WO2017016302A1 - 掉电防止方法、电路及装置 - Google Patents

掉电防止方法、电路及装置 Download PDF

Info

Publication number
WO2017016302A1
WO2017016302A1 PCT/CN2016/083521 CN2016083521W WO2017016302A1 WO 2017016302 A1 WO2017016302 A1 WO 2017016302A1 CN 2016083521 W CN2016083521 W CN 2016083521W WO 2017016302 A1 WO2017016302 A1 WO 2017016302A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
threshold
voltage
overcurrent protection
pse
Prior art date
Application number
PCT/CN2016/083521
Other languages
English (en)
French (fr)
Inventor
姚庆涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017016302A1 publication Critical patent/WO2017016302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a power failure prevention method, circuit and device.
  • PSE Power Supply Equipment
  • IP Internet Protocol
  • AP wireless LAN access points
  • PD powered Device
  • the surge test method required by POE is 8-wire to ground, which may be caused by the inconsistent impedance of the two lines to the ground.
  • the line has a voltage difference to generate a loop current, which causes the PSE overcurrent protection to turn off the power supply to the PD portion of the latter stage, and does not meet the surge standard.
  • FIG. 1 is a network surge protection structure diagram in the related art.
  • the main equipment includes a PSE power transmission device and a PD power receiving device, and is connected through a network cable in the middle, and electromagnetic compatibility (Electro Magnetic Compatibility, referred to as In the EMC standard, the outdoor unit needs to withstand a certain surge level.
  • EMC Electro Magnetic Compatibility
  • the outdoor unit needs to withstand a certain surge level.
  • the PSE has an overcurrent protection function, which is prone to transient voltage spikes when the network port surges 8 lines to ground, resulting in PSE overcurrent. Protection, after the power is removed from the front stage, the power receiving equipment cannot work normally.
  • the surge voltage can be limited to a very low level through two levels of protection measures.
  • the embodiment of the invention provides a method, a circuit and a device for preventing power failure, which can solve the problem of stopping power supply to the terminal due to overcurrent protection of the power supply device in the related art.
  • a power failure prevention method including: acquiring a peak voltage when a surge occurs; dropping the peak voltage to a first threshold, wherein the first threshold is smaller than a power supply device ( The threshold voltage of the overcurrent protection circuit in the overcurrent protection circuit in PSE).
  • dropping the spike voltage to a first threshold comprises: charging the RC circuit by the spike voltage, wherein the RC circuit is disposed between the PSE and the powered device (PD).
  • the RC circuit further has a first diode connected in series, wherein the first diode is used to release a voltage of the RC circuit.
  • the method further includes: lowering, by the second diode, a voltage across the current detecting resistor of the overcurrent protection circuit to a second threshold, wherein the second threshold is less than the threshold voltage.
  • a power failure prevention circuit comprising: an RC circuit disposed between a power supply device (PSE) and a powered device (PD), configured to acquire a surge The spike voltage drops the peak voltage to a first threshold, wherein the first threshold is less than a threshold voltage of the overcurrent protection circuit in the PSE for overcurrent protection.
  • PSE power supply device
  • PD powered device
  • the power down prevention circuit further includes: a first diode connected to the RC circuit and configured to release a voltage of the RC circuit.
  • the power-down prevention circuit further includes: a second diode connected to the current detecting resistor of the overcurrent protection circuit, configured to reduce the voltage across the current detecting resistor to a second threshold, wherein The second threshold is less than the threshold voltage.
  • a power failure preventing apparatus including: an acquiring module configured to acquire a peak voltage when a surge occurs; and a first falling module configured to The peak voltage drops to a first threshold, wherein the first threshold is less than a threshold voltage of the overcurrent protection circuit in the power supply device (PSE) for overcurrent protection.
  • PSE power supply device
  • the first descent module comprises: a charging unit configured to charge the RC circuit by the peak voltage, wherein the RC circuit is disposed between the PSE and the powered device (PD).
  • a charging unit configured to charge the RC circuit by the peak voltage, wherein the RC circuit is disposed between the PSE and the powered device (PD).
  • the device further includes: a second descent module configured to reduce a voltage across the current detecting resistor of the overcurrent protection circuit to a second threshold by using a second diode, wherein the second threshold is less than The threshold voltage.
  • a second descent module configured to reduce a voltage across the current detecting resistor of the overcurrent protection circuit to a second threshold by using a second diode, wherein the second threshold is less than The threshold voltage.
  • the spike voltage when the surge is about to occur, the spike voltage can be reduced to a certain threshold, which is smaller than the protection voltage of the overcurrent protection circuit, and the related art is solved because of the overcurrent protection of the power supply device.
  • the problem of power supply to the terminal is stopped, and the surge peak voltage value does not trigger the overcurrent protection, which prolongs the overcurrent protection action time, and the PSE will not stop supplying power every time the surge occurs.
  • FIG. 1 is a structural diagram of a network surge protection structure in the related art
  • FIG. 2 is a flow chart of a power failure prevention method according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a power failure preventing device according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a first falling module 32 of the power failure preventing device according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing another structure of a power failure preventing device according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a power failure prevention system according to Embodiment 1 of the present invention.
  • FIG. 7 is a structural block diagram of a system for power failure prevention according to Embodiment 2 of the present invention.
  • FIG. 2 is a flowchart of a power failure prevention method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step S202 acquiring a spike voltage when a surge occurs
  • Step S204 the peak voltage is decreased to a first threshold, wherein the first threshold is smaller than a threshold voltage of the overcurrent protection circuit in the power supply device (PSE) for overcurrent protection.
  • PSE power supply device
  • the technical solution capable of lowering the peak voltage to a certain threshold when the surge is about to occur which is smaller than the protection voltage of the overcurrent protection circuit, solves the related art, and stops due to the overcurrent protection of the power supply device.
  • the power supply to the terminal, and then the surge peak voltage value will not trigger overcurrent protection, prolonging the overcurrent protection action time, and the PSE will stop power supply every time the surge occurs.
  • the peak voltage can be reduced to a first threshold by charging the RC circuit by using the peak voltage, wherein the RC circuit is disposed on the PSE and The peak voltage is absorbed between the powered devices (PDs), that is, through an RC (circuit in series with resistors and capacitors) disposed between the PSE device and the PD device, that is, the spike voltage can charge the RC circuit.
  • PDs powered devices
  • RC circuit in series with resistors and capacitors
  • the RC circuit further has a first diode connected in series, wherein The first diode is used to release the voltage of the RC circuit, that is, when the peak voltage is charged to the RC circuit, if the surge phenomenon occurs again, the first diode can function, and the RC circuit is used. The voltage is released and the RC circuit can be used to sink the next surge voltage.
  • the "first" in the embodiments of the present invention is only used to distinguish and "second" diodes hereinafter, and is not intended to define any characteristics of the diode.
  • the overcurrent protection circuit will have a voltage collection point, that is, the voltage of one end of the electronic one is collected. If the voltage value exceeds the threshold voltage, the overcurrent protection action will be performed, in order to make the effect of the above power failure protection better.
  • the voltage across the current detecting resistor of the overcurrent protection circuit may be lowered to a second threshold by the second diode, wherein the second threshold is less than the threshold voltage.
  • the following process to prevent power loss can be reflected by the surge protection unit, the overcurrent protection unit, and the delay processing unit.
  • the surge protection unit (equivalent to the function performed by the second diode described above) is capable of limiting the surge voltage to a very low voltage level.
  • the overcurrent protection unit converts the current in the loop into a voltage signal and compares it with an internal voltage threshold to determine if overcurrent protection is to be performed.
  • the delay processing unit makes the converted voltage signal not reach the threshold of overcurrent protection very quickly, and achieves the requirement of no power failure during the surge process.
  • the technical solution provided by the embodiment of the invention utilizes the charging and discharging of the RC circuit to filter some voltage spikes, but does not affect the normal overcurrent protection action, achieves the effect of the delayed PSE overcurrent protection action time, and satisfies the surge protection. Requirements. It should be noted that the delay processing unit is not limited to being implemented by charging and discharging using an RC circuit.
  • a power-down prevention device is further provided for implementing the above-mentioned embodiments and optional embodiments.
  • the descriptions of the modules involved in the device are described below.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are optionally implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • 3 is a block diagram showing the structure of a power failure preventing device according to an embodiment of the present invention. As shown in Figure 3, the device comprises:
  • the obtaining module 30 is configured to acquire a peak voltage when a surge occurs
  • the first falling module 32 is connected to the obtaining module 30 and configured to reduce the peak voltage to a first threshold, wherein the first threshold is smaller than a threshold voltage of the overcurrent protection circuit in the power supply device (PSE) for overcurrent protection.
  • PSE power supply device
  • the technical solution capable of lowering the peak voltage to a certain threshold when the surge is about to occur which is smaller than the protection voltage of the overcurrent protection circuit, solves the related art, because the power supply device is overcurrent Protection and stop the problem of power supply to the terminal, and the surge peak voltage value will not trigger overcurrent protection, prolonging the overcurrent protection action time, and the PSE will stop power supply every time the surge occurs.
  • the first drop module 30 includes: a charging unit 300, configured to pass the peak voltage as an RC circuit. Charging, wherein the RC circuit is disposed between the PSE and the powered device (PD).
  • the device further includes: a second falling module 34 configured to pass the current detecting resistor of the overcurrent protection circuit through the second diode The voltage drops to a second threshold, wherein the second threshold is less than the threshold voltage.
  • a power-down prevention circuit including: an RC circuit, disposed between the power supply device PSE and the powered device PD, configured to acquire a peak voltage when a surge occurs, and to set the peak The voltage drops to a first threshold, wherein the first threshold is less than a threshold voltage of the overcurrent protection circuit in the power supply device PSE for overcurrent protection.
  • the power failure prevention circuit further includes: a first diode, and the RC The circuit is connected to release the voltage of the RC circuit; the power-down prevention circuit further includes: a second diode connected to the current detecting resistor of the overcurrent protection circuit, configured to reduce the voltage across the current detecting resistor to a second threshold, wherein the second threshold is less than the threshold voltage.
  • FIG. 6 is a structural block diagram of a system for preventing power failure according to the first embodiment.
  • FIG. 6 actually uses a primary protection scheme, and the overcurrent protection unit is actually located inside the PSE device, FIG. 6 Unexplained, the delay processing unit is connected to the overcurrent protection unit, so that the instantaneous peak of the residual voltage charges the RC circuit connected in parallel with the current detecting resistor, so that the overcurrent protection comparison circuit inside the PSE cannot operate, thereby extending the
  • the flow protection action time is equivalent to filtering out the voltage spike generated when the surge is generated, and meets the protection requirements of the outdoor design.
  • FIG. 7 is a structural block diagram of a system for preventing power failure according to the second embodiment.
  • the impedance imbalance caused by the ground impedance causes a sudden increase in current in the loop, first passing VD1 (corresponding to the above implementation).
  • the second diode in the example clamps the voltage on R1 (corresponding to the current sense resistor of the above embodiment) to a very low voltage level, and then passes C1 through the RC charging mode of capacitor C1 and resistor R2.
  • the voltage at the terminal is slowly rushed to the voltage point set by the overcurrent protection.
  • the surge voltage has passed, and the voltage across R1 will discharge through VD2, causing the voltage to fall back quickly, waiting for the next surge. Come over and repeat the previous actions to meet the surge requirements.
  • the embodiment of the present invention solves the problem that the power supply device stops power supply to the terminal due to overcurrent protection of the power supply device, and the surge peak voltage value does not trigger overcurrent protection, thereby prolonging the overcurrent protection action time.
  • the PSE will not stop supplying power every time a surge occurs.
  • modules or steps of the present application can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed over a network of multiple computing devices. They may be implemented by program code executable by the computing device such that they may be stored in the storage device for execution by the computing device and, in some cases, may be performed in a different order than that illustrated herein. Or the steps described, either separately as individual integrated circuit modules, or as a plurality of modules or steps in a single integrated circuit module. Thus, the application is not limited to any particular combination of hardware and software.
  • the embodiment of the present application provides a power failure prevention method, circuit, and device, which solves the problem that the power supply device stops power supply to the terminal due to overcurrent protection of the power supply device, and the surge peak voltage value does not trigger overcurrent protection and is extended.
  • the overcurrent protection action time does not stop the power supply every time the surge occurs.

Abstract

一种掉电防止方法、掉电防止电路和掉电防止装置。该掉电防止方法包括:获取发生浪涌时的尖峰电压(S202);将尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备PSE中过流保护电路进行过流保护的门限电压(S204)。采用该掉电防止方法、掉电防止电路和掉电防止装置能够解决由于供电设备过流保护而停止对终端供电的问题,进而浪涌尖峰电压值不会触发过流保护,延长了过流保护动作时间,不会每次在浪涌发生时,PSE都会停止供电。

Description

掉电防止方法、电路及装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种掉电防止方法、电路及装置。
背景技术
随着电气和电子工程师协会(Institute of Electrical and Electronics Engineers,简称为IEEE)802.3at(大功率)标准的颁布,以太网供电(Power Over Ethernet,简称为POE)技术日趋走向成熟,带有供电设备(Power Supply Equipment,简称为PSE)功能的网络设备能够为越来越多的基于互联网协议(Internet Protocol,简称为IP)的终端(如IP电话机、无线局域网接入点(Access Point,简称为AP)、网络摄像机等)传输数据信号的同时进行电力供应,由最开始短距离室内的供电架构逐渐转变成室外长距离的应用场景,这就要求加强PSE和被供电设备(Powered Device,简称为PD)设备的浪涌等级。目前室外的浪涌等级为CLASSB(等级B),不允许存在供电中断的情况,而POE要求的浪涌测试方法为8线对地,由于在两根线对地的阻抗不一致的情况下会造成线线有电压差产生回路电流,导致PSE过流保护关断对后级PD部分的供电,不满足浪涌的标准。
图1为相关技术中的网络浪涌防护结构图,如图1所示,主要的设备包括PSE输电设备和PD受电设备,中间通过网线进行连接,在电磁兼容性(Electro Magnetic Compatibility,简称为EMC)可靠性的标准中室外单元需要承受一定的浪涌等级,而在POE技术中,PSE有过流保护功能,在做网口浪涌8线对地时容易产生瞬时电压尖峰导致PSE过流保护,前级掉电后级受电设备无法正常工作。通过两级防护措施可以把浪涌电压限制在很低的水平,但是由于每个系统的差异,两根线对保护地的阻抗不均衡,会产生线线之间的压差,使回路中产生电流,如果电流过大就会使PSE过流保护,针对不同场合的干扰在过流检测电阻上产生电压尖峰,从而导致PSE过流保护误动作,不满足一些场合的要求。
针对相关技术中,由于供电设备过流保护而停止对终端供电的问题,尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种掉电防止方法、电路及装置,能够解决相关技术中由于供电设备过流保护而停止对终端供电的问题。
根据本发明实施例的一个方面,提供了一种掉电防止方法,包括:获取发生浪涌时的尖峰电压;将所述尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备(PSE)中过流保护电路进行过流保护的门限电压。
可选地,将所述尖峰电压下降至第一阈值,包括:通过所述尖峰电压为RC电路充电,其中,该RC电路设置于PSE与被供电设备(PD)之间。
可选地,所述RC电路还串联有第一二极管,其中,该第一二极管用于释放所述RC电路的电压。
可选地,所述方法还包括:通过第二二极管将所述过流保护电路的电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于所述门限电压。
根据本发明实施例的另一个方面,还提供了一种掉电防止电路,包括:RC电路,设置于供电设备(PSE)与被供电设备(PD)之间,设置为获取发生浪涌时的尖峰电压,并将所述尖峰电压下降至第一阈值,其中,该第一阈值小于PSE中过流保护电路进行过流保护的门限电压。
可选地,所述掉电防止电路还包括:第一二极管,与所述RC电路连接,设置为释放所述RC电路的电压。
可选地,所述掉电防止电路还包括:第二二极管,与所述过流保护电路的电流检测电阻连接,设置为将所述电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于所述门限电压。
根据本发明实施例的另一个方面,还提供了一种掉电防止装置,包括:获取模块,设置为获取发生浪涌时的尖峰电压;第一下降模块,设置为将所 述尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备(PSE)中过流保护电路进行过流保护的门限电压。
可选地,所述第一下降模块包括:充电单元,设置为通过所述尖峰电压为RC电路充电,其中,该RC电路设置于PSE与被供电设备(PD)之间。
可选地,所述装置还包括:第二下降模块,设置为通过第二二极管将所述过流保护电路的电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于所述门限电压。
通过本发明实施例,采用在即将发生浪涌时,能够将尖峰电压下降到某一阈值,这个阈值小于过流保护电路的保护电压的技术方案,解决了相关技术中,由于供电设备过流保护而停止对终端供电的问题,进而浪涌尖峰电压值不会触发过流保护,延长了过流保护动作时间,不会每次在浪涌发生时,PSE都会停止供电。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为相关技术中的网络浪涌防护结构图;
图2为根据本发明实施例的掉电防止方法的流程图;
图3为根据本发明实施例的掉电防止装置的结构框图;
图4为根据本发明实施例的掉电防止装置的第一下降模块32的结构框图;
图5为根据本发明实施例的掉电防止装置的另一结构框图;
图6为根据本发明实施例一的掉电防止的系统结构框图;
图7为根据本发明实施例二的掉电防止的系统结构框图。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
在本发明实施例中,提供了一种掉电防止方法,图2为根据本发明实施例的掉电防止方法的流程图,如图2所示,该方法包括以下步骤:
步骤S202,获取发生浪涌时的尖峰电压;
步骤S204,将上述尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备(PSE)中过流保护电路进行过流保护的门限电压。
通过上述步骤,采用在即将发生浪涌时,能够将尖峰电压下降到某一阈值,这个阈值小于过流保护电路的保护电压的技术方案,解决了相关技术中,由于供电设备过流保护而停止对终端供电的问题,进而浪涌尖峰电压值不会触发过流保护,延长了过流保护动作时间,不会每次在浪涌发生时,PSE都会停止供电。
上述步骤S204可以有多种实现方式,在本发明实施例中,可以通过以下方式实现将上述尖峰电压下降至第一阈值:通过上述尖峰电压为RC电路充电,其中,该RC电路设置于PSE与被供电设备(PD)之间,即通过设置于PSE设备和PD设备之间的RC(电阻和电容串联的电路)电路来吸收尖峰电压,即尖峰电压可以为RC电路充电。
在实际应用过程中,浪涌并不是一次性的,通常会多次发生,为了使得上述掉电防止方案更好地实施,上述RC电路还串联有第一二极管,其中, 该第一二极管用于释放上述RC电路的电压,也就是说,当尖峰电压给RC电路充电充满时,如果再次发生浪涌现象,上述第一二极管就可以发挥作用,将RC电路的电压释放,进而RC电路可以用来吸收下一波浪涌电压。在本发明实施例中的“第一”仅是用来区分和下文中的“第二”二极管,并不用于限定二极管的任何特性。
一般过流保护电路都会有一个电压采集点,就是采集某一个电子两端的电压,如果电压值超了门限电压,就会执行过流保护动作,为了使得上述掉电保护的效果更好,在本发明实施例中,还可以通过第二二极管将上述过流保护电路的电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于上述门限电压。
以下结合一示例说明上述掉电防止过程,其仅仅用于解释本发明实施例的技术方案。
以下防止掉电的过程,可以通过浪涌防护单元、过流保护单元、延迟处理单元来体现。
浪涌防护单元(相当于上述第二二极管完成的功能),能够把浪涌电压限制在一个很低的电压水平。
过流保护单元,可以把回路中的电流转换成电压信号并与内部的电压门限进行比较,确定是否进行过流保护。
延迟处理单元使转换成的电压信号不会很快达到过流保护的门限,达到浪涌过程中不掉电的要求。
采用本发明实施例提供的技术方案,利用了RC电路充放电来过滤一些电压尖峰,但又不影响到正常的过流保护动作,达到延时PSE过流保护动作时间的效果,满足浪涌防护的要求。需要说明的是,延迟处理单元不仅局限于利用RC电路充放电来实现。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于 可选实施例,所涉及的动作和模块并不一定是本申请所必需的。
在本实施例中还提供了一种掉电防止装置,用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述,下面对该装置中涉及到的模块进行说明。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可选地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。图3为根据本发明实施例的掉电防止装置的结构框图。如图3所示,该装置包括:
获取模块30,设置为获取发生浪涌时的尖峰电压;
第一下降模块32,与获取模块30连接,设置为将上述尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备(PSE)中过流保护电路进行过流保护的门限电压。
通过上述模块的综合作用,采用在即将发生浪涌时,能够将尖峰电压下降到某一阈值,这个阈值小于过流保护电路的保护电压的技术方案,解决了相关技术中,由于供电设备过流保护而停止对终端供电的问题,进而浪涌尖峰电压值不会触发过流保护,延长了过流保护动作时间,不会每次在浪涌发生时,PSE都会停止供电。
图4为根据本发明实施例的掉电防止装置的第一下降模块32的结构框图,如图3所示,第一下降模块30,包括:充电单元300,设置为通过上述尖峰电压为RC电路充电,其中,该RC电路设置于PSE与被供电设备(PD)之间。
图5为根据本发明实施例的掉电防止装置的另一结构框图,上述装置还包括:第二下降模块34,设置为通过第二二极管将上述过流保护电路的电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于上述门限电压。
在本发明实施例中,还提供了一种掉电防止电路,包括:RC电路,设置于供电设备PSE与被供电设备PD之间,设置为获取发生浪涌时的尖峰电压,并将上述尖峰电压下降至第一阈值,其中,该第一阈值小于供电设备PSE中过流保护电路进行过流保护的门限电压。
在本发明实施例中,上述掉电防止电路还包括:第一二极管,与上述RC 电路连接,设置为释放上述RC电路的电压;上述掉电防止电路还包括:第二二极管,与上述过流保护电路的电流检测电阻连接,设置为将上述电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于上述门限电压。
为了更好地理解上述掉电防止过程,以下结合可选实施例进行说明,但不用于限定本实施例示例的保护范围。
实施例一
图6为根据实施例一的掉电防止的系统结构框图,如图6所示,图6中实际上使用了一级防护方案,过流保护单元实际上是位于PSE设备内部的,图6并未明确体现,将延迟处理单元与过流保护单元连接,使得残压的瞬时尖峰对并联在电流检测电阻上的RC电路进行充电,使在PSE内部的过流保护比较电路无法动作,从而延长过流保护动作时间,相当于过滤掉浪涌时产生的电压尖峰,满足室外设计的防护要求。
实施例二
图7为根据实施例二的掉电防止的系统结构框图,如图7所示,当网口浪涌触发时,对地阻抗不平衡导致回路中电流突增,先通过VD1(相当于上述实施例中的第二二极管)把R1(相当于上述实施例的电流检测电阻)上的电压被钳位到很低的电压水平,然后通过电容C1和电阻R2的RC充电模式,把C1两端的电压缓慢冲到过流保护设置的电压点,这样当PSE要进行过流保护的时候,浪涌电压已经过去,R1两端电压会通过VD2进行放电,使电压迅速回落,等下一次浪涌过来重复之前的动作,满足浪涌要求。
综上所述,本发明实施例解决了相关技术中,由于供电设备过流保护而停止对终端供电的问题,进而浪涌尖峰电压值不会触发过流保护,延长了过流保护动作时间,不会每次在浪涌发生时,PSE都会停止供电。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的对象在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如, 包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域的技术人员应该明白,上述的本申请的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例提供一种掉电防止方法、电路及装置,解决了相关技术中,由于供电设备过流保护而停止对终端供电的问题,进而浪涌尖峰电压值不会触发过流保护,延长了过流保护动作时间,不会每次在浪涌发生时,PSE都会停止供电。

Claims (10)

  1. 一种掉电防止方法,包括:
    获取发生浪涌时的尖峰电压;
    将所述尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备PSE中过流保护电路进行过流保护的门限电压。
  2. 根据权利要求1所述的方法,其中,将所述尖峰电压下降至第一阈值,包括:
    通过所述尖峰电压为RC电路充电,其中,该RC电路设置于PSE与被供电设备PD之间。
  3. 根据权利要求2所述的方法,其中,所述RC电路还串联有第一二极管,其中,该第一二极管用于释放所述RC电路的电压。
  4. 根据权利要求1至3任一项所述的方法,所述方法还包括:
    通过第二二极管将所述过流保护电路的电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于所述门限电压。
  5. 一种掉电防止电路,包括:
    RC电路,设置于供电设备PSE与被供电设备PD之间,设置为获取发生浪涌时的尖峰电压,并将所述尖峰电压下降至第一阈值,其中,该第一阈值小于供电设备PSE中过流保护电路进行过流保护的门限电压。
  6. 根据权利要求5所述的掉电防止电路,所述掉电防止电路还包括:第一二极管,与所述RC电路连接,设置为释放所述RC电路的电压。
  7. 根据权利要求5所述的掉电防止电路,所述掉电防止电路还包括:第二二极管,与所述过流保护电路的电流检测电阻连接,设置为将所述电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于所述门限电压。
  8. 一种掉电防止装置,包括:
    获取模块,设置为获取发生浪涌时的尖峰电压;
    第一下降模块,设置为将所述尖峰电压下降为第一阈值,其中,该第一阈值小于供电设备PSE中过流保护电路进行过流保护的门限电压。
  9. 根据权利要求8所述的装置,其中,所述第一下降模块包括:
    充电单元,设置为通过所述尖峰电压为RC电路充电,其中,该RC电路设置于PSE与被供电设备PD之间。
  10. 根据权利要求8或9所述的装置,所述装置还包括:
    第二下降模块,设置为通过第二二极管将所述过流保护电路的电流检测电阻两端的电压下降至第二阈值,其中,该第二阈值小于所述门限电压。
PCT/CN2016/083521 2015-07-27 2016-05-26 掉电防止方法、电路及装置 WO2017016302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510446169.4A CN106711981B (zh) 2015-07-27 2015-07-27 掉电防止方法、电路及装置
CN201510446169.4 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017016302A1 true WO2017016302A1 (zh) 2017-02-02

Family

ID=57884071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083521 WO2017016302A1 (zh) 2015-07-27 2016-05-26 掉电防止方法、电路及装置

Country Status (2)

Country Link
CN (1) CN106711981B (zh)
WO (1) WO2017016302A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195471A1 (en) * 2006-02-17 2007-08-23 Honeywell International Inc. Voltage clamp
CN102136723A (zh) * 2011-04-20 2011-07-27 南通三九焊接机器制造有限公司 二次逆变尖峰吸收电路
CN102403712A (zh) * 2011-11-22 2012-04-04 奇瑞汽车股份有限公司 一种车载充电机中移相全桥二极管尖峰的处理电路
CN103457253A (zh) * 2012-06-05 2013-12-18 江苏固德威电源科技有限公司 一种可精确预设保护值的过电压吸收保护电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195471A1 (en) * 2006-02-17 2007-08-23 Honeywell International Inc. Voltage clamp
CN102136723A (zh) * 2011-04-20 2011-07-27 南通三九焊接机器制造有限公司 二次逆变尖峰吸收电路
CN102403712A (zh) * 2011-11-22 2012-04-04 奇瑞汽车股份有限公司 一种车载充电机中移相全桥二极管尖峰的处理电路
CN103457253A (zh) * 2012-06-05 2013-12-18 江苏固德威电源科技有限公司 一种可精确预设保护值的过电压吸收保护电路

Also Published As

Publication number Publication date
CN106711981A (zh) 2017-05-24
CN106711981B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
US7433165B2 (en) Auto-resetting span-power protection
CN103779972B (zh) 一种简易可靠的以太网供电装置
WO2012139493A1 (zh) 以太网供电端口防护电路和以太网供电设备
WO2016034121A1 (zh) 用于通信设备直流电源端口的防雷保护电路及方法
WO2014106382A1 (zh) 接入设备的供电方法及装置
US9954430B2 (en) Overvoltage and surge protection in a power over ethernet device
CN210742467U (zh) 一种基于NP芯片实现Dying Gasp功能的装置
WO2012113216A1 (zh) 一种防雷保护电路
WO2019109653A1 (zh) 供电电路、中继设备及以太网供电系统
CN201994655U (zh) 以太网供电网络防雷器
CN103986148A (zh) 一种rs485通信线路的防雷电路
CN201038746Y (zh) 浪涌保护装置
WO2017016302A1 (zh) 掉电防止方法、电路及装置
CN105897572A (zh) 家庭网关装置
CN105429097B (zh) 消防电源总线短路识别与保护电路
US11031804B2 (en) Power controller
CN202940824U (zh) Poe供电设备
CN102938556B (zh) 带有不平衡电流保护功能的电容器保护测控一体化装置
CN102830303A (zh) 一种以太网供电测试设备
CN202190074U (zh) 一种poe网络供电设备专用防雷器
WO2018024025A1 (zh) 通信网供电控制方法及装置
CN209267154U (zh) 一种usb转换接头
US9819499B2 (en) Power fault detection in transceivers
CN210898527U (zh) 防雷电路
CN211456684U (zh) 浪涌防护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829669

Country of ref document: EP

Kind code of ref document: A1