas. Tiene también una elevada resistencia a la tracción y al desgaste, y es un material adherible y soldable. Otra alternativa ventajosa es que el material sea PEEK (poliéster éter cetona, del inglés polyether ether ketone), concretamente se trata del compuesto obtenido a partir de la siguiente reacción:
Figure imgf000010_0002
Este compuesto también presenta excelentes propiedades mecánicas y químicas a temperaturas elevadas (con una baja degradación a altas temperaturas).
En el caso de tener el sensor encapsulado, el espacio hueco en el interior de la cápsula se rellena preferentemente de la masa de material polimérico indicado anteriormente.
En el caso del sensor compuesto por dos partes, es particularmente ventajoso que las conexiones eléctricas sean parte de una pluralidad de circuitos LC conectados en cascada entre sí, donde el circuito de detección es apto para detectar la resonancia de la pluralidad de circuitos LC a una señal preestablecida. Efectivamente, en el caso de un sensor compuesto por dos partes al circuito eléctrico sensor le debe llegar una señal que ha sido transmitida a través de la conexión inalámbrica. Para ello es conveniente que esta señal sea una señal variable. Preferentemente esta señal es la señal denominada Sinc (que es la señal correspondiente a (sen (x))/x). Por su parte, el circuito de detección podrá detectar la resonancia de los circuitos LC a la señal Sinc. Ventajosamente el circuito de detección es apto para procesar la señal recibida del circuito eléctrico sensor a través de una transformada rápida de Fourier (FFT, del inglés Fast Fourier Transform). Preferentemente cada uno de los circuitos LC tiene L = 22 μΗ y C = 470 nF. Por su parte, preferentemente la señal Sinc tiene una frecuencia comprendida entre 1 kHz y 100 kHz, y muy preferentemente comprendida entre 4 kHz y 10 kHz. Es particularmente ventajoso que la frecuencia sea de 5 kHz. De esta manera el retorno del impulso inducido se recibe con la máxima energía y potencia, lo que facilita su procesado a través de la transformada rápida de Fourier.
Preferentemente los medios de interconexión inalámbrica y los segundos medios de interconexión inalámbrica comprenden cada uno de ellos un núcleo de ferrita. Los núcleos de ferrita tienen una baja resistencia mecánica por lo que se pueden ver dañados si están sometidos al entorno agresivo del elemento de desgaste. Por ello, ventajosamente, cada uno de los núcleos de ferrita está en un extremo de la parte correspondiente (concretamente en los extremos que quedan encarados entre sí) y está protegido del exterior por una lámina de material cerámico, preferentemente de alúmina. Ventajosamente la lámina de material cerámico se apoya adherido sobre un cojín de adhesivo sellador con base de silicona (como por ejemplo el comercializado por Dow Corning® bajo el nombre 7091 Adhesive Sealant), que cumple las funciones de mantener el sellado del sistema frente a agresiones externas (polvo, humedad, etc.) y la de absorber golpes y/o vibraciones que pudieran afectar tanto a la integridad de la ferrita como a la de la misma lámina cerámica que ejerce de protección del conjunto en su extremo abierto.
Alternativamente, se pueden emplear otros materiales, como por ejemplo unos imanes permanentes.
Preferentemente las ferritas son redondas, lo que permite maximizar las líneas de campo, con las menores pérdidas posibles, minimizando el coste energético y permitiendo la comunicación con el menor espacio posible. Con esta geometría, incluso en el caso de roturas durante su uso, la líneas de campo no se dispersan significativamente y la comunicación puede seguir teniendo lugar.
Preferentemente los núcleos de ferrita tienen una regata en su perímetro exterior que aloja una bobina. De esta manera se reduce al máximo el tamaño necesario para alojar el núcleo de ferrita. Ventajosamente la bobina está hecha con hilo de Litz.
Preferentemente el sensor tiene una antena dispuesta en el extremo posterior del sensor. Efectivamente, en el caso del sensor monobloque esta posición es la que queda más próxima a la zona de unión entre el elemento de desgaste y el soporte correspondiente. En esta zona de unión es donde suele haber una holgura por la que puede transmitirse la señal de radiofrecuencia. Ventajosamente la antena tiene forma de zig-zag, es decir, está formada por una primera pluralidad de tramos paralelos entre sí unidos por una segunda pluralidad de tramos asimismo paralelos entre sí y que forman un ángulo no nulo con la primera pluralidad de tramos. De esta manera se consigue una antena de prestaciones equivalentes a un monopolo, pero con una longitud considerablemente menor. Preferentemente el sensor de desgaste comprende, adicionalmente, algún sensor adicional, en particular un sensor de temperatura, de presión, un acelerómetro y/o un giroscopio. De esta manera se puede aprovechar una serie de elementos comunes (como el circuito de transmisión de datos y la electrónica que gestionará el sensor en general). Ventajosamente el sensor de desgaste comprende también un sistema de localización, como por ejemplo tipo GPS o RFID, que facilite su localización en caso de desprendimiento del elemento de desgaste. De esta manera se facilita su recogida y se evita que pueda dañar otras máquinas o instalaciones, como trituradoras, etc. En cualquier caso, el sensor de desgaste puede servir por sí mismo para detectar la caída del elemento de desgaste, facilitando así su recogida para evitar que dañe otras máquinas como trituradoras, etc. Efectivamente, su caída provocará en cualquier caso un "cambio de estado" (falta de comunicaciones entre sensor de desgaste y el exterior, falta de comunicación entre las dos partes del sensor de desgaste) que podrá ser reconocido como una caída del elemento de desgaste.
Ventajosamente el sensor de desgaste comprende unos medios de reducción de consumo aptos para activar periódicamente el sensor de un modo de bajo consumo a un modo activo y retornar el sensor al modo de bajo consumo. Efectivamente una de las limitaciones que probablemente tenga el sensor es la energía disponible. Por otro lado no es necesario que se transmita la información sobre el estado de desgaste de una forma continua o con una elevada frecuencia en el tiempo. Por ello es ventajoso que el sensor de desgaste esté en un estado "dormido" durante un cierto período de tiempo tras lo cual se "despierte", detecte el nivel de desgaste, lo transmita al exterior y vuelva a quedar en un estado dormido. De hecho es incluso posible prever una alternativa en la que, al despertarse, detecte el nivel de desgaste y únicamente lo transmita si ha habido algún cambio significativo respecto de los últimos datos enviados al exterior o si, por ejemplo, detecta que el diente se ha caído.
Ventajosamente el sensor comprende unos medios de almacenamiento de energía, preferentemente una batería. De esta forma el sensor puede actuar de una forma totalmente autónoma respecto del exterior. Alternativamente o adicionalmente el sensor puede incluir algunos medios de captación de energía (en inglés, energy harvesting).
Es frecuente que los elementos de degaste, tras su fabricación, estén almacenados en períodos de tiempo más o menos largos. Debido a las limitaciones de espacio (y de coste), la batería tendrá una capacidad limitada, por lo que es interesante que el sensor esté desactivado mientras no esté instalado en la máquina. Por ello es ventajoso que el sensor comprenda unos medios de conexión de la batería aptos para ser activados desde el exterior.
La invención también tiene por objeto un elemento de desgaste de una pala de una máquina de movimiento de tierras caracterizado por que comprende un sensor de desgaste de acuerdo con la invención. Preferentemente el elemento de desgaste presenta un extremo posterior apto para ser montado a la pala o a un soporte fijado a la pala, donde el extremo posterior presenta una superficie interior que, en posición montada, queda encarada a la pala o al soporte, y tiene un orificio que se extiende desde la superficie interior hacia el interior del elemento de desgaste, y el sensor está alojado en el orificio. Esta solución se explicará con más detalle más adelante.
La invención tiene asimismo por objeto un conjunto formado por un elemento de desgaste de una pala de una máquina de movimiento de tierras y un soporte del elemento de desgaste, donde el elemento de desgaste presenta un extremo posterior apto para ser montado al soporte y el soporte tiene un extremo anterior apto para ser montado al elemento de desgaste, donde el extremo posterior presenta una superficie interior que, en posición montada, queda encarada a una superficie interior del extremo anterior del soporte, y comprende un sensor compuesto por dos partes de acuerdo con la invención. Preferentemente la superficie interior del elemento de desgaste tiene un orificio que se extiende desde la superficie interior hacia el interior del elemento de desgaste y la primera parte del sensor está alojada en este orificio, y la superficie interior del soporte tiene un segundo orificio que se extiende desde la superficie interior del soporte hacia el interior del soporte y la segunda parte del sensor está alojada en este segundo orificio. Ventajosamente el soporte comprende un tercer orificio apto para alojar un pasador de retención del elemento de desgaste en el soporte y el segundo orificio está comunicado con el tercer orificio a través de un orificio de comunicación. Este orificio de comunicación permite que la transmisión por radiofrecuencia se establezca a través de las holguras existentes entre el pasador de retención y el tercer orificio. Por ello, también en este caso es ventajoso que el sensor tenga la antena dispuesta en el extremo posterior del sensor, concretamente en el extremo posterior de la segunda parte del sensor y, en especial, junto al orificio de comunicación. Finalmente la invención también tiene por objeto el uso de un sensor de desgaste de acuerdo con la invención para la determinación del desgaste de un elemento de desgaste en una pala de una máquina de movimiento de tierras.
Breve descripción de los dibujos
Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relatan unos modos preferentes de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran:
Fig. 1 , una vista en alzado lateral, seccionada, de una primera forma de realización de un conjunto formado por un elemento de desgaste, su soporte y un sensor de desgaste de acuerdo con la invención.
Fig. 2, una vista en perspectiva de la sección del conjunto de la Fig. 1 .
Fig. 3, una vista esquemática en alzado lateral del sensor de la Fig. 1 .
Fig. 4, una vista en planta superior del sensor de la Fig. 1 , sin la cápsula.
Fig. 5, un esquema eléctrico del circuito eléctrico sensor del sensor de la Fig. 1 . Fig. 6, una vista en alzado lateral, seccionada, de una segunda forma de realización de un conjunto formado por un elemento de desgaste, su soporte y un sensor de desgaste de acuerdo con la invención.
Fig. 7, una vista en perspectiva de la sección del conjunto de la Fig. 6.
Fig. 8, una vista esquemática en alzado lateral del sensor de la Fig. 6, que está formado por una primera parte y una segunda parte. Fig. 9, una vista en planta superior de la primera parte del sensor de la Fig. 6, sin la cápsula.
Fig. 10, una vista en planta superior de la segunda parte del sensor de la Fig. 6, sin la cápsula.
Fig. 1 1 , un esquema eléctrico del circuito eléctrico sensor, los medios de conexión inalámbrica y los segundos medios de conexión inalámbrica del sensor de la Fig. 6, nuevo.
Fig. 12, el esquema eléctrico de la Fig. 1 1 parcialmente desgastado.
Fig. 13, una vista en perspectiva de un cazo con una pluralidad de soportes y elementos de desgaste montados sobre su labio.
Fig. 14, una vista en alzado lateral, seccionada, de una tercera forma de realización de un elemento de desgaste de acuerdo con la invención.
Descripción detallada de unas formas de realización de la invención
Las Figs. 1 a 5 muestran una primera forma de realización de la presente invención. Un diente 1 está montado sobre un soporte o adaptador 3 convencional el cual, a su vez, es apto para ir montado en el labio de un cazo de una máquina de movimiento de tierras o similar (ver Fig. 13). El diente 1 es el elemento de desgaste de acuerdo con la presente invención. El diente 1 presenta en su extremo posterior un alojamiento en el cual se aloja una nariz 7 ubicada en el extremo anterior del soporte 3. El alojamiento presenta una superficie interior 9 que, en posición montada quedará encarada a una superficie interior 1 1 de la nariz 7. En la presente descripción y reivindicaciones se ha indicado que la superficie interior 1 1 de la nariz 7 es "interior" porque queda aislada del entorno en la posición montada y no porque sea una superficie de tipo cóncavo. En el caso de la superficie interior 9 del alojamiento del diente 1 , la denominación "interior" también es porque queda aislada del entorno en la posición montada aunque, en el presente caso, se trate además de una superficie convexa. Por lo tanto, en el caso de otras soluciones geométricas para el acoplamiento entre el diente y el soporte (por ejemplo que el diente presente una nariz y el soporte un alojamiento), se debe entender siempre que las superficies interiores son aquellas que no están en contacto con el entorno en una posición montada.
En la superficie interior 9 del alojamiento del diente 1 hay un orificio 13 en el que está alojado el sensor de desgaste. En esta forma de realización el sensor de desgaste es monobloque, es decir está formado por una única pieza. El sensor de desgaste comprende una cápsula 15 en cuyo interior se aloja una placa de circuito impreso 17 y una batería 19. Todo el espacio hueco disponible en la cápsula 15 está rellenado con un material polimérico, de manera que tanto la placa del circuito impreso como la batería 19 están embebidas en la masa de material polimérico. La cápsula 15 tiene substancialmente una forma cilindrica alargada con un extremo cerrado, si bien otras geometrías, como por ejemplo de sección transversal cuadrada, también son posibles. El otro extremo ha sido cerrado mediante una tapa 21 . La placa de circuito impreso 17 está conceptualmente dividida en dos partes, la parte de control, que está próxima a la tapa 21 y la parte sensora que está próxima al extremo cerrado de la cápsula 15. La parte sensora es la que comprende el circuito eléctrico sensor que está formado por una pluralidad de resistencias conectadas en paralelo entre sí. La parte sensora es alargada y se extiende hasta el extremo cerrado de la cápsula 15 definiendo así el brazo 23. Físicamente las resistencias están dispuestas en el extremo de la parte sensora próximo a la parte de control, es decir, en la base 25 del brazo 23, mientras que una pluralidad de conexiones eléctricas 27 (que establecen el conexionado eléctrico en paralelo de las resistencia) se extienden, cada una de ellas, una longitud diferente a lo largo del brazo 23.
El diente 1 , al irse desgastando, irá desgastando también el extremo del sensor, de manera que se irán cortando las conexiones eléctricas 27. Ello provocará que la resistencia equivalente del conjunto de resistencias conectadas en paralelo vaya variando en función del número de conexiones eléctricas 27 cortadas. La parte de control comprende un circuito de detección apto para hacer pasar una determinada corriente por el circuito eléctrico sensor y apto para detectar la tensión en bornes del conjunto de resistencias. De esta manera puede determinar el valor de la resistencia equivalente y, en consecuencia saber cuántas conexiones eléctricas 27 están cortadas.
En el esquema eléctrico de la Fig. 5 se ha marcado con una cruz una conexión eléctrica 27 eliminada por desgaste. La resistencia equivalente del conjunto conectado en paralelo será diferente que antes de haberse eliminado esta conexión eléctrica 27.
La parte de control comprende además un circuito de transmisión de datos, una antena 28, una batería 19 así como otros elementos necesarios para el correcto funcionamiento del sensor. La antena 28 está dispuesta en el extremo posterior de la parte de control, es decir, próxima a la superficie interior 9 del alojamiento. De esta manera la transmisión por radiofrecuencia puede establecerse a través de la holgura presente entre la superficie interior 9 del alojamiento y la superficie interior 1 1 de la nariz 7.
La ubicación del orificio 13 en la superficie interior 9 del alojamiento permite aislar "razonablemente" al sensor del entorno agresivo en el que trabaja el diente 1 . Las Figs. 6 a 12 muestran una segunda forma de realización de la presente invención. De una forma similar al caso anterior, tenemos un diente 1 montado sobre un soporte 3 el cual, a su vez, es apto para ir montado en el labio de una pala excavadora. Sin embargo en el presente caso el soporte 3 tiene un segundo orificio 29 y el sensor está compuesto por dos partes, que son dos piezas independientes. La primera parte 31 está alojada en el orificio 13 del diente 1 mientras que la segunda parte 33 está alojada en el segundo orificio 29 del soporte 3. Ambos orificios 13 y 29 están encarados entre sí en la posición montada por lo que la primera parte 31 y la segunda parte 33 están también encaradas entre sí en la posición montada.
La primera parte 31 comprende el circuito eléctrico sensor que, al igual que en el caso anterior, está formado por una placa de circuito impreso substancialmente alargada que define el brazo 23. En este caso, en lugar de unas resistencias en paralelo, el circuito eléctrico sensor comprende una cascada de circuitos LC. A lo largo del brazo 23 se extienden una pluralidad de conexiones eléctricas que serán las que se irán cortando conforme avance el desgaste del diente 1 . El circuito eléctrico sensor está envuelto por una cápsula 15 y el espacio hueco entre la cápsula 15 y la placa de circuito impreso está rellenado de un material polimérico.
El circuito de detección, el circuito de transmisión de datos, la antena 28, la batería 19 y los restantes elementos necesarios para el correcto funcionamiento del sensor están en la segunda parte 33. Dado que no hay una conexión eléctrica entre la primera parte 31 y la segunda parte 33, cada una de ellas comprende un núcleo de ferrita 35, que conforman los medios de conexión inalámbrica y los segundos medios de conexión inalámbrica. El núcleo de ferrita 35 de la primera parte 31 está dispuesto en el extremo posterior de la misma, mientras que el núcleo de ferrita 35 de la segunda parte 33 está dispuesto en el extremo anterior de la misma, de manera que, en posición montada, ambos núcleos de ferrita 35 están enfrentados entre sí y lo más cerca posible el uno del otro. La segunda parte 33 está alojada en una segunda cápsula 37 y el espacio hueco entre la segunda cápsula 37 y la placa de circuito impreso está también rellenado de un material polimérico.
El extremo abierto de la cápsula 15 y el extremo abierto de la segunda cápsula 37 están cerrados por unas tapas 21 que, en este caso, son de un material cerámico, como por ejemplo alúmina. Ello es debido a que, en la presente alternativa, estas tapas 21 deben proteger los núcleos de ferrita 35, que son muy delicados.
En esta segunda forma de realización, la antena 28 está nuevamente en el extremo posterior del sensor, concretamente en el extremo posterior de la segunda parte 33. Este extremo está próximo a un tercer orificio 38 dispuesto en el soporte 3 sobre el que va montado el diente 1 . Para fijar el diente 1 en el soporte 3 se inserta un pasador de retención a través de unos orificios dispuestos a ambos lados del diente 1 , quedando el pasador de retención alojado en el tercer orificio 38. A efectos de la presente invención, la orientación del pasador no es relevante y, por ejemplo, podría estar dispuesto verticalmente, es decir, en una posición girada 90e respecto de la posición mostrada en las Figs. La holgura presente entre el pasador de retención, el soporte 3 y el diente 1 es suficiente para permitir el paso de la señal de radiofrecuencia. Por ello, el soporte 3 tiene el segundo orificio 29 comunicado con el tercer orificio 38 a través de un orificio de comunicación 39, que facilita la transmisión de la señal de radiofrecuencia desde la antena 28 hasta el tercer orificio 38 y, a partir de allí, hasta el exterior.
Los esquemas eléctricos de las Figs. 1 1 y 12 permiten ver la parte correspondiente del circuito eléctrico sensor a la derecha del esquema y los medios de conexión inalámbrica y los segundos medios de conexión inalámbrica con los correspondientes núcleos de ferrita 35 en la parte central. En la Fig. 12 se ha marcado con una cruz dos circuitos LC que ya han sido destruidos por el desgaste. La respuesta del circuito eléctrico sensor de las Figs. 1 1 y 12 a una determinada señal de entrada (por ejemplo, una señal Sinc) será diferente en ambos casos, por lo que el sensor podrá saber el nivel de desgaste del elemento de desgaste.
En la Fig. 14 se muestra otra forma de realización de la invención. En este caso, el sensor de desgaste tiene dos brazos, que se extienden en dos direcciones diferentes (que pueden ser perpendiculares pero también podrían formar un ángulo agudo entre ellas). De esta manera, se puede controlar el desgaste del elemento de desgaste en dos direcciones diferentes. Esta solución es compatible tanto con la alternativa monobloque como con la alternativa de un sensor formado por dos piezas físicamente independientes.

Claims

REIVINDICACIONES
1 - Sensor de desgaste para un elemento de desgaste en una pala de una máquina de movimiento de tierras caracterizado por que comprende un circuito eléctrico sensor y por lo menos un brazo (23) alargado que se extiende en una dirección de detección definiendo un eje longitudinal, dicho brazo (23) alargado presentando una base (25) y un extremo, donde dicho extremo es apto para ser desgastado conjuntamente con el material de desgaste del elemento de desgaste, donde dicho brazo (23) alargado comprende una pluralidad de conexiones eléctricas (27) que forman parte de dicho circuito eléctrico sensor y que se extienden longitudes diferentes entre sí, medidas según dicho eje longitudinal a lo largo de dicho brazo (23). 2 - Sensor según la reivindicación 1 , caracterizado por que dicho brazo (23) está embebido en una masa de material polimérico.
3 - Sensor según la reivindicación 2, caracterizado por que dicha masa de material polimérico es un elastómero de silicona bi-componente.
4 - Sensor según cualquiera de las reivindicaciones 1 a 3, caracterizado por que está alojado en una cápsula (15, 37) de material polimérico.
5 - Sensor según la reivindicación 4, caracterizado por que dicho material polimérico de dicha cápsula (15, 37) es una poliamida alifática semicristalina, preferentemente PA 66.
6 - Sensor según la reivindicación 4, caracterizado por que dicho material polimérico de dicha cápsula es PEEK.
7 - Sensor según cualquiera de las reivindicaciones 1 a 6, caracterizado por que dicho brazo (23) alargado tiene entre 3 y 7 de dichas conexiones eléctricas (27) que se extienden longitudes diferentes entre sí a lo largo de dicho brazo (23), medidas según dicho eje longitudinal.
8 - Sensor según cualquiera de las reivindicaciones 1 a 7, caracterizado por que comprende un circuito de detección apto para detectar la rotura de cada una de dichas conexiones eléctricas (27).
9 - Sensor según cualquiera de las reivindicaciones 1 a 8, caracterizado por que comprende un circuito de transmisión de datos con un emisor de radiofrecuencia.
10 - Sensor según la reivindicación 9, caracterizado por que dicho emisor de radiofrecuencia emite en una frecuencia comprendida entre los 50 MHz y los 990 MHz, preferentemente entre los 150 MHz y los 950 MHz y muy preferentemente a 433 MHz.
1 1 - Sensor según una de las reivindicaciones 9 ó 10, caracterizado por que tiene una antena (28) dispuesta en el extremo posterior del sensor.
12 - Sensor según la reivindicación 1 1 , caracterizado por que dicha antena (28) tiene forma de zig-zag.
13 - Sensor según cualquiera de las reivindicaciones 1 a 12, caracterizado por que dichas conexiones eléctricas (27) son parte de una pluralidad de circuitos resistivos conectados en paralelo entre sí, donde dicho circuito de detección es apto para detectar la caída de tensión en bornes de dicha pluralidad de circuitos resistivos.
14 - Sensor según cualquiera de las reivindicaciones 1 a 12, caracterizado por que está compuesto por dos partes que son dos piezas físicamente independientes, donde una primera parte (31 ) comprende dicho brazo (23) alargado y unos medios de interconexión inalámbrica y una segunda parte (33) comprende dicho circuito de detección, dicho circuito de transmisión de datos y unos segundos medios de interconexión inalámbrica aptos para establecer una conexión inalámbrica con dichos medios de interconexión inalámbrica. 15 - Sensor según la reivindicación 14, caracterizado por que dichas conexiones eléctricas (27) son parte de una pluralidad de circuitos LC conectados en cascada entre sí, donde dicho circuito de detección es apto para detectar la resonancia de dicha pluralidad de circuitos LC a una señal preestablecida.
16 - Sensor según la reivindicación 15 caracterizado por que cada uno de dichos circuitos LC tiene L = 22μΗ y C = 470 nF. 17 - Sensor según una de las reivindicación 15 o 16, caracterizado por que dicho circuito de detección es apto para generar una señal Sinc.
18 - Sensor según la reivindicación 17, caracterizado por que dicha señal Sinc tiene una frecuencia comprendida entre 1 kHz y 100 kHz, preferentemente comprendida entre 4 kHz y 10 kHz.
19 - Sensor según cualquiera de las reivindicaciones 15 a 18, caracterizado por que dicho circuito de detección es apto para procesar la señal recibida de dicho circuito eléctrico sensor a través de una transformada rápida de Fourier.
20 - Sensor según cualquiera de las reivindicaciones 14 a 19, caracterizado por que dichos medios de interconexión inalámbrica y dichos segundos medios de interconexión inalámbrica comprenden cada uno de ellos un núcleo de ferrita (35). 21 - Sensor según la reivindicación 20, caracterizado por que cada uno de dichos núcleos de ferrita (35) está en un extremo de la parte (31 , 33) correspondiente y está protegido del exterior por una lámina de material cerámico, preferentemente de alúmina.
22 - Sensor según una de las reivindicaciones 20 o 21 , caracterizado por que dichos núcleos de ferrita (35) tienen una regata en su perímetro exterior que aloja una bobina. 23 - Sensor según la reivindicación 22, caracterizado por que dicha bobina está hecha con hilo de Litz.
24 - Sensor según cualquiera de las reivindicaciones 1 a 23, caracterizado por que comprende, adicionalmente, un sensor de temperatura.
25 - Sensor según cualquiera de las reivindicaciones 1 a 24, caracterizado por que comprende, adicionalmente, un sensor de presión. 26 - Sensor según cualquiera de las reivindicaciones 1 a 25, caracterizado por que comprende, adicionalmente, un acelerómetro.
27 - Sensor según cualquiera de las reivindicaciones 1 a 26, caracterizado por que comprende, adicionalmente, un giroscopio.
28 - Sensor según cualquiera de las reivindicaciones 1 a 26, caracterizado por que comprende, adicionalmente, un sistema de localización, preferentemente un GPS.
29 - Sensor según cualquiera de las reivindicaciones 1 a 28, caracterizado por que comprende unos medios de reducción de consumo aptos para activar periódicamente el sensor de un modo de bajo consumo a un modo activo y retornar el sensor al modo de bajo consumo.
30 - Sensor según cualquiera de las reivindicaciones 1 a 29, caracterizado por que comprende unos medios de almacenamiento de energía, preferentemente una batería (19).
31 - Sensor según la reivindicación 30, caracterizado por que comprende unos medios de conexión de dicha batería (19) aptos para ser activados desde el exterior. 32 - Elemento de desgaste de una pala de una máquina de movimiento de tierras caracterizado por que comprende un sensor según cualquiera de las reivindicaciones 1 a 31 . 33 - Elemento de desgaste según la reivindicación 32, que presenta un extremo posterior apto para ser montado a dicha pala o a un soporte (3) fijado a dicha pala, donde dicho extremo posterior presenta una superficie interior (9) que, en posición montada, queda encarada a dicha pala o a dicho soporte (3), caracterizado por que tiene un orificio (13) que se extiende desde dicha superficie interior (9) hacia el interior del elemento de desgaste y el sensor está alojado en dicho orificio (13).
34 - Conjunto formado por un elemento de desgaste de una pala de una máquina de movimiento de tierras y un soporte (3) de dicho elemento de desgaste, donde dicho elemento de desgaste presenta un extremo posterior apto para ser montado a dicho soporte (3) y dicho soporte (3) tiene un extremo anterior apto para ser montado a dicho elemento de desgaste, donde dicho extremo posterior presenta una superficie interior (9) que, en posición montada, queda encarada a una superficie interior (1 1 ) del extremo anterior del soporte (3), caracterizado por que comprende un sensor compuesto por dos partes (31 , 33) según cualquiera de las reivindicaciones 14 a 31 .
35 - Conjunto según la reivindicación 34, caracterizado por que la superficie interior (9) del elemento de desgaste tiene un orificio (13) que se extiende desde dicha superficie interior (9) hacia el interior del elemento de desgaste y la primera parte (31 ) del sensor está alojada en dicho orificio (13), y la superficie interior (1 1 ) del soporte (3) tiene un segundo orificio (29) que se extiende desde dicha superficie interior (1 1 ) del soporte (3) hacia el interior del soporte (3) y la segunda parte (33) del sensor está alojada en dicho segundo orificio (29). 36 - Conjunto según la reivindicación 35, caracterizado por que dicho soporte (3) comprende un tercer orificio (38) apto para alojar un pasador de retención de dicho elemento de desgaste en dicho soporte (3), y porque el segundo orificio (29) está comunicado con dicho tercer orificio (38). 37 - Uso de un sensor de desgaste según cualquiera de las reivindicaciones 1 a 31 , para la determinación del desgaste de un elemento de desgaste en una pala de una máquina de movimiento de tierras.
PCT/ES2015/070574 2015-07-24 2015-07-24 Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes WO2017017289A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580081879.XA CN107849836B (zh) 2015-07-24 2015-07-24 磨损传感器以及相应的磨损元件、组件和用途
CA2993410A CA2993410C (en) 2015-07-24 2015-07-24 Wear sensor and the corresponding wear element, assembly and use
EP15760207.9A EP3327205A1 (en) 2015-07-24 2015-07-24 Wear sensor and wear element, and corresponding assembly and use
PCT/ES2015/070574 WO2017017289A1 (es) 2015-07-24 2015-07-24 Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes
US15/746,891 US10677699B2 (en) 2015-07-24 2015-07-24 Wear sensor and the corresponding wear element, assembly and use
AU2015403425A AU2015403425B2 (en) 2015-07-24 2015-07-24 Wear sensor and wear element, and corresponding assembly and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070574 WO2017017289A1 (es) 2015-07-24 2015-07-24 Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes

Publications (1)

Publication Number Publication Date
WO2017017289A1 true WO2017017289A1 (es) 2017-02-02

Family

ID=54065382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070574 WO2017017289A1 (es) 2015-07-24 2015-07-24 Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes

Country Status (6)

Country Link
US (1) US10677699B2 (es)
EP (1) EP3327205A1 (es)
CN (1) CN107849836B (es)
AU (1) AU2015403425B2 (es)
CA (1) CA2993410C (es)
WO (1) WO2017017289A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011975B2 (en) 2015-02-13 2018-07-03 Esco Corporation Monitoring ground-engaging products for earth working equipment
US10024033B2 (en) 2013-11-25 2018-07-17 Esco Corporation Wear part monitoring
US10980164B2 (en) 2019-06-26 2021-04-20 Cnh Industrial America Llc Wear determination for agricultural implement
ES2804398R1 (es) * 2018-07-05 2021-06-08 Metalogenia Research & Tech Sl Sistema de fijación de un adaptador para máquinas de movimiento de tierras
EP3992376A1 (en) 2020-10-28 2022-05-04 Metalogenia Research & Technologies S.L. Apparatuses for earth moving machines with data transmission capabilities
WO2022090411A1 (en) 2020-10-28 2022-05-05 Metalogenia Research & Technologies, S.L. Protective capsules for earth moving machines
US20220410867A1 (en) * 2021-06-29 2022-12-29 Hyundai Motor Company Hybrid vehicle and control method thereof

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018100361U1 (de) * 2018-01-23 2018-01-29 Herrenknecht Aktiengesellschaft Abbauwerkzeug für eine Tunnelvortriebsmaschine und Tunnelvortriebsmaschine
DE102018115959A1 (de) * 2018-07-02 2020-01-02 Wirtgen Gmbh Verschleißbauteil einer Fräsmaschine, Fräsmaschine und Verfahren zur Bestimmung des Verschleißes des Verschleißbauteils
DE102018118134A1 (de) * 2018-07-26 2020-01-30 Frank Walz- und Schmiedetechnik GmbH Werkzeuganordnung für die Montage an der Landmaschine, Landmaschine sowie Verfahren zum Betreiben einer solchen
EP3666983A1 (en) * 2018-12-12 2020-06-17 Metalogenia Research & Technologies S.L. Force measuring system for earth moving machinery
US11711990B2 (en) 2019-03-27 2023-08-01 Cnh Industrial America Llc Systems and methods for monitoring the presence of a shank attachment member of an agricultural implement
US11225778B2 (en) 2019-03-27 2022-01-18 Cnh Industrial America Llc Systems and methods for monitoring the wear of a shank attachment member of an agricultural implement
EP3715537A1 (en) * 2019-03-29 2020-09-30 Metalogenia Research & Technologies S.L. Capsule for protecting an electronic device inside a wear element of an earth moving machine
WO2020205460A1 (en) * 2019-04-01 2020-10-08 Schlumberger Technology Corporation Instrumented cutter
AR119029A1 (es) * 2019-05-31 2021-11-17 Esco Group Llc Monitoreo de productos de corte para equipos de movimiento de tierra
US11788894B2 (en) * 2019-06-17 2023-10-17 Esco Group Llc Monitoring ground engaging products
US20220275607A1 (en) * 2019-08-10 2022-09-01 Active Core Technology Pty Ltd Apparatus, methods, and systems of monitoring the condition of a wear component
US11944028B2 (en) 2019-08-14 2024-04-02 Cnh Industrial America Llc Systems and methods for monitoring the installation status of a shank attachment member of an agricultural implement
IT201900022563A1 (it) * 2019-11-29 2021-05-29 Italtractor Componente di macchina operatrice
US20240052606A1 (en) * 2020-03-27 2024-02-15 Metalogenia Research & Technologies S.L. Capsule for protecting an electronic device inside a wear element of an earth moving machine
US11421403B2 (en) 2020-04-15 2022-08-23 Caterpillar Inc. Bucket tooth monitoring system
EP3904613A1 (en) * 2020-04-29 2021-11-03 Metalogenia Research & Technologies S.L. Wear element for an earth moving machine, corresponding measuring device and machine
US20240035250A1 (en) * 2020-12-08 2024-02-01 Bradken Resources Pty Limited Bucket
EP4047233A1 (de) * 2021-02-17 2022-08-24 Flender GmbH Drehelastische kupplung mit verschleisssensor
RS65503B1 (sr) * 2021-05-10 2024-06-28 Sandvik Mining And Construction Australia Production/Supply Pty Ltd Sklop senzora za upotrebu između alata za zahvatanje zemlje i kašike
IT202200001370A1 (it) * 2022-01-27 2023-07-27 Italtractor Componente di macchina operatrice
CN115839651B (zh) * 2023-02-27 2023-05-05 江苏宣胜金属科技有限公司 一种挖掘机斗齿磨损测试装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744242A (en) * 1986-09-16 1988-05-17 The Boeing Company Method for monitoring cutting tool wear during a machining operation
US4945770A (en) * 1984-07-06 1990-08-07 Birger Alvelid State transducers in combination with mechanical components
DE4312354C1 (de) * 1993-04-16 1994-06-16 Giese Erhard Sensor zum Messen des Verschleißes der Oberfläche eines Maschinenteils
EP1058106A1 (de) * 1999-06-02 2000-12-06 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Wälzpaarung
JP2004074393A (ja) * 2002-06-20 2004-03-11 Univ Hiroshima 非接触式損耗検知システム、回転するスローアウェイチップの損耗検知方法およびフライス工具
US20070163325A1 (en) * 2004-02-27 2007-07-19 Sudarshan Martins Method and device for sensing wear
JP2008164377A (ja) * 2006-12-27 2008-07-17 Univ Of Fukui 摩耗ゲージ
AU2006254651B2 (en) * 2005-06-02 2012-04-05 Brian Investments Pty Ltd Tyne replacement indicator
WO2012107848A1 (es) * 2011-02-08 2012-08-16 Universidad Católica Del Norte Un sistema de alarma para detectar el desprendimiento de dientes y/o adaptador en palas para equipos de retroexcavación.
US20140103940A1 (en) * 2012-10-15 2014-04-17 Nanolab, Inc. Sensor for wear measurement, method of making, and method of operating same
US20150035673A1 (en) * 2011-08-29 2015-02-05 Harnischfeger Technologies, Inc. Metal tooth detection and locating
US20150081177A1 (en) * 2013-09-19 2015-03-19 Komatsu Ltd. Communication Device and Working Vehicle Provided with the Same
EP2883999A1 (en) * 2013-12-11 2015-06-17 Garcia Xabier Echeverria Doctor for a paper machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315346B2 (ja) * 2003-12-26 2009-08-19 日立建機株式会社 建設機械のエンジン診断装置
US8977445B2 (en) * 2013-06-18 2015-03-10 Caterpillar Inc. System and method for dig detection
AU2014262221C1 (en) * 2013-11-25 2021-06-10 Esco Group Llc Wear part monitoring

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945770A (en) * 1984-07-06 1990-08-07 Birger Alvelid State transducers in combination with mechanical components
US4744242A (en) * 1986-09-16 1988-05-17 The Boeing Company Method for monitoring cutting tool wear during a machining operation
DE4312354C1 (de) * 1993-04-16 1994-06-16 Giese Erhard Sensor zum Messen des Verschleißes der Oberfläche eines Maschinenteils
EP1058106A1 (de) * 1999-06-02 2000-12-06 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Wälzpaarung
JP2004074393A (ja) * 2002-06-20 2004-03-11 Univ Hiroshima 非接触式損耗検知システム、回転するスローアウェイチップの損耗検知方法およびフライス工具
US20070163325A1 (en) * 2004-02-27 2007-07-19 Sudarshan Martins Method and device for sensing wear
AU2006254651B2 (en) * 2005-06-02 2012-04-05 Brian Investments Pty Ltd Tyne replacement indicator
JP2008164377A (ja) * 2006-12-27 2008-07-17 Univ Of Fukui 摩耗ゲージ
WO2012107848A1 (es) * 2011-02-08 2012-08-16 Universidad Católica Del Norte Un sistema de alarma para detectar el desprendimiento de dientes y/o adaptador en palas para equipos de retroexcavación.
US20150035673A1 (en) * 2011-08-29 2015-02-05 Harnischfeger Technologies, Inc. Metal tooth detection and locating
US20140103940A1 (en) * 2012-10-15 2014-04-17 Nanolab, Inc. Sensor for wear measurement, method of making, and method of operating same
US20150081177A1 (en) * 2013-09-19 2015-03-19 Komatsu Ltd. Communication Device and Working Vehicle Provided with the Same
EP2883999A1 (en) * 2013-12-11 2015-06-17 Garcia Xabier Echeverria Doctor for a paper machine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683642B2 (en) 2013-11-25 2020-06-16 Esco Group Llc Wear part monitoring
US10024033B2 (en) 2013-11-25 2018-07-17 Esco Corporation Wear part monitoring
US10697154B2 (en) 2013-11-25 2020-06-30 Esco Group Llc Wear part monitoring
US10689833B2 (en) 2013-11-25 2020-06-23 Esco Group Llc Wear part monitoring
US10689832B2 (en) 2013-11-25 2020-06-23 Esco Group Llc Wear part monitoring
US10760247B2 (en) 2015-02-13 2020-09-01 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US11851848B2 (en) 2015-02-13 2023-12-26 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US10633831B2 (en) 2015-02-13 2020-04-28 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US10633832B2 (en) 2015-02-13 2020-04-28 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US10612213B2 (en) 2015-02-13 2020-04-07 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US10011975B2 (en) 2015-02-13 2018-07-03 Esco Corporation Monitoring ground-engaging products for earth working equipment
US10787792B2 (en) 2015-02-13 2020-09-29 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US10669698B2 (en) 2015-02-13 2020-06-02 Esco Group Llc Monitoring ground-engaging products for earth working equipment
US12104359B2 (en) 2015-02-13 2024-10-01 Esco Group Llc Monitoring ground-engaging products for earth working equipment
ES2804398R1 (es) * 2018-07-05 2021-06-08 Metalogenia Research & Tech Sl Sistema de fijación de un adaptador para máquinas de movimiento de tierras
US10980164B2 (en) 2019-06-26 2021-04-20 Cnh Industrial America Llc Wear determination for agricultural implement
WO2022090411A1 (en) 2020-10-28 2022-05-05 Metalogenia Research & Technologies, S.L. Protective capsules for earth moving machines
EP4237629A1 (en) * 2020-10-28 2023-09-06 Metalogenia Research & Technologies S.L. Protective capsules for earth moving machines
WO2022090412A1 (en) 2020-10-28 2022-05-05 Metalogenia Research & Technologies, S.L. Protective capsules for earth moving machines having a slot antenna
EP3992376A1 (en) 2020-10-28 2022-05-04 Metalogenia Research & Technologies S.L. Apparatuses for earth moving machines with data transmission capabilities
US20220410867A1 (en) * 2021-06-29 2022-12-29 Hyundai Motor Company Hybrid vehicle and control method thereof

Also Published As

Publication number Publication date
EP3327205A1 (en) 2018-05-30
US10677699B2 (en) 2020-06-09
US20200088617A1 (en) 2020-03-19
CN107849836B (zh) 2020-10-23
CN107849836A (zh) 2018-03-27
AU2015403425A1 (en) 2018-01-25
AU2015403425B2 (en) 2020-02-27
CA2993410C (en) 2020-05-26
CA2993410A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2017017289A1 (es) Sensor de desgaste y elemento de desgaste, conjunto y uso correspondientes
ES2429109T3 (es) Aparato dectector de fugas para detectar la humedad
EP2883445B1 (en) Extendable wireless soil measurement apparatus
RU2707638C2 (ru) Ушная бирка для животных
ES2917878T3 (es) Sistema y procedimiento de detección del desgaste
ES2743849T3 (es) Dispositivo de fijación para fijar un elemento sensor a un carril y dispositivo contador de ejes
ES2860531T3 (es) Anodo de sacrificio
ES2336822T3 (es) Dispositivo para regular el nivel de un liquido en una caldera de una maquina de cafe.
US20170254051A1 (en) Wireless sensor network for detecting equipment failure
ES2606030T3 (es) Sensor de viento
KR101704740B1 (ko) 소파블록 조립체 및 소파블록 모니터링 시스템
ES2745038T3 (es) Acelerómetro y método para la fabricación de dicho acelerómetro
ES2659026T3 (es) Módulo de circuito integrado para diferentes tecnologías de conexión
ES2829326T3 (es) Dispositivo de medición para determinar la temperatura de una superficie de cilindro de un cuerpo de cilindro
ES2681621T3 (es) Sistema de radioidentificación modular con módulo de RFID pasivo y módulo de RFID activo
ES2393584T3 (es) Aparato de excavación manual
ES2794095T3 (es) Un procedimiento de fijación de una unidad electrónica a un pañal
ES2360019T3 (es) Marcación de puntos de medida para el reconocimiento automático de los mismos en un sistema de vigilancia de estado.
JP2013044134A (ja) 相対位置を地中で確認可能なシールドマシン、及び、シールドマシンの相対位置検出方法
KR101324267B1 (ko) 도난방지용 부표
ES2733124T3 (es) Disposición de identificación por radiofrecuencia para un transportador de cadenas para mercancía en piezas y transportador de cadenas con una disposición de identificación por radiofrecuencia de este tipo
ES2947712T3 (es) Método de detección de caída, sistema y máquina correspondientes
ES2709220T3 (es) Dispositivo de detección y/o de vigilancia de objetos ópticamente invisibles
WO2020250008A1 (es) Estaca y sistema para la monitorización de una variable ambiental en un medio ácido
ES2633788T3 (es) Nodo emisor de señales radioeléctricas controlado por potencia de emisión

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760207

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 002843-2017

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2993410

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015403425

Country of ref document: AU

Date of ref document: 20150724

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015760207

Country of ref document: EP