WO2017016331A1 - 一种雷达信号检测的方法和装置 - Google Patents

一种雷达信号检测的方法和装置 Download PDF

Info

Publication number
WO2017016331A1
WO2017016331A1 PCT/CN2016/085337 CN2016085337W WO2017016331A1 WO 2017016331 A1 WO2017016331 A1 WO 2017016331A1 CN 2016085337 W CN2016085337 W CN 2016085337W WO 2017016331 A1 WO2017016331 A1 WO 2017016331A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
detection
period
signal
time
Prior art date
Application number
PCT/CN2016/085337
Other languages
English (en)
French (fr)
Inventor
苟伟
许文俊
李博雅
吴翠云
何玚
赵亚军
毕峰
彭佛才
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017016331A1 publication Critical patent/WO2017016331A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • H04K3/224Countermeasures against jamming including jamming detection and monitoring with countermeasures at transmission and/or reception of the jammed signal, e.g. stopping operation of transmitter or receiver, nulling or enhancing transmitted power in direction of or at frequency of jammer
    • H04K3/226Selection of non-jammed channel for communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/82Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
    • H04K3/822Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by detecting the presence of a surveillance, interception or detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/16Jamming or countermeasure used for a particular application for telephony

Definitions

  • This document relates to, but is not limited to, signal detection techniques, and more particularly to a method and apparatus for radar signal detection.
  • LTE Long Term Evolution
  • LAA Licensed Assisted Access
  • the LAA technology can make LTE use an unlicensed frequency band of about 5.0 gigahertz (GHz). Since the unlicensed frequency band of about 5.0 GHz belongs to the public frequency band, a large number of other signals are transmitted by using the partial spectrum resource; for example, In the 5 GHz band, 5.3 GHz to 5.9 GHz of spectrum resources are used by radar systems, such as weather radars, military radars or space radar navigation. If LTE and the radar system share the spectrum resources of 5.3 GHz to 5.9 GHz, there will be co-channel interference between LTE and the radar system, which seriously restricts the transmission performance of LTE and interferes with the normal communication of the radar system.
  • GHz gigahertz
  • the LTE terminal in order to enable the LTE device to transmit signals using the 5 GHz band, the LTE terminal must have a dynamic spectrum selection mechanism, wherein the dynamic spectrum selection mechanism can avoid the interference between the wireless signal and the radar signal by switching the operating frequency, so that the LTE terminal transmits data.
  • a frequency band can be shared with the radar system.
  • any one channel is randomly selected before the LTE terminal performs signal transmission, and then the signal in the channel is continuously monitored in the channel availability check time (CAC) of the channel. Confirming whether there is a radar signal on the channel. If it is detected that there is a radar signal on the channel, the LTE terminal must abandon the current channel, reselect other channels and repeat the listening process; if it is detected that there is no radar signal on the channel, the LTE terminal The current channel can be used for signal transmission, and the radar signal is continuously monitored while the signal is being transmitted. If the radar signal is detected, the LTE terminal needs to stop the current transmission and mark the signal. The radar signal on the track is then replaced by another channel for detection and signal transmission continues when no radar signal is detected. Any channel marked with a radar signal shall not be used in the non-occupancy period (NOP) of the LTE terminal.
  • NOP non-occupancy period
  • the radar signal is in the form of a pulse and is transmitted by a pulse cluster.
  • Each radar pulse cluster includes a plurality of radar pulses, and the adjacent radar pulse clusters are separated by a long time, if the channel is currently undergoing radar signal transmission.
  • the LTE terminal cannot perform signal transmission on the channel, but since the time interval between adjacent radar pulse clusters is long, the LTE terminal can actually use the time period for signal transmission. Since the related art can only detect whether there is a radar signal, when the radar signal is detected on the channel, the LTE terminal selects to reselect the channel, or stops transmitting and replaces other channels. If the radar pulse cluster of the radar signal is small at this time, The radar signal may be cut off quickly.
  • the LTE terminal may not complete the channel reselection or switch to other channels, so that the signal transmission interruption time is relatively long, affecting the signal transmission speed, and the user experience is not high. .
  • the channel is abandoned, and other channels are reselected for signal transmission, and the communication resources between adjacent radar pulse clusters are not considered, so that the communication resource utilization rate of the channel is not High, resulting in a waste of communication resources.
  • Embodiments of the present invention provide a method and apparatus for detecting radar signals, which can improve signal transmission speed, improve user experience, and save communication resources.
  • an embodiment of the present invention provides a method for radar signal detection, the method comprising:
  • the detection period includes a detection time and an idle time, and the radar signal includes two or more radar pulses;
  • the radar period is a time interval between two adjacent radar pulses
  • the type of the radar signal is determined based on the radar period.
  • the acquiring the radar period of the radar signal comprises:
  • a minimum time interval of the time interval between each of the two adjacent radar pulses is obtained as the radar period.
  • the detecting, by the detection cycle, whether the radar signal exists on the reference channel comprises:
  • the reference detection period is any one detection period
  • the reference channel does not detect a radar pulse within the detection time of the reference detection period.
  • the method further includes:
  • the determining the type of the radar signal according to the radar period comprises:
  • the type of the radar signal is determined according to the radar period.
  • the method further includes:
  • the detection duration is greater than or equal to a reference duration, and the detection duration is a time when the reference channel is cyclically detected according to the detection period;
  • the detection period T ⁇ +t, ⁇ is a detection time, t is an idle time, and the detection period T satisfies the formula: T ⁇ +w-2w 0 ;
  • w is the radar pulse width
  • w 0 is the minimum amount by which the detection time ⁇ and w of the radar pulse can be detected
  • the detection period T satisfies the formula:
  • an embodiment of the present invention provides a device for detecting radar signals, where the device includes:
  • a detecting unit configured to cyclically detect whether there is a radar signal on the reference channel according to a detection period, where the detection period includes a detection time and an idle time, and the radar signal includes two or more radar pulses;
  • An acquiring unit configured to acquire a radar period of the radar signal when a radar signal exists on the reference channel; the radar period is a time interval between two adjacent radar pulses;
  • a determining unit is arranged to determine the type of the radar signal based on the radar period.
  • the obtaining unit is configured to:
  • a minimum time interval of the time interval between each of the two adjacent radar pulses is obtained as the radar period.
  • the detecting unit is configured to:
  • the reference channel does not detect a radar pulse within the detection time of the reference detection period.
  • the device further includes:
  • the first determining unit is configured to determine whether the detection duration is greater than or equal to a reference duration, and the detection duration is a time for periodically detecting the reference channel according to the detection period;
  • the determining unit is configured to determine the type of the radar signal according to the radar period when the detection duration is greater than or equal to the reference duration.
  • the device further includes:
  • a second determining unit configured to determine whether the detection duration is greater than or equal to a reference duration when the radar signal is not present on the reference channel, and the detection duration is a time of cyclically detecting the reference channel according to the detection period ;
  • a third determining unit configured to determine, when the detection duration is greater than or equal to the reference duration, whether the reference channel is completely absent from the radar signal during the detection duration
  • a transmission unit configured to perform signal transmission through the reference channel when the radar signal is completely absent within the detection duration.
  • the detection period T ⁇ +t, ⁇ is a detection time, t is an idle time, and the detection period T satisfies the formula: T ⁇ +w-2w 0 ;
  • w is the radar pulse width
  • w 0 is the minimum amount by which the detection time ⁇ and w of the radar pulse can be detected
  • the detection period T satisfies the formula:
  • Embodiments of the present invention provide a method and apparatus for detecting radar signals, which periodically detect whether there is a radar signal on a reference channel according to a detection period, the detection period includes a detection time and an idle time, and the radar signal includes a plurality of radar pulses; when on the reference channel When there is a radar signal, the radar period of the radar signal is acquired, the radar period is the time interval between two adjacent radar pulses, and then the type of the radar signal is determined according to the radar period. In the embodiment of the present invention, the type of the radar signal is determined. Therefore, when the terminal detects that the radar signal exists on the current reference channel again, the deadline of the radar signal may be predicted according to the type of the radar signal, and if the terminal is not in the reference channel at this time.
  • the reference channel When the signal transmission is performed, the reference channel may not be abandoned, but after waiting for the radar signal to be cut off, the signal transmission on the reference channel is selected, so that the utilization of the communication resources of the reference channel can be improved; if the terminal is currently using the reference When the channel performs data transmission and waits for the radar signal to be cut off for less than the channel switching time, the terminal may not perform channel switching, thereby avoiding a decrease in signal transmission speed due to excessive signal transmission interruption time and improving the user experience.
  • FIG. 1 is a flowchart of a method for detecting radar signals according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for detecting radar signals according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a detection period according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus for detecting radar signals according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another apparatus for detecting radar signals according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another apparatus for detecting radar signals according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for detecting a radar signal, which is applied to a terminal.
  • the method for detecting a radar signal includes:
  • Step 101 cyclically detecting whether a radar signal exists on a reference channel according to a detection period; the present invention
  • the detection period includes detection time and idle time
  • the radar signal includes a plurality of radar pulses, that is, the radar signal includes two or more radar pulses.
  • the terminal is used as a hardware execution subject. If the terminal needs to perform signal transmission, it is necessary to first select a channel, and then continuously monitor the signal on the channel to determine whether there is currently a radar signal on the signal. In the process of continuously monitoring the channel, the terminal can detect the radar pulse in a few times, and most of the time is detected as meaningless noise without any signal, resulting in waste of detection resources and power consumption of the terminal. The amount is higher. Therefore, it is possible to select to detect cycle detection.
  • the detection period T includes the detection time ⁇ and the idle time t, that is, in the detection time ⁇ , the terminal listens to the signal to be accessed, and in the idle time t, the terminal is in an idle state, and does not listen to the channel to be accessed. signal.
  • the detection energy is detected only during the detection time, and the detection is not performed during the idle time, thereby saving the detection energy.
  • Step 102 Obtain a radar period of the radar signal when there is a radar signal on the reference channel; the radar period is a time interval between two adjacent radar pulses.
  • the radar signal acquired by the terminal is one radar pulse.
  • the terminal records the time interval between two adjacent radar pulses and then uses the time interval between the two adjacent radar pulses as the radar period.
  • Step 103 Determine a type of the radar signal according to a radar period.
  • the types of radar signals are different, and the radar period of the radar signal is also different, so the type of the radar signal can be determined by the radar period.
  • the correspondence between the radar period and the radar type may be stored in the terminal in advance, and after the radar period is acquired, the type of the radar signal may be determined according to the pre-stored correspondence. Correspondence between radar period and radar type is well known to those skilled in the art.
  • the terminal can determine the type of the radar signal, when the terminal detects that the radar signal exists on the current reference channel again, the terminal can predict the deadline of the radar signal according to the type of the radar signal, and if the terminal is not yet in reference at this time
  • the reference channel may not be abandoned, but the radar signal is selected to be transmitted after the radar signal is turned off, thereby improving the utilization of the communication resources of the reference channel; and if the terminal is currently using the reference channel Perform data transmission. If the time for waiting for the radar signal to be cut off is less than the time for channel switching, the terminal The channel switching can be omitted, and the signal transmission speed is reduced due to the excessive time of the signal transmission interruption, thereby improving the user experience.
  • the time interval between each two adjacent radar pulses in the radar signal may be first recorded, and then each two adjacent radar pulses are acquired.
  • the minimum time interval between the time intervals is used as the radar period. Since the terminal cyclically detects the reference channel by using the detection time plus the idle time, the time interval between the adjacent two radar pulses recorded may only be larger than the actual radar period, and may not be smaller than the actual radar period, so The smallest time interval among the multiple time intervals recorded is selected as the radar period because the minimum time interval is the most likely for the radar period.
  • the reference detection period is taken as an example.
  • the reference detection period is any one of the detection periods, and the reference detection period is first obtained on the reference channel during the detection period. And then obtaining a power spectrum flatness of the signal on the reference channel within the detection time of the reference detection period; determining a relationship between the power spectrum flatness and the reference threshold, and determining the reference channel when the power spectrum flatness is greater than the reference threshold
  • a radar pulse is detected during a detection time of the reference detection period; when the power spectrum flatness is less than a reference threshold, determining that the reference channel does not detect a radar pulse within the detection time of the reference detection period; wherein the reference threshold is in an actual application
  • the embodiment of the present invention does not limit this.
  • the radar signal can be detected by using an energy detection method, a cyclostationary feature detection method, or a matched filter detection method in the actual application, which is not described herein.
  • the method of the embodiment of the present invention further includes: determining whether the detection duration is greater than or equal to the reference duration; the detection duration may be a time of detecting the reference channel cyclically according to the detection period; and when the detection duration is greater than or equal to the reference duration The type of radar signal is determined based on the radar period.
  • the method of the embodiment of the present invention further includes: determining whether the detection duration is greater than or equal to the reference duration when the radar signal does not exist on the reference channel, and the detection duration is The time of detecting the reference channel is cyclically detected according to the detection period; when the detection duration is greater than or equal to the reference duration, it is determined whether the reference channel is completely not within the detection duration There is a radar signal; when the radar signal is completely absent within the detection duration, signal transmission is performed through the reference channel.
  • w is the radar pulse width
  • w 0 is the minimum amount by which the detection time ⁇ and w of the radar pulse can be detected
  • the detection period T can satisfy the formula:
  • the detection period when the detection period T satisfies T ⁇ ⁇ + ⁇ - 2 ⁇ 0 , the detection period can detect two adjacent radar pulses.
  • w is the radar pulse width
  • w 0 is the minimum amount by which the detection time ⁇ and w of the radar pulse can be detected
  • the detection period is capable of detecting two adjacent radar pulses.
  • w is the radar pulse width
  • w 0 is the minimum amount that the detection time ⁇ that the radar pulse can be detected coincides with the radar pulse width w
  • L is an integer representing the nth radar pulse and the n+1th radar pulse Include L detection periods
  • N represents the number of radar pulses in the radar pulse cluster of the radar signal
  • p represents the time interval between two adjacent radar pulses.
  • the embodiment of the invention provides a radar signal detection method, which detects whether there is a radar signal on a reference channel according to a detection period, and the detection period includes a detection time and an idle time.
  • the radar period of the radar signal is acquired.
  • the radar period is the time interval between two adjacent radar pulses, and then the type of the radar signal is determined according to the radar period.
  • the type of the radar signal is determined. Therefore, when the terminal detects that there is a radar signal on the current reference channel again, the deadline of the radar signal can be predicted according to the type of the radar signal. If the terminal is not already in the reference letter at this time.
  • the reference channel When the signal is transmitted on the channel, the reference channel may not be abandoned, but after waiting for the radar signal to be cut off, the signal transmission on the reference channel is selected, thus improving the utilization of the communication resources of the reference channel; if the terminal is currently using the reference channel When data transmission is performed and the time for waiting for the radar signal to be cut off is less than the time for channel switching, the terminal may not perform channel switching, thereby avoiding a decrease in signal transmission speed due to excessive signal transmission interruption time and improving the user experience.
  • the detection period and the idle time are used to form the detection period, and the reference channel is used to detect the reference channel cyclically, when there is a radar signal on the reference channel, a part of the radar pulse can be detected within the detection time of the corresponding detection period, so It is determined that the radar signal exists on the reference channel, so the terminal does not need to continuously monitor the reference channel, which saves the detection energy and reduces the power consumption of the terminal.
  • the embodiment of the present invention provides a radar signal detection method, which is applied to a terminal, where the terminal is a terminal that can use the LAA communication protocol, and may be a mobile terminal, such as a mobile phone, a smart watch, or a tablet computer, or a fixed terminal, for example,
  • the home appliance of the communication function is not limited in this embodiment of the present invention.
  • the flow of the radar signal detection method is shown in Figure 2:
  • Step 201 Determine a detection period.
  • the detection period T includes a detection time ⁇ and an idle time t, that is, in the detection time ⁇ , the terminal listens to the signal to be accessed, and in the idle time t, the terminal is in an idle state, and does not monitor the signal to be accessed. . In this way, the terminal does not need to continuously monitor the channel, which saves the detection energy and reduces the power consumption of the terminal. Since the radar pulse width of each radar pulse is small, if the detection time ⁇ and the idle time t are set unreasonably, there will be no simultaneous detection of two adjacent radar pulses in multiple detection periods, affecting The determination of the radar type requires the determination of the appropriate detection time ⁇ and the idle time t, where the radar pulse of the radar signal is the radar pulse.
  • the radar pulse can be detected completely within the detection time.
  • the detection position is first defined.
  • the detection position x n is the end of the radar pulse signal falling on a certain detection frame.
  • x n+1 needs to satisfy x n+1 ⁇ [w 0 , ⁇ +ww 0 ]. It can be seen that if two consecutive radar pulses are to be detected, the detection condition is x n ⁇ [w 0 , ⁇ +ww 0 ] and x n+1 ⁇ [w 0 , ⁇ +ww 0 ].
  • the detection period includes L detection periods, and p 0 satisfies 0 ⁇ p 0 ⁇ T, indicating the time interval remaining between the nth radar pulse and the n+1th radar pulse except for L detection periods.
  • formula (1) In order to satisfy the requirement of detecting adjacent radar pulses, it is necessary to satisfy formula (1):
  • Equation (1) means that for any radar pulse, the first radar pulse appears anywhere in the entire detection period T, and there must be a pair of consecutive radar pulses falling within a monitoring range at the same time, thereby making the adjacent two Radar pulses can be detected. Put all the constraints together to form formula (2):
  • the simplification method will not be repeated again.
  • T and ⁇ satisfy formula (3), two adjacent radar pulses can be detected. Therefore, in practical applications, the detection period of the terminal can be determined by formula (3) and the radar type common in the area where the terminal frequently moves. T.
  • Step 202 Detect whether there is a radar signal in the reference channel cyclically according to the detection period; when there is a radar signal in the reference channel, perform step 203; when there is no radar signal in the reference channel, perform step 205.
  • the detection period T can be determined, and then the reference channel is cyclically detected with T as a cycle.
  • the power spectrum flatness method can be used for detection, and the following formula is used to illustrate A method of calculating power spectrum flatness in an embodiment of the present invention.
  • the general radar signal is a rectangular wave. After modulation to 5 GHz, the transmitted signal is as shown in equation (4):
  • v(t) is a random envelope of r'(t), obeying the Rayleigh distribution;
  • the random phase of r'(t) obeys a uniform distribution within [0, 2 ⁇ ].
  • Gaussian noise is added to the formula (5), and the Gaussian noise formula can be expressed as (6).
  • n(t) n c (t)cos w c -n s (t)sin w c t (6)
  • DFT discrete Fourier transform
  • the power spectrum flatness is defined as shown in equation (13):
  • ⁇ p 2 is the variance of P(k), as shown in equation (15):
  • the power spectrum flatness of the received signal is not zero.
  • the judgment threshold of the power spectrum is Ram 0
  • the calculated Ram>Ram 0 it indicates that there is a radar signal on the reference channel, and the radar pulse is detected.
  • the calculated Ram ⁇ Ram 0 it indicates A radar pulse has not been detected on the reference channel.
  • Step 203 Record a time interval between every two adjacent radar pulses in the radar signal, and perform step 204.
  • the detected radar signals are pulsed one by one, so after receiving the current radar pulse, the time interval between the last received radar pulse can be calculated.
  • the time interval between adjacent radar pulses is recorded, for example, may be recorded by a register or other storage device, which is not limited in this embodiment of the present invention.
  • Step 204 Obtain a minimum time interval in a time interval between every two adjacent radar pulses as a radar period, and perform step 205.
  • the reference device records a total of n time intervals, which are the first radar pulse and the first The time interval between two radar pulses, the time interval between the second radar pulse and the third radar pulse, the time interval between the third radar pulse and the fourth radar pulse, ..., n+ The time interval between one radar pulse and the nth radar pulse, because the detection time ⁇ and the idle time t are used to cyclically detect the signal on the reference channel, so not every radar pulse can be detected, and some are just right. The radar pulse transmitted during the idle time t may be missed.
  • the nth radar pulse detected by the terminal may not be the actual nth radar pulse, so the n time intervals recorded by the terminal may not be exactly the same, but The recorded time interval can only be larger than the actual radar period, and it is impossible to be smaller than the actual radar period. Therefore, the smallest time interval among n time intervals can be selected as the radar week.
  • N time intervals as the minimum time interval is the maximum likelihood radar cycle. The terminal records a time interval every time a radar pulse is detected, and then finds the minimum time interval as the radar period from the recorded time interval, so that the radar period is updated in real time and is always the smallest among the recorded time intervals. Errors in confirming radar types due to errors in radar cycle acquisition are avoided.
  • Step 205 Determine whether the detection duration is greater than or equal to the reference duration; when the detection duration is greater than or equal to the reference duration, perform step 206; when the detection duration is less than the reference duration, perform step 202.
  • the reference channel is taken as an example for description, and when the terminal detects whether the selected reference channel has a radar signal.
  • the radar signal is in the form of a radar pulse, if the time at which the terminal starts detecting is exactly the interval between the two radar pulses, it is impossible to accurately detect whether or not there is a radar signal.
  • the reference duration is used as an example. In general, the reference duration may be a Channel Availability Check Time (CAC) of the terminal on the reference channel, or may be another duration of re-definition. Not limited.
  • CAC Channel Availability Check Time
  • Step 206 Determine whether the radar signal is completely absent in the reference duration; when the radar signal is present in the reference duration, perform step 207; when there is no radar signal in the reference duration, perform step 209.
  • the radar signal is in the form of a radar pulse, and when the terminal first detects the reference channel, it is not known at what time the radar signal is expected to be transmitted. It is possible that the terminal has not detected the radar signal for a period of time after the start of the detection, but the After the segment time, the first radar pulse of the radar signal is detected. At this time, the reference time is not completely without the radar signal, but the radar signal exists in the later period of time, so when the terminal detects that there is no radar signal on the reference channel, Firstly, it is judged whether the detection duration is greater than or equal to the reference duration. When the detection duration is greater than or equal to the reference duration, it is confirmed whether the radar signal is not detected within the reference duration, and the radar signal is not misjudged on the reference channel because the detection does not currently have a radar pulse. .
  • Step 207 Determine the type of the radar signal according to the radar period, and perform step 208.
  • the terminal acquires the radar period updated after detecting the last radar pulse, and then determines the type of the radar signal currently transmitted on the reference channel according to the radar period.
  • Step 208 Mark the radar type of the reference channel, and end the current processing flow.
  • the terminal can mark the reference channel, so that the current terminal cannot change the reference channel upload.
  • the signal is transmitted, but when the terminal needs to transmit a signal on the reference channel next time, it first detects whether there is a radar signal on the current channel. When there is a radar signal on the channel, the terminal can judge the cutoff of the radar signal according to the type of the radar signal. Time, and then determine when the signal can be transmitted on the reference channel.
  • the radar signal When it is judged that the radar signal is quickly cut off, it can choose to wait, and the signal is transmitted after the radar signal is cut off, thereby avoiding communication caused by reselecting the channel.
  • the waste of resources when it is judged that the radar signal still takes a long time to be cut off, quickly select other channels for transmission.
  • the terminal when the terminal is performing signal transmission, if the radar signal is currently present, the terminal can predict the cutoff time of the radar signal according to the radar type. If the time for waiting for the radar signal to be cut off is less than the time for switching the channel, the terminal may not perform channel switching.
  • the signal signal transmission is continued after the radar signal is cut off; if the time for waiting for the radar signal to be cut off is greater than the time for switching the channel, the terminal can quickly perform channel switching, and the signal transmission interruption time is as short as possible, thereby improving the user experience.
  • Step 209 Perform signal transmission on the reference channel.
  • the terminal When no radar pulse is detected on the reference channel within the reference duration, there is no radar signal on the current reference channel for transmission, and the terminal can perform signal transmission on the reference channel. When the signal is transmitted by the terminal, the signal on the reference channel can be continuously monitored. When the radar pulse occurs, the method of the embodiment of the present invention determines the type of the radar signal, or the switching channel can also be selected. Make a limit.
  • the embodiment of the invention provides a radar signal detection method, which firstly detects whether a radar signal exists on a reference channel according to a detection cycle, and the detection period includes a detection time and an idle time; when a radar signal exists on the reference channel, the radar acquiring the radar signal The period, the radar period is the time interval between two adjacent radar pulses, and then the type of the radar signal is determined according to the radar period. The type of the radar signal is determined. Therefore, when the terminal detects that there is a radar signal on the current reference channel again, the deadline of the radar signal can be predicted according to the type of the radar signal, if the terminal has not yet transmitted the signal on the reference channel.
  • the signal transmission on the reference channel is selected, so that the utilization of the communication resources of the reference channel can be improved; if the terminal is currently using the reference channel for data transmission, And waiting for the time when the radar signal is cut off is less than the time of channel switching, the terminal may not perform channel switching, thereby avoiding the decrease of the signal transmission speed caused by the excessive interruption of the signal transmission, thereby improving the user experience.
  • the detection period and the idle time are used to form the detection period, and the reference channel is used to detect the reference channel cyclically, when there is a radar signal on the reference channel, a part of the radar pulse can be detected within the detection time of the corresponding detection period, so It is judged that the radar signal exists on the reference channel, so the terminal does not need to continuously monitor the reference channel, which saves the detection energy and further reduces the power consumption of the terminal.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method for detecting the radar signal.
  • the embodiment of the invention provides a device 40 for detecting radar signals, as shown in FIG. 4, comprising:
  • the detecting unit 401 is configured to cyclically detect whether there is a radar signal on the reference channel according to the detection period, the detection period includes a detection time and an idle time, and the radar signal includes two or more radar pulses;
  • the obtaining unit 402 is configured to acquire a radar period of the radar signal when the radar signal exists on the reference channel; the radar period is a time interval between two adjacent radar pulses;
  • the determining unit 403 is arranged to determine the type of the radar signal based on the radar period.
  • the terminal since the terminal can determine the type of the radar signal, when the terminal detects that the radar signal exists on the current reference channel again, the terminal can predict the deadline of the radar signal according to the type of the radar signal, and if the terminal is not yet in reference at this time
  • the reference channel may not be abandoned, but the radar signal is selected to be transmitted after the radar signal is turned off, thereby improving the utilization of the communication resources of the reference channel; and if the terminal is currently using the reference channel
  • the terminal may not perform channel switching, thereby avoiding a decrease in signal transmission speed due to excessive signal transmission interruption time and improving the user experience.
  • the radar signal detecting device 40 may be disposed inside the terminal, and may be uniformly controlled by the controller of the terminal, or may be disposed outside the terminal, and communicate with the terminal through the external communication interface, which is not limited in this embodiment of the present invention. .
  • the obtaining unit 402 is configured to:
  • the minimum time interval in the time interval between each two adjacent radar pulses is obtained as the radar period.
  • the detecting unit 401 is configured to:
  • the reference threshold When the power spectrum flatness is less than the reference threshold, it is determined that the reference channel does not detect the radar pulse within the detection time of the reference detection period.
  • the apparatus 40 of the embodiment of the present invention further includes:
  • the first determining unit 404 is configured to determine whether the detection duration is greater than or equal to the reference duration, and the detection duration is a time for periodically detecting the reference channel according to the detection period;
  • the determining unit 403 is configured to determine the type of the radar signal according to the radar period when the detection duration is greater than or equal to the reference duration.
  • the apparatus 40 of the embodiment of the present invention further includes:
  • the second determining unit 405 is configured to determine whether the detection duration is greater than or equal to the reference duration when the radar signal is not present on the reference detection channel, and the detection duration is a time when the reference channel is cyclically detected according to the detection period;
  • the third determining unit 406 is configured to determine, when the detection duration is greater than or equal to the reference duration, whether the reference channel is completely absent in the detection duration;
  • the transmission unit 407 is configured to perform signal transmission through the reference channel when the radar signal is completely absent within the detection duration.
  • the detection period T ⁇ +t, ⁇ is the detection time, t is the idle time, and the detection period T satisfies the formula: T ⁇ + ⁇ -2 ⁇ 0 ;
  • w is the radar pulse width
  • w 0 is the minimum amount by which the detection time ⁇ and w of the radar pulse can be detected
  • the detection period T satisfies the formula:
  • w is the radar pulse width
  • w 0 is the minimum amount that makes the radar pulse detectable detection time ⁇ and w coincide
  • L is an integer indicating that the nth radar pulse and the n+1th radar pulse are included L detection periods
  • N represents the number of radar pulses in the radar pulse cluster of the radar signal
  • p represents the time interval between two adjacent radar pulses.
  • An embodiment of the present invention provides a radar signal detection apparatus, the apparatus comprising: a detecting unit configured to cyclically detect whether a radar signal exists on a reference channel according to a detection period, the detection period includes a detection time and an idle time; and the acquiring unit is configured to When there is a radar signal on the reference channel, the radar period of the radar signal is acquired, and the radar period is a time interval between two adjacent radar pulses; and the determining unit is configured to determine the type of the radar signal according to the radar period. In the embodiment of the present invention, the type of the radar signal is determined.
  • the deadline of the radar signal may be predicted according to the type of the radar signal, and if the terminal is not in the reference channel at this time.
  • the reference channel may not be abandoned, but after waiting for the radar signal to be cut off, the signal transmission on the reference channel is selected, so that the utilization of the communication resources of the reference channel can be improved; if the terminal is currently using the reference
  • the terminal may not perform channel switching, thereby avoiding a decrease in signal transmission speed due to excessive signal transmission interruption time and improving the user experience.
  • the detecting unit 401, the obtaining unit 402, the determining unit 403, the first determining unit 404, the second determining unit 405, and the third determining unit 406 may each be a central processing unit (Central) located in the mobile terminal.
  • Central Central Processing Unit
  • CPU Central Processor Unit
  • DSP Digital Signal Processor
  • Field Programmable Gate Array Field Programmable Gate Array
  • the implementation of the FPGA unit or the like, the transmission unit 407 can be implemented by an antenna, a transmitter, or the like.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, being executed by a processor and stored in a memory. Programs/instructions to implement their respective functions.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution determines the type of the radar signal, and improves the utilization rate of the signal transmission rate and the communication resource of the reference channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本文公开了一种雷达信号检测的方法及装置,包括:按检测周期循环检测参考信道上是否存在雷达信号,检测周期包括检测时间和空闲时间,雷达信号包括多个雷达脉冲;当参考信道上存在雷达信号时,获取雷达信号的雷达周期,雷达周期为相邻两个雷达脉冲之间的时间间隔;根据雷达周期确定雷达信号的类型。本发明实施例,确定了雷达信号的类型,提高了信号传输速率和参考信道的通信资源的利用率。

Description

一种雷达信号检测的方法和装置 技术领域
本文涉及但不限于信号检测技术,尤其涉及一种雷达信号检测的方法和装置。
背景技术
随着第四代移动通信技术(4G)业务的广泛应用,长期演进(Long Term Evolution,LTE)已经成为当前使用最为广泛和先进的通信技术,但是由于可供LTE使用的频谱资源有限,所以使得LTE技术的使用产生了瓶颈。为了使得LTE打破频谱使用的瓶颈,授权辅助接入(Licensed Assisted Access,LAA)技术应运而生,即:将LTE可使用的频谱资源扩展到非授权频段。
通常的,采用LAA技术可以使得LTE使用5.0吉赫兹(GHz)左右的非授权频段,由于5.0GHz左右的非授权频段属于公用频段,有大量其它的信号采用该部分频谱资源进行传输;示例的,在5GHz频带中,5.3GHz到5.9GHz的频谱资源供雷达系统所使用,例如:气象雷达、军事雷达或者航天雷达导航等。如果LTE与雷达系统共用5.3GHz到5.9GHz的频谱资源,则会导致LTE与雷达系统间存在同频干扰,严重制约LTE的传输性能,同时干扰雷达系统的正常通信。因此,为了使得LTE装置能够使用5GHz频带传输信号,LTE终端必须具备动态频谱选择机制,其中,动态频谱选择机制能够通过切换操作频率,避免无线信号与雷达信号互相干扰,使得LTE终端在传输数据时可以与雷达系统共享频带。
目前,在进行动态频谱选择时,首先在LTE终端进行信号传输之前,随机选择任意一个信道,然后在该信道的可用性检测时间(Channel availability check time,CAC)内,持续监听该信道中的信号,确认该信道上是否存在雷达信号,如果检测到该信道上存在雷达信号,则LTE终端必须放弃当前信道,重新选择其它信道并重复监听过程;如果检测到该信道上不存在雷达信号,则LTE终端可以使用当前信道进行信号传输,并在进行信号传输时持续监听雷达信号,如果检测到雷达信号,LTE终端需要停止当前传输,并标记该信 道上的雷达信号,然后更换另一信道进行检测,并在没有检测到雷达信号时继续进行信号传输。凡是被有雷达信号标记的信道,都在LTE终端的非占用期(non-occupancy period,NOP)内不得使用。
通常,雷达信号是脉冲形式,且是以脉冲簇进行传输的,每个雷达脉冲簇包括多个雷达脉冲,相邻雷达脉冲簇之间相隔的时间较长,如果该信道当前正在进行雷达信号传输,则LTE终端不能在该信道上进行信号传输,但是由于相邻雷达脉冲簇之间相隔的时间较长,LTE终端其实可以利用该段时间进行信号传输。由于相关技术仅能检测到是否存在雷达信号,当该信道上检测到雷达信号时,LTE终端就选择重新选择信道,或者停止传输并更换其它信道,如果此时雷达信号的雷达脉冲簇较小,雷达信号可能很快截止,而当雷达信号截止时LTE终端可能还没有完成信道的重新选择或向其它信道的切换,使得信号传输中断时间相对较长,影响了信号的传输速度,用户体验不高。同时,仅由于该信道当前正在进行雷达信号的传输,就放弃该信道,重新选择其它的信道进行信号传输,没有考虑相邻雷达脉冲簇之间的通信资源,使得该信道的通信资源利用率不高,造成了通信资源的浪费。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种雷达信号检测的方法和装置,能够提高信号传输速度,提高用户体验,同时节约通信资源。
一方面,本发明实施例提供一种雷达信号检测的方法,所述方法包括:
按检测周期循环检测参考信道上是否存在雷达信号;所述检测周期包括检测时间和空闲时间,所述雷达信号包括两个或两个以上雷达脉冲;
当所述参考信道上存在雷达信号时,获取所述雷达信号的雷达周期;所述雷达周期为相邻两个雷达脉冲之间的时间间隔;
根据所述雷达周期确定所述雷达信号的类型。
可选的,所述获取所述雷达信号的雷达周期包括:
当所述参考信道上存在雷达信号时,记录所述雷达信号中每两个相邻雷 达脉冲之间的时间间隔;
获取所述每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为所述雷达周期。
可选的,所述按检测周期循环检测参考信道上是否存在雷达信号包括:
获取参考检测周期的检测时间内所述参考信道上的信号;所述参考检测周期为任意一个检测周期;
获取所述参考检测周期的检测时间内所述参考信道上的信号的功率谱平坦度;
当所述功率谱平坦度大于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内检测到雷达脉冲;
当所述功率谱平坦度小于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内没有检测到雷达脉冲。
可选的,所述获取所述雷达信号的雷达周期之后,所述方法还包括:
判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
所述根据所述雷达周期确定所述雷达信号的类型包括:
当所述检测时长大于或等于所述参考时长时,根据所述雷达周期确定所述雷达信号的类型。
可选的,所述方法还包括:
当按检测周期循环检测所述参考信道上不存在雷达信号时,判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
当所述检测时长大于或等于所述参考时长时,确定所述参考信道在所述检测时长内是否完全不存在所述雷达信号;
当所述检测时长内完全不存在所述雷达信号时,通过所述参考信道进行信号传输。
可选的,所述检测周期T=τ+t,τ为检测时间,t为空闲时间,所述检测 周期T满足公式:T≤τ+w-2w0
其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
或者,所述检测周期T满足公式:
Figure PCTCN2016085337-appb-000001
其中,为雷达脉冲宽度;为使得雷达脉冲能够被检测到的检测时间与重合的最小量;L为整数,表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期;N表示所述雷达信号的雷达脉冲簇中雷达脉冲的个数;p表示两个相邻雷达脉冲之间的时间间隔。
另一方面,本发明实施例提供一种雷达信号检测的装置,所述装置包括:
检测单元,设置为按检测周期循环检测参考信道上是否存在雷达信号,所述检测周期包括检测时间和空闲时间,所述雷达信号包括两个或两个以上雷达脉冲;
获取单元,设置为当所述参考信道上存在雷达信号时,获取所述雷达信号的雷达周期;所述雷达周期为相邻两个雷达脉冲之间的时间间隔;
确定单元,设置为根据所述雷达周期确定所述雷达信号的类型。
可选的,所述获取单元是设置为:
当所述参考信道上存在雷达信号时,记录所述雷达信号中每两个相邻雷达脉冲之间的时间间隔;
获取所述每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为所述雷达周期。
可选的,所述检测单元是设置为:
获取参考检测周期的检测时间内所述参考信道上的信号,所述参考检测周期为所述任意一个检测周期;
获取所述参考检测周期的检测时间内所述参考信道上的信号的功率谱平坦度;
当所述功率谱平坦度大于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内检测到雷达脉冲;
当所述功率谱平坦度小于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内没有检测到雷达脉冲。
可选的,所述装置还包括:
第一判断单元,设置为判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
所述确定单元是设置为,当所述检测时长大于或等于所述参考时长时,根据所述雷达周期确定所述雷达信号的类型。
可选的,所述装置还包括:
第二判断单元,设置为当按检测周期循环检测所述参考信道上不存在雷达信号时,判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
第三判断单元,设置为当所述检测时长大于或等于所述参考时长时,确定所述参考信道在所述检测时长内是否完全不存在所述雷达信号;
传输单元,设置为当所述检测时长内完全不存在所述雷达信号时,通过所述参考信道进行信号传输。
可选的,所述检测周期T=τ+t,τ为检测时间,t为空闲时间,所述检测周期T满足公式:T≤τ+w-2w0
其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
或者,所述检测周期T满足公式:
Figure PCTCN2016085337-appb-000002
其中,为雷达脉冲宽度;为使得雷达脉冲能够被检测到的检测时间与重合的最小量;L为整数,表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期;N表示所述雷达信号的雷达脉冲簇中雷达脉冲的个数;p表示 两个相邻雷达脉冲之间的时间间隔。
本发明实施例提供了一种雷达信号检测的方法及装置,按检测周期循环检测参考信道上是否存在雷达信号,检测周期包括检测时间和空闲时间,雷达信号包括多个雷达脉冲;当参考信道上存在雷达信号时,获取雷达信号的雷达周期,雷达周期为相邻两个雷达脉冲之间的时间间隔,然后根据雷达周期确定雷达信号的类型。本发明实施例,确定了雷达信号的类型,因此,当终端再次检测到当前参考信道上存在雷达信号时,可以根据雷达信号的类型预计雷达信号的截止时间,若此时终端还没有在参考信道上进行信号传输时,可以不放弃该参考信道,而是等待雷达信号截止之后,选择在该参考信道进行信号传输,如此,就能提高参考信道的通信资源的利用率;若终端当前正在使用参考信道进行数据传输,且等待雷达信号截止的时间小于信道切换的时间,则终端可以不进行信道切换,从而避免了由于信号传输中断的时间过长造成的信号传输速度的下降,提高了用户体验。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种雷达信号检测的方法的流程图;
图2为本发明实施例提供的另一种雷达信号检测的方法的流程图;
图3为本发明实施例提供的一种检测周期的示意图;
图4为本发明实施例提供的一种雷达信号检测的装置的结构示意图;
图5为本发明实施例提供的另一种雷达信号检测的装置的结构示意图;
图6为本发明实施例提供的又一种雷达信号检测的装置的结构示意图。
本发明的实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供一种雷达信号检测的方法,应用于终端,如图1所示,该雷达信号检测方法包括:
步骤101、按检测周期循环检测参考信道上是否存在雷达信号;本发明 实施例,检测周期包括检测时间和空闲时间,雷达信号包括多个雷达脉冲,即雷达信号包含两个或两个以上雷达脉冲。
本发明实施例,本发明实施例以终端作为硬件执行主体,如果终端需要进行信号传输,需要首先选择一条信道,然后持续监听该信道上的信号,判断该信号上当前是否存在雷达信号。终端在持续监听信道的过程中,除了少数时间内能够检测到雷达脉冲,其余大部分时间检测到的都是无意义的不含任何信号的噪音,造成了检测资源的浪费,导致终端的耗电量较高。因此可以选择以检测周期循环检测。示例的,检测周期T包括检测时间τ和空闲时间t,即:在检测时间τ中,终端监听待接入信道的信号,在空闲时间t内,终端处于空闲状态,不监听待接入信道的信号。这样,仅在检测时间内花费检测能量进行检测,空闲时间内不进行检测,节约了检测能量。
步骤102、当参考信道上存在雷达信号时,获取雷达信号的雷达周期;雷达周期为相邻两个雷达脉冲之间的时间间隔。
由于雷达信号以雷达脉冲形式进行传输的,因此终端获取到的雷达信号是一个一个的雷达脉冲。示例的,在检测到参考信道上存在雷达信号后,终端记录两个相邻雷达脉冲之间的时间间隔,然后将该两个相邻雷达脉冲之间的时间间隔作为雷达周期。
步骤103、根据雷达周期确定雷达信号的类型。
需要说明的是,本发明实施例中,雷达信号的类型不同,则雷达信号的雷达周期也不相同,因此可以通过雷达周期确定雷达信号的类型。可选的,可以预先在终端中存储雷达周期与雷达类型的对应关系,获取到雷达周期之后,可以根据预存的对应关系确定雷达信号的类型。雷达周期和雷达类型的对应关系为本领域技术人员的公知常识。
本发明实施例,由于终端能够确定雷达信号的类型,因此当终端再次检测到当前参考信道上存在雷达信号时,可以根据雷达信号的类型预计雷达信号的截止时间,若此时终端还没有在参考信道上进行信号传输时,可以不放弃该参考信道,而是等待雷达信号截至之后,选择在该参考信道进行信号传输,提高了参考信道的通信资源的利用率;同时若终端当前正在使用参考信道进行数据传输,若等待雷达信号截止的时间小于信道切换的时间,则终端 可以不进行信道切换,避免了由于信号传输中断的时间过长造成的信号传输速度的下降,提高了用户体验。
可选的,当参考信道上存在雷达信号时,在获取雷达信号的雷达周期时,可以首先记录雷达信号中每两个相邻雷达脉冲之间的时间间隔,然后获取每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为雷达周期。由于终端采用检测时间加空闲时间的方法循环检测参考信道,因此记录得到的相邻两个雷达脉冲之间的时间间隔只可能比实际的雷达周期大,不可能比实际的雷达周期小,因此可以选记录的多个时间间隔中最小的时间间隔作为雷达周期,因为最小的时间间隔是雷达周期的可能性最大。
可选的,在按检测周期循环检测参考信道上是否存在雷达信号时,以参考检测周期为例进行说明,参考检测周期为任意一个检测周期,首先可以获取参考检测周期的检测时间内参考信道上的信号;然后,获取参考检测周期的检测时间内参考信道上的信号的功率谱平坦度;判断功率谱平坦度与参考阈值之间的关系,当功率谱平坦度大于参考阈值时,确定参考信道在参考检测周期的检测时间内检测到雷达脉冲;当功率谱平坦度小于参考阈值时,确定参考信道在所述参考检测周期的检测时间内没有检测到雷达脉冲;其中,参考阈值是实际应用中根据实际情况预先设置的,本发明实施例对此不做限定。
需要说明的是,实际应用中还可以采用能量检测方法,循环平稳特征检测方法,或者匹配滤波检测方法等方法检测雷达信号,本发明实施例在此不做赘述。
可选的,在获取雷达周期之后,本发明实施例方法还包括:判断检测时长是否大于或等于参考时长;检测时长可以为按检测周期循环检测参考信道的时间;当检测时长大于或等于参考时长时,根据雷达周期确定雷达信号的类型。
可选的,在按检测周期循环检测参考信道上是否存在雷达信号之后,本发明实施例方法还包括:当参考信道上不存在雷达信号时,判断检测时长是否大于或等于参考时长,检测时长为按检测周期循环检测参考信道的时间;当检测时长大于或等于参考时长时,判断参考信道在检测时长内是否完全不 存在雷达信号;当检测时长内完全不存在所述雷达信号时,通过参考信道进行信号传输。
可选的,本发明实施例,检测周期可以取T=τ+t,τ为检测时间,t为空闲时间,检测周期T满足公式:T≤τ+w-2w0
其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
或者,检测周期T可以满足公式:
Figure PCTCN2016085337-appb-000003
方法一,当检测周期T满足T≤τ+ω-2ω0时,检测周期能够检测到相邻两个雷达脉冲。
其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
方法二,当检测周期T满足:
Figure PCTCN2016085337-appb-000004
时,检测周期能够检测到相邻两个雷达脉冲。
其中,w为雷达脉冲宽度;w0为使得雷达脉冲能够被检测到的检测时间τ与雷达脉冲宽度w重合的最小量;L为整数,表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期;N表示雷达信号的雷达脉冲簇中雷达脉冲的个数;p表示两个相邻雷达脉冲之间的时间间隔。
本发明实施例提供了一种雷达信号检测方法,按检测周期循环检测参考信道上是否存在雷达信号,检测周期包括检测时间和空闲时间,当参考信道上存在雷达信号时,获取雷达信号的雷达周期,雷达周期为相邻两个雷达脉冲之间的时间间隔,然后根据雷达周期确定雷达信号的类型。确定了雷达信号的类型,因此,当终端再次检测到当前参考信道上存在雷达信号时,可以根据雷达信号的类型预计雷达信号的截止时间,若此时终端还没有在参考信 道上进行信号传输时,可以不放弃该参考信道,而是等待雷达信号截止之后,选择在该参考信道进行信号传输,如此,提高了参考信道的通信资源的利用率;若终端当前正在使用参考信道进行数据传输,且等待雷达信号截止的时间小于信道切换的时间,则终端可以不进行信道切换,从而避免了由于信号传输中断的时间过长造成的信号传输速度的下降,提高了用户体验。同时,由于采用检测时间加空闲时间组成检测周期,并利用该检测周期循环检测参考信道,当参考信道上存在雷达信号时,一部分雷达脉冲能够在对应检测周期的检测时间内被检测到,因此可以判断出该参考信道上存在雷达信号,所以不需要终端持续不断的监听参考信道,节约了检测能量,减小了终端的耗电量。
本发明实施例提供一种雷达信号检测方法,应用于终端,终端为可以使用LAA通信协议的终端,可以是移动终端,例如手机,智能手表,或者平板电脑等;也可以是固定终端,例如具有通信功能的家用电器,本发明实施例对此不做限定。雷达信号检测的方法的流程如图2所示:
步骤201、确定检测周期。
示例的,检测周期T包括检测时间τ和空闲时间t,即在检测时间τ中,终端监听待接入信道的信号,在空闲时间t内,终端处于空闲状态,不监听待接入信道的信号。这样一来,不需要终端持续不断的监听信道,节约了检测能量,减小了终端的耗电量。由于每个雷达脉冲的雷达脉冲宽度很小,若检测时间τ和空闲时间t的设置不合理,则会造成在多个检测周期内,没有相邻两个雷达脉冲同时被检测到的情况,影响雷达类型的确定,因此需要确定合适的检测时间τ和空闲时间t,其中雷达信号的雷达脉冲即为雷达脉冲。
实际应用中并不是雷达脉冲完全落在检测时间内才能够被检测,在通过仿真确定检测时间τ和空闲时间t时,假设检测概率为0.9,信噪比为5分贝(dB)时,当w0满足w0=0.25w时,雷达脉冲即可被检测到,其中w0为能够使得雷达脉冲被检测到的雷达脉冲宽度与检测时间τ重合的时长,w为雷达脉冲的雷达脉冲宽度,即在检测时间τ内,终端只要检测到四分之一雷达脉冲即可确定检测到了雷达脉冲。
为了更加清楚的解释确定检测周期T的过程,首先定义检测位置,如图 3所示,对于第n个雷达脉冲信号,检测位置xn为该雷达脉冲信号的最尾端落在某个检测帧时,其最尾端到该检测帧最前端的时间距离,如图3中xn所示,结合上述使雷达脉冲能够被检测到的雷达脉冲宽度与检测时间τ最少所需重合的时长w0=0.25w,可知在检测位置xn∈[w0,τ+w-w0]时,这个雷达脉冲信号才能被检测到,因此,可以定义[w0,τ+w-w0]为雷达脉冲的检测范围。由此可知,若需要第n+1个雷达脉冲也能够被终端检测到,则xn+1需要满足xn+1∈[w0,τ+w-w0]。由此可知,若要检测到连续两个雷达脉冲,检测条件为xn∈[w0,τ+w-w0]且xn+1∈[w0,τ+w-w0]。
显然的,当T≤τ+w-2w0时,即τ+t≤τ+w-2w0,从而得出t≤w-2w0,即若空闲时间t足够小,小于或等于w-2w0时,无论τ为多长,均能够有连续两个雷达脉冲被检测到。
当T>τ+w-2w0时,如图3所示,两个相邻雷达脉冲之间的时间间隔p=LT+p0,其中L表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期,p0满足0≤p0<T,表示第n个雷达脉冲与第n+1个雷达脉冲之间除过L个检测周期之外剩余的时间间隔。为了满足一定检测到相邻雷达脉冲的要求,需要满足公式(1):
Figure PCTCN2016085337-appb-000005
其中,N表示雷达信号一个雷达脉冲簇中雷达脉冲的个数。公式(1)表示:对于任意一个雷达脉冲,第一个雷达脉冲出现在整个检测周期T的任何位置,都一定会有一对连续的雷达脉冲同时落在一个监测范围内,进而使得相邻两个雷达脉冲均能够被检测到。将所有限制条件合在一起,组成公式(2):
Figure PCTCN2016085337-appb-000006
将公式(2)进行化简后得到公式(3):
Figure PCTCN2016085337-appb-000007
其中,化简方法再次不做赘述。当T和τ满足公式(3)时,有两个相邻雷达脉冲能够被检测到,因此实际应用中可以通过公式(3)以及终端频繁活动的区域中常见的雷达类型,确定终端的检测周期T。
步骤202、按检测周期循环检测参考信道是否存在雷达信号;当参考信道存在雷达信号时,执行步骤203;当参考信道不存在雷达信号时,执行步骤205。
通过公式(3)或者将t设置的足够小的时候,可以确定出检测周期T,然后以T为周期循环检测参考信道,示例的,可以采用功率谱平坦度方法进行检测,下面通过计算公式说明本发明实施例计算功率谱平坦度的方法。
一般的雷达信号为矩形波,经过调制到5GHz之后,发送信号为如公式(4)所示:
s(t)=Acoswct           (4)
经过多径衰落之后,得到的信号r'(t),r'(t)的表达式如公式(5)所示:
Figure PCTCN2016085337-appb-000008
其中,v(t)为r'(t)的随机包络,服从瑞利分布;
Figure PCTCN2016085337-appb-000009
为r'(t)的随机相位,服从在[0,2π]内的均匀分布。
由于信道上并不仅仅只存在信号,还有一些高斯噪声,因此为了得到精确的终端的接收信号,还需要在公式(5)的基础上加上高斯噪声,其中高斯噪声公式可以表达成(6):
n(t)=nc(t)cos wc-ns(t)sin wct     (6)
其中,nc(t)、ns(t)都是均值为0,方差为σ2的高斯随机过程,因此n(t)还可以表示为n(t)=R(t)cos[wct+θ(t)],其中R(t)和θ(t)分别为公式(7)和公式(8)所示:
Figure PCTCN2016085337-appb-000010
θ(t)=arctan[ns(t)/nc(t)]       (8)
通过计算可知R(t)满足瑞利分布,即满足公式(9),θ(t)服从在[0,2π]内的均匀分布,其中公式(9)为:
Figure PCTCN2016085337-appb-000011
由上述计算可知,最终终端接收带的雷达信号时经过多径衰落并加上高斯白噪声之后的信号,该接收信号如公式(10)所示:
Figure PCTCN2016085337-appb-000012
在终端接收到参考信道上的信号r(t)之后,首先对信号进行采样,采样周期为Ts,fs=1/Ts,采样频率样值点数为M,{x1,x2......xM},然后进行离散傅里叶变换(DFT,(Discrete Fourier Transform),得到频域信号如公式(11)所示:
Figure PCTCN2016085337-appb-000013
功率谱信号如公式(12)所示:
P(k)=R2(k)+I2(k)            (12)
示例的,功率谱平坦度的定义如公式(13)所示:
Figure PCTCN2016085337-appb-000014
其中,μp为P(k)的平均值,如公式(14)所示:
Figure PCTCN2016085337-appb-000015
σp 2为P(k)的方差,如公式(15)所示:
Figure PCTCN2016085337-appb-000016
通常对得到的功率谱信号求平坦度时,会出现两种情况:
第一种情况,如果参考信道上只有高斯白噪声,则理论上采样之后得到的功率谱是一条直线,所以对应的方差σ2=0,因此功率谱的平坦度为Ram=0;实际情况中,由于参考信道会受到干扰,所以在仅有噪声时,接收信号的功率谱是在一条在直线附近上下波动的,幅度很小的曲线,因此得到的方差依然很小,Ram趋于0;
第二种情况,如果参考信道上存在雷达信号,则接收信号的功率谱平坦度不为零。假设功率谱的判断门限值为Ram0,则当计算得出的Ram>Ram0时,表示参考信道上存在雷达信号,并检测到雷达脉冲,当计算得出的Ram<Ram0时,表示尚未在参考信道上检测到雷达脉冲。
实际应用中,还可以通过能量检测方法,循环平稳特征检测方法,或者 匹配滤波检测方法等检测雷达信号,本发明实施例在此不做赘述。
步骤203、记录雷达信号中每两个相邻雷达脉冲之间的时间间隔,执行步骤204。
通常的,检测到的雷达信号时一个一个的雷达脉冲,因此在接收到当前的雷达脉冲之后,可以计算与上一次接收到雷达脉冲之间的时间间隔。示例的,如图3所示,假设当前接收到第n+1个雷达脉冲,则第n+1个雷达脉冲与第n个雷达脉冲之间的时间间隔p=LT+(T-xn)+xn+1=L(T+1)xn+1-xn,由此即可计算第n+1个雷达脉冲与第n个雷达脉冲之间的时间间隔p,然后将计算得出的每两个相邻雷达脉冲之间的时间间隔记录下来,例如,可以通过寄存器或其他存储设备进行记录,本发明实施例对此不做限定。
步骤204、获取每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为雷达周期,执行步骤205。
示例的,在获取到第n+1个雷达脉冲与第n个雷达脉冲之间的时间间隔并进行记录之后,此时参考设备共记录了n个时间间隔,分别是第1个雷达脉冲与第2个雷达脉冲之间的时间间隔,第2个雷达脉冲与第3个雷达脉冲之间的时间间隔,第3个雷达脉冲与第4个雷达脉冲之间的时间间隔,……,第n+1个雷达脉冲与第n个雷达脉冲之间的时间间隔,由于采用检测时间τ和空闲时间t的方法循环检测参考信道上的信号,因此并不是每一个雷达脉冲都能够检测到,有一些刚好在空闲时间t传输的雷达脉冲可能被遗漏,因此,终端检测到的第n个雷达脉冲可能并不是实际上的第n个雷达脉冲,所以终端记录的n个时间间隔可能并不完全相同,但是记录得到的时间间隔只可能比实际的雷达周期大,不可能比实际的雷达周期小,因此可以选n个时间间隔中最小的时间间隔作为雷达周期,因为n个时间间隔中最小的时间间隔就是雷达周期的可能性最大。终端每检测到一个雷达脉冲就记录一次时间间隔,然后从记录的时间间隔中寻找最小的时间间隔作为雷达周期,这样一来,雷达周期是实时更新的,永远是记录的时间间隔中最小的,避免了由于雷达周期获取错误导致的确认雷达类型的失误。
步骤205、判断检测时长是否大于或等于参考时长;当检测时长大于或等于参考时长时,执行步骤206;当检测时长小于参考时长时,执行步骤202。
通常的,当终端需要进行信号传输时,首先选取任意一条信道,检测该信道上是否存在雷达信号,本发明实施例以参考信道为例进行说明,当终端检测所选取的参考信道是否存在雷达信号时,由于雷达信号是雷达脉冲形式,如果终端开始检测时恰好是两次雷达脉冲的间隔时间,则无法准确检测到是否存在雷达信号,因此需要在一定时长内持续进行检测,本发明实施例以参考时长为例进行说明,通常情况下,参考时长可以是终端在所述参考信道上的可用性检测时间(Channel Availability Check time,CAC),也可以是重新定义的其他时长,本发明实施例对此不做限定。
步骤206、判断参考时长内是否完全不存在所述雷达信号;当参考时长内存在所述雷达信号时,执行步骤207;当参考时长内完全不存在雷达信号时,执行步骤209。
由于雷达信号时雷达脉冲形式,并且在终端首次对参考信道进行检测时,并不知道雷达信号预计在什么时间传输,有可能检测开始后的一段时间内,终端一直没有检测到雷达信号,但是该段时间后检测到了雷达信号的第一个雷达脉冲,这时参考时长中并不是完全没有雷达信号,而是在后一段时间内存在雷达信号,因此当终端检测到参考信道上没有雷达信号时,首先判断检测时长是否大于或等于参考时长,当检测时长大于或等于参考时长时,确认参考时长内是否完全没有检测到雷达信号,避免因为检测当前没有雷达脉冲而误判参考信道上不存在雷达信号。
步骤207、根据雷达周期确定雷达信号的类型,执行步骤208。
通常的,当雷达信号的类型不同时,雷达周期不同,因此可以通过雷达周期确定雷达信号的类型。当检测时长大于或等于参考时长之后,终端获取检测到最后一个雷达脉冲之后更新的雷达周期,然后根据该雷达周期确定当前在参考信道上传输的雷达信号的类型。
步骤208、标记参考信道的雷达类型,结束当前处理流程。
通常的,为了避免干扰一个信道上仅传输一种类型的雷达信号,因当确定出雷达信号的类型之后,表示在参考信道上传输的雷达信号就是而这种类型的,该参考信道上不淘可能出现其他类型的雷达信号了,因此可以终端可以对该参考信道进行标记,这样一来,虽然当前终端不能再改参考信道上传 输信号,但是当下次终端需要在该参考信道上传输信号时,首先检测当前该信道上是否存在雷达信号,当该信道上存在雷达信号时,终端可以根据雷达信号的类型判断该雷达信号的截止时间,然后确定什么时间可以在该参考信道上进行信号传输,当判断出该雷达信号很快截止的情况下,可以选择等待,在雷达信号截止后进行信号传输,避免了重新选择信道造成的通信资源的浪费,当判断出该雷达信号还需要很长时间才能够截止时,迅速选择其他信道进行传输。同时,当终端正在进行信号传输时,若当前出现了雷达信号,终端可以根据雷达类型预计雷达信号的截止时间,如果等待雷达信号截止的时间小于切换信道的时间,则终端可以不进行信道切换,而是等待雷达信号截止后继续进行信号传输;如果等待雷达信号截止的时间大于切换信道的时间,则终端可以迅速进行信道切换,尽量使得信号传输中断的时间较短,提高用户体验。
步骤209、在参考信道上进行信号传输。
当参考时长内,参考信道上完全没有检测到雷达脉冲,则说明当前参考信道上没有雷达信号进行传输,终端可以在该参考信道上进行信号传输。在终端进行信号传输时,可以持续监听参考信道上的信号,当出现雷达脉冲时,根据本发明实施例提供的方法确定雷达信号的类型,或者也可以选择切换信道,本发明实施例对此不做限定。
本发明实施例提供了一种雷达信号检测方法,首先按检测周期循环检测参考信道上是否存在雷达信号,检测周期包括检测时间和空闲时间;当参考信道上存在雷达信号时,获取雷达信号的雷达周期,雷达周期为相邻两个雷达脉冲之间的时间间隔,然后根据雷达周期确定雷达信号的类型。确定了雷达信号的类型,因此,当终端再次检测到当前参考信道上存在雷达信号时,可以根据雷达信号的类型预计雷达信号的截止时间,若此时终端还没有在参考信道上进行信号传输时,可以不放弃该参考信道,而是等待雷达信号截止之后,选择在该参考信道进行信号传输,如此,就能提高参考信道的通信资源的利用率;若终端当前正在使用参考信道进行数据传输,且等待雷达信号截止的时间小于信道切换的时间,则终端可以不进行信道切换,从而避免了由于信号传输中断的时间过长造成的信号传输速度的下降,提高了用户体验。 同时,由于采用检测时间加空闲时间组成检测周期,并利用该检测周期循环检测参考信道,当参考信道上存在雷达信号时,一部分雷达脉冲能够在对应检测周期的检测时间内被检测到,因此可以判断出该参考信道上存在雷达信号,所以不需要终端持续不断的监听参考信道,节约了检测能量,进一步减小了终端的耗电量。
本发明实施例还提供了一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述雷达信号检测的方法。
本发明实施例提供一种雷达信号检测的装置40,如图4所示,包括:
检测单元401,设置为按检测周期循环检测参考信道上是否存在雷达信号,检测周期包括检测时间和空闲时间,雷达信号包括两个或两个以上雷达脉冲;
获取单元402,设置为当参考信道上存在雷达信号时,获取雷达信号的雷达周期;雷达周期为相邻两个雷达脉冲之间的时间间隔;
确定单元403,设置为根据雷达周期确定雷达信号的类型。
本发明实施例,由于终端能够确定雷达信号的类型,因此当终端再次检测到当前参考信道上存在雷达信号时,可以根据雷达信号的类型预计雷达信号的截止时间,若此时终端还没有在参考信道上进行信号传输时,可以不放弃该参考信道,而是等待雷达信号截至之后,选择在该参考信道进行信号传输,提高了参考信道的通信资源的利用率;同时若终端当前正在使用参考信道进行数据传输,若等待雷达信号截止的时间小于信道切换的时间,则终端可以不进行信道切换,避免了由于信号传输中断的时间过长造成的信号传输速度的下降,提高了用户体验。
实际应用中,雷达信号检测装置40可以设置在终端内部,通过终端的控制器进行统一控制,也可以设置在终端的外部,通过外部通信接口与终端进行通信,本年发明实施例对此不作限定。
可选的,获取单元402是设置为:
当参考信道上存在雷达信号时,记录雷达信号中每两个相邻雷达脉冲之间的时间间隔;
获取每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为雷达周期。
可选的,检测单元401是设置为:
获取参考检测周期的检测时间内参考信道上的信号,参考检测周期为任意一个检测周期;
获取参考检测周期的检测时间内参考信道上的信号的功率谱平坦度;
当功率谱平坦度大于参考阈值时,确定参考信道在参考检测周期的检测时间内检测到雷达脉冲;
当功率谱平坦度小于参考阈值时,确定参考信道在参考检测周期的检测时间内没有检测到雷达脉冲。
可选的,如图5所示,本发明实施例装置40还包括:
第一判断单元404,设置为判断检测时长是否大于或等于参考时长,检测时长为按检测周期循环检测参考信道的时间;
所述确定单元403,是设置为当检测时长大于或等于参考时长时,根据雷达周期确定雷达信号的类型。
可选的,如图6所示,本发明实施例装置40还包括:
第二判断单元405,设置为当按检测周期循环检测参考信道上不存在雷达信号时,判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
第三判断单元406,设置为当检测时长大于或等于所述参考时长时,判断参考信道在检测时长内是否完全不存在所述雷达信号;
传输单元407,设置为当检测时长内完全不存在所述雷达信号时,通过参考信道进行信号传输。
示例的,检测周期T=τ+t,τ为检测时间,t为空闲时间,所述检测周期T满足公式:T≤τ+ω-2ω0
其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
或者,检测周期T满足公式:
Figure PCTCN2016085337-appb-000017
其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;L为整数,表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期;N表示所述雷达信号的雷达脉冲簇中雷达脉冲的个数;p表示两个相邻雷达脉冲之间的时间间隔。
本发明实施例提供了一种雷达信号检测的装置,该装置包括:检测单元,设置为按检测周期循环检测参考信道上是否存在雷达信号,检测周期包括检测时间和空闲时间;获取单元,设置为当参考信道上存在雷达信号时,获取雷达信号的雷达周期,雷达周期为相邻两个雷达脉冲之间的时间间隔;确定单元,设置为根据雷达周期确定所述雷达信号的类型。本发明实施例,确定了雷达信号的类型,因此,当终端再次检测到当前参考信道上存在雷达信号时,可以根据雷达信号的类型预计雷达信号的截止时间,若此时终端还没有在参考信道上进行信号传输时,可以不放弃该参考信道,而是等待雷达信号截止之后,选择在该参考信道进行信号传输,如此,就能提高参考信道的通信资源的利用率;若终端当前正在使用参考信道进行数据传输,且等待雷达信号截止的时间小于信道切换的时间,则终端可以不进行信道切换,从而避免了由于信号传输中断的时间过长造成的信号传输速度的下降,提高了用户体验。
需要说明的是,装置侧实施例的装置用途请参考方法侧实施例的描述,本发明实施例在装置侧不做详述。并且,在实际应用中,所述检测单元401、获取单元402、确定单元403、第一判断单元404、第二判断单元405、第三判断单元406均可由位于移动终端中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array, FPGA)等实现,传输单元407可由天线、发射器等实现。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的每个模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请,如本发明实施方式中的可选的实现方法。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
上述技术方案确定了雷达信号的类型,提高了信号传输速率和参考信道的通信资源的利用率。

Claims (12)

  1. 一种雷达信号检测的方法,所述方法包括:
    按检测周期循环检测参考信道上是否存在雷达信号;所述检测周期包括检测时间和空闲时间,所述雷达信号包括两个或两个以上雷达脉冲;
    当所述参考信道上存在雷达信号时,获取所述雷达信号的雷达周期;所述雷达周期为相邻两个雷达脉冲之间的时间间隔;
    根据所述雷达周期确定所述雷达信号的类型。
  2. 根据权利要求1所述的方法,其中,所述获取所述雷达信号的雷达周期包括:
    当所述参考信道上存在雷达信号时,记录所述雷达信号中每两个相邻雷达脉冲之间的时间间隔;
    获取所述每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为所述雷达周期。
  3. 根据权利要求1或2所述的方法,其中,所述按检测周期循环检测参考信道上是否存在雷达信号包括:
    获取参考检测周期的检测时间内所述参考信道上的信号;所述参考检测周期为任意一个检测周期;
    获取所述参考检测周期的检测时间内所述参考信道上的信号的功率谱平坦度;
    当所述功率谱平坦度大于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内检测到雷达脉冲;
    当所述功率谱平坦度小于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内没有检测到雷达脉冲。
  4. 根据权利要求2所述的方法,所述获取所述雷达信号的雷达周期之后,所述方法还包括:
    判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
    所述根据所述雷达周期确定所述雷达信号的类型包括:
    当所述检测时长大于或等于所述参考时长时,根据所述雷达周期确定所述雷达信号的类型。
  5. 根据权利要求1或2所述的方法,所述方法还包括:
    当按检测周期循环检测所述参考信道上不存在雷达信号时,判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
    当所述检测时长大于或等于所述参考时长时,确定所述参考信道在所述检测时长内是否完全不存在所述雷达信号;
    当所述检测时长内完全不存在所述雷达信号时,通过所述参考信道进行信号传输。
  6. 根据权利要求1或2所述的方法,其中,所述检测周期T=τ+t,τ为检测时间,t为空闲时间,所述检测周期T满足公式:T≤τ+ω-2ω0
    其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
    或者,所述检测周期T满足公式:
    Figure PCTCN2016085337-appb-100001
    其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;L为整数,表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期;N表示所述雷达信号的雷达脉冲簇中雷达脉冲的个数;p表示两个相邻雷达脉冲之间的时间间隔。
  7. 一种雷达信号检测的装置,所述装置包括:
    检测单元,设置为按检测周期循环检测参考信道上是否存在雷达信号,所述检测周期包括检测时间和空闲时间,所述雷达信号包括两个或两个以上雷达脉冲;
    获取单元,设置为当所述参考信道上存在雷达信号时,获取所述雷达信 号的雷达周期;所述雷达周期为相邻两个雷达脉冲之间的时间间隔;
    确定单元,设置为根据所述雷达周期确定所述雷达信号的类型。
  8. 根据权利要求7所述的装置,其中,所述获取单元是设置为:
    当所述参考信道上存在雷达信号时,记录所述雷达信号中每两个相邻雷达脉冲之间的时间间隔;
    获取所述每两个相邻雷达脉冲之间的时间间隔中最小的时间间隔作为所述雷达周期。
  9. 根据权利要求7或8所述的装置,其中,所述检测单元是设置为:
    获取参考检测周期的检测时间内所述参考信道上的信号,所述参考检测周期为所述任意一个检测周期;
    获取所述参考检测周期的检测时间内所述参考信道上的信号的功率谱平坦度;
    当所述功率谱平坦度大于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内检测到雷达脉冲;
    当所述功率谱平坦度小于参考阈值时,确定所述参考信道在所述参考检测周期的检测时间内没有检测到雷达脉冲。
  10. 根据权利要求8所述的装置,所述装置还包括:
    第一判断单元,设置为判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
    所述确定单元是设置为,当所述检测时长大于或等于所述参考时长时,根据所述雷达周期确定所述雷达信号的类型。
  11. 根据权利要求7或8所述的装置,所述装置还包括:
    第二判断单元,设置为当按检测周期循环检测所述参考信道上不存在雷达信号时,判断检测时长是否大于或等于参考时长,所述检测时长为按检测周期循环检测所述参考信道的时间;
    第三判断单元,设置为当所述检测时长大于或等于所述参考时长时,确定所述参考信道在所述检测时长内是否完全不存在所述雷达信号;
    传输单元,设置为当所述检测时长内完全不存在所述雷达信号时,通过所述参考信道进行信号传输。
  12. 根据权利要求7或8所述的装置,其中,所述检测周期T=τ+t,τ为检测时间,t为空闲时间,所述检测周期T满足公式:T≤τ+ω-2ω0
    其中,w为雷达脉冲宽度,w0为使得雷达脉冲能够被检测到的检测时间τ与w重合的最小量;
    或者,所述检测周期T满足公式:
    Figure PCTCN2016085337-appb-100002
    其中,为雷达脉冲宽度;为使得雷达脉冲能够被检测到的检测时间与重合的最小量;L为整数,表示第n个雷达脉冲与第n+1个雷达脉冲之间包括L个检测周期;N表示所述雷达信号的雷达脉冲簇中雷达脉冲的个数;p表示两个相邻雷达脉冲之间的时间间隔。
PCT/CN2016/085337 2015-07-27 2016-06-08 一种雷达信号检测的方法和装置 WO2017016331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510448379.7 2015-07-27
CN201510448379.7A CN106385324A (zh) 2015-07-27 2015-07-27 一种雷达信号检测方法和装置

Publications (1)

Publication Number Publication Date
WO2017016331A1 true WO2017016331A1 (zh) 2017-02-02

Family

ID=57885648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085337 WO2017016331A1 (zh) 2015-07-27 2016-06-08 一种雷达信号检测的方法和装置

Country Status (2)

Country Link
CN (1) CN106385324A (zh)
WO (1) WO2017016331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433513A (zh) * 2020-03-23 2021-09-24 西安电子科技大学 一种雷达脉冲信号信道检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487597B (zh) * 2020-04-23 2021-01-15 成都众享天地网络科技有限公司 一种基于时空频能数据的通用电子侦察截获仿真方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001742A1 (en) * 2001-06-25 2003-01-03 Commprize Ventures Limited Method and system for detection of and dynamic adaptation to radio interference in a shared wireless communications environment
CN1913371A (zh) * 2005-08-08 2007-02-14 马维尔国际贸易有限公司 雷达探测装置及其方法
CN1979217A (zh) * 2005-12-05 2007-06-13 马维尔国际贸易有限公司 雷达探测和动态频率选择
CN101345550A (zh) * 2007-07-12 2009-01-14 St微电子有限公司 检测干扰无线装置的干扰源的最终存在的方法及其装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW595140B (en) * 2002-04-22 2004-06-21 Cognio Inc System and method for spectrum management of a shared frequency band
US20050215266A1 (en) * 2004-03-26 2005-09-29 Intel Corporation Wireless network dynamic frequency selection
KR101710469B1 (ko) * 2009-12-17 2017-02-28 삼성전자주식회사 레이더 신호를 검출하기 위한 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001742A1 (en) * 2001-06-25 2003-01-03 Commprize Ventures Limited Method and system for detection of and dynamic adaptation to radio interference in a shared wireless communications environment
CN1913371A (zh) * 2005-08-08 2007-02-14 马维尔国际贸易有限公司 雷达探测装置及其方法
CN1979217A (zh) * 2005-12-05 2007-06-13 马维尔国际贸易有限公司 雷达探测和动态频率选择
CN101345550A (zh) * 2007-07-12 2009-01-14 St微电子有限公司 检测干扰无线装置的干扰源的最终存在的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE.: "Initial simulation results for LAA coexistence studies", 3GPP TSG-RAN WG4 MEETING #74BITS R4-151912, 24 April 2015 (2015-04-24), XP050956447 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433513A (zh) * 2020-03-23 2021-09-24 西安电子科技大学 一种雷达脉冲信号信道检测方法
CN113433513B (zh) * 2020-03-23 2024-03-29 西安电子科技大学 一种雷达脉冲信号信道检测方法

Also Published As

Publication number Publication date
CN106385324A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN107454998B (zh) 在lte授权辅助接入操作中与其它技术的装置内共存
CN107926058B (zh) 利用设备监控的信道可用性检查
US8498640B2 (en) Fast radio access technology detection for cell search
US20190098577A1 (en) Methods and Devices for Enabling Reception of Beam Sweep Transmissions
WO2020006752A1 (en) Method and apparatus for signal transmission and reception
TWI381662B (zh) 行動台以及用以執行掃瞄程序之裝置及方法
WO2017016331A1 (zh) 一种雷达信号检测的方法和装置
US20190074916A1 (en) Method and device for detecting signal strength
CN107872846B (zh) 一种数据传输方法及装置
WO2022028475A1 (zh) 参考信号测量方法、终端及网络侧设备
KR20230088786A (ko) 측정 조정 방법 및 단말
WO2023193543A1 (zh) 小区测量方法、装置、终端设备和计算机可读存储介质
WO2023241247A1 (zh) Bwp切换方法、装置、终端、存储介质及产品
JP2018101923A (ja) 無線解析装置、検波方法、及びプログラム
US10659099B1 (en) Page scanning devices, computer-readable media, and methods for bluetooth page scanning using a wideband receiver
Yi et al. BlueScan: Boosting Wi-Fi scanning efficiency using bluetooth radio
WO2016082754A1 (en) Round trip time measurement for network location
WO2013136774A1 (ja) 信号検出装置及び信号検出方法
US20180279343A1 (en) Partial bandwidth radio transmission method and device, base station and user equipment
US11432313B2 (en) Detecting cellular network bottlenecks through analysis of resource allocation patterns
EP3732926B1 (en) Method and device for nprach detection
CN113330812B (zh) 一种drs发送方法及装置
EP2830242B1 (en) Determining device and determining method for determining whether communication is possible
US20160112145A1 (en) Radar detection for wireless communications
US11832197B2 (en) Neighborhood management between WiFi and unlicensed spectrum radios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829698

Country of ref document: EP

Kind code of ref document: A1